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high Schmidt number turbulent jets
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Abstract

Single-point, jet-fluid concentration measurements obtained from high Schmidt

number (Sc :_ 1.9 x 10') turbulent jets permit an investigation of temporal scalar

power spectra, for jet Reynolds numbers in the range of 1.25 < Re x 10- < 7.2.

At intermediate scales, we find a spectrum with a logarithmic derivative (slope)

that is increasing with Reynolds number, in absolute value, but less than 5/3 at the

highest Reynolds number in our experiments. At the smallest scales, our spectra

exhibit no k-' power-law behavior, possessing a log-normal region over a range of

scales exceeding a factor of 40, in some cases.
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1. Introduction

We report here on an experimental investigation of temporal scalar power spec-

tra of round, high Schmidt number, turbulent jets. It is part of a larger effort to

better understand mixing in turbulent free shear flows, including jets and shear lay-

ers. In these experiments, we examined the jet fluid concentration (scalar) power

spectra for several reasons. Spectra are sensitive diagnostics of the flow, providing

information over a wide range of scales. Historically, they have been the object of

a great deal of attention, partially because it is possible to extract predictions for

spectral slopes from various turbulence theories and models.

Key among these turbulence theories are the 1941 paper by Kolmogorov,1

with implications for the scalar field in the inertial range discussed by Corrsin.2

Oboukhov,3 and, for higher wavenumbers. the theory by Batchelor. 4 See. for exam-

ple, discussions in Monin and Yaglom, 5 as well as in the recent review by Gibson. 6

Both the Corrsin and the Oboukhov theories yield predictions of power-law spectra

and of the spectral power-law logarithmic derivative, or slope, as it will be subse-

quently referred to in this paper. Specifically, the Corrsin and Oboukhov theories

predict a scalar spectrum proportional to k-5 /a in the inertial range, as did the

1941 Kolmogorov theory for the encrgy spectrum.

For energy spectra, this has been observed experimentally under many condi-

tions (cf. compilation of data by Chapman 7 ). The situation is less clear concerning

scalar spectra, with departures from the predicted behavior continuing to fuel de-

bate about details and refinements of the theory.

Batchelor 4 and Batchelor et al.8 recognized that for Schmidt. or Prandtl. num-

bers away from unity there exists an additional. scalar-diffusion. scale, now com-

monly referred to as the Batchelor scale, which admits a change in the scalar spec-

tral behavior. The Batchelor theory4 predicted that the scalar power spectrum at

high Schmidt numbers would display a k-l dependence beyond the Kolmogorov

wavenumber, i.e., a spectral slope of -1. Measurements in the laboratory (e.g.,

Gibson and Schwarz 9 ) and the ocean (e.g., Grant et al."°) were subsequently re-

ported to be in accord with this prediction.



3

On the other hand. more recent measurements by Gargett " in the ocean were

found not to exhibit a k-i spectral range (see. however, discussion by Gibson in

Rlefs. 12 and 6). The same result was noted in passive scalar mixing measurements in

shear layers13 and in scalar measurements in turbulent jets."1,15 Specifically, despite

adequate resolution in those experimnents, no k-' range was found at high spatial

wavenumbers. or. to be exact, temporal frequencies, adding to the questions about

the universality, if not the validity, 16 of the classical predictions at high Schmnidt

number.

The issue of spatial. vs. temporal, spectra should be recognized here. The

classical theories -ited deal with spatial spectra. One could argue. therefore. that

comparicons of measurements of temporal spectra with predictions of spat ial spectra

cannot be made directly. Two points, however, should be noted in response. First,

the overwhelming majority of experimentally obtained spectra reported in accord

with the theoretical predictions have, in fact, been temporal. Second. at least in

the case of developing flows that are not (statistically) spatially homogeneous over

the range of spectral scales of interest, the notion of a spatial spectrum and the

assumption of a statistically spatially homogeneous turbulent field is questionable.

Temporal spectra, derived from point measurements, do not have to contend with

this issue.

2. Experiment

The experiments investigated the scalar (concentration) field of round. axisym-

metric, momentum-dominated, turbulent jets issuing from contoured nozzles into a

large, quiescent discharge tank. The measurements were performed in the far field.

on the centerline of the jet. Details of the experimental apparatus have appeared

previously,14-1 7 so only a brief overview will be presented here.

The experimental facility consists of three major parts: the jet plenum, noz-

zle, and delivery system; a large reservoir that acts as the discharge tank: and

the diagnostics, consisting of an argon-ion laser, focusing optics. collection optics.

detector, signal-processing electronics, and the subsequent data-processing. The



4

working fluid is water, and the scalar is a laser dye (disodium fluorescein) which is

homogeneously premixed with the jet plenum fluid. The resulting Schmidt number.

