D-A262 489 -
AR DTic = ()

@ APR5 1993

F ‘. |
=D

AFIT/GCS/ENG /93M-05

- DEVELOPMENT OF A VISUAL SYSTEM INTERFACE.‘TO ‘
SUPPORT A DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Timothy Lee Weide, B.S.C.S.
Second Lieutenant, USAF

3- “68819
Marh 2,160 \\ll\\\\\\l\\\\\\ll\\\ll\l) i

p3 4 02 048

Approved for public release; distribution unlimited

Reproduced From
Best Available Copy

2000/06/70

[

AFIT/GCS/ENG/93M-05

DEVELOPMENT OF A VISUAL SYSTEM INTERFACE TO
SUPPORT A DOMAIN-ORIENTED APPLICATION
COMPOSITION SYSTEM

' ECTED &
_ THESIS £TI0 QUALITY INSE
Timothy Lee Weide
Second Lieutenant, USAF

AFIT/GCS/ENG/93M-05

| Accesion For

OTIC TAB
Unannounced
Justitication _

/

NTis craas i)
O

-]

By

Distribution

Availability Codes

Approved for peblic releas?; distribution unlimited Avail andjor

Dist Special

R

Acknowledgements

I wish to express my deep appreciation to my thesis advisor, Major Paul Bailor, who has
given me invalaable guidance and encouragement over the last year-and-a-half. Also. I'd like to
thank my thesis readers, Major David Luginbum and Lieutenant Colonel Elton P. Amburn. whose
comments and suggestions helped impréved the clarity of this thesis. I owe much gratitude to the
other members of the KBSE group:‘ Brad Malia.re. Mary Bdom, and especially Cindy Anderson

and Mary Anne Randour, whose research provided a solid foundation for my own work.

" I'd .like to thank my family, whose unwaivering faith in me has meant so much: my parents,
Bill and Carol Weide. for their prayerfgl support; my children, Alicia, Andrea, and Matthew, for
helping me to keep things in perspective; and finally, my wife and best friend, Chris, for all of the
personal sacrifices she has made. She has giveﬁ me the best years of my life and 1 dedicate this

thesis to her.

Timothy Lee Weide

ii

‘ : “\. .,-
- _ ‘ ;
- Table of Contents
Page
Acknowledgements L e e e e i -
Listof Figures oo o i i it ittt it it et i e e viii
Listof Tables o i i i i i e it e e e e x
Abstract e e e e s e xi
L Introduction . o . v v v it it e e e e e e e 11
1.1 Background e e e 1-1
1.2 - Problem Description 1-4
1.3 Assumptions 1-5
14 Scope i e e e e 1-6
1.5 Approach and Sequence of presentation 1-6
IL. Literature Review o 0 i i it e i i i e 2-1
21 Introductiono v vttt e 2-1
2.2 Visual UserInterfaces iivennenn 2-1
221 Goals i e e e e e e 2-1
2.2.2 Visual Interfaces for Knowledge-Based Systems 2-2
23 VisualLanguages.o i it ittt it e e e 2-6
2.4 Visual Programming Systems 2-6
2.4.1 Program Visualization-.0ev... 2-7
242 Visual Programming0.v... 2-8
2.5 Automatic Layout Algorithms 29
26 Conclusion 0 e 2-10
iii

IIL.

Operational Concept for Visual System oo v v e . 3-1
31 OVerVIeW . . . vttt e e e e e e e 31
3.2 Visual System Features i, 33

©3.2.1 Visualization i e e 3-3 .
3.2.2 Visual Programming, i 3-3
3.2.3 Object Attribute BAIOr « « » v v v v v e e e e e 3-4
. 3.24 Visual specification language e 3-4
3.2.5 Menusystem T e e 3-4
3.2.6 Syntax-directedediting 34
3.3 Visualization Requirements -3-5
3.3.1 Application Editor e e e 35
3.3.2 SubsystemEditor0 .. 3-5
3.3.3 Technology Base Interface 3-6
3.3.4 Build Import/Equrt Areas [3-6
335 CheckSemantics cv ittt ‘ 3-6
3.3.6 Execute 3-6
3.4 Operational Conpept 3-6
3.41 Creatingan Application 3-7
3.4.2 Subsystems B 3-7
3.4.3 Building Import and Export Areas 3-12
3.4.4 Connecting Import and Export Areas o 3-14
35 Conclusion e e e e e e e 3-18

Design and Implementation of the Architect Visual System 4-1
41 Imtroduction 1
4.2 Visual Specification Language (VSL) 4-1

4.2.1 Icon Attributes, [42
4.2;2 Edit-Attributes, e e e 4-3
iv

I]

Pz;ge
4.2.3 Structure of Visual Si)eciﬁcation Objects 4-3

43 Design . oo ST 4-4

4.3.1 System Structure. e e e e e e 4-4

4.3.2 Application Editor o e - 4-7

4.3.3 Edit Application Update e .A 4-12

4.3.4 Editing a Subsystem R JT L 414

4.3.5 Building Import/Export Areas KRR e e e 4-18

‘ 4.3.6 Te'chnology Base e e e 4-19‘
- 437 Semantic Checks e 421
‘ : 438 Execute S e 421
‘ | 4.4 Impl.ementation‘ T b. . 4-21
| 4.4.1 REFINE Impact and fnﬁuence e e e e c e 4-21

442 RepresentingObjects00t .evn. 4-22
443 Object-Window Relation e . 44

4.4.4 Mapping Object Sequences to Visual Objects >. ce 4-25

4.5 Summary S U 4-26

V. Validation and Analysis of the Architect Visual System . . e 5-1

5.1 ValidationDomain0t 5-1

L _ 5.1.1 Circuits Domainot .. e B1

52 Using AVSI [P 5-2
53 Anmalysis.............. e e e e e 5-2

e . 5.3.1 The REFINE Environment 5-3
5.3.2 AVSland Architect 5-3

5.3.3 Rangeof Applicability 5-5

5.3.4 Problems Encountered : 5-6

53.5 AVSDI'sShortcomings.o v vrvunn. 5-8

54 SUmMmary . .. i i i e e e e e . 59

& T T T e
. \
Page
VI. Conclusion a.ﬁd Recommendations e e e e 6-1
6.1 Results of ThisResearch. e 6-1
6.2 Conclusions . . . v v v v vt i e e e 6-2
6.3 Recommendations for Further Research 6-4
6.4 Concluding Remarks R v e 6-6
Appendix A. Overview of Architect . l. e e e e e e e [A-1
A.l Introduction e A-1
A.? Operational Concepto v v vt v v e e A-2
A.3 General System Concept.) .. e A-4
A31 Overviewo A-4
A.3.2 Developing a Formalized Domain Model T A-6
A.3.3 Building A Structured ObjectBase. A-9
A.3.4 Composing Applications SN A-12
A35 Extend Technology Base . « . oo oo eve eeenennns A-14
A36 Visualization e A-14
A.4 Related Research '. e e A-14
A.4.1 Hierarchical Software Systems With Reusable Components . A-15
A.4.2 Automatic Programming Technologies for Avi§nica; Software A-18
A.4.3 Model-Based Software Development . . I A-20
A44 Extensible Domain Models A3
A5 SpecificSystem Concept e e e e e e A-23
A.5.1 System Overview e e i e e e e e e A-24
A5.2 SoftwareRefinery. A-24
A.5.3 Object-Connection-Update Model A-27
A6 Conclusion, e A-29
vi
_— Py - e I B '

-‘.\” - : -
S —
Page
Appendix B. Sample Session e e ' B-1
B.1 Sta.rtiixg AVSL. . e e Bl
| B.2 Create New Application e e e e e e e B-2
B o
E B.3 Edit Applicationt e B-3 .
B.4 Editing a Subsystem O B-6
B.5 Connecting Subsystems’ Imports aad Exports. S B-15 -
B.6 SemanticChecks B-20
B.7 Execute Application e e e e e e e B-20
. Appendix C. SystemFiles e e e el
o Appendix D. VSL Specification of Digital Circuits Domain D-1
D.1 VSLDomainModel e e D-1
D2 VSLGrammar v v v v vttt it i en et te e aenenas D-2
D.3 VSL Description for the CIRCUITS Domain D-3
Appendix E. REFINE Source Code for AVSI [P E-1
Bibliography i, e e e e e e BIB-1
Vita . . e e e e e e e e e e e e e e e VITA-1
vii
. N - _ 2 S
’ - il ,;5‘1_ .
e T \ RN T e -
- — : \ S e L p

* List of Figures

Figure Page
1.1 “Architect‘System Overview” e e 1-3
3.1. OCU Subsystem’s Visual Representation P 3-2
3.2. Tree Diagram of Requirements e e e e S 35
3.3. “Top Level View of Controller’s Update Algorithm™ o 3-8
3.4. Patterns of vControl e e PR 39
3.5. Hierarchy of ObJects . » v v v v v vt vt e it ettt et iee e e Ve 3-10
3.6. SubsystemIcon Group ¢ttt e 3-13

. .3.7. Initial Display of Import/Export Diagram DI _ 3-14
3.8. A solid arrow represents an existing ‘comyxection 3-16
3.9. Dashed arrows indicate potential CONNECHIONS « 4 v v v v v 3-16
4.1. Visual SpecificationObject 0 i e e 4-3
4.2. Example Visual Specification Object Descriptionin VSL 4-5
43 Visual System Structure. e e e e e e e 4-6
4.4. Abstract Syntax Tree for Application PN 4-8
4.5. Application Defi::ition with Subsystems 4-11
4.6. Application UpdateSequence v v v vt v it vt et 4-13
\4.7. Example Subsystem e e e e 4-15

.8. Import and Export Objects with Source and Target Attributes 4-19
9. Object/Icon Relationship e 4-22
4,10, Multiple Object/Icon Relationships 4-24
4.11. Window/Object Sequence Relationship 4-27
AL Roles e e e e e A-3
A.2. General System Overview, . v v v v v v n v n v v S e AS
A.3. Domain Model Instantiation0i ..., A-8
viii

| Figure Page
A.4. Combining Plug-Compatible Components A-16
A5 APTASt P A-19
A.6.. OCU Subsystem Construciion e A-22
A.7. Overview of Specific SYstem . . . v v v v v vt e A-25
B.1. Binary Array Multiplier Schematic Diagram e e e B-1
B.2. AVSIMain Window . .+« vt v ve e e e ettt e B-2
B.3. Edit-application-objects window FE B-4
. B.4. Edit-application-objects window. B-5
B.5. Edit-Update-Algorithm Window with Null statement sequence B-6
B.6. Edit-Update-Algorithm Window with update statement . Ceee e ce B-7
B.7. Edit-subsystem window e e e e e e e B8
B.8. Technology Base Window o i i i i i ittt e i n e e e | . B-9
B.9. DRIVER Subsystem, with primitive objects and nested subsystexﬁ B-11
B.10.Redrawn, scaled DRIVER Subsystem vue... B-12
B.11.Pretty print of subsystem DRIVER B-12
B.12.Subsystem Icon Groups v v it e e e e e B-15
B.13.Icon Groups for Primitives RN B-16
B.14.Import/Export Connections for Driver B B-18
-~ B.15.Import/Export Connections for BAM R e .,.:'.,,. e B-19
ix

Table

A.l, Analogy to Grammar

List of Tables

.................................

AFIT/GCS/E. o) iiM

Abstract

This research designed ..nd prototyped a visual system interface to generate. display, and
modify domain-oriented application specifications. A visual system interface. ealled the Architect
Visual System Interface (AVSI), supplements a text-based environment, calied Architect, previ-
ously developed by two other students. Using.canonical formal specifications of domain objects.
Architect rapidly composes these specifications into a software application and executes a prototype
of that application as a mweans to demonstrate ite correctness before any programming language
spgciﬁc code is generated. This thesis ix.westigates visual techniques for populating, manipulating.
viewing. and composing these software application specifications within the formal object base
scheme required by Architect. A Visual Specification Language (VSL) was developed to define
the visual dispiay characteristics of domain objects. AVSI provides automatic diagram layout. and
aiso produces a textual display in a domain-specific language. The Software Refinery environment,
including its graphical interface tool INTERVISTA, was used to devilop techniques for visualizing'
application data and for manipulating the formal object base. AVSI was validated with a well-
understood domain, digital logic, and was found 1;0 significantly enhance Architect’s application

composition process.

DEVELOPMENT OF A VISUAL SYSTEM INTERFACE TO
SUPPORT A DOMAIN-ORIENTED APPLICATION
COMPOSITION SYSTEM

I Introduction :

1.1 Background

The method used for prog;amming computers is generally a function of the currently avail-
able technologies. We have pfogrcssed from prograxﬁming with punched cards and setting hardware
switches to programming with high-level languages within sophisticated interactive programming
eh_vironments. While modern language technology has enabled these languéges to pl;ovide an in-
creasingly higher level of abstraction, the increasing size and complexity of the problems we are
asked toi solve with computers often results in programs being incomprehensible fo any single indi;
vidual. Therefore, the process of deveioping software applications grows niore difficult to manage

as these problems become larger and more complex (8:5-10).

The problem is often exacerbated by the diﬂicxlllty of knowledge transfer between the user and
the software engineer. Program specifications are traditionally formulated from informally stated _-
system requirements. These requirements are usually stated in a natural language, such as English, |
and are frequently supplemented by informal diagrammatic information. The software engineer
must transform this informal information into an unambiguous computer solution. Unfortunately, -
tequirements arc often incomplete, inconsistent, ambiguous, or pporly communicated, resulting in

computer systems that do not meet the user’s expectations or requirements (45:110).

A new approach to software development is currently being researched by the Knowledge
Based Software Engincering (KBSE) research group at the Air Force Institute of Technology

(AFIT). In this approach, a domain-oriented application composition system allows a sophisti-

1-1

cated end-user, called an application specialist, to use the bui'ding blocks (or “components™) of
his domain to.com-pose his o§vn software applications. It isv desirable to enable the application
specialist, who knows the most about the problem to be solved. to encode the solution in a manner
which he easily understands, i.e., the language of his domain. This language may take on various
forms, both textual and visual, and is at a higher levél of abstraction than conventional “languages
of computation.” A major goal is to allow the application specialist to develop his own a;;plicatioﬁ
directly, without bt.aing burdened with the excessive details of how to model the problem for the

computer, or by the need to communicate his requireménts to a “middleman” (43:4-6).

In a domain-oriented application composition system, the general structure of a software ar-
chitecture, along with the components of the domain to be modeled, are maintained in L formal
|

object base. The domain components are developed by a domain engineer, who is an e?xpert in
|
modeling the real-world objects in his domain, and formalized by the software engineer. Ti1e appli-
cation specialist builds a specification for an application by composing these do‘m;'iin con}ponenﬁs
according to the domain model defined by the domain engineer and the software engine;ar (for a
discussion of roles and interactions of these indi\;iduals, refer to appendix A). The end product of

this process is an automatically generated software specification, from which target codJl such as

Ada may be produced.

Figure 1.1 shows a simplified conceptual diagram of the prototype domain-oriented appli-
cation genera.to-r.l called Architect, being researched by the KBSE group at AFIT. The original
implementation of Architect was developed by Capt Cynthia Anderson (2) and Capt Mary Anne
Randour (39). Architect is implemented within the REFINETM wide-spectrum language environ-
ment. The domain model is defined by the body of existing knowledge within the problem doma.in,
and is further defined by software architecture information from the software architecture model.
The syntax of the domain-specific language is defined by a grammar, whose structure is determined |

by the domain model. Application-specific information encoded in this language is parsed by DiI-

1-2

€1

‘7’1 2andiyg

LMITATIAQ) wRISAS $09IDIY

4 upwog
Qq 103710

_\\/

ALECT. a tocl that exists in the REFINE environment. DIALECT builds objccts. in the structured
object base, structuring them according to the objecf hicrarchy defined by the DIALECT domain
model. This information contained within the structured object base is then used by the applica-
tion c(;nlposer to produce a final software specification. ‘Appendix A gives a more detailed look at

Architect.

A further enhancement to this development model is a visual system. which gives a graphical
representation of the domain-specific language and allows the user to generate, view, and manipulate
application speciﬁcation‘information. A visual interface is also useful to the software engineer, who
is given visual access to the information about the software architecture components within the

domain. Shu (43) provides motivation behind providing a visual system.

1. Pictures are more powerful than words as a means of communication. They convey
more meaning in a more concise unit of expression.

2. Pictures aid understanding and remembering,.
3. Pictures may provide an incentive for learning to program.

4. Pictures do not have language barriers. When properly designed, the are under-
stood by people regardless of what language they speak. (43:8-9)

The visual representétion enhances understanding of the problem being modeled. Producing this

visual interface was the goal of this thesis effort.

1.2 Problem Description

More precisely, the problem addressed was to provide a visual interface for generating, view-
ing, and manipulating domain knowledge and software architecture specifications in a formalized
object base. The visual interface was built for creating, viewing, and modifyilxg applications within
the Architect domain-oriented application composition system. The ‘na.me given to the visual in-
terface was the Architect Visual System Interface, or AVSI. AVSI enhances the following basic

capabilities provided by Architect:

1-4
/ - J Vs
! 4 e <
e - o/ A L A .
/"/) . /'-/ vf - T -
e - s ’/ g i

1. Creating an application. With Architect, application specialists create applications by writing

1.3

sufficiency of the validation domain, digital logic, which was also used by Anderson and Randour-

application specifications in a domain-specific language. The application is built by parsing
the file containing the application specification. AVSI allows the application specialist to
create an application by direct manipulation of visual objects while transparently generating

the application specification in the domain-specific language.

. Editing object base. Architect allows the application specialist to interactively edit objects

that reside in the object base. AVSI gives visual support for editing the structure of the

application as well as editing the internal attributes of individual objects in the object base.

. Viewing an application. The only viewing capability the original implementation of Architect

provides is textual. AVSI provides the application specialist with a graphical view of the
various aspects of an application, such as structure, control flow, and communication paths
between objects. Additionally, the visualization of the information in the object base is

generated automatically, with little or no manual intervention,

. Establishing Communication links between objects. In Architect, this step is called “prepro-

cessing.” Architect queries the user to provide communication paths between objects when
it cannot resolve which objects communicate. AVSI provides visual support for establishing

these connections.

. Overall control of the Architect system. Architect is controlled by a command line interface.

AVSI provides an integrated environment using windows and menus to allow the application

_ specialist to perform any function. A general goal for AVSI was to provide an interface that

is intuitive and easy to use.

Assumptions

Two basic assumptions were made during the research. The first assumption dealt with the

1-5

IR

for Architect. Though this domain is relatively small, it is well-defined and was assumed sufficient
for demonstrating AVSI's functionality. The second assumption was that the graphics capabilities

provided by the INTERVISTA tool would be powerful enough to develop the visual system.

1.4 Scope

AVSI's main emphasis was on the “front end” of the application composition process, which
includes generating. viewing, and manipulating an application. Because of time constraints, the

scope was limited:

o AVSI does not provide visual support for two stages of Architect’s application composition

: process: semantic checks and application execution.

.o AVSI only deals with objects’ static properties; viewing and manipulating the dynamic be-
havior is beyond the scope of this project, but it will undoubtedly need to be researched in

the future.

1.5 Approach and Sequence of presentation

T The following approach was taken to achieve the objectives of this research:

1. A search of current literature provided information concerning visual user interfaces, visual
programming, visual representation of knowledge base information, and screen layout algo-

rithms. Chapter II presents an overview of current literature in these areas.

2. The next step was to assimilate the design of Anderson and Randour’s Architect system, and
develop a strategy for visualizing the structure of an application as defined by the Architect
domain model. This strategy required traversing the abstract syntax tree structures in the
object base to retrieve information about the objects and their structure. Additionally, it

required creating visual objects (windows, icons, links, etc.) and associating these visual

1-6

objects to the objects they represent. INTERVISTA was used to create these visual objects in

the REFINE object base. Chapter III gives the operational concept for AVSI.

3. A Visual Specification Language (VSL) was developed to define the domain-specific visual

characteristics of domain objects. DIALECT was used to create the parser for VSL.

4. Techniques were developed for creating and modifying application data contained in the RE-
FINE object base, and for establishing commuﬁication links between objects in an application.
An integral part of this approach was the use of the Software Refinery environment. This
environment provided all of the necessary tool support for the research. The REFINE wide
spectrum speciﬁca.fion language provided the ability to access the object base. DIALECT wa.s
used to create a parser for the Visual ieciﬁcation Language. INTERVISTA provided visua.l

support, including windows, icons, and mouse-sensitive text windows. Chapter IV presents

|

|

presents an analysis of AVSIL. Chapter V"I discusses conclusions that may be drawn from this

the design and implementation of AVSI. Chapter V discusses the validation domain used, and

_research and recommendations for future research.
|

Some additional information concemiuT Architect and AVSI is given in several appendices.
Appendix A contains a basic description of| Architect. Appendix B provides a sample session

with AVSI, wherein an application in the digital circuits domain is built. Appendix C lists the

* files needed for AVSI. Appendix D gives the definition of VSL (its DIALECT domain model and

grammar) and lists the visual specification for the digital circuits domain. Appendix E contains a

listing of the REFINE source code for AVSI.

1.7

II. Literature Review
2.1 Introduction

The objective of the literature review was to examine current research in the areas of visual

user interfaces, visual languages, visual programming systems (which include program visualization

A and visual programming), and algorithms for the automatic generation of diagram layouts. The

re‘view consisted of a “filtering” process, in which information, both general and specific, was
B ' examined to find information useful for developing the Architect Visﬁal System Interface. Some of
the literature deals with the overall goals of a visual interface. Different visualization techniques
for visual programming and program visualization were surveyed, and several examples of visual

interfaces for knowledge-based systems were examined.

- - 2.2 Visual User Interfaces

- 2.2.1 Goals, Much emphasis has recently been given tc human faétors in interface design.
The human-machine interaction needs to support ciea.t and efficient communication and “support
the user’s tasks, plans, and goals” (31). A number of characteristics of a “good interface” are found
in the literature. In “Visual Interface Design Systems,” Huang (21) discusses the criteria of an

effective user interface. He states a visnal user interface should:

o Be intuitive e Accommodate a wide range of skills
¢ Be customizable o Be extensible
¢ Give plenty of feedback o Be predictable

e Be consistent (most important)

These goals were kept in mind during the development of AVSI. Further goals are presented
- by Eisenstadt, who in “Visual Knowledge Engineering,” gives criteria for a representation that

- “provides a good mapping to the way the programmers themselves tend to formulate solutions.”

These criteria are 1i1appability, manipulability, salience, scope, visibility. coupling, navigability.

completeness. and convertibility (17).

2.2.2 Visual Inte;'faces for Knowledge-Based Systems. Since Architect is a knowledge-
based system, examples of visual interfaces for similar systems provided insight pertinent for the
development of AVSL An ir.lterfa.ce can be considered “intelligent” if “intelligence is embodied‘in
an underlying kncwledg.e-base (12:404).” This section discusses some examples of systems which

use this approach.

2.2.2.1 Graphical Knowledge-Basea Model Editors. One source in particular de-
scribes a system that possesses the qualities desired for AVSI and appears to ’closely correspond
to Architect. In “Graphical Knowledge-Based Model Editors,” Cypher and Stelzner (12) discuss
the graphical representation of information contained within knbwledge-ba.sed sy-stems. In what
they call a graphical knowledge-based model, domain knowledge is embodied within aﬁ underlying
knowledge base, and the graphical interfacc is a *dumb” interface to an intelligent system. The in-
terface facilitates the visualization and manipulation of corﬁplex domains, and thus the objects and
relationships contained within the domain are “evident and manipulable in the graphical display”
(12:404). Cypher and Stelzner describe SimKit, which is a set of tools for building graphical model
editors in a wide range of application domains. With such a graphical model editor, the user can
build knowledge base informatioﬁ by creating icons, moving thera on the screen, and linking them

together with arrows.

The w.uthors make a distinction between models, which describe a particular set of objects and
the relations between those objects. and libraries, which contain the generic classes of objects and
relationships. A single library can be used to produce several different models. A modelis built with
a domain-specific editor, which is built around the domain-specific information contained within
the library. The informction contained within the library constrains the information that may

be contained within the domain-specific editor. Though library building and maintenance require

programming experience. a model is generally built by non-programmers who are considered experts

in their application domain.

A typical model-building session proceeds as follows: First, the user is presentéd with a
display of icons, each of which répresents a domain object contained within the library. The
user then selects icons aud\blaces fhem on the screen. This action results in the creation of
instances of the corresponéi;lg objects in the library. Finally, these icons are connected with lines,
which represent relations befwegn objects. The library descriptions of object classes also contain
behavioral descriptions and initial values for object state information, and therefore, the model's

behavior can be simulated once the model has been built.

SimKit has been used by over 100 users for building graphical model editors over a broad range
of application domains. Such applications include factory control systems, battle management, and

construction project management systems (12:408).

A significant correlation exists between SimKit and Architect. and this served as the basis

for a considerable amount of the thought process behind the design of AVSL SimKit and Architect

are clearly parallel efforts, and it might be useful in future research efforts to consider interfacing .

SimKit to Architect. An advantage Architect ha.; over SimKit is its development environment,
The Soft&are Refinery environment allows for very rapid development and provides integrated
support for languages, graphics, and object-base manipulation. AVSI resides in this environment
and retains Architect’s capability to express domain objectsin a dom‘ain-speciﬁc language, a notion

that is missing in SimKit.

