
AD-A262 489 DTI
SELECTE

APR 5 1993
AFIT/GCS/ENG/93M-05

DEVELOPMENT OF A VISUAL SYSTEM INTERFACE TO

SUPPORT A DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Timothy Lee Weide, B.S.C.S.

Second Lieutenant, USAF

93-06889
March 23, 1993 ,

93 402 04
Approved for public release; distribution unlimited

Reproduced From
Best Available Copy

9oo""2/7

AFIT/GCS/ENG/93M-05

DEVELOPMENT OF A VISUAL SYSTEM INTERFACE TO

SUPPORT A DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM

THESIS AgOT
Timothy Lee Weide

Second Lieutenant, USAF

AFIT/GCS/ENG/93M-05

Azces/on For

NTIS CRA&I
OTIC TAB 0
Unannounced Q
Justification

By_

Distributlon
Availability Codes

Approved for ptiblic release; distribution unlimited
Dt special

Acknowledgements

I wish to express my deep appreciation to my thesis advisor, Major Paul Bailor, who has

given me invalaable guidance and encouragement over the last year-and-a-half. Also. I'd like to

thank my thesis readers, Major David Luginbuhl and Lieutenant Colonel Elton P. Amburn. whose

comments and suggestions helped improved the clarity of this thesis. I owe much gratitude to the

other members of the KBSE group: Brad Mallare, Mary Boom, and especially Cindy Anderson

and Mary Anne Randour, whose research provided a solid foundation for my own work.

I'd like to thank my family, whose unwaivering faith in me has meant so much: my parents.,

Bill and Carol Weide. for their prayerful support; my children. Alicia, Andrea, and Matthew, for

helping me to keep thinigs in perspective; and finally. my wife and best friend, Chris, for all of the

personal sacrifices she has made. She has given me the best years of my life and I dedicate this

thesis to her.

Timothy Lee Weide

.- ii

'\ I.

Table of Contents

Page

Acknowledgements ... ii

List of Figures viii

List of Tables x

Abstract ... xi

introd'iction 1-1

1.1 Background 1-1

1.2 Problem Description 1-4

1.3 Assumptions 1-5

1.4 Scope ... 1-6

1.5 Approach and Sequence of presentation 1-6

II. Literature Review ... 2-1

2.1 Introduction 2-1

2.2 Visual User Interfaces 2-1

2.2.1 Goals 2-1

2.2.2 Visual Interfaces for Knowledge-Based Systems 2-2

2.3 Visual Languages 2-6

2.4 Visual Programming Syst ms 2-6

2.4.1 Program Visualiz tion 2-7

2.4.2 Visual Programmi g 2-8

2.5 Automatic Layout Algorith is 2-9

2.6 Conclusion 2-10

iii

Page

III. Operational Concept for Visual System.. 3-1

3.1 Overview. 3-1

3.2 Visual System Features. 3-3

3.2.1 Visualization. 3-3

3.2.2 Visual Programming. I.... 3-3

3.2.3 Object Attribute Editor. 3-4

3.2.4 Visual specification language. 3-4

3.2.5 Menu system. 3-4

3.2.6 Syntax-directed editing. 3-4

3.3 Visualization Requirements 3-5

3.3.1 Application Editor 3-5

3.3.2 Subsystem Editor.I... 3-5

3.3.3 Technology Base Interface. 3-6

3.3.41 Build Import/Export Areas 3-6

3.3.5 Check Semantics 3-6

3.3.6 Execute 3-6

3.4 Operational Concept. 3-6

3.4.1 Creating an Application. 3-7

3.4.2 Subsystems 3-7

3.4.3 Building Import and Export Areas 3-12

3.4.4 Connecting Import and Export Areas 3-14

3.5 Conclusion.. 3-18

IV. Design and Implementation of the Architect Visual System 4-1

4.1 Introduction. 4-1

4.2 Visual Specification Language (VSL) 4-1

4.2.1 Icon Attributes. 4-2

4.2.2 Edit-Attributes. 4-3

iv

Page

4.2.3 Structure of Visual Specification Objects. 4-3

4.3 Design 4-4

4.3.1 Systenm Structure. 4-4

4.3.2 Application Editor 4-7

4.3.3 Edit Application Update.. 4-12

4.3.4 Editing a Subsystem.. 4-14

4.3.5 Building Import/Export Areas 4-18

4.3.6 Technology Base.. 4-19

4.3.7 Semantic Checks. 4-21

4.3.8 ExecuteI. 4-21

4.4 Implementation. 4-21

4.4.1 REPINE Impact and Influence 4-21

4.4.2 Representing Objects 4-22

4.4.3 Object-Window Relation. 4-24

4.4.4 Mapping Object Sequences to Visual Objects. 4-25

4.5 Summary 4-26

V. Validation and Analysis of the Architect Visual System. 5-1

5.1 Validation Domain. 5-1

5.1.1 Circuits Domain5-1

5.2 Using AVSI 5-2

5.3 Analysis 5-2

5.3.1 The REFINE Environment. 5-3

5.3.2 AVSI and Architect 5-3

5.3.3 Range of Applicability 5-5

5.3.4 Problems Encountered 5-6

5.3.5 AVSI's Shortcomings 5-8

5.4 Summary 5-9

V

Page

VI. Conclusion and Recommendations. 6-i

6.1 Results of This Research. 6-1

6.2 Conclusions 6-2

6.3 Recommendations for Further Research 6-4

6.4 Concluding Remarks. 6-6

Appendix A. Overview of Architect A-1

A.1 Introduction. A-i

A.2 Operational Concept A-2

A.3 General System Concept.. A-4

A.3.1 Overview. A-4

A.3.2 Developing a Formalized Domain Model. A-6

A.3.3 Building A Structured Object Base A-9

A.3.4 Composing Applications. A-12

A.3.5 Extend Technology Base A- 14

A.3.6 Visualization A-14

A.4 Related Research. A-14

A.4.1 Hierarchical Software Systems With Reusable Components A-i15

A.4.2 Automatic Programming Technologies for Avionics Software A-i18

A.4.3 Model-Based Software Development. I.. A-20

A.4.4 Extensible Domain Models A-23

A.5 Specific System Concept. I.... A-23

A.5.1 System Overview. A-24

A.5.2 Software Refinery A-24

A.5.3 Object-Connection-Update Model. A-27

A.6 Conclusion. A-29

vi

Page

Appendix B. Sample Session....................................... B-1

B.1 Starting AVSI....................................... B-i

B.2 Create New Application. B-2

B.3 Edit Application B-3

B.4 Editing a Subsystem. B-6

B.5 Connecting Subsystems' Imports aad Exports B-15

B.6 Semantic Checks. B-20

B.7 Execute Application. B-20

Appendix C. System Files C-i

Appendix D. VSL Specification of Digital Circuits Domain. D-1

D.1 VSL Domain Model D-1

D.2 VSL Grammar. D-2

D.3 VSL Description for the CIRCUITS Domain D-3

Appendix E. REFINE Source Code for AVSi I.. E-i

Bibliography BIB-i

V ita VITA-i

vii

List of Figures

Figure Page

1.1. "Architect System Ove!rview" 1-3

3.1. OCU Subsystem's Visual Representation 3-2

3.2. Tree Diagram of Requirements 3-5

3.3. "Top Level View of Controller's Update Algorithm" 3-8

3.4. Patterns of Control ... 3-9

3.5. Hierarchy of Objects 3-10

3.6. Subsystem Icon Group .. 3-13

3.7. Initial Display of Import/Export Diagram 3-14

3.8. A solid arrow represents an existing connection 3-16

3.9. Dashed arrows indicate potential connections 3-16

4.1. Visual Siecification Object 4-3

4.2. Example Visual Specification Object Description in VSL 4-5

4.3. Visual System Structure. 4-6

4.4. Abstract Syntax Tree for Application 4-8

4.5. Application Defl.ition with Subsystems 4-11

4.6. Application Update Sequence 4-13

4.7. Example Subsystem .. 4-15

I.8. Import and Export Objects with Source and Target Attributes 4-19

Object/Icon Relationship 4-22

4 10. Multiple Object/Icon Relationships 4-24

4. 1. Window/Object Sequence Relationship 4-27

A. Roles ... A-3

A.2. General System Overview A-5

A.3. Domain Model Instantiation A-8

viii

Figure Page

A.4. Combining Plug-Compatible Components A-16

A.5. APTAS A-19

A.6. OCU Subsystem Construc.ion A-22

A.7. Overview of Specific System A-25

B.1. Binary Array Multiplier Schematic Diagram B-1

B.2. AVSI Main Window ... B-2

B.3. Edit-application-objects window B-4

B.4. Edit-application-objects window B-5

B.5. Edit-Update-Algorithm Window with Null statement sequence B-6

B.6. Edit-Update-Algorithm Window with update statementB-7

B.7. Edit-subsystem window .. B-8

B.8. Technology Base Window B-9

B.9. DRIVER Subsystem, with primitive objects and nested subsystem B-11

B.10.Redrawn, scaled DRIVER Subsystem B-12

B.11.Pretty -print of subsystem DRIVER B-12

B.12.Subsystem Icon Groups B-15

B.13.Icon Groups for PrimitivesB-16

B.14.Import/Export Connections for Driver B-18

B.15.Import/Export Connections for BAM B-19

ix

List of Tables

Table Page

A.1. Analogy to Grammar. A-17

AFIT/GCS/L.', AM

Abstract

This research dcsignen ,.nd prototyped a visual system interface to generate. display, and

modify domain-oriented application specifications. A visual system interface, called the Architect

Visual System Interface (4AVSI), supplements a text-based environment, called Architect, previ-

ously developed by two other students. Using canonical formal specifications of domain objects.

Architect'rapidly composes these specifications into a software application ane executes a prototype

of that application as a weans to demonstrate it- correctness before any programming language

specific code is generated. This thesis investigates visual techniques for populating. m-nipulating.

viewing, and composing these software application specifications within the formal object base

scheme required by Architect. A Visual Specification Language ('ISL) was developed to define

the visual display characteristics of domain objects. AVSI ptovides automatic diagram layout. and

also produces a textual display in a domain-specific language. The Software Refinery environment,

including its graphical interface tool INTERVISTA, was used to dev'Iop techniques for visualizing

application data and for manipulating the formal object base. AVSI was validated with a well-

understood domain, digital logic, and was found to significantly enhance Architect's application

composition process.

xi

DEVELOPMENT OF A VISUAL SYSTEM INTERFACE TO

SUPPORT A DOMAIN-ORIENTED APPLICAT1ION

COMPOSITION SYSTEM

L. Introduction

1.1 Background

Thc method used for programming computers is generally a function of the currently avail-

able technologies. We have progressed from programming with punched cards and setting hardware

switches to programming with high-level languages within sophisticated interactive programming

environments. While modern language technology has enabled these languages to provide an in-

creasingly higher level of abstraction,. the increasing size and complexity of the problems we are

asked to solve with computers often results in programs being incomprehensible to any single indi-

vidual. Therefore, the process of developing software applications grows more difficult to manage

as these problems become larger and more complex (8:5-10).

The problenm is often exacerbated by the difficulty of knowledge transfer between the user and

the software engineer. Program specifications are traditionally formulated from informally stated-

system requirements. These requirements are usually stated in a natural language, such as English.

and are frequently supplemented by informal diagrammatic information. The software engineer

must transform this informal information into an unambiguous computer solution. Unfortunately,

iequirements are often incomplete, inconsistent, ambiguous, or poorly communicated, resulting in

computer systems that do not meet the user's expectations or requirements (45:110).

A new approach to software development is currently being researched by the Knowledge

Based Software Engineering (KBSE) research group at the Air Force Institute of Technology

(AFIT). In this approach, a domain-oriented application composition system allows a sophisti-

cated end-user, called an application specialist, to use the bui'ding blocks (or "components") of

his domain to compose his own software applications. It is desirable to enable the application

specialist, who know., the most about the problem to be solved, to encode the solution in a manner

which he easily understands, i.e., the language of his domain. This language may take on various

forms, both textual and visual, and is at a higher level of abstraction than conventional "languages

of computation." A major goal is to allow the application specialist to develop his own application

directly, without being burdened with the excessive details of how to model the problem for the

computer, or by the need to communicate his requirements to a "middleman" (43:4-6).

In a domain-oriented application composition system, the general structure of a software ar-

chitecture, along with the components of the domain to be modeled, are maintained in formal

object base. The domain components are developed by a domain engineer, who is an expert in

modeling the real-world objects in his domain, and formalized by the software engineer. The appli-

cation specialist builds a specification for an application by composing these domain components

according to the domain model defined by the domain engineer and the software engineer (for a

discussion of roles and interactions of these individuals, refer to appendix A). The end product of

this process is an automatically generated software specification, from which target codJ such as

Ada may be produced.

Figure 1.1 shows a simplified conceptual diagram of the prototype domain-oriented appli-

cation generator, called Architect, being researched by the KBSE group at AFIT. The original

implementation of Architect was developed by Capt Cynthia Anderson (2) and Capt Mary Anne

Randour (39). Architect is implemented within the REFINETM wide-spectrum language environ-

ment. The domain model is defined by the body of existing knowledge within the problem domain,

and is further defined by software architecture information from the software architecture model.

The syntax of the domain-specific language is defined by a grammar, whose structure is determined

by the domain model. Application-specific information encoded in this language is parsed by Di-

1-2

S.N

pajt-i Vý ITan

CD

a(H

. 7 7- V

ALECT. a tool that exists in the REFINE environment. DIALECT builds objects in the structured

object base, structuring them according to the object hierarchy defin~ed by the DIALECT domain

model. This information contained within the structured object base is then used by the applica-

tion composer to produce a final software specification. Appendix A gives a more detailed look at

Architect.

A further enhancement to this development model is a visual system. which gives a graphical

representation of the domain-specific language and allows the user to generate, view, and manipulate

application specification information. A visual interface is also useful to the software engineer, who

is given visual access to the information about the software architecture components within the

domain. Shu (43) provides nmotivation behind providing a visual systerm

1. Pictures are more powerful than words as a means of communication. They convey
more meaning in a more concise unit of expression.

2. Pictures aid understanding and remembering.

3. Pictures may provide an incentive for learning to program.

4. Pictures do not have language barriers. When properly designed, the are under-
stood by people regardless of what language they speak. (43:8-9)

The visual representation enhances understanding of the problem being modeled. Producing this

visual interface was the goal of this thesis effort.

1.2 Problem Description

More precisely, the problem addressed was to provide a visual interface for generating, view-

ing, and manipulating domain knowledge and software architecture specifications in a formalized

object base. Thme visual interface was built for creating, viewing, and modifying applications within

the Architect domain-oriented application composition system. The name given to the visual in-

terface was the Architect Visual System Interface, or AVSI. AVSI enhances the following basic

capabilities provided by Architect:

1-4

1. Creating an application. With Architect, application specialists create applications by writing

application specifications in a domain-specific language. The application is built by par~sing

the file containing the application specification. AVSI allows the application specialist to

create an application by direct manipulation of visual objects while transparently generating

the application specification in the domain-specific language.

2. Editing object base. Architect allows the appl ication specialist to interactively edit objects

that reside in the object base. AVSI gives visual support for editing the structure of the

application as well as editing the internal attributes of individual objects in the object base.

3. Viewing an application. The only viewing capability the original implementation of Architect

provides is textual. AVSI provides the application specialist with a graphical view of the

various aspects of an application, such as structure, control flow, and communication paths

between objects. Additionally, the visualization of the information in the object base is

generated automatically, with little or no manual intervention.

4. Establishing Communication links between objects. In Architect, this step is called "prepro-

cessing." Architect queries the user to provide communication paths between objects when

it cannot resolve which objects communicate. AVSI provides visual support for establishing

these connections.

5. Overall control of the Architect system. Architect is controlled by a command line interface.

AVSI provides an integrated environment using windows and menus to allow the application

specialist to perform any function. A general goal for AVSI was to provide an interface that

is intuitive and easy to use.

1.3 Assumptions

Two basic assumptions were made during the research. The first assumption dealt with the

sufficiency of the validation domain, digital logic, which was also used by Anderson and Randour

1-5

for Architect. Though this domain is relatively small, it is well-defined and was assumed sufficient

for demonstrating AVSI's functionality. The second assumption was that the graphics capabilities

provided by the INTERVISTA tool would be powerful enough to develop the visual system.

1.4 Scope

AVSI's main emphasis was on the *'front end" of the application composition process, which

includes generating. viewing, and manipulating an application. Because of time constraints, the

scope was limited:

* AVSI does not provide visual support for two stages of Architect's application composition

process: semantic checks and application execution.

* AVSI only deals with objects' static properties; viewing and manipulating the dynamic be-

havior is beyond the scope of this project, but it will undoubtedly need to be researched in

the future.

1.5 Approach and Sequence of presentation

The following approach was taken to achieve the objectives of this research:

1. A search of current literature provided information concerning visual user interfaces, visual

programming, visual representation of knowledge base information, and screen layout algo-

rithms. Chapter II presents an overview of current literature in these areas.

2. The next step was to assimilate the design of Anderson and Randour's Architect system, and

develop a strategy for visualizing the structure of an application as defined by the Architect

domain model. This strategy required traversing the abstract syntax tree structures in the

object base to retrieve information about the objects and their structure. Additionally, it

required creating visual objects (windows, icons, links, etc.) and associating these visual

1-6

___.._________.______________,___________ 3..

objects to the objects they represent. INTERVISTA was used to create these visual objects in

the REFINE object base. Chapter III gives the operational concept for AVSI.

3. A Visual Specification Language (VSL) was developed to define the domain-specific visual

characteristics of domain objects. DIALECT was used to create the parser for VSL.

4. Techniques were developed for creating and modifying application data contained in the RE-

FINE object base, and for establishing communication links between objects in an application.

An integral part of this approach was the use of the Software Refinery environment. This

environment provided all of the necessary tool support for the research. The REFINE wide

spectrum specification language provided the ability to access the object base. DIALECT was

used to create a parser for the Visual Specification Language. INTERVISTA provided visual

support, including windows, icons, and mouse-sensitive text windows. Chapter IV presents

the design and implementation of AVSI. Chapter V discusses the validation domain used, and

presents an analysis of AVSI. Chapter VI discusses conclusions that may be drawn from this

research and recommendations for future research.

Some additional information concernin' Architect and AVSI is given in several appendices.

Appendix A contains a basic description oflArchitect. Appendix B provides a sample session

with AVSI, wherein an application in the di ital circuits domain is built. Appendix C lists the

files needed for AVSI. Appendix D gives the definition of VSL (its DIALECT domain model and

grammar) and lists the visual specification for the digital circuits domain. Appendix E contains a

listing of the REFINE source code for AVSI.

1-7

."," - '' " ' ' - - L - '

H. Literature Review

2.1 Introduction

The objective of the literature review was to examine current research in the areas of visual

user interfaces, visual languages, visual programming systems (which include program visualization

and visual programming), and algorithms for the automatic generation of diagram layouts. The

review consisted of a "filtering" process, in which information, both general and specific, was

examined to find information useful for developing the Architect Visual System Interface. Some of

the literature deals with the overall goals of a visual interface. Different visualization techniques

for visual programming and program visualization were surveyed, and several examples of visual

interfaces for knowledge-based systems were examined.

2.2 Visual User Interfaces

2.2.1 Goals. Much emphasis has recently been given to human factors in interface design.

The human-machine interaction needs to support clear and efficient communication and "support

the user's tasks, plans, and goals" (31). A number of characteristics of a "good interface" are found

in the literature. In "Visual Interface Design Systems," Huang (21) discusses the criteria of an

effective user interface. He states a vis'tal user interface should:

* Be intuitive o Accommodate a wide range of skills

* Be customizable 9 Be extensible

* Give plenty of feedback * Be predictable

* Be consistent (most important)

These goals were kept in mind during the development of AVSI. Further goals are presented

by Eisenstadt, who in "Visual Knowledge Engineering," gives criteria for a representation that

"provides a good mapping to the way the programmers themselves tend to formulate solutiov.s."

2-1

....

.. f _ -

These criteria are mappability, manipulability, salience, scope, visibility, coupling, navigability,

completeness. and convertibility (17).

2.2.2 Visual Interfaces for Knowuledge-Based Systems. Since Architect is a knowledge-

based system, examples of visual interfaces for similar systems provided insight pertinent for the

development of AVSI. An interface can be considered "intelligent" if "intelligence is embodied in

an underlying knowledge-base (12:404)." This section discusses some examples of systems which

use this approach.

2.2.2.1 Graphical Knowledge-Based Model Editors. One source in particular de-

scribes a system that possesses the qualities desired for AVSI and appears to closely correspond

to Architect. In "Graphical Knowledge-Based Model Editors," Cypher and Stelzner (12) discuss

the graphical representation of information contained within knowledge-based systems. In what

they call a graphical knowledge-based model, domain knowledge is embodied within an underlying

knowledge base, and the graphical interface is a -dumb" interface to an intelligent system. The in-

terface facilitates the visualization and manipulation of complex domains, and thus the objects and

relationships contained within the domain are "evident and manipulable in the graphical display"

(12:404). Cypher and Stelzner describe SimKit, which is a set of tools for building graphical model

editors in a wide range of application domains. With such a graphical model editor, the user can

build knowledge base information by creating icons, moving thera on the screen, and linking them

together with arrows.

The .uthors make a distinction between models, which describe a particular set of objects and

the relations between those objects. and libraries, which contain the generic classes of objects and

relationships. A single library can be used to produce several different models. A model is built with

a domain-specific editor, which is built around the domain-specific information contained within

the library. The informr'tion contained within the library constrains the information that may

be contained within the domain-specific editor. Though library building and maintenance require

2-2

'- -- " , - - - -. . .. '

programming experience, a model is generally built by non-programmers who are considered experts

in their application domain.

A typical model-building session proceeds as follows: First. the user is presented with a

display of icons, each of which represents a domain object contained within the library. The

user then selects icons and places them on the screen. This action results in the creation of

instances of the corresponding objects in the library. Finally, these icons are connected with lines.

which represent relations between objects. The library descriptions of object classes also contain

behavioral descriptions and initial values for object state information, and therefore, the model's

behavior can be simulated once the model has been built.

SimKit has been used by over 100 users for building graphical model editors over a broad range

of application domains. Such applications include factory control systems, battle management, and

construction project management systems (12:408).

A significant correlation exists between SimKit and Architect. and this served as the basis

for a considerable amount of the thought process behind the design of AVSI. SimKit and Architect

are clearly parallel efforts, and it might be useful in future research efforts to consider interfacing

SimKit to Architect. An advantage Architect has over SimKit is its development environment.

The Software Refinery environment allows for very rapid development and provides integrated/

- - -_ support for languages, graphics, and object-base manipulation. AVSI resides in this environment

and retains Architect's capability to express domain objects in a domain-specific language, a notion

that is missing in SimKit.

2.2.2.2 Visual Knowledge Engineering. Another visual "toolkit" for building visual

knowledge-based models is the Knowledge Engineer's Assistant (KEATS) (17). Among the many

tools in the suite are:

. FLIK (Frame Language in Keats), a frame-based know!edge representation language

2-3

* Rule interpreters

e Tables: a spreadsheet-like, table-based interface for data acquisition

* GIS (Graphical Interface System), a "direct manipulation" interface for knowledge bases.

The main emphasis of the KEATS system is to provide a "graphical representation of program

behavior which provides a good mapping to the way the programmers themselves tend to formulate

solutions" (17:1166). The GIS was designed to enable the representation of objects, relations, and

dependencies in a manner similar to drawing on a blackboard. A certain amount of flexibility has

been maintained by allowing the editing of the same knowledge base information by using either

the GIS or a code editor. Variation of the granularity of information is provided by expanding

and collapsing of visual information. Furthermore, simultaneous views are possible. A coarse-
/

grained view, which shows a more global picture, may be viewed in conjunction with a fine-grained

view, which gives a more detailed picture. This article provided a good overview of the types

of information a developer needs to develop an application, and how this information should be

presented.

2.2.2.3 Lockheed's Graphical Development Environment. In another knowledge-

based system, Lockheed's Automatic Programming Technologies for Avionics Software (APTAS)

System (29), an engineer constructs a tracking system by inputting specification data via a "dy-

namic forms interface." When the specifications are complete, an architecture gene ator automat-

ically constructs an architecture from the "tracking taxonomy and coding design kn wledge base"

information. The architecture can then be viewed with the graphical interface whic displays the

architecture in a boxes and arrows format. The display supports the viewing of hiera chical infor-

mation by "zooming in" when an icon is clicked on. The user can edit the architectur by making

changes to its graphical representation.