SCSc - (1)

with v the kinematic viscosity of water and D 2- 5.2 x 10-6 cm 2 /s the estimated

aqueous species diffusivity of the fluorescein dye (Ref. 18, p. 280), is 1.9 x 10W.

The jet flow was established and maintained by pressurizing a downward ori-

ented jet plenum with gas. Both sonically-metered and blow-down, nearly constant

pressure. gas delivery configurations were used. The internal exit diameter of the jet

nozzle is 2.5 mm (0.1 in.). The rectangular discharge tank is square in cross-section.

approximately 2 m high and 1 in on edge. The tank bottom is over 600 nozzle di-

ameters downstream. Large glass windows on all four sides provided optical access

(see Ref. 15 for details).

The illumination source was an argon-ion laser (Coherent Innova 90). The

particular unit was custom selected for its low AM noise figure (,- -95 dB) over

the frequency range of interest in these experiments. It was operated at a power

of 3.5 W in the light-regulation mode. The beam was spatially filtered, expanded.

collimated, and subsequently focused to a small waist located on the centerline of

the jet. A low dye concentration was used in the jet plenun (- 10- M), with

correspondingly substantially lower concentrations at the measuring stations. A

more detailed discussion of this and related issues may be found in Refs. 14 and 15.

The emitted fluorescence intensity was then proportional to the local scalar (dye)

concentration c(x, t), that was, in turn, averaged over the extent of the measurement

volume.

The fluorescence emitted from the measurement volume was collected through

a narrow slit spatial filter. The beam profile and the slit width defined a small.

spatially-averaging volume, roughly spherical in shape and of extent (diameter)

t 50 • t0m, as estimated by direct ob)servation using a cathetonieter. We will

return to this quantity later.
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A photomultiplier tube (RCA 8645) was used to detect the fluorescence enmitted

from this volume. Its ouput signal was amplified by a custom-designed low-noise

transimpedance amplifier, low-pass filtered using a third-order Butterworth filter.

digitized, sampled with some margin with respect to the Nyquist frequency. and

stored for subsequent processing.

The measurements to be discussed here were made in the far field, on the axis

of the jet, for jet Reynolds mubers in the range of

1.25x104 < Re _- _d < 7.2 x 10. (2)
Ii

where v 0 is the nozzle exit velocity, d the nozzle exit diameter, and v is the kinematic

viscosity. Data were also recorded at both lower and higher Reynolds numbers. The

lower Reynolds number jets. however, behaved substantially differently, by any of a

number of criteria, and were not accepted as representing bona fide turbulence.' 4 In

the other limit, the jet at the higher Reynolds number (Re = 10.2 x 104) produced a

distinct hissing sound. This was probably generated by the transient dilatation and

subsequent oscillations of small air bubbles caused by the rapid reduction in pressure

in such bubbles as they exited the nozzle, or by cavitation in the jet near-field region.

or both (note that the plenum gauge pressure is quadratic with Reynolds number).

See discussion and references in Ref. 19, pp. 452-453, and Ref. 20, pp. 205-207, for

example. As a result, the Re = 10.2 x 10' jet was exposed to different near-field

conditions and will not be included in the discussion below. See Ref. 15 for a further

documentation of the data.

Finally, constraints dictated by resolution and statistical convergence. vis-a-vi,

total number of large scale structures captured and length-of-run considerations,

led to measurement stations in the range,

100 <_ < 305, (3)
wd e

where x is the distance fr'om the nozzle exit.



3. Scalar power spectrum estimation

The fluorescence signal 6(t), representing the photon flux incident on the pho-

todetector, is a linear function of the spatial average of the convected local jet-fluid

concentration c(x, t) over the measurement volume. It produces a signal that can

be approximated by a convolution over c(t) = c(xo, t), the jet fluid concentration

at, say, the center of the measurement volume, x0 , L.e.,

o(t) fj h (t - t') c(t') dt' =_ ha(t) 0 c(t) (4)

In tbis expression, ha(t) models the impulse response of the spatio-temporal aver-

aging process, i.e., the temporal signal that would be measured if a spatial delta

function of dye was convected through the measurement volume at the local flow

velocity. See Fig. 1.

c(x, t)

• "•:: • fluorescence
S_4 signal

x0 U~x t) •a

FIG. 1 Sketch of jet fluid concentration field c(x, t), convected through the mea-
surement volume of extent ,.

The fluorescence output 0(t), along with fluctuations contributed by the small

laser intensity fluctuations, convected residual non-uniformities in the jet plenum

dye concentration, photon shot noise, electronic noise generated by the signal-

processing chain, etc., was processed by the Butterworth low-pass filter to produce

the total signal

.s(t) = hLp(t),'-" (t) + n(t) = h(t) G c(t) + n(t) , (5)
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that was digitized and stored. In this expression, h(t) hLP(t) 0 ha(t) is the total

system transfer function and n(t) is the total, low-pass-filtered noise.

