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Measurements of scalar power spectra in
high Schmidt number turbulent jets

Paul L. Miller and Paul E. Dimotakis

Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, California 91125

Abstract

Single-point, jet-fluid concentration measurements obtained from high Schmidt
number (Sc ~~ 1.9 x 10%) turbulent jets permit an investigation of temporal scalar
power spectra, for jet Reynolds numbers in the range of 1.25 < Re x 107* < 7.2.
At intermediate scales, we find a spectrum with a logarithmic derivative (slope)
that is increasing with Reynolds number, in absolute value, but less than 5/3 at the
highest Reynolds number in our experiments. At the smallest scales, our spectra

exhibit no k~! power-law behavior, possessing a log-normal region over a range of
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1. Introduction

We report here on an experimental investigation of temiporal scalar power spec-
tra of round. high Schmidt number, turbulent jets. It is part of a larger effort to
better understand mixing in turbulent free shear flows, including jets and shear lay-
ers. In these experiments, we examined the jet fluid concentration (scalar) power
spectra for several reasons. Spectra are sensitive diagnostics of the flow. providing
information over a wide range of scales. Historically, they have been the object of
a great deal of attention, partially because it is possible to extract predictions for

spectral slopes from various turbulence theories and models.

Key among these turbulence theories are the 1941 paper by Kolmogorov.!
with implications for the scalar field in the inertial range discussed by Corrsin.?
Oboukhov,? and, for higher wavenumbers. the theory by Batchelor.* See. for exam-
ple, discussions in Monin and Yaglom,® as well as in the recent review by Gibson.®
Both the Corrsin and the Oboukhov theories yield predictions of power-law spectra
and of the spectral power-law logarithmic derivative, or slope, as it will be subse-
quently referred to in this paper. Specifically, the Corrsin and Oboukhov theories
predict a scalar spectrum proportional to k=%/3 in the inertial range, as did the

1941 Kolmogorov theory for the encrgy spectrum.

For energy spectra, this has been observed experimentally under many condi-
tions (cf. compilation of data by Chapman?). The situation is less clear concerning
scalar spectra, with departures from the predicted behavior continuing to fuel de-

bate about details and refinements of the theory.

Batchelor? and Batchelor et al.® recognized that for Schmidt. or Prandtl. num-
bers away from unity there exists an additional, scalar-diffusion. scale. now com-
monly referred to as the Batchelor scale, which admits a change in the scalar spec-
tral behavior. The Batchelor theory* predicted that the scalar power spectrum at
high Schmidt numbers would display a k~! dependence beyond the I{olmogorov
wavenumber, i.e., a spectral slope of —1. Measurements in the laboratory (e.g..
Gibson and Schwarz®) and the ocean (e.g., Grant et al.1°) were subsequently re-

ported to be in accord with this prediction.
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t!! in the ocean were

On the other hand. more recent measurements by Garget
found not to exhibit a &~! spectral range (see. however. discussion by Gibson in
Refs. 12 and 6). The same result was noted in passive scalar mixing measurements in
shear layers'® and in scalar measurements in turbulent jets.!*!5 Specifically, despite
adequate resolution in those experiments, no k™! range was found at high spatial
wavenumbers. or. to be exact. temporal frequencies, adding to the questions about

16

the universality. if not the validity,’® of the classical predictions at high Schmidt

number.

The issue of spatial. vs. temporal, spectra should be recognized here. The
classical theories rited deal with spatial spectra. One could argue. therefore. that
compari-ons of measurements of temporal spectra with predictions of spatial spectra
cannot be made directly. Two points, however, should be noted in response. First,
the overwhelming majority of experimentally obtained spectra reported in accord
with the theoretical predictions have, in fact, been temporal. Second. at least in
the case of developing flows that are not (statistically) spatially homogeneous over
the range of spectral scales of interest, the notion of a spatial spectrum and the
assumption of a statistically spatially homogeneous turbulent field is questionable.
Temporal spectra, derived from point measurements, do not have to contend with

this issue.

