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SUMMARY

This report describes the theory, methodology, and verification of the finite

element numerical model ADCIRC, an ADvanced three-dimensional CIRCulation model

developed for the specific purpose of generating long time periods of hydrodynamic

circulation along shelves, coasts, and within estuaries. The intent of the model is to

produce long numerical simulations (on the order of a year) for very large computational

domains (for example the entire east coast of the US). Therefore, the model was

designed for high computational efficiency and was tested extensively for both

hydrodynamic accuracy and numerical stability. The results of these tests are included

in this report.

The ADCIRC model was developed by the Dredging Research Program (a) to

provide a means of generating a database of harmonic constituents for tidal elevation

and current at discrete locations alor.g the east, west, and Gulf of Mexico coasts, and

(b) to utilize tropical and extratropical global boundary conditions to compute frequency

indexed storm surge hydrographs along the US coasts. The database of storm and tidal

surface elevation and current data is being developed to provide site-specific

hydrodynamic boundary conditions for use in analyzing the long-term stability of

existing or proposed dredge material disposal sites.

The overall intent of the DRP work unit is to provide a unified and systematic

methodology for investigating the dispersive or nondispersive characteristics of a disposal

site. These goals can be realized through the use of hydrodynamic, sediment transport,

and bathymetry change models. The ADCIRC model provides the tidal- and storm-

related hydrodynamic forcings necessary for site-specific site designation.
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ADCIRC: AN ADVANCED THREE-DIMENSIONAL CIRCULATION MODEL

FOR SHELVES, COASTS, AND ESTUARIES

THEORY AND METHODOLOGY

PART I: INTRODUCTION

1. Interest in developing a more accurate technique for predicting sea surface

elevation and circulation in coastal areas has been spurred on by concerns relating to
navigation, shoreline flooding, pollutant transport, and sediment transport. A model

for computing the important features of circulation patterns driven by tides, wind,
atmospheric pressure gradients, and ocean currents must be broad in scope and size.
To simplify seaward boundary conditions, yet include important flow details, the model
must encompass large domains while providing a high degree of resolution in high-
gradient regions as well as in nearshore areas. This means that the model should
allow for the simultaneous solution of flow in continental shelf regions, coastal areas,

and in estuarine systems. The model should solve the three-dimensional conservation

equations [thereby resolving the vertical profile of horizontal velocity] instead of the
widely used depth-integrated conservation equations. This is necessary since it is
impossible to assume a relationship between bottom stress and depth-averaged velocity

that is generally valid for stratified flows, Ekman layers, and wind-driven circulation
in enclosed or semi-enclosed basins or in cases where wave orbital velocities or

suspended sediment concentration gradients are significant near the bottom.

Furthermore, it is impossible to assume values for momentum dispersion coefficients,

which are inherent in depth-integrated solutions, that are generally valid in complex

flows.
2. The requirements of very large domains, a high degree of horizontal

resolution in portions of the domain, and the resolution of 1 ipidly varying vertical
profiles of horizontal velocity place strenuous demands on even the largest
supercomputers. The goal in the development of ADCIRC (ADvanced three-
dimensional CIRCulation model) has been to bring together algorithms that are highly
flexible, accurate, and extremely efficient. These issues are closely interrelated and
have been emphasized in the selection of discretization techniques. The algorithms
that comprise ADCIRC allow for an effective minimization in the required number of
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degrees of freedom for a desired level of accuracy, show good stability characteristics,

generate no spurious artificial modes, have minimal inherent artificial numerical

damping, efficiently separate the partial differential equations into small systems of

algebraic equations with time-independent matrices, and are capable of running months

to years of simulation while providing detailed intra-tidal computations.

3. The framework within which ADCIRC has been developed is a coupled

external mode - internal mode approach. This technique has proven to be successful

in past three-dimensional models and can significantly reduce the cost of three-

dimensional hydrostatic circulation computations. The governing equations and the

basic concept behind mode splitting are discussed in detail in Part II. The external

mode solution, which uses the well-known depth-integrated or shallow-water equations,

is discussed in Part III. Key features of the external mode solution include the use of

a generalized wave-continuity equation (GWCE) formulation and numerical

discretizations using the finite element (FE) method in space and the finite difference

(FD) method in time. Results are presented using the external mode solution as a

stand-alone, two-dimensional model on a quarter annular test case and the North

Sea/English Channel system. Part IV focuses on the internal mode solutionf. During

the development of ADCIRC, a novel technique was discovered that replaces velocity

with shear stress as the dependent variable in the internal mode equations. The

resulting direct stress solution [DSS] allows physically realistic boundary layers to be

included explicitly in a three-dimensional model. This formulation of the internal

mode equations should be invaluable for modeling coastal and shelf circulation, in

which the bottom and surface boundary layers comprise a significant portion of the

water column, and for modeling processes that are critically dependent on boundary

layer physics such as wave-current interaction, sediment transport, oil spill move;.Aent,
ice floe movem -* energy dissipation, physical-biological couplings, etc. Thorough

descriptions of the DSS formulation and testing are presented in Part IV.
4. ADCIRC is being developed and implemented as a multi-level hierarchy of

models. A 2DDI (two-dimensional, depth-integrated) option solves only the depth-

integrated, external mode equations using parametric relationships for bottom friction

and momentum dispersion. A 3DL (three-dimensional, local) option uses horizontally

decoupled internal mode equations to solve for the vertical profile of horizontal

velocity and to evaluate bottom friction and momentum dispersion terms for the

depth-integrated external mode solution. A 3DLB (three-dimensional, local,

baroclinic) option includes baroclinic terms as a diagnostic feature. Finally, the 3D

and 3DB options solve the complete inteital mode equations f-r nonstratified and

9



stratified flows, respectively. At present ADCIRC-2DDI is fully implemented and

operational, ADCIRC-3DL is being tested, and other ADCIRC versions are under

development.

5. ADCIRC achieves a high level of simultaneous regional/local modeling,

accuracy, and efficiency. This performance is a consequence of the extreme grid

flexibility, the optimized governing equation formulations, and the numerical algorithms

used in ADCIRC. Together, these allow ADCIRC to run with order of magnitude

reductions in the number of degrees of freedom and the computational costs of many

presently existing circulation models.
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PART II: GOVERNING EQUATIONS

Three-dimensional Equations for Nearly Horizontal Flow in Cartesian Coordinates

6. A survey of several recent review volumes (e.g., Heaps 1987; Nihoul and

Jamart 1987; ASCE 1988a,b; Davies 1989) indicates that the turbulent incompressible

Reynolds equations simplified using the Boussinesq approximation and the hydrostatic

pressure approximation generally form the basis for state-of-the-art numerical models

of coastal/shelf circulation. Although these equations describe fluid motion in three

dimensions, because of the simplification of the vertical momentum equations, they are

only correct for nearly horizontal flow (Koutitas 1987; Abbot 1990). Using a

right-handed Cartesian coordinate system these equations can be written as

ou + w+ 0 (1)

au auuoU waU 80[2 + 0rO + .Z

" + + -p r(4)

where

f = 2flsin4 = Coriolis parameter
g = acceleration of gravity

r = tide generating potential
V= molecular viscosity

p(x,y ,z ,t) = time-averaged pressure
p(x,y,z,t) = density of water
Po = reference density of water

t = time
T = integration time scale for separating turbulent and time-averaged quantities

rx1(X,y,z,t) = 1id u'u' dt - combined viscous and turbulent Reynolds stress

ryx(X,y,z,t) = V Dv 1 - T u'v, dt - combined viscous and turbulent Reynolds stress

0
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aw 1I
rZx,y,zlt) = Va - T uw' dt -combined viscous and turbulent Reynolds stress

0

rxy(X,y~z,t) = v Ou - T v'u' dt -combined viscous and turbulent Reynolds stress
N T0

ryy(X,y,z,t) = _ • 1 T v v/ dt - combined viscous and turbulent Reynolds stress

rzy(X,yz,t) = 1 - - T v'w" dt - combined viscous and turbulent Reynolds stress
0

= degrees latitude

u(x,y,z,t), v(x,y,z,t), w(xy,z,t) = time-averaged velocities in the x, y and z directions
u'(x,y,z,t), vI(x,y,z,t), w'(x,y,z,t) = departures of the instantaneous turbulent

velocities from the time-averaged velocities
x, y = horizontal coordinate directions

z = vertical coordinate direction

Q2 = angular speed of the Earth (7.29212x10-5 rad/s)

7. Using the vertical momentum equation, pressure can be eliminated as a

dependent variable from Equations 2 and 3, to give:

Ou + uU hO w u 0 v [P-s + ] + 4rzx
Ft+ u-r+ v + w•--fv- =--PO k4 'po bx + mx (5)

&V Ov Ov av ~n [__ r

+ w + fu =- + -j + ZY- by + my (6)

where

.-- N I J(-po) dz - baroclinic x - forcing
Z

y - J (p-po) dz - baroclinic y - forcing

((x,y,t) = free surface elevation relative to the geoid
1 r 8Tx • ]

MX = LOo-" - horizontal momentum diffusion

my = L xru + - horizontal momentum diffusion

ps(x,y,t) - atmospheric pressure at the free surface

8. The solution of Equations 1, 5, and 6 requires the following boundary

conditions:
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a. At the free surface,

0ý + + v(7)

TZ = TsX, TZy = TSy (8)

where rs.(x,y,t) and rsy(x,y,t) are wind stresses applied at the water
surface.

b. At the bottom,

W = I t::- + + W](9)

Tzx/Po = Tbx/Po = kUb, Tzy/Po = "rby/Po = kvb (10a)

or

u = 0, v = 0 @ z = -h + zo (lOb)

where rbx(x,y,t) and rby(x,y,t) are bottom stresses, Ub(X,y,t) and
Vb(X,y,t) are near bottom velocities, k is a slip coefficient and zo is
the effective bottom roughness height (e.g., zo = ks/30 where ks is the
physical bottom roughness). The physically correct no-slip condition,
Equation 10b, is often replaced by the slip condition, Equation 10a, to
avoid the need to numerically resolve the sharp vertical gradients of u
and v that exist near the bottom. A quadratic slip condition is
obtained by setting
k = Cd (U1+ v9)V 2  (11)

If the velocity profile is logarithmic between the elevation where Ub
and Vb are computed, (-h+zb), and the bottom, (-h+zo), Cd can be
defined rigorously as

Cd = 11 ln[(zb-h)/(zo-h)]}- 2  (12)
where r. is the von Kirmin constant. Often the quadratic slip
condition is replaced by a linear slip condition by setting k equal to a
constant.

c. At land boundaries normal flux is specified. Typically, this is zero for
a solid boundary or nonzero for a river boundary.

d. At open boundaries (either along the ocean or at rivers) the free
surface elevation, C(x,y,t), is specified, a radiation boundary condition
is used to allow waves to enter and propagate out of the domain
(Davies and Furnes 1980; Reid 1990), or the discharge is specified.

Three-dimensional Equations for Nearly Horizontal Flow in a Coordinates

9. It is often useful to transform Equations 1, 5 and 6 into a bottom and

surface-following "a" coordinate system. By this means, numerical solutions of the

transformed equations maintain the same vertical resolution at each horizontal grid

point, regardless of variations in depth (Davies 1985; Blumberg and Mellor 1987). In

a general a--coordinate system (where a = a at the free surface and a = b at the

13



bottom):
x6 x (13a)

ya y (13b)
a -:a + (a-b).( z-O(3c H (13c)

to t (13d)

where

H(x,y,t) S C + h - total water depth to the free surface

h(x,y) - bathymetric depth relative to the geoid

(The a subscript is used to denote variables in the new coordinate system.)

10. Derivatives are converted to the a-coordinate system using the chain rule:

a a + 16 a 80 (a-bF + a-a 0H a (14)

a 0-b H L a- C
ýao- o (4b

Sa= (14c)

a( aa 0a-b_[8 (a-a)aH 1 a- (14d)

11. The velocity component aligned in the a direction is defined as

(aa 0 H

v [ 9 - (0-a~) an i (15)
go a-b "gyJ J

12. The baroclinic forcings b.., by6 , and the horizontal momentum diffusion

mxn, my, in the a coordinate system become:

bx1 , = g(P- 1 a+ . ai [Hf(p-.~) da] + (a-a) 'H (p-po)1 (16a)

ya= g(ePo1 + [H{- 7 a H(p-po) do] + (a-a) U- (P-Po)j (16b)
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1X +O1  dý]- y -l81 l,,

(F 'a P~- 1 O[,+6a 5 X, l

+ a" V Y6-a (Il7a)

Min 1.2 L[Zx + a.

13. Substituting Equations 13 - 17 into Equations 1, and 4 - 6, and

rearranging terms gives the three-dimensional governing equations in the a-coordinate

system. Dropping the a subscripts for notational convenience, the transformed

equations are

9 a &H &H wH +F(18)

u au au wdu - fv= 8 s P+ g -Tt-+ u -+ v•y+ wo P--po g -

± •F .(•.P) a bx + m, (19)
noa'po

O- + U& + V& + W& + f u 8-°YLN + gc - r

+--7 _v• by + my (20)

D - -•(21)

14. The a equations use the same boundary conditions as the original

equations with the exception that w,= 0 at the free surface and at the bottom.

Vertically Integrated. Two--dimensional Equations for Nearly Horizontal Flow

15. The three-dimensional equations can be integrated over the vertical to

yield a set of two-dimensional equations for free surface displacement and

depth-averaged velocity. In conservative form these equations are:

0fUH -H (22)

OUH +OUUH +aUVH _ r Ha~~~~P ++ y fH---H•p g( ( - a?)
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+ Mx + Dx + Bx + . .x (23)
PO PO

aVH ONUH dVVH •p
Tt- ++-X + -U7 + - H [ypo + g(( - an)

+ MY + D, + By + 'sy 'by (24)
PO PO

where
a = effective Earth elasticity factor (a = 0.69)

Bx - fhbX dz - depth-integrated baroclinic forcing

By- by dz - depth-integrated baroclinic forcing
-h

Dx aDuu -Duv - momentum dispersionTx - -• - Uy

ODuv ODaDy z - - - v- - momentum dispersion

Duu-= ifi dz, Duv- Vii dz, Dw- 0, dz
h h -h

r/(x,y,t) - Newtonian equilibrium tide potential

MX = 7J. dz + oyh dz - depth-integrated, horizontal momentum diffusion
-h PO-hP

MY =- -• dz + _f Po dz - depth-integrated, horizontal momentum diffusionPO~ PO

U(x,y,t) E IT u dz - depth-averaged horizontal velocity
-h

V(xy,t) IT v dz - depth-averaged horizontal velocity

i(xyzt) u U -departure of horizontal velocity from depth-averaged velocity

Oi(x,y,z,t) v - V - departure of horizontal velocity from depth-averaged velocity

16. In non-conservative form, the vertically integrated momentum conservation

equations are:

6u OU OU ' [P ]
V T + U + V -•7y + (-

+ I't[M, + D, + B. + rs..- rx] (25)
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6Vt + U O V 1[s j.-a)
dv OV+V 8y __frJ

+ 1My + Dy + By - -(26)Po Po

17. The derivation of the Newtonian equilibrium tide potential, n, is presented

by Reid (1990). A practical expression for n given by Reid is

n(A,,t) = ý Cjn fin(to) Li(o) cos[21r(t-to)/Tjn + jA + Yin(to)] (27)

n,j

where

Cjn = constant characterizing the amplitude of constituent n of species j (Table 1)

fjn(t) = time-dependent nodal factor

j = 0, 1, 2 - tidal species (j=0 declinational, j=1 diurnal, j=2 semidiurnal)

Lo = 3 sin2(0) - 1

L, = sin(20)

L2 = COS2(0)

A, 0 = degrees of longitude and latitude, respectively

to = reference time

Tin = constant characterizing the period of constituent n of species j (Table 1)

Yfn(t) - time-dependent astronomical argument

Values for fin and T.i can be computed from tables (e.g., Schureman 1941) or using

available harmonic analysis packages (e.g., Foreman 1977).

18. The gradient of an• results in the effective tide-producing force. The

factor a accounts for the reduction in the field of gravity due to the existence of

small tidal deformations of the Earth's surface called Earth tides. The value

a = 0.69 is the ratio of the theoretical period of the Earth's wobble derived by Euler

(assuming the Earth to be a perfectly rigid sphere) to the observed period of the

Earth's wobble (Reid 1990). (Therefore a is a global measure of the rigidity of the

Earth. For reference, a = 1 would correspond to a perfectly rigid sphere.) a = 0.69

has been used for modeling global ocean tides by investigators including Schwiderski

(1980) and Hendershott (1981).

