
U wg

Li-~

C~) b

15

'Is

cog

i~I;

000

In

_

c0

JUL ii s

SAND--86-1048C

DE86 012289
FINAL REPORT

Of The

PDES LOGICAL LAYER INITIATION TASK

Submitted To

Kalman Brauner, PDES Chairman

The Boeing Commercial Airplane Company

Accesion For

April 28, 1986 NTIS CRA&I
DTIC TAB
Unannounced U

Justification

By

Distribution I

DTIC QUALITY INSPECTED 3 Availability Codes

Avail andf or
Dist Special

Submitted By

J. C. Kelly, Chairman, PDES Logical
Layer Initiation Task Group

DTIC QUALITY INSPECTED 3

Sandia National Laboratories

DISCLAIMER

This report was prepared as an account of work sponsored by ap agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLINITEO

Table of Contents

Foreword

1.0 Introduction Page 1

1.1 The Mission Of The PDES Initiation Effort
1.2 The Consistency Between The Initiation Effort And The

Second PDES Report
1.3 The Three Layers - Application, Logical, Physical
1.4 The Logical Layer Initiation Charter
1.5 Some Perspectives On Data Exchange In The PDES

Environment

2.0 The Logical Layer Methodology Page 13

2.1 Cognitive And Specification Models
2.2 Overview Of The Methodology
2.3 Description Of The Methodology
2.4 Choice Of Modeling Techniques

3.0 Application And Resource Areas Page 24

3.1 Wireframe Geometry Resource Area
3.2 Presentation Resource Area
3.3 Topology Resource Area
3.4 Electrical Schematic Application Area
3.5 Tolerancing Application Area
3.6 Finite Element Modeling Application Area

4.0 Examples Of Applying the Methodology Page 32

4.1 Example 1: Electrical Schematic Application Model
4.2 Example 2: Flat Plate Mechanical Part Application Model
4.3 Example 3: Tolerancing Application Model
4.4 Example 4: Finite Element Modeling Application Model
4.5 Wireframe Geometry Resource Model
4.6 Presentation Resource Model
4.7 Topology Resource Model

5.0 Lessons Learned Page 62

5.1 Use of Several Languages
5.2 Global Conceptualization
5.3 People
5.4 Cognitive And Specification Models
5.5 Modeling
5.6 Translation Between The NIAM Cognitive Model And The

DSL Specification Model
5.7 Summ~ry

6.0 Critical Issues And Recommendations Page 68

6.1 General Issues
6.1.1 People
6.1.2 Environment
6.1.3 Models And Languages
6.1.4 Broad Knowledge

6.2 Specific Issues
6.2.1 People
6.2.2 Environment
6.2.3 Models And Languages
6.2.4 Broad Knowledge

7.0 Summary Of Lessons Learned And Recommendations Page 76

Bibliography Page 79

Appendices

A. Comments By The Application And Resource Modelers
B. Original Logical Layer Methodology Paper
C. Logical Layer Content

Task 1 Deliverables
Cl Wireframe Geometry Resource Model
C2 Presentation Resource Model
C3 Flat Plate Mechanical Part Discipline Model

Task 2 Deliverables
C4 Electrical Schematic Discipline Model
C5 Tolerancing Discipline Model
C6 Finite Element Modeling Discipline Model
C7 Topology Resource Model
C8 Geometry-Topology Associativity Resource Model

D. Primers
Dl. IDEF-l And IDEF-l Extended (IDEFl-X)
D2. Nijssen Information Analysis Method (NIAM)
D3. Data Specification Language (DSL)

E. Paper On PDES delivered at Federal Computer Conference
F. Logical Layer Charter
G. Response to call for alternative modeling language
H. Summary of responses to call for alternative modeling

language
I. Letters on Critical Issues Written During Initiation Effort

S

FOREWORD

This report deals with the activities, findings, S
conclusions, and recommendations of the Logical Layer Initiation
Task Group, one of two tasks groups comprising the PDES
Initiation effort. The PDES initiation effort is a proof of
concept effort with a subordinate purpose of producing content
potentially suitable for PDES Version 1.0. The primary goal of
the Logical Layer Initiation Task Group was to formulate and test
a methodology for developing the PDES specification along the
lines advocated in the Second PDES Report. The Task Group was
also charged with making a final report detailing its "lessons
learned" and its recommendations. This report addresses that
charge.

The Logical Layer Initiation Task Group was chaired by J. C.
Kelly of Sandia National Laboratories. John Zimmerman of the
Bendix Kansas City Division of Allied Corporation, and Doug
Schenck of McDonnell Douglas Aerospace Information Services
Company formed the technical core within the Logical Layer
itself. In terms of the declared content deliverables of the
project, Zimmerman developed the "qualified" NIAM information
models of the application areas and the global NIAM information
model of the Logical Layer. Schenck developed the Data
Specification Language and the expression of the global models in
that language.

Many other people contributed to the goals of the Task Group
work by participating in the development of application area
information models which were then used to exercise the
methodology. The primary contributors to the development of
these models and their sponsoring companies are named in Figures
1-3 and 1-5 in Section 1.4. Appendix A contains valuable
retrospective comments on the experiencs of the initiation effort
by the modelers of three application areas and one resource area.

Of all the contributors to the Task Group work, John
Zimmerman deserves special mention. He has worked longer and
harder than anyone else associated with the project, and has had
the greatest technical impact. He defined the methodology and
provided the information modeling expertise to carry it out. He
liased with the various application layer groups, assimilated
their models, and performed the crucial integration task yielding
the global models supporting all the applications. He is the
primary technical contributor to this report. In short, he has
been the one with whom the technical buck has stopped most often
during this project.

The Logical Layer initiation effort formally began in
January, 1985 with a meeting at Boeing. The effort will end with
the publication of this report. The existence of the Task Group
was publicized, and a preliminary statement of purpose was given,

in the General Assembly at the quarterly meeting of the IGES
Committee in Pomona in February, 1985. It was announced that

* membership in the Task Group was open to any individual who could
commit to attending a rather intensive schedule of working
meetings and to significant assignments to be completed between
meetings. The sense of urgency surrounding the project, and, for
that matter, surrounding the entire initiation effort, derives
from a commitment to develop a single worldwide standard for
product data exchange within the ISO TC184/SC4 community as soon
as possible. (TC184 is Industrial Automation Systems; SC4 is
External Representation Of Product Model Data; STEP, the eventual
worldwide standard, is Standard For The Transfer And Exchange Of
Product Model Data.) The PDES Project has been designated as the
mechanism by which the United States will contribute to the STEP
effort.

Since January, 1985, scheduled Logical Layer Initiation
meetings have been held as follows:

Seattle - Working Meeting - January, 1985
Pomona - Quarterly IGES Meeting - February, 1985
Cincinnati - Working Meeting - February, 1985
Kansas City - Working Meeting - March, 1985
Atlanta - Quarterly IGES Meeting - April, 1985
St. Louis - Working Meeting - May, 1985
Albuquerque - Working Meeting - June, 1985
Madison - Quarterly IGES Meeting - July, 1985
Los Angeles - Working Meeting - September, 1985
Knoxville - Quarterly IGES Meeting - October, 1985
Kansas City - Working Meeting - November, 1985
San Diego - Quarterly IGES Meeting - January, 1986
Albuquerque - Working Meeting - February, 1986

In addition, other, more informal, meetings were held.
These include, for example, liason meetings between Zimmerman and
people from the application areas, and meetings concerned with
this report. And, it would be difficult to estimate the number
of lengthy telephone conversations held in conjunction with the
project, but the number is assuredly quite high.

Meetings associated with the regular quarterly IGES meetings
amounted to organized progress reports to a group that has since
seen some stabilization and in fact now forms the Logical Layer
Committee. Several people with considerable experience in
information modeling and logical database design have been
attracted to this group. Detailed minutes were published
following each quarterly IGES meeting, and these were supplied to
the ISO Working Group TC184/SC4/WGl as well.

The work in the presentation area of Richard C. Winfrey of
Digital Equipment Corporation was used as a basis for
establishing communication with the ANSI X3H3 Committee0

responsible for the development of the PHIGS graphics standard.
It is believed that this type of coordination between the
IGES/PDES Committee and other standards development groups for
the purpose of minimizing duplication will be commonplace in the
future.

A talk on PDES in general, and the initiation effort in
particular, was developed and presented at the Federal Computer
Conference in Washington in September, 1985, at the PDDI end-of-
contract briefing in St. Louis in September, 1985, and at the SME
CIMTECH conference in Boston in March, 1986. A paper was
developed along the same lines and was published in Manufacturing
Productivity FRONTIERS, a publication of the IIT Research
Institute, and in the CIMTECH conference proceedings. The paper
is included at the end of this report as Appendix E.

This report has been written with the members of the IGES
Committee in mind. The extensive set of Appendices indicates
that we feel the report has an archival function to perform. An
effort has been made to keep "gory details" in the appendices.

I believe that the Logical Layer Initiation Task Group has
performed as needed in a proof of concept effort. I say this in
spite of the fact that, because of time and manpower constraints,
we have had to cut short our efforts in some areas, and have had
to leave open some issues that have been raised. However, we did
define a project along the lines of the Second PDES Report and
carry it out. We did define a methodology, we have refined it in
light of what we consider to be authentic experience, and we are
able to recommend it. We did gain some experience and we do have
some lessons learned to relate and some recommendations to give.
And, we did cause some of the standing IGES committees to
mobilize and gain some experience with information modeling. We
believe these are all positive contributions toward the
development of PDES Version 1.0.

Dixie Chavez of Sandia National Laboratories and Will
Williams of Bendix, Kansas City Division deserve special thanks
for their help in preparing this report. Our wives and families
deserve our thanks for helping us live through the initiation
experience, and we congratulate them for living through it
themselves.

I speak for the entire Task Group when I say we are proud to
present the results of our work to the IGES/PDES Committee. We
look forward to continuing participation in the development of
PDES, and we wish Doug Schenck great success in his new role of
Logical Layer Chairman.

J. C. Kelly, Chairman
PDES Logical Layer Initiation Task Group

Section One

. 1. Introduction

1.1 The Mission Of The PDES Initiation Effort

The PDES initiation effort is a limited term proof of
concept effort. The intent is to gain initial experience in
developing an exchange specification for product data in
accordance with what was proposed in the Second PDES Report (See
Reference 1). The emphasis is on establishing a development
methodology and on reporting back lessons learned and
recommendations. A lesser emphasis is on developing actual
content for longer term PDES work; however, it is felt that the
initiation effort has produced work that is legitimate and
valuable from a content point of view.

The general spirit regarding the output of the initiation
effort is that what is good will be retained for longer term PDES
work. All results from the initiation effort are subject to
scrutiny and modification prior to possible acceptance.

The initiation effort was administered by two task groups,
the Logical Layer Initiation Task Group and the Physical File
Structure and Formal Language Committee. This report
concentrates on the activities, findings, conclusions, and. recommendations of the Logical Layer Initiation Task Group.

Beginning the overall PDES effort with a proof of concept
effort is justified. In addition to major differences between
the scopes of the IGES specification and the envisioned PDES
specification, and in the intelligibility and sophistication of
the data to be exchanged, there are also major changes in the
process by which the PDES specification is to be developed.
Distinguishing features in this process are given in the next
subsection. In particular, development of the PDES specification
will require settling on a methodology by which the various
organizational components can work together. The major emphasis
of the Logical Layer Initiation Task is to gain experience and
make recommendations concerning a methodology for the development
process for the PDES specification.

1.2 The Consistency Between The initiation effort And The SecondPDES Report

The process for the development of the PDES specification
that was followed in the initiation effort is consistent with the
requirements given in the Second PDES Report, a report
commissioned within the IGES Edit Committee and issued by the

0

PDES Chairman in late 1984. This report was presented to the
IGES Steering Committee in early 1985.

The distinguishing features of the process according to that
report are: use of reference models, use of formal languages, a
minimally redundant entity set, and a three layer architecture.

A reference model is a mechanism for describing information.
The development process outlined in the Second PDES Report placed
great emphasis on the use of reference models. Information models
such as those produced by the IDEF-l and the NIAM information
modeling techniques are examples of reference models. These
modeling techniques are described in primers in appendix Dl and
D2 respectively.

The three layer architecture involves an application layer,
a logical layer, and a physical layer. The following notions are
adequate for the introductory purpose here: The application
layer consists of reference models constructed for various
application areas using information modeling techniques. These
models describe product data for the various areas from the
respective user points of view. The logical layer consists of a
reference model describing a minimally redundant set of generic
entities and structures that play a supporting role in describing
product data. This logical layer reference model will be
referred to in this report as the "Logical Layer Model." The
specific manner in which these entities carry out this role is
also of importance. The physical layer consists of a reference
model defining the actual physical format structure by which W
product data will be exchanged.

Thus the main pieces, and the flow, in the PDES
specification development process are:

(i) the user - the process starts with precise, user
developed descriptions of the product data to be exchanged

(ii) the logical method - the process continues with the
integration of the piecemeal descriptions of product data into a
logical whole, and with the identification and specification of
the manner in which the information is to be carried within a
bounded set of logical structures.

(iii) the format - the process terminates with the imbedding
of the descriptions of the product data into a physical format
structure.

The initiation effort has incorporated the distinguishing
features of PDES. It has involved these three pieces, and has
exercised the flow between them. Reverse-flow loops have been
used for assuring quality. Information models have been produced
and used in the context of the three layer architecture. In

20

particular, the activities of the Logical Layer Initiation Task
Group have involved the generation of application layer
information, and have also involved specific deliverables to the
Physical File Committee.

1.3 The Three Layers - ADDlication Logical. And Physical

It is appropriate to summarize the descriptions of the three
layers as given in the Second PDES Report. See Figure 1-1,
slightly modified from the Second PDES Report, for a depiction of
the layers.

The top layer is the user or application layer. This is the
layer at which the ultimate user lives and thinks. He formulates
his data requirements in his own terms stating concisely what he
needs. He draws from his own experience and from the established
terms, conventions, techniques, and methodologies of his
discipline. The different application groups such as Electrical
Products or Finite Element Modeling define the information
entities relevant to their application, and construct reference
models for them. This layer of the specification contains as
many different applications and entities within those
applications as there is apparent need for.