2. Experiment

The experiments investigated the scalar (concentration) field of round. axisym-
metric, momentum-dominated, turbulent jets issuing from contoured nozzles into a
large, quiescent discharge tank. The measurements were performed in the far field.
on the centerline of the jet. Details of the experimental apparatus have appeared

417

previously,! so only a brief overview will be presented here.

The experimental facility consists of three major parts: the jet plenum, noz-
zle. and delivery system; a large reservoir that acts as the discharge tank: and
the diagnostics. consisting of an argon-ion laser, focusing optics, collection optics.

detector, signal-processing electronics, and the subsequent data-processing. The
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working fluid is water, and the scalar is a laser dye (disodium fluorescein) which is

homogeneously premixed with the jet plenum fluid. The resulting Schmidt number.

Se = % (1)

with v the kinematic viscosity of water and D ~ 5.2 x 107°% cm?/s the estimated

aqueous species diffusivity of the fluorescein dye (Ref. 18, p. 280), is 1.9 x 10°.

The jet flow was established and maintained by pressurizing a downward ori-
ented jet plenum with gas. Both sonically-metered and blow-down, nearly constant
pressure. gas delivery configurations were used. The internal exit diameter of the jet
nozzle is 2.5mm (0.1in.). The rectangular discharge tank is square in cross-section.
approximately 2m high and 1m on edge. The tank bottom is over 600 nozzle di-
ameters downstream. Large glass windows on all four sides provided optical access
(see Ref. 15 for details).

The illumination source was an argon-ion laser (Cohcrent Innova 90). The
particular unit was custom selected for its low AM noise figure (~ —95dB) over
the frequency range of interest in these experiments. It was operated at a power
of 3.5W in the light-regulation mode. The beam was spatially filtered, expanded.
collimated, and subsequently focused to a small waist located on the centerline of
the jet. A low dye concentration was used in the jet plenun (~ 107°M), with
correspondingly substantially lower concentrations at the measuring stations. A
more detailed discussion of this and related issues may be found in Refs. 14 and 15.
The emitted fluorescence intensity was then proportional to the local scalar (dye)
concentration c(x,t), that was, in turn, averaged over the extent of the measurement

volume.

The fluorescence emitted from the measurement volume was collected through
a narrow slit spatial filter. The beam profile and the slit width defined a small.
spatially-averaging volume, roughly spherical in shape and of extent (diameter)
£, =~ 50 um. as estimated by direct observation using a cathetometer. We will

return to this quantity later.
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A photomultiplier tube (RCA 8645) was used to detect the fluorescence emitted
from this volume. Its output signal was amplified by a customn-designed low-noise
transimpedance amplifier, low-pass filtered using a third-order Butterworth filter.
digitized, sampled with some margin with respect to the Nvquist frequency, and

stored for subsequent processing.

The measurements to be discussed here were made in the far field. on the axis

of the jet, for jet Reynolds numbers in the range of

125 x 10" € Re = — < 7.2x10% . {

2

where ug is the nozzle exit velocity, d the nozzle exit diameter. and 1 is the kinematic
viscosity. Data were also recorded at both lower and higher Reynolds numbers. The
lower Reynolds number jets. however, behaved substantially differently, by any of a
numnber of criteria. and were not accepted as representing bona fide turbulence.!* In
the other limit, the jet at the higher Reynolds number (Re = 10.2 x 10*) produced a
distinct hissing sound. This was probably generated by the transient dilatation and
subsequent oscillations of small air bubbles caused by the rapid reduction in pressure
in such bubbles as they exited the nozzle, or by cavitation in the jet near-field region.
or both (note that the plenum gauge pressure is quadratic with Reynolds number).
See discussion and references in Ref. 19, pp. 452-453. and Ref. 20. pp. 205-207. for
example. As a result. the Re = 10.2 x 10* jet was exposed to different near-field
conditions and will not be included in the discussion below. Sce Ref. 15 for a further

documentation of the data.

Finally, constraints dictated by resolution and statistical convergence. vis-d-vis
total number of large scale structures captured and length-of-run considerations,

led to measurement stations in the range,

100 < < 305 , (3)

W

where z i1s the distance from the nozzle exit.




