
A A2182NTATION PAGE FO"A0rvo

OD,2 8TE 1.. REPO - 0"1. W____ _me. 070d-01Noll~v to6,4, 0rW 19 ~W I CulW6." 199nto-JCme 9V 0. 1992ft

4. TITLE AND SUJU1IUl S. FUNDING NUMIIERSBayesian Cross-Entropy Reconstruction of N00014-91-J-4056

Complex Images

I. AUThOR(S)
B. Roy Frieden PROM~OGNZTO

The University of Arizona*- nvlOft a t*O

Optical Sciences Center MARO 9199
"Tucson, Arizona 85721 C

4. SPOTSOIANG / MONITORING AGENCY NAMS(S) AND ADOhESS(ES) 10. SPONSORING / MONTORBING
• ~AGENCY REPORT NUMEERIDepartment of the NavyC

Office of Naval Research
Resident Representative

~~I I U

127. OIGSTRIUTION / AVAI MEILI $ STATEMENTr 12.k DITFOM-TON CODE

approved for public release; distribution unlimited

". AOSTaCT (Mazcimum 200 wOMAl

u98 3 8 157
SBajkova's generalized maximum entropy method (GMEM) for reconstruction of complex

psignals has been further generalized through the use of KuNlback-Leibler cross entropy.
This permits a priori information in the form of bias functions to be inserted into the

e algorithm, with resulting benefits to reconstruction quality. Also, the cross-entropy term

O • is imbedded within an overall m.a.p. (maximum a posteriori probability) approach that
I mR includes a noise-rejection term. A further modification is transformation of the large,)U e two-dimensional problem due to modest-sized 2-D images into a sequence of one-0'C dimensional problems. Finally, the added operation of three-point median window

__ w filtration of each intermediary, one-dimensional output is shown to suppress edge-top
overshoots while augmenting edge gradients. Applications to simulated complex images

are shown.

14. SUgIECT TEIRMs ¶S. NM;ERl oP PAGES
32

ilII PCI CODEI

17. SECURIrY CLASSiFICATION 13. SECUtUITY CLASSIFICAT1ON II. SECURITY a]ASSWICAIONm N. LIIATION OP ASSTRACTiOf RAPOT OF A2STlRACT
unclassified f unclassified t unclassified n/a

NSAI 754041.2510-S500 Stt4r Poe 293 (N, w 29-,

Q M ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~•I I~sprisapir nomto ntefr fba ucin ob neteino th



Bayesian Cross-Entropy Reconstruction of Complex Images

B. Roy Frieden

Optical Sciences Center, The University of Arizona

Tucson, Arizona 85721

Anisa T. Bajkova

Institute of Applied Astronomy of the USSR Academy of Sciences

St. Petersburg 197042, Russia

Abstract

Balkova's generalized maximum entropy method (GMEM) for reconstruction of complex

signals has been further generalized through the use of Kullback-Leibler cross entropy. This

permits a priori information in the form of bias functions to be inserted into the algorithm, with

resulting benefits to reconstruction quality. Also, the cross-entropy term is imbedded within

an overall m.a.p. (maximum a posteriori probability) approach that includes a noise-rejection

term. A further modification is transformation of the large, two-dimensional problem due to

modest-sized 2-D images into a sequence of one-dimensional problems. Finally, the added

operation of three-point median window filtration of each intermediary, one-dimensional

output is shown to suppress edge-top overshoots while augmenting edge gradients.

Applications to simulated complex images are shown.
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Introduction

Complex signals occur widely in electromagnetic phenomena. It is often required to

estimate such signals from incomplete data in a conjugate space. As examples: In interactive

synthetic aperture radar (ISAR)' the complex Fourier transform of a spatial amplitude image

is known within a band of frequencies, and from this data the complex image is to be

estimated. In radio astronomy, the data are complex amplitudes in an unfilled Fourier space

as dictated by the earth's motion2 . In Fourier transform holography, the hologram might

have missing or damaged regions. In quantum mechanics, the spatial wave function of a

particle is to be estimated from incomplete knowledge of momentum (Fourier) space for the

particle. In these examples, the conjugate space to the required signal is Fourier space.