Assuming that the total system noise n(t) can be modeled as uncorrelated

with the local dye concentration time history c(t), the spectrum S•,(w) of s(t) can

be expressed in terms of the spectrum So(w;) of ý(t) and the spectrum S,,(") of the

(low-pass filtered) noise n(t), i.e.,

S S~() + S,,) (6)

where, from Eq. 4,

s•(., .. H,,(wý)l12 S,(w) ,(7)

with H(-(w) - rT{ hIa(t; }, the Fourier transform of ha(t). This allows us to relate

the total signal spectrum, S,(w), to the desired scalar fluctuation spectrum. S,(w).

of c(t), i.e.

S(,(w) !_ IH(w)12 S(w) + S.(w) s_ IHa.(w)12 S"(;) + S.(w) W()

where H(w)= .FT{ h(t) } = HLp(w)Ha((j).

For these experiments, the knee of the Butterworth low-pass filter was set sub-

stantially higher than the range of frequencies contained in S,(w). Its main purpose

was to bandlimit the noise and de-alias the digitized measurements, allowing the

noise-floor to be determined, as will be illustrated in the spectra presented below.

This is the reason the modulus squared of HLp(w), the transfer function of the

low-pass filter, can be ignored in Eqs. 7 and 8, and wherever it multiplies S0 (w)

and So(w).

Figure 2 illustrates these relations by comparing the spectrum S.,(u) of the

total signal s(t), i.e., fluorescence ¢(t) plus noise n(t), with S0 (w), the spectrum of

the fluorescence signal alone. The latter was calculated by subtracting the estimated

noise spectrum, S,,(w), from the total spectrum S,(w). Recalling Eq. 6, we have

S6(w') :_ S,(W) - S,(w) . (9)
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The noise spectrum was assumed to be white, as was found to be the case in sepa-

rate measurements of this quantity (see also Ref. 21 for examl)les). .Nevertheless, th•e

result is not sensitive to the assumed shape of the noise spectrum at low frequencies

where So(L') dominates. The data processed to produce the spectra in Fig. 2 wNere

recorded at x/d = 100, for Re = 1.25 x 10". Note the high dynamnic range of the

total signal spectrum. i.e., the (logarithmic) difference of tlhe low-frlequency power

to noise-floor power. Note also that the span to one-half the (scaled) sampling fre-

quency is well beyond the noise-cross-over frequency. As can be seen, the frequency

extent of the noise floor was substantial.

-3

~--5
0

total signal (Ss)
o2 -7 fluorescence (S 0 )

-9 I I

-1 0 1 2 3 4

1og1 0 (f T6 )

FIC. 2 Sample spectrum of the total signal (solid line: fluorescence + noise) and
estimated fluorescence spectrum (dashed line: fluorescence), derived from
measurements at rid = 100, Re = 1.25 x 104. Frequency scaled by 76(,r).

the local large-scale-passage time.

The spectra in Fig. 2, and throughout this paper. are normalized by :2, the

square of the local mean value of c(t), multiplied by the local large-scale-passage

time. Tr,(x), and plotted in terms of the circular frequency. f. scaled by r7( X). In

these coordinates, their integral produces the normalized variance. c.q.,

c12 , = [ (f-r6)I(If 
10)
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The local large-scale-passage time, r6, is given by,

6(x)
r6(x) 6(x) (11a)

where

6(x) a- 0.41 x , (11b)

is the local outer scale of the flow, here identified with the (measured) mean trans-

verse extent (visual width) of the conical region enveloping the jet-fluid (Ref. 15.

Appendix D). and ui(x) is the mean centerline velocity. The latter was estimated

from the relation
=1I(X) = 6.2 d (llc)

ui x -xi

where uj is the jet velocity and xj the jet (virtual) origin, recommended by Chen

and Rodi. 22 This spectrum and frequency scaling was found to produce similarity

with respect to the downstream coordinate, .rid, in the analysis of scalar spectra

measured in gas-phase jets. 23

The spectrum S,(w) of the scalar fluctuations c(t) can, at least formally. be

estimated by solving Eq. 7, i.e.,

S' (W) S6 (w)
IH.(w)12 

' (12a)

or Eq. 8, yielding a result in terms of experimentally estimated quantities, i.e.,

S, (w) - S.(w) - S(w) (12b)IHa,(W)l 2

We shoild note, at this point, that Eq. 4, assuming a fixed ha(t), is not a proper

equation for two reasons. First, the fluid velocity convecting the c(x, t)-field through

the measurement volume is not a constant. Second, different scalar field lagrangian

trajectories through the measurement volume sample chords of different sizes (and

transit times) through it. These two effects could, in principle, be expressed as two

additional convolutions over the local velocity field and scalar paths through the

measurement volume. See Fig. 1.
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For frequencies, however, corresponding to spatial scales of the order of, or less

than, the extent of the measurement volume, Ca, where the Ii(•) transfer function

will have an effect on the measurement of the scalar spectrum, fractional fluctua-

tions in the convecting velocity are considerably smaller than fractional fluctuationIs

in c(x. t), at least for this high-Schmiidt-number fluid. They are also. largely. uncor-

related with them. Fluid paths through tlie measurement volume are also uncorre-

lated with the passively-convected scalar field. As a consequence. in estimating the

spectrum in the frequency neighborhood of
6('r)

f -6(x) • 2•, a (131

and above, these two effects do not contribute.