The second layer is the logical or conceptual layer. This
is where the data content for the set of generic entities and. structures is defined. This set should be a normalized,
minimumly redundant set that supports (is a basic resource for)
the information defined by the applications. At this layer,
logical commonality will be sought across all applications.
Complex things, events, and phenomena in the application layer
will be constructed from less complex things, events, and
phenomena in the logical layer whenever possible. Similarities
in the information requirements of different applications will be
integrated into single conceptual entities. The integration of
different application requirements will control the definition of
redundant entities and will help to ensure a consistent, coherent
entity set. The entity definitions at this layer will be in
logical form in a reference model.

The bottom layer is the physical or internal layer. This
layer contains one or more actual file format definitions. It
consists of the description of the sections, records, fields,
sequencing, and associated formats for the exchange file. A
formal definition language reference model will be used to reduce
ambiguity.

1.4 The Logical Layer Initiation Charter

A mission for the Logical Layer Initiation Task Group
consistent with the Second PDES Report was developed in the form

3

tO

I

Ii

of a charter. The charter was then followed to the extent
possible for the remainder of the effort. The charter is. included in this report as Appendix F.

The two main tasks adopted by the Task Group were:

Task 1: Develop a Logical Layer model that supports one
specific application area model, and then communicate
the three part schema consisting of the two models and
their interrelationships to the Physical File Structure
and Formal Languages Committee.

Task 2: Further develop the Logical Layer model to support
additional application area models, and communicate the
three part schema associated with each of these
application area models to the Physical File Structure
and Formal Languages Committee.

Thus, the Logical Layer model would serve as a resource to
all the application area models. Each three part schema would be
expressed first as an information model using the Nijssen
Information Analysis Method (NIAM), and then communicated to the
Physical File Committee in the fozm of the Data SpecificationO Language (DSL). DSL is described in a primer in appendix D3.

The intent of the first task was to cause to be used all
layers of the three layer architecture. The intent of the second
task was to illustrate that the Logical Layer model could be
expanded as the need arose. This was taken as a characteristic
of the future PDES working environment.

The contents of the two tasks as actually carried out are
presented in Figures 1-2 and 1-4. The primary contributors to
the two tasks are presented in Figures 1-3 and 1-5.

For Task 1, a schema was developed supporting the mechanical
products application area of flat plates with holes. A wireframe
geometry model and a presentation (graphics) model were developed
and served as the principal parts of the initial Logical Layer
model. The flat plate application area itself served primarily
as a vehicle. The primary intent was to choose something simple
that would enable the work to get started.

For Task 2, three additional application area reference
models were developed. The three application models were:
Finite Element Modeling, Electrical Schematics, and Tolerancing.
To support these additional application models, the initial

04

~0I0

024 z ~

Uz I- I-

4 W0Z

ccLL OLL.

0 4WL
I-22 cc

LL wU .j QZ 0
LU~~ cc0Co u 0 L .o LL

ccU- Z 2w-U L A
WumpzaW' ~ WI-mWjL XL Lm LL.-U-00 i c -qp C L

LU j 0 -
LU U) -i

Ol '. U.W
CC 3EU. o

ZWZ

4 W W
P)1) 0~ cc-
Z LLw

WZZ

0
a 0

=~ ZNZ

oo w0 w cz cW
Z Z~ --

444 CL Ww W NUZJc

OU LL4c ccJ W JP <O
(AwWWMz L %

4W Wz o cc u. cc
W z coWz 0 CC

2IL6h zo 0CC
U. IIZ wwMY

0 0

cc 0 J w cc

CLn U.JQ a
0, 0
Lu 0 C

0 a0

00

0.EE 1w40

L. U.zC

U4 0

LA'

00

ww Z-

1...

o IL

0Io 0 -J
- I-~~LUI a ' ,-

II.

0 0 4c

00 LLI.. LU

2~ cc 15

0. (j o 0 zU
lkCL0 O
LU j UiCl)cd r 4w U (JZ -i .-

ccz(-O

SC0wu cw4

Logical Layer model was further developed to include topology and

geometry-topology associativities.

1.5 Some Perspectives On Data Exchange In The PDES Environment

The work within the initiation effort has been directed
toward a methodology for the development of the PDES
specification according to the general guidelines of the Second
PDES Report. That is, no work has been done that involves actual
data exchange. Nonetheless, since data exchange is the ultimate
task with which the PDES effort must concern itself, we feel it
is appropriate to discuss this topic and to pass along our
current understandings, caveats, and recommendations. In
addition, discussion of this topic enables us to place our
initiation work in some global perspective. Unfortunately, some
of the material is quite technically oriented for an introductory
section. However, we feel it is also extremely basic, and that
this is the logical location for it, and so have resisted all
intermittent urges to locate it elsewhere.

1.5.1 Mental Models. Discipline-Specific Entities. Generic
Entities. And Data Exchange Units

Data exchange is predicated upon the common awareness
between a sender and a receiver of a "mental model". That is,
the sender originates his data in terms of some model which makes
the data meaningful to him. In ordler to recover the correct
meaning of the data in an exchange, the receiver must share the
same mental model as the sender.

For example, in the use of IGES, drawing data could be (and
is) exchanged based on various mental models, such as the ANSI
Y14.5 standard for dimensioning and tolerancing, MIL-STD 100 for
drawings, various company standards, etc. It so happens that
each of these mental models has been developed externally to
IGES.

With PDES, product data will also be exchanged according to
mental models, but these are more likely to be developed as part
of the PDES effort itself. The mental models will originate at
the Application Layer and will be "standardized". Examples are a
Mechanical Products mental model, an Electrical Products mental
model, an Architecture, Engineering & Construction (AEC) mental
model, etc. Each mental model will contain entities and
information specific to the particular discipline of the mental
model. In fact, we will most times use the term "discipline
model" instead of the term mental model.

Drawing again upon the IGES experience for a moment, we see
that the exchange of drawings is oriented toward human
interpretation of the exchanged data. Therefore, in the data
exchange process, it is permissable that the exchange of the

5

mental model be at the human level. Reflecting for a moment, we
realize that the exchange of this mental model actually takes
place when we learn how to "read" a drawing according to a
certain set of conventions.

The situation with PDES is different. Product data
expressed with PDES is supposed to be able to be interpreted and
used by another computer. This means that the mental model must
be computer readable, must be able to be made explicit in the
data, and must be able to be exchanged with its structure intact.

Since PDES intends to address all of product data, this
means that the totality of all discipline-specific entities in
all discipline models is potentially unbounded.

What are the possible implications of this as far as the
PDES specification itself is concerned?

One possibility would be to simply have the set of PDES
entities be the union of all discipline-specific entities found
in all discipline models, and to let this be as dynamic a
collection as required.

However, most CAD/CAM systems today, and probably for some
time to come, are predicated upon small, stable sets of "generic"
context-independent entities (eg., line, arc, string, group,
etc.), rather than upon a (user-definable) set of discipline-

* specific entities that is open-ended. This is particularly true
of systems that strive to be inter-disciplinary.

Therefore, these CAD/CAM systems will expect to interact
with PDES product data by means of a small, relatively fixed
"core" set of generic entities. This is the essential deterrent
to simply having the PDES entity set be a dynamic collection of
discipline-specific entities.

This simultaneous need to be able to handle an open-ended
number of discipline-specific entities and also to be able to
communicate product data according to the PDES specification
through a small, stable set of generic entities is what leads to
the notions of integration and conceptualization. Integration is
the determination of the rationale behind expressing a divergent
set of discipline-specific entities in terms of one set of
generic entities. Conceptualization is the process of
abstracting across the different disciplines for the purpose of
arriving at a sufficient, non-redundant set of generic entities.
Conceptualization also occurs within a discipline as common
entities and structures are discovered that support applications
within a discipline. It should be noted here that the notion of
conceptualization will also be used in a broader sense in this
report to mean the act of discovering and formalizing meaning.

0 6

It turns out that abstraction is a major component of
conceptualization.

Redundancy in the generic entity set is undesirable because
it opens the situation to non-uniqueness: the discipline-
specific entities could then be expressed in terms of the generic
entities in different ways. (The notion of expressing a
standardized set of discipline-specific entities in terms of
generic entities is, historically, not an explicit part of the
IGES effort, although some work toward making these kinds of
correspondences explicit does appear in IGES Version 3.0. There
is, however, redundancy in the IGES entity set, and this does
lead to non-uniqueness. The lack of explicit correspondences
further complicates matters. The term "flavoring" has been
coined to apply to this situation. We say that IGES files are
"flavored" according to the user, the system, the application,
etc., rather than expressing certain standard information in a
certain standard form.)

Suppose now that we do relegate the development of the
various discipline models to the Application Layer, and the
development of the generic models to the Logical Layer. Analogies
have been given within the PDES community to further explain the
contents of the Logical Layer, and the relation between these two
layers:

The schema for the generic entities (the Logical Layer Model) is
akin to the Periodic Table of the Elements in Chemistry. Just as
other compounds.are described in terms of the atomic elements in
the Table, so too are discipline-specific entities described in
terms of the generic data described by the schema within the
Logical Layer. With respect to the relation between the two
layers, we can think for a moment about cooking. The Logical
Layer consists of data about flour, leavening agents, spices,
etc. The application Layer contains receipes which combine
various subsets of the Logical Layer ingredients to produce
cakes, cookies, breads, etc.

From the perspective of the Logical Layer, we believe then
that a data exchange situation in the PDES context will involve
the following three elements:

1) a discipline model that provides the context for
interpreting the data for a specific purpose

2) the set of generic entities

3) the set of correspondences from the discipline-
specific entities in the discipline model to the
generic entities

7

For each discipline model, these three elements form a "data
exchange unit". This unit must be computer interpretable, and
must be able to be made explicit in the data to be exchanged.
Stated more precisely, a data exchange unit should be considered
as a three part schema, and the physical file data should consist
of instances of this schema. (Note that items (1) and (3) are
missing in the IGES environment, as was mentioned above.)

Clearly, it will happen that the same generic entity will be
used in different ways by different entities within the
discipline models, possibly even within the same data exchange
unit.

Data exchange out of PDES then will involve consistent
actions applied to the entire data exchange unit. On the basis
of the common sharing of the discipline model, the receiver will
define his correspondences from the discipline model to his own
generic entities. From this, the required translator actions
from the PDES generic entities to the recipient's generic
entities can be determined.

By taking the correspondence from the PDES discipline-
specific entities to the PDES generic entities into account, the
translator action can be based on information at the Application
Layer as well as the Logical Layer. Current IGES translators,
having no correspondences to draw upon, must determine their
actions based solely on generic type information. These actions
are then fixed, either permanently, or at least for an entire

* exchange set of data.

We can observe how this notion of data exchange units
permits a clear separation of the Application Layer from the
Logical Layer.

1.5.2 Recuirements Imposed On Users And Vendors By PDES

Assume for the moment that product data in PDES is to be
expressed in terms of data exchange units as described above.
What are the requirements on users entering data into their own
systems, and on translators, that must be met in order to be able
to establish and use the data exchange units in PDES?

We believe the establishing of data exchange units can be
done only when a user's product data is generated according to
the same units. For this, extensive analysis by users of their
own application areas in terms of the standard PDES discipline
models will be required, as will strict adherence to standards
and conventions in entering the data into the computer systems.
Users must set up their own correspondences between the
discipline models and their own set of generic entities, and then
must religiously abide by these correspondences when entering
data into their systems.

*

A new generation of translators will be required. Users
will have to be able to specify the translator actions from the
generic entities of their own system to the generic entities of
PDES on basis of what their own correspondences are between the
discipline model and the generic entities of their system.
similar requirements on translators for taking data out of PDES
were given above.

1.5.3 The Data Exchange Capability Represented By The
Initiation Work

Our initiation work has not addressed the operational
aspects of data exchange. It has addressed only the development
of the PDES specification. As a result, our work has not
resulted in a complete data exchange capability. What our work
has resulted in, however, is a specification of PDES content and
a pi data exchange capability. The data exchange capability
is incomplete because we do not at this time have a formal and
computer readable way of describing mappings between the
Discipline models and the generic entities of the Logical Layer
Model. This incomplete data exchange capability has, however,
been sufficient to demonstrate and verify the capability of a
physical file format.

The Logical Layer initiation effort has basically addressed
the development of three kinds of models:

1. Discipline Models
2. A Logical Layer Model
3. Global Models

A Discipline Model represents an application experts view of
a discipline area such as flat-plate design. All objects and
structures in this model will be created from the view point of
the application expert.

The Logical Layer Model is the summation of the resource
models: geometry, topology, presentation, and geometry-topology
associativities and any generic structures involving
relationships across resource models. Resource models contain
only generic entities and structures that are common to many
application areas. The Logical Layer Model contains no
discipline-specific entities. The resource models are described
in appendix Cl, C2, C7 and CS.

The Global Model is a composite model that contains both
discipline-specific and generic entities. The Global Model is a
convenient informal mechanism for expressing how objects in a
Discipline Model are replaced by generic objects from the Logical
Layer Model. This replacement scheme is referred to as a
"correspondence" in this report. The purpose of the Global Model
in the initiation effort is to i describe the

9

correspondence between each Discipline model and the Logical
Layer Model. This description is then used to assist application
experts in validating the correctness of the correspondence. The
Global Model does not represent an exchange unit as described in
section 1.5.3. This model is used in the initiation effort to
prototype an exchange content for the purposes of validating the
physical file format.

We have not completed the definition of the data exchange
units as described earlier. Specifically, we do not at this time
have a formal technique for describing the mappings from the
Discipline Models to the Logical Layer Models or their inverses.
In lieu of this capability, the Global Model stands as an
informal exposition of correspondence between Discipline and
Logical Layer models. We believe the Global model has an
economy of visual expression that makes it easy to read. We
believe that this kind of informal expression is a natural
precursor to more formal techniques of mapping and validating
and, in fact, we may find it necessary to continue to use
informal expositional forms in conjunction with formal methods as
aides for human understanding of the specification. Ideally, the
mappings determined during the development of the specification
in follow on PDES efforts would be the mappings used in
establising the data exchange units in an actual data exchange
situation.