2-4

j • •• -. . .'\ :tI , " :- . _ • • , "

Part of their Graphic Development Environment, Lockheed's Graphical System Description

Language (48), maps system descriptions to their graphical representations. This language consists

of three parts, the Type Sublanguage (TSL), the Declarative Sublanguage (DSL), and the Visual

Sublanguage (VSL).

The Type sublanguage defines the primitive types. relations, and type classes contained in

a particular domain. This provides templates for instantiations of objects, with the addition of

default attributes.

The Declarative sublanguage is used for system description. Its basic components are scope

objects, declarations, and relations. Scope objects group declarations and relations to define a type.

Declarations are used to name instances of types. Finally, relations declare the named relations

between these instances.

Both the TSL and DSL support embedded help information in their type descriptions. This

help information is textual information to be used while developing applications, and aids the user

by giving information about particular object types.

The Visual sublanguage is used to map DSL objects to their graphical representations. This

mapping is based on the object's class, type, or relation type. This mapping assumes that all

objects of the same type have the same basic look, differing in labeling characteristics. The VSL

associates each type or type class with a specific icon object, which may be simple or complex.

Other information, such as default position, grouping, display depth, and hierarchical information,

is specified by this language.

The Graphical Development Environment, along with Graphical System Description Lan-

guage, provided a good example of a system with some goals similar to those of Architect and

AVSI. The Declarative and Type sublanguages provide an equivalent to Architect's domain model,

and the role of the Visual sublanguage played an important role in defining AVSI's Visual Specifi-

cation Language.

2-5

2.3 Visual Languages

Chang (11) presents a "formal specification of iconic systems using generalized icons." He

provides the fornmal basis for a visual programming system in which each icon possesses both a

physica~l and a logical representation. Icons can be one of several types: elementary, complex,

composite, or structural. He further defines a set of operations for the iconic system. Iconic

sentences can be both syntactically and semantically analyzed by a -visual language compiler."

A visual language requires a defining structure, a grammar. Huang (21) discusses the three

most common forms of specifying grammar systems. These are Backus-Naur, state-transition

diagrams, and object-oriented framework. Huang claims the object-oriented approach offers the

most advantages for user interfaice design. He enumerates the advantages as follows:

1. It not only supports the separation of the interaction between user and application
in a natural way, but it also enhances the development of a direct manipulation
interface.

2. The interactive interface objects can, be constructed quickly by modifying existing
objects. This is a style of programming from example.

3. It can support the construction of multiple interfaces to a given application, which
in turn can be used according to available 1/0 devices or user preferences.

4. It promotes adherence to interface standards by making it easy for interface de-
signers to use code that has already been designed to meet those standards.

5. It enables natural partition of a task to be run on separate processors in distributed
environment. (21:121-122)

Since the Software Refinery is an object-based environment, the object-oriented framework offers

a further advantage in the development of AVSI, which directly uses the structure of Architect's

-~objects in the REFINE objects base.

2.4 Visual Programming Systems

AVSI requires a two-way interaction with the programming system. A distinction can be

made between two directions within the interaction. Program visualization is "the graphical display

of program code or sys'-m documentation," whose goal is to "help programmers form clear and

2-6

correct mental images of a program's structure and function" (10). Visual programming. on the

other hand, allows the user to interactively program using visual information. (22)

2.4.1 Program Visualization. AVSI's development required an answer to the question.

"what kinds of information should be displayed, and how should this information be presented?"

Program visualization can take on any number of forms. In systems such as Brown University's

"program-development system." Pecan (1), several different "views" of a program are provided. In

Pecan, an abstract syntax tree is used to produce multiple concurrent views, such as structured flow

graphs. the program listing, the program's declarations, and symbol table information. This kind of

"multi-media" approach supports a system design which is based on a "unified view of language."

where language is viewed as an integration of comnmunication modes (verbal, textual, etc.). Indeed.

researchers in +he artificial intelligence community have suggested advantages in including verbal,

gestural, and tactile information within communication (33).

Pegasys (Programming Environment for the Graphical Analysis of SYStems) uses formal

graphical information to lepresent the hierarchy of program -entities" such as subprograms, mod-

ules, and data objecL.. !t performs consistency checks among the entities, and aids in the design of

programs by graphically describing the relationships between data structures and algorithms (32).

In his thesis "Graph-Based Visu•dization of Formal Specification and Domain Specific Lan-

guage," Langloss (27) implements a graph-based visual language called Visual Refine. Visual Refine

provides a graphic view of the abstract syntax tree representation of a program written in the RE-

FINE specification language. Each REFINE object and operation is represented by an icon, and the

relationships between objects and operations are shown as connecting lines. Visual Refine is a very

simple system, and requires a great deal of manual intervention. Displaying visual data requires the

user to manually traverse the abstract syntax tree and find applicable REFINE rules to display each

individual node. Once a rule has been applied to a node, an icon is created, which the user then

manually places in the diagram. Though Visual Refine's functionality is very limited, it served as

2-7

a good starting point for the development of AVSI. It also provided an example of a visual system

that used the Software Refinery environment.

2.4.2 Visual Programming. Though systems such as Pegasys and Visual Refine aid the

developer by allowing a visual reprebt atation of a program or program design. they lack the ability

to create or modify a program. However, this ability was a necessary feature for AVSI. Several

systems have been developed (or proposed) which provide this visual progranmming capability.

Arefi (3) proposes a visual, syntax-directed editor for visually editing a program. Such wn

editor requires a visual specification language, which is used to define the syntax and senmantics of a

visual programming language, to produce a syntax-directed editor. Similar to Visual Refine. Arefi's

visual programs are represented as directed graphs. However, a graph-to-program transformation

is also prov;ided. The editor provides a means to edit the graph according to the syntax of the visual

language. Each editing operation represents one or more graph transformation rules supplied by

the language specification.

The notion of using a visual, syntax-directed editor is also discussed by El-Kassas in "Visual

Languages: Their Definition and Applications in System Development (18)." EI-Kassas discusses a

model called an Attribute Icon-replacement Grammar, which "describes the rules for constructing

well-formcd graphs of interconnected icons." In this model, the editor is seen as a "derivation

engine," which is used to create graphs consisting of terminals and non-terminals. The user can .

use the derivation engine to select a non-terminal symbol (a symbol to be replaced) and then select

the production rule to apply to it. El-Kassas asserts that this method is well-suited for creating

new graphs from a starting symbol, as well as modifying partial structures within the graph.

This concept proved to be useful for AVSI, which uses the syntax structure defined by Ar-

chitect's domain model. This domain model explicitly defines how AVSI creates an application's

object structure in the REFINE object base and provides a basis for directing the user through the

object composition process.

\ •2-8

2.4.2.1 Form-Based Dialogue. Though most of the systems examined in this re-

search rely on a "direct manipulation" strategy, i.e., selecting, moving, and linking icons on a

graphical display, another approach offers several advantages. "Form-based" dialogue interfaces

have been used successfully in systems which require complex commands and dathi sets. Shu (43)

cites several examples, such as QBE, a database query language, and FORMANAGER, a system

which allows data definition, entry, updating, and query by completing forms. These systems are

both built on an underlying relational table model (43:239-284). As mentioned previously, the AP-

TAS system (29) relies heavily on a form-based dialogue, and AVSI was designed to take advantage

of this capability to a limited degree.

2.5 Automatic Layout Algorithms

In Visual Refine, Langloss requires a large amotint of manual intervention to correctly dis-

play the graphs corresponding to the abstract syntax tree representation of a REFINE program.

Automating the process requires automatic graph drawing routines. To provide a user-friendly

interface, it is desirable to minimize the amount of user intervention required to display visual

information. In fact, an issue being examined in this thesis research is that of automatically gen-

erating the screen layout. The following sources provided insight into this issue.

Eades and Xuemin (16) examine the criteria and basic steps used to draw a directed graph.

They state three aesthetic criteria. First, arcs pointing upward should be avoided. Second, nodes

should be distributed evenly over the page. Last, there should be as few arc crossings as possible.

The three steps for deriving the graph are: remove cycles from the graph, layer the acyclic graph,

and finally position each node in each layer of the proper layered network. This algorithm is a

generalization of several other graph-drawing algorthms.

Protsko, in "Toward the Automatic Generation of Software Diagrams (38)," discusses the

criteria for drawing data flow diagrams, and spells out the placement and routing strategies in a

2-9

S, '" / ,./ 7•/ "

SI , ,. 7- ,/

*system called MODRIAN. Other issues such as readability, shape, hierarchy. and compaction are

examined in "Automatic Graph Drawing and Readability of Diagrams. (47)"

2.6 Conclusion

Current research provides an wide range of information on visual programming systems and

visualization techniques. There seems to be a general lack of consensus on which techniques are

the most valuable (43:9-10), but much was learned by examining the different approaches. AVSI

was designed to take advantage of. and synthesize, the features of several example systems. Such

features include direct manipulation, form-based interaction, syntax directed editing, and visual

specification languages.

A

2.10

III. Operational Concept for Visual System

3.1 Overview

The Architect Visual System Interface (AVSI) is a visual system for the domain-oriented

application composition system developed by Anderson (2) and Randour (39) called Architect.

Appendix A contains a high-level overview of Architect. AVSI was developed along with. but

a few months behind, Architect. AVSI directly uses the object structure defined by Architect's

domain model but uses INTERVISTA'S graphics capabilities to visualize and manipulate the formal

object base. Anderson and Randour, in the early stages of Architect's development, used a very

simple artificial domain that used simple primitives such as -widgets" and "gadgets," which have

no counterparts in any "real" domain. This allowed them to avoid thinking in the terms of any

specific domain. To validate their system, they moved to the digital logic (or "circuits") domain.

AVSI's development and validation used these same domains.

The motivation behind providing a visual system for Architect was to give the application

specialist, as well as the software, engineer, an environment which is intuitive and as easy to use

as possible. Instead of using a purely visual system, textual information was incorporated in

some places for easier understanding of the underlying application. In this manner, textual and

visual data are combined synergistically (33) to represent the information the user needs to develop

an application. AVSI provides a considerable amount of functionality without using extremely

sophisticated graphics. All of its visual functions rely exclusively on the capabilities provided

by INTERVISTA. While lacking eatures such as complex icons and colors, INTERVISTA gives an

easy way to access the objects in the REFINE object base. Since AVSI is intended as a proof-of-

concept, rather than an industri strength tool, INTERVISTA was sufficiently powerful to provide

the capability for program visualiz tion as well as for visual programming. Much of INTERVISTA's

power lies in its ability to map vis tal objects (icons, windows, etc.) to the logical objects in the

REFINE object base. Moreover, it allows for mapping in the other direction, i.e. from the visual

3-1

-, ." ,,- . ,/. .. I,/ -.A

• / ,", ", , .• .: -'" , 7".. Z " ..

objects to the logical objects. Finally, it provides high-level graphical functions, thus avoiding many

low-level programming issues.

AVSI serves as the interface between the user (the application specialist or software engineer)

and Architect. The underlying system, as developed by Anderson and Randour. was designed

according to the Software Engineering Institute's Object-Connection-Update (OCU) model (28).

According to the OCU model, an application is composed of. and ultimately implemented

by, subsystems. The OCU representation of a subsystem is shown in Figure 3.1. A subsystem

consists of four basic parts: the controller, the objects, the import area, and the export area. The

controller, which is the locus of control for the subsystem is "connected to" the objects that it

controls. The collection of these "controllees" may consist of primitive objects or other subsystems,

which themselves control other objects. The import and export areas provide the communication

links between subsystems.

import Ae _______

"Export Area

Controller

Objects

Figure 3.1. OCU Subsystem's Visual Representation

3-2

-- " A... .i.• (' -- >

The OCU's conventions for visual symbols (icons) were also followed. where appropriate. in

AVSI. The features, requirements, and the operational concept of the AVSI are described in the

following sections.

3.2 Visual System Features

3.2.1 Visualization. AVSI furnishes the application specialist with a graphical view of

the application as it is being developed:

1. AVSI provides a facility for visually composing formally defined, pre-existing components con-

tained within the tech~nology base, and it gives a graphical view of the structu red object base

a? well as the application software architecture generated to satisfy the system requirements.

For example, AVSI provides visual information about the hierarchica; relationships between

an application, its subsystems, and primitive objects.

2. Another view of the application shows the communication links between import and export

objects in the import and export areas of the subsystems.

3. The user is provided with concurrent multiple views of system information wherever possi-

ble. For instance, graphical information about a subsystem in the form of diagrams, showing

objects and relationships, may be displayed along with textual information about object

attributes in tabular form. These displays may be further supplemented by text-based syn-

tactical information, using the grammar which defines the domain objects.

3.2.2 Visual Programming. A further feature of AVSI is its visual programming capability.

The application specialist and software engineer are able to manipulate the structured object base

by direct manipulation of icons and links. Creating an icon according to predefined rules results

in the creation of an instance of a corresponding dlomain object in the structured object base.

3-3

Connecting one icon to another by creating and placing a link between them results in the creation

of a logical link between the corresponding objects in the structured object base.

*3.2.3 Object Attribute Editor. Whenever an object is thus created, further information

is usually required. In general, this information (attributes, state variables, and algorithms, etc.)

already exists within the object because default values are assigned whenever an object instance is

created. If it does not, the user may interactively enter this information with an object attribute

editor. The object attribute editor allows the applicati, specialist to view and modify the internal

attributes of objects contained in the structured object base..

3.2.4 Visual specification language. The visual representation of each type of primitive

domain object must be defined prior to creating an application within that domain. Information

such as icon type, size, and shape must be declared before a graphical representation can be

presented for a primitive object. To make this information easy to provide, a visual specification

language capability such as Lockheed's Graphical System Description Language (48) affords a

grammar-based specification method which is relatively easy to use, easy to modify, and which

puts this information in a standard format for wide applicability across domains.

8.2.5 Menu system. The menu system provides the user a way to enter commands to the

application generator. Depending* on the context, possible choices of commands are enumerated

in the menu format. Such commands invoke parsing of text files, editing objects, semantic check-

ing, and execution. A main control panel window contains "'buttons" for the major application

composition functions.

8.2.6 Syntaxr-directed editing. The visual editing capability provided by AVSI augments

Architect's previous method of parsing text files to build an application in the REFINE object base.

AVSI's visual editing of the application follows the syntax of the same grammar used by the parser.

Thus AVSI provides syntax-directed editing which guides the user in building correct applications.

3-4

Visual System I

Apoication Subsystem \ 1,
Editor Editor Execute

/ t Semantrbc

/\ Technology
BuiA

Create i View/Edit I ' Basetrfcrt/
Appican iction Inte • Areas

Cral View/Edit
Sureytem Subsystem

Figure 3.2. Tree Diagram of Requirements

3.3 Visualization Requirements

Since AVSI's purpose was to be an interface for Architect, its requirements centered around

the basic capabilities provided by Architect. Figure 3.2 shows a tree diagram for its requirements.

Each of the requirements is discussed in more detail below, and an operational concept of a system

that meets these requirements is provided in section 3.4.

3.3.1 Application Editor. The application editor must provide the ability to view, create,

and edit an application: Creating an application builds the basic structure required to generate

an application specification. It is done either by parsing a text file or interactively with the visual

system. Viewing and editing an application is done by displaying the application and allowing

direct manipulation of the display.

3.3.2 Subsystem Editor. The subsystem editor must provide a mechanism for creating,

viewing and editing subsystems, including all objects from which the subsystems are composed.

3-5

• -'.,V

3.3.3 Technologyi Base Interface. The technology base interface must provide the ability

- to retrieve and store dom.-.in objects in the technology base. These objects include primitive objects,

generics, and subsystems built and stored in previous sessions.

3.3.4 Build Import/Export Areas. AVSI must provide a method of viewing and editing

- - subsystems' import and export areas, and the connections between import and export objects.

3.3.5 Check Semantics. Though no visual support is provided, an interface is provided

to call Architect's semantic checking routines.

3.3.6 Execute. Though no visual support is provided, an interface is provided to call

- Architect's application execution function.

* 3.4 Operational Concept

Applications are generated by populating the structured object base with instances of domain

objects and composing them according to predefined system composition rules. The application

- specialist begins this process by creating a new application which is either built "from scratch" or

is parsed from a text file containing a descriptio'n of an application. The user adds new subsystem

* objects or primitive-objects to the application in the same manner, either by creating new object

instances or by using "saved" objects from the technology base. The saved objects were previously

saved as text files and are parsed into the object base.

The subsystem editor allows the user to further define a subsystem by adding controllees,

which may either be subsystems or primitives. The structure of the subsystem and its controllee

objects are viewed and edited with the subsystem editor. The attributes of any object may be

viewed and edited with the object attribute editor.

The communication links between the subsystem-objects must also be-defined. Once the

subsystems are all created and fully defined, the application specialist issues a command to the

3-6

applicaLion generator to ascert. n the correctness of the specification by performing semantic checks

on the structured object base. Should any semantic errors exist in the specification, the application

specialist may correct these errors by editing the objects in the structured object base. When

the specification is error-free, an "execute" command may be issued to observe system behavior.

Finally, a command may be issued to generate a formal specification suitable for code synthesis.

The following sections provide an operational concept for the Architect Visual System Inter-

face. Where there are alternative approaches to a step in the process, the different approaches are

discussed separately.

3.4.1 Creating an Application. The first step in creating a new application is to select the

application domain. AVSI simply lists the possible domains in a multiple-item menu and prompts

the user to make a choice.

There are two basic ways to create a new application:

1. Parse Text File Based on the chosen domain, the user chooses from existing application

definitions written in the appropriate domain-specific language. Upon selection, the file is

parsed into the structured object base. This text file may either be a hand-coded text file,

containing an application definition, or a saved application, which is a system-generated text

file containing an application definition previously contained within the structured object

base. A saved application contains additional inf ~rmation about the communication links

between the application's subsystems. These two file types are essentially the same, and the

steps required for parsing are identical.

2. Create Application To create an application "from scratch" the user is only asked to provide

an name for the new application. AVSI creates the basic application structure to which new

subsystems and primitives can be 0ubsequently added.

3.4.2 Subsystems. AVSI provides the ability to view, build, and edit subsystems.

3-7

/~ ~~~~ /. -. _ _ V/

st -- Update

//

i Ifsatmn 'Whil

Figure 3.3. "Top Level View of Controller's Update Algorithm"

3.4.2.1 Viewing a Subsystem. A subsystem may be viewed either textually or

graphically. The textual representation is merely a "pretty-printed" view of the subsystem in the

domain-specific language for the selected domain. The graphical view of the subsystem consists of

a diagrammatic view, consisting of icons and links.

"The OCU representation of a subsystem as shown in Figure 3.1 is the basic "top-level" visual

N representation of a single subsystem (28). The subsystem editor displays a similar diagram for a

subsystem. This top-level representation may be expanded by examining any of its components.

The user examines these components by clicking on the appropriate icon. By expanding the view of

the controller, the user may view the controller's update algorithm. This algorithm can be viewed

in its textual form, as specified by the grammar for the specific domain, for example,

Update(Obj-1);

It <condition>
then Update(Obj-3) ;

Else Update(Obj-2);

Update(Obj-2);

While <Condition>
Update(Obj-1);

Alternatively, a graphical representation may be viewed, as in Figure 3.3. The algorithm

is represented as a directed graph, which shows the control structure of the algorithm. Different

configurations of icons and directed arrows are used to show various patterns of control. For

example, graphs depicting sequential, iteration, and branch on condition patterns of control are

3-8

• " -• * - -"" . ". .. .,,: -I

.,- < 7.."": : . : ./"" < :l

SCoondition

" 10- sequence of statements

false: /

AN / truesequence of statements..."""•" 1
sucefstetsequence of statements

Branch on Condition Iterative

Sequential

Figure 3.4. Patterns of Control

shown in Figure 3.4. An If statement is represented as a single icon, which may be expanded to

show its components: the condition, the then-part, and the optional else-part. The rondition may

"then be expanded to show an expression tree. The then-part and else-part are statement sequences

which may also be expanded. Similarly, a while statement's icon may be expanded to show its

components: the condition and the while part.

A new statement is added to a statement sequence by inserting an icon which represents the

statement type, xvhicie may be an update-call statement, an if-statement, or a while-statement.

Additionally, a statemrent is removed from a statement sequence by deleting its icon.

The subsystem's objects, which are represented as a single icon in the top-level view of

the subsystem, can be expanded to show a hierarchical view of the entire collection of objects.

Since some of a subsystem's controllees may be subsystems themselves, this hierarchy of objects is

represented visually as a tree structure with the top-level subsystem as its root, as in Figure 3.5.

Each icon is labeled with the name of its object class along with the name of the object instance.

3-9

o; i i " " ' ' " "

- -

Pub•yswto-Otj

Subeyet..n-1

Subystwn-Otbj PrIMItive.A-Obi

Subsystent-2 AOj

Pdmftv~k--0bJPrIMfI"Ves.O61

. C-01 8--ObJ-1

Figure 3.5. Hierarchy of Objects

The visual attributes of the icon used to represent each primitive object are defined by the Visual

Specification Language for that object's domain.

The import and export areas may also be expanded to view their import and export objects.

AVSI displays this information in a read-only text window.

3.4.2.2 Building a Subsystem. Three different methods can be used to put a sub-

system in the structured object base. These methods are: selecting a pre-defined subsystem from

the technology base, creating a generic instance, and building a new subsystem "from scratch" by

direct-manipulation of icons and links.

A subsystem which has been previously built and saved in the technology base may be selected

from the technology base for inclusion in an application. This action is performed by selecting a

subsystem from the "Technology Base Window." If the saved subsystem contains controllee objects

(primitive-objects or other subsystem-objects) these objects and their icons are also created and

added to the application and its visual display. AVSI creates an icon for the retrieved subsystem

3-10

II •

and allows the user to place the icon in the diagram window and link it to the icon that represents

its controlling subsystem or application.

A new subsystem-object may also be created from any generic object template eidsting in the

technology base. The generic template contains a basic subsystem definition, with "placcholders"

for which primitive objects must be provided. An icon representing the generic instance is placed in

the current edit-subsystem-objects or edit-application-objects window. T e user links this icon to

its controlling subsystem (or application object). Finally, the user must create a primitive-object

and supply a name for each of the "placeholders" defined in the generic template. Finally, the icon

for each of these primitives must be linked to the generic-instance's icon. Architect then converts

the generic instance to an actual subsystem-object, whereupon the generic-instance-icon is replaced

by a subsystem icon.

A new .absystem may be built by directly manipulating icons and links which represent its

parts. To build a new subsystem, the user follows these steps:

1. Create a subsystem-icon within either the edit subsystem-objects window or the edit application-

objects window. A new subsystem-object is created and added to the application.

2. Link the subsystem-icon to its controller. The subsystem's controller may be either the

application-object or another subsystem-object.

3. Choose and place contrllee objects for the subsystem. These objects are either primitive

objects or other subs3 stems. Primitive objects are selected from the Technology Base Win-

dow. The primitive objects contained within the Technology Base Window are the objects

which are legal for the currently chosen domain. Each object selected is placed in the edit

subsystem objects window or the edit application-objects window by dragging its icon to an

appropriate position.

3-11

4. Fill in information required to complete definitions of the objects. Primitive objects' at-

tributes and their default values are displayed in a text window. These values may be modified

using the attribute editor.

5. Create the update algorithm for each controller. For controllers, update algorithms are given

by either writing in the surface syntax of the domain-specific language, or by constructing

directed graphs via a direct manipulation scheme similar to that used to construct subsystems.

i.e. placing icons and links.

6. Place a link between each icon and its parent controller's icon. This link is represented as an

arrow, pointing from the controller to controllee.

3.4.2.3 Editing a Subsystem. Once a subsystem has been loaded or built, AVSI

allows the user to modify it. The methods for editing a subsystem ale as follows:

1. Changing the structure or configuration of the subsystem. This is done by direct-manipulation

of icons and links. Icons and links may be created, deleted, or moved. Creating an icon

requires the same steps as those outlined above in "building subsystems."

2. Editing an object's attributes. An attribute editor presents a list of an object's attributes

and allows the user to interactively change their values.

3.4.3 Building Import and Export Areas. According to the OCU model, the communica-

tion links between objects exist via the import and export objects contained within subsystems'

import and export areas. Architect may be able to infer what some of the links are, using the data

type of the import and export objects. However, when ambiguity exists, for example when there

exists more than one possible source for a given import object, the application specialist must tell

Architect which source is to be used. This is done by manually connecting import and export areas.