Alternatively, the in )st general expression of the linear dependence of the flu-

orescence signal, 0(t), on the local jet-fluid concentration. c(t). is given by Eq. 7.

While Eq. 7 follows from Eq. 4, the converse is not true. Equation 4 is more re-

strictive, also requiring a definite phase relation between c(t) and o(t). Fortunately,

these (unknown) phase relations do not enter in the relation between the corre-

sponding spectra. We may conclude that Eqq. 7 and 12 represent valid relations for

the corresponding spectra, even as Eq. 4 cannot be accepted as a correct description

of the time-history of the fluorescence signal 6(t).

The estimation of the scalar spectrum S5(w) in the frequency range influenced

by the spatio-temporal averaging of the measurement process also requires knowl-

edge of the Ha(w) transfer function. This can be estimated, in turn, by noting that

it is dominated by a pole corresponding to the transit time of the flow through the

measurement volume, i.e..
1

H,(w) ,- 1 (14a)1 + i' -,,r

with

Performing two different experiments, under as identical flow conditions as was

feasible, at two different spatial resolutions, we were able to compare the spectra.

for p = 1,2,

S,'(W) "" 1 T,,(W) 1 Sc(W) + S,',(L) , (15a)
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corresponding to two different locations of the doininwit pole. at. say. Tr = T1 anid

Tr,: r2 > r1 , i.e., for p = 1,2.

1 + I.WTJ7

If the scala" spectrum. S,(•.,), could be assumed to be identical in the two expe.ri-

ments (the corresponding noise floors were determined separaely in each case). we

see that the ratio of the two fluorescence spectra,

S6, ,. S"1('4;) - ST,,I (W) =_ G(,.; rj .7-, I16a

would be given by

C ) 1 ± (WT2) 2  J t, for'< I/r-,
ri, 72 1 + (T 71)2 (r2/Ti) 2  for' > 1 /Ti . (16i

independently of the, as yet unknown, scalar spectrum, S,(,).

-3

I-3 o ~~S1 (x/S 2 (xf"100) ,: ,
0 _Sc (x/d 305)"..\ ,,

-9 I I. '•

-1 0 1 2 3 4

logjO(f T6)

FIG. 3 Dotted lines: Fluorescence spectra estimated from measurements at x/d =

100 and Re = 1.25 x 104 at two spatial reselutions. Solid line: Estimated
concentration spectrum (Eq. 12) at x/d = 100 and Re = 1.25 x 104. Dashed
line: Estimated concentration spectrum at x/d = 305 and Re = 1.2 x 104.
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Two fluorescence spectra. S(. = Sri (,') - (.,-') and S, = Sf, (.A) - S,,.' (

from one such pair of experiments, at J,/d = 100 and Re = 1.25 x 10". are plotted

in Fig. 3 (clotted lines). The fluorescence spectrum with the larger high -frequency

content is the one plotted in Fig.) 2. Power spectra were complted i(IniHmerically

using a power spectral deisitv estimation ioethodology that has evolved over the

past ten years. or so. A docu-mentation of soine of its earlier features can be found

in Ref. 24. In processing the data in the experimients rpomted here. the power

spectral density estimation program computes spectra of data files by means of

FFT methods, and incorporates Harming windowing, contiguous record overlapping.

and p)aral)olic detirending. among other features. Records up to 217 pointts can be

accommodated. For spectra known to be smooth, the program can provide third-

octave (_. 1/10 decade) gaussian filtering, sampled at 20 points per decade, to

produce the final spectra. This feature was used for all the spectra plotted in

this paper, not so much for smoothing., but to reduce the number of points to a

manageable level for plotting purposes (note that 216 = 65,536).