19. Due to their computational efficiency, models based on the vertically

integrated equations have been widely used for modeling coastal, shelf, and even open

ocean circulation (e.g., Leendertse 1967; Wang and Connor 1975; Spaulding 1984;

Smith and Cheng 1987; Werner and Lynch 1987; Walters 1987; Vincent and Le

Provost 1988; Westerink, Stolzenbach, and Connor 1989; Signell 1989). All of the

physics contained in the original three-dimensional governing equations are embedded
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Table 1
Constants for the Principal Tidal Constituents (from Reid 1990)

C T
Species Constituent m solar days or hrs*

0 Mf fortnightly lunar 0.041742 13.660791d
M, monthly lunar 0.022026 27.554553d
Ss, semiannual solar 0.019446 182.6211d
Sa annual solar ** 365.2597d

1 K, luni-solar 0.141565 23.9344696h
01 principal lunar 0.100514 25.8193417h
P1 principal solar 0.046843 24.0658902h

Q, elliptical lunar 0.019256 26.8683566h

2 M2 principal lunar 0.242334 12.4206012h
S2 principal solar 0.112841 12.0000000h
N2 elliptical lunar 0.046398 12.6583482h
K 2 luni-solar 0.030704 11.9672348h

*One lunar day = 1.035050 solar days or 24.8412 solar hours
"**The annual solar tide is heavily dependent on seasonal heating and cooling of the

ocean, as well as radiation pressure.
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in the vertically integrated equations if the bottom stress and the momentum

dispersion terms are specified correctly. Although more sophisticated approaches have

beea developed for specialized conditions (Lynch and Officer 1985; Nihoul and Djenidi

1987; Tee 1987; Poon 1988; Jenter and Madsen 1989), bottom stress is usually

parameterized as a collinear function of the depth-averaged velocity, and momentum

dispersion is either neglected or represented as a "diffusion-like" function of the

depth-averaged velocity (Bedford 1984).

20. Parameterized bottom stress relationships are typically quadratic in the

depth-averaged velocity and of the form

bX = Cf (U 2 + V2)V2 U (28a)
Po

rby = Cf (U 2 + V2)1/ 2 V (28b)
Po

where Cf is computed using one of the following relationships:

cf = - (29a)

Cf =__. (29b)

Cf = E!& (29c)h 1/3

In Equation 29, fVW is the Darcy-Weisbach friction factor, C is the Chezy friction

coefficient, and n is the Manning friction factor.

21. The depth-integrated lateral momentum diffusion terms are typically

lumped together with the momentum dispersion terms into a standard isotropic and

homogeneous eddy diffusion/dispersion model (Blumberg and Mellor 1987)

D 02U +t UH + 0VH1
Mx + Dx = Eh + --,a•-t9 2 --- (30a)

My + Dy = E MD[ + 2 + (30b)

MDwhere Ehb is a horizontal eddy diffusion/dispersion coefficient. Equation 30 is based

directly on a molecular diffusion analogy as applied to depth-integrated flow. Kolar

and Gray (1990) use a slightly simpler model that approximates Equation 30 as:

MD r 2UH + O91UH1
Mx +Dx =Eh 2 L-iOTX-(3a
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MD r 82VH 02VHlmy +Dy =Eh2 [-FjT+ -FYT (31b)
MD

where Eh2 is an eddy diffusion/dispersion coefficient that will generally not be equal

MDto Eh i.

22. For flows with horizontal length scales that are large compared to the

depth, M. and M. are negligible in the momentum balance in Equations 25 and 26
(Blumberg and Mellor 1987). D. and Dy are similarly small when the velocity profile
is nearly uniform over the vertical. In such flows E MD or E MD

is~~h nerl Eb1 2 are either set to zero
or kept at a relatively small value to provide stability to the numerical scheme. (The

latter must be done with considerable caution to ensure that the contributions of these

terms in the momentum equations remain small. Otherwise, the model solutions will
be artificially altered.) Conversely, when the velocity profile varies strongly over the
vertical, D. and Dy may have a significant contribution to the momentum balance.

23. For tidal flows in relatively shallow, unstratified waters, depth-integrated
computations that make use of the parameterizations given in Equations 28 - 31

appear to work reasonably well (although detailed studies of tidal constituent dynamics
indicate that all of the flow physics are not captured in two-dimensional sim-Ulations

due to the form of the bottom friction term (Westerink, Stolzenbach, and

Connor 1989)). However, in wind-driven flows, stratified flows, Ekman layers, or
when wave orbital velocities or suspended sediment gradients are significant near the

bottom, the simple parameterizations for bottom friction and momentum dispersion
given -above become entirely inadequate. Also, since the depth-averaged velocity may

be very different from the actual velocity at a specific elevation in t0 water column

(particularly if flow reversal occurs over the depth), the use of the depth-averaged
velocity in a transport model (e.g., for sediment transport) may cause considerable

error in predicted transport patterns. Therefore, for many applications of practical
interest, a model based solely on the vertically integrated governing equations is not

adequate.

Mode Splitting

24. Unfortunately, numerical solutions of the three-dimensional governing

equations require substantially increased computer time and storage in comparison to
solutions of the vertically integrated equations. To help minimize this cost, most
three-dimensional models use some type of mode-splitting scheme. Mode splitting is

accomplished by solving the two-dimensional, vertically integrated, "external mode"
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equations for the free surface displacement (and sometimes the depth-averaged

velocity). The external mode solutions are then used to force "internal mode"

equations that account for the vertical propagation of momentum. The internal mode

equations are solved for the vertical profile of velocity and the results used to

compute rbx, Tby, D., and Dy for subsequent external mode calculations. Internal

mode equations have been generated by integrating the three-dimensional equations

over discrete layers in the vertical and then subtracting the equations for adjacent

layers (Simmons 1974; Sheng and Lick 1980), by subtracting the external mode

equations from the three-dimensional equations (Wang 1982; Sheng 1983; Davies 1985),

by differentiating the three-dimensional equations in the vertical direction (Tee 1979),

or by using the three-dimensional equations themselves (Blumberg and Mellor 1987;

Lynch and Werner 1991). (The internal mode equations and their solution are

discussed in detail in Part IV of this report.) Mode splitting allows the free surface

elevation to be evaluated with the computational efficiency of a vertically integrated

model. This can be quite important since the allowable time step for this

computation is often severely constrained by accuracy requirements or a Courant

stability criterion. Since the internal mode calculations are free from surface gravity

waves, the vertical profile of velocity can often be computed using a significantly

larger time step than the free surface elevation.

25. In effect, mode splitting replaces the parameterizations of bottom stress

and momentum dispersion used in a purely two-dimensional model with values

computed from the vertical profiles of velocity generated by the internal mode

equations. Therefore, the vertically integrated, external mode computations do not

require parameterizations of either bottom stress or momentum dispersion in terms of

the depth-averaged velocity. The only parameterizations maintained in the external

mode equations are for the horizontal momentum diffusion terms. These terms are

usually insignificant in the momentum balance, although for small-scale computations

horizontal momentum diffusion can be a physically important process. Most often the

horizontal momentum diffusion terms are retained only to provide numerical stability

and are parameterized with expressions identical to Equations 30 and 31, i.e.,

S8U + 2+VH= Eh1 [2-# + -ay &-a (32a)

EN1 [a'VH+ 2a'VH a 2UH] (32b)

or alternatively,

M [a 2IJH a 2UH1

MX= Eh2 -fXT+ -JyTJ (33a)
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My = Eh2 [VH + 8YVH](33b)

where E , and E 2 are eddy coefficients for horizontal momentum diffusion.

Vertical Turbulent Closure

26. The internal mode equations require the parameterization of the vertical

turbulent momentum transport terms, rzx and rzy, (also called the vertical shear

stresses). These terms can dominate the momentum balance in portions of the

domain and it is therefore critical to find an adequate closure scheme. Turbulent

closure has been and continues to be the subject of considerable research. Recent

summaries of this work include Mellor and Yamada (1982); Rodi (1984, 1987);

Ferziger (1987); Johns and Oguz (1987); and AISCE (1988a,b). The most general

approach is to solve transport equations !or the turbulent velocity correlations that

make up the turbulent stresses (stress/flux models). However, this adds considerably

to the computational burden of a three-dimensional model. Models based on this

technique have had little testing and virtuaily no application to geophysical flows

(ASCE 1988b). Also, it appears that thcse models offer no decisive advantage in

shear flows (Launder 1984). Alternatively, the vertical shear stresses can be

parameterized in terms of the mean velocity field using eddy viscosity relationships of

the form

TZX = Ev a9U (34a)
Po

S = E_ v & (34b)Po T

On dimensional grounds the vertical eddy viscosity E, should be proportional to a

velocity scale v multiplied by a length scale 1, both of which are characteristic of the

turbulent motion. Particularly simple expressions such as the Prandtl mixing length

model can be found for v and I for boundary-layer type flows (Rodi 1987). In more

complex flows, v has been related to the square root of the total turbulent kinetic

energy, k. The terms k and I (or some combination of k and I such as E:kV2/O can

be solved for using quasi-empirical transport equations or specified using empirical

algebraic expressions. The primary limitations to the eddy viscosity approach are its

inability to simulate counter gradient transport or to account for nonisotropic

turbulence. A third choice for expressing the turbulent stresses lies between the

stress/flux models and the eddy viscosity models in complexity and potential for
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representing cornolex flows. In this approach algebraic expressions (approximations to

the transport eq ,ations used in stress/flux models) relate th, vertical stresses to k and
I (or -) without the use of an eddy viscosity hypothesis.

27. Eddy viscosity models are by far the most widely used method for
representing vertical momentum transport in coastal flows. These models can be
expected to work reasonably well in such applications, since the water column is
typically dominated by the bottom and surface boundary layers.
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PART III: EXTERNAL MODE SOLUTION

Selection Considerations for the External Mode Solution

28. A basic objective in the development of ADCIRC is to provide the ability

to perform computations on very large domains. This requires selecting algorithms

that satisfy interrelated requirements of a high level of grid flexibility, accuracy, and

efficiency. To ensure a high degree of solution accuracy, the discretization scheme

must have numerical amplitude and phase propagation characteristics that are nearly

identical to the analytical characteristics even for relatively poorly resolved

wavelengths (e.g., good correspondence down to at least A/Ax = 20, where A is the

wavelength and Ax the grid spacing). Furthermore, solution accuracy requires that all

wavelengths with significant energy, (e.g., as generated in regions of rapidly varying

flow, geometry, and/or topography), be well-resolved. A high degree of solution

efficiency requires that the algorithm minimizes both the number of degrees of freedom

and the operations required per degree of freedom per time step. Minimization of the

number of degrees of freedom is const:ained by the need to provide resolution on a

localized basis and is highly dependent on the accuracy and the grid flexibility of the

numerical scheme.

29. Because grid flexibility is pivotal to solution accuracy and efficiency,

various strategies have been devised to allow variations in grid size over a model

domain. A nested grid approach offers one solution. However, unless the grids are

coupled, this approach cannot properly account for flow interactions between the

various grids. Stretched FD grids offer the possibility of providing local refinement

within a single grid. However, cell aspect ratio requirements limit the degree of grid

size variability. Furthermore, since cell size in the x direction is fixed for all y

locations for a given x and vice versa, portions of the domain are often over-refined.

Boundary-fitted FD schemes that utilize conformal mapping techniques allow the land

boundaries to be well-represented in addition to offering local refinement possibilities.

However, these techniques suffer from the same shortcomings as stretched FD

approximations and often significant difficulties are encountered in finding a suitable

transformation function for complex geographic regions. The FE algorithms based on

triangular elements are highly flexible and can provide local refinement in a systematic

and optimal fashion. In fact, circulation computations for tides and storm surge in

the Gulf of Mexico (Westerink et al., in press) have been achieved with cell area

ratios greater than 1 to 15,000.
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30. Algorithm accuracy per degree of freedom is another critical issue in the

selection of an external mode solution algorithm. FD schemes were successful fairly

early in their development owing to the use of the staggered or C grid approach

(Hansen 1956; Leendertse 1967). Early FE schemes were plagued with severe spurious

modes that required the heavy-handed addition of non-physical dissipation and

resulted in very poor accuracy characteristics (Gray 1982). It was not until the

introduction of the wave-continuity equation (WCE) formulation that robust and

highly accurate FE schemes emerged (Lynch and Gray 1979). The WCE formulation

is based on the rearrangement of the continuum equations prior to any spatial

discretization. Extensive numerical testing has demonstrated that FE-based WCE

solutions produce very accurate results (Lynch and Gray 1979; Lynch 1981; Walters

and Carey 1983; Walters 1983 and 1984). It has also been shown that the

fundamental success of the WCE FE scheme lies in its ability to propagate 2Ax

waves (Platzman 1981; Foreman 1983). (This is also the reason why the C grid FD

solutions are successful.)

31. Finally, overall algorithm efficiency is essential in the selection of an

external mode solution. In general, implicit methods are more useful in long wave

computations than explicit methods, particularly when small cells or elements are used.

However, the use of implicit methods typically results in time-dependent matrices that

must be reassembled and re-solved at every time step. This increases the

computational burden significantly. The FD methods overcome this problem by

implementing an alternating direction implicit (ADI) type approach that reduces a

two-dimensional problem to a sequence of one-dimensional problems, resulting in

significant computational savings for large problems. It is not possible to apply the

ADI approach to FE-based methods. However, a WCE FE-based solution has been

formulated that decouples the solutions for elevation and velocity and allows the use

of time-independent matrices for the elevation solution and diagonal matrices for the

velocity solution. These features have produced a highly efficient WCE FE solution

called the generalized wave-continuity equation (GWCE) formulation (Kinmark 1985).

32. Careful consideration of the requirements for grid flexibility and a high

level of accuracy and efficiency led to the selection of the FE-based GWCE

formulation for the external mode solution in ADCIRC. Extensive analysis, testing,

and field applications of the GWCE during the past decade have demonstrated the

unparalleled capabilities and robustness of the scheme.
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Development of the Generalized Wave-Continuity Equation

33. The GWCE formulation is a specifically designed WCE formulation that

yields a discrete system of equations with time-independent matrices. Time-

independent system matrices are critical in minimizing the computational cost for

finite-element-based solutions due to the expense of both the matrix assembly and

decomposition steps. The GWCE is based on the primitive depth-integrated

continuity equation, Equation 22, and the primitive depth-integrated conservation of

momentum equations in conservative form, Equations 23 and 24. The primitive

continuity equation is differentiated with respect to time to yield:

0 + = 0 (35)

The primitive momentum equations are differentiated with respect to x and y,

respectively, and rearranged as:

82UH a OUtUH OUVH + VH H9 P-'+g(-C0NU N ax• {--- -- -"fy f- N [Po g(-a/)

+ Mx + Dx + B, + DA__ - .}x (36)
PO PO

2 a - fUH -H [PPA + g(C - an)]

+ My + Dy + By + L - }rby (37)
Po Po

Equations 36 arnd 37 are then substituted into Equation 35:
8UTUH OUVH PZ8 a alUH OH-N I- + fVH - H [P-o + g(C - a?7)] + Mx

X ~po oo a OUVH - V fUVH

-H •[pP-- + g (C aP7)] + My + Dy + By + p o - 0 (38)

Finally, the primitive continuity equation is multiplied by a constant, ro, and added

to Equation 38:
10 99 4UUH OUVHa

- + -"0 + -N f--F y + fVH - H N [Pos + g(( - cv7)] + Mx + Dx

r a UVH 6VVH rU

+Bx +  s. - a + "roUH} + {- xy - fy
Po Po
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- H •;[P-1o + g(( - ci77)] + My + Dy + By + 'syp - p + roVH} = 0 (39)

34. The advective terms in Equation 39 are in conservative form. Our

experience indicates that if these terms are put into non-conservative form, improved

numerical stability is obtained when advection is dominant in the global or local force

balance. The advective terms in the GWCE are reformulated by expanding the

derivatives and substituting in the primitive continuity equation, Equation 22.

+ Mx + Dx + B x + LEE- - DL + roUH) + IV -OTUH
Po P0o

- VH6 - fH - H a[P-8 + g(C -a77)] + My + Dy + By

+ rsvy -!v + roVH} = 0 (40)

P0 Pa

35. The lateral closure model in ADCIRC is the simplified eddy viscosity

model of Kolar and Gray (1990), Equation 33. Substituting this into Equation 40

gives:

§ +-N u 5 - ax- '01 N P

+ D. + B. + rs..__ - ax-._ + roUHt} + {9 V -UlH O - Vtt "V - fUtH
P0 P0o tWX Y

- H 09 [pP-1 + g(( - ai)] + Dy + By + LU - DU + roVH}

821JH C92UH a 092VH a 2VH _

h2(-X-T Y-y] + q [h2(T.-T+ -y--) 0(41)

where Eh2 is the generalized lateral diffusion/dispersion coefficient. For the 2DDI

option, Eh 2 represents the combined effects of both lateral diffusion and dispersion.