3. Scalar power spectrum estimation

The fluorescence signal &(t), representing the photon flux incident on the pho-
todetector, is a linear function of the spatial average of the convected local jet-fluid
concentration ¢(X,t) over the measurement volume. It produces a signal that can
be approximated by a convolution over ¢(t) = ¢(Xg,?), the jet fluid concentration
at, say. the center of the measurement volume, xg, i.¢.,

x
(1) ~ / ha(t =t et dt = h,(t) @ c(t) - (4)

- O
In this expression. h,(t) models the impulse response of the spatio-temporal aver-
aging process, i.e., the temporal signal that would be measured if a spatial delta
function of dye was convected through the measurement volume at the local flow

velocity. See Fig. 1.

(X, 1)

SO

AT RS

fluorescence
signal

X0 u(x, o

T

FiG.1 Sketch of jet fluid concentration field ¢(x,t), convected through the mea-
surement volume of extent (,.

The fluorescence output ¢(¢), along with fluctuations contributed by the small
laser intensity fluctuations, convected residual non-uniformities in the jet plenum
dye concentration, photon shot noise, electronic noise generated by the signal-
processing chain. efc., was processed by the Butterworth low-pass filter to produce

the total signal

s(t) = hLp(t) © d(t) + n(t) = h(t)Oc(t) + n(?) , (5)
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that was digitized and stored. In this expression., h(t) = hyp(t) & ha(t) is the total

system transfer function and n(t) is the total, low-pass-filtered noise.

Assuming that the total system noise n{t) can be modeled as uncorrelated
with the local dve concentration time history ¢(t), the spectrum S,(w) of s(t) can
be expressed in terms of the spectrum Sg(w) of ¢(t) and the spectrum S,{w) of the

(low-pass filtered) noise n(t), z.e.,
SS(W‘) ~ SO(“‘") + Sn(“’) + {6)

where, from Eq. 4,

Se(w) >~ |Ha(w)|? Se(w) , (7)

with H,(w) = FT{ ha(t, }, the Fourier transform of h,(¢). This allows us to relate
the total signal spectrum, S,(w), to the desired scalar fluctuation spectrum. S.(w).
of ¢(t), 1.e.

Ss(w) x~ IH(U))P Sc(w) + Sn(w) ~ ‘Ha(w)lz Sc(w) + Sn(w) . (8)
where H(w) = FT{ h(t)} = Hop(w) Ha(w).

For these experiments, the knee of the Butterworth low-pass filter was set sub-
stantially higher than the range of frequencies contained in Sy(w). Its main purpose
was to bandlimit the noise and de-alias the digitized measurements, allowing the
noise-floor to be determined, as will be illustrated in the spectra presented below.
This is the reason the modulus squared of Hyp(w), the transfer function of the

low-pass filter, can be ignored in Eqs. 7 and 8, and wherever it multiplies Sg(w)

and S.(w).

Figure 2 illustrates these relations by comnparing the spectrum S,(w) of the
total signal s(t), i.e., fluorescence #(t) plus noise n(t), with Sg(w), the spectrum of
the fluorescence signal alone. The latter was calculated by subtracting the estimated

noise spectrum, S,{w), from the total spectrum S,(w). Recalling Eq. 6. we have

Selw) =~ Sy(w) — Sp(w) . (9




8

The noise spectrum was assumed to be white, as was found to be the case in sepa-
rate measurements of this quantity {see also Ref. 21 for examples). Nevertheless, the
result is not sensitive to the assumed shape of the noise spectrum at low frequencies
where S,(w) dominates. The data processed to produce the spectra in Fig. 2 were
recorded at r/d = 100, for Re = 1.25 x 10*. Note the high dynamic range of the
total signal spectrum. i.e.. the (logarithmic) difference of the low-frequency power
to noise-floor power. Note also that the span to onc-half the (scaled) sampling fre-
quency is well beyvond the noise-cross-over frequency. As can be seen, the frequency

extent of the noise floor was substantial.