.5

.4

.3

" .2
0

- .1-

- 1I I I

-1 0 1 2 3 4

lOg 10 f TS)

FIG. 4 Computed ratio, G(w,; rl.r 2 ), of fluorescew'e spectra at r/d = 190 (Eq. 16).
Circles: Re = 1.25x 10'. Squares: Re = 2.55x 104. Solid line: Least squares
fit for T1 and 7-.
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The ratios G(,,:: 71. 7,)) for a pair of spectra. measured at x/d = 100. at R =-

1.25 x 104 (circles) mnd a pair at Re = 2.55 x 10I (squares), respectively. are plot t'd

in Fig. 4. As can be seen. the ratios of spectra ilieasur(d at differeIlt lIeyvoldls

numbers are very neiarly the same, in accord with the analysis outlined al(,ve. even

though, as we will see below, the spectra theinselves are Re-dependend ,

The curve (,solid line) in Fig. 4 is a least-squares fit for ri and r2 to the lower

Revnolds number data. that were characterized by the highcr signal-to-noise ratio.

in the frequency range 1.0 < fý <_ 2.8. The lower limit of the fit range is chosen

so as to exclude (the small) run-to-run variations at frequencies well below those

affected by the spatial averaging. The upper frequency limit is dictated by the less

than unity signal-to-noise ratio at higher frequencies yet (cf. Fig. 2). The valu•es for

T1 and -2 estimated by this pih;cdure were

27r -r/ T-6- 4.2 x 0 and 2n 7r2/T _ 6.6 x 10-3 (17)

respectively. This corresponds to an effective spatial extent of the measurement

volume of ta, _ 69 pm for the smaller of the two (Eq. 13), in reasonable accord

with the visually estimated value of - 50 pm using the catlietometer. This value

was used to calculate the concentration spectrum, S,(ýe), at x/d = 100 and Re =

1.25 x 104, plotted as the solid line in Fig. 3. It was computed from the fluorescence

spectrum recorded at the higher resolution, using Eq. 12 with the estimated single-

pole transfer function Ha(w) of Eq. 14, at Ta = 71.

The effective pole locations for data recorded at .r/d = 305 were more difficult

to estimate. At x/d = 305, the higher relative spatial resolution pushed the poles

closer to the noise cross-over point. On the other hand, at x/d = 305. the (logarith-

mic) difference between the fluorescence and estimated concentration spectra was

much smaller over the frequency range of interest. Figure 5 plots the fluorescence

spectrum (dotted line) at x/d = 305 and Re = 1.2 x 101 as well as the estimated

concentration spectrum (dashed line). As can be seen, the effects of compensation.,

in this case, are much smaller (cf. difference at, say, fT 6 :_ 2.7 in Figs. 3 and 5).

The estimated concentration spectrum at x/d = 305 in Fig. 5 is the one plotted as

a dashed line in Fig. 3.
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-i

-3

04

-5

Sf
0 7 Sc

-1 0 1 2 3 4

109 10 (f T6)

FIG. 5 Dotted line: Fluorescence spectrum. Dashed line: Estimated concentration
spectrum. Data recorded at xid = 305 and Re = 1.2 x 10'.

The jet fluid concentration spectra to be discussed below were all estimated

in this fashion. The values of ra, the transfer function time constant used in the

compensation calculations, were fixed for all the data measured at each x/d axial

location (Eq. 17, for measurements at x/d = 100, depending on which slit width

was used to record the fluorescence data). A fixed pair' of values was also used for

all the data measured at rid = 305.

4. Results and discussion

The conspicuous agreement between the concentration spectra at rid = 100

(solid line) and xid = 305 (dashed line) in Fig. 3, up to frequencies limited by

signal-to-noise ratio considerations, should be noted. A similar independence of the

scaled spectra with dowvnstream location was also found to hold in gas-phase jets,2

where the relatively larger diffusion scales, at Sc -, 1, and comparable Reynolds

numbers made it possible to estimate the concentration spectra with enough spatial

resolution directly, obviating the need for the compensation scheme employed here,
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In the case of the present, liq11(ld-plhase data, we should entertain the possibilitv

that the collapse of the spectra may be attributable to a fortuitous choice of the

coml)ensation pole. Some observations, however, are relevant here. First. the close

agreement between the two spectra also holds in the frý, < 2 frequency range.

where the effects of compensation, even for the x/d = 100 data, are negligible.

As we will see below, this will also be found to be the case at higher Reynolds

numbers. Second, the value of the pole represents a single parameter. In contrast.

the collapse of the sp)ectra at the two axial locations, with substantially different

degrees of compensation in each case, is over 5 orders of magnitude in the power

spectra. Conversely, this collapse supl)orts the validity of the single-pole model for

the leading order behavior of the measurement transfer function.

0

L-
0

a.

-2

x/d - 305
-3 -------- reference slope

-4 1 I I

-1 0 1 2 3 4

1O9 10 (f r6)

FIG. 6 Frequency-scaled concentration spectra. Solid line: x/d = 100 and Re =

1.25 x 10'. Dashed line: x/d = 305 and Re = 1.2 x 104. Dotted line:
reference line at a 2/3 slope, corresponding to a k-1 spectrum.