Although the processing approach described below applies to any linear conjugate space,

because of its central importance we will continue the development specifically for the

Fourier-space problem. Because of the incomplete knowledge of Fourier space we seek a

processing approach that allows for bandwidth interpolation and extrapolation.

Entropic Processing

Since its first use in image restoration 3 , maximum entropy has been known to be

capable of extrapolation in Fourier space. It also produces maximally smooth, or unbiased,

estimates 3 '4 . If f(t) is a real signal to be estimated, then the maximum entropy solution f(t)

is to satisfy

- f dt f(t) In f(t) a H - Max., f(t) -t, (1)

subject to constraints on f(t) provided by the Fourier data. (All integrals have infinite limits
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unless otherwise specified.) Quantity H is the (real) Shannon entropy of the signal. As noted,

the signal must be real and positive-definite for a real H to exist. Methods of achieving

maximum entropy estimation in different senses than (1) also exist. Among these are

Burg'ss In x(t)-form of entropy and Borden's 6 probabilistic model approach. In this paper, we

stick with form (1) of entropy because of its widespread use in signal estimation problems 7.

The formulation (1) of maximum entropy has, in the past, been exclusively applied to

positive-definite, real signals such as probability densities 8 , power spectra5 , and intensity

images 3'9 . However, here we want to work with the Shannon entropy of a complex signal.

How can this be done?

Recently, Bajkova10 showed how to accomplish this objective. We describe her

approach first, and then formulate an improved version for application to noisy, two-

dimensional complex images.

GMEM Processing

First, consider a real signal r(t), as in Fig. 1, that is to be estimated. It is generally

bipolar, with positive and negative values as indicated. Such a signal can be represented as

the difference between two positive-definite functions

r(t) = x(t) - y(t), x(t) > O, y(t) a O. (2)

Thus, the positive regions in Fig. 1 are represented by r(t), the negative by y(t). Curves x(t)

and y(t) do not, of course, have overlapping support regions. Let us replace the problem of

estimating r(t) by one of estimating x(t) and y(t). Then for any estimates of x(t), y(t) to be

valid, they must have non-overlapping support regions and must be positive-definite.
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The latter constraint allows the entropy

-f dt x(t) In x(t) - dt y(t) In y(t) (3a)

to exist. Hence, maximum entropy processing can be applied to these signals, aiding our

overall objective. Furthermore, since x(t) and y(t) do not overlap, the entropy integral (3a) is

the entropy of the absolute value of r(t) as well,

-Jdtlr(t) I/n Ir(t)I "H(r). (3b)

Thus, maximizing the entropy H(r) is equivalent to maximizing the sum of the entropies of x(t)

and y(t). This would allow each constituent x(t), y(t) of the required signal r(t) to be

separately estimated by maximum entropy. Again, this is despite the fact that r(t) may have

negative regions. Hence, we adapt the maximization of (3b) as our criterion.

The extension to the full-blown complex problem is straightforward. Consider a

complex signal

u(t) = r(t) +jq(t), j = ,(4)

r(t), q(t) real and generally bipolar. We wish to estimate u(t). Equivalently, we may choose

to estimate r(t) and q(t). Represent r(t) as in Eq. (2), and similarly represent

q(t) = z(t) - v(t), z(t) O, v(t) O. (5)

The entropy of the absolute value of r(t) still obeys both Eqs. (3a,b). Likewise the entrdpy of

the absolute value of q
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H(q) -dt I q(t) I In I q(t)I (6)

also obeys

H(q) = -Jdt z(t) In z(t) - f dt v(t) In v(t), (7)

providing z(t), v(t) do not overlap. Hence, maximizing the entropy H(q) accomplishes an

entropic estimate of q(t).

Since our objective is to estimate the complex u(t), we have to estimate both real and

imaginary parts r(t) and q(t). This suggests that we adopt one grand principle of maximizing

the sumtotal entropy H(r) plus H(q), or

H(u) - H(r) + H(q)

= -f dtlx(t) In x(t) + y(t) In y(t) + z(t) Inz(t) vt) In v(t)

= Max. (8)

Next, recall the nonoverlapping support requirements for x(t), y(t) and for z(t), v(t).