'
w
¥

total signal (Sg)
-—---  {lyuorescence (S‘)

10g4o[S (f 15)/C2 141
&
i

)
~
1

-9 1 1 i i
-1 0 1 2 3 4
logyglf 1)

F1G.2 Sample spectrum of the total signal (solid line: fluorescence + noise) and
estimated fluorescence spectrum (dashed line: fluorescence). derived from
measurements at z/d = 100, Re = 1.23 x 10'. Frequency scaled by 74(r).
the local large-scale-passage time.

The spectra in Fig. 2. and throughout this paper. are normalized by 7. the
square of the local mean value of ¢(t). multiplied by the local large-scale-passage
time. 74(x), and plotted in terms of the circular frequency, f, scaled by 75(r). In

these coordinates, their integral produces the normalized variance. e.gq.,

< =/ [ _f“)] 1f7s (10)
c” 0 C™ Tg

)




The local large-scale-passage time, 14, is given by,

rs(z) = 22 (11a)
ucl(ﬂ')
where
§(z) ~ 041z , (11b)

is the local outer scale of the flow, here identified with the (incasured) mean trans-
verse extent (visual width) of the conical region enveloping the jet-fluid {Ref. 15.
Appendix D). and ug(z) is the mean centerline velocity. The latter was estimated
from the relation

ucl(x) d

= 6.2 R
ui I —Ij

(11c)

where u; is the jet velocity and x; the jet (virtual) origin, recommended by Chen
and Rodi.?? This spectrum and frequency scaling was found to produce similarity
with respect to the downstream coordinate, x/d, in the analysis of scalar spectra

measured in gas-phase jets.?3

The spectrum S.(w) of the scalar fluctuations ¢(¢) can, at least formally. be

estimated by solving Eq.7, i.e.,

Sd,(w)

B AT

(12a)

or Eq. 8, yielding a result in terms of experimentally estimatcd quantities, 1.e.,

Ss(w) - Sn(w)

Sl = TP

(12b)

We shonld note, at this point, that Eq. 4, assuming a fixed h,(?), is not a proper
equation for two reasons. First, the fluid velocity convecting the ¢(x, t)-field through
the measurement volume is not a constant. Second, different scalar field lagrangian
trajectories through the measurement volume sample chords of different sizes (and
transit times) through it. These two effects could, in principle, be expressed as two
additional convolutions over the local velocity field and scalar paths through the

measurement volume. See Fig. 1.
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For frequencies. however. corresponding to spatial scales of the order of, or less
than. the extent of the measurement volume, (. where the H,(w) transfer function
will have an effect on the measurement of the scalar spectrum. fractional fuctua-
tions in the convecting velocity are considerably smaller than fractional fluctuations
in ¢(X.1), at least for this high-Schmidt-number fluid. They are also. largely. uncor-
related with them. Fluid paths through the measurement volume are also uncorre-
lated with the passively-convected scalar field. As a consequence. in estimating the
spectrum in the frequency neighborhood of

ox)
7l

and above. these two effects do not contribute.

frs(r) = (13

8]

Alternatively. the mst general expression of the linear dependence of the flu-
orescence signal, ¢(¢), on the local jet-fluid concentration. c(t). is given by Eq.7.
While Eq.7 follows from Eq.4, the converse is not true. Equation 4 is more re-
strictive, also requiring a definite phase relation between c(t) and o(t). Fortunately,
these (unknown) phase relations do not enter in the relation between the corre-
sponding spectra. We may conclude that Egs. 7 and 12 represent valid relations for
the corresponding spectra, even as Eq. 4 cannot be accepted as a correct description

of the time-history of the fluorescence signal ¢(t).

The estimation of the scalar spectrum S.(w) in the frequency range influenced
by the spatio-temporal averaging of the measurement process also requires knowl-
edge of the H,(w) transfer function. This can be estimated, in turn, by noting that
it is dominated by a pole corresponding to the transit time of the flow through the

measurement volume. z.e..