To connect the import and export areas, the application specialist begins by making the connec-

tions between the objects within each subsystem. These links are internal to the subsystem, and

3-12

I./

// / • /
•I I

(import) Subsystem Exportý

Figure 3.6. Subsystem Icon Group

are established by connecting objects within the subsystem with arrows, pointing from export area

(to import area. Finally, the external links, those between subsystemis, are established. Similarly,

5 these links are made by connecting subsystem icons with arrows.

To display and build the application's import and export arcas, the user clicks on the "Build

Import and Export Areas" button on the main control panel window. A new window, entitled

"Imports/Exports" will open. This window displays an icon group for each of the application's

subsystems. The subsystem icon group used to display and connect subsystems' import and export

areas is composed of three sub-icons, as shown in Figure 3.6.

1. Subs ystem-icon This is the main icon of the icon group, and is represented as a rectangle.

This icon is labeled with the Subsystem's name. If this is a "nested" subsystem, the parent

subsystem is included (in parentheses, beneath the subsystem name) in the subsystem's label.

Clicking on this icon will allow the user to either interactively move the ic on group or to invoke

the Subsystem Editor.

2. Import-icon This is represented as a circle, attached to the left hand side of the Subsystem-

icon. This icon is labeled, "Imp." Clicking on this icon results in one of two actions, depending

on the particular sequence of events in the editing process. These actions are discussed in the

next section.

3. Export-icon This is represented as a circle, attached to the righit hand side of the Subsystem-

icon. This icon is labeled, "Exp." This icon is similar in function to the import-icon.

3-13

-,, ,,c*: / ! / .I. ' • ", ,/

-l /:. ... " • .

'72r

Architect's preprocessing facility builds the import and export areas for each subsystem and

establishes connections between whatever import and export areas it can. If an import object

can receive data from more than one export object, the user is required to make the connection

manually to one or more of the export objects. If an import object is connected to multiple export

C.,jects, Architect arbitrarily selects one of the export objects from which to receive its data.

If each of the import objects within a subsystem are connected to at least one export object,

then the subsystem icon's import-icon will be displayed in reverse-video. Similarly, if each of the

"export objects within a subsystem are connected to at least one import object, then the subsystem

icon's export-icon is shown in reverse-video. No connections are shown on the display initially.

Figure 3.7 illustrates the initial display.

S"subsystem-Obj
(m uye Subsystem-1

J/!t

/Subsystem-3tm

S/ Subsystem-Obj

ImP Subsystem-2 Exp
/ (Subsystem-I)

Figure 3.7. Initial Display of Import/Export Diagram

3..44 Connecting Import and Export Areas. The connection between import and export

objects may be made in either direction. If a subsystem's import area is chosen first, then for each

import object in the import area, export objects may be chosen. Conversely, if the export area is

3-14

-- //J . ./ .

chosen first, then for each export object in the export area, import objects may be chosen. Each

method is described in the following sections.

3.4.4.1 Selecting Export Objects for an Import Area. Clicking on a subsystem's

import-icon at this point will result in two display actions. First, a window will open containing

textual information about the subsystem's import area. This information is comprised of the

following information:

* Import Name This is the name of the import object, and is not necessarily unique. Thus

this name may be duplicated in the list of import objects.

Import Consumer This is the name of the consumer object for the import data. Including

this name in the list is necessary for distinguishing between import objects which share the

same import name.

* Import Category This identifies the data type of the import object.

* Source This shows information about the export object(s) connected to this import object.

A second display action is performed in conjunction with the above. If one or more of the

import objects within the subsystem are connected to an export object, a solid arrow is displayed

between this subsystem's import-icon, and the export-icon of the subsystem which contains the

export object (Refer to Figure 3.8).

An import object is selected from the import area by clicking oil its entry in the import-

area text window. The selected import object's entry in the text window is displayed in reverse

video. Once an import object is thus selected, the solid arrows disappear. Dashed arrows are now

displayed, showing the subsystem export areas which contain candidate export objects (Refer to

Figure 3.9). Clicking on a subsystem's export-icon will open a textual window for the corresponding

export area. This text window is similar to the import area's text window, with minor differences

in the field names. Each export object in the export area is listed in the window, and clicking on an

A //

.~Subsystem-Obj i
Imp) S Iubsystem-i1 Ep

Subsystem-Obj
(ip Subsystem-3 Exp)
~'(Subsystem-i)

Subsystem-Obi

(IMP Subsystem-2 EXP)
(Subsystem-i)

Figure 3.8. 'A solid arrow represents an existing connection

C Subsystem-Obj

Inni(Subsystemmi) ExpP

Imp Suubyyttm-- bi

(Subsystem-i))

Figure 3.9. Dashed arrows indicate potential connections

3-16

entry will select the corresponding export area to be used as the source for the previously selected

import area. Both the import-area text window and the export-area text window will be updated

to reflect the change.

With each connection made, if the change results in the completion of any import or export

area's connections, the corresponding icon will be displayed in reverse-video. The user is not

required to define the connection for all of the import-objects in the import area at this time. If

no import area is currently selected in the import-area text window, a new import area may be

chosen by clicking on any subsystem icon's import-icon. This will cause the previous import-area

text window to disappear, and a new one will be opened for the selected import-area. Additionally,

the dashed-lines will disappear, with new ones appearing for the new import-area.

3.4.4.2 Selecting Import Objects for an Export Area. The process of selecting im-

port objects for an export area is similarly described. If no import or export object is currently

selected, clicking on a subsystem's export-icon will cause a window to open which contains textual

information about the subsystem's export area. This information is compribed of the followng

information:

e Export Name This is the name of the export object, and is not necessarily unique. Thus

this name may be duplicated in the list of export objects.

* Export Producer This is the name of the producer object for the export data. Including this

name in the list is necessary for distinguishing between import objects which share a common

name.

* Export Category This identifies the data type of the export object.

* Target This identifies the import object(s) connected to this export object.

The user's interaction is the same as in the above section. except that the connections are

made in the other direction. The arrows, both solid and dashed, now point from a single export-

3-17

z<

area to mItiple import areas. An export-object is first selected, the export-object is highlighted

in the export-area textual window, and dashed arrows point to the potential targets. An import

area is selected by clicking on a subsystem's import-icon. An import-area text window opens and

the user selects an import object.

3.5 Conclusion

AVSI is required to provide visual support for the application composition activities of the

Architect system. This visual support provides methods for viewing and manipulating the vari-

ous parts of an application, making the application composition process easier and more intuitive.

The operational concept presented in this chapter demonstrates how AVSI meets the stated re-

quirements. AVSI generates application specifications by populating the structured object base

with instances of domain objects using the visual techniques supplied by the application editor

and the subsystem editor. The technology base interface provides access to existing components

within a domain, and the Visual Specification Language defines the domain-specific visual infor-

mation required to display domain objects. AVSI allows the user to edit domain objects, make

communication links between subsystems, and provides a command interface for semantic checking

and application execution. The following chapters provide information on the design, implemen-

A ;tation, and validation of AVSI. Additionally, Appendix B provides a sample session of creating an

application.

3-18

,. ,. . . • , .- ' ;.-- ' ' • ,' . . : , • I " ' ,-- " -' . . ,-

[-•.,/ "I I "'- ;, " ',, ,J - ,-4- - . •'."-X;\ ,

IV. Design and Implementation of the Architect Visual System

4.1 Introduction

This chapter describes the design and implementation of the Architect Visual System Interface

(AVSI). The first section discusses the Visual Specification Language (VSL). Subsequent sections

present the design of AVSI. Finally, details are provided concerning the AVSI implementation in

the Software Refinery environment. As mentioned in the previous chapter, AVSI provides a visual

environment for Architect. devised by Capt Cynthia Anderson (2) and Capt Mary Anne Randour

(39). A high-level overview of Architect is provided in appendix A. The functionality of the system

devised by Anderson and Randour has been preserved in AVSI.

4.2 Visual Specification Language (VSL)

A central goal throughout the development of Architect was to maintain domain-independence.

The system should require no code modification in switching from one domain to another. Rather,

it is desirable to allow domain-specific information to be represented in a standard format which

can be "plugged into" the system for each domain without requiring any subsequent changes to

the basic system. The Visual Specification Language (VSL) provides a means of encapsulating

the information required by the visual system for each individual domain. VSL defines the visual

representation for each primitive, and provides object attribute information for use by the attribute

editor. This domain-specific information, written in VSL, is easily modified; the software engineer

or application specialist may make changes to the domain objects' visual representation or attribute

information without modifying the Architect software system or AVSI.

The grammar and domain model for the Visual Specification Language (VSL) were written

in the REFINE language. This grammar is used by the DIALECT tool to create a parser to read

VSL descriptions for the primitive-objects contained within a domain. DIALECT's default lexical

4-1

/... . - -/ . •, --. .•> i .- ,: ..- •• • . . .

23: "" : " '" ' " ' '" " 7 "'" '" ,"

:, • .• ' >7~ "/. 5 /: ,"/ •- ! - . -,..

: -__.,.,,/- . - -- " -_ _ -. .,.

analyzer was used for this parser since it provided the functionality required by VSL. VSL currently

provides two basic types of information for the visual system: icon-attributes and edit-attributes.

4.2.1 Icon Attributes. The iconic representation of each instance of an domain primitive's

object class is defined using the Icon-Attribute clause of VSL. INTERVISTA, the tool used for creating

the visual system. provides a very limited capability for defining icons. Only four basic icon shapes

are allowed. Icons using these basic shapes may be "customized" by changing their size or distorting

"their basic shape by changing the height-width ratio. If an icon attribute is omitted in the icon-

attribute sequence, the default value (defined in the domain model) for that attribute is used. The

attributes may be entered in any order. If an attribute is listed more than once, the last occurrence

will be used. The allowable icon attributes for inclusion in an Icon-Attribute clause are:

* Active? If true, then the icon will be displayed. If false, the icon and all its links still exist in

the system, but are not displayed in any window. The default value for Active? is true.

* Icon-Type Legal values are BOX, DIAMOND, ELLIPSE, and TEXT. An icon of type text

has only its label displayed. The default value of Icon-Type is BOX.

* Size-Factor The size-factor is a positive real number which specifies the size of the icon. The

default value is 1.0. Using a smaller number will decrease the size of the icon, and using a

larger number will increase the size of the icon.

* Height- Width-Ratio The Height-Width-Ratio is a positive real Umber which controls the

proportions of the icon. The default value is 1.0, which results ixl the width being equal to

the height. Using a smaller number decreases the icon's width, w ile using a larger number

increases its width. The icon's height is not affected.

* Label-Function The Label-Function is a symbol which specifies t e name of the labeling

function used to create the icon's label. The default value is a make-object-label, which

displays the name of the object class followed by the name of the object instance.

4-2

/ I

Visual
Specification
Object

b --. ObObjects

Figure 4.1. Visual Specification Object

* Mouse-Sensitive?. Controls the mouse sensitivity of the icon. If true, then the icor is mouse

sensitive; the icon will be highlighted when the mouse cursor passes over it and a mouse-

handler will be invoked when the icon is "clicked on." The default value is true.

4.2.2 Edit-Attributes. Each primitive-object class' definition includes attributes which

the user may want to (or need to) edit. The domain model for each object class contains these

definitions and assigns default values for these attributes whenever an object instance is created.

The edit-attribute clause in VSL specifies which of these attributes are in fact editable, and tells

the visual system the data type of each of these attributes.

4.2.3 Structure of Visual Specification Objects. For each domain, a visual specification file

is parsed by DIALECT. This creates a Visual Specification Object (VSO) abstract syntax tree in the

REFINE object base. The structure of the VSO is shown in figure 4.1. Each VSO has multiple Class

Specification Objects, one for each object class type within the domain. Each Class Specification

4-3

/

Object has two parts: its Icon Attributes, which is a sequence of Icon Attribute Objects, and its

Edit Attributes. The visual system extracts information from the VSO whenever an icon for a

primitive-object is created, or when the attribute editor is invoked. '•igure 4.2 shows an example

Visual Specification Object definition in VSL

VSL's grammar is relatively simple, partially due to the limited availability of icon definition

provided by INTERVISTA. The grammar may be extended however, to incorporate complex icons

and nested icons as in Lockheed's Graphical Specification Design Language (48).

4.3 Design

The design of AVSI is directly tied to Anderson's and Randour's domain model, which defines

/ - the structure of an application's abstract syntax tree in the REFINE object base. The syntax is

defined by their OCU-grammar, which is inherited by all domain-grammars. Therefore the same

basic structure is used across all domains. AVSI builds applications according to this structure, di-

rectly manipulating the application's abstract syntax tree in the structured object base. Therefore,

the residtant abstract syntax tree is identical to that created by parsing an application definition

from a text file.
'-.'

4.8.1 System Structure. The structure of the visual system is shown in figure 4.3. The

top level function, AVSI, ties together all of the subordinate functions necessary to compose a

software application. It simply provides a button panel in the main window which gives choices

for the major application-building activities specified by the requirements discussed in the previous

chapter. The main window also contains a text window to output messages from the system. These

messages are -enerally error messages or instructions to the user.

* ,.AVSI is a windows-based system. Several windows may be active simultaneously, and thus

the user may be engaged in multiple concurrent stages of the application composition process.

For example, an application is composed of subsystems, which in turn are composed of primitive-

4-4

/.. 1.. --- S " " " ' .. .' I .. ,- ; * - . . "
" • - "..: ... -- i . /. • ' - \ ' - .LA

Visual Specs for TEST-DOMAIN are

attributes for PRIMITIVE-1 are
Icon :

icon-type = ellipse;
active? = true;
size-factor = 1.1;
height-width-ratio = 1.0;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true

Edit
"name : symbol;
attribute-1 integer;
attribute-2 symbol;
attribute-3 boolean

end;

attributes for PRIMITIVE-2 are
Icon :

icon-type = box;
A active? = false;

size-factor = 1.1;

height-width-ratio = 0.95;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true

Edit:
name : symbol
attribute-11 : real;

S/"attribute-12 : symbol;
end;

end

Figure 4.2. Example Visual Specification Object Description in VSL

4

,f--

--

* .JI -.t

.4] yse

-Ef

SMDb ~b

Apk'EdE Iwf
)f

Appiian ~ 5~9Qfl ppucflti asss usse jsse

/Figure 4.3. Visual System Structure

4-6

I,

objects, or possibly even other subsystems. It is possible for the user to switch from editing a

subsystem to editing the application at a higher level by simply switching to a different window.

In this sense, the system is event-driven. By clicking the mouse on an object within a window,

the user invokes that window's mouse handler, which in turn invokes some function that has been

previously defined for the object that was clicked on. This provides a certain amount of flexibility in

that the user is not forced to follow a completely rigid sequence of steps to complete an application

definition. However, AVSI maintains consistency because the user is constrained by the syntax

imposed by Architect's domain model and grammar. The user is not allowed to construct an

application definition that is not syntactically correct.

4.3.2 Application Editor. The application editor allows the user to take muliple ap-

proaches to building an applicahion. First, an application may be built "from scratch." Alter-

natively, an application may be parsed from a text file which contains an application definition

written in the domain-specific language for the given domain. This file is either hand-coded or

automatically generated by the system during a previous session. An application may either be

built "from scratch," or by parsing a text file containing an application definition. Either method

builds the same type of application definition structure in the structured object base.

4.3.2.1 Create New Application. Create-Application first sets the context of the

system by prompting the user to choose a domain. The user is given a choice of domains based on

the domains it "knows" about, i.e. those domains for which Visual Specification files are currently

loaded into the system. AVSI creates and names the instances of the objects required for a basic

application. The user will further define the application in later steps. Creating a new application

is composed of three steps:

1. Create application-definition-object The application-definition object is a structure that "holds

together" the entire application. It is the topmost ancestor of every object that exists in

4-7

Application-Definition
Object

SpecoPats

Application Object

Figure 4.4. Abstract Syntax Tree for Application

the application. This provides the ability to save (and later restore) an application using

DIALECT.

2. Create application-object The application-object is the application executive according to the

current implementation of Architect. It may be thought of as the highest-level subsystem in

the application. The application-object is placed under the application-definition-object in

the application definition. Figure 4.4 shows the abstract syntax tree created by this process.

3. Set domain context The user chooses, from a menu listing all available domains, the domain

for the application. The list of available domains is the set of domains for which Visual

Specification Objects exist in the structured object base; thus, the VSL file for the desired

domain must be parsed before building the application. Additionally, the grammar for the

chosen domain must be loaded prior to this step.

4.3.2.2 Parse Application. The Parse Application function uses the DIALECT tool to

parse a text file containing an application definition into the REFINE object base using the domain-

specific grammar already defined for that application's domain. The resultant abstract syntax

4t-8

tree representation of the application is identical to one created by AVS!'s direct manipulation

techniques.

Parsing an application definition foin a text file is straightforward. First, the user sets the

domain context; this selects the grammar used by DIALECT to parse the text file. Next. the user

interactively selects the file to be parsed. If the parse is successful. DIALECT builds the abstract

syntax tree for the application definition. If the parse is unsuccessful, the user is notified in the

message window.

4.3.2.3 Load Saved Application. A variant of parsing an application definition is

loading a saved application, and the difference between the two is subtle. A "saved application" is

a system-generated application definition text file (written in the domain-specific language) written

during a previous session. It generally contains extra information about the import/export areas

of subsystems which does not normally exist in a regular application definition text file, and it

requires some extra processing. This extra processing is a result of a feature of the OCU grammar,

as defined by Anderson and Randour. All information about the connections between import and

export areas is specified by listing which export objects are connected to an im:.,'rt object. This

information is an attribute of an import object. On the other hand, an export object has no direct

knowledge about which import objects it is connected to. The visual system needs this information

however, to allow the user to establish the connections from either direction. AVSI adds an attribute

to the export objects which lists the import areas it is connected to. This is discussed in greater

detail in section 4.3.5.1.

4.3.2.ý Save Application. The user may choose to save an application at any point

in the application oomposition process, as long as the current state of the application is "correct,"

i.e. the abstract s)ntax tree must be syntactically correct according to the grammar rules of the

domain-specific language. However, this poses no problems, since both DIALECT and AVSI build

applications according to the same syntax rules. The Save Application function saves the abstract

4-9

,\ . ,
S' /

syntax tree which contains the current state of the application definition in the form of a "pretty-

print" to a text file.

4.3.2.5 Edit Application. The application editor provides two subfunctions. Edit

Application Components, and Edit Application Update Algorithnm. These editing functions modify

the application's object structure as well as modifying the application's main control algorithm.

Once a new application definition has been created, the user must complete the definition by

adding and defining components, and providing an application update algorithm. If. as in the case

of a parsed application definition, these items already exist, the user may modify them using the

application editor.

4.3.2.6 Edit Appli cation Components. This function displays the application object

(which may be thought of as the top-level subsystem in the application) as an icon to which subsys-

tems may be created and connected. Several functions are available within the Edit-Application-

Components Window. New subsystems may be created and linked to the application or to other

subsystems. In keeping with the current Architect model, an application may only control subsys-

tems, therefore no domain primitives may be introduced at this point. The Application Component

Editor additionally allows the user to view a pretty-print of the application definition in a text win-

dow. The viewed text is presented in the domain-specific language defined for the application's

domain.

As in each diagram window in AVSI. a mouse handler is defined for within the Edi t-Application-

Components Window. Clicking a mouse button while the mouse cursor is in the window's screen

region will invoke the window's mouse handler. The mouse handler will invoke a function, based

on the object (icon, link, or diagram-surface) beneath the mouse cursor when the button is clicked.

The following functions are defined for this window:

4-10

Application-Definition
Object

Application Object syntax
(Controls SSt)

Subsystem Object SSI
(Controls SS2).su

Subsystem Object SS2

Figure 4.5. Application Defindow;pri itiobjecth Subsystems

1. Create New Subsystem Th,. user interactively creates a subsystem and places its icon in the

diagram window. AVSI adds the subsystem to the application definition's abstract syntax

tree.

2. Link to Source When the user links thle subsystem-object's icon to the controller's icon, AVSI

updates the controller's list of controllees. Note that the user may only add subsystems in the

edit-application-components window; primitive-objects may be created only in the subsystem

editor. AVSI represents the application as a tree-like graph, with the application-object icon

as its root. Arrows show the direction of control, from the controller to the controllee.

Figure 4.5 shows an example application with subsystems. Note that subsystems may be

nested.

3. Redraw Screen This forces a screen redraw, which invokes the automatic layout algorithm

for the application. This function redraws the application as a tree-like directed graph, with

the application-icon as the root. If the application definition contains any primitives at this

4-11

point, these are displayed beneath their controlling subsystems. The function scales the icons

to fit the entire diagram on the viewed surface.

4. Zoom-in/Zoom-out If the system contains a very large number of subsystems, the above-

mentioned layout function, with its scaling, may shrink the icons down to a very small size,

making it difficult to view individual icons or sections of the diagram. The zoom-in function

allows the user to enlarge a section of the diagram. Zoom-in's complementary function,

zoom-out enables the user to get more of an overall look at the diagram.

5. Move Icon The user may occasionally want to change the placement of certain icons in the

diagram window. Move-icon allows him to drag the icon to another location. Because AVSI

uses dynamic links, any links connected to the icon are automatically updated when the icon

is moved.

6. Delete Object Any subsystem in the diagram window may be deleted at any time. Delete-

object erases the object from the object base, deletes all references to the object in the

application definition, deletes the object's icon, and removes all links connected to the icon.

A subsystem's controllees are not deleted when the subsystem is deleted. However they are

isolated until they are relinked to another controlling subsystem or to the application object

itself. An application object may not be erased in the edit-application-objects window. Once

an object is erased, it cannot be recovered without re-creating and redefining it.

7. Pretty-print Object The description of an object's abstract syntax tree is displayed in a sep-

arate text window. The pretty-printer prints according to the rules of the current grammar.

Any object (application-object, subsystem-object, or primitive-object) may be pretty-printed

in this window.

4.3.3 Edit Application Update. The Application Update Algorithm Editor, like the Ap-

plication Component Editor allows the user to build the application's update algorithm by direct-

manipulation of visual objects (icons and links). The update algorithm is composed of a sequence of

4-12

St Update Update> End
Sal1 ss-1

Figure 4.6. Application Update Sequence

statements, and is visually represented as a directed graph with the nodes representing statements

and the edges showing flow of control. According to the current model of Architect, if-statements

and while-statements are not allowed in the application update algorithm.

Edit-application-update provides a dual view of the application's update algorithm in two

separate windows. The text window merely shows a pretty-print of the update algorithm. This

text window is updated whenever any chai~ge has been made. The only legal statements in an

application's update algorithm are call statements, thus the control structure is strictly sequen-

tial (if-statements and while-statements are allowed in a subsystem's update algorithm: see sec-

tion 4.3.4.2). The diagram-window displays the algorithm in diagrammatic form, as a linear list,

left to right (see Figure 4.6). Note than two icons in the diagram, the "start-icon" and "end-icon,"

do not have corresponding statements in the actual update algorithm's actual statement sequence.

These two special icons may not be modified or deleted. A null sequence then consists of an arrow,

from the start t~o the end icon. The user modifies the algorithm by adding, deleting, or editing

nodes in the list:

1. Add Statement Adding a statement to the update algorithm inserts a statement object in

the statement sequence. AVSI places the statement in the sequence according to its position

in the diagram. A newly-created call statement is incomplete, since the user has not yet

specified the operand name.

2. Edit Statement Editing a call statement is simply supplying an operand name to the call

statement object.

4.13

3. Delete Statement Deleting a statement removes the statement object from the statement

sequence, erases the statement object and its corresponding icon, and links the two icons

which were adjacent to the deleted icon.

4.3.4 Editing a Subsystem. Editing a subsystem is very similar to editing an application.

Indeed the application-editor and the subsystem-editor share many of the same functions The

three major components of the subsystem editor are Edit-Subsystem-Components, Edit Subsystem

Update Algorithm. and Display Import/Export Areas.

4.3.4.1 Edit Subsystem. Editing a subsystem, like editing an application, comprises

editing its components and editing its update algorithm. The Subsystem Editor's similarity to the

application editor is a result of the way an application object is viewed and represented in the

current implementation of Architect: an application object is essentially the top-level subsystem.

The two functions 'ivolved are Edit-Subsystem-Components and Edit-Update.

Edit-Subsystem-Components is similar in function to Edit-Application-Components. The

subsystem object is represented as a subsystem icon in the Edit-Subsystem-Components diagram

window, with directed arrows pointing to the icons representing its controllees (which may include

other subsystems). Adding a primitive to the subsystem is done by selecting a primitive-object

icon from the technology base window, dragging it into the Edit-Subsystem-Components diagram

window, and then linking the primitive-object icon to the subsystem which controls it. The system

provides an alternate, textual view of any object in the window by pretty printing the abstract

syntax tree for that object in a text window.