This would not necessarily be met by simply maximizing the form (8). It was empirically

found7 that a 'tuning parameter' a must be inserted, to form an associated entropy

H(u;a) - -J dt {x(t) In [ax(t)] + y(t) In(ay(t)] + z(t) In [oz(t)] + v(t) In [av(t)] }.
J (9)

= Max.

The value of a is at the discretion of the user. Empirically, the action of a is to force

nonoverlap as a is made larger. Also, a large a causes better data agreement and, hence,

higher resolution in the output u(t). This is because the principle (9) will be constrained by
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higher resolution in the output u(t). This is because the principle (9) will be constrained by

input data as well, and the data are more closely obeyed when mathematical constructions

(2) and (5) for r(t) and q(t) are valid (i.e., when the functions do not overlap). This was

empirically borne out by computer simulations described below.

GMEMK Processing

Generally speaking, the insertion into an algorithm of a priori truth about an unknown

signal can only improve the algorithm. Thus, Kullback-Leibler information1 1 allows for the

insertion of a prior bias function g(t) into the ordinary entropy form, as

HKL(f) m - dtf(t)In[f(t)lg(t)], ftW 2t 0, g(t) - 0. (10)

[Compare with Eq. (1).] As will be seen, maximizing HKL subject to linear data constraints

produces a solution f(tj that is linearly proportional to input function g(t). Hence, g(t) acts to

'bias' f(t) toward its peaks and vallei-.. Thus, for it to exert a proper influence upon f(t), bias

g(t) should be a first approximation to f(t), say, by a linear method.

In our problem, we likewise assume prior knowledge of bias functions a(t), b(t), c(t),

d(t), corresponding to signals x(t), y(t), z(t), v(t) respectively. Then the principle (9) is

modified as

HKL(u;a) = -Jdt {x(t) In [ax(t)la(t)] + y(t) In [ay(t)lb(t)] + 011)

z(t) In [az(tct)] + v(t) In [ov(t)/d(t)]} = Max.

It is particularly easy to form appropriate bias functions for our problem. These are simply the

smoothed, inverse-Fourier transforms of the Fourier data. Missing data regions are simply

padded in with zeros (see below).
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Eq. (11) is, thus, a generalized maximum entropy method in the spirit of Kullback, and

hence is named GMEMK (see also Refs. 1 2-1 5). We next consider how data inputs are built

into the algorithm.

Data Constraints

Principle (11) by itself is incomplete. We want the solution x(t), y(t), z(t), v(t) that

satisfies (1 1) subject to observable data as well. There appear to be two schools of thought

on how to implement data constraints. One way is to lump them into one merit function,

usually called chi-square9, which is the mean-square discrepancy between the observed data

and the data as implied by a given solution. This term is subtracted from (11) and the result

is maximized. A second approach is to add each data constraint to (1 1) via a Lagrange

multiplier term, and to then maximize the sum 3 . We take the latter approach.

As mentioned at the outset, we specialize the approach to the case of Fourier-space

data, at frequencies Win, m = 1,..., M. Denote the data as Drm, D im, m = 1,...,M, where

superscripts r and i denote real and imaginary parts, respectively. Allow for the presence of

additive noise qrm, i7'rn as well. Then the data equations are

D = f dt [x(t) - y(t)] coswmt - Jfdt [z(t) - v(t)] sinwmt + i74

D= J fdt [x(t) - y(t)J sinwm..t + J dt fz(t) -v(t)J coswmt + (12)

m =1...M

These must be satisfied by any solution x(t), y(t), z(t), r(t). The data constraints (1 2) will be

appended to the net estimation principle in the conventional way, as additive Lagrange

multiplier terms.
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Noise Rejection; M.a.p. Estimation

It is important to build a noise rejection mechanism into any restoring algorithm. This

acts to further regularize the outputs over and above what maximizing entropy can do. Again,

thera appear to be two schools of thought on how to accomplish this.

In general, noise rejection is enforced by permitting the computed data, as inferred by

a particular solution, to depart from the observed data. This 'slippage' in data consistency

reduces the resolution of the output, but with the benefit of smoothing out noise

contributions. If a chi-square merit function is used, this by itself allows for noise rejection

since chi-square (measure of data inconsistency) is allowed to be finite at solution.