1
w) ~ m—— 14:
with
ly
Ta A 114b)
ucl(‘r)

Performing two different experiments, under as identical flow conditions as was
feasible, at two different spatial resolutions, we were able to compare the spectra.
forp=1,2,

Se(w) 2 [ Zp(w)]? Se(w) + S, (w) (15a)
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corresponding to two different locations of the dominant pole. at. say. 7, = 71 and

Ta = T > Ty, i.e.. for p= 1~2~

1

H (w) &~ ————
'( ) l +iwry,

{15

If the scalar spectrum, S.(w). could be assumed to be identical in the two expern-
ments (the corresponding noise floors were determined separately i each case), we

see that the ratio of the two fluorescence spectra,

Sé; — Sﬂx(“")— Sm(“’)

~ = Glw;T.m) . {16a)
Ser  Su(w) = Smplw) ‘
would be given by
1 w )’ 1, forw € 1l/m
Gluimm) ~ — el (16b)
1 + (wn) (ro/m1)". forw>1/7

independently of the, as yet unknown, scalar spectrum, 5.(w).

10910[5 (¢ 76)/-0.21'5]
&

- Sy and S, (x/d=100) AN
L Sc (x/d =100) RN |
—————— Se (x/d=305) VN
Y \
A% \
kY A
‘\ ‘\
-9 1 | i |‘n
-1 0 1 2 3 4

10910(‘ 75)

Fi1G. 3 Dotted lines: Fluorescence spectra estimated from measurements at z/d =
100 and Re = 1.25 x 10* at two spatial resclutions. Solid line: Estimated
concentration spectrum (Eq. 12) at z/d = 100 and Re = 1.25 x 10*. Dashed
line: Est.mated concentration spectrum at z/d = 305 and Re = 1.2 x 10
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Two fluorescence spectra. Sy, = S, {w) — Sy, (w) and S, = S, (v — S, (w)
from one such pair of experiments, at r/d = 100 and Re = 1.25 x 10*. are plotted
in Fig. 3 (dotted lines). The Huorescence spectrum with the larger high-frequency
content is the one plotted i Fig. 2. Power spectra were computed numerically
using a power spectral density estimation methodology that has evolved over the
past ten vears. or so. A documentation of some of its carlier features can be found
in Ref.24. In processing the data in the experiments reported here. the power
spectral density estimation programn computes spectra of data files by means of
FFT methods. and incorporates Hanuing windowing, contiguous record overlapping.
and parabolic detrending. among other features. Records up to 2'7 points can be
accommodated. For spectra known to be smooth, the program can provide third-
octave (~ 1/10 decade) gaussian filtering. sampled at 20 points per decade. to
produce the final spectra. This feature was used for all the spectra plotted 1
this paper, not so much for smoothing, but to reduce the number of points to a

manageable level for plotting purposes (note that 2!® = 63.536).

M) w

10910 6{w; Ti'TZ)

[y

10910" Tb)

FiG.4 Computed ratio, G(w; 71.72), of fluorescence spectra at r/d = 100 (Eq. 16).
Circles: Re = 1.25x10*. Squares: Re = 2.55x 10*. Solid line: Least squares
fit for r; and 7,.
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The ratios G(w: . m) for a pair of spectra. measured at r/d = 100. at Re =
1.25 x 10* (circles) and a pair at Re = 2.35 x 10* (squares), respectively. are plotted
in Fig.4. As can be seen. the ratios of spectra measured at different Revnolds
numbers are very nearly the same. in accord with the analysis outlined above. even

though. as we will see below, the spectra themselves are Re-dependent.

The curve (solid line) in Fig 4 1s a least-squares fit for r; and 7, to the lower
Reynolds number data. that were characterized by the higlier signal-to-noise ratio.
in the frequency range 1.0 < fre < 2.8, The lower limit of the fit range is chosen
so as to exclude (the small) run-to-run variations at frequencies well below those
affected by the spatial averaging. The upper frequency limit is dictated by the less
than unity signal-to-noise ratio at higher frequencies vet (¢f. Fig. 2). The values for

71 and 7 estimated by this precedure were
2r /15 > 4.2 x 1073 and 27 7y/Ts ~6.6x 1077 . (17)

respectively. This corresponds to an effective spatial extent of the measurement
volume of €, ~ 69 um for the smaller of the two (Eq. 13), in reasonable accord
with the visually estimated value of ~ 50 um using the cathetometer. This value
was used to calculate the concentration spectrum, S.(w), at z/d = 100 and Re =
1.25 x 104, plotted as the solid line in Fig. 3. It was computed from the fluorescence
spectrum recorded at the higher resolution, using Eq. 12 with the estimated single-

pole transfer function H,(w) of Eq. 14, at 7, = 7;.