2.2.2.2 Visuel Knowledge Engineering. Another visual “toolkit” for building visual

knowledge-based models is the Knowledge Engineer’s Assistant (KEATS) (17). Among the many

tools in the suite are:

o FLIK (Frame Language in Keats), a frame-based know'edge representation language

23

e Rule interpreters
o Tables: a spreadsheet-like., table-based interface for data acquisition -

o GIS (Graphical Interface System). a “direct manipulation” interface for knowledge bases.

The main emphasis of the KEATS system is to provide a “graphical representation of program
behavior which provides a good mapping to the way the prograinmers themselves tend to formulate
solutions” (17:1166). The GIS was designed to enable the representation of objects, relations, and

dependencies in a manner similar to drawing on a blackboard. A certain amount of flexibility has

been maintained by allowing the editing of the same knowledge base information by using either

the GIS or a code editor. Variation of the granularity of information is provided by expanding
and co!l‘;zpsing of visual information. Furthermore, sirﬁqltaneous views are possible. A coarse-
grained view, which shows a‘more global picture, may be viewed in conjunction with a ﬁne-gra.ined
view, which gives a more detailed picture. This article provided a good qverview of the types
of information a developer needs to develop an application, and how this information should be

presented.

2.2.2.8 ILockheed’s Graphical Developmeht Environment. In another knowledge-
based system, Lockheed’s Automatic Programming Technologies for Avionics Software (APTAS)
System (29), an engineer constructs a tracking syste@ by inputting specification data via a “dy-
namic forms interface.” When the specifications are complete, an architecture generator automat-
ically constructs an architecture from the “tracking taxonomy and coding design knowledge base”
information. The architecture can then be viewed with the graphical interface which displays the
architecture in a boxes and arrows format. The display supports the viewing of hieraichical infor-
mation by “zooming in” when an icon is clicked on. The user can edit the architectur¢ by making

changes to its graphical representation,

Part of their Graphic Developu’xenf Environment. Lockheed's Graphical System Description
Language (48), mags system descriptions to their graphical representations. This language consists
of three parts. the Type Sublanguage (TSL), the Declarative Sublanguage (DSL), and the Visual

Sublanguage (VSL).

The Type sublanguage defines the primitive types. relations, and type classes contained in -
a particular domain. This provides templates fer instantiations of objects, with the addition of

default attributes,

The Declarative sublanguage is used for system description. Its basic components are scope
objects, declarations, and relations. Scope objects group declarations and relations to define a type.
Declarations are used to name instances of types. Finally, relations declare the named relations

between these instances.

Both the TSL and DSL support embedded help information in their type descriptions. This
help information is textual information to be used while developing applications, and aids the user

by.giving information about particular object types.

The Visual sublanguage is used to map DSL objects to their gr#phical representations. This
mapping is based on the object’s class, type, or relation type. This ma._pping assumes that all
objects of the same type have the same basic look, diﬂ”ering-in labeling cha.ra.cteristics. The VSL
associates each type or type class with a specific icon object, which may be simple or complex. -
Other information, such as default position, grouping, display depth, and hierarchical information,

is specified by this language.

The Graphical Development Environment, along with Graphical System Description Lan-
guage, provided a good example of a system with some goals similar to those of Architect and
AVSI. The Declarative and Type sublanguages provide an equivalent to Architect’s domain model,
and the role of the Visual sublanguage played an important role in defining AVst Visual Specifi-

cation Language.

2-5

2.3 -Visual Languages

Chang (11) presents a “formal specification of iconic systems using generalized icons.” He

provides the formal basis for a visual programming system in which each icon possesses both a

physical and a logical representation. Icons can be one of several types: elementary, complex,
composite, or structural. He further defines a set of operations for the iconic system. Iconic

sentences can be both syntactically and semantically analyzed by a “visual language compiler.”

A visual language requires a defining structure, a grammar. Huang (21) discusses the three

most common forms of specifying grammar systems. These are Backus-Naur, state-transition
diagrams, and object-oriented framework. Huang claims the object-oriented approach offers.the

N most advantages for user interface design. He enumerates the advantages as follows:

‘1. It not only supports the separation of the interaction between user and application
in a natural way, but it also enhances the development of a direct manipulation
interface. ' ‘ :

2. The interactive interface objects can be constructed quickly by modifying éxisting
objects. This is a style of programming from example.

3. It can support the construction of multiple interfaces to a given application, which
in turn can be used according to available I/O devices or user preferences.

4. It promotes adherence to interface standards by making it easy for interface de-
signers to use code that has already been designed to meet those standards.

5. It enables natural partition of a task to be run on separate processorsin distributed
environment, (21:121-122)

Since the Software Refinery is an object-based environment, the object-oriented framework offers
a further advantage in the development of AVSI, which directly uses the structure of Architect’s

/ot;jects in the REFINE objects base.

2.4 Visual Programming Systems

AVSI requires a two-way interaction with the programming system. A distinction can be
made between two directions within the interaction. Program visualization is “the graphical display

of program code or sys' ‘m documentation,” whose goal is to “help programmers form clear and

correct mental images of a program’s structure and function™ (10). Visual programming. on the

other hand, allows the user to interactively program using visual information. (22)

2.4.1 Program Visualization. AVSI's development required an answer to the question.

“what kinds of information should be displayed, and how should this information be presented?”

" Program visualization can take on any number of forms. In systems such as Brown University's

“program-development system.” Pecan ('1), several different "views” of a program are provided. In
Pecan, an abstract syntax tree is used to produce multiple concurrent views, such a;q structurgd flow
graphs. the program listing. the program’s declarations, and symbol table information. This kind of
“multi-media” approach supports a system design which is based 6n a “unified view of language.”
where language is viewed as an integration of comnluxlicatioxl modes {verbal, textual, etc.). Indecd.
researchers in the artificial intelligence community have suggested advantages in including verbal,

gestural, and tactile information within communication (33).

Pegasys (Programming Environment for the Graphical Analysis of SYStems) uses formal
graphical information to 1epresent the hierarchy of program “entities” such as subprograms, mod-
ules, and data objeci.. It performs consistency checks among the entities, and aids in the design of

programs by graphically describing the relationships between data structures and algorithms (32).

In his thesis “Graph-Based Visu:.lization of Formal Specification and Domain Specific Lan-
guage,” Langloss (27) implements a graph-based visual language called Visual Refine. Visual Refine
provides a graphic view of the abstract syntax tree representation of a program written in the RE-
FINE specification language. Each REFINE object and operation is represented by an icon, and the
relationships between objects and operations are shown as connecting lines. Visual Refine is a very
simple system, and requires a great deal of manual intervention. Displaying visual data requires the
user to manually traverse the abstract syntax tree and find applicable REFINE rules to display each
individual node. Once a rule has been applied to a node. an icon is created. which the user then

manually places in the diagram. Though Visual Refine’s functionality is very limited. it served as

2-7

a good starting point for the development of AVSL It also provided an example of a visual system

that used the Software Refinery environment.

2.4.2 Visual Programming. vThough systems such as Pegasys and Visual Refine aid the
developer by allowing a visual represc atation of a program or program design. the); lack the ability
to create or modify a program. However, this ability was a necessary feature for AVSIL. Several

systems have been developed (or proposed) which provide this visual programming capability.

Arefi (3) proposes a visual, syntax-directed edifor for visually editing a program. Such «n
editor requires a visual sﬁeciﬁcation language, which is used to define the syntax and semantics of a
visual programming language, to produce a syntax-directed editor. Similar to Visual Refine, Arefi’s
visual programs are represented as directed graphs. However, é. graph-to-program transformation
is also provided. The editor provides a means to edit the graph according to the synt'ax of tﬁe visual

language. Each editing operation represents one or more graph transformation rules supplied by

the language specification.

The notion of using a visual, syntax-directed editor is als;) discussed by Ei-Kassas in “Visual
Languages: Their Definition and Applications in System Development (18).“ El-Kassas discusses a
model called an Attribute Icon-replacement Grammar, which “describes the rules for constru_cting‘
well-formed graphs of interconnected icons.” In this model, the edifor is seen as a “derivation
engine,” which is used to create graphs consisting of terminals and non-terminals. The user can --
use the derivation engine to select a non-terminal symbol (a symbol to be replaced) and then select.
the production rule to apply to it. El-Kassas asserts that this method is well-suited for creating

new graphs from a starting symbol, as well as modifying partial structures within the graph.

This concept proved to be useful for AVSI, which uses the syntax structure defined by Ar-
chitect’s domain model. This domain model explicitly defines how AVSI creates an application's
object structure in the REFINE object base and provides a basis for directing the user through the

object composition process.

2-8

2.4.2.1 Form-Based Dialogue. Though most of the systems examined in this re-
search rely on a “direct manipulaticn™ strategy, i.e., selecting, moving, and linking icons on a
graphical display, another approach offers several advantages. “Form-based"‘dialogue interfaces
have been used successfully in systems which require complex commands and data sets. Shu (43)
cites several examples, such as QBE, a database query language, and FORMANAGER, a system
which allows data definition, entry, ‘updating. and query by completing forms. Thése systems are
both built on an underlying relational table model (43:239-284). As mentioned previously, the AP-
TAS system (29) relies heavily on a form-based dialogue, and AVSI was designed to take advzmtage

of this capability to a limited degree.

2.5 Automatic Layout Algorithms

In Visﬁal Reﬁne.‘Langioss requires a large amount of manual intervention to correctly dis-
play the graphs corresponding to the abstract syntax tree representation of a REFINE program.
Automating the process requires automatic graph drawing routines. To provide a user-friendly
interface, it is desirable to minimize the amount of user intervention required to display visual _
information. In fact, an issue being examined in this thesis research is that of automatically gen-

erating the screen layout. The following sources provided insight into this issue.

Eades and Xuemin (16) examine the criteria and basic steps used to draw a directed graph.
They state three aesthetic criteria. First, arcs pointing upward should be avoided. Second, nodes‘ '
should be distributed evenly over the page. Last, there should be as few arc crossings as possible,
The three steps for deriving the graph are: remove cycles from the graph, layer the acyclic graph,
and finally position each node in each layer of the propervlayered network. This algorithm is a

generalization of several other graph-drawing algorithms.

Protsko, in “Toward the Automatic Generation of Software Diagrams (38),” discusses the _

criteria for drawing data flow diagrams, and spells out the placement and routing strategies in a

- system called MODRIAN. Other issues such as readability, shape, hierarchy. and compaction are

i ex_a.minéd in “Automatic Graph Drawing and Readability of Diagrams. (47)"

2.6 Conclusion

6urrent reéearch provides an wide range of information on visual programming systems and
visualization t'echniqueé. There seems to be a general lack of consensus on which techniques é.re
the mos't‘va.luai‘)le (43:9-10), but much was learned by examining the different approaches. AVSI
was designed to take advantage of, énd synthesize, the features of several example syétems. Such
features include direct manipulation, form-based intefaction, syntax direcﬁed editing, and visual

specification lahguages.

2-10

II1. Operational Concept for Visual System

3.1 Overview

The Architect Visual System Interface (AVSI) is a visual system for the domain-oriented
application composition system developed by Andersgn (2) and Randour (39) called Architect.
Appendix A contains a high-le\.'el overview of Arch‘itect. AVSI was developed along with. but
a few months behind, Architect. AVSI directly uses the object structure defined by Architect’s
domain model but uses INTERVISTA'S graphics capabilities to visualize and manipulate the formal
object base. Anderson and Randour, in the early stages of Architect’s development, used a very
simple artificial domain that used simple primitives such as “widgets” and “gadgets,” which have
no counterparts in any “real” donlaill. This allowed them to avoid thinking in the terms of any
specific domain. To validate tleir system, they moved to the digital logic (or “circuits”) domain.

AVSI's development and validation used these same domains.

The motivation behind providing a visual systeni for Architect was to give the application
specialist, as well as the software engineer, an environment which is intuitive and as easy to use
as possible. Instead of using a purely visual system, textual information was incorporated in
some places for easier understanding of the underlying ba.pplication. In this manner, textual and
visual data are combined synergistically (33) to represent the information the user needs to develop
an application. AVSI provides a considerable amount of functionality without using extremely
sophisticated graphics. All of its visual functions rely exclusively on the capabilities provided
by INTERvISTA. While lacking features such as complex icons and colors, INTERVISTA gives an
easy way to access the objects in the REFINE object base. Since AVSI is intended as a proof-of-
concept, rather than an industrial-strength tool, INTERVISTA was sufficiently powerful to provide
the capability for program visualization as well as for visual programming. Much of INTERVISTA's
power lies in its ability to map visual objects (icons, windows, etc.) to the logical objects in the

REFINE object base. Moreover, it allows for mapping in the other direction, i.e. from the visual

JRUSREY

L e

objects to the logical objects. Finally, it provides high-level graphical functions, thus avoidiﬁg many

. low-level programming issues.

AVSI serves as the interface between the user (the application specialist or software engineer) -

and Architect. The underlying system, as developed by Anderson and Randour. was designed

according to the Software Engineering Institute's Object-Connection-Update (OCU) model (28).

According to the OCU mo(.lel, an applicationis composed of. and ultimately implemented
by, sﬁbsystems. The OCU representation of a subsysteﬁx is shown in Figure 3.1. A subsystem
consists of four basic parts: the controller, the objec.ts’, the import area, and the export area. The
controller, which is the locus of control for the subsystem is “connected to” the objects that if
controls. The collection of these “controllees” may consist of primitive objects or other subsystems,

which themselves control other objects. The import and export areas provide the comrunication

. links between subsystems.

Import Area | - ' TN
Export Area

\ Controller P

Objects

ER—|

Figure 3.1. OCU Subsystem’s Visual Representation

3-2

The OCU's conventions for visual symbols (icons) were also foliowed, where appropriate, in

AVSI. The features, requirements, and the operational concept of the AVSI are described in the

following sections.

3.2 Visual System Features

3.2.1 Visualization. AVSI furnishes the application specialist with a graphical view of

- the application as it is being developed:

1. AVSI provides a facility for visually composiﬁg formally defined, pre-existing components con-
tained within the technology base, and it gives a graphical view of the structu‘red object base
ae V‘Nell as the application software architecture generated t(; sgtisfy the system requirements.
For example, AVSI provides visual information about the hierarchicai relationships between

an application, its subsystems, and primitive objects.

2. Another view of the application shows the communication links between import and export

objects in the import and export areas of the subsystems.

3. The user is provided with concurrent multiple views of system information wherew}er possi-
ble. For instance, graphical information about a-subsystem in the form of diagrams, showing
objects and relationships, may be displayed along with texiual information about object
attributes in tabular form. These displays may be further supplemented by text-based syn-

tactical information, using the grammar which defines the domain objects.

3.2.2 Visual Programming. A further feature of AVSIis its visual programming capability.
The applica.tion specialist and software engineer are able to manipulate the structured object base
by direct manipulation of icons and links. Creating an icon according to predefined rules results

in the creation of an instance of a corresponding domain object in the structured object base.

Connecting one icon to another by creating and placing a link between them results in the creation

of a logical link between the corresponding objects in the structured object base,

3.2.8 Object Attribute Editor. Whenever an object is thus created, further information
is ﬁsua.lly required. In general, this information (attributes, state vari;.bles, and a.lgorithms; etc.)
already exists within the object because default values are a.ésigued whenever an object instance is
created. If it does not, the user may interactively enter this informgtiou with an object attribute
editor. The object attribute editor allows the applica.ti; specialist to view and modify‘ the internal

attributes of objects contained in the structured object base. .

3.2.4 Visual specification language. The Yisual representé@ion of each type of primitive

- domain object must be defined prior to creating an application within that domain. Information
such as icon type, size, and shape must be declared before a graphical representation can be
presented fqr a primitive object. To make this information easy to provide, a visual specification

" language capability such as Lockheed’s Graphical System Description Language (48) affords a
grammar-based specification method which is relativgly easy to use, easy to modify,.and which

puts this information in a standard format for wide applicability across domains.

3.2.5 Menu systems. The menu system providés the user a way to enter commands to the
application generator. Depending on the context, péssible choices of commands are enumerated
in the menu format. Such commands invoke parsing of text files, editing‘ objects, semantic check-
ing, and execution. A main control panel window contains “buttons” for the major application

composition functions.

3.2.6 Syntaz-directed editing. The visual editing capability provided by AVSI augments
Architect’s previous method of parsing text files to build an application in the REFINE object base.
AVST’s visual editing of the application follows the syntax of the same grammar used by the parser.b

Thus AVSI provides syntax-directed editing which guides the user in building correct applications.

3-4

Visual System

Roglcaion Subsystem \ o |
| \ e
Edior Edto \ o || DO
. '\ \‘ \, | Semaris [|
/N N [Tenoogy | -
\ \\ Base Build
Create | View/Edh D | terace ImporEgor
whain | sicsn ||, © =
Y]
Create View/Edr
Subsystem l Subsystem

Figure 3.2. Tree Diagram of Requirements

3.8 Visualization Requirements

% Since AVSI's purpose was to be an interface for Architect, its requirements centered around
the basic capabilities provided by Architect. Figure 3.2 shows a tree diagram for its requirements.
N Each of the requirements is discussed in more detail below, and an operational concept of a system

that meets these requirements is provided in section 3.4.

TE 8.3.1 Application Editor. The application editor must provide the ability to view, create,
and edit an a.pp]icatic;n: Creating an application builds the basic structure required to generate
an application specification. It is done either by parsing a text file or interactiveiy with the visual
system. Viewing and editing an application is done by displaying the application and allowing

i direct manipulation of the display.

3.3.2 Subsystem Editor. The subsystem editor must .provide a mechanism for creating,

viewing and editing subsystems, including all objects from which the subsystems are composed.

3-5

3.8.8 Technology Base Interface. The technology base interface must provide the ability

to retrieve and store domain objects in the technology base. These objects include primitive objects,

' generics, and subsystems built and stored in previous sessions.

3.8.4 Build Import/Ezport Areas. AVSI must provide a method of viewing and editing

subsystems’ import and export areas, and the connections between import and export objects.

3.3.5 Check Semantics. Though no visual support is provided, an interface is provided

~ to call Architect’s semantic checking routines.

8.9.6 Ezecute. Though no visual support is provided, an interface is provided to call

Architect’s application execution function.
p

8.4 Operational Cohcept

Applications are generated by populating the structured object base with instances of domain
objects and composing them according to predefined system composition rules. The a.ppiica.tion
specialist begins this process by creating a new application v}hich is either built “from scratch” or
is parsed from a text file containing a description of an application. The user adds new subsystem
objects or primitive-objects to the application in the same manner, either by creating new object
instances or by using “saved” objects from the technology base. The saved objects were previously

saved as text files and are parsed into the object base,

The subsystem editor allows the user to further define a subsystem by adding controllees,
which may either be subsystems or primitives. The structure of the subsystem and its controllee
objects are viewed and edited with the subsystem editcr. The attributes of any object may be

viewed and edited with the object attribute editor.

The communication links between the subsystem-objects must also be defined. Once the

subsystems are all created and fully defined, the application specialist issues a command to the

3-6

applicaiion generator to ascert. ‘n the correctness of the specification by performing semantic checks
on the structured object base. Should any semantic errors exist in the specification, the application
specialist may correct these errors by editing the objects in the structured object base. When
the specification is error-free, an “execute” command may be issued to observe system beha.vior..

Finally, a command may be issued to generate a formal specification suitable for code synthesis.

The following sections provide an operational concept for the Architect Visual System Inter-
face. Where there are alternative approaches to a step in the process, the different approaches are

discussed separately.

3.4.1 Creating an Application. The first step in creating a new application is to select the
application domain. AVSI simply lists the possible domains in a multiple-item menu and prompts

the user to make a choice.

There are two basic ways to create a new application:

1. Parse Text File Based on the chosen domain, the user chooses from existing application
definitions written in the appropriate domain-specific language. Upon selection, the file is
parsed int6 the structured object base. This text file may either be a hand-coded text file,
containing an application definition, or a saved application, which is a system-generated text
ﬁle_ cqntajning an applicatifm definition previously contained within the structured object
base. A saved application contains additional in{ rmation about the communication links
between the application’s subsystems. These two file types are essentially the same, and the

steps required for parsing are identical.

2. Create Application To create an application “from scratch” the user is only asked to provide
an name for the new application. AVSI creates the basic application structure to which new

subsystems and primitives can be subsequently added.

3.4.2 Subsystems. AVSI provides the ability to view, build, and edit subsystems.

3-7

T =
1 -

g

/

7
//) . //\\\v
o
‘ . ./.' kS
s Updale | o ~ Update 3N
St Obj-1 T‘*<\If-statemem Ve Obp?g ==~ * While-stetment ~ - > End
A / . \\) ~
\ / \\ /

Figure 3.3. “Top Level View of Controller’s Update Algorithm”

3.4.2.1 Viewing a Subsystem. A subsystem may be viewed either textually or
“graphically. The textual representation is merely a “pretty-printed” view of the subsystem in the
domain-specific language for the selected domain. The graphical view of the subsystem consists of

a diagrammatic view, consisting of icons and links.

The OCU representation of a subsystem as shown in Figure 3.1 is the basic “top-level” visual
representation of a single subsystem (28). Thg subsystem editor displéys a similar diagram for a
vsubsystem. This top-level representé.tion may be expanded by examining any of its components.
The user examines these components by clickiné on thev appropriate icon. By expanding the view of
the controller, the user may view the controller’s update algorithm. This algorithm can be viewed

in its textual form, as specified by the grammar for the specific domain, for example,
Update(Obj-1);
If <condition>
then Update(0bj-3);
Else Update(0bj-2);
Update(0bj-2);

While <Condition>
Update(Obj-1);

Alternatively, a graphical representation may be viewed, as in Figure 3.3. The algorithm
is represented as a directed graph, which shows the control structure of the algorithm. Different
configurations of icons and directed arrows are used to show various patterns of control. For

example, graphs depicting sequential, iteration, and branch on condition patterns of control are

(Coadition .)

/

/,/‘\ ’ Condition)
/ g - true ' AK
v I - P sequence of statements 7N
. . (/ . \\ false
L : v \\W)nle // --------- »
false }\ a " B
v g h e " true
sequence of statemeats -- - ’< > i Sequence of statements
~—
Branch on Condition " Iterative
7N TN '
))
— N’
Sequential

Figure 3.4. Pattorns of Control

shown in Figure 3.4. An If statement is represented as a single icon, whiéh may be expanded to
show its components: the condition, the then-part, and the optional else-part. The eondition may
then be expanded to show an expression tree. The then-part and else-part are statement sequences
which may also be expanded. Similarly, a while statement’s icon may be expa.hdea to show its

components: the condition and the while part.

A new statement is added to a statement sequence by inserting an icon which represents the
statement type, whicy may be an update-call statement, an if-statement, or a while-statement.

Additionally, a statercent is removed from a statement sequence by deleting its icon.

The subsystem’s objects, which are represented as a single icon in the top-level view of
the subsystem, can be expanded to show a hierarchical view of the entire collection of objects.
Since some of a subsystem’s controllees may be subsystems themselves, this hierarchy of objects is
represented visually as a tree structure with the top-level subsystem as its root, as in Figure 3.5.

Each icon is labeled with the name of its object class along with the name of the object instance.

S T
: ; ”

Subsystem-Obj
Suh-yﬂuvM

» } ' mﬁm~~ouj N\
| ‘8ubtyltom-2 ‘ . w/'
L ' .

- M \ R f
Pﬂmﬂv&GObj) Primitive-8-Obj
C-Obj-1 y; 8-Ob}-1
v

Figure 3.5. Hierarchy of Objects

The visual attributes of the icon used to represent each primitive object are defined by the Visual

Specification Language for that object’s domain.

The import and export areas may also be expanded to view their import and export objects.

AVSI displays this information in a read-only text window.

3.4.2.2 Building a Subsystem. Three different methods can be used to put a sub-

system in the structured object base. These methods are: selecting a pre-deﬁned"s:ubsystem from

the technology base, creating a generic inéiance, and building a new subsystem “from scrratéh””lr)y o

direct-manipulation of icons and links. ' e

A subsystem which has been previously built and saved in the technology base may be selected
from the technology base for inclusion in an application. This action is performed by sélecting a
subsystem from the “Technology Base Window.” If the saved subsystem contains controllee objects
(primitive-objects or other subsystem-objects) these objects ahd their icons are also created and

added to the application and its visual display. AVSI creates an icon for the retrieved subsystem

3-10

and allows the user to place the icon in the diagram window and link it te the icon that represents

its controlling subsystem or application.

A new subsystem-object may also be created from any generic object texﬁplate existing in the
technology base. The geuneric template contains a basic subsystem definition, with “placcholders™
for which primitive objects must be provided. An icon representing the generic ixlstance is placed in
the current edit-subsystem-objects or edit-application-objects window. Tle user links this icon to
its controlling subsyétem {or application object). Finally, the user must create a primitive-object
and su_pply a name for each of the “placeholders” defined in the generic template. Finally. the icon
for each of these primitives must be linked to the generic-instance's icon. Architect then converts
the generic instance to an actual subsystem-object, whereupon the gcneri(}:—instance-icon is replaced
by a subsystem icon. ' {

A new -ubsystem may be built by directly manipulating icons a.nd; links which represent its

!
|

1
|

parts. To build a new subsystem, the user follows these steps:
!