AVSI displays a subsystem as a tree-like directed-graph, with the icon representing the edited

subsystem having no ancestor node. Figure 4.7 shows an example subsystem. The same layout

algorithm used for displaying applications is used for displaying subsystems. The user may add

subsystems or primitives to the subsystem being edited:

4-14

/"

.- -. ... -../

Subsystem-ObJ

subsystem-i

Subsystemr•JOj And-Gste-Obj "

Subsystem-2 And-1 2

/

// \\

Or-Ga~-Obw tch-Obj

k Or-1 K

Figure 4.7. Example Subsystem

1. Creating a new subsystem The function Create-Subsystem creates a subsystem object, and

prompts the user for its name. The new subsystem is represented by a subsystem icon in the

diagram window. The subsystem must be linked to its controlling subsystem (or application

object) by linking its icon to the icon of its controller. The new subsystem must be controlled

by some subsystem already existing in the application definition (a primitive may not control

a subsystem).

2. Creating a new primitive-object The user creates a new primitive-object by dragging the

desired primitive-object's icon into the window from the technology base window (which

contains the primitive-object classes for the current domain). AVSI creates the primitive-

object instance, and inserts it in the application-definition's abstract syntax tree.

3. Link to Source The user must link both subsystem objects and primitive-objects to their

controlling subsystem. AVSI adds the primitive-object's import and export data to the import

and export areas of the object's controlling subsystem.

4-15

T-

4. Pretty-Print Object Either subsystem-objects or primitive-objects may be pretty-printed. A

separate text window displays the object's pretty-printed code.

5. Move-Icon. Redraw, Zoom-In/Zoom-Out These functions are described in section 4.3.2.6.

6. View/Edit Primitive-object Attributes Any attributes listed among the edit-attributes, as

defined by the VSL description of a primitive-object class, may be edited. AVSI lists the

attribute names and current values in a text window. Clicking on an attribute name brings

up a small pop-up window into which a new value may be entered. AVSI uses the LISP read-

from-string function to extract the value, and the REFINE set-attribute function to update

the objcct's attribute.

7. Delete Object The topmost subsystem in the window may not be deleted (the user may use

the applicatior editor to delete this or any subsystem, should he want to do this). Any

nested subsystems in this window may be deleted as described in section 4.3.2.6. Deleting a

primitive-object erases the object instance and removes all references to the object from the

application's abstract syntax tree. These references include entries in the subsystem's import
.1

and export areas.

4.384.2 Edit Subsystem Update Algorithm. Editing a subsystem's update algo-

rithm is similar to editing an application's update algorithm; however, since a subsystem's update

algorithm may contain conditional or loop constructs, two other statement types are allowed: if-

statements and while statements. Editing an if-statement is done by editing the conditional-part,

the then-part, and an optional else-part. Similarly, editing a while statement is done by editing the

conditional part and the while-part. Then-parts, else-parts, and while-parts are simply statement

sequences.

1. If-Statements The user inserts an if-statement into a statement sequence in the same manner

as inserting a call-statement. AVSI represents the if-statement as a single icon in the statement

4-16

sequence. The user edits the individual parts of the if-statement separately, by clicking on

the if-statement icon in the statement sequ-,ce. AVSI then displays an expanded view of the

if-statement in ; new window which it "stacks" on top of the current window. This expanded

view is a generalized view of an if-statement, and serves as a menu to edit the three parts of

the if-statement.

The first part of the if-statement is the if-condition. The if-condition is an expression-

object which the user may build in two different ways: typing the expression, and building

it. If the user chooses to type the expression, AVSI parses the expression from the user's

input string and inserts the resultant abstract syntax tree in the if-statement object's con-

ditional part. This expression tree corresponds to the expression's abstract syntax tree in

the structured object base. AVSI allows the user to edit the expression tree by adding and

deleting nodes. Any identifiers in the expression need to be linked to some import-object or

export-object within its controlling subsystem. If AVSI is unable to determine the correct

import/export object, it prompts the user to choose from among the currently available im-

port/export objects. To provide a certain amount of flexibility, the user is allowed to defer

this action to a later time. This flexibility is necessary because the subsystem's components

nmay not have been completely defined at this point, and thus the desired import/export

object may not exist yet. AVSI now displays the expression as an expression tree in a new

window. If the user chooses to build the expression, rather than type it in, he does this by

building the expression tree within this window.

The other parts of the if-statement, the then-part and the optional else-part, are

statement sequences. The user edits these statement sequences in exactly the same Mnnner

as editing the main stat •ment sequence. All statement types are legal in these statement

sequences.

4-17

2. While-Statements There is little difference between editing an if-statement and a while state-

ment. A while statement contains the same conditional-part and contains a do-part, which

is a statement-sequence.

4.3.5 building Import/Export Areas. As AVSI adds each primitive-object to a subsystem,

it automatically builds that part of the subsystem's import and export areas which pertain to

the primitive-object. This action is invisible to the user, and the user is not allowed to modify

the subsystem's import or export areas, however, the user is allowed to view the subsystem's

import/export areas in a text window. i•'IT displays this information by pretty-printing to read-

only text windows which the user may view aL any time.

Though AVSI automatically builds the application's subsystems' import and export areas as

the user adds primitive-objects to each subsystems, or when an application is parsed, the connec-

tions between all of the import and export objects must still be established. This section discusses

the process of making the connections.

4.3.5.1 Logical Representation of Import and Export Areas. Each subsystem's im-

port area contains all import objects for all of the primitives it controls. Each of these import objects

may have one or more sources, which are export-objects controlled by any subsystem within the

application (including its own controlling subsystem).

Similarly, a subsystem's export area contains the export objects for all its primitives. Each

export object may have one or more targets, which are import-objects within any subsystem.

Consequently, there is a many-to-many relationship between import and export objects.

In Anderson's implementation of Architect, the connection is specified by storing the source as

an attribute of each import-object. The user makes all connections by specifying the sources of all

the import objects. This establishes a one-way connection between export and import objects, and

such a representation is adequate for her implementation. AVSI however provides more flexibility

4-18

__ __ //

ExtOjctS. linporl Objects

Target /

Subsystem-1 SubIystem.2

Figure 4.8. Import and Export Objects with Source and Target Attributes

by allowing the user to specify the connection from either the import-object's or the export-object's

perspective. Figure 4.8 shows the representation of these connections. The new attribute tarqet

is the functional converse of the already-existing attribute source; thus, the existence of a source

implies the existence of a target and vice-versa.

4.3.5.2 Visual Representation of Import and txport Areas. AVSI uses a somewhat

simple scheme to display and manipulate the connections between import and export objects. The

operational concept was discussed in chapter III. Graphical and tabular information is combined to

show the connections, and the number of links shown on the display at any given time is minimized.

thus avoiding a cluttered visual display. At the same time, the complete connectivity of each import

or export area is readily visible.

4.3.6 Technology Base. Architect's usefulness is in part due to the reuse it promotes by

providing a technology base of reusable components. AVSI gives the user an interface in which to

access the components contained in the technology base. Three basic types of reusable components

are primitives, generics, and "saved" objects.

4-19

.. :, ~-, / / ,

/./

4.3.6.1 Primitives. AVSI fully implements the retrieval of primitive-objects for

inclusion in an application's subsystems. A technology-base window displays all icon for each

primitive-object class defined for the current domain. Each icon is drawn according to the icon

definition contained in the VSL description of the corresponding object class. These icons are

arranged in a simple lattice in the technology-base window, and two different functions are available

for primitives:

4.3.6.2 Create Primitive-Object. Creating a primitive-object is discussed in sec-

tion 4.3.4.1. When an object is created, its icon is created and attached to the mouse cursor for

placement in the edit-subsystem-components window.

4.3.6.3 Display Primitive- Object Definition. AVSI displays the Primitive-Object

Definition for a primitive-obje-t class in a read-only text window. This definition is in the form of

REFINE source code, and contains the structural and behavioral description of the primitive object.
'/

4.3.6.4 Generics. AVSI provides visual support for Architect's capability to create

subsystems from generic templates. After the user chooses a generic template by selecting its file

from a menu, AVSI creates a generic instance, and a corresponding icon. The generic template

contains one or more "placeholders." for which controllees must be provided. For each one of these

-placeholders, the user creates, and provides a name for, an object. AVSI uses the functions provided

by Architect to convert this generic instance to a subsystem, which may then be included in the

application.

4.3.6.5 Saved Objects. AVSI allows for the reuse of previously saved objects. These

objects may be subsystems or primitives, and are represented as text files containing pretty-prints

of objects from previous sessions. The application specialist retrieves one of these objects by

selecting the filename from a menu. Architect parses the file, creating the object. AVSI creates the

corresponding icon and allows the user to interactively place it in the diagram window.

4-20

/V.
,' .. I " " "' " " ' ") " ' " :> " " "" " "\ " " 'I -- I *

4.3.7 Semantic Checks. Semantic checks are performed as part of the preprocessing step.

AVSI provides no visual support for semantic checks. Anderson s code is used directly, and any

messages generated by the process are output to the Enmacs xvindow.

4.3.8 Execute. Providing a visual display of the application's execution was beyond the

scope of this thesis. As with the semantic checks, Anderson's code is used for execution, and the

output is displayed on the Emacs screen.

7
4.4 Implementation

4.4.1 REFINE Impact and Influence. INTERVISTA contains the basic facilities to provide

a visual-based user interface. It supplies - windowing system with mouse handling, pop-up menus,

mouse-sensitive text windows, diagram drawing methods, and direct access to the REFINE object

base (40). INTERVISTA programs are written in the REFINE language and use the REFINE object

base. Graphical objects, such as icons, links, diagram surfaces, menus, and windows can be di-

. "/rectly mapped to other objects in the object base. INTERVISTA is rich in hWgh-level functions for

maintaining and manipulating the graphical objects but is at the same time somewhat restrictive
/.

at the lower levels. For example. only four basic icon shapes are provided. These basic shapes may

be given different sizes and height/width ratios. Creating complex icons, however, requires calling

lower-level functions from the underlying windowing systems, and was beyond the scope of this

thesis. Though somewhat limited in terms of icon definition (without using the underlying Com-

monWindows and XWindows systems), INTERVISTA provided an excellent platform for developing

a prototype for the visual system.

Following an object-based approach, visual data in INTERVISTA consists of a set of icon

objects, which map to the set of logical objects (for example, the subsystem-objects and primitive-

objects used in Architect) in the underlying system. The icon and link objects' display attributes

can be interactively modified by tie user. For example, miý the user "clicks" on an icon and moves

4-21

- . ,: . "" - - " -./- - ' N_ _

REFINE Object Base

lon-for-Object

Subsystem loIcon
Object Oecor-con Object

Figure 4.9. Object/Icon Relationship

to another location within a window, the icon's display coordinates are updated automatically. and

all of its links are aiwomatically redrawn to reflect their new osition. The display objects can

also be modified by the screen layout algorithms which are used for displaying already-existing

diagrams. Relationships between the objects will be visually represented by link objects (lines

with arrowheads) which connect the icons. The set of icons and links are grouped together into a

single view (or diagram surface) which is itself an object in the REFINE object ba~e, and may be

manipulated by certain functions, such as repositioning. scaling, and zooming in and out.

The DIALECT tool provided the ability to easily implement the Visual Specification Language

(VSL). VSL's grammar is defined by and parsed by a parser created by DIALECT. Thus the visual

specification information is maintained in the REFINE object base. and AVSI uses this information

to display and edit domain-specific information. The Visual Specification Language is loosely based

on Lockheed's Graphical System Description Language's Visual Sublanguage (48).

4.4.2 Repriqsnting Objects.

4.4 2.1 Object-Icon Relation. An object in the REFINE object base is related to

its visual representation by a two-way mapping between the object and the icon. For each object.

an attribute. icon-for-object. represents its associated icon. An inverse attribute. object-for.icon.

represents the object for a given icon. Figure 4.9 shows this relationship. Using the computed-

using clause in the definition of an icon. the mere reference to an object's icon will dynamically

4-22

it . i\ .',

create all icon, if the icon does not already exist. For example. the following defines the attribute

Icon-for-Object.

var Icon-For-Object: map(object, icon)

computed-using icon-for-object(obj) make-icon-for-object(obj)

The computed-using clause calls a function which creates an instance of all icon object in the object

base, and sets its attributes (position, icon-type. size, etc.). By including the following form. this

attribute is cached: an icon will be created only on the first reference to the attribute. Subsequent

references will use the icon created on the first reference.

form Cache-Icon-Object

cache('icon-for-object, true)

The inverse attribute, object-for-icon, is defined to be initially all empty map:

var Object-For-Icon:

map(icon, object) = {I g}

Defining the icon-for-object and object-for-icon maps to be functional converses results in the

automatic definition of the object-for-icon attribute whenever all icon-for-object mapping is created:

form Object-Icon-Converses

* define-fun-converses('icon-for-object, 'object-for-icon, true)

This method of representing the -elationship between an object and its icon provides an efficient, yet

powerful. two-way access between the logical and visual representations of all object. Ali abstract

syntax tree in the object base may be traversed and its visual counterpart consisting of icons and

links constructed along the way. Conversely, as icons are created and linked, the corresponding

objects and relationships miay be created. Moreover, since icons exist as objects within the REFINE

object base, they may be reused: new icons are not recreated if all object's icon has been previously

viewed, even when t',e window containing that icon has been closed and then reopened.

4-23

REFINE Object Base

Icon 1 -for-Object

Subsystem Object
Object ect-for-iconl I

"- Icon2-for-Object

Object-for-lconi ""2_. Icon
Object

-. -- - -- -- -. - . - -- --. . . -- -. - -- --. - -- -- -- --. . -. -. - -. -. -- - -- -- -- -. . -. . -- -- --

Figure 4.10. Multiple Object/Icon Relationships

4.4.2.2 Multiple Representations of an Object. Depending on the context in which

the user is working, an object within an application may have more than one visual representation.

For example, a subsystem-object, in the subsystem edit-components window, is represented as a

simple box icon. !n the build-imports/exports window, a subsystem is represented as a group of

three icons. The subsystem will thus have more than one icon. Figure 4.10 shows this relationship.

Note that the attribute names for the different icons are named differently.

4.4.3 Objeit- Window Relation. As icons may be mapped to objects (as in the previ-

ous discussion), sI also may windows be mapped to objects. The following definition shows this

mapping.

var Window-For-Object: map(object, diagram-window)

computed-using windov-for-object(dl) = make-window-for-object(dl)

vat Object-For-Window: map(diagram-window, object) = {I I}

form Cache-Window-For-Object

cache('window-for-object, true)

4-24

form Object-Window-Converses

define-fun-converses('window-for-object, 'object-for-window, true)

The first time an object's window is referred to, a diagram window is created and mapped to the

object. Subsequent references to the window will return the window created on the first reference.

"since this attribute is cached. Additionally. since the attributes object-for-window and window-for-

object are defined to be functional converses, both attributes are automatically defined upon the

creation of the window.

This technique is useful because it allows each object to have its own window or windows.

For example, AVSI creates a window for each subsystem for editing subsystem components. Thus

several windows may be open simultaneously, providing the ability to edit multiple objects. This

technique also results in the reuse of windows, avoiding the slow process of creating a new window

each time the window is viewed. Furthermore, since the mapping is a one-to-one mapping, only

one window may be open foi an object. eliminating the possibility of obsolete information existing

in an outdated window or conflicting information in multiple windows.

An object may be mapped to more than one type of window however, since the mapping

may use more than one attribute name. For example, AVSI displays two possible windows for a

subsystem: either an edit-components window or an import/export window (or both may be open

simultaneously).

4.4.4 Mapping Object Sequences to Visual Objects. A problem exists when mapping an

object sequence to a visual object: though REFINE allows such a mapping, the result of such a

mapping does not have the desired effect. The problem is illustrated in the following code. The

attributes are defined as follows:

var icon-for-seq : map(seq(object), icon)

computed-using icon-for-seq(obj-seq) = make-icon-for-seq(obj-seq)

4-25

var seq-for-icon map(icon, seq(object)) {l}

form icon-seq-fun-converses

define-fun-converses('icon-for-seq, 'seq-for-icon, true)

This definition is essentially the same as that for the object-icon relation. However, the map is

between a particular sequence and an icon. If the sequence changes by having objects added or

deleted, then the map does not apply to the modified sequence. This problem occurred in the

dvvelopment of edit-update. Each statement sequence in the update algorithm requires its own

window. The statement sequence is simply a sequence of statement objects, and the sequence is an

attribute of its parent object. For example, the top-level statement sequence may be an attribute of

a subsystem-object; the then-part and else-part of an if statement are attributes of an if-statement-

object. To implement this correctly, these sequences are viewed as attributes of objects, rather than

objects themselves. Rather than mapping windows to the sequences, the windows are mapped to the

parent objects themselves. The sequence is accessed from the window, and the window is accessed

from the sequence, indirectly through the parent object. Figure 4.11 illustrates this mapping for

the then-part of an if-statement object. Note there is no direct relationship between the window

and the statement sequence.

4.5 Summary

This chapter gave an overview of the design and implementation of the Architect Visual

System Interface and the Visual Specification Language (VSL). The goals of the design were to

preserve the functionality of Architect and to maintain domain independence. AVSI is built on

Anderson and Randour's Architect and builds application specifications according to their domain

model. AVSI provides the same functionality as Architect, and VSL allows for the specification

4-26

Refine Object Base

Window-For-If-Statement-
tThen-Part •

If-Statement Window
Object It-Statement-Then- Object

PaIr-for-Window _. __

Then-Part

t --------------------- -- --- "--

tetert`) (Sýtatement-, State ment-*
eObject Oe Object

Figure 4.11. Window/Object Sequence Relationship

of domain-specific objects' visual information. The next chapter discusses tle validation and an

analysis of AVSI, including a discussion of the problems encountered and how they were solved.

4-27

V. Validation and Analysis of the Architect Visual System

The validation domain used for AVSI was the same domain used by Anderson and Randour

for Architect: digital circuits. This chapter discusses the validation using this domain, and presents

an assessment of AVSI.

5.1 Validation Domain

The main validation domain used for AVSI was the digital circuits domain. The "artificial"

domain mentioned earlier was also examined to demonstrate the domain-independence of AVSI.

but was not employed extensively due to its limited usefulness.

5.1.1 Circuits Domain. The primitive objects that are defined for the domain are:

,2-Input And gate ,2-Input Or gate

* 2-Input Nand gate * 2-Input Nor gate

* Not gate 9 JK flip flop

* Counter • Switch

* LED * Half Adder

e 3 x 8 Decoder * 4 x 1 Multiplexer

This set of prir` ivcs was sufficient for buildin• a large number of circuits of varying com-

plexity. Examples of circuits composed of these primit ives included decoders, a full adder, a binary

array multiplier, and a universal shift register. These a plications were also created using the pre-

vious methods provided by Anderson and Randour. Pa t of the validation process was to compare

the domain-specific code generated by AVSI to the doma n-specific code generated by Architect for

identical applications. Moreover, the applications were e ecuted to observe correct behavior. The

switches and LEDs provided I/O capability, and allowed the operation of circuits to be observed.

5-1

One limitation imposed by this domain was that only one communication data type. "sig-

nal" was provided for communication between subsystems' import and export areas. Thus when

import and export areas are being connected, AVSI generally shows all subsystems as containing

potential objects for connection. If the domain contained more than one communication data type,

connecting imports and exports would be easier, since the set of potential connections would be

smaller.

5.1.1.1 Visual Specifications of Circuits Domain. The only requirement in preparing

a domain for use with AVSI is to specify the visual characteristics of the domain objects using the

Visual Specification Language (VSL). The icon-attributes clause for each primitive object defines

the physical appearance of that object's icon. Since INTERVISTA allows only a limited number of

basic shapes, the conventional shapes for the logic gates were not used. Each primitive object

was given a unique shape and size combination, however, to demonstrate the usefulness of VSL

description. The edit-attributes clause for each primitive object specifies those attributes that are

made available for AVSI's object attribute editor. The entire visual specifi 'ition of the circuits

domain is given in appendix D.

5.2 Using AVSI

Appendix C lists the files required to run AVSI and provides instructions on how to load

and initiate the system. A description of the process of building an application is provided in the

previous two chapters, and appendix B gives a sample session, in which a binary array multiplier

is built.

5.3 Analysis

The development of AVSI was largely influenced by the REFINE environment in which it was

created, as well as by the previous development of Architect. This section examines these influences

5-2

/ / - •.---

and their effect on AVSI. This discussion is followed by an overview of problems encountered during

AVSI's development and a discussion of AVSI's present weaknesses.

5.3.1 The REFINE En.ironment. Being an object-based system, REFINE provided an ideal

environment for AVSI. It has a wide range of high-level operations for manipulating the structures

in the object base.

The compiler for the Visual Specification Language was very easy to develop with the DI-

ALECT tool. DIALECT'S default lexical analyzer provide'J the functionality required by the language.

VSL's linguage definition was defined with very little code. Appendix D contains the source listing

for the domain model and grammar.

The visual portion of AVSI was built exclusively with INTERVISTA. Though its icon definition

capabilities are somewhat limited, its usefulness is clear. INTERVISTA provides easy access to the

REFINE object base, and as discussed earlier, its data objects (icons, links, windows, etc.) exist

within the object base itself. As for its limitations. Intervista didn't provide very good support for

creating interactive forms, complex icons, and multiple colors. These features, though desirable,

were not necessary for demonstrating the usefulness of the visual system. Lower.level features

such as these may be incorporated into the system by accessing the CommonWindows system, the

underlying window system, or by using the graphics capabilities provided by graphics systems such

as Motif.

5.3.2 AVSI and Architect. AVSI was primarily developed as a visual interface for the

Architect system. The previous implementation of Architect relied on text files for building an

application, and on text-based LISP input/output functions for further application definition. An-

derson and Randour developed a complete working system, and AVSI was built around the "core"

of their system. The lessons learned from the transition from Architect to AVSI are useful in

developing similar systems.

5-3

The first step in this transition was to devise a transformation from a general application's

abstract syntax tree to the application's visual representation. Additionally, the basic components

of an application and its subsystems needed to be represented individually. Rather than just

providing a diagram representing the abstract syntax tree itself (which is possible, and actually

quite simple), only the information essential for visualizing the application's structure is represented

at the topmost level. Other information contained within the object's abstract syntax tree, such

as object attributes are not represented in diagrammatic, but in tabular, textual form.

Aside from "pruning" information from the abstract syntax tree, some information in the

diagram comes from sources not actually in the abstract syntax tree. An example of this is in

the Architect domain model's definition of a subsystem object and its controllees. A subsystem is

"linked" to its controllees, not by being directly linked to them. but indirectly by their symbolic

names. The visual representation, howe.er, shows the icons for the actual objects, and thus AVSI

must use a call to the REFINE find-object command, using the object's name. This, of course, is

a further departure from a visualization of the actual abstract syntax tree, but is by no means a

significant problem.

The second step was to establi:h techniques for building the abstract syntax tree based on

the user's input. In terms of how the visual information would be "processed," there were at least

two basic approaches possible. One approach was to allow the user to complete a diagram and

then as a second step. to parse the diagram. This approach would be particularly useful in systems

where the spatial relationships of the icons represented sonic meaningful information about the

application (11). A second approach, the one chosen for AVSI, was to translate the user's actions

as each individual action is performed. This method provides a sort of syntax-directed visual editing

capability. Certain actions arc only possible within the context of previously performed actions.

For example, an application object must first be created before adding any subsystems, at least one

subsystem must have already been created before adding a primitive object, and so forth. This is

5-4

I 7 /

the simpler of the two approaches. Icon spacing is not considered, and some information, such as

object attributes, may be modified at any time during the process.

5.3.2.1 Changes to Architect. The transition from Architect to AVSI was, with a

few exceptions, direct and required little modification to the original domain model and REFINE

source code. The basic structure of an application essentially remained the same. The only change

made to the domain model was adding an additional attribute to export-objects. Adding this

attribute consisted of simply adding a few lines of code to the OCU domain model, as discussed in

Chapter 4.

A potential problem exists with the way Architect saves "saved objects" in the technology

base. Architect uses the pretty-printer to write the object to a text file, and thus all information

contained in the object's abstract syntax tree is saved, including its import and export objrt

connections to other subsystems. When a saved subsystem object is retrieved, it may now contain

erroneous references to non-existing subsystems. AVSI deals with this problem by deleting all

connections when a saved subsystem is retrieved.