MD
Therefore Eh2 = Eh 2 and D. and Dy are both set to zero. For the three-dimensional

ADCIRC i Eh2 represents only lateral diffusion. In these cases, Eh2 = Eh2,

and Dx and Dy are explicitly computed from the internal mode solution. It is

assumed that Eh 2 is constant in time and space and that it has a value of zero on

the boundaries of the domain.

36. The lateral diffusive/dispersive terms in Equation 41 can be conveniently

rearranged to decrease the functional continuity requirements for the symmetrical weak
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weighted residual formulation from C' back to CO as is the case for the GWCE

formulation without any lateral closure model (Kolar and Gray 1990). Rearranging

the spatial derivatives of the lateral diffusive/dispersive terms in Equation 41 gives:

+ Dx + Bx + rSo A + TOUH} + {V a- UH - VH 8V - fuH

- H [P-1 + g(C- ar)] + Dy + By + -X- -7 + roVH}POPO PO
02 OUH 8VH 092 UH 6VH+ Eh 2 [&'2 (VX" + W"•)] + Eh2 [• (-X"- + W--)] = O (42)

The primitive continuity equation, Equation 22, can be used to substitute for the

divergence of flux in the lateral diffusion/dispersion terms in Equation 42 to give:

•-• ~- f ro U ýt - UH V'x- VH V-Y + W11H- H • [Po (--)

E4 2
Eh2  + Dx + B. + Ls 2b._.x + roUH}

i0

PO PO
49{v• UH 6V- v. ON- fu. - H [P-o + g(( - aiff

- Eh2 0-2 + Dy + By + I" -- Di + roVH} = 0 (43)

37. Equation 43 can be solved in conjunction with the primitive conservation

of momentum equations in either conservative or non-conservative form. ADCIRC

uses the non-conservative momentum equations, Equations 25 and 26. Incorporating

the same simplified eddy viscosity model into the non-conservative momentum

equations gives:

6U IOU 6U V 9.- + U i + v - N [Po + g(C - a77)]
a1r 2 UH a2 UHi Dx Bx + 7sx 7b+ Eh2 L +f , J T r -PON PON- (44)

Oy + U + V ON + W P-'o + g(C - a77)]

BT&T-0 P (45)
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Bottom Stress Formulation

38. The bottom stress in Equations 43 - 45 is expressed using a drag tensor

similar to that proposed by Jenter and Madsen (1989):

1 Hr*I --sin ] (46a)
Iby [.sin y COS )J

where

,--Cf (U2 + V2)L/2 (46b)H

and y is the angle measured counter clockwise from the depth-averaged velocity vector

to the bottom stress vector.

39. Defining

f'=- f + rsin(-,) (47a)

r'• E rcos(,Y) (47b)

and substituting Equations 46 and 47 into Equations 43 - 45 gives the GWCE and

momentum equations in final form:

+ . U U U - VH p'• + g(V_ - 8[)]

- Eh 2  + Dx + Bx + a + (o7-0-r•)UH}
Poh2 a• POwy__[o•+g;-a)

+ a V 19 UH 3V-VH 1V- f IUH - H [P-+W -a7)

Eh2  + Dy + By + 7- + (ro-r*)VH} 0 (48)

6U •UOU- + U O-£ + v X- - V'v a [P-' + g(( - a'7)]

]X + X + S-X T- U (49)

3 V + U 6 V + V V + 0 [P -o + g ( ¢ - a ?7)]

Br' '* (50)

40. In the 2DDI option, the bottom stress and depth-averaged velocity are

assumed to be co-linear (-( = 0). Cf is specified directly as an input parameter or

computed using one of the relationships given in Equation 29. In the three-
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dimensional ADCIRC options, y and Cf are computed using Tbx and rby from the

internal mode solution. As noted above, 7 is the angle measured counterclockwise

from the depth-averaged velocity vector to the bottom stress vector. Cf is determined

as:

S. 

+ 2Y) V

c, = b (51)
po(U 2 + V2)

It is easily shown that Equations 46, 47, and 51 introduce the bottom stresses

computed in the internal mode solution directly into the external mode equations.

Deveiopment of Weighted Residual Statements

41. To develop a Galerkin weighted residual statement for the GWCE, Equation

48 is weighted by the interpolating basis function, 4i, and spatially integrated over

the interior domain, 0, giving:

< a O>Q + <TO~f a~ f OA + <~n OA=
Z, S + oi> + - --, Oi>l + y Y ki>n - 0 i=1, ...N (52)

where

<a,b>n - a b dO

0 = the global domain

N = number of nodes in the spatial discretization
A• = U aV-'Ux •- VH O' + f'IVH -H P, +[Po- 7

- Eh2  (+ D + Bx + + (To-Dr')UH (53a)

Ay -= U HtTXU 6V-- VH 8V- VU ( l)

- Eh2 a + Dy + By + 7PO + (ro-r )VH (53b)

Applying Gauss's theorem to the integrals in Equation 52 that contain spatial

derivatives gives:

i-,, > + <T 0o, <Ax, Z, >0 - <Ay, •i>Q

- [Axa + Ay~ay]¢i dr i=l, ...N (54)
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where r is the boundary of the domain 0. The direction cosines are defined as:

anx S cos((X) (55a)
any E cos(y) (55b)

where 0. and Oy are the (spatially varying) angles measured to the outward normal at

any point along the boundary from the positive x and y axes, respectively.

42. Using the conservative form of the momentum equations, Equations 23 and

24, recasting the advective terms in Equation 53 into conservative form, and using the

simplified lateral diffusion model, Equation 33, A. and Ay can be written as:

A~ OUH E 02UH 02UH) 62~~- H(5Ax -at -hh2 - +, + oUH (56a)

A= OVHE 2VH 2VH) E 9
Aly •- Eh2 (-B-,+ Eh2 a + oVN (56b)

Substituting Equation 56 into the line integral in Equation 54 and assuming that Eh2

is zero on the boundary, Equation 54 becomes:
o2.-, di> + -• i. U• H•• VH -OU + f'VH

<[4- - Eh2  + Dx + Bx + o+ (To-T)UH, •>

-<V a - UH 6V- VH OV- fVUH -H 9[P-o + g(C - an•)) - Eh2 a

"+ Dy + By + Tsy + (ro-rO)VH, a->0 =(UHanx + VHajy)

"+ ro(UHa.X + VHany)]Ji dr i = 1, ...N (57)

43. The terms that involve partial derivatives of the barometric pressure,

surface elevation, and Newtonian equilibrium tidal potential can be written as:

P.2i -o

H ' [P-s + g(C - a,7)] = gh + 2 + gH P oP) (58b)

44. The normal flux across the boundary is defined as:

Qn -= UHanx + VHany (59)

45. The line integral in Equation 57 is non-zero only on flux-specified
boundaries, rQ. Using the specified normal flux Qn* for Q., and substituting

Equations 58 and 59 into Equation 57 gives the final symmetrical weak weighted
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residual statement for the GWCE:

<''i"+ <r§O>,+ <gho , ~-E>n + <gh, >0 + E-h2 <% ->

Eh2<ad, 7.>fl = <U4t 7.r>fl + <Vt-, Pi>0 + <Wx, vi->fl

+<Wy) - (3 + roQ.,) 0i dr i= 1, ...N (60)

where

W.- UH -- VH a- + VH - - gH a 41' - an) + D. + B.

+ +sx + (ro-rT)UH (61a)
PO

3y- -U - y- VH75 N -

+ Ls- + (ro-T*)VH (61b)

Po

46. The weig•-ed residual form of the conservation of momentum equations is

obtained by weighung Equations 49 and 50 by Oj and integrating over the domain f0:
<-~ • + - f IV + a [P- + W( - C'7)]

<Dy uav+ v•-+- Eh2 [I2U + - D B Z - + rTUU, O>f> = 0 (62)

Applying Gauss's theorem to the lateral diffusive/dispersive terms in Equations 62 and

63, and recalling that Eh2 equals zero on the boundary, gives the symmetrical weak

weighted residual form of the momentum equations:

E )DUHO 0UH11 4j(])>f
I N -< f -+- ] - IT +T

< <u + v+, U + a<[ + ' - >l (64)

I 2 -HE rSVH 0 (

S# + fU + f<ix S+2
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< [P"+ ( a7 -TS + T*'V, oi>n

- U T- + V B-, oi>a + <F + F, Oi>n (65)

Time Discretization

47. The GWCE equation is discretized in time using a variably weighted,

three-time--level, implicit scheme for the linear terms (i.e., those terms on the left side

of Equation 60). W. and Wy are treated explicitly. The time derivatives that

appear on the right side of Equation 60 are evaluated at two known time levels. The

time-discretized GWCE is:

ai>g + To<r 2At , bi>n

oi> ~ Ojk,?

a kk+ 49 a k 0 a-i

+ a, [<gh-, I + <ghg , k

Il-
+ a2 [_<gh-I -'>g + <ghV, V, > ,

kk-l k_ -iIr~

+ a3 [<gh~ C i7f +c ag~

- <uk(- •--) ~- ) + < 4k•j-) i

S<Wk, +9n_ (+n 2aAtn + To+ir. n,

+ Toa 2Qk* + roa3QkjI) 0i dr i = 1, ...N (66)

where

At = time step

k+1, k, k-i = future, present, and past time levels

at) a 2, a 3 = time weighting factors

The time weighting factors are selected so that:

a1 + a2 + a3 = 1

at= Ca3

Rearranging Equation 66 gives:
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(1 +-'o•) <Q'k1, p1•>r

. At

aj't k1'f IM a2 -~ '06

= 2 • €>•> > +•'t 1 <hg -, •>- 3 gtf<hg$l V;"( + 4h~ 1 OV

Eh 2At 1<k 4i "a + <k-

+ ,t<uk((k - 1)1 > + At<Vk((k -0 k) ->

+r A~t 2 <Wk, Z.>u + t< .i> _ ALt2Fi i=l, ...N (67)

where

a g~k2 k •-1 4M , a, kosQ' -1i dr68

Fi- (,¢ 2At<hn + I'oa iQn. + oa 2 Q, +OP

Q

48. The symmetrical weak weighted residual form of the momentum equations

are discretized in time using a two-time--level implicit Crank-Nicolson approximation

for all terms except the diffusive terms, which are treated with a variably weighted,
two-time-level implicit scheme and the advective, dispersive, and baroclinic terms,

which are treated explicitly:
at ,t>Uk( + C <kk1'(u'" + Uk), 4<>( - < (V(k + vk), a)>

1 09 psk' g(ik - (sx~k.1

+=k vkti[Po + ( 2 <Wk, > ,

-- +>a i=1, .. N (69)

_. ~Vk~<vk'--tn, _I2n + r <a,(vQk + vk), Q +<--k1) ± Uk), i>
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+ Eh2 [0 (fluk 1 0 4bk > + (02 < O(VHk 8 a

+ 01< --- , Wftj)>O + (32 <T~ j)

S<VajLs + g(4k1, - aynk*,)] - Z.)k+I, 4*>0
2~PO'b~I PO f

....Ix.-i +Vk8Vk 4 .>+<+ fi * O>n i=11,... N (70)

where fl, and /32 are time-weighting factors at the future and present time levels.

These factors are selected so that

fit + /32 = 1

Rearranging Equations 69 and 70 gives:

<(1 + At Ir ik) Uk+I At - fk~~ 0At

+ flEh2At [ 4<}k-i , ýVw>j + <0y

-<(1 - At A k 0>+ At <f/kVk
F7, y ',415 , O1>5

- f 2 Eh2 At 1< ONOk, a Ok)>Q + <4(U~!!1a , i$~>.]

At i + g((k~l _ C,ýk~l)] 0 L)~,>
PO P

At a [Jh+ g((k -ar,k)j (7*s)k, 0*,>n

-At <Ukak + Vk all Oi=1+,t..D.N+ k (71)

<(1 + A!r Vk+i tk> I + At <f' kUk.I

+ fllEh2 At 1<yk~ a---,ý4ln + y-kO ua-
-~ A o( Ark) Vk, >- At <f 4*>

-~aV~ alEhA [<Ylj~~>O + <8(VHlk, a I
#2hAt a 1< g~~ ax4~) (2jy)4

Pt a Pai

At a + g( (S V'k, 0,>0[- -Pak) -~ - T
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1,V Ow 'k BSAt <ýU] O-, + Vk < -, Bi>n + At < + , O>r i=l, ...N (72)

49. There are two differences in the solution of Equations 67, 71, and 72 in

the 2DDI option and the three--dimensional options. In the 2DDI option, the friction

parameter (Cf or one of the parameters in Equation 29) is specified in the model

input. The dispersive terms are included with the lateral diffusive terms byMD
eliminating D. and Dy from Equations 67, 71, and 72 and setting E2h = E2h. In the

three-dimensional options, Cf, 7, D%, and Dy are computed from the most recent

internal mode solution. In flows where the velocity reverses direction over the depth,

it is possible for the depth-averaged velocity to be zero while the bottom stress is

nonzero. In this case the drag coefficient computed in Equation 51 becomes infinite.

To prevent the numerical difficulties that this causes, an upper limit is set on the

computed drag coefficient. If this limit is exceeded, -f and Cf are set to zero and the

bottom stress computed in the most recent internal mode solution is passed directly to

the external mode equations. In the GWCE, 1 and 4 determined in the internal

mode solution are subtracted from W. and Wy, respectively. In the momentum

eutosand - are subtracted from the right-hand side of theequations,-P ad7

corresponding equation. This modifies the final terms in Equations 71 and 72 to

At <----k + Bk+ , i>n an(' .At <-p---k + fif + 6, Oi>n, respectively.

Spatial Discretization

50. In order to complete the conversion of the governing partial differential

equations into systems of algebraic equations, the FE method is applied to the time-

discretized form of the symmetrical weak weighted residt..l equations developed in the

previous section. Specifically, elemental approximations to the variables are

substituted into Equations 67, 71, and 72, the elemental equations are summed over

the global domain, and the required degree of inter-element functional continuity is

enforced. Interpolating basis with at least CO functional continuity are required to

discretize most of the dependent variables. Departures from this are noted below.

51. In all linear terms, surface elevation, velocities, and depth are

approximated over each element as:
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ýk nel

CkN O (73a)j =1

k nel

Uk j I el U (73b)

Vk uk jV (73c)
j 2j

n1el
h E hj Oj (73d)

j 21

where net equals the number of nodes per element. In nonlinear terms and certain

forcing terms, the entire term may be interpolated over the element as described

below.

52. The nonlinear and forcing terms in the GWCE are approximated as

follows.
a. The Coriolis parameter and the fluxes in the Coriolis term are

appro:dmated by:
nel

Ej _(UH) (74a)

Nnel
f/k(vH)k - E (f'VH)k j (74b)

j 2 11

b. The finite amplitude compopent of the free surface gradient is
approximated by:

net

(C2)k N E ((2)k Oj (75)

c The combined barometric pressure and Newtonian tidal potential term
is approximated by:

nel

Pog j .l pog
The total depth factor in this term is evaluated using an L2
approximation:
SHke 1 le)Hk H E H• (77)

= lneiij 1  J

d. The surface stress terms are approximated by:
nel

_s)k , (•-j j (78a)

(Tso)k N jnl (PoT' j (78b)
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e. The bottom stress and To terms are approximated by:
nel

(rAk- ro)HkUk e • [(ri - ro)HU]k i (79a)j ~1
nel1

(7"ik- ro)lkVk • IE [(r - ro)HV)k Oj (79b)
Kft

In the three-dimensional model options, if the computed friction
coefficient exceeds the maximum allowable value, the bottom stress
terms are approximated directly by:

k n el
IXfuE Tx) j(80a)

PO j PO

P0 n= E 1 )k Oj (80b)

PO j =1Oi

f. The dispersive terms are broken up into their components Duu, Duv
and D,, (defined in Part II), and discretized as:

0nel•D Dk Duu• (81a)

9 uvuk e 1

Duk E Duvk (81b)

Dv 1 E Duvk (81c)Sj =1

Dvv)k •=E Dvvk (81d)j =1

g. The baroclinic terms are not included in either ADCIRC-2DDI or
ADCIRC-3DL. Therefore the discretization of these terms is not
considered here.

h. The velocities that multiply the time derivative components of the
non-conservative advective terms are approximated using L2
interpolation:
uk • k = 1 nEl k

Uk k nel (82a)

nelVk YVek = 1 nE VVk-- 1  1 JVk (82b)
el - nel j = 

(

The free surface elevations that appear in these terms are
approximated using the standard Co approximation, Equation 73a.
The spatially differentiated components of the non-conservative
advective terms are approximated by

0'U k UHe1 Un el(UH L U kjE(83a)
3j 8
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(UR OV')k (UH)kl no1Vi10 (83c)

(VII OVY)k (VII)k n 1Vk 0i (83d)

where

(UH)kl ine Uk (84a)
eej~

el)~ El (V (84b)
nel j =1

53. Substituting the approicimations in Equations 73 - 84 into Equation 67

and summing over the elements gives:

eMu1{ n' (' TODAt) < kl

+ Eht (<el + <C*,j + i ~~fe

nel nel

nel el MC. e

+Eh 2At [ 6~i a ~i + k~ a ý ~

+ ~~t [<U~~1 (~a',k 1) ~>0 e + <V~@ j PV) i ,

-~ ~ 5 Atr(UH1 U eli e (H~ 1 ~~,~

+<(UH)j 1V Oi' + +-2 j(H~V '~~

+ ~2<(V) ~i nel (fU) O e'el'

ple ge
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- At 2 {<[(Tr* - ro)HU]ý Oj, '61 + <[(ii, - ro)HV]k 0j, ~ 061>(

- At 2[<D~ 6 i> + kOIfl+ aD~ ~Ye

+ <Dv 'L,1A1i1] -05>Iel At2 Fi i=11 -.N (85)

where

M =the total number of elements

fie the elemental domain for the element, el.