We have provided a specific example from the Electrical
discipline to further clarify the difference between the Data
Exchange Unit and the Global Model. Figure 1-6 pictures a
portion of a data Exchange Unit showing that a structure within
the Electrical Discipline Model consisting of the discipline
objects "connection geometry", "start place", "end place", and
"symbol connection place" is replaced by a generic structure
consisting of the generic objects "Composite segment2", "Curve
segment2", "Place2" from the geometry resource model; "Edge",
""Vertex" from the topology resource model; and "Vertex-place",
"Edge-curve" from the geometry-topology associativity resource
model.

The Global Model described in figure 1-7 is a "smashed"
version of the data exchange unit of figure 1-6. (This model is
described in more detail in figure 4-7.) The correspondences
between the Electrical discipline model and the Logical Layer
Model are not clear unless one examines the Discipline Model and
the Global Model together. Doing this one can informally deduce
the correspondences and can express them in a set of natural
language "replacement" sentences as we did in the previous
paragraph. It is conceivable that a Global Model could consist
entirely of Logical Layer entities as a result of a complete
substitution of generic entities for discipline specific
entities. As we move closer to this "pure" Global Model with no
discipline flavor, it will become harder to deduce the

* 10

ti

I It)

rN

lu~

r~1,

Ito

'Sj

qmJ

correspondences and the need for formal descriptions of mappings
will become critical. We did not reach this critical point in
the initiation effort.

If we were to use the Global Model in a hypothetical data
exchange situation, the interpretation of the exchanged data
would then involve a recovery process which would convert from
the generic entities to the discipline-specific information that
is carried by the generic entities. Thus, the recovery process
itself turns out to be dependent upon a (mental) model that is
not present in the data. Recall from section 1.5.1 that the
inclusion of the mental model in the physical exhchange data
distinguishes the PDES from IGES; we have fallen short of the
mark by not having a complete mental model in the initation
effort.

One shortcoming in this situation (of not having implemented
the complete mental model that would be mapped from the
discipline model to the Logical Layer explicitly) is that the
recovery process is expressed in terms of generic entities, and
must apply to the entire set of exchange data. For example, if a
certain type of spline "configuration" is to be interpreted as a
certain part feature, then that configuration must have that
interpretation for the entire data set. If splines are to be
used also for something else, and are therefore to be interpreted
differently, then something in the spline "configuration" must be
different. For example, it could be the case that-a spline on
one level (i.e., one spline configuration) could be interpreted
with one meaning, while a spline on another level (i.e., another
spline configuration) could be interpreted with another meaning.

In the Electrical Global model (refer to figure 4-7) the
generic associativity "vertex place" in some instances plays the
discipline role of "Intersection place" and in other instances
the discipline role of "Symbol connection place."

We can observe how, with data exchange units, in which the
mapping is in the other direction, this situation is avoided as a
result of the physical file data containing instances of the data
exchange unit schema.

Another shortcoming of the situation, that is, of not having
implemented the mapping from the discipline model to the Logical
Layer Model explicitly in the data, is that the clear separation
between the Application Layer and the Logical Layer is lost. The
Global Model of the Logical Layer becomes a mixture of
application-specific entities that have not been broken down into
generic entities, and generic entities that have replaced certain
application-specific entities.

1.5.4 Summary And Conclusion

This section has distinguished between writing a
specification for a data exchange standard, and actually using
that standard to exchange data. The latter notion is more
encompassing in that it also involves user data bases and vendor
translators. The initiation effort has not involved actual data
exchange.

This section has also introduced the notion of a data
exchange unit in the belief that data exchange in the PDES
context must occur in terms of these units.

Finally, this section has indicated what data exchange
capability our present initiation work would afford. It is seen
that the present capability falls short of the more ideal
situation in which data exchange units are handled.

It must be pointed out that these current thoughts
concerning what data exchange in a PDES environment might
eventually involve are certainly not yet seasoned thoughts, and
may very easily change as we continue to learn in connection with
the longer term PDES effort. We have not yet had the opportunity
to thoroughly discuss them with others within the data exchange
community.

However, we can use these thoughts on these topics to
illustrate that there exist many fundamental issues related to

*the PDES effort that are just now'surfacing. These issues have
yet to be thoroughly discusses or resolved.

There must be a clear understanding that, while the PDES
Project has signed up for certain delivery dates for Version 1.0,
the mere setting of these dates is not to be interpreted as an
indication that all work steps necessary for achieving them and
for the successful use of Version 1.0 are well understood in
terms of present CAD/CAM practices, and that all that remains is
simply to routinely carry them out.

In fact. it is our recommendation that the PDES effort ought
not be driven primarily by schedules. but rather by an intention
to take the time to formulate. analyze. and solve the substantive
issues that accompany the approach to develoving the PDES
specification according to the Second PDES Reort.,.

* 12

Section Two

2.0 The Loaical Layer Methodolocry

The purpose of the PDES Initiation Logical Layer Methodology
is to provide a framework in which to guide the development of a
single logical model that will support all applications within
PDES. This model will be called the Logical Layer Model.

The methodology described here will:

1. Maximize the usage of human resources by defining and
establishing project roles

2. Support the development of an informal correspondence
(mapping) between the Logical Layer Model and each
Discipline Model

3. Maximize the potential of the Logical Layer Model
and mappings to and from it to serve as a central resource
from which all other PDES forms can be derived

2.1 Cognitive And Specification Models

The application and logical layer both are responsible for
formally describing meaning. The zpplication layer describes
meaning within a relatively narrow subject area. The logical
layer describes meaning common to many subject areas.

We define conceptualization as the act of discovering and
formalizing meaning. This definition holds regardless of the
size of the subject area or the number of subject areas. By this
definition, both the application and logical layers involve
conceptualization.

Cognition is the component of the discovery and concept
forming process that emphasizes human perception. Any modeling
technique which has as its principal objective the promotion of
human perception of concepts (any concept) will be referred to as
a cognitive modeling technique. The result of such a technique
will be referred to as a cogntive model. In this report we will
use the terms "cognitive model" and "conceptual model"
interchangeably.

Abstraction is a major factor in the concept forming
process. It is a process whereby humans express qualities or
characteristics of an object, event, or phenomenon apart from any
specific instance of that object, event, or phenomenon.
Cognitive modeling techniques promote the abstraction process by
providing simple means (usually graphical) for expressing
objects, events, and phenomena and their interrelationships.

130

Specification is the process of packaging and reporting on
the results of conceptualization. Any modeling technique which

* has as its principal objective the textual packaging of
conceptual models will be referred to as a specification modeling
technique. Specification is not part of the conceptual-model
building process. No new concepts or relationships will be
discovered during specification, however, specification will
result in the repackaging of the conceptual model to make it more
concise and perhaps more readable. Repackaging involves grouping,
concept typing, and naming.

Cognitive models normally have a strong graphic component
and a weak text component. Graphics promotes human perception
through "picturing" (picturing is not the only means of promoting
human perception, however). Specification models are purely
textual and structured into an "entity" form. The cognitive
model provides a clay-like medium in which the modeler can mold
concepts. The specification provides a casting medium to display
the results of conceptualization. In the initiation effort these
are distinct models.

These two models must have eauivalent descriptive Power and
precision and they must share a common foundation of basic
notions such as: object, relationship. proposition, class, and
function (the basic notions of first order logic). Both models
must have a computer sensible representation. Each must be
derivable from the other.

It is recommended for PDES follow-on work that conanition
and specification be recoginized in the Logical Laver Methodology
as distinct processes accomplished separately but in a
coordinated manner. It is our opinion that any attempt to
combine these two processes into a single process will degrade
the quality of the resulting mo dels. It follows then. that the
use of the Logical Laver Methodology should result in two
distinct models: a cognitive model and a specification model.

In the initiation effort, the NIAM irreducible binary model
was selected as the standard cognitive model. More exactly, this
modeling technique is referred to as the MIML subset of the
Nijssen Information Analysis Method (NIAM). (See Reference 2.)
This subset is a semantic-net language capabable of declaring
object types, object type names, object roles, binary
relationship types, object subtypes, and advanced constraints.
The MIML capability is a subset of the full NIAM modeling
capability. (The full NIAM constraint capability, referred to as
Reference and Idea Language RIDL, includes procedural constraints
and advanced declarative constraints.) Hereafter, in this
report, references to NIAM will mean the MIML subset of NIAM.
NIAM is described in a primer in Appendix D2.

*14

Basically, NIAM is a weakly-typed semantic-net language
which does not force grouping of concepts. However, almost any
kind of grouping (packaging) can be superimposed on models
developed with NIAM.

DSL was selected for the initiation effort as the standard
specification model. DSL is a variant of the language used to
specify the PDDI conceptual schema. This language is described
in a primer in Appendix D3.

Basically DSL is a strongly-typed linear language for
packaging the objects in conceptual models into groups called
"entities". DSL has the advantage that it does not force any
particular grouping style on the NIAM models (such as the popular
data base normal forms). Grouping is the critical link between
the cognitive model and the specification model. The basic
organizational mode of DSL is the nested array. Nesting allows
more concise and natural descriptions of PDES artifacts. DSL does
not demand that the cognitive model be nested, however.

No single modeling technique was stipulated for the
application layer. IDEF-l was the technique of choice in several
areas. (See the primer in Appendix Dl.) Some preferred to model
directly using specification-like text models similar to DSL.

2.2 Overview Of The Methodology

The methodology is illustrated in Figure 2-1. It breaks the
development of models into phases, defines interfaces between
phases, and assigns project roles. These are the phases:

Phase 1: Qualification

Phase 2: Global Conceptualization and Integration

Phase 3: Specification

The input to the methodology is a set of discipline models.
In the initiation effort these models include the Flat Plate
Mechanical Part, Finite Element Modeling, Electrical Schematic,
and Tolerancing application area models.

15

CL

ieonpea -

cII.

PM CL

-J
E

CM 0 0

C L .2 I w

0 Cu

CLA4IJOA
II

C, I 0

wwoo C c 102

IM _ _ _ L 0 L

The ultimate deliverables of the methodology are as follows:

1. All of the Discipline models in a standard
cognitive model form

2. A Global Model for each Discipline Model in a
standard cognitive model form

3. A map between each Discipline Model and its Global
Model (this was not formally accomplished in the
initiation effort)

4. A Specification Model of each Global Model in a
standard specification form

It should be emphasized that the methodology is independent
of any particular modeling technique (with the exception of its
cognition, specification cateogry). The methodology should be
viewed as a broad framework stipulating two modeling forms, the
cognitive form and the specification form.

2.3 DescriDtion Of The Methodoloav

Phasel1: Qualification

Goal: To maximize the global conceptualization and
integration potential of the discipline models

Input: Discipline models (in any modeling language)

Deliverable: Discipline models (in a standard cognitive form)

This phase actually represents an interface to the
Application Layer and insures that all discipline models appear
in a uniform language that maximizes the chances for successful
global conceptualization and integration. The assumption we are
making at this time is that no standard Application Layer
modeling language will be stipulated. This does not prevent the
application layer from selecting the standard cognitive model as
its modeling choice. If the cognitive language is powerful
enough to express the global abstractions (concepts) of the
logical layer it is powerful enough to express the discipline
abstractions (concepts) at the application layer. This phase
thus allows for the fact that modeling languages used at the
Application Layer may not be the best languages for the extensive
conceptualization that must be done at the Logical Layer.

In summary, this phase buffers the Logical Layer from the
variety of languages at the Application Layer, and also paves
the way for the extended conceptualization that must occur in the
Logical Layer.

16

A discipline model is said to be "qualified" when it is
determined that the discipline model in standard form is. equivalent to the discipline model in native form. Ideally this
phase of the methodology should be concerned with translating the
Discipline model to a standard cognitive form. Any validation
done in this phase should be for the purposes of insuring that
the meaning of the Discipline model has been preserved in
translation to the cognitive form.

It is not the responsibility of the Logical Layer to perform
discipline modeling, however, they do have the responsibility to
read and understand the discipline models and reauest
clarification or correction to the models if needed.

Phase 1 roles identified:

1. Model Translator - This person must be familiar with the
particular discipline modeling language and the standard
conceptual modeling language of the Logical Layer.

2. Discipline Liaison - This role requires that the
participant be familiar with the discipline and the
particular modeling language of the discipline. It would
be ideal if the participant were also familiar with the
Logical Layer standard modeling language. This is an
extremely demanding role.

P: Global Conceptualization and Integration

Goal: To discover and formally model generic objects, events,
and phenomena (referred to as resources) that are
common to all disciplines and determine how they can
be used to replace discipline specific objects, events,
and phenoema.

Input: A Qualified model of each discipline

Deliverable: 1. A set of resource models containing only
generic objects, events, and phenomena
(the set of all resource models is referred
to as the Logical Layer Model)

2. A Global model that formally describes how each
Discipline model is represented in terms
of the generic objects, events, and phenomena
of the resource models. The union of these
Global models represents the model universe
of PDES.

S 17

This phase is the most challenging of the three phases and
is the heart of the methodology. The Logical Layer team believes
that the discovery and formalization of generic objects, events, *
and phenomena across the diverse disciplines within PDES is a
task that has never been accomplished before. Admittedly, this
phase of the methodology will evolve over time as we become more
mature in conceptualizing over diverse application areas. This
kind of conceptualization will require broad knowledge of many
application areas on the part of logical layer workers in
addition to mature modeling skills. The ability to abstract very
general structures and semantic classes will be critical. It is
felt that this extreme form of abstraction goes beyond the usual
notion of abstraction that is attached to the process of
conceptualization of more restricted domains of discourse.

A set of baseline tasks are suggested for beginning the
Phase 2 global conceptualization effort. Evolution to more
mature techniques of global conceputalization would be expected
to occur from this baseline.