By comparison, the Lagrange approach (below) permits slippage because the noise

components qrt , r/rn are separately estimated, and allowed to be finite. The Lagrange

approach is also used in conjunction with an added log-likelihood noise term to the objective

merit function (1 1), to further regularize the problem 16 . Assume the presence of additive,

circular Gaussian noise. Let am 2 be the noise variances for each of the real and imaginary

parts at frequencies Wim. Then the net estimation principle becomes

Ma

This is equivalent to seeking a solution u,q",q' that maximizes the joint probability of unknown

signals x(t), y(t), z(t), v(t) and noise values frm, rira' 6
*. By Bayes' theorem 7 with a prior

probability law for u given by exp [HKL(U;0)], this is also a m.a.p. (maximum a posteriori

probability) estimate of the unknowns. This approach mirrors that of Trussell1 7 for

incorporating ordinary MEM into a m.a.p. algorithm.
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Net GMEMK Algorithm

In practice, the unknown signal is to be estimated at a finite-spaced subdivision of

points t = tn = nAt, n = 1,...,N. The frequencies w = wm = mAw, Aw the frequency

spacing, m = 1 ,.... ,M, are also discrete. In addition, we consider undetermined problems,

where the number of data values is less than or equal to the number of unknown signal

values,

M s N. (14)

Then, in the usual way, all integrals over t are replaced by sums over n. The estimation

principle (13), as augmented by Lagrange data constraints (1 2), becomes

- N [x,1n(axia,) + yIn ayib,,) + zIn(azic÷) + vIn av~Id,)]

n-1

M- It~ [(xn - cos COW&mtn - (zn -V.) sinl &mtn + a" Am ]

Pm= It[n - Y.7) sin wmt,, + -z v17) cos Wmtn,] + i& - Dm'j 15

E (7r2 12)/a = G = Max.
2rn-i

This is the working estimation principle of the paper. Parameters Am and Pm are conventional

Lagrange multipliers. They will be seen to define our estimated signal, and to be determined

by satisfaction of data equations (12).
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Solution

Principle (1 5) is to be maximized through choice of all the unknowns: signals xn, Yn,

zn, vn, noise quantities rirm and q'm, and multipliers Am, /rM " Accordingly, we set

aG - 8G - aG - aG - 0, n = 1 ....N. (16)
axn ay, az, avn

These directly give a solution

,n= an exp [-1 In a + E (Am coswmtn + jim sinwmtn)]
I- mJ

9,, = an,,b, (e2a2g,,r1

2, = cn exp [-1 -Ina - (Am sinwmt,- Pm COSwmtn)] (17)

Cn = Cndn (e2a24n)Y1 .

Hence, the signal is defined by the Lagrange multipliers.

Setting

G- G 0  (18)

aq,7 a, ,,

gives estimated noise values

•r = 0,2 A'/i= 0,2 P" (19)

Thus, both signal (1 7) and noise (19) are defined by the Lagrange multipliers.
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Finally, 'setting

aG aG = 0  (20)

gives the condition that data Eqs. (1 2) (integrals replaced by sums) must be satisfied.

The upshot is that the estimation problem has been parametrized. All signal and noise

unknowns are expressed, via Eqs. (1 7) and (19), in terms of the unknown multipliers Am and

/Pm" These, in turn, are found by substituting the parameterized equations (17) and (19) into

the data equations (1 2). The result is an algebraic set of 2M data equations (M each for real

and imaginary parts) in 2M unknowns Am, Pro" With an equal number of equations and

unknowns, a unique solution is formally possible. We found this to be empirically true, as

well. A Newton-Raphsonia algorithm was written for solution of the equations. It was

found to always converge to the same solution, regardless of starting solution.