Equation 85 can be rewritten as:

[(E I + +!1 2+1

=e r +(TAt k )g)~

,A2M?)ý- +Eh2AtM3A
-a 3gt +i k-ji 12 Ji J

+ At [M(T)UkIC M (~(kj _ Ckl)

- t[M9(Ull)kUk + M 0)(VH)kIUk + M )(UH)kMV + M~q)(VH)kVjk]

+ At[M(!)(fIVH)ý - MM)(fIUH)jkJ _ &A! ~)C)

-gAt2M)(-P -3 aV7)4Hk + At2[M(7)(Tr 1ý + ()Lx]

- j )HUM~1( ~ k + M(')[(,r. - ro)HV]k}

-At2[M ¶I)Duu4 + M(5 )Duk + M Du + -M~ v]I t2F
11 uj j It j1F

i=1, .N(86)
where

M(2) - e Ae

<~ E h OM a> + < E hMO M VL~l (87b)

<1Jj *J~>0el + <9 9 >0 el (87c)
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Mij ; >0 ~el (87d)

MW) 0 a~~4 e (87e)

M(q) ='o u>0 (87h)

ij Wj"ý 7  'e I

Note that the elemental matrices, MM1 MM2) MM3  M(4,) and MM6  are
Uj tP IJ j ' j 13

symmtrial nd hatMn M(T), and MM~ are non--symmetrical.

54. The fully discretized GWCE can be written in a compact form as:

m nel [ I (+1
E E [IM~Cl{k1 E {pWCE} i=1, ... N (88)

elI-1 j-1 e I s

where

Mq!CE (1 + 'rA M + cgAt2M(?) + Eh~At M(ý) (89)

qWCE f(1) (TOAt _1)M(j)(tkI aAt2M(?)Ck
P. I 12M 3 )C + /31I1i

- %AtMM~)j-1 + Eh2 At M3(-

+At [M(T)Uk 1 (k -1C) + e1( -%k1)

-At2[(M!)(UH)kjUk + M0)(VH)k 1U4 + MM~(UH)k1Vk + Mjq)(VH)k1~

+ At2[MýT)(f/VH)k - MM)(f1UH)k] - M(4)((2)k

_ n4k11 + At2r[M(?)frsx~k +M(8)(Tv 4]
-g,&t2M(4)( Ps~ - SY) l iA~~/

- t{M~[(,r~ - 7,O)HU14 + MM)[(T*1 - ro)HV]4}

- At2[M(1)Du4 + M()DUVk + MQD" k + M(6DVV.JJ - 1

i =1, ...N (90)

In the three-dimensional options, if the computed friction coefficient exceeds the

maximum allowable value, the friction term in the right side load vector P WCE is

slightly different:
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GqWCE feI j 7-OAt - MQ(1)-I_ gt2P = 2M0)( + ( - 1)MJi " - (2)(4M•C
-j 1L

- ~gAt2 1 + Eh2 At M() k-ijt••) I ---T- j• I

+ At [Mj )Uel((4 - Ck-1) + -vj"eý --

- At2[M4)(UH)keu• + MLJ)(VH)e U4 + MMi(UH )k"V4 + M(i)(VH)eVkl

+ &t2[M(T)(fVH)4 - M(ý)(fH)4J - t & pL )(C2)ý
- gt .1 - + - T P J Po

g,&t2(ý)( s _ t2[M(T)(Tsx)4 + M(8)(L!X)k]

- At2{M(7 )[(k•=*) _ (UH)] + M(8)r(--)k - r'o(VH)4]}
" PO " o ". . .j PO 1J

- At2[MI)D,, + M~(5),Duv + M(5)Du k+ 6)

i=1, ... N (91)

55. Global assembly and enforcement of the C0 functional continuity

requirement leads to the following global system of equations:

N
--- EC ] i } = { -iGE } i=l, ... N (92)

j = I

where

gMqWCE-- the global banded system matrix

gP. Wc the global load vector

g4*1 = the global nodal elevation vector

56. The fully discrete form of the momentum equations is obtained from the

time-discretized symmetrical, weak weighted residual form of the momentum equations,

Equations 71 and 72, as follows.

a. The local acceleration terms are interpolated using Equations 73b and
73c.

b. The friction terms are approximated by:
ne1

rkuk~l ey ,eIkttk l, , (93a)

Tikvk.I e1 ,ekl k l (93b)
j1 * 101
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u nel u
T~kuk nE 1 k~Uk (93c)

j Ml

lnel
TjkVk I IjVk Oj (93d)

In the three-dimensional model options, if the computed friction
coefficient exceeds the maximum allowable value, the bottom stress
terms introduced on the right-hand side of the momentum equations
axe approximated by:

ie1
(Tb ,k E (94a)POW = oI-P--0j• 9a

liel
(.L-) •=E(--)4j 0j (94b)Pok P N,

c. The Coriolis terms are approximated by:
nelf/kUk'l D= fkkIjj (95a)

j IJ J

k nel
flkUk = E f'-uk j (95c)

jmj

nel
flkVk e f'kvjk k (95d)

d. The lateral diffusive/dispersive terms are approximated using
Equations 73b and 73c for velocity and Equation 77 for total depth.

e. The barometric pressure and Newtonian tidal potential are
interpolated using Equation 76.

f. The surface elevation is approximated using Equation 73a.

g. The surface stresses are evaluated as:
Ts X nel

(x)k.1 v j TIsx~k1lo (96a)

(r~*)kl j ni 7Po k~
o-T8 (2 0po- (96b)

(78 X )k N ne(B (96c)

nel
Te r(96d)

kPO-' j a I Pi

h. The advective terms are approximated by:
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Uk au k ,U nel Uk (97a)
kD.~ Nk U~jfitU (9Th)

vk Ou k , nel vk f (97b)
Tx" Vl=I Uk ýý 197

"Uk - " el j ýW Iel Vk ,6 (97C)

Vk OVk ,k nel k4 9d

where Uel and Vel are defined in Equation 82.

L. The dispersive terms are broken up into their components Duu, Du,,
and D,, (defined in Part II), and discretized as:
1 ) 6Duu)k 1 -nel (98a)

(I uV-x I • 1

(ki M Vw)k e khe 1 9

101) 1 (98b)

1~ v'v)k nel i

where Hel is defined in Equation 77.

j. The baroclinic terms are not included in either ADCIRC-2DDI or
ADCIRC-3DL. Therefore the discretization of these terms is not
considered here.

57. Substituting the approximations in Equations 93 - 98 into Equations 71

and 72 and summing over the elements gives the discrete system of equations:

e nt At 1

E <(1 +At-r.,k) u4k 1 j, + • ,k
"e"l• * el J, i el

_ 3tEh2At [UiHeol +. , A]l)>ne. <UkIHkl 8•. L9-ne a
- i + >0 i -6 ~e

eVTL mel el el

-#2Eh2At [<'kI-.> + <uke
el el0e

At ,ktr+ k.
- gr<RP: + - ~')j + - A~ 4
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+ At<[(rsx)k.I + ( T'i~k

-AtI<UkMU 0 ,6li <Vk1 Uk 0

At[<( IL)kDut4 gY!i' Oi>f0l + < (F-)k I~ p inel
Uel el el03 el

i=1,...N(99)
and

m nlek At 4 )~~ At fk.

el .1 jX1 <i + -7- 1* 1 1 el T <i i li Oi>oele

+ ~ e _t,2 A [<~H 1 ~ i~~)>n + <V4lH k 4,1 6 iL~

At 
0 el e

I32Eh2At [<J~ e .L 0i( )>Rei+ <vk el ,

zrVA-ij el~ 1
el elU el ela

g9tM()s(P5 + -a~jk +) + pEs +g k - aqk 9

+ ;F -!M-P[(-A)j* + (T-SX*)k] oi AtUOM)U V 1n)
p0 He

- At(1 1 LkM¶V + M<)DkmJ IM..N(11

andi>e JN '0'Ul

U At[<()1M(k)vk.1~n <M( I)U~vv 0 I()k

e ~el ') [i +l +1 ell]~2~..I

Equtins99an 10 Cn e ewitenas:i=, .. (00



(1 - At 7*1ý)MM1 Vk - AfkM ý-f2

-~~ 1 L n + (2LL +
pog

i~Mlj(~j)k*+(L..It(kM(T)Vk + Vk M(ObV)+ ' PD. ' Poi - 'eji j el ji J

- At( 1 )k[M()Duv4 + MO)DvvkI] i=1, .N (102)
NOe I .

58. The MW) matrices on the left side of Equations 101 and 102 and in the

first two terms on the right side of these equations are lumped so that all elements
are added onto the diagonal. The MMmatrices on the left side of Equations 101

and 102 are decomposed into diagonal and non--diagonal matrices. The non--diagonal
portion of ?AVis moved to the right side of the equations. These operations give:

M flel r At(1L)U~ Atf~Mi~k1)r,
eJ . 1(+ At 'lJ ' - h ~ +~E 2 A Jj

= 1-AtT/k)MQL)Uk Atf,kM(1L)Vk Aa,(Dyk'+
E M(Nlj~lO jj ij 13 i

-gf-~MjQ[(&s, + C"aiiý+')+(+C

+ AtMI[(sx 1 ).+(TXk At(UkM(QT)U + VkM(8)Uk)

- At( Lk [M()Duuk + M(8)Duvk4]] 1 . (103)

and
u nel t,*tk )M(L)Vk.1 + LAtfkM(iL)U +1 .'A tM(3 B)Vk,

lz ~i =1

(I- (1 MI )ML)Vk Atf,kM(1L)Uk - E t(#OM(ND)V4+1+ # 2M(3)Vk)
TiM(PS +2 (kjjJj+1a7

- I pog + P0g

+ .j -7 ij ej )4+1 I+ (r!j) _ At(UkpIM(!Vý + Vk1M(8)Vk)

- At+ I k)DYVDu] i+1, .,.N (104)

where
IMq(L) = the diagonally lumped elemental matrix MI

M(4D) -=the diagonal portion of the elemental matrix Q
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14(311) =- the non--diagonal portion of the elemental matrix Mý

59. The fully discretized momentum equations can be written in compact form
as:

M n el IhE k1 .E U
E fM.. p.j-' - {Mj Vk.} = F, {PýM} i=l, -.N(15

e 1=1 j = 1 e11

E D [M'i'j {U**1 } + {Vi I 11 = E. {PY1 } i=l, ... N (106)
elzi ,j z IL.Lj e I ~ i

where

M!ýE =(1 + ~- 4 4 M})+ fiIEh2AtMij 10a

MME -Atf ikm(LL) (107b)

pIME le~'[i - ,*Tk)M(1L)Uk + l!tfkMI L)Vk

- Eh2 tl~DUi 3M)~

(31HU j + \kl- A(ýUk) M7)k elEhAt(#M(1[TSj. (TS +j VjM8)

At(H kM Cku +I M¶)a7 i 1 .(0

-] _ htAU(IM(M)UkV+ +

+AtM~l)[('r* )k.l l+(!sx)k] t[~MQk+V M(S)V
T- ' PaO i -P -Of el Ji e1 j

- At kM(),. + M(ý)D.,,]] i=11 ... N (107d)
In the r the-iesoa oel opios if the coptdfitincefcenxedh

IME E jME

P. IMV"JU + a7ýMV/VE
91F i 'i 'o
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- Eh2A(ýIMID)Uk~1 + fi2M(%)U~
-- Eh2At I IMj Uij -

T gtM(T)[(P~sAj + +k- 0) +-,C7__•." _ •') • Pog

+ -u-Ik)S + k ;8) k] x i1t(Ukb M(k)U4 + V(108'Ua)

-- At(rel)k[M(?)Duuj + M()Duvjk] - L¥tMQ)(2*)t] (108a)+ Ii UVj IJ -Po0

pM nel [M(L)v _ At-kM(1L),UkPi M E I- 'r . '-•--j i ij

-Eh 2At(flM!3D)v•" + 02M(3)Vk)

- M "P[(8 P!o) g + 4J. - anjk + Psig +
Ol~JL~po ckTj-) . +

+ t,!M1)r[s*)k~l + (ro) k _ At(UkeM(7)Vk + Vk 1M8)vk)
- +M Dvv] - (108b)

el

60. Global assembly and enforcement of the CO functional continuity

requirement gives the following systems of equations:

N
E [g-jýE] g~kulk _ [gM2'E] {gPXif =} i=l, ...N (109)
j Ig1 j ]
NN gM2ME] k+1 igMME k1'n
E [gMi] {fgUj} "t+ [g-jM ] {fgV } = {gpyME} i=1, ... N (110)
j I=1 i

where

g-- gM 2i = global diagonal system matrices

gpXME gp E _ global right-hand-side load vectors,

gukfl gVk* = global velocity vectors in the x and y directionsj ,-j -

Solution Strategy

61. The horizontal discretization for ADCIRC has been implemented with

three-node linear triangles and four-node bilinear quadrilaterals. The triangle element

provides a maximum degree of flexibility and is extremely cost-effective on a per-node

basis for long wave computations. All elemental matrices M!l) through M(ý) are

integrated using a numerical quadrature rule that is specified with the input data. A
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four-point Gaussian quadrature rule integrates the elemental matrices, Equation 87,

exactly (Connor and Brebbia 1976). However, for most applications, a three-point

Gaussian quadrature rule appears to be sufficient. The elemental inat'4-c are

computed once and then stored for use during the time-stepping operations.

62. The GWCE is solved first. The global system matrix for the GWCE,
Ij , is time-independent and is therefore assembled and LU decomposed only

once. 9MiEhas a banded structure with a band width that is dependent on the

node numbering of the grid. Prior to running ADCIRC, the L-ode numbering should

be optimized to minimize the maximum difference in the global node numbers

associated with each element in the grid. The right side load vector, gpWCE is

efficiently updated every time step since all elemental matrices have been

pre-computed. Flux-specified boundary conditions have been incorporated into the

load vector by the model formulation and therefore require no additional equation

manipulation. Elevation-specified boundary conditions are incorporated into the
GWCE

system matrix, gMi q, by zeroing out rows corresponding to boundary nodes with

specified elevations and placing a value of unity onto the diagonal. The boundarygGWCE

condition values are then stored into the appropriate location in _P i . The

equations associated with elevation-specified boundary conditions are multiplied through

by a constant to ensure that the modified global matrix has a good condition number.

The modified system of equations (i.e., Equation 92 modified to include the elevation-

specified boundary conditions), is then solved for elevation at the new time level, k+1.

63. The momentum equations are solved second and use the elevation values

at time level k+1 computed from the GWCE. The global system matrices for the1gMME2E
momentum equations, (9 0- and gMi, ), are time-dependent and therefore need to

be reevaluated at every time step. However, since these matrices are diagonal, matrix

evaluation and decomposition are very economical. Specified normal flux boundary

conditions are incorporated into Equations 109 and 110 by reorienting the x and y

equation pairs that correspond to the specified flux boundary nodes into a locally (for

each node) normal/tangential coordinate system. The -oriented equations are then

replaced by the corresponding specified normal flow boundary condition values (Wang

and Connor 1975; Gray 1984).

64. The right sides of Equations 109 and 110 are dependent on U, ,

and V, which are all known quantities, and on Uý" and Vk+I (because of the lateral
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closure model). Therefore, these equations must be solved iteratively for velocities at
[pMEangpM

the new time level, k+1. -P ' and -PY" are updated each iteration with the new

values of Uý" and until a specified convergence criteria has been reached. When

Eh2 is zero, no iteration takes place.

65. When a three-dimensional option is used, the external mode solution

depends on the internal mode solution through Duu, Du,, Dvv, Cf and y [or if the

drag coefficients exceed the maximum allowable values on T"bx and rby]. These

quantities are computed at each internal mode time step and assumed to be constant

in time for subsequent external mode time steps. If the external mode solution and

the internal mode solution are evaluated at the same model time, the external mode

solution is evaluated first. The updated surface elevations and depth-averaged

velocities are then used in the internal mode solution. This solution sequence requires

the specification of initial values ! r Duu, Duo, Dvv, Cf, and 7 as input parameters for

the external mode solution.