It is useful to plot the product of the concentration spectra with f'/ 3, as is

commonly done. A spectrum described by a -5/3 power-law yields a horizontal

line over the -,5/3 frequency range when plotted in this fashion. The product of

the concentration spectra with (fr6)511, derived from the data at x/d = 100 and
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x/d = 303, at Re = 1.25 x 10' and Re = 1.2 x 10". are 1ploJtted in Fig. 6 as the

solid mid dashed line curves, respectively. Also plotted, for reference, is a straight

line with a slope (logarithmic derivative) <f 2/3. corresponding to thel high-Schmidt

number Batchelor k-' theoretical spectrum.4

-2

C",,

-3.... .. - - - - - -

SV/

-4

-1 0 1 2 3 4

Ioglo(1 i')

FIG. 7 Frequency-scaled concentration spectra. Solid lines: a"/d 100 data (1.25 <
Re x 10' < 7.2). Dashed lines: x/d = 305 data (1.2 < Re x 10-4 < 6.5).
Individual spectra are offset by -21ogl 0(Re/Reo), Re0 = 1.2 x 10'. for
clarity.

The solid lines in Fig. 7 plot spectra derived from measurements at x/d = 100.

for Re x 10-4 = 1.25, 1.76. 2.55. 3.6. 5.1, and 7.2. The decrease in the scaled

frequency resolved, in the x/d = 100 spectra, as the speed of the flow increased

with increasing Reynolds number, is evident. The dashed lines plot spectra mea-

sured at x/d = 305, for Re x 10-1 = 1.2. 2.4, 4.0, and 6.5. As can be seen, the

highest frequency resolved in the x/d = 305 spectra is a nmuch weaker function of

Reynolds number, signal-to-noise ratio limitations being more serious than spatial

resolution at this station. Individual spectra for both .r/d stations are plotted offset

by -2loglo(Re/Reo), with Reo = 1.2 x 19', to aid in visualizing the evolution of

trends with Reynolds number.
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The longer characteristic local time scale at ,r/d = 305 did not allow as many

large scale structures to be included in the record. As a consequence. the statistical

convergence of the ,r/d 303 spectra is not as good as for the r/d 100 data.

On the other hand, the higher relative spatial resolution at .rd = 303 allowed the

spectrum to be estimated to a higher (scaled) frequency. That trade-off aside, the

agreement between the (scaled) spectra at x/d = 100 and x/d = 305 holds for all

the cases for which data were recorded at the same, or niearly the same. Pvynolds

number at the two stations.

-1.0

-'-1.5 -.- •

W

2.0-,l

0 -2.5

-3.0
-0 1 2 3 4

0og 1 0 (f TS)

FIG. 8 Frequency-scaled concentration spectra derived from data at x/d 100 and
1.25 < Re x 10-4 < 7.2 (no offsets).

Following the transition out of the large scale frequency regime (fr- 1 ) the

spectra appear to be described by a power-law with an exponent that is increasing

from, roughly, 1.2 to 1.5. in absolute value, with increasing Reynolds number (cf.

Ref. 15. Fig. 5.2). This progression with Reynolds number is easier to discern in

Fig. 8, which plots the concentration spectra at x/d = 100, for Re x 10' -- 1.25

(solid line), 1.76 (dashed line), 2.55 (dot-2-dash), 3.6 (2-dot-2-dash). 51 (dot

dash), and 7.2 (2-dot-dash). with no offsets. The extent of the power-law regime

can be seen to increase slightly with increasing Reynolds number. A similarly
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increasing spectral slope (in absolute value) with Reynolds number was also noted

in measurements of gas-phase spectra,- 3 for Re x 10-4 = 0.5, 1.6, and 4.0.

As can be seen by sighting along the spectra in Fig. S, the power-law region

is followed by a different regime at higher frequencies yct. This regime does not

support the Batchelor k-' prediction4 that should apply for over a decade ard a

half in frequency in this case (recall that Sc - 1.9 x 10' here). This can be seen in

Fig. 6, which includes a dotted line with a reference slope of 2/3. corresponding to a

k-' spectrum. The spectra at increasing IReynolds number move even further from

this slope, as can be seen by comparing the Re = 1.2 x 10' spectrumN with those at

higher Reynolds numbers in Fig. 8. It should be noted that this conclusion extends

to frequencies below fr, _ 2, which are unaffected by resolution and compensation

considerations.

i0

C..
0A

0 2

-3

-4 f
- 0 1 2 3 4

log10 (f T6 )

FIG. 9 Spectrum slope (logarithmic derivative). Solid lines: data at x/d = 100 and
Re = 1.25 x 10'. Dashed line: x/d = 305, Re = 1.2 x 10'.

To facilitate the study of this higher frequency regime, we also computed the

slope of the spectra (logarithmic derivative). A plot of spectrum slopes, for the

lower Reynolds number data, appears in Fig. 9. These were derived from the two



.r/d =100. Re =1.25 x 10" spectra Iin Fig. 3 (solid lilies)J and the x/d =303.