Baseline tasks:

1. Develop a set of concept categories. To the greatest
extent possible, these categories will be generic in that
they may be used across a broad set of disciplines. Ideally
these categories can be discovered as the discipline models are
being qualified in Phase 1.(bottom up), or they may need to be
adopted provisionally on the basis of general knowledge
derived frcm other sources such as IGES, PDDI, PHIGS, etc.
(The latter was the case in the initiation work with the
resource models of wireframe geometry, topology, and
presentation.)

2. Develop a set of structural categories. A structure in
this case is a recognizable pattern of interrelated concepts that
appear in multiple discipline models. (We assume when referring
to a discipline model that it is qualified.)

3. Examine each discipline model and attempt to factor it
completely into generic concepts and structures and
discipline-specific concepts and structures. Denote generic
concepts and structures so they can be clearly identified. The
resulting model will be referred to as the Global model in this
methodology. Generic concepts in the Global model are denoted by
containing them within a closed dotted line.

4. Once the discipline model has been converted to Global-model
form, logical layer workers in cooperation with the application
liaison person verify that the qualified discipline model can be
recovered from the Global model. They should record this
recovery process in a formal language. If no formal mapping

18

language is available, the recovery process should be recorded in
sentence form. It should be emphasized here that the main

* purpose of the Global model is to pr6vide a convenient exposition
for showing the correspondence (mapping) between a discipline
model and its corresponding Global model. It is not to be
considered an exchange model per se. Please relate this section
with the discussions in section 1.5.3. In the initiation effort,
the Global model is the only mechanism for showing the
correspondence between a discipline model and its corresponding
Global model. We did not develop a formal mapping language in the
initiation effort. Some mappings, however, are expressed in
natural language in this report.

5. Any new generic concepts or structures that may have been
discovered during the conversion of discipline models to Global
models should be formally noted. Previous discipline models
should be reviewed again to see if any of the new generic
concepts or structures can replace discipline specific concepts
or structures in those models.

In summary, the process is heuristic. In the initiation
effort a baseline of entities known to be generic (geometry and
presentation) was first modeled into a Task 1 Logical Layer Model
in order to get the project off the ground. Ideally all generic
entities would be discovered in the process of discipline
modeling. It is difficult to establish a recipe for global model
building. Basically, this phase keeps substituting and/or
expanding concepts and structures in the discipline models in
terms of generic concepts and structures to the maximum extent.

The summation of all the Global models constitutes the
conceptual-model universe for PDES. The collection of all
gualified discipline models. the correspondences (magpings)
between the Global model and the cualified discipline models, and
the summation of all the Global models will be referred to as the
IntegZated model.

Integration is defined in this methodology as the act of

creating the Intearated model.

Phase 2 roles identified:

1. Conceptual modeler with broad discipline knowledge

2. Discipline liaison

* 19

Phase 3: Specification

Goal: To package each Global model into a concise, aggregated
(entity-based) form.

Input: Global models

Deliverable: A specification model for each Global model

This phase involves the translation of each Global model to
some standard text form called "the specification". Ideally,
this phase would not involve additional conceptualization. The
translation to the specification should not delete detail
(although it may abstract out detail through the strong typing
capability of the specification language) or add new meaning
(except that which may be assigned to groups and types). The
principle difference between the specification and the Global
model is that some form of grouping has been applied in order to
make the Global model more compact. Grouping is done based on
the concepts and relationships present in the global cognitive
model and is the critical link between the Global model and the
specification model. Grouping is done for the purposes of
achieving compactness and readability not for the purposes of
achieving further conceptualization. Grouping is not done for
the purposes of achieving a logical record design in preparation
for implementation design. The specification is text only,
whereas the global model can be expected to be a mixture of
graphics and text.

Ideally, the translation from the global model to the
specification model would be automated. It was a manual process
in the initiation effort. Since the methodology just described
does not force any particular model or specification language, it
cannot provide the details of translation. However. our
experience in the Initiation Effort indicates that the
development of the alobal modeling lanauaae and the specification
modelina lanauaae should be a coordinated effort to insure that
syntactical constructs in one have ecuivalent constructs in the
other.

Likewise, the methodology does not provide a technique for
grouping of global models. In the initiation effort grouping was
a joint effort between conceptual modelers and specifiers.

It should be emphasized that the resulting specification
models represent, in a concise, textual form, the correspondences
between discipline models and their Global model counterparts.
The specification does not represent an exchange mechanism per
se. However, in the initiation effort, since this is the
mechanism for transmitting PDES information content to the
physcial layer; the specification serves the role of being an
exemplary exchange for the purposes of testing the physical file

20

format. It is recognized that the exchange unit as described in
section 1.5.1 will ultimately replace the Global model as the
principal mechanism for representing the correspondence between
discipline models and the generic objects in the Logical Layer
Model. The input to this phase would then be logical exchange
units instead of Global models.

Phase 3 roles identified:

1. Specifier - This person is responsible for creating the
specification. This person coordinates with a Logical
Layer person to perform grouping and translation.

2. Logical Layer Liaison - This person works with the
specifier to coordinate the grouping of the global
model. This grouping should be a coordinated
effort as the groupings are the main link between the
Global model and the specification.

2.4 Choice Of Modeling Techniaues

This section discusses the selection of modeling techniques
for the three phases of the methodology.

For Phase 1 (Qualification) and Phase 2 (Global
Conceptualization and Integration), a cognitive language was
chosen because human perception and abstraction are the principal
activities involved in these two phases. For Phase 3
(Specification), a specification language was chosen.

The logical layer had no jurisdiction over selection of
languages to be used at the application layer. For the most
part, discipline models were modeled in IDEF-l.

Coanitive Languaae Choice

For Phase 1 and 2, the Nijssen Information Analysis Method
(NIAM) was chosen as the standard modeling technique. NIAM is a
semantic modeling technique. It emphasizes elementary concepts
and binary relationships. The following is a summary of NIAM
strengths:

1. It has international recognition.

2. The method is the public domain (MIML subset).

3. There is a body of people with experience in the methodology
on several continents.

4. It is oriented towards a sub set of natural language.

* 21

5. It has a rigorous formal basis in classical and linguistics

and logic.

6. It has a formal grammar (BNF).

7. It is a purely semantic technique and involves no grouping.

8. It is detail exposing.

9. It is a bridge to advanced knowledge representation
techniques.

10. It has strong constraint representation capability.

11. Computerized tools are commercially available to support
model creation and access, dictionary management, and
graphical output.

We emphasize again that Phase 1 and 2 are cognitive
activities. In these phases, nothing should interfere with the
processes of perception, concept discovery, or the exposition of
detail. We specifically '-., against modeling techniques which
attempt to combine concept..ualization and grouping or
conceptualization and ;.ricification. We believe these techniques
will not yield the h 4 gh quality models needed for integration.

We have specifically not chosen the entity-attribute-
relationship type of model because it mixes the conceptualization
and grouping processes, it forces the modeler to artificially
separate concepts into entities and attributes, it does not
sufficiently expose detail, and it does not graphically
represent advanced constraints.

IDEF-1 is a hybrid modeling technique that combines aspects
of entity-attribute-relationship modeling and relational
modeling.

For a formal comparison of the binary approach and the
entity-attribute-relationship approach, the reader is referred to
Reference 3, ISO/TC97/SC21/WG5-3 report SC21-N197, Appendix D and
E.

Specification Lanauage Choice

The Data Specification Language (DSL) was chosen as the
standard specification modeling technique for the initiation
effort. It has the following strengths:

1. It is compact and purely text.

2. It has a text structure that is easy to read.

22

3. It is strongly typed to support abstraction.

*4. It has a formal grammar (BNF).

5. It has a close relationship to the binary model.

6. It has potential for addition of advanced constraints.

7. It has a basic organizational foundation (nested array)
that promotes representation of complexity in a natural way

DSL is a derivative of the language used to specify the PDDI
conceptual schema. A primer on DSL contained in Appendix D3.

* 23

Section Three

3.0 Application And Resource Areas

This section consists of a brief overview of the major
application and resource areas used in the initiation effort.

On the one hand, given that the main emphasis in the
initiation effort is on methodology, the use of these content
areas and their corresponding models is strictly as a means to an
end. On the other hand, the content itself does deserve
exposition. It was developed using the modeling approach, and
the people involved represent a fairly broad cross-section of
standing IGES technical subcommittees; specifically, the Curves
and Surfaces subcommittee, the Finite Element Modeling
subcommittee, the Electrical Applications subcommittee, and, in
the case of the Tolerancing application model, the Chairpersons
of the Manufacturing Technology subcommittee, the Drafting
subcommittee, and the Mechanical Products subcommittee.

Recall that resource models describe the entities used as
generic entities. Global models then describe discipline
specific entities in terms of these resource entities.

Each overview statement below was written either by the task
leader of the area being described or by a person intimately
involved with the development of the model for that area.

3.1 Wireframe Geometry Resource Area - Edward ClaDD. IBM -
Chairman. IGES Curves And Surfaces Subcommittee

The Wireframe Geometry Proposal is intended to meet the PDES
geometric needs for points and curves. Among its design criteria
were:

- ability to meet the geometric needs of CAD systems;
- ability to meet the geometric needs of Numerical Control;
- ability to be extended in a uniform manner to surfaces;
- high priority to meet the needs of Boundary

Representation Solid Modeling;
- ability to symbolically represent much of the

information;
- minimal entity set with simple and uniform definitions;

- stable representations for the geometry.

424

The primitive data types are
- reals;
- integers;
- booleans;
- character strings (so as to be able to refer to

significant information by name rather than by value).

The basic building blocks are arrays. 2 dimensional and 3
dimensional geometry have been separated. Consequently the most
commonly used arrays are ordered pairs and ordered triples. These
are used for position and direction. Ordered lists are also used
for the composite curve.

The geometry itself consists of points and curve segments. A
point is defined in terms of its position in space, either by
name or by value. A curve segment is defined in terms of its
underlying curves, endpoints, and its direction. The curve and
end points may be defined either explicitly or referred to by
name. This reference by name allows for symbolic statements
about intended continuity conditions.

The curves (both 2D and 3D) are
- line;
- circle;
- ellipse;
- hyperbola;
- parabola;
- nonuniform rational B-spline;
- composite curve.

Deficiencies:
- offset curves were omitted;
- geometric tolerancing, while present, is inadequate;
- no means to allow for user defined parametrization;
- parametric evaluation capabilities need to be fit into

this schema;
- a certain amount of apparent complexity has been

introduced, which perhaps can be resolved at the DSL
and/or file structure level.

It must be noted that this approach has generated some
controversy. There are a number of entries in the Curve and
Surface document list dealing with this, including two alternate
proposals.

3.2 Presentation Resource Area - Richard C. Winfrey. Digital
Enui~ment Corporation - Member. IGES General Assembly

PDES is intended to allow the exchange of all data necessary
for the manufacture of a product. Here, manufacturing is taken
in its broadest sense. Strictly speaking, the specification of
product data could conceivably be done without making allowances

* 25

for displaying that data. In this sense, presentation data is
not a PDES requirement. However, it was felt that information

* required to reconstruct the same presentation (eg., graphics
display for now, possibly engineering drawing for later) of
product data on both a sending and a receiving system was an
important capability and should be included as part of the PDES
specification. In addition, it was realized that in the existing
IGES specification, the data defining certain entities was
intertwined with display attribute data for those entities. The
approach to avoiding a repetition of this undesirable situation
was to include presentation as a work item in the PDES start-up
activity, i.e., the PDES initiation effort, and in that work item
insure that the two kinds of data did not get intertwined.

In defining the Presentation functionality, it was important
to decide whether just a picture, or the information necessary to
CREATE the picture, should be included. The exchange of just the
picture would be relatively simple, and could be done by
specifying an existing standard for a meta-file such as found in
GKS(2D). However, it was recognized that the need is to exchange
information to create the display. The display of a part could
thus be created from the actual geometry exchanged rather than
from an independent and separate list. In addition, the
receiving system would subsequently be able to manipulate the
view of the displayed part, and to perform editing functions on
it.

Having made the above decision, and after evaluating the
functionality found in IGES, it was obvious that what was needed
was a subset of a graphics standard. This subset would provide
for view operations (i.e., a 3D viewing pipeline) and a display
capability for geometry and text. Because of these rather
limited needs, any one of CORE, GKS-3D, or PHIGS would suffice
for defining the viewing pipeline. However, it was felt that
PHIGS had a clear advantage over the others because of its use
of a hierarchically structured display list.

A PDES Presentation draft specification was prepared in
mid-1985 based primarily on the then-current PHIGS specification.
The one deviation from PHIGS was in the area of text, where the
CG-VDI specification was followed.

The current status of the PDES Presentation effort is as
follows:

1. The Presentation draft proposal is currently the
subject of a mail ballot of the IGES community.
Results will presumably be made known at the Raleigh
IGES meeting beginning April 28, 1986.

0 26

2. The Presentation draft proposal has been formally
submitted to the ANSI X3H3 committee (PHIGS) along
with a list of requested modifications to the PHIGS
specification. It has received a preliminary review
by that group, and while some differences were
expressed, they were very willing to work with us to
better understand our needs and to resolve those
differences.

3. The ISO TCl84/SC4/WGl group has recently rejected the
Presentation draft proposal in favor of GKS-2D. As
discussed above, this would limit the PDES
Presentation functionality to that of exchanging
pictures only, since it would then be impossible to
recover 3D information at the receiving sytem.

3.3 ToDologv Resource Area - IGES ESP Committee

A provisional topology model was added approximately midway
through the initiation effort. It was added because no
siginificant amount of global conceptualization could be
accomplished-without it. The model developed is a pure topology
model in that it does not refer to geometry. The model is
basically derived from the IGES ESP work. The model was developed
directly in NIAM by the logical layer and contains the
topological notions vertex, edge, loop, face, and shell. There
is no claim for this to be the "real" PDES offering for topology.
The need for the model surfaced while performing global
conceptualization of the tolerance model. The tolerance
application group actually supplied their own topology model (in
PASCAL-like syntax).

Some may consider that the use of a full-blown topology model to
overkill for modeling simple connectivity. The problem was that
simple connectivity appeared in application models several times,
each time modeled in a different way. We had a aesire to
establish a uniform way of representing simple connectivity
across all applications.