Fourier Properties of the External Mode Solution

66. Fourier analysis characterizes the damping and phase propagation properties

of a numerical solution in relation to the corresponding analytical solution. Althouigh

it is typically applied to the one-dimensional form of the shallow-water equations and

a constant bathymetric depth is usually assumed, the results give a good indication of

how a circulation model will behave in a more general two-dimensional, nonlinear field

application. They also allow inter-comparisons with other discretization strategies.

Procedures for applying Fourier analysis to the shallow-water equations are described

by Pinder and Gray (1977) and Lynch (1978).

67. The discrete form of the ADCIRC 2DDI governing equations has been

Fourier analyzed. These results are presented below along with results from the

Fourier analyses of several other numerical solution schemes for the shallow-water

equations. All of the other numerical schemes that were considered use primitive

formulations of the shallow-water equations (as opposed to the generalized wave-

continuity formulation used in ADCIRC). The schemes include a finite element

solution using linear elements (PEFE) (Wang and Connor 1975; Westerink, Connor

and Stolzenbach 1987, 1988), a second order, non-staggered, finite difference solution

(PENSFD), and a second order, staggered, finite difference solution (PESFD) (Hansen
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1956; Leendertse 1967). A second order, Crank-Nicholson scheme was used to

integrate the PEFE, PENSFD, and PESFD in time. As described previously,

ADCIRC uses a three-time-level scheme for the GWCE (a, = 0.35, a2 = 0.30 and

a3 = 0.35), and a Crank-Nicholson scheme for the momentum equations. The bottom

friction coefficient (Equation 46) in each model was specified as

S= 0.8 Ir [ g7 A (111)

where A is the wavelength of the Fourier component.

68. The modulus of the propagation factor indicates the ratio of the numerical

amplitude to the analytical amplitude during the propagation of one wavelength. The

phase of the propagation factor indicates the phase lag or lead a given wavelength

experiences during one period. Figure 1 presents the modulus and phase of the
propagation factor for the PEFE and PENSFD schemes. Comparisons are shown for

Cr = 0.1, 0.5, 1.0, and 2.0 where Cr is the Courant number based on wave celerity,

Cr E Atxi (112)

At is the time step, and Ax is the grid spacing. For increasing Cr, both the PEFE

and the PENSFD solutions have less damping than the analytical solution for low
ratios of A/Ax. Neither solution, regardless of Cr, propagates energy at the shortest

resolvable wavelength, A = 2Ax. This characteristic of PEFE and PENSFD solutions

accounts for the severe 2Ax numerical noise problems encountered using these schemes.

69. Figure 2 presents the modulus and phase of the propagation factor for the
PESFD scheme and the generalized wave-continuity equation finite element

(GWCEFE) scheme used in AbCIRC. For low ratios of A/Ax, both schemes provide
less damping than the analytical solution and show poorer phase propagation behavior

as Cr increases. For a fixed Cr and A/Ax, the PESFD scheme has slightly better

damping characteristics, while the GWCEFE scheme has better phase propagation
characteristics. At low Cr, the GWCEFE solution leads the analytical solution. As Cr

increases, the GWCEFE phase propagation factor swings through a zero value

(corresponding to perfect phase behavior) and then develops a phase lag. This

indicates that there will be a local minimum in the time convergence curve with

optimal accuracy being achieved at Cr Z 0.5.

70. The primary difference between numerical solutions using PEFE and
PENSFD schemes and numerical solutions u~ing GWCEFE and PESFD schemes is

that the latter schemes propagate energy at A = 2Ax. Propagation of 2Ax waves

corresponds to a non-folded dispersion relationship and prevents two responses from
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developing to a single forcing frequency, i.e., one physical response at the forcing

wavelength and one numerical response at a wavelength near 2Ax (Platzman 1981).

As a consequence, GWCEFE and PESFD schemes do not have the severe 2Ax noise

problem of the PEFE and PENSFD schemes.

Convergence Properties of the External Mode Solution

71. In order to verify the accuracy of the external mode solution of ADCIRC

and to establish convergence properties in space and time, ADCIRC-2DDI was applied

to a modified form of the quarter annular test problems originally developed and

app'ied by Lynch and Gray (1978, 1979) and Gray and Lynch (1979). These two-

dimensional, variable-depth test problems were developed to give insight into a

numerical scheme's 2Ax oscillations and its ability to propagate longer physical waves.

The original geometry and bathymetry of Lynch and Gray (1978, 1979) were modified

as follows. The arc of the annulus was increased to 135 deg*; the inner radius was

decreased to 125,000 ft; the outer radius was increased to 650,000 ft. The resulting

geometry, with three land boundaries and one open ocean boundary, is shown in

Figure 3. A linearly varying bathymetry was used that increased from 50 ft at the

inner radius to 260 ft at the outer radius and a quadratically varying bathymetry was

used that increased from 50 ft at the inner radius to 1,352 ft at the outer radius.

These modifications accomplish two things. First, the modified domains are more

representative of a coastal region that extends to near or beyond the Continental Shelf

break. (In fact, the geometry and bathymetry are idealized approximations to the

New York Bight.) Second, the numerical difficulty of the test problems is increased.

72. A sequence of four discretizations was considered: a 6- by 8-node

discretization (Ar = 105,000 ft), an 11- by 15-node discretization (Ar = 52,500 ft), a

21- by 29-node discretization (Ar = 26,250 ft), and a 41- by 57-node discretization

(Ar = 13,125 ft). These are shown in Figure 4. Grids consisting of linear triangles

and of bilinear quadrilaterals were tested and gave very similar results. Only the

bilinear quadrilateral results are presented here. For each grid, five different time

steps were applied: At = TM2/8, At = TM2/16, At = TM2/32, At = TM2/64, and

At = Tu 2/128 where TM2 is the M2 tidal forcing period equal to 44,712 seconds.

ADCIRC-2DDI was run in its linear mode with an M2 forcing frequency. Therefore,

*A table of factors for converting non-SI units of measurement to SI (metric) units is

presented on page 6.
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a. 6- by 8-node grid

b. 11- by 15-node grid

Figure 4. Grids used for the test problem (Continued)
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c. 21- by 29-node grid

d. 41- by 57-node grid

Figure 4. (Concluded)
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the theoretical model response should have included only an M2 wave. The resolution
of the M2 wave provided by the sequence of grids varied between 17 and 312 nodes
per wavelength for the linearly varying bathymetries and between 17 and 703 nodes
per wavelength for the quadratically varying cases. Thus the M2 wave was always
well-resolved. Cr varied between 0.13 and 39 for the linearly varying bathymetries
and between 0.13 and 88 for the quadratically varying cases. ADCIRC-2DDI is
unconditionally stable in its linear mode and therefore permits the use of Cr > 1.

73. All cases were forced at the open ocean boundary using C = 1.0 sin(wM2t)

where wM- 21r/Tu2 is the M2 forcing frequency. All other forcing mechanisms (i.e.,

tidal potential, free surface wind stress and atmospheric pressure gradients) were set to
zero. The Coriolis and advective terms were also neglected. The bottom friction

coefficient was set to -r" = 0.0001 and the value of ro = 0.0001. All total depths

were set equal to the depth to the geoid.
74. The computations were hot-started using the analytical solution for the

specified geometry, bathymetry, and friction coefficient. The computations were then
run for 10 tidal cycles to allow a dynamically steady-state numerical solution to

develop. The elevation and radial velocity solutions at each node were recorded
during the eleventh tidal cycle and were Fourier decomposed. Typical results are

shown in Figure 5 for the sequence of runs using the coarsest grid and the linearly
varying bathymetry. The figures compare the exact analytical solution to the
maximum and minimum ADCIRC-2DDI solution for all nodes at the same radius.
These plots indicate that there are no spurious 2Ax modes in either the radial or

angular directions.

"75. Error measures were calculated from comparisons between the harmonically
decomposed numerical solutions and the analytical solutions. These were defined as:{ 1 N(A N 1V2 (1a
El - E a a (113a)

_ pi - bNV)} (113b)

E3- P i ý(aui -au ) (1i13c)
I I • ~ l]'

E (b i- " (113d)
A Nj J 1Iui uii0
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where
Np = the number of nodes within the grid
aA. = amplitude of the sine component of the analytical elevation solution at node i
bai. = amplitude of the cosine component of the analytical elevation solution at node i

a =i - amplitude of the csine component of the anumytical elevation solution at nodei

bai = amplitude of the sine component of the numerical elevation solution at node i

= = amplitude of the cosine component of the numerical elevation solution at node i
Aauj = amplitude of the sine component of the analytical radial velocity solution at

node i
ba = amplitude of the cosine component of the analytical radial velocity solution atuI node i

Nau, = amplitude of the sine component of the numerical radial velocity solution at
node i

bli = amplitude of the cosine component of the numerical radial velocity solution atU1  node i

These error measures represent the absolute errors in the sine component of the

elevation solution (El), in the cosine component of the elevation solution (E2), in the
sine component of the radial velocity solution (E3), and in the cosine component of

the radial velocity solution (E4).
76. A summary of the error measures computed for all of the test runs is

presented in Table 2. The error measures are plotted against Cr (the average value

for a given grid) for the linear bathymetry test cases in Figures 6 and 7 (Figure 7 is

a blow-up of the low Cr range in Figure 6), and for the quadratic bathymetry test
cases in Figures 8 and 9 (Figure 9 is a blow-up of the low C, range in Figure 8).
All errors show good spatial convergence; i.e., the more refined the grid, the lower the

error at any Cr. In time, the errors decrease as Cr decreases, until Cr = 0.9 - 1.75

for the linear bathymetries and Cr = 3.5 - 7 for the quadratic bathymetries. A well-

defined local error minimum exists for all grids within these Courant ranges for both
the sine and cosine components of the elevation and radial velocity solutions. This

local error minimum occurs because the phase of the propagation factor changes from

a phase lead to a phase lag, passing through a region of almost perfect phase
behavior, near Cr z 0.5 (see Figure 2 and afiociated discussion). Figures 6 - 9

suggest that the optimal behavior occurs at somewhat higher values of Cr. These
figures were plotted using the average value of Cr for a given grid. However, the
primary errors are generated in the shallow portions of the domain. If the Cr is
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adjusted to account for this, the optimal range of values changes to Cr = 0.52 - 1.07
for the linearly varying bathymetries and C, = 1.07 - 2.14 for the quadratically

varying bathymetries.

77. It is concluded that the external mode solution used in ADCIRC has
excellent numerical properties. There are no spurious 2Ax or 2At modes due to the
ability of the GWCEFE scheme to propagate high wave number energy. Convergence

properties in space and time are good with superconvergence occurring in the range
Cr = 0.5 - 1.5. In this range, more accurate solutions are obtained using larger time

steps.

Application of ADCIRC-2DDI to the English Channel and Southern North Sea

78. The accuracy and behavioral characteristics of the external mode solution
have been tested in field applications including (a) tidal and hurricane storm surge

simulations in the Gulf of Mexico (Westerink et al., in review), (b) tidal simulations

in the English Channel and Southern North Sea, (c) tidal simulations in a small
coastal inlet (Luettich, Birkhahn, and Westerink 1991) and (d) tidal simulations in
the New York Bight. The English Channel/Southern North Sea system is probably

the best documented field site presently in existence for testing a long-wave,
hydrodynamic model. Since the emphasis of this report is on the development and

testing of the various components of ADCIRC, the results of applying ADCIRC-2DDI
to the English Channel and Southern North Sea are presented below.

79. In the mid-1980's considerable effort was put forth to establish and make

readily available a set of standard grids, boundary conditions, and verification data for
model evaluation in the English Channel and Southern North Sea (Werner and Lynch

1988). This data has been used as the basis for modeling studies for the Tidal Flow
Forum I at the Conference on Finite Elements in Water Resources, Lisbon, Portugal,

in 1986 and for the Tidal Flow Forum II at the VII International Conference on
Computational Methods in Water Resources, Cambridge, MA in 1988. Two collections

of scientific papers have been published from this work and can be found in Advances
in Water Resources, Vol. 10, No. 3 (1987) and Advances in Water Resources, Vol. 12,

Nos. 3 and 4 (Dec 1989).

80. The fully nonlinear version of ADCIRC-2DDI was applied to the grid and
bathymetry shown in Figure 10. The grid consists of 990 nodes and 1,762 linear

triangular elements. The model was forced by specifying 11 harmonic constituents for
elevation (O, K1 , M2, N2 , S2, K2, MS 4, MN 4, M4, M6, 2MSO) along the two open
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model boundaries. Wind stress and tidal potential forcings were not used in the

model runs. Model parameters were selected to match those used by previous

investigators to allow the direct comparison of model results with field data and with

previously published model results. The following parameter values were used in the

model: ro = 0.0002s-1, At = 360s, Cf = 0.002322, f = 0.000113341s-1, and Eh2 = 0.0.

The time integration coefficients in the GWCE were set to a, = 0.35, a2 = 0.30, and

a3 = 0.35.
81. ADCIRC-2DDI was run for the short-term test case suggested by Werner

and Lynch (1988) covering the period from 0 hr on 15 March 1976 to 24 hr on 17

March 1976. Werner and Lynch (1987) found that it was necessary to use a

minimum bathymetric depth of 15 m throughout the model domain to avoid

generating negative water depths during their simulations. ADCIRC-2DDI ran

successfully using a minimum bathymetric depth as small as 10 m, although the

simulated results were highly insensitive to this change at the 19 locations where

observational data were available (see Figures 11 and 12).

82. The first 47 hr 10 min of the simulation were used as a transient start-up

period. Figures 11 and 12 present comparisons between modeled time series and

observed time series of free surface elevation (at 11 stations) and depth-averaged

current speed and direction (at 8 stations) for the final 24 hr 50 min of the

simulation. (The locations of the elevation and velocity stations are shown in

Figure 10. The observed time series were actually reconstructed from 11 primary tidal

constituents at each station. The tidal constituents correspond to those used to force

the model open boundaries and were extracted from raw time series at each

observation station using harmonic analysis.) In general, the model does a good job

of simulating the observed results. Some of the differences can be attributed to local

topographic and bathymetric effects and to the inherent problems associated with

representing bottom stress in a depth-integrated model. Also, Werner and Lynch

(1989) point out that the model results contain harmonic constituents, generated by

nonlinear interactions within the domain, that are not included in the reconstructed

observed time series. By filtering this energy out of the model results, they were able

to reduce the average difference between the simulated and observed surface elevations

by approximately 40 percent. The worst comparison occurs at the tidal elevation

station at Christchurch and is at least partially due to the neglect of the channel

between the Isle of Wight and the mainland (located approximately 25 km east of

Christchurch) in the model grid.

83. ADCIRC-2DDI was also run for the long-term test case suggested by
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Werner and Lynch (1988) covering the 190-day period starting at 0 hr on 15 March

1976. The first 5 days were discarded to allow for start-up transients and the

remaining 185 days were harmonically analyzed using the least squares package of

Foreman (1977). The amplitudes and phases of the primary surface elevation

constituents from the ADCIRC simulation, from a simulation by Werner and Lynch

(1989), and from the observed time series at the 11 elevation stations are compared in

Table 3. The overall comparison between model results and observations is reasonable

considering no effort has been made to calibrate the model by adjusting the bottom

friction coefficient, as attempted by Baptista, Westerink, and Turner (1989). Some of

the largest differences in phase occur at stations that are close to amphidromes. This

is because a small displacement of an amphidrome's position can result in a large

change in the nearby phase values. Some of the largest relative differences in

amplitude (i.e., percent difference between the simulated and observed amplitude)

occur in the M6 constituents. Bottom friction is the primary nonlinear generating

mechanism for this constituent, suggesting that this process is not captured very well

by a depth-integrated model.

84. Figure 13 presents co-tidal charts for the entire domain for 14 tidal
constituents. The ADCIRC-2DDI results presented in Figure 13 and Table 3 compare

very closely with those of Werner and Lynch (1989). This is expected since Werner

and Lynch (1989) used a depth-integrated, finite element, GWCE-based model that is

similar to ADCIRC-2DDI. The minor deviations between the models are due to
ADCIRC's use of a non-conservative formulation of the advective terms in the GWCE

as well as slight differences in the discretizations of several of the terms. The close

correspondence between the model results provides an excellent verification of the

formulation and numerical discretization used in the external mode of ADCIRC.
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PART IV: INTERNAL MODE SOLUTION

Definition and Applicability of a 3DL Model

85. As discussed in Part II, mode splitting replaces the direct solution of the

three-dimensional governing equations with an "external mode" computation for free

surface elevation (using the vertically integrated governing equations) and an "internal

mode" computation for the vertical profile of velocity. It was noted in Part II that

all of the physics contained in the three-dimensional governing equations are included

in the vertically integrated equations if the bottom stress and the momentum

dispersion terms are specified correctly. The simple parameterizations of bottom stress

and momentum dis;,ersion in terms of depth-averaged velocity (Equations 28 - 31) are

physically correct only for the simplest flows (e.g., a logarithmic velocity profile over

depth). Mode splitting replaces these simple parameterizations with the internal mode

equations. Therefore, when the complete internal mode equations are solved, the

bottom stress and momentum dispersion used in the vertically integrated equations are

(in theory) completely consistent with the three-dimensional equations.