1. Create a subsystem-icon within either the edit subsystem-objects window or the edit application-

objects window. A new subsystem-object is created and added to the application.

2. Link the subsystem-icon to its controller. The subsystem’s controller may be either the

application-object or another subsystem-object.

3. Choose and place contrcllee objects for the subsystem. These objects are either primitive
objects or other subs)stems. Primitive objects are selected from the Technology Base Win-
dow. The primitive objects contained within the Technology Base Window are the objects
which are legal for the currently chosen domain. Each object selected ié placed in the edit
subsystem objects window or the edit application-objects window by dragging its icon to an

appropriate pesition.

3-11

e

4. Fill in information required to complete definitions of the objects. Primitive objects’ at-

tributes and their default values are displayed in a text window. These values may be modified

using the attribute editor.

5. Create the update algorithimn for each controller. For controllers, update algorithms are given
by either writing in the surface syntax of the domain-specific language, or by constructing
directed graphs via a direct manipulation scheme similar to that used to construct subsystems,

i.e. placing icons and links.

6. Place a link between each icon and its parent controller’s icon. This link is represented as an

arrow, pointing from the controller to controllee.

3.4.2.3 Editing a Subsystem. Once a subsystem has been loaded or built, AVSI

allows the user to modify it. The methods for editing a subsystem aie as follows:

1. Changing the structure or configuration of the subsystem. This is done by direct-manipulation
of icons and links. Icons and links may be created, deleted, or moved. Creating an icon

requires the same steps as those outlined above in “building subsystems.”

2. Editing an object's attributes. An attribute editor presents a list of an object’s attributes

and allows the user to interactively change their values.

3‘.4 3 th:{dt;glr;rport an;1 Ezport Areas. Accordihé to the OCU :rl;(iél. the commuﬁica-
tion links between objects exist via theiimport and export objects contained within subsystems®
import and export areas. Architect may be able to infer what some of the links are, using the data
type of the import and export objects. However, when ambiguity exists, for example when there
exists more than one possible source for a given import object, the application specialist must tell
Architect which source is to.bé used. This is done by manually connecting import and export areas.
To connect the import and export areas, the application specialist begins by making the connec-

tions between the objects within each subsystem. These links are internal to the subsystem, and

3-12

’/v"“PO;1 Subsystem E >n=
| con el gy

Figure 3.6. Subsystem Icon Grdup

are established by connecting objects within the subsystem with arrows, pointing from export area
to import area. Finally, the external links, those between subsystems, are established. Similarly,

these links are made by connecting subsystem icons with arrows.

To display and build the application’s import und export arcas, the user clicks on the *Build
Import and Export Areas” button on the main control panel window. A ‘new window, éntitled
“Imports/Exports” will open. This window displays an icon group for each of the application’s
subsystems. The subsystem icon group used té display and connect subsystems’ import and expo.rt

areas is composed of three sub-icons, as shown in Figure 3.6.

1. Subsystem-icon This is the main icon of the icon group, and is represented as a rectangle.
This icon is labeled with the Subsystem's name. If this is a “nested” subsystem, the parent
subsystem is included (in parentheses, beneath the subsystem game) in the subsystem’s label.
Clicking on this icon will aliow the user to either interactively move the icon group or to invoke

the Subsystem Editor.

2. Import-icon This is represented as a circle, attached to the left hand side of the Subsystem-
icon. This icon is labeled, “Imp.” Clicking on this icon results in one of two actions, depending
on the particular sequence of events in the editing process. These actions are discussed in the

next section.

3. Ezport-icon This is represented as a circle, attached to the right hand side of the Subsystem-

icon. This icon is labeled, “Exp.” This icon is similar in function to the import-icon.

3-13

Architect’s preprocessing facility builds the import and export areas for each subsystem and
vesta.blishes connections between whatever import and export areas it can. If an import object
can receive data from more than one export object, the user is required to make the connection
manually to one or more of the export objects. If an import object is connected to multiple export

sjects, Architect arbitrarily selects one of the export objeéts from which to receive its data.

If each of the import objects witilin a subsystem are connected to at least one export objelct.
then the subsystem icon’s import-icon will be displayed in reverse’vi.deo. Similarly, if each of the
export objects within a subsystem are connected to at least one import object, then the subsystem
icon's export-icon is shown in reverse-video. No connections are shown on the display initially.

Figure 3.7 illustrates the initial display.

Subsystem-Obj TN

@ Subsystem-1 @

Subsystem-Obj
(imp | Subsystem-3 .

/| (Subsystem-1) \B)

)

Imp | Subsystem-2 Exp)
(Subsystem-1) ("~

Figure 3.7. Initial Display of Import/Export Diagram

3.4.4 Connecting Import and Ezport Arees. The connection between import and export
objects may be made in either direction. If a subsystem’s import area is chosen first, then for each

import object in the import area, export objects may be chosen. Conversely, if the export area is

3-14

chosen first, then for each export object in the export area. import objects may be chosen. Each

method is described in the following sections.

3.4.4.1 Selecting Ezport Objects for an Import Area. Clicking on a subsystem’s
import-icon at this point will result in two display actions. First, a window will open containing
textual information about the subsystem's import area. This information is comprised of the

following information:

o Import Name This is the name of the import object, and is not necessarily unique. Thus

this name may be duplicated in the list of import objects.

o Import Consumer This is the name of the consumer object for the import data. Including
this name in the list is necessary for distinguishing between import objects which share the

same import name.
o Import Category This identifies the data type of the import object.
o Source This shows information about the export object(s) connected to this import object.

A second display action is performed in conjunction with the above. If one or more of the
import objects within the subsystem are connected to an export object, a solid arrow is displayed
between this subsystem’s import-icon, and the export-icon of the subsystem which contains the

export object (Refer to Figure 3.8).

An import object is selected from the import area by clicking on its entry in the import-
area text window. The selected import object’s entry in the text window is displayed in reverse
video. Once an import object is thus selected, the solid arrows disappear. Dashed arrows are now
displayed, showing the subsystem export areas which contain candidate export objects (Refer to
Figure 3.9). Clicking on a subsystem’s export-icon will open a textual window for the corresponding
export area. This text window is similar to the import area’s text window, with minor differences

in the field names. Each export object in the export area is listed in the window, and clicking on an

3-15

Subsystem-Obj | —
. Subsystem-1 Exp)

_\; Subsystem-Obj

| Subsystem-3
<mp/ (Subsystem-1) E

[
\B_

Subsystem-Obj | —.

Subsystem-2 Exp) ‘
(Subsystem-1) |~ ’

Figure 3.8. A solid arrow represents an existing connection

Subsystem-Obj
Subsystem-1 Bxp
(j{ {

N\

|
;
|
|
|
|
|
|

\

‘{,\ Subsystem-Obj
imp |- Subsystem-3__
\j (Subsystem-j) "\E

3

imp

Subsystem-Obj
Subsystem-2 @

{Subsystem-1)

Figure 3.9. Dashed arrows indicate potential connections

3-16

entry will select the corresponding export area to be used as the source for the previously selected
import area. Both the import-area text window and the export-area text window will be updated

to reflect the change.

With each connection made, if the change results in the completion of any import or export
area’s connections, the corresponding icon will bé displayed in reverse-video. The user is not
required to define the conneétion for all of the import-objects in the import area at this time. If
no import area is curréntly selected in the import-area text window, a ne;v import area may be
chosen by clicking on any subsystem icon's import-icon. This will cause the previous import-area
text window ;o disappear, and a new one will be opened fér the selected import-area. Ad‘ditionally,

the aashed-lines will disappear, with new ones appearing for the new import-area.

3.4.4.2 Selecting Import Objects for an Ezport Area. The process of selecting im-
port objects for an export area is similarly described. If no import or export object is currently
selected, clicking on a subsystem'’s export-icon will cause a window to open wﬁich contains textual
information about the subsystem’s éxport area. This information is comprised of the following

information:

e Ezport Name This is the name of the export object, and is not necessarily unique. Thus

this name may be duplicated in the list of export objects.

¢ Ezport Producer This is the name of the producer object for the export data. Including this
name in the list is necessary for distinguishing between import objects which share a common

name.
o Ezport Category This identifies the data type of the export object.
o Target This identifies the import object(s) connected to this export object.

The user’s interaction is the same as in the above section, except that the connections are

made in the other direction. The arrows, both solid and dashed, now point from a single export-

3-17

area to m: ltiple import areas. An export-object is first selected, the export-object is highlighted
in the export-area textual window, and dashed arrows point to the potential targets. An import
area is selected by clicking on a subsystem’s import-icon. An import-area text window opens and

the user selects an import object.

3.5 Conclusion

AVSI is required to provide visual support for the application composition activities of the
Architect system. This visual support provides methods for viewing and manfpulating the vari-
ous parts of an application, making the application composition process easier and more intuitive.

The operational concept presented in this chapter demonstrates how AVSI meets the stated re-

. quirements. ' AVSI generates application specifications by populating the structured object base

with instances of domain objects using the visual techniques supplied by the application editor
and the subsystem editor. The technology base interface provides access to existing components
within a domain, and the Visual Sbeciﬁcation Language defines the domain-specific visual infor-
mation required to display domain objects. AVSI allows the user to edit ‘doma.in objects, make
communication links between subsystems, and provide§ a command interface for semantic checking
and application execution. The following chapters provide information on the design, implemen-
tagion, and validation of AVSI. Additionally, Appéhdix B provides a sample session of creating an

application.

IV. Design and Implementation of the Architect Visual System
4.1 Introduction

o This chapter describes the design and implementation of the Architect Visual System Interface
(AVSI). The first section discusses the Visual Specification Language (VSL). Subsequent sections

present the de'sigxl of AVSL. Finally, details are provided concerning the AVSI implementation in

L the Software Refinery environment. As mentioned in the previous chapter, AVSI provides a visual

environment for Architect. devised by Capt Cynthia Anderson (2) and Capt Mary Anne Randour

(39). A high-levei overview of Architect is provided in appendix A. The functionality of the system

devised by Anderson and Randour has been preserved in AVSL.

;‘}" o 4.2 Visual Specification Language (VSL)

A central goal throughout the development of Architect was to maintain domain-independence.
The system should require no code modification in switching from one domain to another. Rather,
it is desirable to allow domain-specific information to be represented in a standard forma.t which
can be “plugged into” the system for each domain without requiring any subsequent changes to ‘
the basic system. The Visual Specification Language (VSL) provides a means of encapsulating
the information required by the visual system for each individual domain. VSL defines the visual
- representation for each primitive, and pfovides object attribute information for use by the attribute
editor. This domain-specific information, written in VSL, is easily modified; the software engineer
- or application specialist may make changes to the domain objects’ visual representation or attribute

information without modifying the Architect software system or AVSI.

The grammar and domain model for the Visual Specification Language (VSL) were written
in the REFINE language. This grammar is used by the DIALECT tool to create a parser to read

\ VSL descriptions for the primitive-objects contained within a domain. DIALECT's default lexical

4-1

S N S

S

analyzer was used for this parser since it provided the functionality required by VSL. VSL currently

provides two basic types of information for the visual system: icon-attributes and edit-attributes.

4.2.1 Icon Attributes. The iconic representation of each instance of an domainvprimitive's
object class is defined using the Icon-Attribute clause of VSL. INTERVISTA, the tool used for cre?.ting
the visual system, provides a very limited capability for defining icons. Only four basic icon ’shapes
are allowed. Icons using these basic shapes ma;' be “customized” by changing their size or distorting
their basic shape by changing the height-width ratio. If an icon attribute is omitted in the icon-
attribute sequence, the default value (defined in the domain ﬁlodel) for that attribute is used. The
attributes may be entered in any order. If an attribute is listed more than once, the last occurrence

will be used. The allowable icon attributes for inclusion in an Icon-Attribute clause are:

o Activef If true, then the icon will be displayed. If false, the icon and all its links still exist in

the system, but are not displayed in any window. The default value for Active? is true.

o Icon-Type Legal values are BOX, DIAMOND, ELLIPSE, and TEXT. An icon of type text

has only its label displayed. The default value of Icon-Type is BOX.

o Size-Factor The size-factor is a positive real number which specifies the size of the icon. The
default value is 1.0. Using a smaller number will decrease the size of the icon, and using a

larger number will increase the size of the icon.

o Height- Width-Ratio The Height-Width-Ratio is a positive real number which controls the
proportions of the icon. The default value is 1.0, which results in the width being equal to
the height. Using a smaller number decreases the icon’s width, while using a larger number

increases its width. The icon’s height is not affected.

o Label-Function The Label-Function is a symbol which specifies the name of the labeling
function used to create the icon’s label. The default value is a make-object-label, which

displays the name of the object class followed by the name of the object instance.

Visual

S . Specification

i‘ ' Object

|

|

|

‘ - | l

~_ Class
Specification
Objects

Icon
Attribute

Objects Attribute

Objects

Figure 4.1. Visual Specification Object

e Mouse-Sensitive? Controls the mouse sensitivity of the icon. If true, thea the icor s mouse
sensitive; the icon will be highlighted when the mouse cursor passes over it and a mouse-

handler will be invoked when the icon is “clicked on.” The default value is true.

4.2.2 Edit-Attributes. Each primitive-object class’ definition includes attributes which -
the user may want to (or need to) edit. The domain model for each objec* class contains these
definitions and assigns default values for these attributes whenever an object instaﬁce is created.
The edit-attribuie clause in VSL specifies which of these attributes are in fact editable, and tells

the visual system the data type of each of these attributes.

4.2.8 Structure of Visual Specification Objects. For each domain, a visual specification file
is parsed by D1aLECT. This creates a Visual Specification Object (VSO) abstract syntax tree in the
REFINE object base. The structure of the VSO is shown in figure 4.1. Each VSO has multiple Class

Specification Objects, one for each object class type within the domain. Each Class Specification

L Zoasio

Object has two parts: its Icon Attributes, which is a sequence of Icon Attribute Objects, and its
Edit Attributes. The visual system extracts information from the VSO whenever an icon for a
primitive-object is created, or when the attribute editor is invoked. Tigure 4.2 shows an exampie

Visual Specification Object definition in VSL

VSL's grammar is relatively simple, partially due to the limited availability of icon definition
provided by INTERVISTA. The grammar may be extended however, to incorporate complex icons

and nested icons as in Lockheed’s Graphical Specification Design Language (48).

4 3 Design

The design of AVSI 'is directly tied to Anderson’s and Randour’s domain model, which defines
the structure of an application’s a.bétra.ct syntax tree in t‘he.REFINE‘ objéct base. The syntax is
deﬁned by their OCU-grammar, which is inherited by all domain-grammars. Therefore the same
basic structure is. used across all domains. AVSI builds applications accbrding to .this structure, di-
rectly manipulating the application’s abstract syntax tree in the structured ob ject base. Therefore,
the resnltant abstract syntax tree is identical to that created by parsing an application definition

from a text file.

4.3.1 System Structure. The stx;ucture of the visual system is shown in figure 4.3. The
top level function, AVSI, ties together all of the subordinate functions necessary to compose a
software application. It simply provides a button panel in the main window which gives chuices
for the major application-building activities specified by the requirements discussed in the previous

chapter. The main window also contains a text window to output messages from the system. These

messages are Zenerally error messages or instructions to the user.

AVSI is a windows-based system. Several windows may be active simultaneously, and thus
the user may be engaged in multiple concurrent stages of the application composition process.

For example, an application is composed of subsystems, which in turn are composed of primitive-

.

4-4

-

L A,

i
A

Visual Specs for TEST-DOMAIN are

attributes for PRIMITIVE-1 are
Icon :
icon-type = ellipse;
active? = true;
size-factor = 1.1;
height-width-ratio = 1.0;
label = c¢lass-and-name;
clip-icon-label? = false;
mouse-sensitive? = true
Edit :
name : symbol;
attribute-1 : integer;
attribute-2 : symbol;
attribute-3 : boolean
end;

attributes for PRIMITIVE-2 are

Icon :
icon-type = box;
active? = false;
size-factor = 1.1;

height-width-ratio = 0.95;

label = class-and-name;

clip-icon-label? = false;

mouse-sensitive? = true

Edit : .

name : symbol

attribute-11 : real;

attribute-12 : symbol;
end;

end

Figure 4.2. Example Visual Specification Object Description in VSL

4-5

Architect
Visual System
Interface (AVS)

/ .\\\\“ m

4 }
g oo | (] [ir] o
TN 1T
e ||| e || e || S | S | S || G || S
Seve v Display J o\:puv
Appilication -~ ca Imports Exports
A I
Redraw m 3;3 E&tm ﬁ-.
Y v v
W Move lcon ™ e
Sequence

Figure 4.3. Visual System Structure

objects, or possibly even other éubsystems. It is possible for the user to switch frqm editing a
subsystem to editing the application at a higher level by simply switching to a diﬂ'efent window.
In this sense, the system is event-driven. By clicking the mouse on an object within a window,
the user invokes fhat window’s mouse handler, which in turn invokes some function that has been -
previously defined for the objeét that was clicked on. This provides a certain amount of flexibility in
that the user is not forced to follow a completely rigid sequence of steps to complete an application
definition. However, AVSI maintains consistency because the user is constrained by the syntax
imposed by Architect's domain model and grammar. The user is not allowed to construct an

appilication definition that is not syntactically correct.

4.3.2 Application Editm". The application editor allows the user to take muliiple ap-
proaches to building an application. First, an application may be built “from scratch.” Alter-
natively, an application may be parsed from a text file which contains an application definition
written in the domain-specific language for the given demain. This file is either hand-coded or
automatically generated by the system during a previous session. An application may either be
built “from scratch,” or by parsing a text file coﬁtaining an application definition. Either method

builds the same type of application definition structure in the structured object base.

4.3.2.1 Create New Application. Create-Application first sets the context of the
system by prompting the user to choose a domain. The user is given a choice of dormains based on
the domains it “knows” about, i.e. those domains for which Visual Specification ﬁies are currently
loaded into the system. AVSI creates and names the instances of the objects required for a basic
application. The user will further define the application in later steps. Creating a new application

is composed of three steps:

1. Create application-definition-object The application-definition object is a structure that “holds

together” the entire application. It is the topmost ancestor of every object that exists in

4-7

|
| Application-Definition |
Object

| Spec Parts
Y

Application Object

Figure 4.4. Abstract Syntax Tree for Application

the application. This provides the ability to save (and later restore) an application using
DIALECT.

2. Create application-object The application-object is the application executive according to the
current implementation of Architect, It may be thought of as the highest-level subsystem in
the application. The application-object is placed under the application-definition-object in

the application definition. Figure 4.4 shows the abstract syntax tree created by this process.

3. Set domain contert The user chooses, from a menu listing all availablg domains, the domain

for the application, The list of available domains is the set of domains for which Visual

Specification Objects exist in the structured object base; thus, the VSL file for the desired
domain must be parsed before building the application. Additionally, the grammar for the

chosen domain must be loaded prior to this step.

4.3.2.2 Parse Application. The Parse Application function uses the DIALECT tool to
parse a text file containing an application definition into the REFINE object base using the domain-

specific grammar already defined for that application's domain. The resultant abstract syntax

4-8

tree representation of the application is identical to one created by AVSI's direct manipulation

techniques.

Parsing an application definition from a text file is straightforward. First, the user sets the
domain context; this selects the grammar used by DIALECT to parse the .text file. Next. the user
interactively selects the file to be parsed. If the parse is successful, DIALECT builds the abstract
syntax tree for the application definition. If the parse is unsuccessful, the user is notified in the

message window.

4.3.2.3 Load Saved Application. A variant of parsing an application definition is
loading a saved application, and the difference between the two is subtle. A “saved application” is
a system-génerated application definition text file (written in the domaih-speciﬁc language) written
during a previous session. It generally contains extra information about the import/export areas
of subsystems which does not normally exist in a regular application definition text file, and it
requires some extra processing. This extra processing is a result of a feature of the OCU grammar,
as defined by Anderson and Randour. All information about thé connections between import and
export areas is spc;ciﬁed by listing which export objects are connected to an im;.ort object. This
information is an attribute of an import object. On the other hand, an export object has no direct
knowledge about which import objects it is connected to. The visual system needs this information
however, to allow the user to establish the connections from either direction. AVSI adds an attribute
to the export objects which lists the import areas it is connected to. This is discussed in greater

detail in section (\1.3.5.1.

4 .8.2,3 Save Application. ‘ The user may choose to save an application at any point
in the application tomposition process, as long as the current state of the application is “correct,”
i.e. the abstract s Jnta.x tree must be syntactically correct according to the grammar rules of the
domain-specific language. However, this poses no problems, since both DIALECT and AVSI build

applications according to the same syntax rules. The Save Application function saves the abstract

4-9

syntax tree which contains the current state of the application definition in the form of a “pretty-

print” to a text file.

4.3.2.5 Edit Application. The application editor provides two subfunctions, Edit
Application Components, and Edit Application Update Algorithm. These editing functions modify
the application’s object structuré as well as modifying the application’s main control algorithm.
Once a new application dcﬁni;:ion has been created, the user must complete the definition by
adding and defining components, and prm.riding an application update algorithm. If. as in the case
of a parsed application (ieﬁnition, these items already exist, the user may modify them using the

application editor.

4.3.2.6 Edit Application lComponents. This function displays the application object
(which may be thought of as the top-ievel subsystem in the application) as an icon to which subsys-
tems may be created and connected. Several functions are available within the Edit-Applicatio;x~
Components Window. New subsystems may be created and linked to the application or to other
subsystems. In keeping with the current Architect model, an application may only control subsys-
tems, thereforle no domain primitives may be introduced at this point. The Application Component .
Editofadditionally allows the user to view a pretty-print of the application definition in a text win-
dow. The viewed text is presented in the domain-specific language defined for the application’s

domain,

Asin each diagram window in AVSI, a mouse handler is defined for within the Edif-Application-
Components Window. Clicking a mouse button while the mouse cursor is in the window’s screen
region will invoke the window’s mouse handler. The mouse handler will invoke a functi‘on, based
on the object (icon, link, or diagraﬁ-surface) beneath the mouse cursor when the button is clicked.

The following functions are defined for this window:

4-10

5

Application-Definition
Object

\\Spec-Parts

N
N\
\\

Application Object \\

\
(Controls SS1) ——!ﬂ

Subsystem Object SS1 \
(Controls SS2) Y

Subsystem Object SS2

Figure 4.5. Application Definition with Subsystems

1. Create New Subsystem Th.: user interactively creates a subsystem and places its icon in the

diagram window. AVSI adds the subsystem to the application definition’s abstract syntax

tree.

. Link to Source When the user links the subsystem-object’s icon to the controller’s icon, AVSI

updates tl’1e controller’s list of contfollees. Note that the user may only add subsystems in the
edit-application-components window; primitive-objects may be created only in the subsystem
editor. AVSI represents the application as a tree-like graph, with the application-object icon
as its root. Arrows show the direction of control, from the controller to the controllee.
Figure 4.5 shows an example application with subsystems. Note that subsystems may be

nested.

. Redraw Screen This forces a screen redraw, which invokes the automatic layout algorithm

for the application. This function redraws the application as a tree-like directed graph, with

the application-icon as the root. If the application definition contains any primitives at this

point, these are displayed beneath their controlling subsystems. The function scales the icons

to fit the entire diagram on the viewed surface.

. Zoom-in/Zoom-out If the system contains a very largé number of subsystems, the above-

mentioned layout function, with its scaling, may shrink the icons down to a very small size,
making it difficult to view individual icons or sections of the diagram. The zoom-in function
allows the user to enlarge a section of the diagram. Zoom-in's complementary function,

zoom-out enables the user to get more of an overall look at the diagram.

. Move Icon The user may occasionally want to change the placement of certain icons in the

diagram window. Move-icon allows him to drag the icon to another location. Because AVSI

- uses dynamic links, any links connected to the icon are automatically updated when the icon

is moved.

. Delete Object Any subsystem in the diagram window may be deleted at any time. Delete-

object erases the object from the object base, deletes all references to the object in the
application definition, deletes the object’s icon, and removes all links connected to the icon.

A subsystem’s controllees are not deleted when the subsystem is deleted. However they are

_isolated until they are relinked to another controlling subsystem or to the application object

itself. An application object may not be erased in the edit-application-objects window. Once

an object is erased, it cannot be recovered without re-creating and redefining it.

Pretty-print Objéct The description of an object’s abstract syntax tree is displayed in a sep-
arate text window. The pretty-printer prints according to the rules of the current grammar.
Any object (application-object, subsystem-object, or primitive-object) may be pretty-printed

in this window.

4.9.3 Edit Application Update. The Applica.tion Update Algorithm Editor, like the Ap-

plication Component Editor allows the user to build the application’s update algorithm by direct-

manipulation of visual objects (icons and links). The update algorithm is composed of a sequence of

4-12

Start - > Update | ... > Update | e > End
$S-1 SS-1

Figure 4.6. Application Update Sequence

statements, and is visually representéd as a directed graph with the nodes representing statements
and the edges showing flow of control. According to the current model of Architect, if-statements

and while-statements are not allowed in the application update algorithm.