The development of the topology model also motivated another
resource model that we have called GTA (geometry-topology
associativity). Over several months of modeling we have found a
class of relationships between geometry and topology that have
potential for general application. We found numerous occassions
where it did not seem to make sense to associate a particular
fact to geometry by itself or topology by itself. It does not
make sense to paint a topological face nor to paint an unbounded
surface. We have heard such expressions as "topology sits on tcp
of geometry." We choose to avoid subordinating one to the other
by bringing them together as peers through the GTA

270

associativities. We also had a strong desire to be able to refer
to pure topology without any other baggage (such as geometry)
being attached.

We realize that we stand in err if "face" and "shell" are not to
be interpreted as purely topological objects but, more
specifically, as objects of the boundary representation scheme.
Our topology model states that a face is a connected region with
a boundary defined by a loop. The question is: does it make
sense to talk about a connected region without referring to
geometry?

In summary we expect topology to be one of the most valuable
resources in global conceptualization in future PDES efforts.
The initiation effort learning experience more than justified the
"stubbing in" of a temporary topology model.

3.4 Electrical Schematic Amplication Area - Curt Parks.
General Dynamics, Pomona Division - Member. Electrical
ApDlications Subcommittee

The electrical schematic is a subset of the information
needed to define an electrical product. It was selected for the
initiation task because of the number of model entities involved
(about 30). These could be worked into a normalized model and a
consensus achieved by the Electrical Applications Committee (EAC)
within the allocated time period.

The basis of the model was a Printed Wiring Assembly (PWA)
model which had been constructed the year prior. The PWA model
purpose was to identify the logical information and relationships
needed in IGES for Version 3.0 to support the transfer of all PWA
CAD data. The schematic entities constituted about half of the
PWA model. In turn, the schematic is applicable to all
electrical packaging technologies and could form the basis of a
broad-scope PDES information set. The schematic is also an early
element in an electrical product life-cycle. As such it is used
to define the functionality for the product design and for design
analysis. Later in the life-cycle, a packaging technology is
selected (e.g., a PWA or a Hybrid Microelectronic Assembly). The
schematic then becomes a reference information document used when
defining product test requirements and logistical support.

In addition to the information entities from the PWA model,
the logical development methodology also required a user view and
some entity refinement. Both were used to remove implementation-
specific data from the model. The resultant model was also
converted from IDEF-l to the IDEF-l Extended format. Then the
model was successively reviewed and refined by the EAC members.
When the model was felt to fully support the user view (i.e.,
could be searched to derive a net list and a part list
information set), the relationships and attributes were

28

normalized by entering the model into a "Metamodeler" database at
General Dynamics Pomona Division. The database was passed into d
the JANUS modeler (JANUS is a product owned by D. Appleton Co.).
The JANUS diagrams and the Metamodeler listings were used to
normalize the model which was drawn on three A-size diagrams on a
general purpose graphics design system.

The model was then submitted for integration with the
remaining PDES Initiation task application models. During
integration reviews, several entities were re-defined. The new
entities allowed integration with the geometry entities of the
other applications. The resultant model (now on 4 sheets) was
reviewed by EAC members. The Metamodeler database was updated
and the attributes migrated as required for the final model
normalization.

The key conceptual element present in this model has been
termed "connectivity". The concept is not limited to electrical;
it also defines how a road becomes part of a highway network, or
a beam becomes part of a truss assembly. This "functionality"
aspect of product definition will be studied further in PDES
development.

3.5 Tolerancing ADDlication Area - William C. Burkett.
McDonnell Aircraft Co. - Chairman. IGES Manufacturing
TechnoloMy Subcommittee

The PDES Tolerance Application Group (TAG) was formed in
response to a request by the Logical Layer Initiation Task Group
to develop a reference model of the information required to
tolerance a product model.

The objective of the modeling effort, as defined by the TAG,
was to identify and define the information required to support
the tolerancing practices as advocated by the ANSI Y14.5M - 1982
and ISO 1101 and 1660 standards. In addition, the representation
of the product was assumed to be a three-dimensional (3-D)
geometric model rather than the traditional engineering drawing.
Although the above standards are oriented toward dimensioning and
tolerancing the pictorial representation of the product (the
drawing), it was felt that the concepts presented were equally
applicable to a 3-D geometric representation. The TAG,
therefore, did not attempt to develop new concepts to tolerance a
3-D geometric model, but rather attempted to capture the concepts
presented in the standards and apply them in a new environment.
This approach essentially is "a step into the future with a foot
firmly planted in the past."

29

More specifically, the scope of the TAG work was defined by
the information required to tolerance the shape of a 3-D. geometric product model. There are several important assumptions
that went into the work:

- The geometric model is a boundary representation solid
model or an equivalent surfaced wireframe model. (This is
needed to address specific, discrete regions (surfaces)
of the product model and the corresponding regions of the
physical product.)

- The geometric model represents exactly the nominal shape
of the product.

- Dimension information is implicit in the model geometry.

Outside the scope of the TAG work were:

- Computing Tolerances
- Process Tolerances
- Pictorial Representation of the Tolerances
- Dimensioning Practices
- Non-Mechanical Tolerances (e.g. Electrical Component

Values)

The reference model produced was based on the work done in
this area by the PDDI project. In addition, the work done by
R.H. Johnson for CAM-I (D&T Final Report, R-84-GM-02.1) was
reviewed. It is felt that the approaches taken by Johnson and
that of the TAG are not incompatible, since they differ primarily
only in depth and breath.

3.6 Finite Element Modeling - William R. Freeman. Allied
Bendix Aerospace. Kansas City Division - Member. IGES FEM
Subcommittee

The Finite Element Method (FEM).is a technique for creating
mathematical models for engineering analysis. These analyses may
include stress, vibration, heat transfer, plastic molding,
electrostatics or magnetic fields. The FE method uses a model of
the real object divided into regular subdivisions called
elements. These elements are defined by points in space called
nodes. The nodes and elements, along with additional information
such as material properties makes up the model.

The IDEF-l application model created by the IGES/PDES FEM
Committee contains all of the basic information that is contained
in a finite element model. The original data required to create
that model, such as the shape (geometry) of the real object, the

30

bill of materials, material properties, and the environmental
conditions relating to the analysis (loads, temperatures, etc)
comes from outside sources which are not included as a part of
the FEM application model.

FEM analysis data were not included in the model. These
analysis results are important, but are logically separate from
the information required to define the model prior to analysis.
This partitioning was intended to match the scope of the
application model to the available time and personnel resources.

The application model covers nodes, elements, material
properties, environment (loads, restraints, temperature, etc.),
grouping of entities, and their interrelationships. Considerable
detail is included in the data dictionary, included as a part of
the model. The FEM Committee feels that the current application
model fairly represents the data relationships necessary to fully
understand the information and the information relationships
required for a FE model, and is therefore complete. In addition,
the model has been verified through the use of the "natural
language quality assurance loop" which gives further assurance
that the IDEF-l information model correctly represents
relationships between FE information entities.

Future plans include the addition of analysis results to the
IDEF-l model, and some consideration of the sources of original
information from which the FE model is abstracted. A real part
may indeed be analyzed under multiple environmental conditions,
for a number of analysis types, with alternate materials, with
various levels of detail resolution, and so on, but it is still
the same part, even when represented by many different FE models.
At present, this overall concept is difficult to properly place
in the order of things, but should be included in the overall
electronic data system which PDES is addressing.

In summary, the FEM application model is considered to be
complete (with the exception of analysis results), and correct.
The IGES FEM Committee has verified and approved this model for a
"draft" level of release outside of the PDES working groups. Few
if any changes are expected, aside from the extensions for
analysis results.

31

Section Four

. 4.0 Details Of An~lvina The Methodology

4.1 Example 1: Electrical Schematic ApDDlication Model

4.1.1 Introduction

This application uses simple 2D geometric constructs, is
compact, and exemplifies the principles of the methodology. The
purpose of this section is not to review the entire electrical
model, but rather to use the model as a vehicle to review an
actual use of the methodology.

4.1.2 Review Of Phase 1 Of The Methodology: Qualification

The documentation package as received from the electrical
task group is in Appendix C4. This package exemplifies a
documentation style which is highly desirable from the vantage
point of the Logical Layer. We offer here a condensed version of
the document package.

Strategic Directions

SCOPE: This document contains diagrams and text
representing a conceptual model of the data required
to describe an electrical schematic.

CONTEXT: This model identifies Entities, Relationships and
Attributes which are logically necessary to
construct an electrical schematic. It also
identifies some probable relationships to entities
in two other applications: circuit analysis and
printed circuit board physical design.

PURPOSE: This model proposes portions of the PDES logical
layer required to record an electrical schematic for
integration with other portions of the PDES logical
layer.

VIEWPOINT: The viewpoint of this model is that of the
IGES/PDES electrical subcommittee.

Model Notes for Reviewers

Inasmuch as the intended use of the model is a logical view
of the data, independent of existing systems or methods, for
development of a neutral product data exchange structure, the
reviewer is asked to keep in mind several important modeling
constraints:

0 32

The entities and attributes are to reflect the data inherent
in schematics, as opposed to the information conveyed by a
schematic. An example is the user view preceding the logical 0
IDEF-l model describing a netlist. The netlist is recognized
here as information assembled by a query against schematic data.
In turn, the model must be capable of supporting such a query.
Elements of information found in the netlist are found in the
Network, Symbol Connection Place, and Symbol Instance entity
classes.

The model must exist independent of implementation. The
entity classes in the logical model must be equally valid for a
pencil-drawn schematic or a CAE system with model data
structures.

The author's opinion is also offered that, strictly
speaking, an electrical schematic (the totality of this model) is
not part of "product definition". Schematics exist only as a
design aid and as reference documentation.

Electrical Schematic Application - User View

I. Definition

The schematic is a symbolic representation of component
parts and their electrical connections. The schematic may apply
to any hierarchical level of product definition, and becomes part
of the packaging requirements at that level. Schematics may also
contain details of related mechanical nature (e.g. heat, sinks,
connectors, etc.) and transmission of optical, magnetic or
microwave energy.

II Inputs (sources of design constraints)

"o Block diagram, system or subsystem with target block
identified

"o Interface requirements (e.g., signals and power)

"o Mechanical package requirements (e.g., chip, hybrid
microelectronic assembly or printed board size and
mounting)

"o Design (and product) constraints and characteristics
(e.g., specifications, system equations, test
requirements)

"o Schedules and/or budget

"o Approved (or preferred) parts lists

"o Symbol set and drafting standards

33

III Items schematic relates to durirg design

o Design block diagram

o Boolean operators

o Detail equations/transformations

o Static or dynamic models and simulations

IV Schematic constituents

SYMBOLS: a 2-dimensional figure commonly accepted as a
representation for a part's functionality.

SYMBOL CONNECTION POINTS: indicates where connections to
symbol can occur.

JUNCTION POINT: Symbol (usually a filled small circle)
indicating an electrical union of 2 or more connection
lines.

CONNECTION LINES, SINGLE: a 2-D line or string between
symbol connection points or junction points.

V Schematic outputs

PICTORIAL: used to review circuit design and as part of
final productdocumentation.

NET LIST: a topology derived by examining the logical
relations (links) created by the connection lines (joints).

BILL-OF-MATERIALS: a list of parts cited in schematic.
Used stress analysis, packaging the physical circuit and in
documentation parts lists.

Glossary

CONNECTION GEOMETRY: Geometry which represents the logic of an
electrical joining.

INTERSECTION PLACE: A place where connection lines are
considered to be connected.

LINE: A narrow, elongated mark drawn or projected.

NETWORK: A collection of places which are defined to be at the
same potential (aka Node).

SCHEMATIC: A symbolic representation of a function.

34

STRING: A piecewise, continuous form of a 2-D line (aka
polyline).

SYMBOL CONNECTION PLACE: The location on a symbol where a
connection may occur.

SYMBOL INSTANCE: The occurrence of a symbol on a schematic.

Discussion Of Phase 1 Of The Methodology

We will describe the process of translating the Discipline
Model (figure 4-1) to a Qualified model. Normally, this process
starts by doing a literal translation from the Discipline Model.
This will be a purely syntactical translation (figure 4-2) with
no regard for the meaning of the objects in the diagram. The
main purpose of this first-cut translation is to expose detail
and verify any obvious key migration errors in the IDEF-l
diagrams. IDEF-l places detail inside of the object boxes NIAM
places detail outside of its object circles. We believe this
detail-exposing process is critical to the qualification process.
This mechanical translation was not possible in other application
areas which did not use IDEF-l as the modeling language.

Once the literal translation is available it is used as a
reference by the logical layer person for learning the electrical
schematic application. Our experience showed that we were able
to ask questions to the application expert directly from the NIAM
diagrams and the expert was able to answer the questions by W
examining only his IDEFl diagram. There were times, however,
when it was necessary for the logical layer person to have a good
knowledge of IDEF-l.

A specific technique used by the logical layer person in
this specific example was to "picture" (figure 4-3) what the
literal translation was saying. In some cases the original IDEF-
1 diagrams lacked some precision in expressing concepts
(translating literally to NIAM did not solve this problem). In
those areas of imprecision, supporting text documentation was
extremely helpful. It is always more difficult to formally model
a concept than it is to casually express it in natural language.
Once a picture is built, it is compared to the literal model. A
constructive comment is offered at this point: most document
packages contained few pictures of concepts. In most cases the
logical layer person had to build his own pictures and validate
with the application expert.