Another area requiring some rework was Architect's I/O. Architect relies entirely on basic

LISP I/O functions, input from, and output to the EMACS window. However, INTERVISTA provides

only one way of inputting textual data. The INTERVISTA function get-string presents a smuall

window, in which the user is prompted to type input, and the input is returned as a string. The

REFINE function PARSE-FROM-STRING provides a way to parse the input from this string, according

to the grammar of the current domain.

5.3.3 Range of Applicability. Though AVSI was specifically developed as a visual interface

for Architect, its usefulness is not limited to this particular application. AVSI's methods may be

applied to other systems which require a transformation from a diagram to a REFINE formal

5-5

, // /" ,

specification. The techniques used in AVSI may be adapted for any domain model if there is an

unambiguous mapping from a diagram to an abstract syntax tree in the REFINE object base.

An example of an application, to which these techniques may be applied, is a thesis effort

by Capt Mary Boom and Capt Brad Mallare, entitled Formalization and Transformation of In-

formal Analysis Models Into Executable REFINE Specifications (9). Boom and Mallare developed

a method of translating informal specifications (based on information extracted from Entity Rela-

tionship, State Transition, and Data Flow Models) into an object-based representation in REFINE.

A "Unified Abstract Model" (UAM) combines the information from these informal models and

"forms the basis for defining a formal language, the Object Modeling Language (OML). used to

capture the information contained in the UAM" (9). Once the informal specifications have been

translated, the OML description is parsed into an abstract syntax tree in the REFINE object base.

The information in the abstract syntax tree forms the basis for an executable specification. What

their transformation system lacks is an front-end elicitation tool which allows the end-user to con-

struct the OML specification. The elicitation tool would allow the user to enter visual information

by drawing commonly-used informal diagrams. Such an elicitation tool may be built, using the

techniques developed in AVSI for visualizing and manipulating the object base. To build such a

tool, it would be necessary to define the process of converting the diagrams to the abstract syntax

tree representation that would normally be created by the OML parser created by DIALECT. Since

Mallare and Boom have already defined a manual process for converting the diagrams to the OML

description, this process may be extended to bypass the creation of an explicit OML textual de-

scription. This is essentially the process AVSI uses to create the abstract syntax tree representation

of Architect applications.

5.3.4 Problems Encrantered. Several problems were encountered during the development

of AVSI. Some of these problems were conceptual, but most might be considered technical problems.

Fortunately. all of the problems encountered were surmountable:

5-f6

/r". i ,/ - . --

__'__ _.,__ _ _ _ _ / -. -I- .

1. I/O was a constant source of frustration; REFINE provides minimal support for I/O, and the

rich set of functions provided by underlying LISP system was used extensively.

2. Developing a technique to transform the abstract syntax trees into a diagram was not en-

tirely straightforward; there was not a direct correspondence between the structures in the

object base, as defined by Architect's domain model, and the diagram AVSI creates to repre-

sent it. Because of the way Anderson and Randour defined the domain model, some objects

relationships were defined directly, as a mapping from one object to another; other relation-

ships were defined indirectly, by referencing object names. For example, the statements in

a subsystem's update algorithm are mapped directly to the subsystem. but the subsystem's

controllees are simply listed as a sequence of object names. Creating the diagram to represent

the hierarchical structure of the subsystem and its controllees required a thorough knowledge

of the structure of the domain model's definitions of the objects' structure. Some attributes

had to be pruned, others required findiag the indirectly referenced objects using the REFINE

find-object function.

3. Developing a method of displaying and connecting communicat;- ,s preselined conceptual

problems. The major problem was to devise a way to represent the informz tion in a simple,

meaningful manner. Some restrictions were imposed by the use rf INTER1VISTA, which does

not allow using colors, and does not provide much control over how. :..:s are laid out on the

screen. With the goal of minimizing the number of icons and links, the method of combining

textual information with graphics allowe(! for a very readable display. since the number of

links is kept to an absolute minimum.

4. Allowinz the user to connect imports and exports from both directions initially presented

difficulties. The difficulty stemmed from the way the connection was represented in the

original domain model: An import object contained an attribute that stored information

about which export object(s) it was connected to, but export objects did not have direct

5-7

., / . ,. .

S. , _/ - ,. . . . ,\'

access to this information. Though it would have been possible to write a function to find

this information, it was easier to make a simple modification to the domain model, adding a

new attribute to the export-object definition.

5. Implementing the object attribute editor presented major difficulties. Though REFINE pro-

vides a way to find the attributes of an object class, there is no easy way to find the data

types of the attributes. Additionally, the function provided to find the attributes returns a

large list of attributes, most of which are system- related, and it would not be prudent to allow

the user to modify these. The easiest way to give the object attribute editor the information

it needed was to include the "editable" attribute names, along with their data types in the

Visual Specification Language description for each domain object. This allows for absolute

control over which attributes may be edited, and provides all information required by the

attribute editor.

5.3.5 AVSI's Shortcomings. Of course, there is always room for improvement. Fortu-

nately, as Architect evolves, so will its interface. Major areas of needed improvement are:

1. A more domain-specific interface. AVSI applications look essentially the same, even though

the application domains may be different. The limitations imposed by INTERVIS7A may

be overcome by using more sophisticated graphics. AVS! ,-ovides the basic framework for

building an application across domains, but more domaii:-: -. ific visual information must be

added to this framework. This information should not be limited only to icons, but should also

define different display functions for the various domains. The Visual Specification Language

developed for AVSI should be extended to accommodate this additional information.

2 Visual support for semantic analysis. AVSI currently uses Architect's semantic analysis re-

porting, which simply reports semantic errors in the Emacs window in textual form. Though

this is adequate for the current implementation, using visualization for semantic error report-

ing would provide a more user-frienidly system. Such a use of visualization would bring up

5-8

"" q-J " .Z , "r '.•/'. i
/ • ', ' • ! . . I• -,. , ,

S; - , ' • ". • " " ' , • - , -

022' or m2re t4f A\'S '.ilitur, in the, " tI'trtl'. arvta." For cxa22j le., if tlherre WaLx a prob1hlem

with tile d44ti2itit,2 of a suhbsys t '4' ,structmre'. tilt, suhbyst em 'vdit(r woulde e in'voked. and

wouhl cont2ai the si.itN yt,2, 4 ill 4.l Ietia . with t pre' lir'hhii arva highligh hted. If the're wkLa a

problenm with on(e .of 4tit t|jq .t'x it rihtit••. t he ol •e'ct at t ri, t litor wuhld be i'lwvoed. with

tile attrilue' highlighted.

3. Visual ,%utiport for a;•plication execution. A i with em'ant ie analy.is. AVSI relie's on Atr'liitect's

textund outp ut for diN I aying thhe r.e-mi s of app~lication execution. A good feature t) adeI to

AVSI wounl h1' a visual dis4lday of objeicts' stat,' infolrmatiol duriP g ,x4'cttii4n. Fo'r examplhe.

this information may Ib expreisse'd by c4hanging tilt' 44lIr of ic'ons and liniks to show info2rmation

abot t obje'ct.m and relati1nships betbwet.n objects.

.5.4 SUIM14ry

AVSI was validat'd with tht4' digit al circuits domain. and proved t4) succes4sfully coompose tilt,

&tile apiplications used tit Validate t he original Architec t syste2m. Few c2hanges to Arechitect were

retit-redl. a2d tile Software Reffit'ry environment pirovidhed very good support for til- developme'nt

ctf AVSI. The tec.hnitim- used in AVSI for visualizing and manipulating tilt, 4 b4lt r,"r•t syItax tr.et ill

tle Arc4hitect donmin model' are' adaptablh for other syitems which requhire' at transf22rmation from

a diagram to all abstract syntax tr ee ill a RI EFINE obj'ect basJe. This crhap tr diN4'csu,.d some4 of tilt-

probhlems 2 4nc iunter'.d41 orinig the' de4velopm)en2 t jIrolr , and 21ow they' were' solvee., Finally. 5442424' of

ASVSIm' we'akness we'r' ' lmtentione44d: tlt- t14'4' for a mnore do414 in-%C 'ifilt Vi 15121 d1ispdlay. ti lte' Sied ftr

v imal support for M-'ti'AitiC aiialySi,•. atid 24tile need for viiIlt suppIrt for atllication e'X'cution.,

V7. Conclusion and Rcconmmcndations

The pu rpoisc of t Iiis researchI was to it rovidv i e visual init erface, for vie'wing and mtanipulat intg

donmatin knowledge and1(soft ware archi t'c tutre Sp eci h cat ionis inl a formnalized obIject base. Inl partic-

uilar. the minaii goal was to buol iiiI v iso at-ori' nt c in tuerfai e for Andcrson s (2) Ptid IIand~oti rs (39)

Architect system. The system was to provide anl ailt oiiiat ed me1anls of vislia~iZing anl applicatioin

that exist~s withini tilth, REF INF objl ect b ase. Addt it ion ally. thle systemu was- to give the tuser a means

for creating and edititnjg anl applicat ion .

6.) Rv'snit.q of This IBcxvarrci

The Architect Visual Sy'stemi Interface' -mccessfully met. all original goals. The following is a

summnary of the resuilts:

1. Prori'dfd ri'.qutalzation of doinmiuinoirbilv) und 4offirarv sirchaite1rfur AVSI pirovides a visual

med iumi for t Iisplayi ii g all in formnatio n Alitoiut all Appj licat ioni contai ned wit hin ti le structutred

object base. Thle graphical view of anl ap plicat i on is dIivid e'd in to several parts:

(a) The hiierarchIiical st ruc tuire tof thle appl ic at iton alt' v at-l t f it-s stitbsyst in s is giveni graph i-

cal ly by a r'ev-s Irott ictret! graphI.

00 Flow of control. whi4Ith i., c'ontainedl withIini oitljt'ts' tipithte algorithims. is reprem-ented ill

diagrammaot it foIll.

(c) ('nn im tiniat itom liniks I itt woetn -mývt vms~t i are b 411w" 1iiiiii g aitil 40 ilitiiial (ioof gral; dii .4

W) AVS I all ws 11-f i ie'r Ito view thlit ill 'ita!4 MI it ilitii Oes f anly 41It jeit Ali(] l rt iv it! a waY

to #-Xaliiliiat the IIEFI\ em rlt'tnpiteio 'if t'achi prinmitive' object within ak given tliiiaiii.

(r') The ihtiiiaiii-mpcit'iht'tofe' for an %pp~lict timit, ti m ly of it.4 ttiiilleetl-Iet. alt Itt viewedV

illiit toext winldtw.

6-1

2. Developed art interface. to serve as a "front-end" to the Architect System Besides providing

programn visualization and visual programmnmg capabilities, AVSI draws together the various

activities involved inl composing an application with Architect. Though AVSI p~rovidles no

visual support for semantic chiecks or programi execution, these activities canl be performed

fromn within AVSI.

3. Developed a Visual Specification Laniguagc (VSL) to define the visual characteristics of domain-

specific objiet. Though VSL is rather simple. its sutccessful development and imiplernenta-

tion demonstrates its usefulness. It eniables AVSI to remain (lomaiin-iudelpendent. isolating

domain-specific information inl anl eas-to-mnodify text file according to a standard formiat

defined by the graininar of VSL.

4. Developed techniques for rnanipulati.sg ant obje-t-tbastd representation as an abstract syntax

Oree by using direct manipulation (,j tis nal objectsi These techniques provide AVSI with a

significant visual programming capabi v'. Logical objects within anl application are directly

linked to their representative visual objects. The mnanip~ulation of icons and links is tranislated

to a correspondling manilpulatiou of the objects they rep~resent. and the structure of the

application of which they are a part. Manipulation of textual information is used inl somne

places where iconic rep~resentation wouldn't nal, sense, or would be too cumbersome.

6.2 Conclusions~

Several conclusions may be drawni fromi this research:

1. AVSI staccessfnuy demnou st rates tech nit utes for t rausforminig v isual i inforin it ion inito executitable

Sp'citicat o435 ill dotui ail- specitic a gl,,~s Fairly simple act ions periformued iby the(user comt-

l"'m's modu4 tles conitaj i llg I ttevioli~Iy stotred technlology into ajpplicat uwn structutres whtich may

be formally evaluated for correct ness an'l executed to observe if the appiciat ion achieves the

6-2

desired behavior. The techniques developed in AVSI may be applied to other systems which

are oriented towards transforming diagrammatic information to REFINE formal specifications.

2. AVSI provides a syntax-directed editing capability. This guides the user through the appli-

cation composition process. and enforces syntactic correctness of the application structure.

3. A thorough understanding of the domain model is essential. The structure of an application's

abstract syntax tree is defined by the DIALECT domain model, and AVSI's visualization

capability relies on the way the abstract syntax tree is traversed. AVSI's visual programming

capability relies on the way the abstract syntax tree is manipulated. The importance of a

good domain model definition cannot be overstated.

4. The original implementation of Architect, including its domain model, was relatively easy to

create a visual system for. Few changes to the domain model were required; those changes

actually made were minor in nature and had no real impact on the original system.

5. The Software Refinery environment provides an excellent platform for developing systems

such as Architect and AVSI. Moreover, it consists of a set of integrated tools that allow

for quick development of system prototypes. The REFINE language contains many high-

level operations for manipulating the object base and traversing its structures. The language

supports set theory, logic. transformation rules. pattern-matching. and procedure (41). Given!l

a language's grammar, the DIALECT tool creates a lexical analyzer. parser. and pretty-printer

for the language. The parser builds object structures in the object base from text files

which may then be manipulated by REFINE programs. Finally, INTERVISTA provides tools

for creating diagrams, interactive menus, and windows. The visual objects (icons. windows.

etc.) created and used by INTERVISTA coexist with all other REFINE objects in the objec'

base. Using the Software Re.finery v.nvironment allowed AVSI to be developed at a fairly high

level: this was especially useful, as it obviated the need to get bogged down with low-level

6-3

graphics. Tile use of these tools significantly decreased the development time of the system.

The environment is very flexible, allowing very rapid prototyping of system features.

6.3 Recommendations for Further Research

1. Develop a more fully domain-oriented visual display methodology AVSI provides the desired

visual features with one exception. The set of icons currently provided by the INTERVISTA

tool is limited to three basic shanes: box, ellipse, and diamond. Therefore, all application in

one domain essentially has the same "look and feel" as an application in any other domain.

For instance, a digital circuit built with AVSI does not look like a digtal circuit. A better

visual representation would look like a circuit schematic diagram that uses standard logic

symbols. Each domain most likely has its own specific way of visually representing its objects

and their interrelationships. For example, modeling an assembly line would require displaying

objects such as conveyer belts and work stations, and might display a "pipeline" configuration

of these objects. Devising an effective visual display should be included in the analysis of the

domain being modeled.

2. Incorporate more complicated domains AVSI was designed to be applicable across a broad

range of domains, and the next step is to apply its techniques to a more substantial domain.

The digital logic domain was a good domain to start with because it is well-understood,

relatively simple, and it allows applications with multiple instantiations of primitive objects.

It was not necessary to spend a great deal of time establishing the domain primitives and

devising circuits that would be composed of these primitives. However, partly because of its

single communication data type. the digital circuits domain chosen as a validation domain

did not fully demonstrate the usefulness of AVSL

The Joint Modeling and Simulation System (J-MASS) (4) requires a rich set of domains for

constructing simulation models. One such example is signal processing. which cosists of

primitives such as:

6-4

* Coupler

* Gaussian Number Generator

e Variable Attenuator

* Amplitude Detector

* Mixer

* Amplifier

* Comparator

* Filter

* Oscillator

These and other primitives can be used to compose higher level subsystems such as signal

generators and receivers. Correspondingly. these can be used to build other. more complex.

subsystems such as jammers and trackers. Such a domain would prove useful for denionstrat-

ing AVSI's (and Architect's) power to compose sophisticated application systems.

3. Add extensions to the Visual Specification Language The goal of providing a domain-

independent system does not necessarily conflict with the goal of providing a domain-oriented

display for an application. The Visual Specification Language provides a vehicle for specify-

ing domain-specific visual display functions that may be plugged into the visual system. A

standard way of defining these display functions should be developed. The visual specification

language should also be extended to include information concerning color and display depth

once a more sophisticated graphics capability is introduced into the system, i.e., a capability

beyond what INTERVISTA provides.

4. Use louwei-level graphics systems for more sophisticated visual display INTERVISTA does not

provide aa easy way to implement certain desirable features, and in sonic cases provides no

support a t all. For instance. a forni-based window, such as the attribute editor would be more

user-frientdly if values could be typed directly on the form, instead of in a separate window.

Moreover. the meaningfulness of visual information would be greatly enhanced by the addition

of color and mnore sophisticated icon shapes. An illustration of this is the display used in the

6-5

APTAS system (29). A componenCs icon contains a nested display of icons representing the

components it contains. A green box represents a bottom-level component.

Despite its limitations, INTERVISTA is still a very useful tool, and should not be casually dis-

regarded. It may be possible to augment its functionality by using features of the underlying

CommonWindows system. An alternative approach might be a graphical system that is based

on Common LISP and CLOS.

5. Provide visual support for semantic checks A more complete and user-friendly visual system

should guide the user through finding mistakes when they occur. It would be helpful, for

example, when a semantic error occurs, that an appropriate window is opened, and the

problem icons or links are visually highlighted.

6. Provide visual support for execution This is actually a separate (and large) area of research.

At a minimum however, state information could be displayed in an icon itself. A good use of

this might be changing the appearance of a switch icon to simulate its on or off configuration,

or changing the color of an LED icon to simulate its being lit (in the digital circuits domain).

6.4 Concluding Remarks

Coupled with Architect, AVSI enables an application specialist to compose a fairly complex

application with relative ease of effort. Though it is not as sophisticated as it might be (and will

be in the future), it represents a step towards bringing computer application development to the

non-computer-specialist. As Shu (43) points out, it is somewhat ironic that the world's oldeqt form

of written communication (picture drawing) is now becoming an important form of communicating

with new and powerful computing devices.

6-6

Appendix A. Overview of Architect

This appendix provides a high-level view of the Architect doniain-oriented application comn-

position system, upon which AVSI was built. It was jointly-written by Capt Mary Anne Randour

(39) and Capt Cynthia Anderson (2). It appears in their individual theses and in AFIT Technical

Report AFIT/EN/TR-92-5.

A.1 Introduction

The wide availability of powerful, relatively low-cost computer hardware has led to an explo-

sion in the demand for computer software products to automate a multitude of new tasks. Using

traditional methods, computer scientists and programming professionals have been unable to meet,

in a timely manner, this demand for the sophisticated. large-scale. reliable software systems re-

quired for these new applications. Clearly, a new approach to software design and construction is

needed.

Software engineering will evolve into a radically changed discipline. Software will be-
come adaptive and self-configuring, enabling end users to specify, modify and maintain
their own softw;,re within restricted contexts. Software engiueers will deliver knowledge-
based application generators rather than unmodifiable application programs. These
generators will enable an end user to interactively specify requirements in, domain-
oriented terms.... and then automatically generate efficient code that implements these
requirements. In essence, software engineers will deliver the knowledge for generai:ng
software rather than the software itself.

Although end users will communicate with these software generators in domain-
oriented terms, the foundation for the technology will be formal representations... For-
mal languages will become the lingua franca. enabling knowledge-based components to
be composed into larger systems. Formal specifications will be the interface between
interactive problem acquisition components and automatic program synthesis compo-
nents.

Software development will evolve from an art to a true engineering discipline. Soft-
ware systems will no longer be developed by handcrafting large bodies of code. Rather.
as in other engineering disciplines, components will be combined and specialized through
a chain of value-added enhancements. The final specializations will be done by the
end user. KBSE (Knowledge Based Software Engineering) will not replace the huiman
software engineer: rather, it will provide the means for leveraging human expertise
and knowledge through automated reuse. New subdisciplines. such as domain analysis
and design analysis, will emerge to formalize knowledge for use in KBSE componients.
(30:629-630)

A-I

Perhaps this vision can become a reality for selected domains, not just within the next century

as Michael Lowry predicts. but within the aext few years. Research is currently underway at

the Air Force Institute of Technology (AFIT) to achieve such a reality. Developing a full-scale

application generation system, which is capable of automatically producing efficient code to satisfy

user-specified rr.quirements presented in domain-oriented terms, is a considerable task which wilh

require several man-years of effort. However, one element of application generation, the combining

or composing of reqfired components into the proper framework or architecture, is attainable in

the near term. This chapter explores the issues involved in developing such an end-user application

composer and describes one possible methodology for accomplishing it.

A.2 Operational Concept

Several roles are discussed in describing this new approach to software development, an ap-

proach where the end-user generates a software application to satisfy his requirements using the

software professional's knowledge about how to generate such applications. Some ")f these roles are

new, others are relatively unchanged from those in traditional software system development.

1. System Analyst - Specifies new systems in a domain (25:4). Responsible for developing the
concept of operations (defining policy, strategy, and use of application) and defining training
requirements (13).

2. System Engineer - Works with the system analyst to partition the system into subsystems
Sand assigns the tasks to software or hardware development, as appropriate (5).

3. Domain Engine-r - Possesses detailed knowledge about the domain and gathers all the infor-
mation pertinei t to solving problems in that domain (25:4). Models the real-world entities
required to satiK, the policy, strategy, and use of an application as defined by the system
analyst. Determines how, if possible. these entities can be modeled within the constraints
specified by the software engineer (13).

4. Software Engineer - Designs new software systems in the domain (25:4). Responsible for
defining a, formalized structure for the domain knowledge and providing the translation from
the doniain-specific terms to executable software (13).

5. Application Specialist - Uses systems in the domain (25:4). Familiar with the overall domain
and understands what the new application must do to meet the requirements (a sophisticated
"user"). Provides the application-specific information needed to specify an application.

A-2

.

requirement ;_

ayste m~analyst

cocpt ofoperations

system engineer . *- •• - domal nglneer

doanmodel -- otaeegne

hardware sysIn :e9 softwaresystem jI [h e j| 4-software ynineer

aiIcatlon apecialt

laplcation specific.4l

automated appi ation composer

software design

code generaton capability

Figire A.1. Roles

The relationships among these roles are shown in Figure A.1. Usually, a new system begins

with the identification of a new requirement. This requirement, if valid, is forwarded to a system

analyst who develops a concept of operations. The system analyst works closely with the system

engineer who partitions the system into software and hardware subsystems. The system engineer

consults the appropriate domain engineer to define which components of his domain will be needed

for software applications in the domain. The domain engineer and the software engineer decide

on which components are needed to model the domain. The software engineer formalizes tile do-

main knowledge provided by the domain engineer into a domain model anti its technology base.

The application specialist, using the domain model established by the software and domain engi-

A-3

I'I

neers, creates a specification for an application. From this specification, all automated application

composer generates a software design which is then input to a code generation capability.

A.3 General System Concept

A.3.1 Overtview. An overview of the application composition system's components and

their relationships to each other appears in Figure A.2. First, domain analysis is performed. which

consists of gathering appropriate domain knowledge, formalizing it via a domain modeling language,

and storing it in a domain model. The structure of the domain model is determined, in part, by the

domain modeling language (DML) chosen. The software architecture model, like the DML, imposes

a specific structure on the domain model, on the grammar used by the application specialist, and,

ultimately, on the final application specification. The domain model is used to develop a domain-

specific grammar. Although it may be transparent to the application specialist, he actually uses

two grammars: one to identify domain-specific information and one to specify the architecture

of the application. The architecture grammar remains the same for different domains- only the

domain-specific grammar changes. Application-specific data is written using these two grammars

and is converted into objects in the structured object base, by the parser.

The populated structured object base and information from the technology base are combined

to build an executable prototype. First, the application specialist performs semantic checking on

the structured object base to ensure al constraints on the system have been met. He then executes

the prototype to demonstrate the behavior of the proposed application. If the prototype does not

behave as required, the application specialist canl change the original input and re-parse it into

the structured object base. Using the knowledge encoded in the domain model and the software

architecture model, the structured object base is manipulated into a formal specification for a

domain-specific software architecture (DSSA). The DSSA is the system design and becomes the

A-4

*..

MaAiDA3AO tUDISS JWIZ"f) -ZV D10

II2

CD.
/.c

* .. .~ 2 ** * * ~ *E

.,' * D

basis from which code is generated. A visual system provides a graphical representation of the

structured object base and the DSSA, as well as a means to add to or modify them.

The remainder of this section desc. .bes the above concepts and activities in more detail.