86. While the external mode equations are two-dimensional, the internal mode

equations retain the spatial variation of velocity in three dimensions. Considerable

computational savings can be realized if the advective terms and the horizontal

momentum diffusion terms are dropped in the internal mode computations (Nihoul and

Djenidi 1987; Davies 1988). This simplification eliminates all horizontal gradients from

the internal mode equations, thereby reducing them to one-dimensional equations in

space (over the vertical). When simplified internal mode equations are solved, the

bottom stress and momentum dispersion are no longer completely consistent with the

three-dimensional equations. However, these approximations should be physically

correct for flows in which the vertical distribution of momentum at each horizontal

grid point is determined by a local balance between the surface and bottom stresses,

vertical momentum diffusion, the Coriolis force, and the local inertia. (Clearly, this

should encompass a much wider range of flows than parameterizations solely in terms

of the depth-averaged velocity.) The required balance will exist when the rate of

vertical momentum transport is much greater than the rate of horizontal momentum

transport. Assuming horizontal momentum transport is dominated by advection, the

rate of vertical momentum transport will be much greater than the rate of horizontal

momentum transport in the three-dimensional governing equations if
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o[u 811E >>u

Scaling this yields

U2  
_EVCUc c Lc h hcUchC >> -r-or >> =

where Evc, Uc, hc, and Lc are a characteristic vertical eddy viscosity, horizontal

velocity, water depth, and horizontal length scale, respectively. Dimensional arguments

suggest Eve z OcUc where ý is a constant whose value for tidal and wind--driven

flows typically ranges from 10-3 to 10-2 (Bowden, Fairmairn, and Huges 1959; Csanady

1976; Fischer et al. 1979; Davies 1985). Therefore, the simplified internal mode

equations should be an accurate approximation to the full internal mode equations

provided

L », >> 100 - 1,000

Since coastal and shelf waters are usually characterized by large length-to-depth

scales, a model based on the simplified internal mode equations should be widely

applicable in these waters.

87. The model based on the simplified internal mode equations will be called a

three-dimensional local (3DL) model. This name emphasizes the fact that the

simplified internal mode equations give values of bottom stress and momentum

dispersion for the two-dimensional (external mode) equations that are not fully

consistent with three-dimensional equations, but rather are based on a local

approximation of the three-dimensional equations.

Rationale for the DSS Technique

88. Despite the savings gained by simplifying the internal mode equations in

the 3DL model, the internal mode equations are difficult to solve numerically because

of the high velocity gradients that characterize the water column near the bottom and

surface boundaries and across strong density changes. Existing state-of-the-art

circulation models use velocity as a dependent variable and therefore require a fine

numerical discretization to resolve regions of rapid velocity change. Davies (1991) and

Davies and Jones (1991) have examined the computational effort required to resolve a

bottom boundary layer using a one-dimensional model through the vertical solved with

finite differences and several coordinate transformation/grid stretching schemes. For
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tidal flows having an eddy viscosity that is constant over the upper 80 percent of the

water column and that varies linearly with distance from the bed over the bottom 20

percent, Davies (1991) found that it was necessary to use a logarithmic or log-linear
coordinate transformation and at least 20 grid cells to obtain convergence of the
velocity sci'ition. When the eddy viscosity was determined using a level 2-1/2

turbulent closure, the most efficient solution was found to require a log-linear
coordinate transformation and 50 - 100 grid cells over the vertical for both a

turbulent kinetic energy transport equation and the momentum equation.

89. Practical geophysical flows often have two or more regions containing sharp

velocity gradients over the vertical. Because of the computational overhead in time

and memory required to resolve these features, existing multi-dimensional circulation
models almost always omit the near bottom region and use a slip boundary condition
that expresses bottom stress as a quadratic function of near bottom velocity. This

assumption is physically correct only when the velocity profile below the lowest grid

point is logarithmic. An accurate treatment of surface and/or internal boundary
layers requires a fine grid in the regions of these layers. In many cases the required

computational overhead makes it impractical to resolve these features in multi-
dimensional computations. A survey of the recent literature suggests that only rarely
have more than - 20 grid cells been used over the vertical in three-dimensional

engineering or geophysical model applications. For example, Oey, Mellor, and Hires
(1985) used 11 grid cells over the vertical in their model of the Hudson-Raritan
Estuary. Clearly, such models have limited ability to resolve even one significantly

sheared velocity gradient region. (Note: Davies and Jones (1990) have recently

published results from a three-dimensional model of the northern European continental

shelf using 45 grid cells over the depth. However, this model uses a coarse horizontal
grid and omits the advective terms in both the internal and the external mode-

governing equations.)

90. It is well-established from laboratory and field experiments, theoretical

arguments, and conventional one-dimensional models that the time-averaged vertical

shear stress varies rather smoothly through the water column, particularly near

boundaries. Therefore, it should be possible to use a relatively coarse vertical

discretization to solve numerically for the vertical shear stress, even in boundary
layers. A novel technique has been developed that allows the vertical shear stress to

be used in place of velocity as the dependent variable in the internal mode equations.

Applications of the DSS technique using linearized equations of motion (discussed in

detail below) have shown that it provides a highly efficient means of solving the
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internal mode equations. This technique promises to be invaluable for modeling

coastal and shelf circulation in which the bottom and surface boundary layers comprise

a significant portion of the water column and for modeling processes that are critically

dependent on boundary layer physics such as wave-current interaction, sediment

transport, oil spill movement, ice floe movement, energy dissipation, physical-biological

couplings, etc.

Development and Testing of DSS Method No. 1

91. Internal mode equations can be generated by subtracting the vertically

integrated equations from the three-,dimensional equations (Wang 1982; Sheng 1983;

Davies 1985). Using the three-dimensional equations in the a coordinate system

(Equations 19 - 21), the non-conservative vertically integrated momentum equations

(Equations 25 and 26), assuming a constant density fluid, and neglecting advection

and horizontal momentum diffusion terms, the resulting internal mode equations are
P -- + 1 (114)

S+ ffi r( .,a-v + ] (115)

92. Using the eddy viscosity relationships (Equation 34) to express rz. and 7zy

in terms of velocity and either the slip or the no-slip boundary condition (Equation

10) at the bottom, Equations 114 and 115 can be cast entirely in terms of velocity.

Numerical solutions can then be sought for the dependent variables, fa and ,. This is

the standard velocity solution (VS) approach.

93. Alternatively, Equation 34 can be inverted to obtain expressions for

velocity in terms of stress

fH J X d (116a)

b

v, -- b- V + - dz (116b)

b

In Equation 116 the definitions of ft and , have been used and nonzero slip velocities

Ub and vb have been included for generality. Relating Ub and vb to the bottom

stresses, 7-b. and ry, via the slip conditions
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Tbx/Po = k Ub = k(fib + U) (117a)

Tby/Po = k Vb = k(fb + V) (117b)

Equation 116 can be written as

S= x_- U + H [ drzxp k a-:J f d (li18a)
b

•'-- -V + H d (I118b)

b

(For a no-slip boundary condition, the terms I and N do not appear in Equation

118. The no-slip condition is approached as k-ow.) Substituting Equation 118 into

Equations 114 and 115 gives:

•-[•--do Iz d+ a!-'- J -f[ '- T d av d+ ýo•]

b b
1 ~a-o)---,d--+ rbx] = -" V I s TsX (119)

0 +f[ X1 V POX]

j`-fVdo,'+ Ro--- + f [F ..a r-,-5j fop-or--E;

b b

1 [(- ) + Thy] = + fU - (120)

Equations 119 and 120 have Tzx and rzy as dependent variables and will be called the

DSS1 internal mode equations. (The superscript 1 is used to identify DSS method

No. 1.) These equations are forced by the external mode solution (U, V, and H) and

the applied surface stress.

94. Equations 119 and 120 contain both integral and differential terms;

therefore, they are well-suited for a spatial discretization in which -r,, and r'zy are

expressed in terms of assumed shape functions such as the spectral or finite element

methods. Depending on the choice of the shape functions and the functional variation

of E, over the depth, the velocity profile can be recovered from the stress profile by

solving Equation 118 in closed form. This is an important convenience because it

avoids the troublesome operation of numerically integrating the near-logarithmic

singularity that occurs in Equation 118 when E, varies with distance from a

boundary. The restrictions that a closed-form solution for Equation 118 impose on

2zx, rzy, and Ev are not severe. For example, rT,, Tzy, and Ev may be expressed in
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terms of polynomials that span the vertical globally or in a piecewise manner.

Polynomial variations of rzx and rzy are consistent with either the spectral method or

the finite element method; for most practical problems, E, can be approximated as

piecewise linear over the vertical (Fumes 1983; Davies 1987; Chu, Liou, and Flenniken

1989; Jenter and Madsen 1989).

95. The effectiveness of the DSS' technique is evaluated using a simple test

case consisting of flow generated by a specified surface stress aligned in the x-direction

in a wide, straight channel of constant depth with no Coriolis force. An analytical

solution can be found for the linear version of this problem and provides a benchmark

for the numerical solutions. For convenience, the linear governing equations are

repeated below:

+ h 9-= 0 (121)

TT 9 + Eo(r.- •)(122)

RiPo Hli[Th- [ Ts (123)

h 8 cr°r 87o1[ -z + au Ts"14h-a- afo-- do + 1 ) [-b (a-b) T tH 01 T-

*Fj N~ Th-P 0t.' + Ft'p0' To,- + (124)

b

Equations 121 and 122 are the depth-integrated (external mode) continuity and

momentum equations; Equation 123 is the VS internal mode equation; Equation 124 is

the DSS' internal mode equation. Since there is no motion in the y-direction, the

y-direction equations and the subscript "x" in the stress terms have been dropped.

96. The Galerkin-spectral method, with shape functions consisting of Legendre

polynomials (LPs) over the interval -1 < a _ 1 is used to discretize the VS and the

DSS' internal mode equations. The mth order LP is denoted L. and can be computed

from the recursion formulas

Lo(a) = I
L I~~ a) = r 2 r + 1 1

l -- "1= Oa Lr- - L,..

The first eight LPs are shown in Figure 14. Other properties of LPs of note are

r, =- LA(1) = 1
Lrb a Lr(-l) = (-l)r

_ý'L0(ou) do" = 2
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.l1Lr(O) do = 0 for all r > 1

It has been shown for wind-driven circulation that velocity solutions using Legendre

and Chebyshev polynomial; yield results of virtually identical accuracy, that these are

highly superior to velocity solutions obtained using expansions of trigonometric

functions, and that these are more accurate than velocity solutions computed with a

second-order finite difference scheme having the same number of degrees of freedom

(Davies and Owen 1979; Davies and Stephens 1983). For further information on the

use of spectral methods in three-dimensional circulation models, the interested reader

is referred io an excellent review by Davies (1987).
97. The Galerkin-spectral discretization for the VS internal mode equation is

obtained by multiplying Equation 123 by the weighting fuuction L. and integrating

from -1 to 1, i.e.,

.~J ~ 2dfW Lm a (P 0) dar Ilo PiJL. d~ 15
-1 -1 -1

Integrating the second term in Equation 125 by parts

1 1

L a f') da -2L.. 77s -,o b 7 rF LzOLI ] d'] (126)
-I -I

and substituting this into Equation 125 yields:

fJLmfi do+2fz do, 1 fIrs ] JLm d1

-A -1 -1

+, j .i n.b •](127)

Using the definition of the LP, Equation 127 simplifies to

0 = 0 m 0 (128)

j- L. f do, + 2 o PoJ =2 - Lmb m > 1 (129)
-t -1

Since LO(a) = 1, the operation that generates Equation 128 is equivalent to

integrating Equation 123 over the depth when m = 0. The identity in Equation 128

occurs because Equation 123, by definition, has no depth-averaged component.
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98. The final steps in applying the Galerkin-spectral discretization to the VS

are to substitute Equation 34 for 7z/po in Equation 129 (noting that = and to

expand 0 as a series of LPs with time-varying coefficients, #,(t), i.e.,
N

fi(a,t) _I f n(t) Ln(o) (130)

nzi

I VJ L.Ln da + j Enj 8v 8-M do, = h [ mrs1 (131)

n 1 l - 1 n u l "t

Because TLn dor = 0 for n ) 1, the necessary condition _ do, = 0 is identically

satisfied by the spectral solution by using only the n > 1 LP. The solution of

Equation 131 requires a bottom boundary condition (Equation 117). After expanding

•, this becomes

N

I P. Lnb - -U + 'b (132)
n:1

99. The Galerkin-spectral discretization for the DSS' is obtained by

multiplying Equation 124 by the weighting function L.(o) and integrating from -1 to

1, i.e.,

h !Lm I'J z dordo] + 1 -()- o JL. d -u j L.(7) d 'p =

-1 - 1 -1 - I

[~ -- L do' 13
-1

Integrating the stress derivative by parts changes Equation 133 to

L. f'rz ado]+ (1 . )-j
! 7 NP0E jjL.d

-1 -1 -I

I I

2 L Lmb da] = [t -] J L do' (134)
-1 -1

Using the definition of the LP, Equation 134 simplifies to
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0 = 0 in 0 (135)

h L9 pL-v dd + Lmb +j PoL d - 2 ho m > 1 (136)
-7 -E -1

The idptity in Equation 135 occurs because Equation 136 has no depth-averaged
component.

100. The final step in applying the Galerkin-spectral method for the DSS1 is

to expand rz/po as a series of LPs with time-varying coefficients, an(t), i.e.,

N

r:(Ut) _a(t) L.(,) (137)

N N

n L. f n dada + •an L, M do + L1 bLs =is_ m > 1 (138)
n=Off -I F- nn=0 

PO

101. The bottom boundary condition was introduced into Equation 118 and

subsequently into Equation 138. Therefore it does not generate an extra equation, as

was the case for the VS. However, the stress expansion, Equation 137, does not

automatically satisfy the condition that ._i• da = 0. Rather this must be enforced

explicitly. Using Equation 118 and the definition of u, this requirement generates the

additional equation
I

f * 'zd da =0 (139)
-1 -1t

Substituting the expansion for rz/po into Equation 139 yields

fun(ab + I U nda 7 (140)

102. The relative merit of the DSSI versus the VS was evaluated by

comparing solutions computed numerically with analytical solutions for the problem of

wind-driven circulation in a closed, rectangular channel aligned with the x-axis and

having a constant bathymetric depth. This was done for a steady-state case, for a

periodically varying wind stress, and for an instantaneously imposed wind stress.

103. In each test case, E, was assumed to be linear over the depth as

expressed by

E,(a) = Ezo(u+l+ao) (141)
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where ao -0 2zo/h is the dimensionless roughnebs height. It is well known from

theoretical, laboratory, and field experiments that an eddy viscosity that increases

linearly with distance from a solid boundary realistically reproduces the physics of the

boundary layer near the boundary (Monin and Yaglom 1971; Schlichting 1979; Grant

and Madsen 1986). Despite the fact that this does not hold over the entire depth,

(e.g., it has been suggested that E, should also increase linearly with distance below

the free surface (Jenter and Madsen 1989)), Equation 141 is used here because it

generates a realistic bottom boundary layer and because it simplifies the analyses of

model results by introducing only two parameters, Eo and ao, into the problem. As

is shown below, the presence of a velocity gradient region at the bottom is sufficient

to illustrate the advantage of the DSS over the VS. In fact, the use of an eddy

viscosity that does not also give a boundary layer at the free surface is a considerable

advantage for the VS, since it eliminates the additional need to reproduce velocity

gradients there.

104. Assuming reasonable ranges for zo of 0.1 to 10 cm, and for h of 1 to

100 m, suggests values of a,, - 10-5 to 10"2. (The combination of zo = 10 cm and

h = 1 m, which gives ao - 10-1, is not considered realistic since zo is typically

3 to 10 percent of the physical roughness height. In this case the physical roughness

would occupy the entire depth.) Assuming the slope of the variation of E, with z

scales with Ub, (Ub =- -, po ), then E. 0 - Ubh. If Ub varies over the range 0.1 to

10 cm/s, Ezo 10-3 to 101 m2/s.

105. Equations 131, 132, 138, and 140 show that the VS and DSSI require the

specification of .s/Po (which is the input forcing) and U. To eliminate the possibility

that errors in the solution for U might affect the comparisons, U was obtained for

each test case from an analytical solution of Equations 121 - 123. As a result, errors

in the VS and DSS' over the vertical do not feed back into the solution for U as

they would if the complete problem was solved numerically.