Edit-application-update provides a dual view of the application’s update algorithm in tw.o
~separate windows. The text window merely shows a pretty-print of the update algorithm. This
text window is updated whenever any chauge has been made. The only legal statements in an
#pplication's-update algorithm are call statements, thus the control structure is strictly seq;en-
tial (if-statements and while-statements are allowed in a subsystem’s update algorithm: see sec-
tion 4.3.4.2). The diagram-window displays the algorithm in diagrammatic form, as a linear list,
left to right (see Figure 4.6). Note than two icons in the diagram, the “start-icon” and “end-icon,”
do not have corresponding statements in the actual update algorithm’s actual statement sequence.
These two special icons may not be modified or deleted. A null sequence then consists of an arrow,
from the start to the end icon. The user modifies the algorithm by adding, deleting, or editing

nodes in the list:

1. Add Statement Adding a statement to the update algorithm inserts a statement object in
the statement sequence. AVSI places the statement in the sequence according to its position
in the diagram. A newly-created call statement is incomplete, since the user has not yet

specified the operand name.

2. Edit Statement Editing a call statement is simply supplying an operand name to the call

statement object.

4-13

3. Delete Statement Deleting a statement removes the statement object from the statement
sequence, erases the statement object and its corresponding icon, and links the two icons

which were adjacent to the deleted icon.

4.3.4 [Editing a Subsystem. Editing a subsystem is very similar to editing an application.

Indeed the application-editor and the subsystem-editor share many of the same functions The

three major components of the subsystem editor are Edit-Subsystem-Components, Edit Subsystem

Update Algorithm. and Display Import/Export Areas.

4.3.4.1 Edit Subsystém. Editing a subsystem, like editing an application, comprises
editing its comnponents and editing its update algorithm. The Subsystem Editor"s similarity to the
application editor is a result of the way an application dbject is viewed and represented in the
current implementation of Architect: an application object is essentially the top-level subsystem.

The two functions 1volved are Edit-Subsystem-Components and Edit-Update.

Edit-Subsystem-Components is similar in function to Edit-Applicatién-Components. The
subsystem object is represented as a subsystem icon in the Edit-Subsystem-Components diagram
window, with &irected arrows pointing to the icons representing its controllees (which may include
other subsystems). Adding a primitive to the subsystem is done by selecting a primitive-object
icon from the technology base window, dragging it into the Edit-Subsystem-Components diagram
window, and then linking the primitive-object icon to the subsystem which contrbls it. The system
provides an alternate, textual view of any object in the window by pretty printing the abstract

syntax tree for that object in a text window.

AVSI displays a subsystem as a tree-like directed-graph, with the icon representing the edited
subsystem having no ancestor node. Figure 4.7 shows an example subsystem. The same layout
algorithm used for displaying applications is used for displaying subsystems. The user may add

subsystems or primitives to the subsystem being edited:

4-14

e

Subsystem-Obj
Subsystemn-1
i N
vl \
’/
;'/
Subsystem-Ob) /7 And-Gate-0b) N\
Subsystemn-2 & And-1 /
///
// \\
’ N\
/ \
/ \
LIS
. e
) SO
Or-Gate-Obj) Switch-Obj ~
Or-1 /,} \\ Sw-1 ///
L AN
_/ \v//‘

Figure 4.7. Example Subsystem

1. Creating a new subsystem The function Create-Subsystem creates a subsystem object, and

prompts the user for its name. The new subsystem is represented by a subsystem icon in the
diagram window. The subsystem must be linked to'its controlling subsystem {or application
object) by linking its icon to the icon of its controller. The new subsystem must be controlled
by some subsystem already existing in the application definition (a primitive may not control

a subsystem).

. Creating a new primitive-object The user creates a new primitive-object by dragging the

desired primitive-object’s icon into the window from the technology base window (which
contains the primitive-object classes for the current domain). AVSI creates the primitive-

object instance., and ingerts it in the application-definition's abstract syntax tree.

. Link to Source The user must link both subsystem objects and primitive-objects to their

controlling subsystem. AVSI adds the primitive-object's import and export data to the import

and export areas of the object’s controlling subsystem.

4-15

JPo)
\
\
-

4. Pretty-Print Object Either subsystem-objecis or primitive-objects may be pretty-printed. A

separate text window displays the object’s pretty-printed code.
5. Move-Icon, Redraw, Zoom-In/Zoom-Out These functions are described in section 4.3.2.6.

6. View/Edit Primifive-object Attributes Any attributes listed among the edit-attributes, as
defined by the VSL description of a primitive-object class, may be edited. AVSI lis;ts the
attribute names and current values in_ a text window. Clicking on an attribute name brings
ué a small pop-up window into which a new value may be entered. AVSI uses the LISP read-
from-string function to extract the value, and the REFINE set-attribute function to update

the object’s attribute.

7. De-letg Object The topmost subsystem in the window may not be deleted (the user may use
the applicatior editor to delete this 61‘ hny subsystem, should he want to do this). An:y
nested subsystems in this window may be deleted as described in section 4.3.2.6, Deleting a
primitive-object erases the object instance and removes all references to the object from the
application's abstract syntax tree. ‘These references include entries in the subsystem’s import

and export areas.

4.3.4.2 [Edit Subsystem Update Algorithm. Editing a subsystem’s update algo-
rithm is similar to editing an application’s update algorithm; however, since a subsystem’s update
algorithm may contain conditiona.i or loop constructs, two other statement types are allowed: if-
statements and while statements. Editing an if-statement is done by editing the conditional-part,
the then-part, and an optional else-part. Similarly, editing a while statement is done by editing the
conditional part and the while-part. Then-parts, else-parts, and while-parts are simply statement

sequences,

1. If-Statements The user inserts an if-statement into a statement sequence in the same manner

as inserting a call-statement. AVSI represents the if-statement asa singlé icon in the statement

4-16

sequence. The user edits the individual parts of the if-statement separately, by clicking on

the if-statement icon in the statement sequ-~nce. AVSI then displays an expanded view of the
if-statement in a new window which it “stacks” on top of the current window. This expanded
view is a generalized view of an if-statement, and serves as a menu to edit the three parts of

the if-statement.

The first part of the if-statement is the if-condition. The if-condition is an expression-
object which the user may build in two different ways: typing the expression, and building
it. If the user chooses to type the expression, AVSI parses the expression from the user’s
input string and inserts the resultant abstract syntax tree in the if-statement object’s con-
ditional part. This expression tree corresponds to the expression’s abstract syntax tree in
the structured object base. AVSI allows the user to edit the expression tree by adding and

deleting nodes. Any identifiers in the expression need to be linked to some import-object or

export-object within its controlling subsystem. If AVSI is unable to determine the correct

import/export object, it prompts the user to choose from among the currently available im-
port/export objects. To provide a certain amount of flexibility, the user is allowed to defer
this action to a later time. This flexibility is necessary because the subsystem’s components
niay not have been completely defined at this point, and thus the desired import/export
object may not exist yet. AVSI now displays the expression as an expression tree in a new
window, If the user chooses to build the expression, rather than type it in,‘ he does this by

building the expression tree within this window.

The other parts of the if-statement, the then-part and the optional else-part, are
statement sequences. The user edits these statement sequences in exactly the same manner
as editing the main stat:ment sequence. All statement types are legal in these statement

sequences.

4-17

& o ' S S PR T ' i 7
i o e v e . - - DR R . T Tl . ’ : . ;
. . . , . Lo -~ . . R

9. While-Statements There is little difference between editing an if-statement and a while state-
ment. A while statement contains the same conditional-part and contains a do-part, which

is a statement-sequence.

4.3.5 Building Im;;ort/Ezpoz'i Areas.‘ Aé AVSI adds each primitive-object to a.subgystem,
it automatically builds that part of tlie subsystem’s import and export areas which perté.in to
fhe primitive-object. This action is invisiBle to the uéer, and_ the user‘is not allowed to modify
the subsystem’s import or export areas; however, the user is allowed to vigw the subsystém's
import/export aLrea.s in a text window. ** "1 displays this information by pretty-printing to reé.df

only text windows which the user may view at any time.

Though AVSI automatically builds the application’s subsystems' import and export areas as
the user adds primitive-objects to each subsystems, or when an applicatioh is parsed, the connec-
tions between all of the iinport and export objects must still be established. This section discusses

the process of making the connections.

4.3.5.1 Logical Representation of Import and Ezport Areas. Each subsystem'’s im-
port area contains all import objects for all of the primitives it controls. Each of these import objects

may have one or more sources, which are export-objects controlled by any subsystem within the

application (including its own cohtrolling subsystem).

Similarly, a subsystem’s export area contains the export objeéts for all its primitives. Each
export object may have one or more targets, which are import:objecis within any subsystem.

Consequently, there is a many-to-many relationship between import and export objects.

In Anderson’simplementation of Architect, the connection is specified by storing the source as
an attribute of each import-object. The user makes all connections by specifying the sources of all
the import objects. This establishes a one-way connection between export and import objects, and

such a representation is adequate for her implementation. AVSI however provides more flexibility

4-18

.- Import Objects

‘j

D

) 4

R
X

e
/
///
. l

-

B S S

]

Subsystem-1 Subaystem-2

Figure 4.8. Import and Export Objects with Source and Target Attributes

|
by allowing the user to specify the connection from either the import-object's or the export-object's
o

perspective. Figure 4.8 shows the representation of these' connections. The new attribute target

is the functional converse of the already-existing attribute source; thus, the existence of a source

|
implies the existence of a target and vice-versa. !
]
i

4.3.5.2 Visual Representation of Import and Ezport Areas. AVSI uses a somewhat
|

. !
simple scheme to display and manipulate the connections hetween import and export objects. The

operational concept was discussed in chapter III. Graphical{ and tabular information is combined to
\
show the connections, and the number of links shown on the display at any given time is minimized,

thus avoiding a cluttered visual display. At the same time, the complete connectivity of each import

or export area is readily visible.

4.3.6 Technology Base. Architect’s usefulness is in part due to the reuse it promotes by
providing a technology base of reusable components. AVSI gives the user an interface in which to
access the components contained in the technology base. Three basic types of reusable components

are primitives, generics, and “saved” objects.

4.3.6.1 Primit‘ives. AVSI fully implemenﬁ the retrieval of prilnitive~obje§ts for
inclusion in an application’s subsystems. A technology-base window displays an icon for each
primitive-object class defined for the current domain. Each icon is drawn according to the icon
definition contained in the VSL description of the correspond_ing object class. These icons are

arranged in a simple lattice in the technology-base window, and two different functions are available

for primitives:

4.8.6.2 Create Primitive-Object. Creating a primitive-object is discussed in sec-
tion 4.3.4.1. When an object is created, its icon is created and attached to the mouse cursor for

placement in the edit-subsystem-components window.

4.3.6.3 Display Primitive-Object Definition. AVSI displays the Primitive-Object
Definition for a primitive-obje~t class in a read-only text window. This definition is in the form of

REFINE source code, and contains the structural and behavioral description of the primitive object.

4.3.6.4 Generics. AVSI provides visual support for Architect’s capability to create
subsystems from generic templates. After the user chooses a generic template by selecting its file
from a menu, AVSI creates a generic instahce, and a corresponding icon. 'i‘he generic template
contains one or more “placeholders.;’ for which controllees must be provided. For each one of these
. placeholde-rs, the user creates, and provides a name for, an object. AVSI uses the functions provided
by Architect to convert this generic instance to a subsystem, which may then be included in the

application.

4.3.6.5 Saved Objects. AVSI allows for the reuse of previously saved objecfs. These
objects may be subsystems or primitives, and are represented as text files containing pretty-prints
of objects from previous sessions. The application specialist retrieves one of these objects by
selecting the filename from a menu. Aréhitect parses the file, creating the object. AVSI creates the

corresponding icon and allows the user to interactively place it in the diagram window.

4-20

v

4.3.7 Semantic Checks. ‘Semantic checks are performed as part of the preprocessing step.
AVSI provides no visual support for semantic checks. Anderson s code is used directly, and any

messages generated by the process are output to the Emacs window.

4.3.8 Ezecute. Providing a visual display of the application’s execution was beyond the
scope of this thesis. As with the semantic checks, Anderson’s code is used for execution, and the

output is displayed on the Emacs screen.

4.4 Implementation

4.4.1 REFINE Impact and Influence. INTERVISTA cpntains the basic facilities to provide
a visual-based user interface. It supplies - windowing system with mouse handling, pop-up menus,
mouse-sensitive text windows, diagram crawing methods, and direct access to the REFINE object
base (40). INTERVISTA programs are written in the REFINE language and vse the REFINE object
base. Graphical objects, such as icons, links, diagram surfaces, menus, and windows can be di-
rectly mapped to other objects in the object base. INTERVISTA is rich in high-level functions for
maintaining and manipulating the graphical objects but is at the same time somewhat restrictive
at the lower levels. For example. only four basic icon shapes are provided. These basic shapes may
be given different sizes and height/width ratios. Creating complex icons, however, reqﬁires calling
lower-level functions from the underlying windowing systems, and was beyond the scope of this
thesis. Though somewhat limited in terms of icon déﬁnition (without using the underlying Coimn-
monWindows and XWindows systems), INTERVISTA provided an excellent platform for developing

a prototype for the visual system.

Following an object-based approach, visual data in INTERVISTA consists of a set of icon
objects, which map to the set of logical objects (for example, the subsystem-objects and primitive-
objects used in Architect) in the underlying system. The icon and link objects’ display attributes

can be interactively modified by tne user. For example, 17 the user “clicks” on an icon and moves

4-21

' loon-for-Object !

O !
l
)
L

Object © Object-for-lcon
. Id

Figure 4.9. Object/Icon Relationship

to another location within a window, the icon's display coordinates are u.pvdvatcd automatically. and
all of its links are auwomatically redrawn to reflect thcilr ne\t; -osition. The display objects can
also be modified by the screen layout algorithms which are used for displaying already-existing
diagrams. Relationships between the objects will be visually reprcschtcd by li'nk objects (lines
with arrowheads) which connect the icons. The set of icons and links are grouped togefher into a
single view (or diagram surface} which is itself an object in the REFINE object base, and may be

manipulated by certaiu functions, such as repositioning, scaling, and zooming in and out.

The DIALECT tool provided the ability to easily implement the Visual Specification Language
(VSL). VSL's grammar is defined by and parsed by a parser created by DIALECT. Thus the visual
spéciﬁcation information’is maintained in the REFINE object base. and AVSI uses this iﬁformation
to display and edit domain-specific information. The Visual Specification Langnage is loosely based

on Lockheed's Graphical System Description Language’s Visual Sublanguage (48).
4.4.2 Repreaenting Objects.

4.4 2.1 Object-Iron Relation. An object in the REFINE object base is related to
its visual representation by a two-way mapping between the object and the icon. For each object,
an attribute, icon-for-object, represents its associated icon. An inverse attribute, object-for-icon,
represents the object for a given icon. Figure 4.9 shows this relationship. Using tile computed-

using clause in the definition of an icon. the mere reference to an object’s icon will dynamically

4-22

create an icon, if the icon does not already exist. For example. the following defines the attribute

" Icon-for-Object.

var Icon-For-Object: map(object, icon)

computed-using icon-for-object(obj) = \mako-icon-for-object(obj)
The computed-using clause calls a function which creates an instance of an icon object in the object
base, and sets its attributes (position, icon-type, size. etc.). By including §lle following form. this
attribute is cached: an icon will be created only on the first reference to the attribute. Subsequent

references will use the icon created on the first reference.

form Cache-Icon-Object

cache(’icon-for-object, true)

The inverse attribute. object-for-icon, is defined to be initially an empty map:

var Object-For-Icon:

map(icon, object) = {| |}

Defining the icon-for-object and object-for-icon maps to be functional converses results in the

automatic definition of the object-for-icon attribute whenever an icon-for-object mapping is created:

form Object-Icon-Converses

define-fun-converses(’icon-for-object, ’object-for-icon, true) \

This method of representing the celationship between an object and its icon provides an efficient, yet
powerful, two-way access between the logical and visual representations of an object. An abstract
syntax tree in the object base may be traversed and its visual counterpart consisting of icons and
links constructed along the way. Conversely, as icons are created and linked, the corresponding
objects and relationships may be created. Moreover, since icons exist as objects within the REFINE
ebject base, they may be reused: new icons are not recreated if an object's icon has been previously

viewed, even when t'.e window containing that icon has been closed and then reopened.

4-23

REFINE Object Base

} ' Icon1-for-Object ’
| Subsystem 8&"86,’ ;

Object Object-for-lcont I
|
g
. ~._Icon2-for-Object

N
~a

Object-for-lcon2 ™~ Icon , :
\ Object :

~ \M——i

Figure 4.10. Multiple Object/Icon Relationships

4 .4.2..? Multiple Representations of an Object. Depending on the context in which
the user is work‘infg, an object within an application may have more than one visual répresentation.
For example, a stgbsystem-object, in the subsystem edit-components window, is represented as a

P
simple box icon. ‘&n the build-imports/exports window, a subsystem is represgnted as a group of
|

three icons. The s;ubsystem will thus have more than one icon. Figure 4.10 shows this relationship.

Note that the attribute names for the different icons are named differently.

4.4.3 Objit- Window Relation. As icons may be mapped to objects (as in the previ-

ous discussion), sL also may windows be mapped to objects. The following definition shows this

mapping.

var Window-For-Object: map(object, diagram-wihdow)

computed-using window-for-object(dl) = make-window-for-object(di)
var Object-For-Window: map(diagram-window, object) = {|[}

form Cache-Window-For-Object

cache(’window-for-object, truse)

4-24

form Object-Window-Converses

define-fun-converses(’window-for-object, ’object-for-window, true)

The first time an object’s window is referred to, a diagram window is created and mapped to the

object. Subsequent references to the window will return the window created on the first reference.
since this attribute is cached. Additionally. since the attributes object-for-window and window-for-
object are defined to be functional converses, both attributes are automatically defined upon the

creation of the window.

This technique is useful because it allows each object to have its own window or windows.
For example, AVSI creates a window for each spbsystem for editing subsystem components. Thus
several wiﬁdows may be open simultaneously, providing the ability to edit multiple objects. This
technique also results in vthe reuse of windows, avoiding the slow‘process of éreating a new window
each time the window is viewed. Furthermore, since the mapping is a one-to;orie mapping, only
one window may be open for an object, eliminating the possibility of obsolete informa.tion existing

in an outdated window or conflicting information in multiple windows.

An object may be mapped to more than one type of window however, since the mapping
may use more than one attribute name. For example, AVSI displays two possible windows for a

subsystem: cither an edit-components window or an import/export window (or both may be open

simultaneously).

4-4.4 Mapping Object Sequences to Visual Objects. A problem exists when mapping an
object sequence to a visual object: though REFINE allows such a mapping, the result of such a
mapping does not have the desired effect. The problem is illustrated in the following code. The
attributes are defined as follows:
var icon-for-seq : map(seq(object), icon)

computed-using icon-for-seq(obj-seq) = xﬁake-icon-for—seq(obj-seq)

4-25

- e Ve a W s

var seq-for-icon : map(icon, seq(object)) = {l1}

form icon-seq-fun-converses

define-fun-converses(’icon-for-seq, ’seq-for-icon, true)

This definition is essentially the same as that for the object-icon relation. However, the map is.

between a particular sequeﬁce and an icon. If the sequence changes by having objects added or
&eleted. then the map does nof apply to the modified sequence. This problem occurred in the
development of edit-update. Each statement sequence in the update algorithm requbires its owix
window. The statement sequence is simply a sequence of statement objects, and the sequence is an
attribute of its parent object. For example, the top-level statement sequence may be an attribute of
a subsystem-object; the then-part z;.nd else-part of an if statement are attributes of an if-statement-
object. To implement this correctly, these sequences are viewed as attributes of objects, rather than
objects themselves. Rather than mapping windows to the sequences, the windows are mapped to the
parent objects themselves. The sequence is accessed from the window, and the window is accessed
from the sequence, indirectly through the parent object. Figure 4.11 illustrates this mapping for
the then-part of an if-statement object. Note there is no direct relationship betwéen the window

and the statement sequence,

4.5 Summary

This chapter gave an overview of the design and implementation of the Architect Visual
System Interface and the Visual Specification Language (VSL). Tlie goals of the design were to
preserve the functionality of Architect and to maintain domain independence. AVSI is built on
Anderson and Randour's Architect and builds; application specifications according to their domain

model. AVSI provides the same functionality as Architect, and VSL allows for the specification

4-26

Refine Object Base

Window-For-if-Statement-

Then-Part — :

. | Window 5

: If-Statement it-Statement-Then- ‘ Obiect)

Object ; \ bje :

: Part-for-Window g '

:Then-Pan :

S S U s

Lo N ~ bt o E

L Statement-} (Statement-| .. [Statement-) .
:\Object !\ Object ' \Object '

Figure 4.11. Window/Object Sequence Relationship

hY

of domain-specific objects’ visual information. The next chapter discusses the validation and an

analysis of AVSI, including a discussion of the problems encountered and how they were solved.

4-27

V. Validation and Analysis of the Architect Visual System

The validation domain used for AVSI was the same domain used by Anderson and Randour

for Architect: digital circuits. This chapter discusses the validation usihg this domain, and presents

an assessment of AVSI.

5.1 Validation Domain

The main validation domain used for AVSI was the digital circuits domain. The “artificial”
domain mentioned earlier was also examined to demonstrate the domain-independence of AVSI,

but was not employed extensively due to its limited usefulness.

5.1.1 Circuits Domain. The primitive objects that are defined for the domain are:

e 2-Input And gate o 2-Input Or gate
¢ 2-Input Nand gate ¢ 2-Input Nor gate
¢ Not gate) .iK flip flop

e Counter | ¢ Switch

o LED ' o Half Adder

¢ 3 x 8 Decoder ¢ 4 x 1 Multiplexer

This set of prir-""ives was sufficient for building a large number of circuits of varying com-

plexity. Examples of circuits composed of these primitives included decoders, a full adder, a binary

array multiplier, and a universal shift register. These applications were also created using the pre-

vious methods provided by Anderson and Randour. Part of the validation process was to compare
the domain-specific code generated by AVSI to the domajn-specific code generated by Architect for
identical applications. Moreover. the applications were executed to observe correct behavior. The

switches and LEDs provided I/O capability, and allowed the operation of circuits to be observed.

5-1

One limitation imposed by this domain was that only one communication data type. “sig-
nal” was provided for communication between subsystems’ import and export areas. Thus when
import and export areas are being connected, AVSI generaily shows all subsystems as containing
potential objects for connection. If the doma.in contained more than one communication data type,
connecting impofts and exports would be easier, since the set of potential connections would be

smaller.

5.1.1.1 Visual Specifications of Circuits Domain. The only requirement in preparing
a domain for use with AVSI is to specify the visual characteristics of the domain objects using the
Visual Specification Language (VSL). The icon-attributes clause for each primitive object defines
the physical appearance of that object’s icon. Since INTERVISTA allows only a limited number of
basic shapes, the conventional shapes for the logic gates were not used. Each primitive object
was given a unique shape and size combination, howéver, to demonstrate the usefulness of VSL
description. The edit-attributes clause for each primitive object specifies those attributes that a.ré
made available for AVSI's object attribute editor. The entire visual specifi -ation of the circuits

domain is given in appendix D.

5.2 Using AVSI

Appendix C lists the files required to run AVSI and provides instructions on how to load
and initiate the system. A description of the process of building an application is provided m the
previous two chapters, and appendix B gives a sample session, in which a binary array multiplier

is built.

5.8 Analysis

The development of AVSI was largely influenced by the REFINE environment in which it was

created, as well as by the previous development of Architect. This section examines these influences

5-2

and their effect on AVSI. This discussion is followed by an overview of problems encountered during

AVSI's development and a discussion of AVSI's present weaknesses.

5.8.1 The REFINE Environment. Being an object-based system, REFINE provided an ideal
environment for AVSI. It has a wide range of high-level operations for manipulating the structures

in the object base.

The compiler for the Visual Specification Language was very easy to develop with the Di-
ALECT tool. DIALECT's default lexical analyzer provided the functionality required by the language.
VSL's language definition was defined with very little code. Appendix D contains the source listing

for the domain model and grammar.

I The visual portion of AVSI was built exclusively with INTERVISTA. Though its icon definition
capabilities are somewhat limitéd, its usefulnes.s is cIe‘ar. INTERVISTA provides easy access to the
REFINE object base, é,nd as discussed earlier, its data objécts (icons, links, windows, etc.) exist
within the object base itself. As for its limitations. Intervista didn’t provide very good support for
creating interactive forms, complex icons, and multiple colors. These features, though desirable,
were not necessary for demonstrating the usefulness of the visual system. Lower level features
such as these may be incorporated into the system by accessing the CommonWindows system, the

underlying window system, or by using the graphics capabilities provided by graphics systems such

~ as Motif.

5.3.2 AVSI and Architect. AVSI was primarily developed as a visual interface for the
Architect system. The previous implementation of Architect relied on text files for building an
application, and on text-based LISP input/output functions for further application definition. An-
derson and Randour developed a complete working system, and AVSI was built around the “core”
of their system. The lessons learned from the transition from Architect to AVSI are useful in

developing similar systems.

5-3

The first step in this transition was to devise a transformation from a general application’s
abstract syntax tree to the application’s visual representation. Additionally, the basic components
of an application and its subsystems needed to be represented individually. Rather than just

providing a diagram representing the abstract syntax tree itself (which is possible, and actually

quite simple), only the information essential for visualizing the application’s structure is represented

at the topmost level. Other information contained within the object’s abstract syntax tree, such

as object attributes are not represented in diagrammatic, but in tabular. textual form.