The effective pole locations for data recorded at x/d = 305 were more difficult
to estimate. At x/d = 305, the higher relative spatial resolution pushed the poles
closer to the noise cross-over point. On the other hand, at r/d = 305. the (logarith-
mic) difference between the fluorescence and estimated concentration spectra was
much smaller over the frequency range of interest. Figure 5 plots the fluorescence
spectrum (dotted line) at z/d = 305 and Re = 1.2 x 10" as well as the estimated
concentration spectrum (dashed line). As can be seen, the effects of compensation,
in this case, are much smaller (¢f. difference at, say, frs ~ 2.7 in Figs. 3 and 3).
The estimated concentration spectrum at z/d = 3035 in Fig. 5 is the one plotted as

a dashed line in Fig. 3.
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F1G.5 Dotted line: Fluorescence spectrum. Dashed line: Estimated concentration
spectrum. Data recorded at /d = 305 and Re = 1.2 x 10%.

The jet fluid concentration spectra to be discussed below were all estimated
in this fashion. The values of 7,, the transfer function time constant used in the
compensation calculations, were fixed for all the data measured at each r/d axial
location (Eq.17, for measurements at r/d = 100, depending on which slit width

was used to record the fluorescence data). A fixed pair of values was also used for
all the data measured at z/d = 305.

4. Results and discussion

The conspicuous agreement between the concentration spectra at z/d = 100
(solid line) and x/d = 305 (dashed line) in Fig.3, up to frequencies limited by
signal-to-noise ratio considerations, should be noted. A similar independence of the
scaled spectra with downstream location was also found to hold in gas-phase jets,?®
where the relatively larger diffusion scales, at Sc &~ 1, and comparable Reynolds
numbers made it possible to estimate the concentration spectra with enough spatial

resolution directly, obviating the need for the compensation scheme employed here.
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In the case of the present, liquid-phase data, we should entertain the possibility
that the collapse of the spectra may be attributable to a fortuitous choice of the
compensation pole. Some observations. however, are relevant here. First, the close
agreement between the two spectra also holds in the fry < 2 frequency range.
where the effects of compensation, even for the r/d = 100 data. are negligible.
As we will see below, this will also be found to be the case at higher Reynolds
numbers. Second. the value of the pole represents a single parameter. In contrast.,
the collapse of the spectra at the two axial locations, with substantially different
degrees of compensation in each case. is over 5 orders of magnitude in the power
spectra. Conversely, this collapse supports the validity of the single-pole model for

the leading order behavior of the measurement transfer function.

logynl(t 16)5/3~spectrum]

-2 - 7]
— x/d= 100
&Sk /o x/d =305
----------- reference slope
_4 . .
-1 1 2 3

1091°(f 76)

FI1G. 6 Frequency-scaled concentration spectra. Solid line: r/d = 100 and Re =
1.25 x 10*. Dashed line: z/d = 305 and Re = 1.2 x 10*. Dotted line:
reference line at a 2/3 slope, corresponding to a k™! spectrum.

It is useful to plot the product of the concentration spectra with f3/3, as is
commonly done. A spectrum described by a -5/3 power-law yields a horizontal
line over the -5/3 frequency range when plotted in this fashion. The product of

the concentration spectra with (f75)%/2, derived from the data at r/d = 100 and
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zr/d = 305. at Re = 1.25 x 10" and Re = 1.2 x 10%. arc plotted in Fig. 6 as the
solid and dashed line curves, respectively. Also plotted, for reference, is a straight
line with a slope (logarithmic derivative) of 2/3 . corresponding to the high-Schmidt

number Batchelor 47! theoretical spectruni.?

logyol {4 75)5/3-spectrun}

-5 1 | 1 i
-1 0 1 2 3 4

10910(’ Ts)

F1G.T Frequency-scaled concentration spectra. Solid lines: 2/d = 100 data (1.25 <
Re x 107* < 7.2). Dashed lines: r/d = 305 data (1.2 < Re x 10~* < 6.5).
Individual spectra are offset by —2log,,(Re/Rey), Req = 1.2 x 10*, for
clarity.