Equations (1 7) show that for any (real) solution (Am), (Pm) to the problem, necessarily

,?n a>0, 9n 20, 2n 20, On :t0. (21)

All the reconstructed signals are positive-definite. This is important because positive-

constrained solutions, being nonlinear in the data, can have higher bandwidth (and, hence,

higher resolution) than the data. Maximum-entropy reconstruction often exhibit such

resolution (3, 9, 12). By Eqs. (2) and (5), this will now be true for amplitudes r(t) and q(t),

and hence for complex signal u(t), as well. Recall that this was one of our aims (see

Introduction).
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Two-dimensional implementation as sequence of 1-D problems

The notation has, so far, been one-dimensional. In principle, two dimensional data

Drmn, Dmn, can be processed by the straightforward double-subscripting of all single-

subscripted quantities above. However, the result would be a requirement to solve (now) 2M 2

data equations in 2M 2 unknowns, a formidable problem for even modest-sized pictures of

M - 64 pixels on a side.

A way to surmount this problem of implementation is to break up the one, two-

dimensional problem into a sequence of one-dimensional problems. Note that the Fourier data

problem under consideration has a separable imaging kernel

exp [j(W1 tl + W2 t 2 )] = exp (jwl tl) • exp (jw 2 t 2 ), (22)

where t1 denotes (now) row coordinate and t2 denotes column coordinate. The 2-D problem

f f dtidt2 u(tl,t 2) eJ(WIt , + 1212t) = D(w1 ,W2 ) (23)

of estimating u(t 1 , t 2) may then be re-cast as

f dtleiw( t' E(tl;w2 ) = D(w,;W2)' 
(24a)

where

f dt2 eJ W2t2 U(t 1, t2 ) = E(tl ; W2 ). (24b)

This implies the following procedure for obtaining a solution u(t 1, t2).

12



First solve Eq. (24a) for the complex quantity E(tl; •2 ) at each (row) W2 = mAw, m

= 1 ,... ,M. This is a sequence of M 1--D problems of size 2M. The solutions E(tl; w2 ) are

stored in an intermediary matrix. These are then used to form the right-hand sides of Eq.

(24b), which is then solved for u(t 1, t2 ) at each (column) t2 = nAt, n = 1,...,N. This is a

sequence of N 1 -D problems of size 2M. The net effect is that the original 2-D problem of

2M2 unknowns in 2M2 equations is replaced by (M + N) one-dimensional problems of size 2M

each. This procedure was followed below.

Demonstrations

Fourier images were formed, and processed, on a Convex C240 mini-super computer.

The object was always the 64x64 pixel airplane silhouette shown in Fig. 2. This is a complex

signal of real-part + 1 and imaginary part -1 within the airplane outline, and 0 outside. All

images show the modulus signal. This is usually the output of interest, e.g., in ISAR (inverse

synthetic aperture radar) images. Note also the point source to the right of the airplane nose

in Fig. 2. Edges and point sources are strong carriers of pattern shape information, and hence

are crucial for purposes of pattern recognition. Overall, then, this image is contrived to test

the GMEMK algorithm on a combined edge-point source object input.

The general objective was to form Fourier data from the complex object in Fig. 2, both

without and with noise, and to observe the ability of the GMEMK algorithm to reconstruct the

object under these conditions. Also, to more critically test the algorithm, we blanked out half

the frequency-space of data values, and so attempted to reconstruct on a twice-as-fine basis

as the data would ordinarily permit. Hence, we attempted bandwidth extrapolation, by a

factor of two, in both resolution directions.
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As will be discussed, the GMEMK algorithm can be augmented by a median window

filter step, after each row or column reconstruction, so as to suppress Gibbs artifact oscil-

lations that are induced by GMEMK (or any other reconstruction algorithm) at the edge tops.

Noise free data

The first demonstration is a noise-free one. The 64x64 pixel complex object of Fig.

2 is Fourier transformed, to give the spectrum shown in Fig. 3. The logarithm of the modulus

is displayed for better viewing.

The black picture frame indicates blanked out data. Only the central 32x32 spectral

values shown are used as data inputs to GMEMK. However, the reconstruction will still be

on the 64x64 pixel basis. The aim is to regain the resolution apparently lost by blanking out

the picture frame data values.