A.3.2 Developing a Formalized Domain Model. Before any applications can be composed

using this proposed system. the domain must be analyzed and modeled. In the software engineering

context, a domain is commonly defined as "an application area, a field for which software systems

are developed" (36:50) or "a set of current and future applications whir-h share a set of common

capabilities and data" (25:2). Identifying the boundaries of the domain, as well as "identifying.

collecting, organizing. and representing the relevant information in a domain based on the study of

existing systems and their development histories, knowledge captured from domain experts, under-

7 lying theory, and emerging technology within the domain" (25:2-3). constitutes domain analysis.

Domain analysis is currently the subject of several other research efforts and is not directly ad-

dressed in this project. However. it is important to gather the basic data, formalize it. and store it

in a standard format.

A.3.2.1 Domain Knouwledge. Domain knowledge is the "relevant knowledge" that

results from a thorough domain analysis and later evolves naturally as more experience is gained

solving problems in the domain (36:47). More specifically, domain knowledge consists of: basic

facts and relationships. probleim-solving heuristics. domain-specific data types. and descriptions of

processes to app:, the knowledge (6). In the context of this project, domain knowledge includes:

descriptions of donmain-specific objects (including their attributes and operations), data types.

composition rules, and templates for commonly used architectural fragments.

A.3.2.2 Domain Modeling Loaguage. An analogy to a domain modeling language

(DML) can be found in the more familiar data definition language of a database. management

system. A data definition language describes the logical structure and access methods of a database

A-6

.- : . .• " ,_ ' . , .°. . ;r:

(26). just as our DML describes the logical structure of a domain model and d,'fines how the objects

can be accessed. A DML used to encode domain knowledgi into a domain niodel uiust be able to

formally describe:

1. Object Classes: Abstractions of real-world entities of interest in the domain.

2. Operations: Behavior of the objects in the domain.

3. Object Relationships and Constraints: Rules for relating objects (and sets of objects) to other
objects. as well as the constraints on these relationships. Examples include:

(a) Communication Structure: Message passing between/among domain classes and opera-
tionts.

(b) Composition Structure: Rules for combining domain object classes into higher-level
application classes and operations into higher-level application operations.

4. Exception Handling: What to do when an error is encountered.

To be useful in an automated system. the domain knowledge must be encoded into a format

that the software system can manipulate. This problem is analogous to encoding knowledge in an

expert system. where human knowledge is gathered and represented as rules that allow a coitiuter

program to utilize the information. Neil Iscoe describes a inethod for encoding domain knowledge

into a domain model (see (24) for details). He proposes using a domain modeling language or

a ineta-model as the basic frai rework to instantiate a domain niod,,l bl•sed on some operational

goal(s) (reasons for which the knowledge will be used) (see Figure A.3). Our operational goal is

to -use the dolonamn niodel. software architecture model, and structured object base to generate

a software architecture for the application problem to be solved to generate a lomnain-specific

software architecture- (5).

A.3.2.3 Domain Mmol. A Joinain model is a -sperific representation 6f appropriate

aspects of an applicatiou donmain- (23:302) including functionq. obj'cts., data. and relationiship,
/\

(35). It is a result of expressing appropriate domain knowledge (identified by the dom in engineer)

in a domain modeling language with respect to certain operationlal goal. (23:301 -2 1.

Several researchers (7. 14. 15. 28) have indicated that h,,ftwarv vngituerrigg omust becoome

more of an engineering disc•line if we are ever to reap the bene'fits of d,.,ign renuse i increased pro-

A-7

/V

Operational Goals:

Figure A.3. Domain Model Instantiation"

ductivity, improved reliability, certifiability, etc.). When designing specific applications, engineers

use models, "codified bodies of scientific knowledge and technology presented in (re)usablle forms"

(14:256) which are available to all practioners in various technology bases. Reuse of these validated,

commonly-used models, which are readily •available in various technology bases, allows the engineer

to construct a practical, reliable solution to the problem at hand.

Contained within our domain model is such a technology base which acts as a repository for

our reusable models. In our system. these models are often referred to as components. Using an

object-based perspective, a component can represent a real-world entity, concept or abstraction and

encompasses all descriptive and state information for that entity/concept/abstraction as well as its

behavior (what operations or functions it performs and/or what transformations it undergoes).

Components can be primitive domain objects as described above or a "packaging" of these objects

whose structure is determined by the software architecture model. These packaged components will

be referred to as architectural fragments since they can be used to build an application architecture.

The technology base contains tenmplates for generic components, rules for component composition,

A-8

Si
S/

and descriptions of primitive object behavior. The parameters required to instantiate these generic

templates will be specified by the application specialist.

Domain analysis reveals common features of the software architectures that can lbe used

to implement various specific applications within the domain. In addition. common constraints

are identified and codified into rules used to determine how software components can be legally

combined. Using rules allows additional flexibility; any specific architecture can be built as long as

it meets the criteria specified by the rules.

A.3.3 Building A Structured Object Base. Several steps must be taken to build the

structured object base. The following system components are essential to this phase.

A.3.3.1 Domain-Specific Language. As with our domain modeling language, an

analogy to a domain-specific language (DSL) can be found in a data manipulation language from

the realn of database management systems. In the database context, a data manipulation language

allows the user of a database to retrieve, insert, delete, and modify data stored in the database

(26:13). In our context, a DSL is a language with syntax and semantics which represents all valid ob-

jects and operations in a particular domain, allowing modeling and specifica tion of systems within

that domain (37). According to Janmes Neighbors. a domain language is a mnachine-processable

language derived from a domain model. It is used to define components and to describe programs

in each different problem area (i.e.. domain). T:.e objects and operations represent analysis infor-

mation about a problem domain (34). In our research, a domain-specific language is defined as a

formal language used to define instances of objects and operations specific to a domain.

The objective of our DSL is to generate the structured object base needed to specify an
application architecture within a specific domain. To do so, it must be able to:

1. Instantiate objects

2. Instantiate generic objects

3. Instantiate generic architectural fragments

4. Compose the instantiated objects and architectural fragments in some meaningful way

A-9

The object classes defired in the domain model arc merely templates or patterns to be used

when constructing objects; they (10 not refer to specific, individual objects. The first sentence type

listed above creates specific instances of the objects in the object base. These objects are used

ini building architectural fragments or as parameters for generics. Default values can be used for

attributes so these values need not be entered through the DSL every time they are used.

Generics. stored in the technology base, provide templates for commonly uscd objects and

comiponents,, thus, the application specialist need not start. from scratch each time hie wants to

include one of these commonly used components. Generics must be instantiated before they can be

used. Instantiation is done by specifying which model is to be used and providing specific instances

and/or other data, as required. For example, a generic architectural fragment may use three objects

of a certain class. Wliea this generic is instantiated, three specific object instances of the required

class must be given.

A.3.3.2 Softw'are Architecture Model. In addition to identifying the objects to be

used in generating a particular application, the application specialist must indicate what is to

be done with those objects; i.e., he must identify the application operations. Domain primitive

operations, associated with primitive objects, are available in the technology base. But how can

these primitive operations be assembled (composed) into application-specific operations? What are

the rules for composing these primitive operations into application operations,? How can these rules*

be represented and implemented?

Software architectures provide insight into software system composition. In its most fun-

damental sense, an architecture is a recognizable style or method of design and construction. A

software architecture has been defined as "a template for solving problems within an application

domain" (46:2-2) or "the high level packaging structure of functions and data, their interfaces and

controls, to support the implementation of applications in a domain" (25:3). It provides a miechi-

anism for separating "the design of (domain) models from the design of the software" (13). This

A-10

separation of domain knowledge from software engineering knowledge allows each type of engineer

to concentrate on the issues relevant to his own area of experience, without becoming an expert in

the other discipline. By focusing only on the design of the software, the software engineer is able

to develop simplified packaging and control structures which can be reused across a wide variety of

domains.

Because a software architecture serves as a structural framework for software development, we

can expect it to providle a consistent represeiation of system conlponents as well as the interfaces

between those components. A standard representation ensures that each component is developed

in the same manner, eliminating many implementation choices and simplifying the development

process. This standardization also results in consistent interfaces between all components, enabling

them to be easily combined. This consistency of component representation and interfaces should

provide a suitable and flexible framework for composing primitive operations into application-

specific ones.

A.3.3.3 Architecture Grammar. Certain portions of the application specialist's

input are not dependent on any particular domain; rather, they depend on the software architecture

model. These architectural aspects of the application can be specified using a grammar common

to all domains, an architecture grammar. This grammar enforces the structure imposed by the

software architecture model by defining valid sentences for packaging the primitive domain objects

into architectural fragments to define an application architecture. These sentences will compose

application operations using domain-specific components described by the domain-specific grammar

and other application operations.

A.3.3.4 Parser. After the application specialist specifies the application components

using the domain-specific language and architecture language, the input must be parsed into objects

in the structured object base. The parser generates specific object instances whose initial states

are determined by the application specialist's input.

A-11

A.3.3.5 Structured Object Base. The structured object base contains application

specific information: specific instances of domain object classes with all approp)riate attribute values

for determining the object's state, as well as relationships for both domain objects and operations.

The kinds of objects that might populate the object base and the overall structural framework of

those objects (the shape of the abstract syntax trees) are established by the domain and software

architecture models. The specific object instances and the actual structure of the object base are

determined by the application-specific information provided by the application specialist using the

DSL and architecture grammars.

A.3.4 Composing Applications. The application composer generates the application archi-

tecture specified by the application specialist. This is accomplished by combining the appropriate

instantiated domain objects from the structured object base in accordance with the domain com-

position rules. After the architecture is generated, its behavior can be simulated to demonstrate

its suitability and correctness. It should be noted that the operations associated with each object

in the technology base are certifiably correct; that is, individual objects are guaranteed to behave

as required. However, the specific objects which are composed into the application may have been

combined in such a way that the composed application may not behave as expected or required.

When the application specialist is satisfied that the composed architecture is actually the one de-

sired, he can generate a formal specification for the architecture which can later be used to develop

a fully coded system.

A.3.4.1 Semantic Analysis. After an application is identified, the next step is

to ensure that the specified composition is appropriate; i.e., that it makes sense and meets the

constraints imposed by the composition rules. This step is accomplished via a semantic an dysis

phase. As in programming language compilers, one aspect of semantic analysis is to verify t, at

a syntactically correct construct, which satisfies the restrictions of the grammar in which it was

written, is -legal and meaningful" (19:10). To be legal and meaningful, the proposed application

A-12

must meet certain other composition restrictions: e.g., components must already exist before they

can be used. an input to one 'omponeut must be produced as an output from another component,

etc. Another aspect of semantic analysis is to use knowledge about domain objects and typical

system constructions to assist the application specialist in choosing the components needed and

in combining them appropriately to create applications which behave as desired. Errors identified

during the semnantic analysis phase must be corrected before the composition process can proceed.

A.3.4.2 Execute. A composed application architecture that passes all semantic

analysis checks is legal and meaningful, but does it do what the application specialist wants it to

do? The execute component of the application composer simulates the behavior of the architecture.

using object operations which specify each component's behavior. This behavior simulation may

not be efficient or robust enough to serve a.s a full-scale operational system, but it provides the

application specialist timely feedback on the correctness of the specified architecture. If the applica-

tion is incorrect (i.e., it does not behave as required/expected), the application specialist reassesses

the components which were used in the application and how they were combined, creating a new or

editted application to satisfy his requirements. This ability to simulate execution behavior in this

rapid-prototype manner assures the application specialist that the proposed application actually

behaves correctly before a formal specification and fully-coded system are generated.

A .3.4.3 Generate Specification. A legal, meaningful. and correctly composed ap-

plication provides a software architecture which satisfies the application specialist's requirements

for a particular application. The software architecture can be used as a blueprint, template, or

specification from which to design and implement a full-scale, operational version of the applica-

tion. The generated specification is intended to be in a formal, machine-processable format which

can be used directly by a code generation tool to produce a fully-coded application. However,

the specification format could be tailored to provide whatever form is appropriate for the using

organization: graphical, textual, etc.

A-13

A.3.5 Extend Technology Base. Eventually, the technology base, which formializes the

knowledge about domain objects, will become outdated as understanding of the. dominai evolves

and as the domain itself adapts to accommodate a cha nging technological environment. Although

the technology base may appear to be static, it must be dynamic enough to accommodate this

additional information as well as higher-level object classes and operations, generic components

and architectural fragments that are developed. These additional elements give added flexibility to

the application specialist because more predefined components are available for future app~lication.,

A specialized set of tools allows the technology base to be modified or extended to include

this additional or revised domain knowledge. The extender must enforce the structure dictated by

the domain modeling language and the software architecture model.

A.3.6 Visualization. "A picture is worth a thousand words." This old adage is still true

today, especially when dealing with complex and abstract concepts. The visual system provides the

application specialist with a graphical view of the structured object base, as well as the application

software architecture generated to satisfy his requirements. By reviewing these "pictures," the

application specialist can more fully ui:derstand the components available for composition and

the application just composed. Moreover, the visual system will also be capable of inserting new

instances of domain objects into the structured object base, editing domain objects already in the\object base, and executing the application composer. It.also provides the capability to extend the

technology base, enabling the application specialist and/or the software engineer to add/modify

domain object classes, add/modify generic components, and add/modify architectural fragments.

.4 Related Research

Several other research efforts have addressed various aspects of the system we are attempt-

ing to develop. This section summarizes this related work and analyzes the similarities to and

differences from our project.

A-14

/

A.4.1 Hierarchical Software Systems With Reusable Components. Don Batory and Sean

O*Malley are working to incorporate an engineering culture into software engineering. The tradi-

tional engineering mindset dictates that new systems are created by fitting well-tested. well-defined.

and readily available building blocks into a well-understood blueprint or architecture, which, if

properly used, is guaranteed to produce the desired system. To this end, they have developed

a "domain-independent model of hierarchical software design and construction that is based on

interchangeable software components and large-scale reuse" (7:2).

In Batory and O'Malley's view, each interchangeable component consists of an interface

(everything externally visible) and an implementation (everything else). Different components

with the same interface belong to a realn. All the components in a realm are considered to

be interchangeable or "plug-compatible" (7:3) because they have identical interfaces. Symmetric

components have at least one parameter from their own realn and can be combined in "virtually

arbitrary ways" (7:2) (also see Figure A.4). Conceptually, components are seen as layers or building

blocks for an application: a system is seen as a stacking of components, i.e., a composition of

components. Constraints on stacking components (i.e., rules of composition) are derived from the

compatibility of their interfaces.

Hierarchical software system design recognizes that -onstructing large software systems is a

matter of addressing only two issues: which components should be used in a construction and how

those components are to be combined together (7:16). It employs an open software architecture,

which is limited only by the inherent ability of the components to be combined, i.e., by their inter-

faces. Symmetric components have no inherent composition restrictions; thus, composition rules

are simplified while ensuring maximum design flexibility and potential reusability of components.

Batory and O'Malley use ar, interesting ana!ogy, equating their concepts to a grammar, as

shown in Table A.1 (7:5). Using this analogy, a domain i3 a language. Consider the following

example (7:5):

A-15

t , N

Given the following plug-compatible components:

A[x:R], B[x:R], C[x:R]
Some of the valid compositions include:

IAI BL I C

B A A B

A[B[C]] B[A[C]] C[A[B]] C[B[A]]

Figure A.4. Combining Plug-Compatible Components

A-16

S= {a, b.c} c-S alb c

R = { g[x:S]. li[x:S]. i[y:Rl]} R - gS I hS iR

A realm S. having a set of components (a, b, and c). corresponds to a production where the non-

terminal S can be replaced by either a, b, or c. Whenever a component from realm S is needed,

a, b, or c could be used, depending on the behavior and level of detail needed. A realn R, whose

components g. h, and i require parameters from realms S, S. and R. respectively, can be represented

by a production where a non-terminal can be replaced by both a terminal and a non-terminal. The

non-terminals on the right-hand side are the realms from which the parameters are provided. The

complete analogy is summarized in Table A.1.

Concept Grammar

Parameterized Components Productions with non-terminals on right

Parameterless Components Productions that only reference terminals

Symmetric Components Recursive production

Component Interface Left side of a production

Implementation Right side of a production

Realm Set of all productions with the same head

Software System Sentence

Rules of Composition Semantic error checking

Table A.1. Analogy to Grammar

Batory and O'Malley's work provides support for our research. It confirms the underlying

principle of an application generator: building software systems from reusable components is "sim-

ply" a matter of selecting which components to use and deciding how to compose them together.

It reinforces our intention to use an object-oriented approach in designing our system. It also illus-

trates the role of component interfaces in system composition and demonstrates the importance of

consistent interfaces and composition styles in developing rules for combining components.

A-17

On 'lie other hand, the Batory/O'Malley work falls short, in sonic ways. of what we are

attempting. It (toes not incorporate a mechanism for an application specialist to specify new appli-

cations in domain-specific terms; this is a primary emphasis of our project. It also does not seem

to provide for tailoring of component composition to suit the application being built, composing

component A with component B into component C will always produce the same behavior for C.

We want to be more flexible in our compositions and allow A and B to be composed into C in one

situation and C' in a different situation, depending on how the application specialist specifies the

composition-

A.4.2 Automatic Programming Technologies for Avionics Software. The Lockheed Soft-

ware Technology Center has developed the Automatic Programming Technologies for Avionics

Software (APTAS) system pictured in Figure A.5 (29:2). The APTAS system, built for the tar-

get tracking domain, "takes a tracking system specification input via user interface with dynamic

forms and a graphical editor, and synthesizes an executable tracker design" (29:1). An applica-

tion specialist defines a new tracking application by answering questions which appear in pop-up,

menu-like forms. His answers determine which addtional questions are to be asked as he is guided

through specifying a new tracker. When all pertinent specifications have been entered (defaults

exist for questions which are left unanswered), the application specialist generates a software ar-

chitecture for the new tracker via the architecture generator. A graphical user interface provides a

"picture" of the application architecture and allows the user to change it interactively. After the

application specialist is satisfied with the architecture just created, he gene-ates executable code to

implement that architecture via the synthesis engine (29). He can also invoke a run-time display

which facilitates testing and analyzing the tracker just created.

The Tracking Taxonomy and Coding Design Knowledge Base is at the center of dhe APTAS

system. It contains the system's sp,-cification forms, the primitive modules from which new track-

ers are constructed, and the composition rules which establish how primitive modules are to be

A-18

DYNAMICFOPNFigur A.5.TCT9 APTASCLUER

comine. Te apliatin pecalits nswrs o te 1uet ins n te se INction form pogEs

sivelyFAC reueteENERofpiiiv oucswihATRe addtsfr~koloainit h e

trckr.Th acitctregeertd po cmpeto o te ors pciictin sSYNTHESISelit

AND9

The Ai'TAS primitive modules and their composition rules are also written in CIDL. Extend-

ing the system involves writing new primitive modules and incorporating references to these new

modules into the appropriate composition rules and specification forms. This is generally consid-

ered to be a software engineer's task (rather than an application specialist's), as CIDL is a software

specification language and few tools exist to simplify the process.

APTAS is strikingly similar to the system we envision. It clearly demonstrates that the

concept of user-initiated composition and generation of domain-specific systems is feasible. It

allows application specialists to specify new applications in domain-specific terms, by way of menu-

like specification forms. It also provides a sophisticated graphical user interface which can be used

to construct and/or edit the tracker system, as well as to view the structure of the architecture.

There are, however, some major differences between APTAS and the system we are devel-

oping. APTAS's use of a domain-specific language is implicit and embodied in its graphical user

interface. Our domain-specific language, on the other hand, is explicit and its grammar is usable

in both textual and graphical modes. We believe this provides advantages to both the software

engineer and application specialist in terms of adaptability, flexibility, and ease of use. In addition,

APTAS currently lacks a set of convenient tools to facilitate extending its knowledge base, such a

toolset is an integral part of our system.

A4.3 Model-Based Software Development. The Software Engineering Institute's (SEI)

Software Architectures Engineering (SAE) Project has proposed a concept called Model-Based Soft-

ware Development (MBSD) (28). Like Batory and O'Malley. MBSD strives to apply traditional

engineering principles to software development by exploiting prior experience to solve similar prob-

lems. This prior experience is codified in models, "scalable units of reusable engineering experience"

(28:11), which are stored in a technology base. In a mature engineering domain, the technology

base will contain "all the components an engineer needs to predictably solve a class of problems,

and the tools and methods needed to predictably fabricate a product from the components specified

A-20

S/4

by the engineer" (28:4). Under MBSD. software development follows the engineering paradigm:

reuse existing, mature models rather than starting from scratch for each new development. This

involves much more than code reuse; the requirements analysis, design. and software architecture

are reused each time the corresponding model is used.

MBSD uses a technology base, a repositcry of models and composition rules that share com-

mon engineering goals. Each model is mapped to a specification form and a software template for

the target application language. The specification form is a text-based description which uniquely

identifies a specific instance of a model. The software template is code containing place holders,

which are replaced with information from the specification form (28:10).

As part of MBSD, the SEI uses the Object-Connection-Update (OCU) model as a consistent

pattern of design, a software architecture. This model is especially suited to domains where the

real world can be modeled as a collection of related systems and subsystems (28:17). Partitioning

a system into subsystems provides different levels of abstraction, giving the flexibility to replace a

subsy3tem with another that either provides a different function or has a different level of detail. In

the OCU model, subsystems consist of a controller, a set of objects, an import area, and an export

area as pictured in Figure A.6 (28:18).

1. Controller - Performs the mission of the subsystem by requesting operations from the objects
it connects. A controller is passive, triggered by a call to perform its mission, and depends
on the other subsystem components to accomplish that mission.

2. Objects - Model behavior of real-world entities ard maintain individual state information.
An object is passive, triggered by a call from the cdntroller to which it is connected.

3. Import Area - Makes data external to the subsystem ývailable to the controller and its objects.

4. Export Area - Makes data internal to the subsystem available to the other subsystems.

Both controllers ard objects have standard procedur 1 interfaces used by external controllers

or application executives to invoke some action. Controllers have the following procedures (28:19):

1. Update - Updates tCe OCU network based on state ata in the import area and furnishes
new state data to the export area.

2. Stabilize - Puts the system in a state consistent with the current scenario.

3. Initialize - Loads the configuration, creates objects, and defines the OCU network.

A-21

ImportsExports

Controller

Objects

Figure A.6. OCU Subsystem Construction

4. Configure - Establishes the physical connection between import area and input data as well
as export area and the output data.

5. Destroy - Deallocates the subsystem.

All objects have procedures analogous to those for controllers, but operating on a single object

instance. Specifically, these procedures are (28:20):

1. Update - Calculates the new state based on input data and the current state.

2. Create - Creates a new instance of the object.

3. SetFunction - Changes or redefines the function used to calculate the state.

4. SetState - Directly changes the object's state.

5. Destroy - Deallocates the object.

These well-defined and consistent interfaces for controllers and objects facilitate and simplify the

application composition process.

MBSD provides some significant insights upon which to base our research effort. Its focus

on the reuse of validated, engineering experience is attractive and we have adopted the notion

of storing such information in a technology base. The OCU model provides a realistic approach

toward composing primitive objects into application-specific subsystems.

A-22

A.4.4 Extensible Domain Model12 . The Kestrel Interactive Development System (K(IDS)

is a knowledge-based system that allows for the capture and dlevel op ment of domain knowledge

(44). The representation of the domain knowledge constitutes a domain modcl, and these domain

models are called domain theories. Essentially, the domain theory provides a formal language,

natural to specialists in that domain, for specifying the problem they want t0 solve. The KIDS

system provides support for constructing, extending, and composing domain theories, and over 90

theories have been built up in the system (44). Additionally, the set of domain theories developed

during the domain modeling effort serves as the basis for software synthesis.

The foundations of the KIDS approach emerged from years of research into the specification

and synthesis of programs (44). Concepts from algebra and mathematical logic are used to model

application domains and synthesize verifiably correct software. Domain modeling entails the anal-

ysis of the domain into the basic types of objects, the operations onl them, and their properties

and relationships. The domain model is then expressed as a domain theory. Theories are useful for

modeling application domains for the following reasons.

1. The basic concepts, objects, activities, properties, and relationships of the domain are cap-
tured by the types, operations, and axioms of a theory.

2. Any queries, responses, situation descriptions, hypothetical scenarios. etc. are expressed in
the language defined by the domain theory.

3. The semantics of the application domain are captured by the axioms, inference rules, and
specialized inference procedures associated with the domain theory.

4. Simulation, query answering, analysis, verification of properties, and synthesis of code are
supported by inference within the domain theory.