A new NIAM model (figure 4-4) is now constructed that agrees
with the picture and the expert is asked to validate the new
diagram. This diagram is the first version of the qualified
model. This qualified diagram will go through five to seven

35

SCHIEMATIC/

(SEE ER-I)
SCML5A47'JC APO

NETWORK /21 11-*8

(SEE ER-)

Ao''V

LINEl /10P

SEE[ER-1 CONNECTION GEOMETRY A5 SYMBOL INSTANCE /6

START/ ENO PLACE
NIETNE (FK)SCH1MATIC NO IF, (SEE ER-I)

LINE WEIGHT

Is •

15" Jo""l

OP
CONNECTION PLACE /16

CONNECTION TVP,cI S.CIHEATIC NO PtrlK,
INETNAJE (FIR K)jSTART PLAC (FK)

E PLACE (IK)

STRIING /14 P

SCHEMATIC NO (UKI _____________
LENGTH IFKI 4
STARVT/IM PLACE WUK) 4

NE~hNE UK)INTERSECION PLACE A7? SYMBOL COH PLCE /to
-LCATIOH CONNECTION TYPE

,ONNECTION TYPE SCHEMATIC NO (TK)
SCHEMATIC NO0 IPM) SYM130L TYPE 7(FM)

SHEET NO (FUK)PIN NIO (0f/vts tr
FUNCTION CODEIPIN NO0 (a)

INPUT OR OUTPUT
NETNAblE (FK))StYlM-,LOC~tION t(FX..

* Dt/SCI/PU A)E
MODEI.

/ac/

/V/a7* C,

L/T(ýjS /AL
7~AM~tA e/Oe

o-,

ýK 4ere+o -

0 .

ETWOR

lmp~lo coAlec~v.0

!, e -

-C4

7- wal7

OVA 4 tglt -

A40DE/

* iterations before complete agreement between application and
logical layer is achieved.

In the case of the electrical model, some changes were made
to the literally-translated model. It was felt by the logical
layer that the original diagram did not precisely express the
content of the picture in figure 4-3. The constraint capability
of NIAM was used to add precision mostly through the total-role
and mutual-exclusion role constraints. (Refer to NIAM primer in
Appendix D2 for explaination of total-role and mutual-exclusion
role constraints.)

The Literal translation basically said that Intersection
Places and Symbol Connection Places are both kinds of Connection
Places. But the association between Intersection Places and
Start/End Place and between Symbol Connection Places and
Start/End Place was not clear. The picture in the logical layer
person's mind is shown in figure 4-3. The qualified model
explicitly shows the above relationships and adds additional
constraints. It cannot be overstressed how important this
picturing process is as a lot of the common knowledge that
application experts share at application working sessions is not
available to the logical layer person.

O4.1.3 Review Of Phase 2 Of The Methodology: Global
Conceptualization and Integration

By the time we were ready to proceed with this phase, the
geometry, presentation, and topology models had been completed.
So the basic technique was to find a way to replace specific
objects in the qualified model with generic objects from the
resource models (geometry, presentation, topology). The notion
of Place already existed in the geometry schema so it was used.
Place appears only once in the global model instead of four times
as in the qualified model. The four occurrences of place were
replaced by a single occurrence of Place and three new roles.
These roles are expressed in the following four sentences derived
from the global model:

Place2 is location of Symbol Connection.
Place2 is location of Intersection.
Place2 is end of curve segment.
Place2 is start of curve segment.

The edge-vertex portion of the topology model is used to
model connectivity explicitly. In the qualified model, there is
no mechanism for explicitly showing connectivity within the model
unless it is 1) implicitly assumed through symbolic sharing by
Connection Geometry of a common geometric Place or 2) a rule that
states "any start or end places that are located within delta x
of each other are to be considered connected". This is the rule

36

the human would use in looking at a schematic. In most cases it
is possible to visually determine that the start and end places
actually touch and are therefore considered to be connected. The
computer has no visual image of touching. The main purpose of
the global model is to give the computer explicit "touching"
information through the Geometry-topology associativities Edge-
curve and Vertex-place A picture of explicit connectivity is
shown in figure 4-5.

The fundamental test that must be run against the new global
schema (figure 4-6) is: can a query be run against the new
schema to create a net list? Casual examination of the global
schema should confirm this. We do not have any thorough way of
determining formally whether or not the qualified schema and
global schema are equivalent.

As stated in the methodology description, integration is the
act of reconciling the qualified model with the global model. We
will attempt to do that in English as we have no formal mapping
language. The general form of each reconciliation statement will
be "1X in qualified model is replaced by Y in global model." For
example:

The sentence "Connection Geometry has Start Place" in
qualified model is replaced by the sentence "Edge-curve has
connection line defined by Composite Segment2 that is
composed of Curve Segment2 with start place defined
by Place2" in the global model. We ask ourselves "Is this
a valid.sentence replacement?". If it is we have a
successful instance of reconciliation.

It should be mentioned here that new connectivity
information has been added in translation to the Global model.
A critical issue here is whether or not to allow additions to be
made to the qualified schema when converting it to global form as
this confuses the process of reconciliation. Realistically this
will probably happen as the logical layer person perceives a
complete way of expressing application semantics. Once this
discovery is made, a decision must be made to go back and make
the qualified model complete. In the case of the electrical
model, the qualified model was not upgraded because of schedule
pressures.

Here are the most interesting things that one can discover
from reviewing the global model (particularly figure 4-7 which
shows the substitution by geometry, presentation, and topology):

1. A large portion of the qualified model was replaced by
objects and structures from the resource models.

37

*00

To->~ Asz~ccA7ivt7tES

eJPt/Cl/r COAIAIECT/C// 7

4w/

A~r~ 44-C

PC &dv if7 t W

A:;c~cA7'~Ile '

- eft C~EX

/2

VeI

S.SOCIA~ arl I 7,

GIZfA L MOVEL
A~5c,,eL 4- 7

2. Many objects in the qualified model have been replaced by
associativities in the global model. These
associativities act like "glue" to tie together fragments
of the resource model.

3. Because the global model uses more general structures, it

tends to have more objects.

4. The global model removes objects and adds new roles.

5. The resource object "Vertex-place" replaces both
Intersection place and Symbol connection place.

6. The global schema is modular. Associativities tie the
modules together.

4.1.4 Review Of Phase 3 Of The Methodoloav: Specification

Specification was broken into two basic steps: 1) grouping
of the Global model and 2) translation of the groups into DSL.
The grouping process was a joint effort between the builder of
the global model and the DSL specifier. The groupings were based
on the notion of defining relationships (figure 4-8). For
example one group might be the association between Network and
Edge-curve. Since the Global model says that a Network is
composed of (defined by) many Edge-curves, this seems like a
natural grouping.

Here are more specific examples of groups:

Edge-curve has connection line defined by
Composite Segment2 and also is foundation for an
Edge. (Note that the notion of defining relationship is
somewhat artificial with associativities.)

Edge has start vertex. Edge has end vertex.
(this is the normal Geometry-topology associativity)

Curve Segment2 has start Place2. Curve Segment2 has stop
Place2. (this is the normal Geometry structure)

Vertex-place at Vertex and Vertex-place is located at
Place2. (This is the normal Geometry-topology associativity
structure - however, sufficient information has not been
added to indicate that Vertex-place is playing
the role of Symbol connection place. Note also that
Vertex-place plays the role of being Intersection place.
The orignal discipline model is almost unrecognizable in
the Global model. It is important that we see an instance
of a nearly "all-generic" Global model to see the importance
of a mapping from Discipline model to Global model.

38

A~A g d i p.
t ~ P

A1
/

/oaefZ
- -

6jOM#AL Mat&
mft9

We have attempted to group basqd on the loose notion of
"defining relationship". We realize that some groupings may
be more difficult as the notion of definition is not as strong.
An associativity is something that has definition but the notion
of definition relationship is not so clear with abstract objects
such as associativites. Does it make sense to say that Vertex-
place is defined by a Place2 and a vertex? It does not sound
quite right. There is some question as to whether the notion of
defining relationship can be clearly defined itself. Grouping
will be an on-going problem that we must face if we are to
present the PDES in a concise easy-to-read form that abstracts
out detail. Complexity is the real problem we are dealing with
and the need for abstraction techniques is critical. Grouping is
an abstraction technique. The Version 1.0 effort must come to an
agreement on a grouping rationale.

Here is a sample DSL of the groupings in figure 4-8.

ENTITY network;
ROLE

component :LIST (1 to *) OF
REFER (edge_curve);

END;

ENTITY edgecurve;
ROLE

geometry :REFER (composite segment_2);
topology :REFER (edge);

END;

4.2 Example 2: Flat Plate Mechanical Part ADR1ication
Model

. 4.2.1 Introduction

The Logical Layer Group focused its attention on a specific
application for its first attempt at exercising the methodology.
The application chosen was the design of flat plate with holes.
This application was purposely kept simple and based on the
difficulty we had in modeling this application, it was a wise
decision. As a result of this experience we are convinced that
the principle of pushing specification applications through a
methodology is a good test scheme. This kind of test is
distinctly different from using a broad application area as a
test. The knowledge area is very specific and limited, which
reduces modeling time.

4.2.2 Review Of Phase 1 of the Methodology: Oualification

The complete documentation package received from the Flat
Plate application group task group is contained in Appendix C3.
This package clearly spelled out the scope and definition of the
application. Our final model did not cover the entire area
defined by the documentation package because of schedule
pressures. Roughly, it covered the left half of the discipline
model given in figure 4-9. For purposes of exposition, we offer
a condensed version of the document package.

SScope of the Model

For the purposes of this initial document, flat plates are
considered to have the following characteristics:

- Plate has two major (large) faces, a top and a bottom

- Uniform thickness; i.e., top and bottom faces are
parallel.

- The top and bottom faces are not required to have
congruent dimensions (this requirement was changed later
to require congruent dimensions in order to simplify the
model).

- The thickness is small relative to the top and bottom
face dimensions.

- For any traverse from top to bottom face, along the
intersection of an arbitrary plane perpendicular to the
top and bottom faces, only one "side face" will be
encountered.

* 40

-~~17 -,L
L..< s,... *A*

p ;--- --

_ _ _ _ -f

_ _ _ _
P r

_ _ _ _ _

II

- Only round, through holes of uniform diameter are
allowed. (This requirement was later relaxed as it was
just as easy to allow for holes of arbitrary shape and
depth).

- Edge conditions, e.g. chamfer/radius specifications will
be treated as attributes. If the chamfers/radii are
large enough to require more detailed definition, they
are outside the scope of this model. (Again, this
requirement is somewhat relaxed by allowing the perimeter
of the flat plate to be any closed planar shape with not
self-intersections).

Definitions

Flat Plate

This is an entity that is the "top of the tree" in the
definition of a single piece part. All the definitional
information for the part is under this entity.

Face

Face is a topological entity. It is essentially a bounded
surface. The boundaries are topological entities, edges, with
their end points defined by vertices. This is the relatively
standard B-REP notation.

* Surface

The geometric (mathematical) entity that defines the shape
of a face.

Datum

One of three planes that in principle define the coordinate
system of the plate. The three planes are mutually perpendicular
and intersect in a point. That point is the origin. The planes
or some manifestation of them are referenced as datums in
tolerances and other entities.

Angular + Location + Geometric tolerances

These tolerances are defined in the tolerance model. Their
presence in this model is to indicate the relationships of
tolerances to the flat plate part.

414

Edge

The topological entity that bounds a face. It is
essentially a geometric curve, bounded by end points (vertices).

Curve

The geometric (mathematical) entity that defines the shape
of an edge.

Vertex

The topological entity that bounds an edge. It is
essentially a geometric point.

Coordinate Point

The geometric (mathematical) entity that defines a location
in space.

Hole

A feature of the flat plate. It is defined by its diameter,
centering vector, and a coordinate point contained on a surface
of the plate. This feature entity may be required, in some
applications, to be transformed into topology and geometry, e.g.,
an assortment of faces and edges, but for purposes of model
definition, this definition is informationally complete within
the scope of the model.

Surface texture

This is an entity that describes the allowable deviation
from perfection (at the micro level) of a surface. The exact
definition is given by ANSI and ISO standards.

Vector

A geometric (mathematical) entity that defines a direction
in space.

Size tolerance

One of the tolerance entities that applies to the diameter
of a hole feature.

Discussion of Phase 1 of the Methodology

The flat plate discipline model (left half) was completed in
an extended version of IDEF-l as shown in figure 4-9. The
following objects were excluded from the discipline model: heat
treat specifications, drawing identification, process plan

42

identification, cross section view, profile view, 3D view,
process instructions and configuration management. The qualified

* model in figure 4-10 is a literal translation of the left hand
side of the discipline model in figure 4-9.

This model caused us to become aware of an issue that may
occur in follow on PDES efforts: What kinds of objects would we
expect an application expert to place in a discipline diagram?
Will they be high-level engineering objects like form features or
will they be foundational objects like vertex, edge, curve?

The qualification process started by making a literal
translation of the discipline model (left side) into NIAM. The
main purpose of such a first-cut translation is to expose detail
and verify any obvious key migration errors in the discipline
IDEF-I diagram. In the case of the flat plate model there was
little attribute and key information inside the entity boxes.
This literal translation was accepted as the qualified model with
the following simplifying assumptions added:

1. Top and bottom faces are required to be congruent
perimeters.

2. All holes are perpendicular to top of flat plate.

3. Non-through holes are not allowed..4. Any arbitrary flat-plate outline is allowed.

5. Any shape hole is allowed.

It was felt by the logical layer that this qualified model
captured enough aspects of the application to test the
methodology.

4.2.3 Review of Phase 2 of the Methodoloqg: Global
ConnceDtualization and Intearation

Ideally, the global cognitive model (figure 4-11) would not
be a reconceptualization of the qualified model. In order to
link this model to the only resource model we had at the time
(geometry), the qualified model was significantly expanded to
include form features. We believed that in the initiation effort
we could have this kind of license in order to test the
methodology, but in follow-on efforts, the amount of new meaning
that is added to any qualified model must be carefully
controlled. The primary duty of the logical layer is to convert
the qualified model into a global form. We think a basic problem
in this part of the intiation effort was that we were struggling
to model this application with the limited conceptual resources
at hand (wireframe geometry only). Later, there was no attempt
to update the original qualified model as a result of additional

43

FAT

A ro

7--

*3.'WV ra p 4e e~xeseSdd v1~krAL Yas '/ /',I4

1 /TEEA Im lr#C4$.SLA T/ON~

A 4 OOEL e 4-10

0000,

OleU

N 000,

moo dop

resource meaning (e.g., topology) added to the global model.
Again, this should not be the case in future efforts.