The conventional, linear output for the problem is first shown. This is the inverse,

discrete Fourier transform (DFT) of the data. For example, in ISAR imaging, after the data are

estimated in Fourier space, a DFT is ordinarily performed to produce the output image in direct

space1 . The picture frame region of unknown data was accommodated by simply assuming

that all values are zero there. This 'zero padding' method is the usual one for artificially in-

creasing output picture size using the DFT. The DFT of the data in Fig. 3 is shown in Fig. 4.

In this noise-free case, noise throughput in Fig. 4 is not a problem, but there is a

notable loss of resolution at the airplane edges, and of the isolated point source. Of course

this is due to loss of the outer frequencies (picture frame) in data space. Note also the artifact

oscillations immediately around the airplane. These are also caused by the missing

frequencies.
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The GMEMK output for the problem is shown (in modulus) in Fig. 5. This used the

complex output of Fig. 4 as bias functions an ..... d, in the algorithm (15). Actually, the use

of unity everywhere for the bias functions worked just as well in this noise-free case. The

edges are now significantly improved in resolution, as is the isolated point source. The data

bandwidth of size 32x32 in Fig. 3 has been effectively increased, although not to the full

64x64 size. This bandwidth augmentation follows from the non-bandlimited representation

(17) for the bipolar functions xn,...., vn that form the complex output. (That is, e-to a general

Fourier series is not bandlimited.) Note also the lack of artifact oscillations in the region

surrounding the airplane (compare with Fig. 4).

The main drawback to the reconstruction in Fig. 5 is the presence of overshoot

artifacts at the edge tops just within the airplane. Most (but not all19 ) reconstruction

algorithms suffer from such edge artifacts. However, we were able to remove these by the

use of an additional operation to GMEMK. This is to filter each complex GMEMK (row or

column) output with a three-point median window 20 . This is a non-linear operation. Both

real and imaginary parts are separately filtered. A median window filter is well-known to

suppress isolated fluctuations while preserving edge gradients. The result was the

reconstruction shown in Fig. 6. Note that the edge artifacts are now gone, while the edge

gradients remain high; in fact, these are improved over those in Fig. 5. Also, the interior of

the airplane is now more uniformly bright, as in the ground truth Fig. 2. Finally, the geometry

of the airplane is not distorted. However, there is one drawback to this operation. A median

cannot distinguish between one-point noise fluctuations and one-point signal fluctuations.

Hence, all isolated or semi-isolated point sources are removed, even true ones such as the

isolated point source to the right, and the wing-, nose- and tail-tips. In the net, however, Fig.

6 seems to be an improvement over Fig. 5.
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Data noise case

The commonest type of data noise is probably additive, Gaussian, white noise, due to

the dominance of the central limit theorem"9 . For example, this occurs in ISAR data6 ,2 1.

As an acid test of GMEMK, we generated such noise with a standard deviation of 10% of the

maximum data modulus value in Fig. 3. The result is the noisy data shown (in log-modulus)

in Fig. 7. A comparison of Figs. 3 and 7 shows that the noise is severe: nearly all the signal

structure in Fig. 3 is wiped out. Only the central 5x5 frequency values preserve some

resemblance to their true values. Also, the outer frame of frequencies (black picture frame)

remains blanked out. Hence, we are now attempting bandwidth extrapolation in the presence

of significant data noise.

The linear output, i.e., the DFT of the data, is shown in Fig. 8. The airplane details are

now nearly obliterated. This conventional output would be of little practical use for identi-

fication purposes.

In preparation for GMEMK, we formed bias functions an,.... dn as follows. The data

were apodised using a Gaussian taper function of value 16% at the margins, and the DFT was

taken. This complex image was then thresholded at intensity values of 50% of the maximum

intensity on a given line (row). The resulting complex image was then used as bias functions

in the GMEMK algorithm (15). The modulus of the thresholded image is shown in Fig. 9. As

mentioned before, its main purpose is to keep the GMEMK output reconstruction at value zero

in the airplane background (black) region. But this constraint benefits reconstruction values

within the airplane as well, since all reconstruction values together obey each data constraint.

The result will be an improved output, both within the airplane and without.
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The GMEMK-median window output is shown in Fig. 10. Comparison with the linear

reconstruction of Fig. 8 shows a strong improvement in image fidelity. The background lacks

noise, the airplane outline is more faithfully reconstructed, and the structure within the

airplane is more uniform.