5. Various operations on models such as abstraction, composition, and interconnection are sup-
ported by well-known theory operations of parameterization, importation, interpretation be-
tween theories, and others. Thus, a high degree of extensibility is obtained.

A.5 Specific System Concept

Several aspects of the system described in Section A.3 depenid heavily onl the choice of time

models and tools used in the implementation. These selections nmay impact other parts of the

2This section was provided by Major Paul D. Bailor

A-23

system. Figure A.7 is a modification of the system overview, incorporating the specific models and

tools to be used. It represents Architect. the specific system which is to be implemented during

this research effort.

A.5.1 System Overview. Figure A.7 illustrates how specific tools and models further define

Architect. REFINE, as the domain modeling language, imposes its structure on the domain model

(which will be represented in REFINE also). Input, written in the domain-specific and architecture

grammars, is processed through a parser generated by DIALECT. DIALECT requires two inputs to

generate a parser: a DIALECT domain model (a subset of the system domain model) and a grammar

definition. The DIALECT parser creates ab tract syntax trees in the structured object base. The

visualizer will be implemented using INTERVISTA. The SEI's OCU model will serve as our software

architecture model, providing a structure around which to generate our applications. KIDS will

serve as a mechanism for realizing extensibility of the domain model and technology base.

A.5.2 Software Refinery. Software Refinery is a formal-based specification and pro-

gramming environment developed by Kestrel Institute and available commercially from Reasoning N

Systems, Inc. We have selected this environment in which to implement Architect for several rea-

sons, but the main factor in our decision is REFINE's powerful, integrated toolsets that allow rapid

prototyping. This decision has many implications on how the system will operate, as we will show.

A.5.2.1 Capabilities. The REFINE environment consists of the following tools:

1. A programming language (REFINE) which includes set theory, logic, transformation rules,
pattern matching, and procedures (41:1-2). The REFINE language provides a wide range of
constructs from very high level to low level, making it suitable for various programming styles,
including use as an executable specification language.

2. An object base which can be queried and modified through REFINE programs (41:1-2). "Ob-
ject classes, types, functions and grammars are among the objects you can define and manip-
ulate" (41:1-4) with several built-in and powerful object base manipulation tools.

3. A language definition facility (DIALECT) which allows design of languages using an extended
Backus Naur Form notation. REFINE supplies a lexical analyzer, parser, pattern matcher,
pattern constructor, and prettyprinter for the language (41:1-2).

4. A toolset (INTERVISTA) which is useful in creating a visual, window-based interactive user
interface.

A-24

00

E

C

.2-

A.5.2.2 Domain Modcling Language. Sonie domain modeling languages already

exist for expressing domain knowledge within a formalized domain model-, we considered two such

languages: the Requirements Modeling Language (RML) and REFINE.

RML was designed as a research tool as part of the Taxis Project at the University of Toronto.

It allows "direct and natural modeling of the world" (20:3) in an object-oriented manner which

"captures and formalizes information that is left informal or not documented in current approaches"

(20:1). RML can express "assertions (what should be true in the world), as well as entities (the

'things' in the world) and actions (happenings that cause change in the world)" (20:4). This is

precisely the type of information we want to capture in our domain model.

Even though both RML and REFINE appear to be capable of expressing the kind of informa-

tion we require in the domain model, we chose REFINE as our domain modeling language for the

following reasons:

1. REFINE provides an integrated environment including programming constructs and powerful
object base manipulation tools. Use of REFINE's existing tools eliminated the need to write
our own, allowing more time to be spent on the research itself.

2. RML is not an executable language; no compilers currently exist. To use RML, we would
be forced to develop a compiler, a considerable overhead to our project. As REFINE is also
capable of expressing the information we require, it is unclear what added benefits RML could
provide to justify this additional expense.

3. The REFINE environment includes compatible tools (DIALECT and INTERVISTA) useful in
other portions of the system.

4. REFINE is a commercially available and supported product.

5. Members of the research team already possessed a working knowledge of REFINE.

A.5.2.3 Parser. "DIALECT is a tool for manipulating formal languages" (42:1-1). A

part of the REFINE software development environment, DIALECT generates appropriate lexical an-

alyzers, parsers and pretty-printers for user-specified, context-free grammars. Valid input is parsed

and stored as abstract syntax trees in the REFINE object base, according to the structure estab-

lished in the DIALECT domain model. The DIALECT domain model defines object classes, object

attributes, and the structure of the instances in the object base. DIALECT also supports grammar

A-26

J4

inheritance, allowing for a base language with several variations or "'dialects." In Architect, the

architecture grammar acts as the common base, and the domain-specific grammar specifies a par-

ticular variation. DIALECT does impose restrictions on the grammars. Since DIALECT generates an

LALR(1) parser, the grammar must be consistent with this type of parser. Also, the productions

in the grammar must correspond to the structure defined in the domain model. Altering some

productions may require updating the DIALECT domain model.

A.5.2.4 Structured Object Base. The structured object base was implemented using

the REFINE object base. REFINE includes many tools which, when combined with REFINE code,

provide all of the functions necessary to manipulate the structured object base. However, the object

base must be accessed through the REFINE environment.

A.5.2.5 Technology Base. Models in the technology base were represented as RE-

FINE code and stored in REFINE's object base. Although separate conceptually, the technology

base and structured object base are not physically separate. Access iq controlled by Architect to

avoid any confusion.

A.5.2.6 Visual Syetem. INTERVISTA provides a tool set with which to generate a

window-based graphical user interface. It is compatible with the other REFINE tools; therefore,

it is easily integrated. INTRVISTA can access the REFINE object base, so all its required data is

readily available.

A.5.3 Object-Connection-Update Model. We have selected the Software Engineering In-

stitute's Object-Connection-Update (OCU) model for our software architecture model. As such,

it provides a framework for composing applications - a standardized pattern of design for all ap-

plications and their components. The OCU model's consistent interfaces enable all components to

be accessed in the same manner and its intercomponent communication scheme ensures that each

component can readily access the external data needed for its processing. Currently, our focus is

A-27

-- " - " r

on implementing the subsystem aspect of the OCU model: the hardware interface portion of the

model will be addressed in follow-on research efforts.

The choice of the OCU model for our software architecture model had certain implications

for Architect.

1. Terminology - In keeping with the OCU model, we will refer to domain primitive objects as
-objects," compositions of objects as "subsystems," the locus of control of a subsystem as a
"controller," and the overall application itself as an "executive" (see (2) for a more detailed
discussion of the executive). External data neceed by an object are "input-data," whereas
data to be made externally available are "output-data." An "iniport area" serves as a focal
point for all external data needed by the subsystem and an "export area" is the focal point
for all internal data to be made available to other subsystems. The OCU model's names for
the object and controller procedural interfaces have also been retained.

2. Use of a Technology Base - Although the concept of storing reusable domain knowledge or
models in a technology base is not unique to the OCU model, it is a fundamental component
of Model-Based Software Development of which the OCU model is a part.

3. Domain Analysis - The OCU model deals with objects and subsystems. This imposes a
constraint on the domain engineer and will impact the manner in which domain analysis is
conducted. Under the OCU model, the domain engineer must model the domain in terms
of subsystems which can be composed from lower-level, more primitive objects. Many do-
mains can be naturally modeled in such a way; with other domains, a new mindset may be
needed to incorporate the subsystem/object requirements of the OCU model. Alternatively,
an additional class of software architectures may need to be defined.

4. Definition of Domain Objects -- The OCU model requires that all objects be defined in the
same manrer. Each object has state data, other descriptive information, input-data/output-
data definitions, and the following procedural interfaces: Update, Create, SetFunction, Set-
State. and Destroy. These requirements dictate how the objects will be constructed, severely
limiting implemer.nation choices. However, it is this very limitation which provides the flex-
ibility that allows the domain objects to be successfully composed to satisfy the application
specialist's specification.

5. Definition of Architectural Fragments - The OCU model requires that all Irchitectural frag-
ments (subsystems) be described in the same way. All subsystems have an import area,
export area, controllf and objects. Each controller has the following proc. dural interfaces:
Update, Stabilize, Initialize, Configure, and Destroy. As with the objects, this apparent limi-
tation on implementation choices actually provides great flexibility in comp sing subsystems
and combining them into a complete application.

6. Composition Rules - The standardized object/subsystem defluitions and i terfaces of the
OCU model simplify application composition. There are Do inherent restrict ons preventing
one component from being combined with another; all composition rules are omain-specific
and do not derive from the software architecture.

7. Intercomponent Communication - The OCU model establishes and dnforces a standard
method for intercomponent communication. Communication external to the subsystem is
localized in the import area which obtains the necessary input-data for all objects within the
subsystem. This localization of communication concerns within the narrow guidelines imposed
by this scheme simplifies intermodule communication: subsystems can readily obtain needed

A-28

external information in a consistent manner and changes in the low-level implementation of
the communication process are hidden from the subsystems/objects.

8. Structure of the Resulting Application Specification - Obviously, the specification produced
by the application composer is impacted by the choice of a software architecture model.
The OCU model produces an application (an "executive") which is composed of subsystems.
These subsystems can be decomposed into objects and lower-level subsystems, if appropriate.
This hierarchical structure is preserved in the generated specification.

The OCU model is the result of years of research and experimentation by the SEI. It has

been used successfully in the flight simulator, missile, and engineering simulator domains (13)

and appears to provide a suitable structure for composing applications within our application

composition system.

A.6 Conclusion

Software engineering may be on the brink of a new era, an era in which software engineers

develop knowledge about generating software systems and application specialists actually create the

software systems using familiar, domain-oriented terms. Our research, which builds on important

work already accomplished by various researchers, is designed to demonstrate the feasibility of such

an application composer.

A-29

Appendix B. Sample Session

This appendix contains a sample session in which we build an application in the digital circuits

domain, a binary array multiplier. A schematic diagram for a binary array multiplier is given in

figure B.1.

AND
AND1

a

AN AND

.'A

Figure B.1. Binary Array Multiplier Schematic Diagram

B.1 Starting AVSI

Assuming that the Software Refinery system has already been loaded, in the Emacs REFINE

window, enter:

(load "l")

This file contains a LISP function that loads the DIALECT, INTERVISTA, Architect, and AVSI files.

After this file has been loaded, enter:

(1)

B-i

I m,P ;I : !5 I ,.-e...."'

Figure B.2. AVSI Main Window

It will take a few minutes for the files to load. Upon completion. a prompt appears:

Load Complete

Type "(AVSI)" to start AVSI

Enter the command:

(AVSI)

The visual specification files are now loaded and the control window (refer to B.2) appears in the

upper left-hand corner of the screen. The upper portion of this window contains "buttons" that

represent the AVSI's main functions for composing an application. The lower portion contains a

message area where various user messages are displayed during the application composition process.

B.2 Create New Application

To create a new application,

1. Click any mouse button on the button labeled "Create New Application."

2. A pop-up window appears and prompts, "Select Domain.' Click on the menu item "CIR-

CUITS."

3. A pop-up window appears with the prompt, "Enter name of application." Type

binary-array-mult

B-2

- - .. ¶,-4

4. The name can be entered by hitting the "return" key or by clicking on "do it" at the bottom

of the pop-up window.

B.3 Edit Application

Editing an application is comprised of two separate operations, editing an application's comf-

ponents. and editing an application's update algorithm.

To add a subsystem-object to the application,

1. Click any mouse button on the button labeled "Edit Application".

2. A pop-up menu appears with the prompt "Choose Application." Click on the menu item

"BINARY-ARRAY-MULT."

3. A pop-up menu appears with the prompt "Choose:" Click on the menu item "Edit Application

Components." A window appears with a single icon labeled, "APPLICATION-OBJ BINARY-

ARRAY-MULT" (refer to Figure B.3).

4. Click on the diagram surface (anywhere within the window except within any icon's bound-

aries) of the new window. A pop-up menu will appear.

5. Select "Create New Subsystem." - V

6. A pop-up window appears. with the prompt "Enter a name:" Enter

driver

7. A new icon appears and is attached to the mouse cursor. Place the icon below the application-

object icon by moving the cursor to the desired location and clicking.

8. Click any mouse button on the newly created subsystem icon and select the menu option

"Link to Source."

9. The mouse cursor changes from an arrow to an oval with a dot in it. This signifies that an

object needs to be selected. Place the mouse cursor on the application-object's icon and click

B-3

..--* -, ,t•- ,, • • •

Figure B.3. Edit-application-objects window

any mouse button. A link appears between the application-object's icon and the subsystem-

object's icon. as in figure B.4

10. Close the edit-application-objects window by clicking on the diagram surface and selecting

"Deactivate"

To edit the application-object's update-algorithm.

1. Click any mouse button on the button labeled "Edit Application".

2. A pop-up menu appears with the prompt "Inoo~e Application." Click on the menu item

"BINARY-ARRAY-MULT."

3. A pop-up menu appears with the prompt "Choose:" Click on the menu item "Edit Application

Update." Two windows appear, one contains the update algorithin'3 diagrammatic view, and

the other contains its textual view. The diagram window contains two text icons. labeX.d

"Start" and -End," and there is a dotted arrow pointing from the start-icon to the end-icon

(refer to figure B.5).

4. Click on the "nub" which is placed on the dotted arrow midway between the start and end

icons.

B-4

,-W, -° - -

Figure B.4. Edit-application-objects window"

Figure B.5. Edit-Update-Algorithm Window with Null statement sequence

B-5

SlN

5. Select "Insert Statement" from the pop-up menu.

6. Select statement update-call statement by clicking on "UDdate-call-obj" from the pop-up

menu. An icon is automatically placed midway between the start and end icons.

7. Click on the new update icon and select "Edit."

8. A pop-up window appears with the prompt, "Enter Operand Name," and lists the current

operand name, which is "*UNDEFINED*." Replace the current operand name with:

Driver

The application update algorithm is shown in figure B.6. Note the textual representation is

...

Figure B.6. Edit-Update-Algorithm Window with update statement

automatically updated to reflect each change in the diagram window.

9. Close the edit-update-algorithm windows by clicking on the black title bar at the top of the

windows and selecting "deactivate."

B-6

__ _ _ _ _ _ _ _ _ _ .,

B.4 Editing a Subsystem

With minor differences, editing a subsystem is very similar to editing an application. In this

section, we will add create primitive objects and a nested subsystem for the subsystem created in

the previous section.

The subsystem, "driver" controls four switches, four LEDS, and the binary array multiplier,

a separate subsystem. To add these objects, perform the following steps:

1. Click on the "Edit Subsystem" button in the control panel window.

2. Click on the menu item "DRIVER." A window now appears, the edit-subsystem window,

which contains a representation of a subsystem similar to the standard OCU picture of a

subsystem (see figure B.7).

Figure B.7. Edit-subsystem window

B-7

3. Click on the "objects" icon in the edit-subsystem window. The edit-subsystem-objects win-

dow for this subsystem appears, and contains a single icon, labeled "SUBSYSTEM-OBJ

DRIVER." A second window, the technology-base window, appears and contains an icon for

each primitive-object in the current domain (see figure B.8).

Figure B.8. Technology Base Window

4. Click on the diagram surface of the edit-subsystem-objects window and select the "create new

subsystem" menu item.

5. Name the new subsystem

BAM

6. Place the subsystem-icon somewhere on the diagram window.

7. Click on the new subsystem-icon (BAM), and select the menu item "link to source."

8. Link the new subsystem-icon (BAM) to its controlling subsystem (DRIVER).

B-8

N; '-I

Add the primitive objects:

1. Click on the icon in the technology-base window labeled "Switch-Obj."

2. A Switch-icon is created and attached to the mouse cursor. Place this icon on in the edit-

subsystem-objects window near the subsystem-icon labeled "DRIVER."

3. Name the switch by typing in the pop-up window,

AO

4. Click on the Switch-icon and select the menu item, "Link to source."

5. Connect the Switch-icon to its controlling subsystem's icon (DRIVER)

6. Follow the above steps to create, place, and link to the DRIVER subsystem, three more

switch objects, named Al, Ba, and B1. "7'

7. Create four LE. objects, named CO, C1, C2, and C3, and link them to the DRIVER subsys-

tem, as in Figure B.9

8. Force a screen redraw by clicking on the edit-subsystem-object's diagram surface and selecting

the menu item "Redraw." The subsystem is scaled and redrawn as in figure B.10.

9. You may, at any time, pretty-print an object by clicking on its icon and choosing the menu

selection "pretty-print object." Figure B.11 shows a pretty-print of DRIVER.

10. Kill edit-subsystem-objects window by clicking its black title bar and selecting "deactivate."

Create an update algorithm by performing the following steps:

1. Click on the "Controller" icon in the edit-subsystem window.

2. Click on the "nub" which is p!aed on the dotted arrow midway between the start and end /

icons.

3. Select "Insert Statement" from the pop-up menu.

B-9

\/ " - •, IA

0• 0 i. , ,/

cct

SU M a

MWER

Fiue .. RVE usytm.wthpiitv ojct n nsedsbsse

B-IO O08

Clr

0p 00

S•m

Figure B.10. Redrawn, scaled DRIVER Subsystem

OWN. 031 Co. 02. on. A0. at.

30. 31

Owoott

TWI 310302. 3003 00

231 30*1. CUM.10 03""'rt.
SOut a050 302.00mv031m a0

Figure B.11. Pretty-print of subsystem DRIVERm

B-li

I-. . --

4. Select statement update-call statement by clicking on "Update-call-obj" from the pop-up

menu. An icon is automatically placed midway between the s. ,t and end icons.

5. Click on the new update icon and select "Edit."

6. A pop-up window appears with the prompt, "Enter Operand Name." Type:

A0

7. New statements may be inserted between two icons by clicking on the "nubs" positioned on
the link that is between the icons. Insert several more update-call statements by following
the previous steps, creating the following sequence (note that the order of the statements is
important):

update AO
update Al
update BO
update Bl
update BAM
update CO
update CI
update C2
update C3

8. Deactivate the update algorithm windows.

The subsystem, "BAM" controls four AND-gates and two half-adders. To add these objects,

perform the following steps:

1. Click on the "Edit Subsystem" button in the control panel window.

2. Click on the menu item "BAM."

3. Click on the "objects" icon in the edit-subsystem window. The edit-subsystem-objects window

for this subsystem appears, and contains a single icon, labeled "SUBSYSTEM-OBJ BAM."

4. Click on the icon in the technology-base window labeled "AND-gate-obj."

5. An AND-gate-icon is created and attached to the mouse cursor. Place this icon on in the

edit-subsystem-objects window near the subsystem-icon labeled "BAM."

6. Name the switch by typing in the pop-up window,

B-12

-. •- •. .

and-1

7. Click on the And-gate icon and select the menu item, "Link to source."

8. Connect the And-gate icon to its controlling subsystem's icon (BAM)

9. Follow the above steps to create, place, and link to the BAM subsystem, three more AND-gate

objects, named and-2, and-3, and-4.

10. Create two Half-adder objects, named ha-1 and ha-2, and link them to the BAM subsystem.

11. Force a screen redraw by clicking on the edit-subsystem-object's diagram surface and selecting

the menu item "Redraw."

12. Kill edit-subsystem-objects window

Create an update algorithm by performing the following steps:

1. Click on the "Controller" icon in the edit-subsystem window.

2. Click on the "nub" which is placed on the dotted arrow midway between the start and end

icons.

3. Select "Insert Statement" from the pop-up menu.

4. Select statement update-call statement by clicking on "Update-call-obj" from the pop-up

menu. An icon is automatically placed midway between the start and end icons.

5. Click on the new update icon and select "E,.,i."

6. A pop-up window appears with the prompt, "Enter Operand Name." Type:

and-1

7. Insert several more update-call statements by following the previous steps, creating the fol-
lowing sequence:

update and-1
update and-2
update and-3
update and-4
update ha-2
update ha-1

,B-13

8. Close all edit-update windows

B.5 Connecting Subsystems' Imports and Exports

To connect subsystems' import and export areas perform the following steps:

1. Click on the control panel button labeled "Build Imports and Exports." The import/export

window appears, and contains an icon group for each subsystem in the application (refer

to figure B.12). Each icon group contains three icons: a rectangle and two circles. The

C- -0

\

Figure B.12. Subsystem Icon Groups

rectangle is the subsystem icon, and is labeled with the subsystem namae. If a subsystem is a

B-14

nested subsystem, its controlling subsystem appears in parentheses. The two circles are the

import-area (labeled "IImp.") and export-area (labeled "Exp.") icons.

2. Click on the subsystem icon (the rectangular icon) labeled BAM. Choose "Make internal

connections" from the pop-up menu. The import-export window now contains an icon group

for each primitive object in the subsystem, BAM (refer to figure B.13).

7=.

Figure B.13. Icon Groups for Primitives

3. Click on HAI', "Imp" icon. A window opens that lists the import objects in the BAM

subsystem that are associated with HAL.

4. Click on the item named "IN2." Observe in the diagram window that dashed arrows appear,

showing all the potential sources for this import item.

5. Click on HA2's "Exp" icon. A window opens that lists the export objects in the BAM

subsystem that are associated with HA2.

B-15

I,
S~~~~~.. . 4• :""'

6. Click on the item named "C."

7. Observe that the "source" and "target" entriet are filled in in the text windows indicating

the conncction just made. Also observe that the dashed arrows disappear in the diagram

window.

8. Follow the above steps to establish the rest of the "local" connections:

Source Target

HAl.IN1 AND4,OUT1

HA2,IN1 AND2,OUT1

HA2,IN2 AND3.OUT1

9. Close the Import/Export Diagram window.

10. Click on the "Build Imports/Exports" buttorn on the control panel. This brings up the original

display. Now we will make the subsystem-to-subsystem connections.

11. Click on Subsystem DRIVER's "Imp" icon. This brings up a text window that lists all of

DRIVER's import objects. Note that all of these import objects have the same name and

may be distinguished by the "consumer" field.

12. Click on the item named "INI" for consumer C3.

13. Click on subsystem BAM's "Exp" icon to br'ng up its export area test window.

14. Click on the item named "C" for Producer HA1 and observe that source and target fields are -

filled in, indicating the connection.

15. Repeat the above steps the establish the following connections shown if figures B.14 and B.15.

16. Close all windows except for the control-panel window.

B-16

,p~.

-:-" ;.2•_ "•-• ... ;" ; • ', • ,• " . '

Nm.e Category Consumea (Source; Obj. SS. Name)

DNI SIGNAL C3 (MAl. DAN, C)
INI SIGNAL C2 (HA•l, BAN, S)
1N1 SIGNAL C0 (H7•2. SAX, S)
Mii SIGNAL Co (AN1., SAX, OUT%")

NSem Catagory Producer (Target: Ob, SS, NMm)o

0UT SIGNAL at (hMD. BAN, INI) %
(AN1D4, DAN, IXN)

0UT1 SIGNAL 30 (AND3. BAR, IN2)
(•AMI, BAN., 112)

OM1 SIGNAL A((AND4 ABN., 111)
(AND3. DIX. On,1)

0V21 SIGNAL AG (ANDI. DAN,. Ii)
(A•2D. DAN. xxi)

Figure B.14. Import/Export Connections for Driver

B-17

: /It

Name Category Consmer (Source- Obj SS, Name)

w' $IGONAl., HA2 (AIID3, DAx, 0UTl)
I21 SIGNAL 1h2 (AND2, :ANX, 0i.)
122 riGNAL ml (M2, BAN, C)
nn SIrAL KAI (A1, DBAN,. 0UT1)
12(2 SIGNAL AND4 (DR, ARV1 01711)

121 SIGNAL A2(D4 (AI DInn~. 01ff)
12(2 SIGNAL 52(D3 (D0. DRIVER. Owl1)
IN1 SIGNAL ANI3 (Al. DRIVER, GUIi)
I2 SIGNAL 51(02 (61. DRIVER, GUT1)
12(SIGNAL M102 (A•G DRIVER, 0GUl)
na(SIGNAL Ar,1 (DO.: DRIVER. GUTl)
IN1 .IONAL AND1 (AG, DRIVER. OUT1)

Name Catagory Producer (Ta ge.t: Obj 55, Naen)

C SIlNuL NA2 (Al, DAN. INs,
S SIGMAL NA2 (Cl, DRIVER, IN)1)
O :IONAL NA (23, DRIvER. M2I)
S SI NAL HA (C2. DRIVER. 121)
G l SIZONAL AND4 (HAI, BAN. INI)
0UTt :IONAL AND3 (HA2. SAN. INO)
GUll SIGNAL AM02 (HA:2 lAN, INI)
O1 SIGNAL 52(r1 (CO. DRIVER. XMI)

Figure B.15. Import Export Connections for BAM

B-18

11.6 Semantic Checks

Whenever the import and export areas are connected, as in the previous section, semantic

checks are automatically run. However, semantic checks may be run at any time by clicking on

the control panel button labeled "Check Semantics." The results of the semantic checks may be

viewed in the EMACS window.