Aside from “pruning” information from the abstract syﬁta.x tree, some information in the
diagram comes from sources not aétually in the abstract syntax tree. An example of this is in
the Architect domain model's definition of a subsystem object and its controllees. A subsystem is
“linked” to its controllees, not by being directly linked to them. but indirectly by their symbolic
names. The visual representation, however, shows the icons for vthe actual objects, and thus AVSI
must use a call to the REFINE find-object command, using the object’s name. This, of course, is
a further departure from a visualization of the actual abstract syntax tree, but is by no means a

significant problem.

The second step was to establish techniques for building the abstract syntax tree based on
the user’s input. In terms of how the visual information would be “processed,” there were at least
two basic approaches possible. One approach was to allow the user to complete a diagram and
then as a second step. to parse the diagram. This approach would be particularly useful in systems
where the spatial relationships ot: the icons represented some meaningful information about the
appli~ation (11). A second approach, the one chosen for AVSI, was to translate the user’s actions
as each individual action is performed. This method provides a sort of syntax-directed visual editing
capability. Certain actions arc only possible within the context of previously performed actions.
For example, an application object must first be created before adding any subsystems, at least one

subsystem must have already been created before adding a primitive object, and so forth. This is

the simpler of the two approaches. Icon spacing is not considered, and some information, such as’

object attributes, may be modified at any time during the process.

5.8.2.1 Changes to Architect. The transition from Alrchitect to AVSI was, with a
few: exceptions, direct and required little modiﬁcat“ion to the original domain model and REFINE
source code. The basic structure of an application essentially remained the same. The only change
made to the domain model was adding an additional attribute to e*port~objects. Adding this

attribute consisted of simply adding a few lines of code to the OCU domain model, as discussed in

Chapter 4.

A potential broblem exists with the way Architect saves “saved objects"- in the technology
base. Architect uses the pretty-printer to write the object to a text file, and thus all information
contained in the object's abstract syntax tree is é%wed, including its import and export objrct
connections to other subsystems. When a saved subsystem object is retrieved, it may now contain
erroneous references to non-existing subsystems. AVSI éeals with this problem by deleting all

coitnections when a saved subsystem is retrieved.

Another area requirihg some rework was Architect’s I/O. Architect relies entirely on basic
LISP I_/ O functions, input from, and output to the EMACS window. Howéver. INTERVISTA provides

only one way of inputting textual data. The INTERVISTA function get-string presents a small

window, in which the user is prompted to type input, and the input is returned as a string.” The —— -~

REFINE function PARSE-FROM-STRING provides a way to parse the input from this string, according

to the grammar of the current domain.

5.3.3 Range of Applicability. Though AVSI was specifically developed as a visual interface
for Architect, its usefulness is not limited to this particular application. AVSI's methods may be

applied to other systems which require a transformation from a diagram to a REFINE formal

specification. The techniques used in AVSI may be adapted for any domain model if there is an

unambiguous mapping from a diagram to an abstract syntax trec in the REFINE object base.

An example of an application, ‘o which these techniques may be applied, is a thesis effort
by Capt Mary Boom and Capt Brad Mallare, entitled Formalization and Transformation of In-
formal Analysi's Models Into Ezecutable REFINE Specifications (9). Boom and Mallare developed
a method of translating informal specifications (based on information extracted from Entity Rela-
tionship, State Transition, and Data Flow Models) into an objéct-bascd representation in REFINE.
A “Unified Abstract Model” (UAM) combines the information from thgse informal models and
“forms the basis for defining a formal language, the Object Modeling .Langu‘age (OML). used to
capture the information contained in the UAM” (9). Once the informal specifications have been
translated, the OML description is parsed into an abstract syntax tree in the REFINE object base.
The information in the abstract syntax tree forms che basis for an executable specification. What
their transformation system lacks is an front-end elicitation tool which allows the end-user to con-
struct the OML specification. The elicitation tool would allow the user to enter visual information
by drawing commonly-used informal diagrams. Such an elicitation tool may be built, using the
techniques developed in AVSI for visualizing and manipulating the object base. To build such a
tool, it would be necessary to define the process of converting the diagrams to the abstract syntax
tree representation that would normally be created by the OML parser created by DIALECT. Since
Mallare and Boom have already defined a manual process for com;ei'ting the diagrams to the OML
description, this process may be extended to bypass the creation of an explicit OML textual de-
scription. This is essentially the process AVSI uses to create the abstract syntax tree representation

of Architect applications.

5.3.4 Problems Enccuntered. Several problems were encountered during the development
of AVSL Some of these problems were conceptual, but most might be considered technical problems.

Fortunately. all of the problems encountered were surmountable:

5-6

" not allow using colors, and does not provide much control over how . :..:s are laid.out on the

1. I/AO was a constant source of frustration; REFINE provides minimal support for I/0. and the

rich set of functions provided by underlying LISP system was used extensively.

. Developing a technique to transform the abstract syntax trees into a diagram was not en-

tirely straightforward; there was not a direct correspondence between the structures in the
object base, as defined by. Architect’s domain model, and the diagram AVSI creates to repre-
sent it. Because of the way Anderson and Randour defined the domain model, some objects

relationships were defined directly, as a mapping from one object to another; other relation-

ships were defined indirectly. by referencing object names. For example, the statements in

a subsystem’s update algorithm are mapped directly to the subsystem. but the subsystem’s

controllees are simply listed as a sequence of object names. Creating the diagram to represent

of the structure of the domain model’s definitions of the objects’ structure. Some attributes
had to be pruned, others required findiug the indirectly referenced objects using the REFINE

find-object function.

. Developing a method of displaying and connecting communicati~ - .. :s presented conceptual

problems. The major problem was to devise a way to represent the inform: tion in a simple,

meaningful manner. Some restrictions were imposed by the use of INTERVISTA, which does

screen. With the goal of minimizing the number of icons and links. the method of combining

textual information with graphics allowed for a very readable display. since the number of

links is kept to an absolute minimum.

. Allowing the user to connect iniporté and exports from both directions initially presenfed

difficulties. The difficulty stemmed from the way the connection was represented in the
original domain model: An import objéct contained an attribute that stored information

about which export object(s) it was connected to, but export objects did not have direct

- the hierarchical structure of the subsystem and its controllees required a thorough knowledge

access to this information. Though it would Lave been possible to write a function to fiud
this information, it was easier to make a simple modification to the domain model, adding a

new attribute to the export-object definition.

5. Implementing the object attribute editor presented major difficulties. Though REFINE pro-
vides a way to find the attributes of an object class, there is no easy way to find the data
types of the attributes. Additionally, the functién provided to find the attributes returns a
large list of attributes, most of which are sysfemmelated. and it would not be prudent to allow
the user to modify these. The easiest way to give the object attribute editor the information
it needed was to include the “editable” attribute names, along with their data types in the
Visual Specification Language description for each domain object. This allows for absolute
control over which attributes may be edited, and provides all information requix;ed by the

attribute editor.

5.3.5 AVSI's Shortcomings. Of course. there is always room for improvement. Fortu-

o nately, as Architect evolves, so will its interface. Major areas of needed improvemnent are:

1. A more domain-specific interface. AVSI applications look essentially the same. even though
" the application domains may be different. The limita.ti‘ons imposed by INTERVISTA may
. be overcome by using more sophisticated graphics. AVE! ;rovides the basic framework for
\ building an application across domains, but more domaii.-+ --:.¢ific visual information must be
s \ added to this framework. This information should not be limited only to icons, but should also
\ define different display functions for the various domains. The Visual Speciﬁcétion Language

developed for AVSI should be extended to accommodate this additional information.

2| Visual support for semantic analysis. AVSI currently uses Architect’s semantic analysis re-
porting, which simply reports semantic errors in the Emacs window in textual form. Though

this is adequate for the curreut implementation, using visualization for semantic error report-

. ing would provide a more user-friendly system. Such a use of visualization would bring up

5-8

5.4

one o more of AVSIs editors in Ilu-."prulvh-m area” For example, if there wax a problem
with the detinition of a subsystem’s structure, the subsystem editor would be invoked, and
would contain the subsystem in question, with the problem area highlighted. If there was a
problem with one of an object's attributes, the object attribmte editor would be invoked. with
the attrihm.n- highlighted.

Visual support for application execution. As with semantic analysis, AVSI relies ou Architect's
textual output‘fur displaying the results of application execution. A good feature to add to
AVSI woulil be a visual display of objects” state information durirg execution. For example.
this information may be expressed by changing the color of icons and links to show inf«)rmétiun

about objects and relationships between objects.

Summary

AVSI was validated with the digital cirenits domain. and proved to successfully compose the

sante applications used to validate the original Architect system. Few changes to Architect were

required, and the Software Refinery environment provided very good support for the development

of AVSL The techniques used in AVSI for visualizing and manipulatiag the abstract syntax tree in

the Architect domain model are adaptable for other systems which require a transformation from

a diagram to an abstract syntax tree in a REFINE object base. This chapter disenssed some of the

probletas encountered during the development process, and how thes were solved. Finally. some of

AVSI's weakness were mentioned: the need for a more domain-specitic visual display, the need for

visual support for semantic analysis, aud the need for visual support for application execution,

[
(5=

VI. Conclusion and Recommendations

The purpuse of this research was to provide a visnal interface for viewing and manipulating
domain knowledge and software architecture specifications in a formalized object base. In partic-
ular. the main goal was to build a vimml-nri‘;lvm-d iuterface for Anderson’s (2) aud Randour’s (39)
Architect system. The sttvm was to provide an antomated means of visualizing an application
that exists within the REFINE object base, A(hAlitimmlly. the system was to give the user a means

for creating and editing an application,

6.1 Reaults of This Research

. The Architect Visual System Interface successfully met all original goals. The following is a

summary of the results:

1. Provided visualization of doman-knowlcdye and software architeeture AVSI provides a visual
medinm for displaying all information about an application contained within the structured

object base. The graphical view of an application is divided into several parts;
{a) The hierarchical structure of the application and cach of its subsystems is given graphi-
cally by a tree-structured graph.

(b} Flow of control. which is contained within objects” update algorithins, is represented in

diagrammatic form.

{r) Communication links hetween subsystems are shown using a combination of graphics

and text,

{d) AVSI allows the user to view the iuternal attributes of any object and provides a way

to examine the REFINE deseription of cach primitive object within a given domain.

{e) The domain-specitic “code™ for an application, or any of its components, can be viewed

in atext window,

6-1

2. Developed an interface -to serve as a “front-end” to the Architect System Besides providing

6.2

. Developed technigues for manipulatiug an object-based representation as an abstract syntar

program visualization and visual programming capabilities, AVSI draws together the various
activities involved in composing an application with Architect. Though AVSI provides no
visual support for semantic checks or program execution, these activities can be performed

from within AVSI,

Developed a Visual Specification Language (VSL) to define the visual characteristics of domain-
specific objects Though VSL is rather simple. its successful development and implementa-
tion dcumnstrat(\,‘s its usefulness. It enables AVSI to remain domain-independent. isolating
domain-specific information in an»casy-mqnodify text file according t(; a standard format i

defined by the grammar of VSL.

|
|

|
tree by using direct manipulation of risual objects These techniques provide AVSI with a !
significant visual programming capabi v. Logical objects within an application are directly

linked to their representative visual objects. The manipulation of icons and links is translated

to a correzponding manipulation of the objects they represent. and the structure of the
application of which they are a part. Manipulation of textual information is used in some |
o i

places where iconic representation wouldn’t mal < sense. or would be too cumbersome.

Conclusions

Several conclusions may be drawn from this research:

AVSI successfuily demonstrates techuigues for transforming visual information into executable
specifications in domain-specitic languases. Fairly simple actions performed by the user com-
poses modules containing previonsly stored technology into application structures which may

be formally evaluated for correctuess and executed to observe if the application achieves the

6-2

desired behavior. The techniques developed in AVSI may be applied to other systems which

are oriented towards transforiming diagrammatic information to REFINE formal specifications.

. AVSI providey a syntax-directed editing capability. This guides the user through the appli-

cation composition process. and enforces syntactic correctness of the application structure.

. A thorough understanding of the domain model is essential. The structure of an application’s

abstract syntax tree is defined by the DIALECT domain model. and AVSI's visualization
capability relics on the way the abstract syntax trec is traversed. AVSI's visual programming
capability relies on the way the abstract syntax trec is manipulated. The importance of a

good domain model definition cannot be overstated.

. The original implementation of Architect, including its domain model, was relatively easy to

create a visual system for. Few changes to the domain model were required; those changes

actually made were minor in nature and had no real impact on the original system.

. The Software Refinery environment provides an excellent platform for developing systems

such as Architect and AVSIL Morcover, it consists of a set of intcérated tools that allow
for quick development of system prototypes. The REFINE language contains many high-
level operations for manipulating the object base and traversing its structures. The lauguage
supports set theory, logic. transformation rules, pattern-matching. and procedure (41). Given
a language’s grammar, the DIALECT tool creates a lexical 'a;mlyivr. parser, aud pretty-printer
for the language. The parser builds object structures in the object base from text files
which may then be manipulated by REFINE programs. Finally, INTERVISTA provides t(/ml.;x
for creating diagrams, interactive menns, and windows, The visual objects (icons, windows,
ete.) created and used by INTERVISTA coexist with all other REFINE objects in the objec’

base. Using the Software Refinery eavironment allowed AVSI to be developed at a fairly high

level: this was especially useful. as it obviated the need to get bogeed down with low-level

6-3

-

graphics. The use of these tools significantly decrcased the development time of the system.

The environment is very flexible, allowing very rapid prototyping of system features.

6.3 Recommendations for Further Rescarch

. Develop a more fully domain-oriented visual display methodology AVSI provides the desired

visua] features with one exf:ebtion. The set of icons currently providéd by th.e INTERVISTA
tool is limited to three basic shapes: box, ellipse, and diamond. Therefore, an application in
one domain essentia.liy has the same “look and feel” as an application in any other domai.n.
For instance, a digital circuit built with AVSI does not look like a digital circuit. A better
visual representation would look like a circuit schematic diagram that uses standard logic
symbols. Each domain most likely has its own specific way of visually represcxiting its objects
and their interrelationships. For example, modeling an assembly iine would require displaying
objects such as conveyer belts and work stations, and might display a “pipeline” configuration
of these objects. Devising an effective visual display should be included in the analysis of the

domain being modeled.

. Incorporate more complicated domains AVSI was designed to be applicable across a broad

range of domains, and the next step is to apply its techniques to a more substantial domain.
The digital logic domain was a good domain to start with because it is well-understood,
relatively simple. and it allows applications with multiple instantiations of primitive ob.jects.
It was not necessary to spend a great deal of time establishing the domain primitives and
devising circuits that would be composed of these primitives. However, partlj because of its .
single communication data type, the digital circuits domain chosen as a validation domain
did not fully demonstrate the usefulness of AVSIL

The Joint Modeling and Simulation System (J-MASS) (4) requires a rich set of domains for
constructing simulation models. One such example is signal processing. which consists of

primitives such as:

6-4

s R i s e b T

Coupler

Gaussian Number Generator

Variable Attenuator

Amplitude Detector

e Mixer

¢ Amplifier

¢ Comparator
e Filter

o Oscillator

These and other primitives can be used to compose higher level subsystems such as signal
generators and reccivers. Correspondingly. these can be used to build other. more complex.
subsystems such as jammers and trackers. Such a domain would prove useful for demonstrat-

ing AVSI's (and Architect’s) power to compose sophisticated application systems.

. Add eztensions to the Visual Specification Lenguage The goal of providing a domain-

independent system does not necessarily conflict with the goal of providing a domain-oriented
display for an application. The Visual Specification Language provides a vehicle for specify-
ing domain-specific visual display functions that may be plugged into the visual system. A
standard way of defining these display functions should be developed. The visual specification
language should also be extended to include information concerning color and display depth
once a more sophisticated graphics capability is introduced into the system, i.e., a capability

beyond what INTERVISTA provides.

. Use lower-level graphics syatems for more sophisticated visual display INTERVISTA does not

provide aa easy way to implement certain desirable features, and in some cases provides no
support at all. For instance, a form-based window. such as the attribute editor would be more
user-frieudly if values could be typed directly on the form. instead of in a separate window.
Moreover. the meaningfulness of visual information would be greatly enhanced by the addition

of color and more sophisticated icon shapes. An illustration of this is the display used in the

6.4

APTAS system (29). A component’s icon contains a nested display of icons representing the

components it contains. A green box represents a bottom-level component.

Despite its limitations, INTERVISTA is still a very useful tool, and should not be casually dis-
regarded. It may be possible to augment its functionality by using features of the underlying
CommonWindows system. An alternative approach might be a graphical system that is based

on Common LISF and CLOS.

. Provide visual support for semantic checks A more complete and user-friendly visual system

should guide the user through finding mistakes when they occur. It would be helpful, for
example, when a semantic error occurs, that an appropriate window is openad, and the

problem icons or links are visually highlighted.

. Provide visual support for ezecution This is actually a separate (and large) area of research.

At a minimum however, state information could be displayed in an icon itself. A good use of
this might be changing the appearance of a switch icon to simulate its on or off configuration,

or changing the color of an LED icon to simulate its being lit (in the digital circuits domain).

Concluding Remarks

Coupled with Architect, AVSI enables an application specialist to compose a fairly complex

application with relative ease of effort. Though it is not as sophisticated as it might be (and will

be in the future), it represents a step towards bringing computer application development to the

non-computer-specialist. As Shu (43) points out, it is somewhat ironic that the world's oldest form

of written communication (picture drawing) is now becoming an important form of communicating

with new and powerful computing devices.

6-6

Appendiz A. Overview of Architect

This appendix provides a high-level view of the Architect domain-oriented application com-
position system, upon which AVSI was built. It was jointly-written by Capt Mary Aune Randour

(39) and Capt Cynthia Anderson (2). Tt appears in their individual theses and in AFIT Technical

Report AFIT/EN/TR-92-5.

A.1 Introduction

The wide availability of powerful, relatively low-cost computer hardware h.;us ied to an explo-
sion in the demand for computer software products to automate a multitude of ncw tasks. Using
traditional methods, computer scientists and programming professionals have been unable to meet,
in a timely manner, this demand for the sophisticated. large-scale. reliable software systems re-

quired for these new applications. Clearly, a new approach to software design and construction is

needed.

Software engineering will evolve into a radically changed discipline. Software will be-
come adaptive and self-configuring, enabling end users to specify, modify and maintain
their own software within restricted contexts. Software engiueers will deliver knowledge-
based application generators rather than unmodifiable application programs. These
generators will enable an end user to interactively specify requirements in- domain-
oriented terms.... and then automatically generate efficient code that implenients these
requirements. In essence, software engineers will deliver the knowledge for generauing
software rather than the software itself. ‘

Although end users will communicate with these software generators in domain-
oriented terms, the foundation for the technology will be formal representations... For-
mal languages will beconie the lingua franca. enabling knowledge-based components to
be composed into larger systems. Formal specifications will be the interface between
interactive problem acquisition components and automatic program synthesis compo-
nents.

Software development will evolve from an art to a true engineering discipline. Soft-
ware systems will no longer be developed by handerafting large bodies of code. Rather.
as in other engineering disciplines, components will be combined and specialized throngh
a chain of valuc-added enhancements. The final specializations will be done by the
end user. KBSE (Knowledge Based Software Engincering) will not replace the human
software engineer: rather. it will provide the means for leveraging human expertise
and knowledge through automated reusc. New subdisciplines, such as domain analysis
and design analysis, will emerge to formalize knowledge for use in KBSE components.
(30:629-630)

&

Perhaps this vision can become a reality for selected dbmains. not just within the next century
as Michael Lowry predicts. but within the next few years. Resear}ch is currently underway at
the Aif Force Institute of Technology (AFIT) to achie\‘re such a reality, Developing a full-scale
application ge.neration system, which is capable of automatically producing efficient code to satisty
user-speciﬁed ;r.quirements bresented in domain-oriented terms, is a conside;‘able task which wili
require several man-years of effort. Howe§er, one elemént of application generation, the combining
or compnsing of required éomponents into the broper framework or architecture, is attainable in
tﬁe near term. This chapter explores the issues involved in dcveléping such an end-user application

composer and describes one possible methodology for accomplishing it.

A.2 Operational Concept

Several roles are discussed in describing this new approach to software development, an ap-
proach where the end-user generates a software application to satisfy his requirements using the
software professional’s knowledge about how to generate such applications. Some »f these roles are

new, others are relatively unchanged from those in traditional software system development.

‘1. System Analyst - Specifies new systems in a domain (25:4). Responsible for developing the
concept of operations (defining policy, strategy, and use of application) and defining training
requirements (13). B

- 2. System Engineer - Works with the system analyst to partition the system into subsystems

~ and assigns thetasks to software or hardware development, as appropriate (5).

3. Domain Engine-r - Possesses detailed knowledge about the domain and gathers all the infor-
mation pertinei t to solving problems in that domain (25:4). Models the real-world entities
required to sati.; the policy. strategy. and use of an application as defined by the system
analyst. Determines how, if possible. these entitics can be modeled within the constraints
specified by the software engineer (13).

4. Software Engineer - Designs new software systems in the domain (25:4). Responsible for
defining a formalized structure for the domain knowledge and providing the translation from
" the domain-specific terms to executable software (13).

5. Application Specialist - Uses systems in the domain (25:4). Familiar with the overall domain
and understands what the new application must do to meet the requirements (a sophisticated
“user”). Provides the application-specific information needed to specify an application.

A-2

[requirement HJ

systemlanalyst

(domain knowledge >

I concept of operations

- domainjengineer

systemjengineer -&— —

domain model

r‘ hardware -ymvv_UJ I . software system l].l I

- goftware engineer

.pﬂllcnlon specialist

:,.,_“ ton speciti -?]J

automated appilication composer

\
| . software design ”.I

codo:gononl on capabliity

[oo

FigLre A.l. Roles

|
i

: f
The relationships among these roles are shown in Figure A.1. Usually, a new system begins

with the identification of a new requirement. This requirement, if valid, is forwarded to a system
analyst who develops a concept of operations. The system analyst works closely with the system
engineer who partitions the system into software and hardware subsystems. The system engineer
;:oxlsults the appropriate domain engincer to define which components of his domain will be needed
for software applications in the domain. The domain engineer and the software engineer decide
on which components are needed to model the domain. The software engineer formalizes the do-
main knowledge provided by the domain engineer into a domain model an.i its technology base.

The application specialist, using the domain model established by the software and domain engi-

A-3

neers, creates a specification for an application. From this specification, an automated application

composer generates a software design which is then input to a code generation capability.

A.3 General System Concept

A.3.i Overview. An overview of the application composition system’s components aixd
their relationships to each other appr.faré in Figure A.2. First, domain analysis is performed. which
consists of gathering appropriafc domain knowledge. formalizing it via a domain niodeling language,
and storing it in a domain model. T11e> structure of the dpmain model is detefxxlixxed? in part, by the
domain modeling language (DML) chosen. The software architecture model, like the DML, imposes
a specific structure on the domain model, on the grammar used by the application specialist, and,
ultimately, on the final application specification. The domain model is used to develop a domain-
specific grammar. Although it may be transparent to the application specialist, he actually uses
two grammars: one to identify domain-specific information and one to specify the architecture
of the application. The architecture gramma.r‘remaius the same for different domains; only the
-domain-specific grammar changes. Application-specific data is written using these two grammars

and is converted into objects in the structured object base by the parser.

Tl}e populated structured object base and information from the technology base are combined
~ to build an executable prototype. First, the application specialist performs semantic checking on
the structured object base to ensure all constraints on the system have been met. He then executes
the prototype to demonstrate the behavior of the proposed application. If the prototype does not
behave as required. the application specialist can change the original input and re-parse it into
the structured object base. Using the knowledgé encoded in the domain model and the software
architecture model. the structured object base is manipulated into a formal specification for a

domain-specific software architecture (DSSA). The DSSA is the system design and becomes the

A4

>____nmaau

uoneleusD
epo) oL
%

@06

icsodwon uon

”. rew 1 uonBULOju|
: | Jesd | oypedg
: vogednddy
Bdi|ady .

1 4

MOIAIBA() WAYSAG [RIDUOD) 7'y dIudtg

8§ SBuyepon
upwoqg

basis from which code is generated. A visual system provides a graphical representation of the

structured object base and the DSSA, as well as a means to add to or modify them.

The remainder of this section desc.ibes the above concepts and activities in more detail.

A.3.2 Developing a F"ormalize& Domain Model. | Before aﬁy applications can be composed
* using this proposed system. the domain must be analyzed and mvodclcd. »Ixi the software engineering
context, a domain is commonly defined as “an applicatibh varea, a field for which software systems
- are developed” (36:50) or “a set of current and future applications which share a set of common
capabilities and data” (25:2).. Identifying the boundaries of the domaix}. as well as “identifying.
collecting, organizing. and representing the relevant information i‘n a domain based on the study of

existing systems and their development histories, knowledge captured from domain experts, under-

lying theory, and emerging technology within the domain® (25:2-3). constitutes domain analysis.

Domain analysis is currently the subject of several other research efforts and is not directly ad-
dressed in this project. However. it is important to gather the basic data, formalize it, and store it

in a standard format.