The solid lines in Fig. 7 plot spectra derived from measurcments at r/d = 100.
for Re x 10™% = 1.25, 1.76, 2.55. 3.6, 5.1, and 7.2. The decrease in the scaled
frequency resolved. in the r/d = 100 spectra, as the specd of the flow increased
with increasing Reynolds number, is evident. The dashed lines plot spectra mea-
sured at z/d = 305, for Re x 10! = 1.2, 2.4, 4.0, and 6.5. As can be seen. the
highest frequency resolved in the x/d = 3035 spectra is a much weaker function of
Reynolds number. signal-to-noise ratio limitations being more serious than spatial
resolution at this station. Individual spectra for both z/d stations are plotted offset
by —2log,o(Re/Reg), with Rep = 1.2 ¥ 124, to aid in visualizing the evolution of

trends with Reynolds number.
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The longer characteristic local time scale at «/d = 305 did not allow as many
large scale structures to be included in the record. As a conscquence. the statistical
convergence of the r/d = 303 spectra is not as good as for the r/d = 100 data.
On the other hand. the higher relative spatial resolution at »/d = 305 allowed the
spectrum to be estimated to a higher (scaled) frequency. That trade-off aside, the
agreement between the (scaled) spectra at x/d = 100 and r/d = 305 holds for all
the cases for which data were recorded at the same. or nearly the same. Revnolds

number at the two stations.

-1.0

-1.5

logyol (¢ 75)5/3-5pectrun]
)
o
T

-3.0 A H | | l
-1 0 1 2 3 4
logyg(t 14)

F1G. 8 Frequency-scaled concentration spectra derived from data at z/d = 100 and
1.25 < Re x 10™* < 7.2 (no offsets).

Following the transition out of the large scale frequency regime (frs ~ 1). the
spectra appear to be described by a power-law with an exponent that is increasing
from, roughly, 1.2 to 1.5. in absolute value, with increcasing Reynolds number (cf.
Ref. 15. Fig. 5.2). This progression with Reynolds nuinber is easier to discern in
Fig. 8, which plots the concentration spectra at z/d = 100, for Re x 107 = 1.25
(solid line), 1.76 {dashed line), 2.55 (dot-2-dash), 3.6 (2-dot-2-dash), 5.1 (dot
dash), and 7.2 (2-dot-dash). with no offsets. The extent of the power-law regime

can be seen to increase slightly with increasing Reynolds number. A similarly
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increasing spectral slope (in absolute value) with Revnolds number was also noted

in measurements of gas-phase spectra,?? for Re x 10™* = 0.5, 1.6, and 4.0.

As can be seen by sighting along the spectra in Fig. 8. the power-law region
is followed by a different regime at higher frequencies yet. This regime does not
support the Batchelor A™! prediction? that should apply for over a decade and a
half in frequency in this case (recall that Sc &~ 1.9 x 10® licre). This can be seen in
Fig. 6, which includes a dotted line with a reference slope of 2/3. corresponding to a
k=1 spectrum. The spectra at increasing Reyvnolds number move even further from
this slope, as can be seen by comparing the Re = 1.2 x 10* spectrum with those at
higher Reynolds numbers in Fig. 8. It should be noted that this conclusion extends
to frequencies below f7s >~ 2, which are unaffected by resolution and compensation

considerations.

spectral slope

-4 L 1 L I
-1 0 b 2 3 4

1091°(f Ts)

F1G.9 Spectrum slope (logarithmic derivative). Solid lines: data at r/d = 100 and
Re = 1.25 x 10*. Dashed line: r/d = 305, Re = 1.2 x 10*.

To facilitate the study of this higher frequency regime, we also computed the
slope of the spectra (logarithmic derivative). A plot of spectrum slopes. for the

lower Reynolds number data, appears in Fig.9. These were derived from the two
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r/d = 100, Re = 1.25 x 10* spectra in Fig. 3 (solid lines) and the r/d = 305.
Re = 1.2 x 10* spectrum (dashed line). Their comparison lelps assess issues of
statistical convergence and confidence in this more delicate statistie. as well as the

effects of spatial resolution and the applied compensation.