Re 1.2 x 104 spec-trumll (dashed line ). Their comparison help)s assess issues Of

statistical convergence and confidence in this more delicate statistic, a-s well as the

effects, of spatial resolution and the app~lied coimpensat~ioni.

The plots in Fig. 9 sugg-est a frcquency-dependence of the slope of the spectra

that is close to a straýIght line, in these coordlinates. for frequencies higher than

fTrb ý- 1.2. at this Reynolds number. This linear behavior extends for a decade

and a half and inito frequencies beyondl which the data are linited iw reouto an

signal- to-xioise considerations. The straight line aIppears to be a1 goodi represent at i01n

for frequencies below fr 7A :ý 2. for which the effects of comp~ensation were negligible

even for the .r/d =100 dlata ( cf. Fig. 3). For frequencies above f 7A - 2. the samte

straight line also describes the behavior for both the xid = 100 and .r/d = 305

data, which were affected by resolution (and compensation) to a different extent

(cf. Figs. 3 and 5).

1 1

~~4'.

CL ~ -XrL

-3

-4

-10 1 2 3 4

lOg 10(f T6)

Fic. 10 Slope (logarithmic derivative) of spectra from data. at r/d =100 and 1.25 <

Re x 10-' < 7.2. Spectra offset ats in Fig. 7. Line types as in Fig. S.
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A straight line for the logarithmic derivative of the spectrum corresponds to a

spectrum that is parabolic in log-log coordinates. or log- noriml in linear coordinates.
z. e..

S,(fm,) ?x exp (I ln(fr ) + b (1S)

This expression, rather than a power law, seems to be the appropriate de-

scription of our jet fluid concentration spectra at high frequencies. over a range of

frequencies at least as large as V/•, i.e.. a decade aid a :,alf, in this case.

Figure 10 plots the local slope (logarithmic derivative) of the spectra in Fig. S.

The offset scheme employed in Fig. 7. and line-types enmployed in Fig. 8. were also

used here. Straight lines can be seen to be a good representation for the spectrum

slope at high frequencies with Reynolds number dependent values of the param-

eters a and b in Eq. 18. The end of the power-law regime and the beginning of

the log-normal range can be seen to shift to higher frequencies with increasing

Reynolds number. Our data admit a Kolmogorov scaling for the Reynolds num-

ber dependence of this transition frequency, i.e., Re3 /1 , but corresponding to the

convection (passage frequency) of a physical scale roughly 80 times larger than the

estimated Kolmogorov scale (computed using the estimated mean centerline energy

dissipation2 5 and the kinematic viscosity). This transition is not very well defined.

however, and other Reynolds number scaling possibilities cannot be ruled out.

5. Conclusions

This work has investigated temporal scalar (jet fluid concentration) power spec-

tra on the centerline of high Schmidt number turbulent jets, in the Reynolds number

range 1.2 < Re x 10. < 7.2. Our spectra exhibit a power-law regime at frequen-

cies above the local large scale passage frequency, with a Reynolds number depen-

dent exponent increasing (in absolute value) from, roughly, -1.2 to -1.5 over the

Reynolds number range investigated. This corroborates a similar finding for gas-

phase jet fluid concentration spectra measured at comparable Reynolds numbers. 23

At higher frequencies, the spectra are well represented by a log-normal relation with

Reynolds number dependent coefficients. While our data admit a Kolmogorov-like
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scaling for the beginning of the log-normal region in the spectrum. i.e., - Re3/4.

other possibilities cannot be ruled out.

We appreciate that our results are at odds with the classical picture of high

Schmidt number scalar spectra. Wýe do not find a -7/3 power-law regime. even

though our measurements were conducted at Reynolds numbers where such behav-

ior has previously been reported for high Schmidt number jet fluid scalar spectra. 26

Finally, despite adequate resolution and signal-to-noise ratio. our data do not sup-

port the Batchelor k-1 power-law prediction.' Specifically, we found no constant

k-1 slope at high frequencies and a spectral slope that does not even locally attain

a value of -1.

On the whole, our scalar spectra are rather similar to those derived by Gargett

from ocean measurements."1 In conjunction with her data and analysis, the current

results raise further questions about the universal descriptions of scalar spectra, and

their applicability to some of the canonical flows, such as turbulent jets.

Acknowledgments

We would like to acknowledge contributions by Dan Lang and David Dowling

to the experiments. This work was supported by AFOSR Grants No. 83-0213 and

88-0155, and GRI Contract No. 5087-260-1467.

References

1 Kolmogorov, A. N.. "Local Structure of Turbulence in an Incompressible Viscous

Fluid at Very High Reynolds Numbers," Doki. Akad. Nauk SSSR 30, 299 (1941).