106. In all of the results presented below, bottom stresses are obtained from

the VS by using computed bottom slip velocities and the linear slip boundary

condition (Equation 117). Comparisons indicated that this method gave more accurate

values of bottom stress than those obtained by evaluating Equation 34 at or = -1.

(A similar conclusion was reached by Gresho, Lee, and Sani (1987).) Velocities are

obtained from the DSS' by solving Equation 118 analytically using the computed stress

profiles.
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107. At steady state, Equation 123 reduces to

�T s -! b (142)37-- 2

which has the analytical solution

;Z 0r+1 + 1-a (rb) (143)

where

T5  I1 T- o (144)
1 (2+rG ['2+0'o n(2+0o '0)

and K - kh/Ego is the nondimensional slip coefficient. The nondimensional solutions

for velocity are

• o- 0 (145)
Tb -- _- +ffQ i,(+1+C•o~' _r~ in(+l0'

vb - +2 n( a or "JJ + a+'-- ln(a+1+0' (146)

108. The VS and DSS 1 are obtained from Equations 131, 132, 138, and 140 by

dropping the time derivatives, setting U = 0, and considering all other terms to be

constant in time.

109. Figure 15 presents a comparison of vertical profiles of horizontal velocity

for several combinations of K and ao computed from the analytical solution, the DSS'

using 2 LPs and the VS using various numbers of LPs. Equation 143 indicates that

the analytical solution for stress varies linearly over the depth, regardless of the form

of E,. This solution can be represented exactly by the DSS' using only the n = 0

and n = I LP; therefore the DSS 1 and the analytical solution in Figure 15 are

identical. Equation 146 indicates that the analytical solution for velocity has a

logarithmic variation over the depth and consequently a potentially sharp gradient

region near the bottom. In Figure 15a the combination of a small K (large amount

of slip) and a large uo minimizes the gradient region. Over most of the depth the

velocity profile is nearly linear and therefore closely reproduced using a VS with 2 LP.

However, approximately 5 LPs are required to capture the mild velocity gradient near

the bed. In Figure 15b, the same K is used with uo reduced by two orders of

magnitude. This has the effect of pushing the gradient region closer to the bottom

(i.e., it is equivalent to increasing the depth by a factor of 100 for the same

roughness) and therefore steepening the velocity gradient. Because the velocity profile
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is nearly linear over much of the depth, it is reproduced well by the VS with 2 LPs.

However, near the bed, approximately 10 LPs are required for the V3 to capture the

gradient region. As discussed below, this results in a poor prediction of bottom stress.

110. In Figures 15c and 15d, a high value of K is used, resulting in essentially

no slip at the bottom. For large uo (Figure 15c) a velocity expansion of 10 or more
LPs is required to reproduce this profile. Reducing ao by two orders of magnitude

(Figure 15d) sharpens the profile further, and approximately 20 LPs are required to

capture the velocity profile away from the boundary. Many more are required to

represent the gradient region near the boundary.

111. As noted above, an important reason for using a three-dimensional model
in place of a two-dimensional model is the former's improved representation of the

bottom stress. However, since stress is proportional to the velocity gradient
(Equation 34), or the bottom velocity (Equation 117), the bottom stress may still be

represented poorly if the gradient region near the bottom is not resolved properly. To

illustrate this problem, a comparison was made between the analytical bottom stress

and computed bottom stresses from the DSSI and the VS over the practical range of

K and ao. The DSS' reproduces bottom stress exactly using 2 LPs. On the other

hand, Table 4 presents a summary of the number of LPs required for the computed

bottom stress using the VS to come within 10 percent of the analytical bottom stress

as a function of K and ao. Clearly, it is computationally practical to use the VS

only for large roughnesses and large amounts of slip, both of which tend to minimize

the velocity gradient at the bottom.

112. Although quite simple, the steady-state case demonstrates the relative

ease with which a DSS can resolve a realistic boundary layer (i.e., no bottom slip and

a linearly varying eddy viscosity) in a hydrodynamic model that explicitly includes the
vertical dimension. In the following examples we evaluate how this highly desirable

capability is affected by unuteady conditions. Only the no-slip case (K = 1,000) is

considered.

113. If a periodic surface stress is assumed of the form rs(t)/po= (rs/p 0)eibt

(where w is the forcing frequency and i = --f), solutions can be sought to

Equations 121 - 123 that have the form U(t) = Ueiht, fit(a,t) = fi(u)eibt, m(t)/po=

(rb/po)eiwt, and q(t) = neibt. (Note: rs/po, U, fi(a), "b/Po, and i7 are all complex

variables; therefore they may be out of phase with each other.) Substituting these

into Equations 121 - 123 transforms the linear hydrodynamic equations into
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Table 4

Steady-State Bottom Stresses Computed Using- Velocity Expansions

[71ban a 1;- 11b(com D'Fbaa )

r K #LPTh(anal)

10-2 10-1 3 0.100

10-2 100 8 0.091

10-2 101 9 0.099

10-2 102 10 0.078

10-2 103 10 0.078

10-3 10-1 8 0.096

10-3 100 21 0.09d

10-3 10' 24 0.095

10-3 102 24 0.098

10-3 103 24 0.099

10-4 10'- 22 0.100

10-4 100 <40 0.192*

10-4 101 <40 0.242*

10-4 102 <40 0.249*

10-4 103 <40 0.249*

10-5 10-1 <40 0.174*

10-5 100 <40 0.476*

10-5 101 <40 0.602*

10-5 102 <40 0.619*

10"5 103 <40 0.620*

* This is the minimum difference obtained using no more than 40 Legend&, polynomials.
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iwiT + h a- = 0 (147)

iWU =-g + -. (rs - rb) (148)

jwi (a-b) 0 (~-x) ] =JjI-(Tb - Ts) (149)

114. The procedure used to solve Equations 147 - 149 analytically, together
with the linear slip boundary condition, has been presented previously (Lynch and
Officer 1985; Lynch and Werner 1987) and is not repeated here. Rather, the solutions
are given without derivation in Table 5 (Equations 150 - 163).

115. Spectral approximations for the periodic case are generated by expressing

&(t) = /neiwt and an(t) = aneiwt and substituting these as well as the periodic forms
of u(t), rz(o,,t)/1p, rs(t)/po, rb(t)/po and U(t) into Equations 130 - 132, 137, 138, and
140. The resulting equations for the VS are

N

ii(a) I& L.(o) (164)
n-l

h2-i In LmLn do + #/n JEv L- 8-- da= h 7"s Lb m Ž1 (165)
T- I I[Po P0nafl -1nz i

N

ýfln Lnb=- U + To (166)

and for the DSS' are

N
S-= [ aOn Ln(W (167)
Po

N N I N
h iwan L. JL do'dr + an 4n OL do, + LnbLmb] - n Ž1 (163)

an[ -+ -1 +nfuJJ n dada] =i (169)
n 0 -t-1

116. The periodic solution depends on the dimensionless parameters K and Uo

(as found for the steady-state solution), a dimensionless channel length L', a
dimensionless frequency fl, and the dimensionless position in the channel x/L. L' is
the ratio of the channel length, L, to the wave length of a shallow-water wave having

period w (Equation 154). 01 is the ratio of the time scale for momentum to be
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Table 5
Analytical Solution for the Periodic Test Case*

fiaEo=UoEz fA~) + 1 ['lA2a.)i-zA2j (150)

UEzo -UoEz + A]+ 1 A2 (1)

1-( 0) - 2 U0~z IIa A2( 011 (a,+1+ ) (152)

Uo~zO 0 72) (1 exp(-A ))exp(AL' x;) - (1--exp (AL' ))exp(-AL'rx (53UTSTO z~!~1 [2 ~ x( exp(AL') - exp(-AL)J(13

L wLF (154)

A.w 2 (155)

A Vri (156)

71 2A ~(-I) ao(157)
0 (A 1+B)

fY2 A1(-1 )A2 _ A2{ZD) ao(18
72 IB(A 1+B) B I 2T+ 158

AI(o) s('4() s(js() (159)

- /2(-) M(i/h(1 2aois(-) (160)

A() A10)[ 2u 0l 2(il)] 2o0a /[i(-l 1

B K~2~ ) -o 22JIaox K (161)

/11(o) = ber[[11(a+1+ao)]V/2] + i bei[[l(a+1+aOr)]J/2] (162)

/12(a) = ker[[fl(a+1+aO)]1/21 + i kei(L()(a+1±ao)1V2] (163)

*ber, bei, ker, kei are zeroth order Kelvin functions, an overdot 0( 91a

an overbar () do,
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transported through the water depth, h2/Ezo, and the forcing time scale, 1/w,

Equation 155. Assuming ranges for W of 10-3 sec- 1 to 10-5 sec-', L of 1 km to
103 kin, and h aud Ub as given previously, suggests L' - 10-5 to 102 and (2 - 10-4 to

102. In all cases results are presented for x/L = 0.5, as these are representative of

the behavior throughout the rest of the channel.

117. Figures 16 and 17 present magnitude and phase portraits of the velocity

structure for K = 1,000, L' = 1, and four combinations of ao and 11. For the case

(2 = 10-1, momentum is transported through the depth in only a fraction of the

forcing period. Figures 16a and 16b and 17a and 17b show that the velocity

magnitude and phase obtained from the DSS' using 2 LPs are virtually identical to

the analytical solution; therefore, the stress variation is very close to linear over the

depth. This linear stress variation suggests that the momentum balance over the

depth is nearly at steady state and is consistent with the low value of 11. Since

steady state is approached as 11 -, 0, the DSS' using two LPs gives a highly accurate

solution for (2 < 10-' as well. The VS is able to capture the phase change through

the water column with a comparable number of LP to the DSS1. However, as was

the case at steady state, for 0o = 10-2, approximately 10 LPs are required to

reproduce the velocity magnitude with an accuracy comparable to the DSSI using

2 LPs. For ao = 10-4, more than 20 LPs are required.

118. For the case 02 = 10, the vertical momentum balance is no longer near

steady state; consequently the DSSI requires more than 2 LPs to capture the vertical

stress variation. Figures 16c and 16d and 17c and 17d suggest that approximately

4 LPs may be needed by the DSS1. The VS, however, requires at least 10 LPs for

-ro = 10-2, and more than 20 LPs for ao = 10-4.

119. Figures 18 and 19 compare the amplitude ind phase behavior of the

analytical solution for bottom stress with solutions obtained using the DSSI and VS.

These runs were made using a single value of ao = 10-3, but varying (2 and L'. The
104 change in L' has minimal effect in these pictures, indicating that the number of

LPs required for the DSS' or the VS to converge to the analytical solution is only

very weakly dependent on L'. For (0 < 1, the DSS' with 2 LPs is nearly identical to

the analytical solution, while for larger 02 the number of LPs required by the DSS'

increases to as many as 7 for (2 = 102. Considering the fact that comparable results

using the VS require the use of more than 20 LPs, the DSS1 is computationally quite

superior to the VS for all (0.

120. Although the Coriolis force was omitted from these test cases, the results

can be used to infer whether a DSS will be equally effective when the Coriolis force is
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included. The counterparts to Equation 123 for the case in which Coriolis is included

are

iFT + Fo - (170)

+fi E Fa) + E"0O (Thby -rS y) (171)

It has been shown (Lynch and Officer 1985) that the linear combinations of fi and i"

V,= and 0"= o

transform Equations 170 and 171 into

a-b 8 (a-b)Ev = +o1[(bx- rsx) + i(T'by- 'sy) (172)

- E- -07 ((&fi -ja.) =~-(7 - TSX) - i(Thy - Trsy)] (173)

121. Equations 172 and 173 show that the vertical structures of V, and Q- are

uncoupled and that each is analogous to the structure of ft in the absence of the

Coriolis force, except that V is forced by the frequency w + f and 0- is forced by the

frequency w - f Therefore the vertical structures of ri* and 0- will depend on the

dimensionless frequencies WV = 0 + Y and 11- - fl - 9, respectively, where

Y= f h2/Eo. At mid-latitudes, f - 10-4 sec-1, giving the range of Y- 10-3 to 101.

This yields values for W2 and f- in the same range as (2; consequently the results

shown in Figures 16-19 are also indicative of the performance of the DSS' and the VS

when the Coriolis force is included in the governing equations.

122. Analytical solutions can be obtained for the test problem for a transient

forcing by decomposing the forcing into its Fourier components, using the periodic

solutions presented above for each Fourier compopent and superimposing the resulting

periodic solutions. In this section an illustrative set of results for bottom stress are

presented for the often-used problem of an instantaneously imposed wind on an

initially quiescent channel. Representative values of L = 100 km, h = 50 in,

ao = 0.01, and Ezo= 0.5 m2/s are used.
123. An instantaneously imposed forcing cannot be represented exactly by a

finite Fourier series; however,
N

'rs~t W I sin((2n-1)7rt/T)
s-sready + 2 .. (2n-1) (174)
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gives an approximation to a square wave of period T, as shown in Figure 20. By
selecting T to be larger than the time required for the basin to reach steady state

and considering only the period 0 < t/T < 1, a reasonable representation of an
instantaneously imposed wind can be obtained and used to develop an approximate

analytical solution. Sensitivity analyses indicated that when 50 or more terms were

used in Equation 174, minimal change occurred in the analytical solution of the basin
response and any change that did occur was limited to times very close to zero (i.e.,

on the order of t/T < 1 percent). Seventy-five terms (N=74) were used in Equation

174 for the solution shown in Figure 20 and the runs presented below.

124. The VS and the DSSI for the transient test case were obtained by

discretizing Equations 123 and 124 in time using a Crank-Nicholson scheme. As
discussed above, the analytical solution for U was used to force these equations,

thereby eliminating any feedback of error from the vertical representation into U.

Figure 21 presents a comparison between bottom stresses obtained analytically and
from the VS and the DSS'. The DSS' with 3 LPs is quite close to the analytical

solution except very near t = 0 (due primarily to the overshoot in the forcing in
Figure 20). Conversely, 15 or more LPs are required for the VS to attain comparable

accuracy. We note that this test case uses ao at the upper limit of the practical

range and therefore is the easiest case for the VS to capture. For smaller values of

ao, the transient performance of the VS becomes even poorer as suggested by the
steady-state results in Table 4.

125. The results of this section suggest that shear stress can be a highly

efficient substitute for velocity as the dependent variable in the internal mode

equations. For this to be accomplished, it is only necessary that the shear stress and

the vertical gradient of velocity be linked via an eddy viscosity relationship.

Depending on the choice of shape functions and the functional variation of eddy
viscosity over the depth, the velocity profile can be recovered from the stress profile

in closed form. Under these conditions the difficulties associated with numerically

integrating a near-logarithmic singularity are avoided. Most practical problems can be

solved subject to this restriction by allowing a global or piecewise polynomial variation

of r, and a piecewise linear variation of Ez.
126. One disadvantage with the DSS' is that it yields a fully populated matrix

on the left side of the discretized equations that must be reformed, decomposed, and
solved at every time step if a time-varying eddy viscosity is used. This requires - N3

operations to solve for stress and - N2 operations to extract velocity (using

Equation 118), where N is the number of LPs that are used. Although often only a
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few LPs are required for an accurate solution, as N reaches - 10, the computational

attractiveness of the DSS 1 rapidly diminishes in comparison to a VS that only requires

the solution of a banded matrix (e.g., Lynch and Werner 1991). Part of the reason

for the fully populated matrix is due to the spectral method's use of globally, rather

than locally, defined functions. If Equation 124 is discretized using the finite element

method with linear elements, the left-side matrix is the sum of a triangular plus a

tri-diagonal matrix. This requires - M2 operations to solve, where M is the number

of nodes used over the depth. It can be shown that the triangular part of the matrix

arises because of the integral term in Equation 124.

Development and Testing of DSS Method No. 2

127. The solution of a fully populated or near-triangular matrix system can be

avoided by reformulating the DSS internal mode equations to eliminate integral terms

from the left side. This can be accomplished by generating internal mode equations

by taking the vertical derivative of the three-dimensional momentum equations rather

than by subtracting the vertically integrated equations from the three-dimensional

equations. The use of internal mode equations derived by taking the vertical

derivative of the three-dimensional equations has been reported by Tee (1979).

Although this report focuses primarily on the simplified internal mode equations for a

constant-density fluid, the derivation of the full internal mode equations is presented

below for completeness.

128. Differentiating the o-coordinate horizontal momentum equations

(Equations 19 and 20) with respect to a, and substituting Equation 21 for Op/0u

gives

a ~ ~ ~ ~ ~ ~ ab 0 2 r +b +OOl ua a u OvO

-%- - -+ (175)

(Note, this is illustrated for the x-momentum equation only. The y-momentum

equation follows directly.)