A.3.2.1 Domain Knowledge. Domain knowledge is the “relevant knowledge™ that
results from a thorough dumain analysis and later evolves naturally as more experience is gained
solving problems in the domain (36:47). More speciﬁc:;lly. domain knowledge cons.istsv éf: basic
facts and relationships. problem-solving heuristics. (loxxxaixx-spcciﬁc data types. and_ descriptions of
processes to app., the knowledge (6). In the context of this project, domain knowledge includes:
descriptions of domain-specific objects (including their attributes and operations). data types.

composition rules. and templates for commonly used architectural fragments.

A.3.2.2 Domain Modeling Language. An analogy to a domain modeling language
(DML) can be found in the more familiar data definition language of a database management

system. A data definition language describes the logical structure and access methods of a database

A-6

{26). just as our DML describes the logical structure of a domain model and defines how the objects

can be accessed. A DML used to encode domain knowledge into a domain model must be able to
formally describe:

1. Object Classes: Abstractions of real-world cntities of interest in the domain.
‘2. Operations: Behavior of the objects in the domain.

3. Object Relationships and Constraints: Rules for relating objects (and sets of objects) to other
objects. as well as the constraints on these relationships. Examples include:

(a) Communication Structure: Message passing between/among domain classes and opera-
tions.

(b) Composition Structure: Rules for combining domain object classes into higher-level
application classes and operations into higher-level application operations.

4. Exception Handling: What to do when an crror is encountered.

To be uscful in an automated system. the domain knowledge must be encoded into a format
that the software system can manipulate. This problem is analogous to encoding knowledge in an
expert system. where human knowledge is gathered and represented as rules that allow a con.puter
program to utilize the information. Neil Iscoe describes a method for ('ucodilng domain knowledge
into a domain model (see (24) for details). He proposes using a domain modeling language or
a meta-model as the basic frariework to instantiate a domain model based on some operational
goal(s) (reasons for which the knowledge will be used) (see Figure A.3). Our operational goal is
to “use the domain mndel. software architecture model. and structured object base to zenerate
a software architecture for the application problem to be solved to generate a {lmuaiwspcciﬁr

. - \
software architecture™ (5). |

|

A.3.2.3 Domain Model. A lomain model is a “specific representation pf appropriate
aspects of an application domain™ (23:302) including functions. objects, data, and\relationships
(35). It is a result of expressing appropriate domain knowledge (identitied by the donshin engineer)

in a doinain modeling language with respect to certain operational goals (23:301-21.

Several researchers (7. 14, 15. 28) have indicated that <oftware engineering must become

more of an engincering discipline if we are ever to reap the benefits of design rense tinereased pro-

A-T

Meta-Model

Domain or
Knowledge ‘Modeling
. . Lanuae

Instantiation

Operational Goals:

Domain
Model

Figure A.3. Domain Model Instantiation

ductivity. improved reliability, certifiability. etc.). When designing specific applications, engineers
use models, “codified bodies of scientific knowledge al)d technology presented in (re)usable forms™
(14:256) which are available to all practioners in various technology bases. Reuse of these validated,
commonly-used models, which are readily available in various technology bases. allows the engineer

to construct a practical, reliable solution to the problem at hand.

Contained witinin our domain model is such a technology base which acts as a repository for
our reusable models. In our system. these models are often referred to as components. Using an
object-based perspective, a componenf can represre'nrtr a rerali-ﬂworld entity.' éoncept or abstraction and
encompasses all descriptive and state informatiqn for that entity/concept/abstraction as well as its
behavior (what operations or functions it performs and/or what transformations it undergoes).
Components can be primitive domain objects as described above or a “packaging” of these objects
whose structure is determined by the software architecﬁxre model. These packaged components will

be referred to as architectural fragments since they can be used to build an application architecture.

The technology base contains templates for generic components, rules for component composition,

A-8

and descriptions of primitive object behavior. The parameters required to instantiate these generic

templates will be specified by the application specialist.

Domain analysis reveals common features of the software architectures that can be used
to implement various specific applications within the domain. In addition. common constraints
are identified and codified into rules used to determine how software components can be legally
combined. Using rules allows additionai flexibility; any specific architecture can be built as long as

it meets the criteria specified by the rules.

A.3.3 Building A Structured Object Base. Several steps must be taken to build the

structured object base. The following system components are essential to this phase.

A.3.3.1 Domain-Specific Language. As with our domain modeling language, an
analogy to a domain-specific language (DSL) can be found in a data manipulation language from
the realm of database management systems. In the database context, a data manipulation language
allows the user of a database to retrieve, iusert, delete, and modify data stored in the database
{26:13). In our context. a DSL is a language with syntax and semantics which represents all valid ob-
jects and operations in a particular domain, allowing modeling and specification of systems within
that domain (37). According to James Neighbors, a domain language is a machine-processable
language derived from a domain model. It is used to define components and to describe programs
in each different problem area (i.e.. domain). T..e objects and operations represent analysis infor-
mation about a problem domain (34). In our research, a domain-specific language is defined as a

formal language used to define instances of objects and operations specific to a domain.
The objective of our DSL is to generate the structured object base needed to specify an
application architecture within a specific domain. To do so, it must be able to:
1. Instantiate objects
2. Instantiate generic objects
3. Instantiate generic architectural fragments

4. Compose the instantiated objects and architectural fragments in some meaningful way

A-9

The object classes defired in the domain model are merely templates or patterns to be used
when éonstructing objects; they do not refer to specific, individual objects. The first sentence type
listed above creates specific instances of the objects in the object base. These objects are used
in building architectural fragments or as parameters for generics. Default values can be used for

attributes so these values need not be entered through the DSL every time they are used.

Geﬁerics. stored in the technology base, prqvide templates for commonly used objects and
components; thus, the application specialist negd not start from scratch each time he wants to
include oxie of these commonly used components. Generics must be instantiated before they can be
used. Instantiation is done by specifying which model is to be used and providing specific instances
and/or other data, as required. For example, a generic architectural fragment may use three objects
of a certain class. When this generic is instantiated, three specific object instances of the required

class must be given.

A.3.3.2 Software Architecture Model. In addition to identifying the objects .to be
used in generating a particular applipation, the application specialist must indicate what is to
be done with those objects; i.e., he must identify the application operations. Domain primitive
operations, associated with primitive objects, are available in the technology base. But how can
these primitive operations be assembled (composed) into application-specific operations? What are
the rules for composing these primitive operations into application operations? How can these rules

be represented and implemented?

Software architectures provide insight into software system composition. In its most fun-
damental sense. an architecture is a recognizable style or method of design and construction. A
software architecture has been defined as “a template for solving problems within an application
domain™ (46:2-2) or “the high level packaging structure of functions and data, their interfaces and
controls, to support the implement#tion of applications in a domain” (25:3). It provides a mech-

anism for separating “the design of (domain) models from the design of the software” (13). This

A-10

scparation of domain knowledge from software engincering knowledge allows each type of engineer

to concentrate on the issues relevant to his own arca of experience, without becoming an expert in
the other discipline. By focusing only on the design of the software, the soltware engineer is able
to develop simplified packaging and control structures which can be reused across a wide variety of

domains.

Because a software architecture serves as a structural framework for software development, we
can expect it Lo provide a consistent representation of system components as well as the interfaces
between those components. A standard representation ensures that each component is developed

in the same manner, eliminating many implementation choices and simplifying the development

process. This standardization also results in consistent interfaces hetween all components, enabling '

them to be easily combined. This consistency of component representation and interfaces should
provide a suitable and flexible framework for composing primitive operations into application-

specific ones.

A.3.3.3 Architecture Grammar. Certain portions of the application specialist's
input are not dependent on any particular domain; rather, they depend on the software architecture

model. These architectural aspects. of the application can be specified using a grammar common

software architecture model by defining valid sentences for packaging the primitive domain objects
into architectural fragments to define an application architecture. These sentences will compose
application operations using domain-specific components described by the domain-specific grammar

and other application operations.

A.8.3.4 Parser. Afterthe application specialist specifies the application components
using the domain-specific language and architecture language, the input must be parsed into objects
in the structured object base. The parscr generates specific object instances whose initial states

are determined by the application specialist’s input.

A-11

~A.3.8.5 Structured Object Base. The structured obj.cct base contains application
specific information: specific instances of domain object classes with all appropriate attribute values
for dctermining the object’s state, as well ay relatiqnships for both domain objects and operations.
The kinds of objects that might populate the object b@e and the 6vera‘ll‘ structural framework of
those objects (the shape of the abstract syntax tfces) are established by the domain and software
arghitecture models. The specific object instances and the actual structure of the object base are
determined by tlLe application-specific information provided by the application specialist using the

DSL and architecture grammars.

A.3.4 Composing Applications. The application composer generates the application archi-

tecture specified by the applicatiou specialist. This is accomplished by combining the appropriate -

instaxltiated domain objects from the structured object base in accordance with the domain com-
position rules. After the archite.cture is generated, its behavior can be simulated to demonstrate
its suitabﬁi(y and correctness. It should be noted that the operatiohs associated with each.object_
in the technology base are certifiably correct: that is, individual objects are guaranteed to behave
as required. However, the specific objects which are composed into the applicatibn may have been
combined in such a way that the composed application may not behave as expected or required.
When the application speciaiist is satisfied that the composed architecture is actually the one de-
sired, he can generate a formal specification for the architecture “.IhliCh can later be used to develop

a fully coded system.

A.3.4.1 Semantic Analysis. After an appli;:aticn is.identiﬁed, the next step is
to ensure that the specified composition is appropriate; i.e., that it makes sense and meets the
constraints imposed by the composition rules. This step is accqmplished via a.semantic an uysis
phase. As in programming language compilers, one aspect of semantic analysis is to verify vhat
a syntactically correct construct, which satisfies the restrictions of the grammar in which it was

written, is “legal and meaningful” (19:10). To be legal and meaningful, the proposed application

A-12

5,54, e AT a1 IO R R G A S TR .o ot oA M e P RGBTy B AP ERIET ath CRe ant9 S8 T

must meet certain other composition restrictions: e.g.. components must already exist before they

can be used. an input to one component must be produced as an output from another component,
etc. Another aspect of semantic analysis is to use knowledge about domain objects and typical
system constructions to assist the application specialist in choosing the components needed and
in combining them appropriately to create applicatiéns which behave as desired. Errors identified

during the semantic analysis phase must be corrected before the composition process can proceed.

A.3.4.2 Erecute. A composed application architecture that passes all semantic
analysis checks is legal and meaningful, but does it do what the application specialist wants it to
do? The execute component of the application composer simulates the behavior of the architecture.
using object operations which specify each component’s behavior. This behavior simulation may
not be efficient or robust enough to serve as a full-scale operational system, but it provides the
application specialist timely feedback on the correctness of the specified architecture. If the applica-
tion is incorrect (i.e., it does not behave as required/expected), the application specialist reassesses
the components which were used in the application and how they were combined, creating a new or
editted application to satisfy his requirements. This ability to simulate execution behavior in this
rapid-prototype manner assures the application specialist that the proposed application actually

behaves correctly before a formal specification and fully-coded system are generated.

A.3.4.3 Generate Specification. A legal, meaningful, and correctly composed ap-
plication provides a software architecture which satisfies the application specialist's requirements
for a particular application. The software architecture can be used as a blueprint. template, or
specification from which to design and implement a full-scale, operational version of the applica-
tion. The generated specification is intended to be in a formal, machine-processable format which
. can be used dircctly by a code generation tool to produce a fully-coded application. However,
the specification format could be tailored to provide whatever form is appropriate for the using

organization: graphical, textual, etc.

A-13

irends e BB S wA IR

A3S 'Eztcnd Technoloéy Base. Eventually, the technology base, which formalizes the
kﬁowledge about domain objects, will becomé outvdated as understanding of the domain evolves
and as the domain itself adapts to accommodate a chalnging technological environment. Although
the fechnoiogy base may appear to be static, it must be dynamic enough to accommodate this
additional information as well as higher-level object classes and operations, gevneric components
and architectural fré.gments that are d.evelop(;'d. These additional elements give added flexibility to

the application specialist because more predefined components are available for future applications

A specialized set of tools allows the technology base to be modified or extended to include
this additional or revised domain knowledge. The extender must enforce the structure dictated by

the domain modeling language and the software architecture model.

A.3.6 Visualization. “A picture is worth a thousand words.” This old adage is still true
today, especially when dealing with complex and abstract concepts. The visual system provides the
-‘applica.tion specialist with a graphical view of the structured object base, as well as the application
software architecture generated to satisfy his requirements. By revviewing these “pictures,” the
application specialist can more fully uiderstand the components available for composition and
the application just composed. Moreover, the visual system will also be capable of inserting new
instances of domain objects into the structured object bﬁse, editing domain objects already in the
object base, and executing the application composer. It also provides the capability to extend the
technology base. enabling the a;iplicafion specialist and/or the software engineer to add/modify

domain object classes, add/modify generic components, and add/modify architectural fragments.

.4 Related Research

Several other research efforts have addressed various aspects of the system we are attempt-
ing to develop. This section summarizes this related work and analyzes the similarities to and

differences from our project.

A-14

/

/

! . ’
DR 7 R O R T R e A R 2 S S D R RGBT s g

A.4.1 Hierarchical Software Systems With Reusable Components. Don Batory and Sean

O’Malley are working to incorporate an engincering culture into software engineering. The tradi-
tional engineering mindset dictates that new systems are created by fitting well-tested. well-dcﬁnéd.
and readily available building blocks into a well-understood blueprint or architecture, which, if
properly used. is guaranteed to produce the desired system. To this end; they have developed
a “domain-independent model of hierarchical software design and construction that is based on

interchangeable software components and large-scale reuse™ (7:2).

In Batory and O'Malley’s view, each interchangeable componcut consists of an interface
(everything externally visible) and an implementation (everything else). ljifferellt compouents>
with the same interface belong to a realm. All the components in a realin are considered to
be interchangeable or “plhg-compatiblc" (7:3) because they have identical interfaces. Symmetric
components have at least one parameter from their own realm and can be combined in “virtually
arbitrary ways™ (7:2) (also see Figure A.4). Conceptnally, components are seen as layers or building
blocks for an application; a system is seen as a stacking of components, i.e., a composition of

. components. Counstraints on stacking components (i.é., rules of composition) are de;ived from the

compatibility of their inierfaces.

Hierarchical software system design recognizes that ~onstructing large software systems is é.
matter of addressing only two issues: which components should be used in a construction and how
those components are to be combined togeiher (7:16). It employs an open software architecture,
which is limited only by the inherent ability of the components to be combined, i.e., by their inter-
faces. Symmetric components have no inherent composition restrictions; thus, composition rules

are simplified while ensuring maximum design flexibility and potential reusability of components.

Batory and O'Malley use an ixiteresting analogy, equating their concepts to a grammar, as
shown in Table A.1 (7:5). Using this analogy, a domain i3 a language. Consider the following

example (7:5):

AR A R S S AN R e e AT D M R e DRy

SRR R sl e i

Given the following plug-compatible components:
A[x:R], B[x:R], C[x:R]

Some of the valid compositions include:

<+ |ed >
< > @O
4+ o @ O

<4 > |4 o

c c B A

A[BIC]] B[A[C]] C[A[B]] C[B[A]]

Figure A.4. Combining Plug-Compatible Components

_ A-16

S ={a,b.c}

R = { g[x:8]. hix:S]. i[y:R]}

A realm S, having a set of components (a, b, and c), vcorresponds to a production where the non- -
terminal S can be replaced by either a, b, or c. Whenever a component from realm § is needed,
a, b, or ¢ could be used. depending on the behavior and level of detail needed. A réa]m R, whose
components g. h, and i require parameters from realms S, S. and R. respectively, can be represented
by a production \!vhere 2 non-terminal can be replaced by both a terminal and a non-terminal. The

non-terminals on the right-hand side are the realms from which the parameters are provided. The

S—alb]c

R—gS|hS|iR

complete ana]ogy is summarized in Table A.1.

Concept

Grammar

Parameterized Components

Productions with non-terminals on right

Parameterless Components

Productions that only reference terminals}

Symmetric Components

Recursive production

Cotﬁponent Interface

Left side of a production

Implementation

Right side of a production

Realm

Set of all productions with the same head

Software System

Sentence

Rules of Composition

Semantic error checking

Batory and O'Malley's work provides support for our research. It confirms the underlying
principle of an application generator: building software systems from reusable components is “sim-
ply” a matter of selecting which components to use and deciding how to compose them together.
It reinforces our intention to use an object-oriented approach in designing our system. It also illus-
trates the role of component interfaces in system composition and demonstrates the importance of

consistent interfaces and composition styles in developing rules for combining components.

Table A.1.

Analogy to Grammar

A-17

On 'Le other hand. the Batory/O'Malley work falls short, in some ways. of what we are

attempting. It does not incorporate a mechanism for an application specialist to specify new appli-
cations in domain-specific terms; this is a primary emphasis of our project. It also does not seem
to provide for tailoring of component composiﬁon to suit the apb]icatiou being built; composing
component A with component B into component C will always pro»duce the same behavior for C.
We want to be more flexible in our compositions and allow A and B to be composed into C in one
situation and C’ in a different situation, depending on how the application specialist specifies the

composition.

A.4{.2 Automatic Programming Technélogies for Avionics Software. The Lockheed Soft-
ware Technology Center has developed the Automafic Programming Technologies for Avionics
Software (APTAS) system pictured in Figure A.5 (29:2). The APTAS system, built for the tar-
get tracking domain, “takes a tracking system specification input via user interface with dynamic
forms and 5. graphical edito;.'and synthesizes an executable trackcx; design™ (29:1). An applica-
tion specialist defines a new tracking application by answering questions which appear in pop-up,
menu-like forms. His answers determine which additional questions are to be asked as he is guided

through specifying a new tracker. When all pertinent specifications have been entered (dcfa{iits

exist for questions which are left unanéwefed). the apphcatxon specialist generates a software ar-
chitecture for the new tracker via the architecture generator. A ‘graphical user interface provides a -
“picture” of the application architecture and allows the user to change it interactively. After the
application specialist is satisfied with the architecture just created, he generates executable code to
implement that architecture via the synthesis engine (29). He can also invoke a run-time display

which facilitates testing and analyzing the tracker just created.

The Tracking Taxonomy and Coding Design Knowledge Base is at the center of the APTAS
system. It contains the system’s épeciﬁcation forms, the primitive modules from which new track-

ers are constructed, and the composition rules which establish how primitive modules are to be

A-18

ARCHITECTUSE
GENERATOR)

A RN

DYNAMIC FORMS
INTERFACE

INTEFRFACE

FORMS
ENERATOR &
G OF

SN W
i

TRACKING TAXONOMY
AND
CODINGDESIGN
KNOWLEDGE B EE

ADA PROGRAM

ity o e IR B PR . oS iy foeigrapinsis BT

Figure A.5. APTAS

combined. The application specialist’s answers to the questions on the specification forms progres-
sively reduce the number of primitive modules which are candidates for incorporation into the new
tracker. The architecture generated upon completion of the forms specification is synthesized into
an executable intermediate language, Common Intermediate Design Langnage (CIDL). The CIDL
code can be executed to demonsirate system behavior. If the system behaves as desired, the CIDL
representation can then be transformed into Ada code. The use of an intermediate representation.
such as CIDL. localizes the code translation function and enables languages other than Ada to be

targeted more easily.

A-19

GRAPHICAL USER [J

RUNﬂMEDBHAY;

The APTAS primitive modules and their composition rules are also written inCIDL. Extend-
ing the system involves writing new primitive modules and incorporating references to these new
modules into the appropriate composition rules and specification forms. This is generally consid-
ered to be a software engineer's task (rather than an application specialist’s). as CIDL is a software

specification language and few tools exist to simplify the process.

APTAS is strikingly similar to the system we envision. It clearly del‘;IOIlStrat(ES that the
con?ept of user-initiated composition and generation of domain-sbeciﬁc systen:ls i_si feasible. It
allows application specialists to specify new applications in domain-specific terms. by way of menu-
like specification forms. It also provides a sophisticated graphical user interface whicli can be used

to construct and/or edit the tracker system, as well as to view the structure of the architecture.

There are, however, some major differences between APTAS and the systéﬁl we are devel-
oping. APTAS's use of a domain-specific language is implicit and embodied in its graphical user
ihterface. Our domain-specific language, on the other hand, is explicit and its grammar is usable
in both textual and graphical modes. We believe this provides advantages to both the software
engineer and application specialist in terms of adaptability, flexibility, and ease of use. In addition,
APTAS currently lacks a set of convenient tools to facilitate extending its knowledge base; such a

toolset is an integral part of our system.

" A4.9 Model-Based Softw‘are Development. The Software Engineering Institute's (SEI)
Softﬁare Architectures Engineering (SAE) Proje;t has proposed a concept called Model-Based Soft-
ware Development (MBSD) (28). Like Batory and O'Malley. MBSD strives to apply traditional
engineering principles to software development by exploiting prior experience to solve similar prob-
lems. This prior experience is codified in models, “scalable units of reusable engineering experience”
(28:11), which are stored in a technology base. | In a mature engineering domain, the technology
base will contain “all the components an engineer needs to predictably solve a class of problems.

and the tools and methods needed to predictably fabricate a product from the components specified

A-20

by the engineer™ (28:4). Under MBSD. software development follows the engineering paradigm:
reuse existing, mature models rather than starting from scratch for each new development. This

involves much more than code reuse; the requirements analysis, design. and software architecture

R

i

are reused each time the corresponding model is used.

MBSD uses a technology base, a repositcry of models and composition rules that share com-
mon engineering goals. Each model is mapped to a specification form and a software template for
the target application language. The specification form is a text-based description which uniquely

identifies a specific instance of a model. The software template is code containing place holders,

which are replaced with information from the specification form (28:10).

As part of MBSD, the SEI uses the Object-C611nectiou-Update (OCU) model as a consistent
pattern of design, a software architecture. This model is especially suited to domains where the
real world can be modeled as a collection of related systems and subsystems (28:17). Partitioning
a system into subsystems provides different levels of abstraction, giving the flexibility to replace a
subsystem with another that either provides a different fum_:tion or has a different level of detail. In
the OCU model, subsystems consist of a controller, a set of Aobjects, an import area, and an export
area as pictured in Figure A.6 (28:18).

1. Controller - Performs the mission of the subsystem by requesting operations from the objects

it connects. A controller is passive, triggered by a call to perform its mission, and depends
on the other subsystem components to accomplish that mission.

2. Objects - Model behavior of real-world entities ax{d maintain individual state information.
An object is passive, triggered by a call from the controller to which it is connected.

|
3. Import Area - Makes data external to the subsystem lavailable to the controller and its objects.

4. Export Area — Makes data internal to the subsystem available to the other subsystems.

Both controllers ar.d objects have standard procedural interfaces used by external controllers

or application executives to invoke some action. Controllers have the following procedures (28:1G):

1. Update - Updates tie OCU network based on state data in the import area and furnishes
new state data to the export area.

2. Stabilize - Puts the system in a state consistent with the current scenario.

3. Initialize — Loads the configuration, creates objects, and defines the OCU network.

A-21

Exports

Imports

Controller

Objects

Figure A.6. OCU Subsystem Construction

4. Configure - Establishes the physical connection between import area and input data as well
as export area and the output data.

5. Destroy — Deallocates the subsystem.

All objects have procedures analogous to those for controllers, but operating on a single object
instance. Specifically, these procedures are (28:20):

1. Update — Calculates the new state based on input data and the current state.
2. Create — Creates a new instance of the object.

3. SetFunction - Changes or redefines the function used to calculate the state.
4, SetState ~ Directly changes the object’s state.

5. Destroy — Deallocates the object.

These well-defined and consistent interfaces for controllers and objects facilitate and simplify the
application composition process.

MBSD provides some significant insights upon which to base our research effort. Its focus
on the reuse of validated, engineering experience is attractive and we have adopted the notion
of storing such information in a technology base. The OCU model provides a realistic approach

toward composing primitive objects into application-specific subsystems.

A-22

A.4.4 Extensible Domain Models®. The Kestrel Interactive Development System (KIDS)
is a knowledge-based system that allows for the capture and devélopmeut of domain knowledge
(44). The representation of the ddmain knowledge constitutes a domain model, and these domain
models are called domain theories. Essentially, the domain theory provides a formal language,
natural to specialists in that domain, for specifying the problem they want to solve. The KIDS
system provides support for constructing, extending, and composing domain theories, and over 90
theories have been built up in the system (44). Additionally, the set of domain theories developed

during the domain modeling effort serves as the basis for software synthesis.

The fouﬁdations of the KIDS approach emerged from years of research into the specification
and synthesis of programs (44). Concepts from algebra and mathematical logic are used to model
application domains and synthesize verifiably correct SOfth;tI‘e. Domain modeling entails the; anal-
ysis of the domain into the basic types of objects, the operations on them, and their properties
and relationships. The domain model is then expressed as a domain thieory. Theories are useful for
modeling application domains for the following reasons.

1. The basic concepts, objects, activities, properties, and relationships of the domain are cap-
tured by the types, operations, and axioms of a theory.

2. Any queries, responses, situation descriptions, hypothetical scenarios, etc. are expressed in
the language defined by the domain theory.

3. The semantics of the application domain are captured by the axioms. inference rules, and
specialized inference procedures associated with the domain theory.