The good that really came out of the flat plate effort was 0
that we witnessed the evolution of a model. We think this is
probably a typical real-world situation. Models don't just get
built, they seem to evolve. Because we had only the geometry
resource to start with, the flat plate model started out as a
feature-based model with no explicit surfaces (we had no boundary
model). Later in the project, a provisional tolerance model was
created and became another resource for us. The global model
then was incrementally modified to add explicit surfaces with
surface attributes. This was done with little change to the
form-feature part of the model.

A discussion of the changes to the qualified model follows:

1. The object "uniform thick profile" is added. This becomes
the basic definitional object for the flat plate (instead
of the explicit faces.)

2. The object "hole" is generalized to the object "uniform
depression".

3. "Uniform depression" is in turn defined by "uniform thick
profile" through the role "is negative body for". Note
that the role of "uniform thick profile" for the flat plate
body is "is positive body for".

4. The association object "flat plate uniform depression" is
added to associate a particular uniform depression with a
particular flat plate (and a composite model transform to
position it).

5. The object "planar profile" is added to link "uniform thick
profile" with the resource geometry at hand.

6. The object "face" in the qualified model is converted to
"side(s)", "top", and "bottom". A relationship between
"flat plate uniform depression" and "side" is added to
indicate internal sides of the hole.

7. The object "Face-Surface" is added. This is a new resource
object developed later in the initiation effort. Its
purpose is to separate geometry and topology so that they
can have independent existence. "Face surface" is among a
class of resource objects called "Geometry-topology
associativities" but originally were called "Primitive
Shape Elements". We recognize that none of these are good
names.

44 0

a. All surface references are now directed to the object "face
surface". No surface property will be referred to either
geometry by itself or topology by itself.

These changes, many of which involve additions or
generalizations, indicate that the logical layer actually stepped
beyond its legitimate bounds in this part of the methodology.
Phase 2 of the methodology should not normally result in
additions to the qualified model.

Actually, the phenomenon of the continuation of discipline
modeling on into the qualification and the Global
conceptualization and integration phases occurred across most
areas of the initiation work.

The global model presented here was a team effort involving
engineers, form feature experts, and information modelers. This
model is the fifth iteration.

4.2.4 Review of Phase 3 of the Methodologv: Specification

Unfortunately, there was not agreement (between the people
responsible for the global model and the people responsible for
the specification model) on the content of the global model.
Figure 4-12 shows a possible grouping of the global model in
preparation for specification. Here is a sample of DSL that. corresponds to part of that grouping:

ENTITY flatplate;
ROLE

pos bod :REFER (uniform thickprofile);
holes :LIST (1 to *) OF

REFER (flatplateuniform depression);
top :REFER top;
bottom :REFER bottom;
side :LIST (1 to *) OF REFER side;

END;

ENTITY uniform thickprofile;
ROLE

thickness :t magnitude;
out-line :REFER Planaryprofile;

* END;

45

Ad,

V4..

L4j

ENTITY flatplate uniformdepression;
ROLE

depression :REFER uniform depression;

END;transform :REFER composite-modeltransform;

ENTITY uniform depression;
ROLE

negbody :REFER uniform-thickprofile;
END;

* 4

4.3 Example 3: Tolerancina ARDlication Model

4.3.1 Introduction

This was a very challenging application to model because of
its bulk. We did, however, find a similar pattern among the
various tolerances defined in ANSI Y14.5M-1982 which accelerated
our efforts. This was a good application for global modeling as
the tolerance application makes heavy reference to geometry and
topology and associations between them.

4.3.2 Review of Phase 1 of the Methodology: Qualification

The documentation package received from the tolerancing
application group is in Appendix C5 For the purpose of
exposition we offer here a condensed version of the document
package.

Scope

This document provides the definition of functional content
for tolerancing practices as specified by ANSI Y14.5M-1982 and
ISO 1101 and 1660. These specifications are considered to be
functionally identical for the purposes of this effort.

This information model is intended to completely define all
tolerance information specified by ANSI Y14.5M-1982 and the
corresponding ISO specifications.

Excluded from Scope
"Computing tolerances

Process tolerances

Pictorial representation of tolerances

Dimensioning practices

Non-mechanical part tolerances (e.g. electrical component
values)

Assumptions

Product models are assumed to be 3D wireframe with
surfaces.

Models contain exact definitions of nominal product
geometry.

Topology constructs, where used in this model are included
to satisfy the functional requirements of tolerancing. Since a

470

completely surfaced wireframe and a B-REP model are essentially
equivalent, we have adopted the B-REP terminology of face, edge
and vertex in our tolerance model.

General Definitions

Product: An item(s) which is(are) manufactured, or used in the
manufacture of another item.

Model: A digital definition of a product.

Drawing: A pictorial representation of a product.

Dimension: A numerical value, implicit in the model geometry,
which is a measure of the product.

Summary Of Entity Types

100 Geometry
unit vector, point vector, vector, curve, coordinate, point

200 Topology
vertex, edge, face

300 Featuri
datum, conditioned datum, feature of size, form feature,
face, edge, vertex

400 Tolerance
Coordinate tolerance: angle tolerance, location tolerance,
size tolerance

Geometric tolerance: angularity, circular runout,
circularity, concentricity, cylindricity, flatness,
parallelism, perpendicularity, position, profile of a line,
prof:le of a surface, straightness, total runout

Discipline Model Examples

Location Tolerance Entity (403): Allowable deviation of a measure
of a feature from its design nominal position relative to a
specific base location along a specified path (figure 4-13).

Start entity :Location origin (503)
Origin :Optional Location_path (504)
Path :Array (1 to maxint) of

Location toleranced entity (502)
Basic :Boolean
Plus-tol :Real
Minus tol :Real
End-entity

* 48

1=1
4c -

Attribute descriptions:

Origin: An entity that serves as the base or origin of a
calculated dimension. It is the "from" entity of the directed
dimension.

Path: A curve along which (or in the direction of which) the
dimension is measured.

Toleranced entity: An array of entities to which the tolerance
applies.

Basic: A boolean (true/false) flag that indicates whether the
entity is used as a BASIC dimension.

Plus tol: The absolute value of the tolerance that is added to
the nominal dimension value to establish the maximum allowable
deviation of the toleranced entity from the nominal.

Minus tol: The absolute value of the tolerance that is
subtracted from the nominal dimension value to establish the
minimum allowable deviation of the toleranced entity from the
nominal.

Location Toleranced Entity (502): Location toleranced entity is
a location coordinate and a member from the class of edge (202),
face (203), location tolerance qualified form feature (533),
feature of size (303), vertex (201). See figure 4-14.

Startentity
Toleranced entity :Face, edge, vertex, feature of

size, or location tolerance
qualified form feature

Toleranced location :Coordinate 107)-
Endentity;

Attribute Descriptions:

Tolerancedentity: An entity to which the tolerance applies.

Tolerancedlocation: A coordinate which specifies the reference
location on the toleranced entity. The coordinate must lie on
the toleranced entity.

Location Origin Entity (503):

49

p.c

aL

s'5I I4-lo

I<4
Li

cc____________C"I
Z-(

Location origin is an origin coordinate and a member from
the class edge (202), face (203), datum (301), vertex (201). See. figure 4-15.

Startentity
Origin entity :Face, edge, vertex or datum
Origin-location :Coordinate (107)
Endentity;

Attribute Descriptions:

Originentity: An entity that serves as the base of the
calculated dimension. It is the "from" entity of the directed
dimension.

Origin location: A coordinate which specifies the base position.
The coordinate must lie on the origin entity.

Location Path Entity (504): A location path is a class of
entities. The class is used to specify the path along which a
dimension measure is calculated. A curve instance must contain
but necessarily end with the toleranced coordinate point(s). See
figure 4-16.

Class of :unit vector (101)
curve (105)

Endclass;

* Discussion of Phase 1 of the Methodology

From the vantage point of the logical layer this was a very
complete and precise document that was at first overwhelming in
its content. This document contained both IDEF-1 (extended)
diagrams and a Pascal-like (similar to DSL) language of the
tolerance model. We found that the IDEF-l diagrams served as a
guide to the entire model, whereas the Pascal-like specification
seemed to be the focus of the document's precision.

Our liaison sessions were very intense. Two tolerance
application persons acted as liaison in a visit to the logical
layer liaison session. NIAM was used as the primary
communication tool between tolerance liaison and logical layer,
so in affect the translation was being done "live".

The qualified model covers almost all of the content of the
document. Geometry and topology were modeled even though these
models existed externally as a resource models. It was necessary
to get the application view of geometry and topology in order to
determine that the resource models were satisfactory.

We feel that, for ihe most part, this instance of
qualification was indeed a translation from the application

50

Fl

a4
I0

Fhi

dIi
SO

q.c

- g-

4C

Js IIN

I.

language and not merely a reconceptualization of the application
area. There were a few times when the logical layer referred
directly to the ANSI Y14.5M document for resolution of meaning.

Figure 4-17 is the qualified NIAM model corresponding to the
above Location Tolerance (403). The translation from the
Pascal_like syntax to NIAM was not mechanical. The two liaison
persons participated heavily in this translation and in fact
learned to read NIAM diagrams in order to perform their function.
This is an ideal situation but one we do not expect to enco"tnter
in all application areas. We will probably be fortunate to have
application experts fluent in one modeling language. However, we
could not have achieved the translation in the time permitted by
the schedules without the application experts having a reading
knowledge of NIAM.

4.3.3 Review of Phase 2 of the Methodology: Global
Concertualization and Integration

The process of building the global model (figure 4-18) was a
straight forward process of identifying objects in the qualified
model that had corresponding objects in the resource models. As
a result of building this global model, a new resource model was
created. This new resource model is called "Primitive shape
elements" (figure 4-19). This new model was created in order to
keep geometry and topology as independent resource models. This
model is a set of associativities between geometry and topology.
Often models will refer to topology and then topology will refer
to geometry (or does geometry refer to topology?). The
"Primitive shape elements" model puts geometry on the same level
as topology (one is not subordinate to the other). The principal
objects in this model are: face-surface, edge-curve, and vertex-
point. This model probably should be renamed as "primitive shape
elements" is probably already used in many other contexts. We
considered calling it GTA for geometry-topology associativity.

The following is a summary of substitutions that were made
to the qualified model to guild the global model:

1. Face is replaced by Face-surface. (Primitive shape
elements).

2. Edge is replaced by Edge-curve. (Primitive shape
elements).

3. Vertex is replaced by Vertex-point. (Primitive shape
elements).

4. Coordinate is replaced by Place (Geometry).
5. Unit vector replaced by Direction (Geometry).
6. Topology replaced by Primitive shape elements.

51 0

0A

NOi

iii

"3 J I

~i t
'U

~% Iloth

K~ 0

/q

4rI

ki0

IN b 4

4j<~%Sol

NJ~4~ I.

-4.

I IC

I 1* e

A new resource model called "Feature" was considered but was
not followed because it represented a new arena of modeling
problems. We do think, however, that there should someday exist *
a feature resource model.

520

4.4 Example 4: Finite Element Modeline Application Model

*4.4.1 Introduction

The FEM discipline model represents a significant team
effort in acquiring the conceptually modeled FEM knowledge. The
FEM team had as an objective the creation of a single model broad
enough to accommodate any major FEM application. This model was
particularly useful to the initiation effort because it became
stable very early in the project. This allowed the logical layer
to really do its job of validation and global conceptualization.
See Appendix C6 for complete model.

4.4.2 Review of Phase 1 of the Methodology: Qualification

The discipline model is shown in figure 4-20. The basic
application documentation consists of a single IDEF-1 diagram
and a definition of terms. Based on this documentation the
logical layer was able to understand most of the application area
with the exception of the FEM notion of connectivity which
required additional liaison with the application experts. We
were most fortunate that the FEM liaison person was employed by
the same company as the principal logical layer worker. We were
also fortunate that this model matured quite early so that the
qualification process did not involve any extensive remodeling
but rather concentrated on the validation process. While
validating this model, extensive work was done in developing
translation from IDEF-l to NIAM. The qualification process
involved the derivation of natural language sentences from the
original IDEF-l diagrams. These sentences resulted in
adjustments to the model.

The model appeared to be too simple when it was first viewed
by the logical layer. We were expecting a much larger model.
What we had expected to see was an enumeration of many specific
types of FEM elements. What we found was a very general model
that would allow for any kind of FEM structure.

For the purposes of exposition, we offer here a condensed
version of the FEM document package.

Scope

The model contains objects and relationships to accommodate
all FEM elements types and all major FEM applications.

Definitions

Connectivity: the assignment of a node to an element. This
refers to a single occurence of this cross reference (CR), not a
list of all the multiple occurrences of this entity.

53

al I I

WIl

Li.

LL-

Coordination system: a frame of reference used to define the
location of a finite element model or its components into 3D. space.

Element: the basic model building block defining the
relationship between its nodes.

Element/geometric property: assignment of a geometric property
to an element. This refers to a single occurence of this cross
reference (CR), not a list of all the multiple occurrences of
this entity.

Element order: the mathematical definition for the allowable
deformation of an element. An element with nodes only at corners
is a linear or first order element, and may undergo only linear
deformation. An element with an additional node on each edge
between corner nodes is a parabolic or second order element. The
order equals the number of non-corner nodes per element edge plus
one. The element order and the element shape together imply an
expected number of nodes to define the element. Missing nodes
are caused by transition elements, and excess nodes imply face-
located nodes.

Environment: any external or internal influence on a finite
element model.

Environment/group cross reference: assignment of an environment
* to a group. This refers to a single occurence of this cross

reference (CR), not a list of all the multiple occurrences of
this entity.

Geometric property: values that may be used to describe the
physical characteristics of an element. For example, shell
element thickness, beam element area moment of inertia, etc.

Group: a collection of model nodes, model elements or FEM
environments or any combination thereof.

Material Property: values that may be used to describe the
constitutive nature of an element or a node.

Node: a location in a finite element model; used to define
elements and environments.

Node/coordinate system cross reference: the assignment of a
coordinate system to a model node. This refers to a single
occurence of this cross reference, not a list of all the multiple
occurrences of this entity.

54

Node/environment cross reference: the assignment of an
environment to a node. This refers to a single occurence of this
cross reference, not a list of all the multiple occurrences of
this entity.