The plots in Fig. 9 suggest a frequency-dependence of the slope of the spectra
that is close to a straight line. in these coordinates, for frequencies higher than
frs =~ 1.2, at this Reynolds number. This linear behavior extends for a decade
and a half and into frequencies bevond which the data are limited by resolution and
signal-to-noise considerations. The straight line appears to be a good representation
for frequencies below f7s = 2. for which the effects of compensation were negligible
even for the r/d = 100 data (¢f. Fig.3). For frequencies ubove fr, >~ 2. the same
straight line also describes the behavior for both the r/d = 100 and z/d = 305

data, which were affected by resolution {and compensation) to a different extent

(cf Figs. 3 and 3).

spectral slope

-5 ! i 1 {

-1 0 1 2 3 4
logglt 1)

F1¢. 10 Slope (logarithmic derivative) of spectra from data at x/d = 100 and 1.25 <
Re x 1071 < 7.2. Spectra offset as in Fig. 7. Lince types as in Fig. 8.
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A straight line for the logarithmic derivative of the spectrum corresponds to a
spectrum that is parabolic in log-log coordinates. or log-normal in linear coordinates,

€.

S frs) x exp{—-% la In(frs) + b}z} . (18)

This expression. rather than a 47! power law, seems to Le the appropriate de-
scription of our jet fluid concentration spectra at high frequencies. over a range of

frequencies at least as large as v/ Sc. 1.e.. a decade and a ualf, in this case.

Figure 10 plots the local slope (logarithmic derivative) of the spectra in Fig. 8.
The offset scheme employed in Fig. 7. and line-types cmploved in Fig. 8. were also
used here. Straight lines can be seen to be a good representation for the spectrum
slope at high frequencies with Reynolds number dependent values of the param-
eters a and b in Eq.18. The end of the power-law regime and the beginning of
the log-normal range can be seen to shift to higher frequencies with increasing
Reynolds number. Our data admit a Kolmogorov scaling for the Reynolds num-
ber dependence of this transition frequency, i.e., Re¥?, but corresponding to the
convection (passage frequency) of a physical scale roughly 80 times larger than the
estimated Kolmogorov scale (computed using tle estimated mean centerline energy
dissipation?® and the kinematic viscosity). This transition is not very well defined.

however, and other Reynolds number scaling possibilities cannot be ruled out.

5. Conclusions

This work has investigated temporal scalar (jet fluid concentration) power spec-
tra on the centerline of high Schmidt number turbulent jets, in the Reynolds number
range 1.2 < Re x 107% < 7.2, Our spectra exhibit a power-law regime at frequen-
cies above the local large scale passage frequency, with a Reynolds number depen-
dent exponent increasing (in absolute value) from, roughly, —1.2 to —1.5 over the
Reynolds number range investigated. This corroborates a similar finding for gas-
phase jet fluid concentration spectra measured at comparable Reynolds numbers.??
At higher frequencies. the spectra are well represented by a log-normal relation with

Reynolds number dependent coefficients. While our data adinit a Kolmogorov-like




scaling for the beginning of the log-normal region in the spectrum. i.e., ~ Re*/*.

other possibilities cannot be ruled out.

We appreciate that our results are at odds with the classical picture of high
Schmidt number scalar spectra. We do not find a -3/3 power-law regime. even
though our measurements were conducted at Revnolds numbers where such behav-
ior has previously been reported for high Schmidt number jet fluid scalar spectra.?®
Finally, despite adequate resolution and signal-to-noisc ratio. our data do not sup-
port the Batchelor k~! power-law prediction.? Specifically, we found no constant
k=1 slope at high frequencies and a spectral slope that does not even locally attain

a value of —1.

On the whole, our scalar spectra are rather similar to those derived by Gargett
from ocean measurements.!! In conjunction with her data and analysis, the current
results raise further questions about the universal descriptions of scalar spectra. and

their applicability to some of the canonical flows, such as turbulent jets.
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