It is important, also, to compare entropy output Fig. 10 with the linear, bias image of

Fig. 9. If output Fig. 10 closely resembled Fig. 9, this would indicate that the entropy

algorithm did little over and above the linear, thresholding operation of Fig. 9 to improve the

image. For example, if both figures showed the same airplane boundaries this would mean

that the subjectively chosen thresholding level was crucial to the quality of the entropy

reconstruction. This would be an unsatisfactory result. However, a comparison of Figs. 9

and 10 shows, to the contrary, that the airplane boundaries in the entropy reconstruction are

significantly drawn inward from their bias image values, toward the true boundary values (of

Fig. 2). Hence, the entropy algorithm works in the intended way.

Although we have displayed intensity images only, it is important to discuss how well

the complex values of the object were reconstructed. The basic GMEM algorithm attempts

to reconstruct both real and imaginary parts, and it does this quite faithfully, at least in

application to point-like objects 1 o. For the complementary object case of the extended image

in Fig. 2, this was also found to be the case. That is, in the GMEMK-median window recon-

structions the (real, imaginary) parts of the object were close to (+ 1, -1) within the airplane

boundaries and were close to 0 outside these boundaries. These were the ideal values.
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Summary

The basic GMEM algorithm of Bajkova, whose aim is to reconstruct complex objects

from a principle of maximum entropy, and which was applied successfully to point like

objects' 0 , has been augmented for a broader range of applications. This is to strongly noisy,

severely bandlimited data due to extended objects. The added use of m.a.p. noise rejection,

Kullback bias functions, and a three-point median window operation, allows the modified

algorithm to successfully reconstruct such objects (see Fig. 8). Also, a modification [Eqs.

(24a,b)] of the solution procedure allows row-by-row, and then column-by-column,

processing. The advantage gained is to replace one, large two-dimensional problem by a

sequence of one-dimensional problems. This strongly reduces core memory requirements

during the solution search, and hence potentially allows much larger image fields to be

reconstructed.
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Figure Headings

1. A real function r(t) may be decomposed into positive regions x(t) and negative regions

- y(t), with r(t) = x(t) - y(t).

2. Airplane object, 64x64 pixels, with point source to the right. Intensity image is

shown. Complex image is (0,0) outside the airplane and (1, -1) inside. Complex point

source is (1, -1).

3. The D.F.T. of the complex object in Fig. 2. This is the discrete object spectrum. The

logarithm of its modulus is displayed. The outer picture frame of spectral values

(shown black) has been removed from the data set. Thus, only fraction 1024/4096

of data space is filled.

4. Linear reconstruction of the data in Fig. 3 by inverse D.F.T. Missing data values in Fig.

3 are padded out by zeros before D.F.T. operation. The modulus image is shown.

Blurring and ringing are caused by the missing data.

5. GMEMK output from data in Fig. 3. The modulus is shown. The reference image (not

shown) was a smoothed, thresholded version of the image in Fig. 4. The resolution

has been increased over that in Fig. 4. The isolated point source is restored, and the

edges are crisper, but suffer from overshoot artifacts just within the airplane outline.



6. GMEMK-median window output from data in Fig. 3. The modulus is shown. The ref-

erence image was as before. The edges are crisper than in Fig. 5, and the overshoot

artifacts are nearly all gone. However, the isolated point source is wiped out as well.

7. Data of Fig. 3 plus 10% additive, Gaussian noise. The data now suffer from strong

noise and bandwidth limitations. The picture frame of frequency values remains

blanked out. Even within the passband, the higher frequency values (outer ones) are

obliterated.

8. Linear reconstruction of the data in Fig. 7 by inverse D.F.T. Missing data values in Fig.

7 are padded out by zeros before the D.F.T. is taken. The airplane image is unaccept-

ably noisy for most purposes.

9. Bias image (modulus shown) to be used in the GMEMK reconstruction. Its main

purpose is to provide a priori information as to the location of the background region.

Even so crude a background estimate strongly aids the reconstruction process.

10. GMEMK-median window output. The modulus is shown. This is significantly

improved over the linear output of Fig. 8.
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