11.7 Execute Application

Click on the control panel button labeled "Execute Application." The results are display in

the EMACS window.

Change switch settings with the object attribute editor by performing thle following steps:

1. Click on the control panel's "Edit Subsystem" button.

2. Choose "DRIVER" from the pop-up window.

3. Click on the "Objects" icon in the edit-subsystem window.

4. Click on the switch icon labeled "*AO."

5. Choose "View/Edit attributes" from the pop-up window. A window appears, listing AO's

attributes.

6. Click on the attribute, "Position." A pop-up window appears, listing the current value of the

switch.

7. Enter a new value for the switch position by typing

ru: :off

(The "ru::" prefix is the package name and is required for symbols. It is not required for

other data types such as numbers and strings)

8. Change the values for any other switches in the same manner as above.

B-19

9. Click the "'Execute"' button again and observe the results in the EMACS window.

B2

. 7.

Appendix C. System Files

This appendix contains a listing of the Lisp file used to load Architect and AVS. The order /

in which the files are loaded in this file also indicates the required comipilation order.

(defun 10)

% Load system files for Dialect and Intervista

(load-system "dialect" "1-0")
(load-system "intervis~a" "I-0")

% Load Architect files

(load "./DSL/lisp-utilities .lisp")

(load "./0CU-dm/dm-ocu"P
(load "./OCU-dm/gram-ocu")
(load "./DSL/globals") j
(load "./DL/obj-utilitiles")
(load "./DSL/read-utilities")
(load "./DSL/erase")
(load "./DSL/menu")
(load "./DSL/display-files")
(load ". /DSL/modify-obj'#)
(load "./DSL/save")
(load "./DSL/generic")
(load "./DSL/build-gener~ic")
(load "./DSL/complete")ý
(load "./0CU/set-debug"'ý
(load "./OCU/iinports-expcarts")
(load "./OCU/eval-expr"
(load "./OCU/execute") ý
(load "./OCU/somantic-checks")
(load "I./load-logic-domain")
(load "./load-gizmo-domain")

% Load Logic Domain

(load "./CIRCUITS-TECE-BASE/and-gate"l)
(load "./CIRCUITS-TECE-BASE/or-gate"l)
(load "./CIRCUITS-TECE-BASE/nand-gate"l)
(load "./CIRCtJITS-TECH-BASE/nor-gate"l)
(load ". /CIRCUITS-TECH-BASE/not-gate")
(load ". /CIRCtJITS-TECH-BASE/switch")
(load "./CIRCUITS-TECH-BASE/j k-flip-f lop")
(load ". /CIRCUITS-TECH-BASE/led")
(load "./CIRCIJITS-TECH-BASE/counter")
(load ". /CIRCUITS -TECH-BASE/decoder")
(load "./CIRCUITS-TECH-BASE/half-adder")
(load "./CIRCUITS-TECH-BASE/mur")

C-1

U-- ' -J-

(load "l./GIZMOS-TECH-BASE/gizmo-gram-dsl")

%Load Gizmos Domain

Cload "./GIZMOS-TECH-BASE/contraption")
(load "./GIZMGS-TECH-BASE/gadget")
(load " /GIZMOS-TECH-BASE/glibsnitz")
(load "./GIZMOS-TECH-BLSE/tning")
(load "./GIZMOS-TECH-BASE/widget")
(load ". /GIZMOS-TECH-BASE/gizmo-gram-dsl")

% Load AVS files (these files are in the
% REFINE-USER-REFINE-INTERFACE package

(load "Iri-user-pkg")
(in-package 'ru-ri)

(load "lisp-file-utils")
(load "tech-base")
(load "vsl-dm")
(load "~vsl-gr"I)
(load "'vsl-utils")
(load "edit-expression")
(load "viz-utils")
(load "edit-update")
(load "edit-attr")
(load "create-obj")
(load "edit-as")
(load "edit-applic")
(load "'viz")
(load "limp-exp"l)

% Parse VSL description files

(in-grammar 'ru: :viz)
(pv l "vsl-circuits .re"l)
(pvf "vsl-gizmos re"l)

C-2/

Z7

Appendix D. VSL Specification of Digital Circuits Domain

This appendix Contains the domain model and gramimar for the Visual Specification Lan--

guage, and contains the VSL descrintion for the CIRCUITS domain:

D.1 VSL Domain Model
IIin-packageQRlU")

1! ia-grammar('user)

var Viz-Spec-Obj object-class subtype-of user-object
var Class-spec-Obj object-class subtype-of Viz-Spec-Obj
var Icon-Attr-abj object-class subtype-of Class-spec-Obj
var Edit-Attr-Obj :object-class subtype-of Class-spec-Obj

var Class-Specs :map(Viz-Spec-Obj, seq(Class-Spec-Obj)) fill

var Class-Name inap(Class-Spec-Obj,,symbol) -{I

var Icon-Attributes :map(Class-Spec-Obj, seq(Icon-Attr-Obj)) -{I

var Edit-Attributes :map(Class-Spec-Obj, seq(Edit-Attr-Obj)) f ill

var Edit-attr-name :map(Edit-Attr-Obj, symbol) - fill}
var Edit-attr-type map(Edit-Attr-Obj, symbol) - fill

var Icon-attr-name map(Icon-Attr-Obj, symbol) *{I

var Icon-attr-val :map(Icon-Attr-Obj, any-type) U)

%% Icon attribute definitions

%var Icon-Active? zmap(Viz-Spec-Obj, symbol) f ill
%var Icon-Shape :map (Viz-Spec-Obj, symbol) {I)
%var Icon-Size-Factor :map(Viz-Spec-Obj, real) ={I

%var Icon-Height-Width-Ratio zmap(Viz-Spec-Obj, real) ={I

%var Icon-Label-Function :map(Viz-Spec-abj, symbol) {I)
%var Icon-Clip-Icon-Label? z map(Viz-Spec-Obj, symbol) a fill
%var Icon-Mouse-Sensitive? :map(Viz-gpec-Obj, symbol) - fill

D-1

D.2 VSL Grammar
'Iin-package(11RU")
I!in-grarnmar(' syntax)

Grammar VIZ

no-patterns

start-classes Viz-Spec-Obj
file-classes Viz-Spac-Obj

Productions

Viz-Spec-Obj :

["visual" "specs" "for" name "are" (Class-Specs*
builds Viz-Spec-Obj,

Class-Spec-Obj
["attributes" "for" Class-name "are"

"$icon" ":" [Icon-Attributes *

"Iedit"l "1:" [Edit -Attribut es *

"#end"

builds Class-Spec-Obj,

Icon-Attr-clbj ::-

(icon-attr-name "-" icon-attr-val)
builds Icon-At tr-Obj,

Edit-Attr-Obj :
[edit-attr-name ":" edit-attr-type)

builds Edit-Attr-abj

symbol-start-chars
"abcdefgh~ijklmnopqrstuvwxzABCDEFGHIJKLMNOPQRSTUVWXYZ:"I

symbol-continue-chars
"abcdefghijklrnnopqrstuvwxyzABCDEFGHIJKLMNOPQRsTUVWXYz1234S6789o-?:"

end

D-2

D.3 VSL Description for the CIRCUITS Domain

Visual Specs for Circuits are

attributes for Ind-Gate-Obj are
Icon

icon-type - ellipse;
active? a true;
size-factor a 1.1;
height-width-ratio - 1.0;
label = class-and-name;
clip-icon-label? = false;
mouse-sensitive? = true

Edit
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
power-level : real

end;

attributes for Or-Gate-Obj are
Icon

icon-type a ellipse;
active? - true;
size-factor a 1.1;
height-width-ratio - 0.95;
label - class-and-name;
clip-icon-label? - false;
mouse-sensitive? = true

Edit:
name symbol;
delay integer;
manufacturer : string;
ril-spec? : boolean;
power-level : real

end;

attributes for Not-Gate-Obj are
Icon :

icon-type a ellipse;
active? - true;
size-factor a 1.1;
height-width-ratio - 1.3;
label - class-and-name;
clip-icon-label? a false;
mouse-sensitive? = true

Edit
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
power-level : real

end;

attributes for Nor-Gate-Obj are

D-3

Icon
icon-type - diamond;
active? - true;
size-factor a 1.1;
height-width-ratio m 1.7;
label - class-and-name;
clip-icon-label? - false;
mouse-sensitive? - true

Edit :
name symbol;
delay integer;
manufacturer : string;
mil-spec? : boolean;

Spower-level : real
end;

attributes for Nand-Gate-Obj are
I c o n : I ..

icon-type m diamond;
active? - true;
size-factor m 1.1;
height-width-ratio - 1.7;
label a class-and-name;
clip-icon-label? - false;
mouse-sensitive? = true

Edit
name symbol;
delay integer; N V
manufacturer : string;
mil-spec? : boolean;
power-level : real

end;

attributes for Mux-Obj are
Icon

icon-type - diamond;
active? - true;
size-factor - 1.1;
height-width-ratio - 1.7;
label a class-and-name;
clip-icon-label? a false;
mouse-sensitive? = true

Edit
name symbol;
delay integer;
manufacturer : string;
mil-spec? : boolean;
power-level : real

end;

attributec for JK-Flip-Flop-Obj are
Icon :

icon-type - diamond;
active? a true;
size-factor - 0.9;
height-width-ratio = 1.1;

D-4

label - class-and-name;
clip-icon-label? a false;
mouse-sensitive? - true

Edit
name symbol;
delay integer;
set-up-delay : integer;
hold-delay : integer;
manufacturer : string;
mil-spec? : boolean;
power-level real

end;

attributes for Half-Adder-Obj are
Icon

icon-type a box;
active? a true;
size-factor a 1.0;
height-width-ratio = 1.3;

label a claus-and-name;
clip-icon-label? = false;,
mouse-sensitive? a true .

Edit:
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
power-level : real

end;

attributes for Decoder-Obj are
Icon

icon-type * box;
active? - true;
size-factor - 1.0;
height-width-ratio w 0.6;

-label a class-and-name;
clip-icon-label? w false;
mouse-sensitive? = true

Edit
name : symbol;
delay : integer;
manufacturer : string;
mil-spec? : boolean;
power-level : real

ond;

attributes for Counter-Obj are
Icon :

icon-type = box;
active? w true;
size-factor a 1.0;
height-width-ratio - 0.7;
label 0 class-and-name;
clip-icon-label? = false;

D-5

uouse-sensitive? = true
Edit :

name symbol;
count integer;
delay integer;
manufacturer : string;
mil-spec? : boolean;
power-level : real

end;

attributes for Led-Obj are
Icon

icon-type - box;
active? = true;
size-factor = 1.1;
height-width-ratio a 1.0;
label - class-and-name;
clip-icon-label? - false;
mouse-sensitive? = true

Edit
name : symbol;
manufacturer : string;
color : symbol

end;

attributes for Suitch-Ubj are
Icon

icon-type - ellipse;
active? = true;
size-factor - 1.0;
height-width-ratio w 1.0;
label a class-and-name;
clip-icon-label? = false;
mouse-sensitive? - true

Edit
name : symbol;
debounced : boolean;
manufacturer : string;
delay : integer;
position symbol

end

D-6

4/:

S'ii

Appendix E. REFINE Source Code for AVSI

The REFINE source code for AVSI may be obtained, upon request, from:

Maj Paul Bailor
AFIT/ENG
2950 P Street
Wright-Patterson AFB, OH 45433-7765

(513)255-9263
DSN 785-9263
email: pbailor~afit.af.mil

E-
,/

/

E-1.

1. ,, Al.e L an M M. Bre. "..y

, '

Bibliography

1. Ambler, Allen L. and Margaret M. Burnett. 'Influence of Visual Technology on the Evolution

of Language Environments." IEEE Computer, 9-22 (October 1989).

2. Anderson, Captain Cynthia G. Creating and Manipulating Formalized Software Archi.
tectures to Support a Domain-Oriented Application Composition System. MS thesis,
AFIT/GCS/ENG/92D-01, School of Engineering, Air Force Institute of Technology(AU),
Wright-Patterson AFB, OH, December 1992.

3. Arefi, Farahangiz and others. "Automatically Generating Visual Syntax-Directed Editors,",
Communications of the ACM, 349-360 (March 1990).

4. ASD/RWWW. Joint Modeling and Simulation System (J-MASS): System Concept Document.
Technical Report, CROSSBOW-,q Arcihitecture Technical Working Group, November 1991.

5. Bailor, Paul D. and others. "Formalization and Visualization of Domain-Specific Software
Architectures." AAAI-92 Workshop an Automated Software Design, AAAI Conference. 6 -
11. 1992.

6. Barstow, David R. "Domain-Specific Automatic Programming," IEEE Transactions on So-t-
ware Engineering, 11:1321- 1326 (November 1985).

7. Batory, Don and Sean O'Malley. The Design and Implementation of Hierarchical Software
Systems with Reusablc Components. Technical Report TR-91-22, Austin, Texas: University
of Texas, January 1992.

8. Booch, Grady. Object-Oriented Design: With Applications. Redwood City, California: Ben-
jamin/Cummings, 1991.

9. Boom, Mary and Brad Mallare. Formalization and Transformation of Informal Analysis Mod-
els Into Executable REFINE Specifications. MS thesis, AFIT/GCS/ENG/92D, School of Engi-
neering, Air Force Institute of Technology(AU), Wright-Patterson AFB, OH, December 1992.

10. Brown, Gretchen P. and others. "Program Visualization: Graphical Support for Software
Development," IEEE Computer, 27-35 (August 1985).

11. Chang, Shi-Kuo. "Principles of Visual Languages." Visual Programming Systems edited by
Shi-Kuo Chang, 1-59, Prentice Hall, 1990.

12. Cypher, Allen and Marilyn Stelzner. "Graphical Knowledge-Based Mode, Editors." Intelligent
User Interfaces edited by Joseph W. Sullivan and Sherman W. Tyler, 403-420, ACM Press,
1991.

13. D'Ippolito, Richard and Kenneth Lee. "Modelirg Software Systems by Domains." Tenth Au-
tomating Software Design Workshop. American Association for Artificial Intelligence, April
1992.

14. D'Ippolito, Richard S. "Using Models in Software Engineering." Proceedings: TRI-Ada '89.
256-265. 1989.

15. D'lppolito, Richard S. and Charles P. Plinta. "Software Development Using Models," ACM
Sigsoft Software Engineering Notes (October 1989).

16. Eades, Peter and Lin Xuemin. "How to Draw a Directed Graph." IEEE Workshop on Visual
Languages. 13-17. 1989.

17. Eisenstadt, Marc and others. "Visual Knowledge Engineering," IEEE Transactions on Soft-
ware Engineering, 16:1164-1177 (October 1990).

18. El-Kassas, S. "Visual Languages: Their Definition and Applications in System Development,"
Microprocessing and Microprogramming, 32:383-391 (1991).

BIB-I

" -- = "- ' : ' ":," , ' 4•".•,". " "

19. Fischer, Charles N. and Richard J. LeBlanc, Jr. Grafting a Compiler with C. Redwood City,
CA: Benjamin/Cummings Publishing Company, Inc. 1991.

20. Greenspan, Sol J. Requirements Modeling: A Knowledge Representation Approach to Software
Requirements Definition. PhD dissertation. University of Toronto, Toronto, Ontario, Canada,
1984.

21. Huang, Kuan-Tsae. "Visual Interface Design Systems." Visual Programming Systems edited
by Shi-Kuo Chang, 60-143. Prentice Hall, 1990.

22. Ichikawa, Tadao and Masakito Hirakawa. "Iconic Programming: Where to Go?," IEEE Soft-
ware, 63-68 (November 1990).

23. Iscoe, Neil. "Domain Modeling - Evolving Research." Proceedings of the Sixth Annual
Knowldege-Based Software Engineering Conference. 300 - 304. 1991.

24. Iscoe, Neil Allen. Domain-Specific Programming: An Object-Oriented and Knowledge-based
Approach to Specification and Generation. PhD dissertation, The University of Texas at
Austin, Austin Texas, 1990.

25. Kang, Kyo C. and others. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21, Software Engineering Institute, November 1990 (AD-A235
785).

26. Korth, Henry F. and Abraham Silberschatz. Database System Concepts, 2nd edition. New
York, NY: McGraw-Hill, Inc., 1991.

27. Langloss, Randall K. Graph-Based Visualization of Formal Specification and Domain Specific
Languages. MS thesis, AFIT/GCS/ENG/91D, School of Engineering, Air Force Institute of
T ichnology(AU), Wright-Patterson AFB, 1H, December 1991.

28. Lee, Kenneth J. and others. Model-Based Software Development (Draft). Technical Report
CMU/SEI-92-SR-00, Software Engineering Institute, December 1991.

29. Lockheed Software Technology Center. Software User's Manual for the Automatic Program-
ming Technologies For Avionics Software (APTAS) System. Technical Report, Palo Alto, CA:
Lockheed Software Technology Center, June 1991.

30. Lowry, Michael R. "Software Engineering in the Twenty-first Century." Automating Software
Design, edited by Michael R. Lowry and Robert D. McCartney. 627-654. Menlo Park. CA:
AAAI Press, 1991.

31. Miller, James R. and others. "Introduction." Intelligent User Interfaces edited by Joseph W.
Sullivan and Sherman W. Tyler, 1-10, ACM Press, 1991.

32. Moriconi, Mark and Dwight F. Hare. "Visualizing Program Designs Through Pegasys," IEEE
Computer, 72-85 (August 1985).

33. Neal, Jeanette G. and Stuart C. Shapiro. "Intelligent Multi-Media Interface Technology."
Intelligent User Interfaces edited by Joseph W. Sullivan and Sherman W. Tyler, 11-43, ACM
Press, 1991.

34. Neighbors, James M. "The Draco Approach to Constructing Software from Reusable Compo-
nents," IEEE Transactions on Software Engineering, 10:564-574 (September 1984).

35. Peterson, A. Spencer. "Coming to Terms with Software Reuse: A Model-based Approach,"
ACM SIGSOFT Software Engineering Notes, 16:45-51 (April 1991).

36. Prieto-Dfaz, Ruben. "Domain Analysis: An Introduction," ACM SIGSOFT Software Engi-
neering Notes, 15:47-54 (April 1990).

37. Prieto-Daz, RubGn. "Domain Analysis for Reusability." Proceedings of the 11th Annual In-
ternational Computer Software and Application Conference. 23-29. IEEE Computer Society
Press, 1990.

13'B-2

-- -- "•7• ,••, -i- -- \

II

38. Protsko, L. Beth rncd others. "Towards the Automatic Generation of Software Diagrams,"
IEEE Transactions on Software Engineering, 17:10--21 (January 1991).

39. Randour, Capt Mary Anne. Creating and Manipulating a Domain-Specific Formal Ob-
ject Base to Support a Domain-Oriented Application Composition System. MS thusis,
AFIT/GCS/ENG/92D, School of Engineering, Air Force Institute of Technology(AU), Wr-ight-
Patterson AFB, OH, December 1992.

40. Reasoning Systems Inc., Palo Alto, CA. INTERVISTATM User's Guide. For
INTERVISTATM Version 1.0.

41. Reasoning Systems Inc.. Palo Alto, CA. REFINErM User's Guide. For REFINETM Vesion
3.0.

42. Reasoning Systems, Inc. DIALECT User's Guide. Palo Alto, CA, July 1990.

.43. Shu, Nan. Vjsual Programming. New York: Van Nostrand Reinhold Company, 1988.

44. Smith, Douglas R. "KIDS - A Knowledge-Based Software Development System." Automating
Software Design, edited by Michael R. Lowry and Robert D. McCartney. Chapter 19. Menlo
Park, CA: AAAI Press/MIT Press, 1991.

45. S,'nmerville, Ian. Software Engineering. New York: Addison-Wesley, 1989.

46. Spicer, Kelly L. Mapping an Object-Oriented Requirements Analysis to a Design Architecture
that Supports Reuse. MS thesis, AFIT/GCS/ENG/9OD, School of Engineering, Air Force
Institute of Technology(AU), Wright-Patterson AFB, OH, December 1990.

47. Tamassia, Roberto and others. "Aiutomatic Graph Drawing and Readability of Diagrams,"
IEEE Transactions on Systems, Man, and Cybernetics, 18:61-79 (January/February 1988).

48. Teague, Alan H. and Henson Graves. lhe Graphi,-4l System Description Language and De-
velopment Environment Version 2.0 (Draft). Technical Report 0/96-10 B/254E, Software
Technology Center Lockheed Palo Alto Research Labs, April 1992.

BIB-3

Vita

Second Lieutenant Timothy L. Weide was born November 21, 1959 in Houston, Texas and

graduated from Trevor G. Browne High School in Phoenix, Arizona in 1977. He enlisted in the

United States Air Force in August 1983 and completed technical training for computer maintenance/

at Keesler AFB, Mississippi in May, 1984. He spent the years from 1984 through 1988 as a computer

maintenance technician for the Joint Surveillance System, Northwest Air Defense Sector, McChord

AFB, Washington. In January, 1989 he entered the Airmen Education and Commissioning Program

to pursue a Bachelor of Science degree in Computer Science. He graduated, Summa Cum Laude,

from Arizona State University in May, 1991. In June, 1991, attended Officer Training School at

Lackland AFB, Texas and upon receiving his commission in September, 1991 he entered the Air

Force Institute of Technology at Wri ght- Patterson AFB, Ohio to pursue a Master of Science degree.

in Computer Engineering.

Permanent address: 255 Morning Sun Dr.
Woodland Park, CO 80863

VITA-i

Form Approved

REPORT DOCUMENTATION PAGE OMS No. 0704-0188

P • o .t• n•. ,• ,:, -- ;% , -_ a -!, tn ;t s, .st ec !, teaqe 1; our per resporse. induding the time Tor reviewing istructions. searcninq -. ,stnq data sources.
trý ota r'-aeo ind c 5i0etirn arc rp, 39d 9 lie <olection of information Send comments regarding this burden estimate :r inv other asoect of this

coert .'", t- _c'. C • %. , ts nq - 90uc tq ls, ourcer, .ic NVashtnqton Headouarners Servces. ODrectorate for fatormation Ooeratiots and PeDorrt, 1215 .etferson

Cars . :H - , ii. ,te '-C4 S,-7trcn. , a 22202.4302. ted to t'e Ote -)f Management and Budget, Paperwork Reduction Project (0704-018). Washington, C 20503.

1. AGENCY USE ONLf ýLeove W/anx) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1993 Master's Thesis _ _ _ _ _ _

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS I

DEVELOPMENT OF A VISUAL SYSTEM INTERFACE TO
SUPPORT A DOMAIN-ORIENTED APPLICATION
SCOMPOSITION SYSTEM

I6. AUTHOR(S)

Timothy L. Weide, Second Lieutenant, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBERAir Force Institute of Technology, WPAFB OH 45433-6583 ITGSE /3M0Air AFIT/GCS/ENG/93M-05

9. SPONSORINGi MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBERASC/RWWW

Wright-Patterson AFB, OH 45433-6583

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (MaximLum 200 words)

This research designed and prototyped a visual system interface to generate, display, and modify domain-oriented
application specifications. A visual system interface, called the Architect Visual System Interface (AVSI), supple-
ments a text-based environment, called Architect, previously developed by two other students. Using canonical
formal specifications of domain objects, Architect rapidly composes these specifications into a software application

and executes a prototype of that application as a means to demonstrate its correctness before any programming
language specific code is generated. This thesis investigates visual techniques for populating, manipulating,
viewing, and composing these software application specifications within the formal object base scheme required
by Architect. A Visual Specification Language (VSL) was developed to define the visual display characteristics
of domain objects. AVSI provides automatic diagram layout, and also produces a textual display in a domain-
specific language. The Software Refinery environment, including its grapzi.cal interface tool INTERVISTA, was
used to develop techniques for visualizing application data and for manipulating the formal object base. AVSI
was validated with a well-understood domain, digital logic, and was found to significantly enhance Architect's
application composition process.

14. SUBJECT TERMS 15. NUMBER OF PAGES
computers, computer programs, software engineering, visual languages, visual pro- 51 I

gramming systems, specifications, domain-specific languages, domain modeling, ap- 16. PRICE CODE

plication composition systems, software architecture models

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED I UL
NSN 75.-0-1-80-5500 Standard ;orm 298 ýRev 2-89)

" IcID. .d ta = 145 -Itd 3.. 3
c-

DATE: -1