Using the eddy viscosity relationship for r,. and ry (Equation 34) the vertical

gradient of velocity can be expressed in terms of the shear stress as

0u HrZX (176a)
T- =Ev( a-b)po
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Ov Hrz
or Yvia -b~o (176b)

Substituting Equation 176 and the expansions

ua au IOUau a a &

va 49U a rau, a-uav
W-a F.71--O

into Equation 175 gives:

a UT2 1 1 fHrzy (a-b) 8'Tzx a r uHr21  8 r VHTZX
NL1M~a,-b)p0 j F,(- bp - 71I-W -TO- -E[Ev( -b)p0 J j [~t; (a-b)poj

49 wHTr2 1  + Hr,. Ov HT~ 8u abx + 77),
da[Ev( a-b)po] jabp ~-V

Using the additional expansions

a w~rz wH o9 £(ftX rz OuH -R
-F1rV bpl (a-b)po -~r +X 1OTF

a Hr., 1 H a ,rX TZ X 1 9D
W[Ev(F-bpo] (-a--b)p. WETf) + I~4a....bFp0 Wft

a uHr2 1 1 uH a 7T21 N T'zx auH
N~[Ey(a-b)poj (a-b )p PO EV ±k U v) Yva-b5p 0o Ox

i9[v~r, 1 1 vH 99TX + rzx DyEH
(a-:a-)Po I~) po -WE;*'- E (a -TbFp 0

Equation 177 can be written in final form as
____ _ _ a-b 2 827"(ab.Db 8 2

= X c - -a b ~ x _O x (178)

where c. represents the contribution of the nonlinear advective terms

cx~~~~~~ = Ou; -v ~ __ (179)

Applying the same transformation to the y-momentum equation gives

+ Pi Y a-b2 82, (=- b -9 Dv (180)

where

cy = -uO[u - z[p]-wX]+E (181)

Introducing the complex shear stress 7-z =- zx + irzy (where i
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Equations 178 and 180 can be combined into a single complex equation
+ rr 1Z (- 1,

• • J +1if T-" - ,j_ (18+ +
+ vPo P (182)

where

C cX + icy (183a)

Jj rt +i (8b

Because both r, and E, may vary in time, the discretization of Equation 182 in time

may be facilitated by expanding the leading term as:

a = T _ _ L(7" 7 T, 1 aE, (184)

Substituting Equation 184 into Equation 182 and multiplying both sides by E, gives

7 Tr 4Ev + f z (a-- b) 2Ev 0 2 Tz _
~~(Tz)~ T Z OLV +iV[() V %- ~ c + b + m I (185)PO- =po-, i-t 7 H 2po boo-

129. For the 3DL model, the baroclinic, advective, and horizontal turbulent

momentum terms are assumed to be equal to zero. This leaves

+ ifEro oa-b 2 =2 r = 0 (186a)

or

.(r7z- OE_ + ifTZ (a-b) 2Ev 02rz 0
+o" EO- -t o-Ht= (186b)

as simplified DSS2 internal mode equations. (The superscript 2 is used to identify

DSS method No. 2.) We note that for an eddy viscosity that is constant in time,

Equations 186a and 186b have the form of complex diffusio.n equations for stress.

This provides a physical interpretation for the internal mode equation; i.e, it describes

the turbulent diffusion of stress through the water column.
130. Because of the second derivative term in stress in Equations 186a and

186b, two boundary conditions are needed to solve either equation over the vertical.

The free surface boundary condition is

Tz/po = rs/po at a = a (187)

where rs is the specified surface stress. A second boundary condition can be
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generated by requiring the depth average of the internal mode velocity to match the

external mode depth-averaged velocity. From Equation 118 this becomes

+ H - -- zJ dada = U + iV (188)

bb

131. To avoid the fully populated matrices generated by the Galerkin--spectral

method, the DSS2 uses the Galerkin-finite element method to discretize the internal

mode equation over the vertical. Tz/po is expanded over M-1 depth intervals using

depth-dependent, locally defined basis functions Fr(a) and complex coefficients 7r(X,y,t)

M
rz(X,y, Ut) I 7r Fr(O) (189)

Po r=1

The Galerkin-finite element forms of Equations 186a and 186b are obtained by

substituting Equation 189 for Tz/po, multiplying each equation by Fr(a) and

integrating with respect to a over the interval from a to b:

Fm ED da + if f Fm, n dJ o - -. a Fn OF d =0

M b b b

n= 1, ...M (190a)

and

a FmFn OEv d 2F2 1
+tif[ FmFFn d o - d o -d -m I EvFn - d a0

b b b
n = 1, ... M (190b)

132. Linear chapeau functions will be used for Fr(a). The tendency observed

in the DSS' results for stress to become linear over the depth for fl < 1 suggests that

these functions should give a good representation of stress if the element size is

selected so that fie ~ 1. (fie is identical to fi except it is defined using the element

size rather than the total depth.) However, Equations 190a and 190b require a C'

interpolating basis. To lower this requirement to CO, we integrate by parts:
a a

L9 d2 OF - &( n- d c (191a)

b b
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a at

JEvFn "Fm do, = E,(a)Fn(a)O~mta - Ev(b)Fn(b)F -' b~~n da
b b

(191b)

for Equations 190a and 190b, respectively.

133. Using linear basis functions, when n = 1 and n = M, the first two terms

in Equations 191a and 191b exactly cancel the integral terms in these equations

making the total diffusion terms equal to zero. However, when 2 < n < M-1, the

first two terms in Equations 191a and 191b are identically zero. Therefore, for
2 < n < M-1, Equations 191a and 191b can be substituted into Equations 19P&. and

190b to give physically meaningful equations:

1 __E do] +, Fm ED dar + -t. J e2 a OFn OF '} 0
011 -E-VH2 I TO •--- -- V a-

b b b

n = 2, ...M-1 (192a)

and

+ if,.] F.Fndoa - 71. FmFnln(Ev) da + y, b •-•Ia ,.nEV )]-- d = 0
M b b b

n = 2, ...M-1 (192b)

134. The boundary conditions are used to supplement Equations 192a and 192b

when n = 1 or n = M. Equation 187 is used in place of the n = M equation:

Re=•u} = rr/po and Im{ful = rsy/po (193)

In place of the n = 1 equation, Equation 188 gives

S+ 7M do, d = U + iV 
(194)

bb

135. Velocity is recovered from stress by solving the discretized version of

Equation 118

u + iv = m b + Yn J{'Fm doJ (195)
02t b

136. Equations 192a or 192b and 193 form a tri-diagonal system; Equation 194

adds a fully populated bottom row to this system. However, only a few extra
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computations are required to reduce the system to tri--diagonal. Therefore, the

number of operations required to obtain a solution for stress at each time step scales

with M. Since rz/po is piece wise linear over the depth, the integrals in Equation

195 can be evaluated analytically for many functional forms of E,. For most practical

model applications, it can be assumed that E, has a piece wise linear variation with

depth (Fumes 1983; Chu, Liou, and Flenniken 1989; Jenter and Madsen 1989). This

is physically correct near boundaries and makes the analytical solution of the stress

integrals particularly simple. Using this functional form for E,, the number of

operations required to analytically extract velocity from stress also scales with M.

137. An initial evaluation of the DSS2 has been made using the same test

problems solved for the DSS' and the VS. For these tests f = 0, Ty-= 0, and E, is

constant in time. Therefore, Equations 192 - 195 are simplified to:

Mr a a8. FF (- fOFn OF,. I
F, da + ,. -0-- Od =80 nd= 2, ... M-1 (196a)

b b

aab 2 a OF

-Pt M- j F,mFndo + y,, S J EvFn) va m dol =0 n = 2, ... M-1 (196b)
" "=1 b b

"YM = •'/Po n = M (197)

M Y h ar r F d"I jf-j + .IffF du -U n = 1 (198)
MU* b b

U = ( + d (199)
M=1 b 1

138. To distinguish between the two internal mode equations, results are

designated as DSSa or DSSg depending on whether they are based on Equation 196a

or Equation 196b, respectively. In all of the results, a specified number of equal-sized

elements was used over the vertical. It may be possible to improve the efficiency of

the DSS2 further using elements that are not equally sized. However, this option has

not yet been investigated completely.

139. In the steady-state test case, the stress distribution is linear over the

depth (Equation 143); therefore, both the DSSa and the DSSZ give the exact solution

using one element over the vertical. The number of degrees of freedom (NDF) in the
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finite element solution, (i.e., the number of simultaneous equations that must be

solved) is equal to the number of nodes used in the discretization (number of nodes

1 + number of elements). The NDF in the spectral solution is equal to the number

of LPs used in the discretization. In both the DSS' method and the DSS2 method,

the exact steady-state solution is obtained using two degrees of freedom.

140. Results from the periodic test case are shown in Figures 22 - 26. When

f0 < 1, the DSS2 is nearly exact using one finite element (two degrees of freedom)
over the depth, Figures 22a and 22b, 23a and 23b, 24a and 24b, and 25a and 25b.

For fQ > 1, more than one finite element is required over the vertical for either DSS2

to converge to the analytical solution (Figures 22c and 22d, 23c and 23d, 24c and

24d, and 25c and 25d). Comparing these results to the DSSI results indicates that

both DSS2 methods require more degrees of freedom than the DSSI method to reach

the same level of convergence. The bottom stress plots presented in Figure 26

demonstrate the properties of the DSS2 method further. In particular, they indicate

that the DSS2 is quite effective in the range 11 - 10 or less. It may be possible to

extend this range to higher values of Q2 if an unequally spaced finite element grid is

used over the depth.

141. A time history of bottom stress for the transient test case is shown in

Figure 27. Comparing this to Figure 21a indicates that both DSS2 methods require

four degrees of freedom to give a solution that is approximately equivalent to the

DSSI using three degrees of freedom.

142. In conclusion, new internal mode equations have been developed that

allow shear stress to be used as the dependent variable in the internal mode solution

and that yield a nearly tri-diagonal matrix system. While both DSS2 require more

degrees of freedom than the DSS' method to obtain comparable results for (2 > 1,

(due to the use of linear finite elements in the DSS2 versus spectral functions in the

DSS1), the matrix structure of the DSS2 matrices makes this method much more

efficient than the DSSI.

Implementation of Wave-Current Interaction in a DSS Model

143. It is often observed in lakes, coastal waters, and shelf waters that near

the bottom the orbital velocities associated with surface waves are as large as or

larger than the mean current velocity. In such cases the surface waves have a

significant effect on the bottom stress and the current profile. Several investigators

have developed theoretical models to account for this wave-current interaction. To
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thoroughly assess the usefulness of the DSS approach, the effort required to implement

the Grant and Madsen (1979) model (GM model) with a DSS of the internal mode
equations has been considered. The GM model assumes that the mean current

velocity can be determined as follows:

a. inside the wave boundary layer, z < 6,

Ev = x IU*Cl z (200)

1u*CW1 = I -rc + rW' (201)

a no-slip boundary condition is applied at z = zo, where zo is the
physical bottom roughness

b. outside the wave boundary layer, z > 64

S= r, o* z (202)

1UC 7c (203)

a no--slip boundary condition is applied at z = Zoa, where zoa is an
apparent bottom roughness experienced by the current due to the
wave--current interaction.

In these relations, r = 0.4 is the Von Kirmin constant, r, is the bottom stress due

to the current alone, rw is the maximum wave-induced bottom stress during a wave

cycle, and &w is the thickness of the wave boundary layer.
144. The GM model can be included in a DSS of the internal mode equations

as follows.

•. Estimate zoa and IU*,l based on values at the previous time step.

b. Calculate Ev and use the DSS model to predict Tc.

g. Solve Equation 201 for I U*,. using 7- from the previous step and

Tw from Equation 53 in Grant and Madsen (1979). Since rw is a
function of U*,w, Equation 201 must be solved iteratively.

d. Determine zoa using Equations 46 and 49 in Grant and Madsen
(1979).

g. Recalculate E, using the new r,. Use this and the new value of zoa
in the DSS model to predict rc. Go to step g. and iterate until rc
converges.

145. Because two levels of iterations are required to implement the wave-

current interaction, it may be computationally infeasible to use this schermie in
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practical model applications. It may be possible to simplify this procedure in two

ways in the proposed model. First, rather than iterate as described in step Q., Zoa

can be calculated explicitly in time based only on results from the previous time step.

This shotuMd introduce little error into the solution if the time step is small enough

that changes in Zoa and r, are relatively small. Second, following the suggestion of

Spaulding and Isaji (1987), r, can be determined by neglecting the effect of the

current on the wave within the wave boundary layer. In this case

rw/p = 0.5 fw lUbi Ub (204)

where f, is the wave friction factor (Jonsson and Carlsen 1976) and Ub is the

maximum bottom wave orbital velocity. For fully rough, turbulent flow, f, can be

determined from

og1 0 + lloto1 0g9o 0 b 0.12 (205)
4 1 -w- 4 V4-i- vs

where Ab is the bottom excursion amplitude of the wave and ks is the Nikuradse

equivalent sand roughness of the bottom (typically z. = ks/30).

146. The brief outline presented above suggests that the GM wave-current

interaction can easily be included in the DSS model. In fact, if the implementation

procedure outlined above for the DSS is compared with that described in Grant and

Madsen (1979) for a standard VS, it is evident that the DSS simplifies the use of the

GM model by eliminating the complications introduced by a quadratic slip bottom

boundary condition.
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PART V: SUMMARY AND CONCLUSIONS

147. This report documents the theory and methodology behind the ADCIRC

(Advanced Circulation) model's 2DDI (2-dimensional, depth-integrated) option and the

3DL (3--dimensional, local internal mode equation) option. ADCIRC is based on the

three-dimensional Reynold's equations simplified using the hydrostatic pressure and the

Boussinesq approximations. Prior to their solution, the three-dimensional equations

are separated into a set of external mode equations (the two-dimensional, vertically

integrated equations) and a set of internal mode equations.

148. The external mode equations can be solved by themselves (the 2DDI

option) for depth-averaged velocity and free-surface elevation by parameterizing

bottom stress and momentum dispersion in terms of the depth-averaged velocity. Key

features of the external mode solution are the use of a generalized wave-continuity

equation (GWCE) formulation and the Galerkin-finite element (FE) method in space

using triangular or quadrilateral elements. The FE method provides maximum grid

flexibility and allows highly efficient numerical solutions to be obtained using model

domains that include complicated bathymetries and shoreline geometries that also

stretch considerable distances offshore to implement open-water boundary conditions.

Detailed analyses and testing of ADCIRC-2DDI have shown that it has good stability

characteristics, generates no spurious artificial modes, has minimal inherent numerical

damping, and efficiently separates the external mode equations into small systems of

algebraic equations with time-independent matrices. Applications of the

ADCIRC-2DDI model to the English Channel and southern North Sea, the Gulf of

Mexico, Masonboro Inlet, and the New York Bight have shown that it is capable of

running month to year-long simulations while providing detailed intra-tidal

computations.

149. In stratified flows, Ekman layers, wind-driven flows in enclosed or semi-

enclosed basins, or flows affected by wave-current interaction in the boundary layer, it

is generally impossible to parameterize bottom stress and momentum dispersion in

terms of depth-averaged velocity. In such cases, it is necessary to solve the internal

mode equations for the vertical variation of horizontal velocity and use this to

evaluate the bottom stress and momentum dispersion terms in the external mode

equation. Due to the shallow water depths that characterize coastal and shelf

settings, the internal mode equations can often be simplified by dropping the

horizontal gradient terms. This gives internal mode equations that express the vertical

distribution of momentum at any horizontal position as a local balance between the
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surface and bottom stresses, vertical momentum diffusion, the Coriolis force, and local

inertia. The 3DL model option is formulated using the simplified, local internal mode

equations. Existing numerical solutions of full or simplified internal mode equations

use velocity as the dependent variable. Therefore, it is necessary to use a fine

numerical discretization to resolve the sharp vertical gradients of velocity that occur

near the bottom boundary and in wind-driven flows near the surface boundary.

During the course of the ADCIRC-3DL model development, a novel technique was

discovered that replaces velocity with shear stress as the dependent variable in the

internal mode equations. The resulting direct stress solution (DSS) allows physically

realistic boundary layers to be ,.xplicitly included in a three--dimensional model.

Detailed testing of the DSS method has demonstrated its considerable advantage over

standard velocity solutions and has led to an optimized DSS formulation. This

treatment of the internal mode equations should be invaluable for modeling coastal

and shelf circulation in which the bottom and surface boundary layers comprise a

significant portion of the water column and for modeling processes that are critically

dependent on boundary layer physics such as wave-current interaction, sediment

transport, oil spill movement, ice floe movement, energy dissipation, physical-biological

couplings, etc.

150. Considerable effort has gone iato the development of ADCIRC to produce

a model that has simultaneous regional/local capabilities, as well as very high levels of

accuracy and efficiency. This has been achieved by combining extreme grid flexibility

with optimized formulations of the governing equations and numerical algorithms.

Together, these allow ADCJRC to run with improved physical realism and a

significant reduction in the computational cost of most presently existing circulation

models.
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