2 Corrsin, S., "On the spectrum of isotropic temperature fluctuations in isotropic

turbulence," J. Appl. Phys. 22, 469-473 (1951).

3 Oboukhov, A. M., "Some specific features of atmospheric turbulence," J. Fluid

MAech. 13, 77-81 (1962).



" Batchelor, G. IK.. "'Small-scale variation of convected quantities like temperature

in turbulent fluid. Part 1. General discussion and the case of small coniductiv'ity."

J. Fluid Alech. 5. 113-133 (1939).

5 Monin, A. S., and Yagloin, A. N.. Statistical Fluid Mechanics: AMechanics of

Turbulence II (Ed. J. Lumley. MIT Press, Cambridge. MA, 1975).

6 Gibson, C. H.. "IKohnogorov similarity hy!potheses for scalar fields: sampling

intermittent turbulent mixing in the ocean and galaxy," Proc. Roy. Soc. A 434.

149-164 (1991).

Chapman. D. R., "Computational Aerodynamics Development and Outlook."

AIAA J. 17(12), 1293-1313 (1979).

8 Batchelor, G. K., Howells, I. D. , and Townsend, A. A., "Small-scale variation

of convected quantities like temperature in turbulent fluid. Part 2. The case of

large conductivity," J. Fluid Meci. 5, 134-139 (1959).

9 Gibson, C. H., and Schwarz, W. H., "The universal equilibrium spectra of tur-

bulent velocity and scalar fields," J. Fluid Mfech. 16, 365-3S4 (1963).

10 Grant, H. L., Hughes, B. A., Vogel, W. M., and Moilliet, A., "The spectrum of

temperature fluctuations in turbulent flow," J. Fluid Mcech. 34. 423-442 (1968).

11 Gargett, A. E., "Evolution of scalar spectra with the decay of turbulence in a

stratified fluid," J. Fluid Mech. 159, 379-407 (1985).

12 Gibson, C. H., "Fossil turbulence and interniittency in sampling oceanic mixing

processes," J. Geophys. Res. 92, C5, 5383-5404 (1987).

13 Komori, S.. Kanzaki, T., Murakami, Y., and Ueda, H., "Simultaneous measure-

ments of instantaneous concentrations of two species being mixed in a turbulent

flow by using a combined laser-induced fluorescence and laser-scattering tech-

nique," Phys. Fluids A 1(2), 349-352 (1989).

14 Miller, P. L., and Dimotakis. P. E., "Reynolds number dependence of scalar

fluctuations in a high Schmidt number turbulent jet," Phys. F'uids A 3(5), 1156-

1163 (1991).

1 Miller, P. L., ,Mixing in High Schmidt Number Turbulent Jets. Ph.D. thesis.

California Institute of Technology (1991).



23

1 Dimotakis, P. E., and Miller. P. L., "Some consequences of the boundedness of

scalar fluctuations," Phvs. Fluids A 2(11), 1919-1920 (1990).

17 Miller. P. L., and Diniotakis. P. E., "'Stochastic geometric properties of scalar

interfaces in turbulent jets." PhYs. Fluids A 3(1 ). 168--177 (1991).

18 Ware. B. R., Cyr. D.. Gorti. S., and Lanni, F., "Electrophoretic and Frictional

Properties of Particles in Complex Media Measured by Laser Light Scattering

and Fluorescence Photobleaching Recovery." Measurement of Suspended Parti-

cles by Quasi-Elastic Light Scattering (Wiley, NY), 255-289 (1983).

19 Blake, W. K., Mechanics of Flow-Induced Vibration. II (Academic Press, Or-

lando, FL, 1986).

20 Young, F. R., Cavitation (McGraw-Hill, London, 1989).

21 Dowling, D. R., Lang, D. B., and Dimotakis, P. E., "An Improved Laser-Rayleigh

Scattering Photodetection System," Exp. in Fluids 7(7), 435-440 (1989).

22 Chen, C. J., and Rodi, W., Vertical Turbulent Buoyant Jets. A Review of

Experimental Data (Pergammon Press, Oxford, 1980).

23 Dowling, D. R., and Dimotakis, P. E., "Similarity of the concentration field of

gas-phase turbulent jets," J. Fluid Mech. 218, 109-141 (1990).

24 Dowling, D. R.. Mixing in Gas Phase Turbulent Jets, Ph.D. thesis, California

Institute of Technology (1988).

25 Friehe, C. A., Van Atta, C. W., and Gibson, C. H.. "Jet turbulence: Dissipation

rate measurements and correlations," AGARD Turbulent Shear Flows CP-93.

18.1-7 (1971).

26 Becker, H. A., Hottel, H. C., and Williams, G. C., "The Nozzle-Fluid Concen-

tration Field of the Round Turbulent, Free Jet," J. Fluid Mecl. 30(2), 280 303

(1967).