4. Simulation, query answering, analysis. verification of properties, and synthesis of code are
supported by inference within the domain theory.

5. Various operations on models such as abstraction, composition, and interconnection are sup-
ported by well-known theory operations of parameterization, importation, interpretation be-
tween theories, and others. Thus, a high degree of extensibility is obtained.

A.5 Specific System Concept

Several aspects of the system described in Section A.3 depend heavily on the choice of the

models and tools used in the implementation. These selections may impact other parts of the

2This section was provided by Major Pau} D. Bailor

A-23

system. Figure A.7 is a modification of the system overview, incorporating the specific models and
tools to be used. It represents Architect. the specific system which is to be implemented during

this rescarch effort.

.4..5.1 System Overview. Figure A.7 illustrates how specific tools and models further define
Architect. REFINE, as the domain modeling language, imposes its structure; on the domain mpdel
(which will be represented in REFINE also). Input, written in the domain-specific and architecture
grammars, is processed through a parser generated by DIALECT. DIALECT requires two inputs to
generate a parser: a DIALECT domain model l(a. subset of the system domain model) and a grammar
definition. The DIALECT parser creates abitract syntax trees in the structured object base. The

l
visvalizer will be implemented using INTERVlISTA. The SEI's OCU model will serve as our software

architecture model, providing a structure around which to generate our applications. KIDS will

serve as a mechanism for realizing extensibility of the domain model and technology base.

A.5.2 Software Refinery. Software Refinery is a formal-based specification and pro-

gramming environment developed by Kestrel Institute and available commercially from Reasoning

Systems, Inc. We have selected this environment in which to implement Architect for several rea-
sons, but the main factor in our decision is JZEFINE’S powerful, integrated toolsets that allow rapid

prototyping. This decision has many implications on how the system will operate, as we will show.
A.5.2.1 Capabilities. The REFINE environment consists of the following tools:

1. A programming language (REFINE) which includes set theory, logic, transformation rules,
pattern matching, and procedures (41:1-2). The REFINE language provides a wide range of
constructs from very high level to low level, making it suitable for various programming styles,
including use as an executable specification language.

2. An object base which can be queried and modified through REFINE programs (41:1-2). “Ob-
ject classes, types, functions and grammars are among the objects you can define and manip-
ulate” (41:1-4) with several built-in and powerful object base manipulation tools.

3. A language definition facility (DIALECT) which allows design of languages using an extended
Backus Naur Form notation. REFINE supplies a lexical analyzer, parser, pattern matcher,
pattern constructor, and prettyprinter for the language (41:1-2).

4. A toolset (INTERVISTA) which is useful in creating a visual, window-based interactive user
interface.

A-24

« N\
! N
v e
{ . . L
A uonewlou| .
i 1037via oyvedg
\ uoneolddy

suoneoioedg
welqo B ssiny
uogisodwo)

%Q\,\@ﬁ&%.vﬁf%&\\

{ I1°POW
"1 uewog

{ 103vIa
sisAjeuy :
ujewoq

INI43H

Figure A.7. Overview of Specific System

A-25

A.5.2.2 Domain Modcling Language. Some domain modeling languages already
exist for expressing domain knowledge within a formalized domain model: we considered two such

languages: the Requirements Modeling Language (RML) and REFINE.

RML was designed as ; research tool as part of the Taxis Pro ject at the University of Toronto.
it allows “direct and natural modelirig of the world” (20:3) in an object-oriented manner which
“captures and formalizes information that is left informal or not documented in current approaches™
(20:1). RML can express “assertions (what should be true in the world), as well as entities (the
‘things’ in the world) and actions (happenings that cause chapge in the world)” (20:4). This is

precisely the type of information we want to capture in our domain model.

Even though both RML and REFINE appear to be capable of expressing the kind of informa-

_ tion we require in the domain model, we chose REFINE as oﬁr domain modeling language for the
following reasons:

1. REFINE provides an integrated environment including programming constfucts and powerful

object base manipulation tools. Use of REFINE's existing tools eliminated the need to write
our own, allowing more time to be spent on the research itself.

2. RML is not an executable language; no compilers currently exist. To use RML, we would
be forced to develop a compiler, a considerable overhead to our project. As REFINE is also
capable of expressing the information we require, it is unclear what added benefits RML could
provide to justify this additional expense. -

3. The REFINE environment includes compatible tools (DIALECT and INTERVISTA) useful in
other portions of the system.

4. REFINE is a commercially available and supported product.
5. Members of the research team already possessed a working knowledge of REFINE.

A.5.2.3 Parser. “DIALECT is a tool for manipulating formal languages” (42:1-1). A
part of the REFINE software development environment, DIALECT generates appropriate lexical an-
alyzers, parsers and pretty-printers for user-specified, context-free grammars. Valid input is parsed
and stored as abstract syntax trees in the REFINE object base, according to the structure estab-
lished in the D1ALECT domain model. The DIALECT domain model defines object classes, object

attributes, and the structure of the instances in the object base. DIALECT also supports grammar

A-26

N
o
/

R

inheritance, allowing for a base language with several variations or “dialects.” In Architect, the
architecture graminar acts as the common base, and the domain-specific grammar specifies a par-
ticular variation. DIALECT does impose restrictions on the grammars. Since DIALECT generates an
LALR(1) parser, the grammar must be consistent with this type of parser. Also, the productions
in the grammar must correspo;xd to the structure defined in the domain model. Altering some

productions may require updating the DIALECT domain model.

A.5.2.4 Structured Object Base. The structured object base was implemented using
the REFINE object base. REFINE includes many tools which. when combined with REFINE code,
provide all of the functions necessary to manipulate the structured object base. However, the object

base must be accessed through the REFINE environment.

-
A.5.2.5 Technology Base. Models in the technology base were represented as RE-
FINE code and stored in REFINE's object base. Although separate conceptually, the technology
base and structured object base are not physically separate. Access is controlled by Architect to

avoid any confusion.

A.5.2.6 Visual System. INTERVISTA provides a tool set with which to generate a

window-based graphical user interface. It is compatible with the other REFINE tools; therefore,

it is easily integrated. INTERVISTA can access the REFINE object base, so all its required data is

readily available.

A.5.3 Object-Connection-Update Model. = We have selected the Software Engineering In-
stitute’s Object-Connection-Update (OCU) model for our software architecture model. As such,
it provides a framework for composing applications - a standardized pattern of design for all ap-
plications and their components. The OCU model’s consistent interfaces enable all components to
be accessed in the same manner and its intercomponent communication scheme ensures that each

component can readily access the external data needed for its processing. Currently, our focus is

A-27

on implementing the subsystem aspect of the OCU model: the hardware interface portion of the

model will be addressed in follow-on research efforts.

The choice of the OCU mode! for our software architecture model had certain implications

for Architect.

1. Terminology - In keeping with the OCU model, we will refer to domain primitive objects as
“objects,” compositions of objects as “subsystems.” the locus of control of a subsystem as a Y
“controller,” and the overall application itself as an “executive™ (see (2) for a more detailed
discussion of the executive). External data neeced by an object are “input-data,” whereas _ :
data to be made externally available are “output-data.,” An “import area” serves as a focal .
point for all external data needed by the subsystem and an “export area” is the focal point
for all internal data to be made available to other subsystems. The OCU model's names for
the object and controller procedural interfaces have also been retained.

2. Use of a Technology Base — Although the concept of storing reusable domain knowledge or
models in a technology base is not unique to the OCU model, it is a fundamental component
of Model-Based Software Development of which the OCU model is a part.

3. Domain Analysis -~ The OCU model deals with objects and subsystems. This imposes a
constraint on the domain engineer and will impact the manner in which domain analysis is
conducted. Under the OCU model. the domain engineer must model the domain in terms
of subsystems which can be composed from lower-level, more primitive objects. Many do-
mains can be naturally modeled in such a way; with other domains. a new mindset may be
needed to incorporate the subsystem/object requirements of the OCU model. Alternatively,
an additional class of software architectures may need to be defined. ' '

4. Definition of Domain Objects - The OCU model requires that all objects be defined in the
same manrer. Each object has state data, other descriptive information, input-data/output-
data definitions, and the following procedural interfaces: Update, Create, SetFunction, Set-
State. and Destroy. These requirements dictate how the objects will be constructed, severely T .
limiting implemertation choices. However, it is this very limitation which provides the flex- .
ibility that allows the domain objects to be successfully composed to satisfy the application
specialist’s specification.

5. Definition of Architectural Fragments - The OCU model requires that all ltchitectural frag-
ments (subsystems) be described in the same way. All subsystems have! an import area, S
export area, controlle and objects. Each controller has the following procedural interfaces: v
Update, Stabilize, Initialize, Configure, and Destroy. As with the objects, this apparent limi- L ‘
tation on implementation choices actually provides great flexibility in compdsing subsystems N
and combining them into a complete application. : ! A

6. Composition Rules - The standardized object/subsystem defiuitions and interfaces of the
OCU model simplify application composition. There are no inherent restrictions preventing
one component from being combined with another; all composition rules are domain-specific
and do not derive from the software architecture.

N

Intercomponent Communication ~ The OCU model establishes and énforces a standard
‘method for intercomponent communication. Communication external to the subsystem is
localized in the import area which obtains the necessary input-data for all objects within the
subsystem. This localization of communication concerns within the narrow guidelines imposed
by this scheme simplifies intermodule communication: subsystems can readily obtain needed

A-28

S e

external information in a consistent manner and changes iu the low-level implementation of
the communication process are hidden from the subsystems/objects.

8. Structure of the Resulting Application Specification - Obviously, the specification produced
by the application composer is impacted by the choice of a software architecture model.
The OCU model produces an application (an “executive”) which is composed of subsystems.
These subsystems can be decomposed into objects and lower-level subsystems, if appropriate.
This hierarchical structure is preserved in the generated specification.

The OCU model is the result of years of research and experimentation by the SEL It has
been used successfully in the flight simulator. missile, and engineering simulator domains (13)
and appears to provide a suitable structure for composing applications within our application

composition system.

A.6 Conclusion

Software engineering may be on the brink of a new era, an era in which software engineers
develop knowledge about generating software systems and application specialists actually create the
software systems using familiar, domain-oriented terms. Qur research. which builds on important
work already accomplished by various researchers. is designed to demonstrate the feasibility of such

an application composer.

A-29

Appendiz B. S’ample Session

This appendix contains a sample session in which we build an application in the digital circuits

domain. a binary array multiplier. A schematic diagram for a binary array multiplier is given in

. figure B.1.

]
(a3~

HA1 HA2

__Jéi)

Figure B.1. Binary Array Multiplier Schematic Diagram

B.1 Starting AVSI

Assuming that the Software Refinery system has already been loaded. in the Emé.cs REFINE

window, enter:

(load "1")

This file contains a LISP function that loads the DIALECT, INTERVISTA, Architect, and AVSi files.

After this file has been loaded, enter:

)

B-1

v il Lond chn

| . . 5 (2] (31 chech -y onan
AP ladon e osict
l Aopt -.,‘ H ha Seby Sy vl Appbatcr .

T TS

ESATATHIM ERRAGRAINT T AR

Figure B.2. AVSI Main Window
It will take a few minutes for the files to load. Upon completion, a prompt appears:

Load Complete

Type "(AVSI)" to start AVSI
Enter the command:
(AVSI)

The visual specification files are new loaded and the control window (refer to B.2) appears in the
upper left-hand corner of the screen. The upper portion of this window contains “buttons” that
represent the AVSI's main functions for composing an application. The lower portion contains a

message area where various user messages are displayed during the application composition process.

B.2 Create New Application

To create a new application,

1. Click any mouse button on the button labeled “Create New Application.”

2. A pop-up window appears and prompts, “Select Domain." Click on the menu item “CIR-

CUITS.”
3. A pop-up window appears with the prompt, “Enter name of application.” Type

binary-array-mult

B-2

4. The name can be entered by hitting the “return” key or by clicking on “do it” at the bottom

of the pop-up window.

B.3 Edit Application

Editing an application is comprised of two separate operations, editing an application’s com-

ponents. and editing an application’s update algorithm.

To add a subsystem-object to the application,

. Click any mouse button on the button labeled “Edit Application”.

2

. A pop-up menu appears with the prompt “Choose Application.” Click on the menu item

“BINARY-ARRAY-MULT.”

. A pop-up menu appears with the prompt “Choose:” Click on the menu item “Edit Application

Components.” A window appears with a single icon labéled, “APPLICATION-OBJ BINARY-

ARRAY-MULT" (refer to Figure B.3).

. Click on the diagram surface (anywhere within the window except within any icon’s bound-

aries) of the new window. A pop-up menu will appear.
. Select “Create New Subsystem.”

. A pop-up window appears. with the prompt “Enter a name:" Enter
driver -

. A new icon appears and is attached to the mouse cursor. Place the icon below the application-

object icon by moving the cursor to the desired location and clicking.

. Click any mouse button on the newly created subsystem icon and select the menu option

“Link to Source.”

. The mouse cursor changes from an arrow to an oval with a dot in it. This signifies that an

object needs to be selected. Place the mouse cursor on the application-object's icon and click

B-3

APPLICATION- 08J)
BINARY - ARRAY - MUST

Figure B.3. Edit-application-objects window

any mouse button. A link appears between the application-object’s icon and the subsystem-
object's icon. as in figure B.4
10. Close the edit-application-objects window by clicking on the diagram surface and selecting

“Deactivate”

To edit the application-object’s update-algorithm,

1. Click any mouse button on the button labeled “Edit Application™.

2. A pop-up menu appears with the prompt “Cnoose Application.” Click on the menu item

“BINARY-ARRAY-MULT."

3. A pop-up menu appears with the prompt “Choose:™ Click on the menu item “Edit Application
Update.” Two windows appear, one contains the update algorithin’s diagrammatic view, and
the other contains its textual view. The diagram window contains two text icons. labeiad
“Start” and “End.” and there is a dotted arrow pointing from the start-icon to the end-icon

(refer to figure B.5).

4. Click on the “nub™ which is placed on the dotted arrow midway between the start and end

icons.

B-4

APPLICATHS 05 BINARY ARRAY ML

JAPFLICATION- OB

NARY- ARRAY- MUST

SUOSYSTEM- 08J)
DANER

Figure B.4. Edit-application-objects window

Figure B.5. Edit-Ubdate-AIgorithm Window with Null statement sequence

B-5

5. Select “Insert Statement” from the pop-up menu.

6. Select statement update-call statement by clicking on “Update-call-obj" from the pop-up

SR RN SR

menu. An icon is automatically placed midway between the start and end icons.

e

7. Click on the new update icon and select “Edit."

8. A pop-up window appears with the prompt, *Euter Operand Name," and lists the current

operand namne, which is “*UNDEFINED*.” Replace the current operand name with:

Driver

The application update algorithm is shown in figure B.6. Note the textual representation is

5 AgplaesAme Lk A Sl e

[TP -

Figure B.6. Edit-Update-Algorithm Window with update statement

automatically updated to reflect each change in the diagram window.

9. Close the edit-update-algorithin windows by clicking on the black title bar at the top of the

windows and selecting “deactivate.”

B-6

B.4 Editing a Subsystem

With minor differences, editing a subsystem is very similar to editing an application. In this
section, we will add create primitive objects and a nested subsystem for the subsystem created in
the previous section.

The subsystem, “driver” controls four switches, four LEDS, and the binary array multiplier,

a separate subsystem. To add these objects, perform the following steps:

1. Click on the “Edit Subsystem” button in the control panel window.

2. Click on the menu item “DRIVER.” A window now appears, the edit-subsystem window,
which contains a representation of a subsystem similar to the standard OCU picture of a

subsystem (see figure B.7).

oMo BRIVER <0

Figure B.7. Edit-subsystem window

B-7

3. Click on the “objects” icon in the edit-subsystem window. The edit-subsystem-objects win-
dow for this subsystem appears, and contains a single icon, labeled “SUBSYSTEM-OBJ
DRIVER.” A second window, the technology-base window, appears and contains an icon for

each primitive-object in the current domain (see figure B.8).

Y sl D er Dembnc sve W i v RGES TR 0o ateta BRI ST

® © <>
<> o [
(]

)

O =

Figure B.8. Technology Base Window

4. Click on the diagram surface of the edit-subsystem-objects window and select the “create new

subsystem” ‘menu item. -
5. Name the new subsystem
BAM
6. Place the subsystem-icon somewhere on the diagram window.
7. Click on the new subsystem-icon (BAM), and select the menu item “link to source.”

8. Link the new subsystem-icon (BAM) to its controlling subsystem (DRIVER).

B-8

Add the primitive objects:

1. Click on the icon in the technology-base window labeled “Switch-Obj."

2. A Switch-icon is created and attaclied to the mouse cursor. Place this icon on in the edit-

subsystem-objects window near the subsystem-icon labeled “DRIVER.”
3. Name the switch by typing in the pop-up window, .
! . A0
4. Click on the Switch-icon and select the menu item, “Lihk to source.”
5. Connect the Switch-icon to its controlling subsystem’s icon (DRIVER)

6. Follow the above steps to create, place, and link to the DRIVER subsystem, three more

switch objects, named Al, B0, and B1.

7. Create four LE.) objects, named C0, C1, C2, and C3, and link them to the DRIVER subsys-

tem, as in Figure B.9

8. Force a screen redraw by clicking on the edit-subsystem-object’s diagram surface and selectin
8 Y 3 diag 8

the menu item “Redraw.” The subsystem is scaled and redrawn as in figure B.10.

9. You may, at any time, pretty-print an object by clicking on its icon and choosing the menu

selection “pretty-print object.” Figure B.11 shows a pretty-print of DRIVER.
10. Kill edit-subsystem-objects window by clicking its black title bar and selecting “deactivate.”

Create an update algorithm by performing the following steps:

1. Click on the “Controller” icon in the edit-subsystem window.

2. Click on the “nub” which is pl.ced on the dotted arrow midway between the start and end

icons.

3. Select “Insert Statement” from the pop-up menu.

B-9

v,y S) vl B DRIV R

LED-OBY
@

\

°

7]

LED-OBJ
[+

SUBSYSTEM-08J LED-0BY
A o

Figure B.9. DRIVER Subsystem, with primitive objects and nested subsystem

B-10

SLIDY STLAE G SR IV Reve

@@/'°:' =) pe] T

Figure B.10. Redrawn, scaled DRIVER Subsystem

subsystem DAIVER ie controls:

BAN, £3, €. C1, 0. AD, Al.
20, 31
Amports.
INl SIONAL BOOLEIAW €O ()
© TW1 SIO0MAL BOOLEIAN C1 ()
IN1 SIOMAL BOOLXAN G2 ()
IN1 SIONAL BOOLEZAN 83 ()
experts
OUTL SIONAL BOOLEAN *UNDRPINED* B3
QUT1 SIOMAL BOOLEAN $UMDEPINRD® BO
QUT1 SICMAL BOOLEAN SUNDEZPINZD® Al
OUT1 SIGNAL BOOLEAN SUNDESINZO® AD
initisline precedure: update precedure:

Figure B.11. Pretty-print of subsystem DRIVER

B-11

. Select statement update-call statement by clicking on “Update-call-obj™ from the pop-up

menu. An icon is automatically placed midway between the s. ..t and end icons.

. Click on the new update icon and select “Edit.”

. A pop-up window appears with the prompt, “Enter Operand Name." Type:

A0

. New statements may be inserted between two icons by clicking on the *nubs” positioned on

the link that is between the icons. Insert several more update-call statements by following
the previous steps, creating the following sequence (note that the order of the statements is
important):

update A0
update Al
update BO
update B1
update BAM
update CO
update C1
update C2
update C3

. Deactivate the update algorithm windows.

The subsystem, “BAM" controls four AND-gates and two half-adders. To add these objects,

perform the following steps:

. Click on the “Edit Subsystem” button in the control panel window.
. Click on the menu item “BAM.”

. Click on the “objects” icon in the edit-subsystem window. The edit-subsystem-objects window

for this subsystem appears, and contains a single icon, labeled “SUBSYSTEM-OBJ BAM."

. Click on the icon in the technology-base window labeled “AND-gate-obj.”

. An AND-gate-icon is created and attached to the mouse cursor. Place this icon on in the

edit-subsystem-objects window near the subsystem-icon labeled “BAM.”

. Name the switch by typing in the pop-up window,

B-12

10.

11.

12.

1.

and-1

Click on the And-gate icon and select the menu item, “Link to source.”

. Connect the And-gate icon to its controlling subsystem’s icon (BAM)

. Follow the above steps to create. place, and link to the BAM subsystem, three more AND-gate

objects, named and-2, and-3, and-4.
Create two Half-adder objects, named ha-1 and ha-2, and link them to the BAM subsystem.

Force a screen redraw by clicking on the edit-subsystem-object's diagram surface and selecting

the menu item “Redraw.”

Kill edit-subsystem-objects window

Create an update algorithm by performing the following steps:

Click on the “Controller” icon in the edit-subsystem window.

. Click on the “nub” which is placed on the dotted arrow midway between the start and end

icons.

. Select “Insert Statement” from the pop-up menu.

. Select statement update-call statement by clicking on “Update-call-obj” from the pop-up

menu. An icon is automatically placed midway between the start and end icons.

. Click on the new update icon and select “E.”

. A pop-up window appears with the prompt, “Enter Operand Name.” Type:

and-1

. Insert several more update-call statements by following the previous steps, creating the fol-

lowing sequence:

update and-1
update and-2
update and-3
update and-4
update ha-2
update ha-1

.B-13

i AT i e T T2 SRR < e O TR A IR AR S R I, 0 S A TR e b £SO R

8. Close all edit-update windows

B.5 Connecting Subsystems’ Imports and Ezports

To connect subsystems’ import and export areas perform the following steps:

1. Click ou the control panel button labeled “Build Imports and Exports.” The import/export
window appears, and contains an icon group for each subsystem in the application (refer

to figure B.12). Each icon group contains three icons: a rectangle and two circles. The

Q=P

Figure B.12. Subsystem Icon Groups

rectangle is the subsystem icon, and is labeled with the subsystem namne. If a subsystem is a

B-14

3
A

nested subsystem, its controlling subsystem appears in parentheses. The two circles are the

import-area (labeled "Imp.") and export-area (labeled “Exp.”) icons.

2. Click on the subsystem icon (the rectangular icon) labeled BAM. Choose “Make internal
connections” from the pop-up menu. The impdrt-export window now contains an icon group

for each primitive object in the subsystem, BAM ({refer to figure B.13).

o) ms

@ D -OATE-OM! D
a4 o
[t

%w-‘an-ﬂb
) oo,
am
@ AN DATE 08 g
»or
) am
nu«um-o-g' .
a3 ()
mam

Figure B.13. Icon Groups for Primitives - -

G E"P

3. Click on HAl’s “Imp” icon. A window opens that lists the import objects in the BAM

subsystem that are associated with HAL.

4. Click on the item named “IN2.” Observe in the diagram window that dashed arrows appear,

showing all the potential sources for this import item.

5. Click on HA2's “Exp” icon. A window opens that lists the export objects in the BAM

subsystem that are associated with HA2.

B-15

6.

Click on the item named “C."

7. Observe that the “source™ and “target” entrier are filled in in the text windows indicating

10

11.

12.

13.

14.

15.

16.

the conncction just made. Also observe that the dashed arrows disappear in the diagram

window.

. Follow the above steps to establish the rest of the “local” connections:

Source Target

HA1IN1 AND4,0UTI
HA2]IN1 AND2,0UT1

HA2,IN2 AND3.OUT1

. Close the Import/Export Diagram window.

Click on the “Build Imports/Exports” buttor on the control panel. This brings up the original

display. Now we will make the subsystem-to-subhsystem connections.

Click on Subsystem DRIVER's “Imp" icon. This brings up a text window that lists all of
DRIVER's import objects. Note that all of these import objects have the same name and

may be distinguished by the “consumer™” field.
Click on the item named “IN1" for consumer C3.
Click on subsystem BAM's “Exp” icon to brirg up its export area test window.

Click on the item named “C" for Producer HA1 and observe that source and target fields are

filled in, indicating the connection.

Repeat the above steps the establish the following connections shown if figures B.14 and B.15.

Close all windows except for the control-panel window.

B-16

o Ve R

‘\\ el ‘ -, =

PR

S, Naame)

SIGNAL (HALl., BAN. C)
IN1 SIGNAL €2 (HAl, BAX, S)
1 SIGNAL Cl (HA2, BAX, §)
INL SIGNAL CO (AND1, BAN, OUT1)

Catagory Producer (Target: 0b), SS. Nume)

OUT1I | SIONAL Bl (AND2, BAM, IN2)

(AND4, BAN, IN2)
OUT1 - SIONAL B0 (AND3, BAM, IN2)

(N1, BAM, INZ)
OUTI SIONAL A1l (AND4, BAN, IN1)

(AND3, BaM. DN1)
OUTL SIONAL AO (ANDL, BAX, IN1)

(AND2, BAX. IN1)

" Figure B.14. Import/Export Connections for Driver

B-17

Name Catagory Consumer (Source: 0bj, 5SS, Name)

e SIONAL HA2 (AND3, BAN, OUT1)
IN1 SIGNAL MA2 (AND2, BAN, OUT1)
IN2 FIGNAL HAl (HMA2, BAX, C)

ml SINMAL MA1l (AND4, BAN, OUT1)
IN2 SIONAL AND4 (P1l, DRIVIZA, 0UT1)
i SIGNAL AND4 (Al, DRIVER, 0UT1)
IN2 SIONAL ANDIY (BO. DRIVER. OUT1)
INi SIGNAL AND3 (Al, DRIVER, OUT1)
N2 SIGNAL AND2 (Bl, DRIVER, 0UT))
ml SIGNAL ANG2 (AO. DRIVER, OUT1)
IN2 SIONAL APO1 (B0, DRIVER, OUT1)
IN1 SIONAL ANDL1 (AC, DRIVER. 0UT1)

&
(Target: Obj. $S. Nam

Catagory Producer

c SIONAL HA2 (HAL. PAM, INZ,

] SIONAL HAZ (Cl, DRIVER, 1INl)

c SIGNAL MA1 (C3, DRIVER, IN1)

L] SIONAL HA1 (C2, DRIVER. IN1)
ourl SIONAL AND4 (MAl, BAaM, IN1)
ouTl SIONAL AND3 (HA2. BAM, IN2)
ouTl SICNAL AND2 (HA2, BAN, IN1)
ouT1 SIGNAL AND1 (CO. DRIVEK, IN1)

|

|

Figure B.15. Import)Export Connectiens for BAM

B-18

B.6 Semantic Checks

Whenever the import and export areas are connected, as in the previous section, semantic
checks are automatically run. However, semantic checks may be run at any time by clicking on

the control panel button labeled “Check Semantics.” The results of the semantic checks may be

viewed in the EMACS window.

B.7 Ezecute Application

Click on the control panel button labeled “*Execute Application.” The results are display in
the EMACS window.

Change switch settings with the object attribute editor by performing the following steps:

1. Click on the control panel’s “Edit Subsystem” button.

2. Choose “bRIVER" from the pop-up window.

3. Click on the “Objects” icon in the edit-subsystem window.
4. Click on the switch icon iabeled “A0.” |

5. Choose “View/Edit attributes” from the pop-up window. A window appears, liéting A0’s

" attributes.

6. Click on the attribute, “Position.” A pop-up window appears, listing the current valie of the

switch.
7. Enter a new value for the switch position by typing -
ru::off

(The “rux™ prefix is the package name and is required for symbols. It is not required for

other data types such as numbers and strings)

8. Change the values for any other switches in the same manner as above.

B-19

JRSE
\

9. Click the “Execute™ button again and observe the results in the EMACS window.

B-20

Appendiz C. System Files

This appendix contains a listing of the Lisp file used to load Architect and AVS. The order

in which the files are loaded in this file also indicates the required compilation order.

(defun 1()

% Load system files for Dialect and Intervista

(load-system "dialect" "1-0")
(load-system "intervista" "1-0")

% Load Architect files

(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(lcad
(load
(load
(load
(load
(load
(load
(load
(load

% Load

(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(1load

./DSL/lisp-utilities.lisp")
./0CU-dm/dm-ocu"
./0CU-dm/gram-ocu")
./DSL/globals")
./DSL/obj-utilities")
./DSL/read-utilities")
./DSL/erase")
./DSL/menu") |
./DSL/display-files")
./DSL/modify-obj")
./DSL/save")
./DSL/generic")
./DSL/build-generic")
./DSL/complete")| '
./OCU/sot-debug"s
./OCU/imports-exﬁcrts")
./OCU/eval-expr"?
./0CU/execute")
./0CU/semantic-checks")
./load~logic-domain")
./load~gizmo-domain")

Logic Domain

./CIRCUITS-TECH~BASE/and-gate")
./CIRCUITS'TECH'BASE/or-gate")
./CIRCUITS-TECH-BASE/nand-gate")
./CIRCUITS-TECB-BASE/nor*gate“)
./CIBCUITS-TECH-BASE/nOt-gate")
./CIRCUITS~-TECH-BASE/switch")
./CIRCUITS-TECH-BASE/jk-flip-flOp")
./CIRCUITS-TECH-BASE/led")
./CIRCUITS-TECH~BASE/counter")
./CIRCUITS-TECH-BASE/decoder")
./CIRCUITS-TECH-BASE/half-adder")
./CIRCUITS-TECH-BASE/mux")

-
. v
P/
e
v
o
;
i
}ooa
5.
!
i
:
-
\
\
i
s
v
4
4
/ %
/
e
.
-

(load "./GIZMOS-TECH-BASE/gizmo-gram-dsi")
% Load Gizmos Domain

(load "./GIZMOS-TECH-BASE/contraption”)
(load "./GIZMOS-TECH-BASE/gadget")

(load "./GIZMOS-TECH-BASE/glibsnitz")
(load "./GIZMOS-TECH-BLSE/tning")

(load "./GIZMOS-TECH-BASE/widget")

(load "./GIZMOS-TECH-BASE/gizmo-gram-dsl")

Load AVS files (these files are in the
REFINE-USER-REFINE-INTERFACE package

T >

(load "ri-user-pkg")
(in-package ’ru-ri)

(load "lisp-file-utils")
(load "tech-base")

(load "vsl-dm")

(load "vsl-gr™)

(load "vsl-utils")

(load "edit-expression")
(load "viz-utils")

(load "edit-update")
(load "edit-attr")

(load "create-obj")
(load "edit-ss")

(load "edit-applic")
(load "viz")

(load "imp-exp")

% Parse VSL description files
(in-grammar ’ru::viz)

(pvf "vsl-circuits.re")
(pvf "vsl-gizmos.re")

,/’/

Appendiz D. VSL Specification of Digital Circuits Domain

This appendix Contains the domain model and grammar for the Visual Specification Lan-

guage, and contains the VSL descrintion for the CIRCUITS domain:

D.1 VSL Domain Model
') in-package("RU")
!} in-grammar(’user)

var Viz-Spec~0bj © : object-class subtype-of user-object
var Class-spec~0bj : object-class subtype-of Viz-Spec-0bj
var Icon-Attr-0bj : object-class subtype-of Class-spec-0bj
var Edit-Attr-0bj : object-class subtype-of Class-spec-0Obj

" var Class-Spacs : map(Viz-Spec-0bj, seq(Class-Spec-Obj)) = {l{}
var Class-Name : map(Class-Spec-0bj, symbol) = {||}

var Icon-Attributes : map(Class-Spec-Obj, seq(Icon-Attr-0bj)) = {I}}
var Edit-Attributes : map(Class-Spec-Obj, seq(Edit-Attr-0bj)) = {||}

var Edit-attr-name : map(Edit-Attr-O0bj, symbol) = {||}
var Edit-attr-type : map(Edit-Attr-0bj, symbol) = {||}

var Icon-attr-name : map(Icon~Attr-O0bj, symbol) = {{|}
var Icon-attr-val : map{(Icon-Attr-0bj, any-type) = {|[}

%% Icon attribute definitions

%var Icon-Active? : map(Viz-Spec-Obj, symbol) = {||}
%var Icon-Shape : map(Viz-Spec-0bj, symbol) = {|{}
%var Icon-Size-Factor : map(Viz-Spac-0bj, real) = {1}
%var Icon-Height-Width-Ratio : map(Viz-Spec-Obj, real) = {I1}
%var Icon-Label-Function + map(Viz-Spec-0bj, symbol) = {|[}
%var Icon-Clip-Icon-Label? : map(Viz~Spec-0bj, symbol) = {||}
%var Icon-Mouse-Sensitive? ¢+ map(Viz~Spec~0bj, symbol) = {l[}

D.2 VSL Grammar
!! in-package("RU")
! in-grammar(’syntax)
Grammar VIZ
no-patterns
start-classes Viz-Spec-0bj

file-classes Viz-Spec-0bj

Productions

Viz-Spec-0bj ::=
["visual" "specs" "for" name "are" [Class-Specs » ";"]1]
builds Viz-Spec-0bj,

Class-Spec-0bj ::=
["attributes" "for" Class-name "are"
"jcon" ":" [Icon-Attributes » ";"]
"edit" ":" [Edit-Attributes * ";"]
"‘nd"

]
builds Class-Spec-0bj,

Icon-Attr-0bj ::=
[icon-attr~name "=" jcon-attr-vall
builds Icon-Attr-0bj,

Edit-Attr-0bj ::=
[edit-attr-name ":" edit-attr-typel
builds Edit-Attr-0bj

symbol-start-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWNXYZ: "

symbol-continue-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890~-7:"

end

D-2

D.3 VSL Description for the CIRCUITS Domain

Visual Specs for Circuits are

attributes for And-Gate-Obj are
lcon :
icon-type = ellipse;

" active? = true;
size-factor = 1.1;
height-vidth-ratio = 1.0;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true

Edit :
name : symbol;
delay : integer;
menufacturer : string;
mil-spec? : boolean;
pover-level : real
end; '

attributes for Or-Gate-Obj are
Icon ¢
icon-type = ellipse;
active? = true;
size-factor = 1.1;
height-width-ratio = 0.95;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true
Edit :
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
pover-level : real
end;

attributes for Not-Gate-0bj are
Icon :
icon-type = ellipse;
active? = true;
size-factor = 1.1;
height-width-ratio = 1.3;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true
Edit :
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
. Ppover-level : real
end;

attributes for Nor-Gate-Obj are

N

-~

e SRR AN SRR G Ter S AT SN T RN A B DN TS

Icon :
icon-type = diamond;
active? = true;
size~factor = 1.1;
height-width-ratio = 1.7;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true

Edit :
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
- power-level : real

end;

attridbutes for Nand-Gate-Obj are
Icon : ‘
icon-type = diamond;
active? = true;
size-factor = 1.1;
height-width-ratio = 1.7;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true
Edit :
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
pover-level : real
end;

attributes for Mux-Obj are
Icon :
icon-type = diamond;
active? = true;
size-factor = 1.1;
height-width-ratio = 1.7;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true
Edit :
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
pover-level : real
end;

attridbutes for JK-Flip-Flop-0bj are
Icon :
icon-type = diamond;
active? = true;
size-factor = 0.9;
height-width-ratio = 1.1;

D-4

R D o i T A)

R

label = class-and-name;

c1ip-icon41abel? = falge;

mouse-sensitive? = true
Edit : ‘

name : symbol;

delay : integer;

. set-up-delay : integer;
hold-delay : integer;
manufacturer : string;
mil-spec? : boolean;
pover-level : real

end;

attributes for Half-Adder-O0bj are
Icon :
icon-type = box;
active? = true;
size-factor = 1.0;
height-width-ratio = 1.3;
label = class-and-name; °
clip-icon-label? = false; .
mouse-sensitive? = true
Edit :
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
pover-level : real
end;

attridutes for Dacoder-0bj are
Icon :
icon-type = box;
active? = true;
size~factor = 1.0;
height-width-ratio = 0.6;
‘label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true
Edit :
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
pover-level : real
end;

attributes for Counter-0bj are
Icon :

icon-type = box;
active? = true;
size-factor = 1.0;
height-width-ratio = 0.7;
label = class-and-name;
clip-icon-label? = false;

D-5

SO P AP e b o e 0§

SR S R SN TRt S I G S R o e B G e QAR £ SRR

uouse-gensitive? = true
Edit :

name : symbol;
count : integer;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
pover-level : real

end;

attributes for Led-Obj are
Icon :
icon-tvpe = box;
active? = true;
gize-factor = 1.1;
height-width-ratio = 1.0;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true
Edit : ol
name : symbol;
manufacturer : string;
color : symbol
end; |

attributes for Switch-Ubj are
Icon : i
icon~type = ellipse; ‘
active? = true; !
size-factor = 1.0; ;
height-width-ratio = 1.0; !
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true |
Edit : 1
name : symbol;
dedbounced : boolean;
manufacturer : string;
delay : integer;
position : symbol

end

D-6

—

Appendiz E. REFINE Source Code for AVSI

The REFINE source code for AVSI may be obtained, upon request, from: 7

AFIT/ENG
2950 P Street

Maj Paul Bailor ' ‘ ' ‘ ‘ JA

Wright-Patterson AFB, OH 45433-7765
(513)255-9263
DSN 785-9263
email: pbailor@afit.af.mil
;
/,!
/
;o /
7/
' /,,5’,/. . //'
. '\‘ "l
‘\.
1/)"-\
E-1
v
K

10.

11,

12.

13.

14.

15.

16.

17.

18.

Bibliography

. Ambler, Allen L. and Margaret M, Burnett. “Influence of Visual Technology on the Evolution

of Language Environments.” IEEE Computer, 9-22 (October 1989).

. Anderson, Captain Cynthia G. Creating and Manipulating Formalized Software Archi-

tectures to Support a Domain-Oriented Application Composition System. MS thesis,
AFIT/GCS/ENG/92D-01, School of Engineering, Air Force Institute of Technology(AU),
Wright-Patterson AFB, OH, December 1992.

. Arefi, Farahangiz and others. “Automatically Generating Visual Syntax-Directed Editors,” .

Communications of the ACM, 349-360 (March 1990).

. ASD/RWWW. Joint Modeling and Simulation System (J-MASS): System Concept Document.

Technical Report, CROSSBOW-S Architecture Technical Working Group, November 1991.

. Bailor, Paul D. and others. “Formalization and Visualization of Domain-Specific Software

Architectures.” AAAI-92 Workshop an Automated Software Design, AAAI Conference. 6 -
11. 1992. ‘ ,

. Barstow, David R. “Domain-Specific Automatic Programming,” IEEE Transactions on Soft-

ware Engineering, 11:1321- 1326 (November 1985).

. Batory, Don and Sean O’Malley. The Design and Implementation of Hierarchical Software

Systems with Reusable Components. Technical Report TR-91-22, Austin, Texas: University
of Texas, January 1992.

. Booch, Grady. Object-Oriented Design: With Applications. Redwood City, California: Ben-

jamin/Cummings, 1991. :

. Boom, Mary and Brad Mallare. Formalization end Transformation of Informal Analysis Mod-

els Into Ezecutable REFINE Specifications. MS thesis, AFIT/GCS/ENG/92D, School of Engi-
neering, Air Force Institute of Technology(AU), Wright-Patterson AFB, OH, December 1992.

Brown, Gretchen P. and others. “Program Visualization: Graphical Support for Software
Development,” IEEE Computer, 27-35 (August 1985).

Chang, Shi-Kuo. “Principles of Visual Languages.” Visual Programming Systems edited by
Shi-Kuo Chang, 1-59, Prentice Hall, 1990.

Cypher, Allen and Marilyn Stelzner. “Graphical Knowledge-Based Mode! Editors.” Intelligent
User Interfaces edited by Joseph W. Sullivan and Sherman W. Tyler, 403-420, ACM Press,
1991.

D’Ippolite, Richard and Kenneth Lee. “Modelirg Software Systems by Domains.” Tenth Au-
tomating Software Design Workshop. American Association for Artificial Intelligence, April
1992.

D’Ippolito, Richard S. “Using Models in Software Engineering.” Proceedings: TRI-Ada '89.
256-265. 1989.

D’lppolito, Richard S. and Charles P. Plinta. “Software Development Using Models,” ACM
Sigsoft Software Engineering Notes (October 1989).

Eades, Peter and Lin Xuemin. “How to Draw a Directed Graph.” IEEE Workshop on Visual
Languages. 13-17. 1989.

Eisenstadt, Marc and others. “Visual Knowledge Engineering,” IEEE Transactions on Soft-
ware Engineering, 16:1164-1177 (October 1990).

El-Kassas, §. “Visual Languages: Their Definition and Applications in System Development,”
Microprocessing and Microprogramming, $2:383-391 (1991).

BIB-1

19.

20.

21,
- 22,
23.

24,

25.

26.

27,

28.

29.

30.

3L
32.

33.

34.
. nents,” IEEE Transactions on Software Engineering, 10:564-574 (September 1984).

35.

37.

Fischer, Charles N. and Richard J. LeBlanc, Jr. Crafting ¢ Compiler with C. Redwood City,
CA: Benjamin/Cummings Publishing Company, Inc, 1991,

Greenspan, Sol J. Requirements Modeling: A Knowledge Representatzon Approach to Software
Requirements Definition. PhD dissertation. University of Toronto, Toronto, Ontario, Canada.,
1984. » v

Huang, Kuan-Tsae. “Visual Interface Design Systems.” Visual Programming Systems edited
by Shi-Kuo Chang, 60-143. Prentice Hall, 1990.

Ichikawa, Tadao and Masakito Hirakawa. “Iconic Programming: Where to Go?,” IEEE Soﬁ-
ware, 63-68 (November 1990).

Iscoe, Neil. “Domain Modeling -~ Evolving Research.” Proceedmgs of the Sizth Annual
Knowldege-Based Software Engineering Conference. 300 - 304. 1991,

Iscoe, Neil Allen. Domain-Specific Prograinming: An Object-Oriented and Knowledge-based
Approach to Specification aend Generation. PhD dissertation, The University of Texas at
Austin, Austin Texas, 1990.

Kang, Kyo C. and others. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90- TR-21 Software Engineering Institute, November 1990 (AD-A235
785).

Korth, Henry F. and Abraham Silberschatz. Database System Concepts, 2nd edition. New
York, NY: McGraw-Hill, Inc., 1991,

Langloss, Randall K. Graph-Based Visualization of Formal Specification and Domain Specific
Languages. MS thesis, AFIT/GCS/ENG/91D, School of Engineering, Air Force Institute of
Technology(AU), Wright-Patterson AFB, OH, December 1991.

Lee, Kenneth J. and others. Model-Based Software Development (Draft). Technical Report
CMU/SEI-92-SR-00, Software Engineering Institute, December 1991,

Lockheed Software Technology Center. Software User’s Manual for the Automatic Program-
ming Technologies For Avionics Software (APTAS) System. ‘Technical Report, Palo Alto, CA:
Lockheed Software Technology Center, June 1991,

Lowry, Michael R. “Software Engineering in the T'wenty-first Century.” Automating Software
Design, edited by Michael R. Lowry and Robert D. McCartney 627-654. Menlo Park, CA:

AAAI Press, 1991. - - e

Miller, James R. and others. “Introduction.” Intelligent User Interfaces edited by Joseph W.
Sullivan and Sherman W, Tyler, 1-10, ACM Press, 1991.)
Moriconi, Mark and Dwight F. Hare. “Visualizing Program Designs Through Pegasys,” IEEE
Computer, 72-85 (August 1985).

Neal, Jeanette G. and Stuart C. Shapiro. “Intelligent Multi-Media Interface Technology.”
Intelligent User Interfaces edited by Joseph W. Sullivan and Sherman W. Tyler, 11-43, ACM
Press, 1991.

Neighbors, James M. “The Draco Approach to Constx"ucting Scftware from Reusable Compo-

Peterson, A. Spencer. “Coming to Terms with Software Reuse: A Model-based Approach,”
ACM SIGSOFT Software Engineering Notes, 16:45-51 (April 1991).

. Prieto-Diaz, Rubén. “Domain Aualysis: An Introduction,” ACM SIGSOFT Software Engi-

neering Notes, 15:47-54 (April 1990).

Prieto-Diaz, Rubén. “Domain Analysis for Reusability.” Proceedings of the 11th Annual In-
ternational Computer Software and Application Conference. 23-29. IEEE Computer Society
Press, 1990.

B'B-2

e

"‘1\

38.

39.

40.

41,

42,
43.
44,

45.
46.

47.

48,

Protsko, L. Beth and others. "Towards the Automatic Generation of Software Diagrams,”
IEEE Transactions on Software Engineering, 17:10-21 (January 1991).

Randour, Capt Mary Anne. Creating and Manipulating a Domain-Specific Formal Ob-
ject Base to Support a Domain-Oriented Application Composition System. MS thesis,
AFIT/GCS/ENG/92D, School of Engineering, Air Force Institute ofTechnology(AU) Wright-
Patterson AFB, OH, December 1992.

Reasoning Systems Inc., Palo Alto, CA. INTERVISTATM User’s Guide. For
INTERVISTATM Version 1.0.

Reasoning Systems Inc.. Palo Alto, CA. REFINE™ User's Guide. For REFINETM Ve.sion
3.0.

Reasoning Systems, Inc. DIALECT User’s Guide. Palo Alto, CA, July 1990.
Shu, Nan. Visual Programming. New York: Van Nostrand Reinhold Company, 1988.

Smith, Douglas R. “KIDS - A Knowledge-Based Software Development System.” Automating
Software Design, edited by Michae! R. Lowry and Robert D. McCartney. Chapter 19. Menlo
Park, CA: AAAI Press/MIT Press, 1991.

Snmmerville, Ian. Software Engineering. New York: Addison-Wesley, 1989.

Spicer, Kelly L. Mapping an Object-Oriented Requirements Analysis to a Design Architecture
that Supports Reuse. MS thesis, AFIT/GCS/ENG/90D, School of Engineering, Air Force
Institute of Technology(AU), Wright-Patterson AFB, OH, December 1990.

Tamassia, Roberto and others. “Automatic Graph Drawing and Readability of Diagrams,”
IEEE Transactions on Systems, Man, and Cybernetics, 18:61-79 (January/February 1988).

Teague, Alan H. and Henson Graves. Tie Graphical System Description Language and De-
velopment Environment Version 2.0 (Draft). Technical Report 0/96-10 B/254E, Software
Technology Center Lockheed Palo Alto Research Labs, April 1992,

BIB-3

Vita

Second Lieutenant Timothy L. Weide was born November 21, 1956 in Hougton, Texas and
graduated from Trevor G. Browne High School in Phoenix, Arizona in 1977. He enlisted in the

. United States Air Force in August 1983 and completed technical training for computer maintenance
at Keesler AFB, Mississippi in May, 1984. He spent the years from 1984 through 1988 as a c.omputer
maintenance technici'fcm for the Joint Surveillance System, Northwest Air Defense Sector, McChord
AFB, Washington. In January, 1989 he entered the Airmen Education and Commissioning Program
to pursue a Bachelor of Science degrée in Computer Science. He graduated, Summa Cum Laude,
from Ariz.ona State University in May, 1991. In June, 1991, attended Officer Training School at
Lackland AFB, Texas and upon receiving his commission in September, 1991 he entered the Air
Force Institute of Technology at Wright-Patterson AFB, Ohio to pursue a Master of Science degree

in Computer Engineering.

. Permanent address: 255 Morning Sun Dr.
Woodland Park, CO 80863

VITA-1

R

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704.0188

PUpC *anIrt A DUrdea Tor LTS L D e LIN LT AT3IMATICA 5 25UmMateg 13 average ' hour per resporse. nciuding the time 1Or reviewIng 1NStructicns, searcring 2usting data sources,
Jatrernng irz MARtHINING 2ata reeged, 1Ing cCrroleting ang reviewirg the collection of information. Send comments regarding this burden estimate 5t inv Other aspect of this
ceneqt sn o atarmatan, “g tu35sUONs 107 reguang this surcen 10 Washington Headguarters Services, Directorate for intormation Operations anad Reports, 1215 ;etferson
Cavis Fesm s s, Surte V203 arurgeon, LA 22202-4302, 3nd to the Oth e of Management and Budger, Paperwork Reduction Project (0704-0188), Wasmington, 5C 20503.

1. AGENCY USE ONLY {Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1993 Master’s Thesis
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

DEVELOPMENT OF A VISUAL SYSTEM INTERFACE TO
SUPPORT A DOMAIN-ORIENTED APPLICATION

COMPQSITION SYSTEM
6. AUTHOR(S)

Timothy L. Weide, Second Lieutenant, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

‘ 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

| AGENCY REPORT NUMBER
| ASC/RWWW
1 Wright-Patterson AFB, OH 45433-6583

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE S
Approved for public release; distribution unlimited '

J
13. ABSTRACT (Maximum 200 words} . : \\<

This research designed and prototyped a visual system interface to generate, display, and modify domain-oriented FAREN
application specifications. A visual system interface, called the Architect Visual System Interface (AVSI), supple- '
ments a text-based environment, called Architect, previously developed by two other students. Using canonical
formal specifications of domain objects, Architect rapidly composes these specificationsinto a software application
and executes a prototype of that application as a means to demonstrate its correctness before any programming
language specific code is generated. This thesis investigates visual techniques for populating, manipulating,
viewing, and composing these software application specifications within the formal object base scheme required
by Architect. A Visual Specification Language (VSL) was developed to define the visual display characteristics :
of domain objects. AVSI provides automatic diagram layout, and also produces a textual display in a domain- —
specific language. The Software Refinery environment, including its grapiical interface tool INTERVISTA, was .
used to develop techniques for visualizing application data and for manipulating the formal object base. AVSI —
was validated with a well-understood domain, digital logic, and was found to significantly enhance Architect’s -
application composition process.

148, SUBJECT TERMS 15. NUMBER OF PAGES
computers, computer programs, software engineering, visual languages, visual pro- 151

gramming systems, specifications, domain-specific languages, domain modeling, ap- 16. PRICE CODE e
plication composition systems, software architecture models
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION §19. SECURITY CLASSIFICATION |} 20. LIMITATION OF ABSTRACT g /

QOF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL !
NSN 752057 280.5500 Stangard Form 298 \Rev 2-89) e

Drogeripaa 2y NSty 23908 ;
.98.132 /

*\ N : e e i A
, - L P - , . N R AR
. ’ - P N . A ‘ e _
,, , el :
, - . -~ gy . - !
.r . N l. ’
) e S - X E ‘
/ * - N ' : R ¢
N - ' L o . T ’ / e
. o o) !
-
i
. ,
! 7
/