Node sequence number: the number which represents the position
of a node in an ordered list of nodes which defines an element,
(the connectivity list). A single instance of the connectivity
CR entity will use this sequence number to cross reference a node
with a particular location on a particular element.

Origin: the position in a coordinate system with all zero
coordinate values.

Transformation matrix: the matrix used to specify the
orientation and location of an entity in space, as well as the
scale of the entity.

Discussion of Phase 1 of the Methodology

The qualified model is shown in figure 4-21. For the most
part, the qualified model is a literal translation of the
discipline model. The only part of the model that was changed
was in the area of groups, classes of groups, and entities that
are capable of being grouped. The ease of translation reflects
the stability of the model. This model was modified less than
any other discipline model in the initiation effort. As a result
of the conversion to NIAM and- a grouping of the NIAM diagram to
normal form, a few key errors were detected.

Some of the application areas did not have a reading
knowledge of NIAM and this became a hardship on the logical
layer. It is nearly impossible to achieve qualification without
at least one member of the application team (preferably the
liaison person) being able to read and understand the NIAM
diagrams. It was felt that the reading knowledge shown by the
FEM group greatly accelerated the validation process.

4.4.3 Review of Phase 2 of the Methodology: Global
Conceptualization and Intearation

The global model is shown in figure 4-22. Only the area of
FEM connectivity and FEM coordinate system were replaced by
generic objects in converting the qualified model to a global
model. In the discipline model the connectivity of nodes is
defined at the element level by an ordered list. This array was
replaced by the vertex-edge portion of the topology model. The
intention was to use a single consistent method of modeling
connectivity.

It was decided by the logical layer that the notion of
associating multip-e coordinate systems with a "Place" is common

55

7V, NO

41

kk

NNZ

I Ir

du % 44 Is A.

-Do

*AM =0 All

-~ %qmvs

1I4J a

'I'm

to many applications. In the global model of FEM there are no
longer any references to coordinate system. It is suggested that
the geometry resource model be changed to add the notion of
associating multiple coordinate systems with a place. This is a
good example of how resource models will evolve as more
applications are encountered.

*56

4.5 Example 5: Wireframe Geometry Resource Model

Wireframe geometry entities were accepted as generic
entities directly. Therefore, only Phase 1 of the methodology,
qualification, exists as a task to be accomplished. See Appendix
Cl for complete model.

We intend here to give a very high level overview of the
content of the geometry model. Refer to figure 4-23 for a
taxonomy of the objects in the geometry model. Notice that the
basic breakdown is between wireframe geometric entities and
wireframe auxiliary entities. The wireframe geometric segment is
further broken down into Point and wireframe geometric Segment.
The main auxiliary entities are Curve, Position, and
Transformation Matrix. 2D and 3D geometry are shown as mutually
exclusive subsets of geometry.

Notice also the key relationship between wireframe geometric
Segment and wireframe auxiliary Curve which reads "wireframe
geometric segment is a bounded, connected, oriented portion of a
wireframe auxiliary curve." Here we see that the notions of
boundedness, connectivity, and orientation separate pure geometry
from auxiliary geometry. The auxiliary objects serve as
unbounded "building blocks" for the geometric segments.

Although parameterization was addressed within the wireframe
geometry task group, it was not modeled. It is merely indicated
on the NIAM diagram that all auxiliary curves must have a
parameterization. It has been questioned by some members of the
logical layer whether parameterization is actually a conceptual
notion. Considerable time and effort was spent attempting to
define parameterization before deleting it from the model because
we could not model it adequately.

The appearance of "Place" in the model warrants a comment.
Place and Point both specify a single coordinate location in
Euclidean space. The difference between the two lies in their
intended use in the model. Point is used as model geometry.
Place is used to designate location when what is being located in
non-model geometry, such as the center of a circle.

We discovered constraints in geometry that cannot be modeled
by the MIML subset of NIAM. However, by using more advanced
constraint languages within NIAM (not contained in MIML) we were
able to model the geometry constraints. There are also problems
that occur by not being able to model local contexts and concepts
such as instance and prototype, first class objects, and copied
objects. From these examples, we see the feasibility that simple
data base semantic modeling techniques, by themsleves may not be
adequate for the PDES modeling effort.

57

NN

90

- We noticed while doing the FEM model that multiple
coordinate systems were used. We recommend that the geometry
model be updated to model the notion that a given place may be
defined in multiple coordinate systems. We suspect that this may
be a requirement for many applications.

More modeling work needs to be done on the spline as well.
This topic was also addressed by the wireframe geometry task
group.

58

4.6 Example 6: Presentation ResoUrce Model

Presentation is the act of making product models visible and
is not inherently part of product definition. However,
presentation data is often transferred between dissimilar
systems. Because presentation is not part of product definition,
some felt it should not be part of our initiation modeling
effort. See Appendix C2 for complete model.

We have chosen a compromise position by going ahead and
modeling presentation but loosely coupling it to all other major
classes of objects such as geometry and text. Presentation is
not inherently a part of any other model and is related to other
models only through associativities.

After considerable study on modern graphics techniques the
logical layer came to the conclusion that in a modern graphics
system there will exist two structures: 1) the product structure
and 2) the presentation structure which will, to a great extent,
mirror the product structure. Keeping these structures separate
but related (presentation structure is derived from product
structure) seems to be the key to modern CAD/CAM systems. What
one sees in the PDES presentation model then is the NIAM version
of the presentation structure developed by the presentation task
group. Note that the only links between this model and the
geometry and text models are the associativity objects "curve
element", "surface element" and "text element". See figure 4-24.

The presentation model was the most difficult of all to
build and consumed a month and a half of effort. The
presentation task group documentation was voluminous and in
places difficult to understand (mostly because of the logical
layer workers lack of familiarity with modern graphics
standards). Of the month and a half effort almost a month was
spent in solid research on modern presentation standards and
techniques. The entire PHIGS document was read as well as most
of a popular college text book on graphics. Putting it bluntly,
this model was a real "killer". The opinion of the logical layer
worker was that he could not have made the model without the
research.

The model went through approximately five iterations before
it began to have a reasonable correspondence with the
presentation task force model. Part of the difficulty'was in
interpreting the Pascal-like models in the presentation task
force documentation. In many cases the modeling had to be done
directly from English narrative.

figure 4-24 is an overview of the logical layer presentation
model. It basically shows that a presentation model is the model
of a picture that has sub-picture parts. Each picture part is
composed of picture part elements which could in turn be another

59

I Nb

IL l I

picture part or a specific association between a definitional
element (geometry or text) and some number of visual appearance

* attributes. Note that it is not mandatory for the picture part
"assembly structure" to mirror the product definition structure
since they are only loosely associated at the elementary geometry
and text element level.

The most important aspect of this model is that it has a
structure of its own entirely apart from any definition of text
or geometry. This is a significant departure from the IGES
world.

* 60

4.7 Example 7: ToDologv Resource Model

The model in figure 4-25 is the temporary model referred to
earlier in this report. It is basically the pure topology
elements lifted from the IGES ESP boundary representation model.
See Appendix C7 for complete model. Again, we mention that
little global conceptualization could be accomplished without
this provisional model. It is envisioned that an entire class of
geometry-topology associativities will eventually emerge as
future PDES modeling efforts are pursued. It was our desire that
this model stand by itself with no references to geometry. The
following sentences are taken from the NIAM model and highlight
the major concepts:

1. A vertex is either t1he start of and edge, end of an edge or
a degenerate edge for a loop.

2. A vertex may participate in the role of being both start
and end of the edge.

3. If a vertex is playing the role of being a degenerate edge
for a loop it cannot simultaneously be playing the role of
being either the start or end of an edge.

4. A traversal may be imposed on an edge.

5. An edge must have a start vertex and an end vertex.

6. An edge is distinguished by its start and an end vertex. 0
7. A loop may be degenerate or it may consist of many loop

edges.

8. A loop is a boundary for a connected region of a face.

610

9

4 C a a4 a -

2 -

'S -

U -

i a

= A -

U
a- = =
.2

= a S
Ca - -
C-

* t

.5-
4,

*
It

0

Section Five

5.0 Lessons Learned 0

5.1 Use Of Several Languages

Most of the lessons learned during the initiation work stem
from the fact that several different modeling languages were
used. (Recall that both the application area models and the
resource models were allowed to take virtually any form, and that
IDEF-1 models and formal language models were encountered, in
addition to the NIAM and the DSL models that were generated
within the Logical Layer.)

Because so many languages were used, there has been some
concern about not having some agreed-upon common set of
conceptual notions that we could use as a principal resource in
modeling. We realize that each language has mechanisms for
triggering these conceptual notions, but the mechanisms are
different for each language and lead to much confusion and wasted
effort when translating between languages.

Our study of data base semantics, knowledge representation,
and language translation leads us to believe that the formalism
of first order logic with some extension is a sufficiently
neutral mechanism for building and expressing a common set of
conceptual notions. First order logic has a simple syntax and
agreed-upon semantic. With the extension of multiple domains
(formally called sorts), the notion of object type can be
expressed. With the extension of lambda functions (and a
particular interpretation of them that allows them to become
predicates), first order logic can conveniently and concisely
express arbitrary complexity.

Our recommendation is that any language that is to be used
in PDES should be reconstructable in the extended first order
loaic language Just described and that the basic conceptual
notions be limited to those of first order loaic. Said another
way, any language used in PDES should be an interpretation of
first order logic.

The principal conceptual notions of first order logic are:
individuals are quantifiable (they either exist or they don't),
true or false relationships can exist between any number of
individuals (but preferably not between more than two or three to
keep the models nearly atomic), and arbitrarily complex functions
can be formed involving any number of individuals. These should
be our basic conceptual building blocks. Each language will have
its own particular way of converting these notions to symbols.
We recommend following the guidelines established by ISO TC97 in
evaluating and comparing conceptual schema languages. (See
Reference 4.)

In the initiation work, we underestimated the cost of
developing high-quality application models and the cost of
translating between languages. We were never able to attain true
translation. Instead, most "translations" were reinterpretations
of the domain of discourse. On the average, five translation
iterations were required to achieve acceptable qualified models.

We learned that information models evolve like any other
complex artifact. We encountered numerous cognitive styles
within the application areas, each reflecting the personal
preference of the modeler. Some preferred text-based models
while others felt more comfortable with graphic-based models.
The most popular graphic form was IDEF-l and the most popular
text forms were variants of PASCAL data declaration statements.
We had particular difficulty modeling the content of the
Presentation document because it appeared to represent abstract
program structures.

5.2 Global Conceptualization

The most significant tasks in the initiation effort were
global conceptualization and Global model building. Recall that
global conceptualization is the act of discovering how
disciplines are similar and then replacing areas of similarity in
discipline models with generic entities from the resource models.
Global models then relate each discipline model to its

* corresponding generic entities in the Logical Layer Model.

Approximately 60% of the project time was spent preparing
qualified resource models (geometry, presentation, topology) and
qualified discipline models in preparation for global
conceptualization and Global model building. Only about 20% of
project time was spent in actual global conceptualization and
Global model building. The other 20% of the time was spent in
creating the PDES specification. It should be clear from these
Rercentaaes that there is a very high un-front cost in gettina to
the global conceptualization and Global model buildina stage. It
also suggests that we need to concentrate %ore modeling exDertise
at the application level if we expect the Loaical Layer to
really do its work. It would seem more reasonable that the
Logical Layer would spend 20% of its time doing resource model
development and model qualification, 60% on Global
conceptualization and Global model building and 20% on
specification. It can be seen from our actual Rercentaies that
we did not spend the majority of our time on what was considered
to be the most important Loaical Layer tasks. We do recognize
that in the initiation effort that considerable time was required
to get the basic resource models developed. Any follow on work
that expects to completely rebuild the resource models should
expect a high up-front cost comparable to the initiation work.

63

No significant global conceptualization was achieved until a
provisional topology resource area model was built. This model
was borrowed from the work of IGES ESP project and served us
well. Once we built the topology model we began to see many
different kinds of expressions of connectivity in the discipline
models that could be factored out and expressed in terms of
pieces of the topology model. The results of our initiation
effort indicate that both geometry and topology entities are
foundational to almost all application models.

We did not find the presentation area to be foundational to any
application. Presentation appears to be a separate structure
which can be constructed by traversing the actual artifact
structure. This does not diminish the importance of exchanging
presentation information, however. Rather than including
presentation as an integral part of any model, we have developed
high-resolution (in the spirit of PHIGS) associativities to
geometry and text.

Much more needs to be learned about global
conceptualization. We were able to conceptualize only about 10
to 20% of each discipline model (meaning that we were able to
replace 10 to 20% of the discipline specific entities with
generic entities). We should face the possibility that
significant global conceptualization may not be achievable. We
should also think in terms of replacing large discipline
specific structures with large generic structures (as in the
electrical example) instead of just- replacing single objects.
There are some parallels between the work of PDES and the large
body of knowledge in the field of automatic natural language
translation. The research in this field has been highly inspired
and has covered many years. Should we expect to see a similar
time frame for global conceptualization? This means that perhaps
we need to scale down our expectations for the near term. For
example, we may need to concentrate on just getting good
conceptual models of the discipline areas and not attempt global
conceptualization for a few years until we have more knowledge.

5.3 P

Turning now to Deo~le issues. the most important role of the
Droject was the discipline liaison, In developing the
methodology we envisioned a human being endowed with super human
qualities. This role had to be filled by a person recognized as
being an expert in his application area, as well as being a
modeling expert. We did not find these kind of people, and the
fulfillment of the liaison role become a cooperative effort
between a discipline expert and a modeling expert.

The liaison role is a critical link between the world of
application knowledge and the process of global modeling. We
learned quickly that acquiring application knowledge and modeling

64

it is very time consuming. We believe there are similarities
between the capture of PDES application knowledge and the capture
of general knowledge in the field of knowledge representation,
where the automatic translation of natural language into
conceptual models is an intense research area. Perhaps we need
to become more aware of work being done in general knowledge
representation.

Modeling is new to most people. We have experienced some
delay in our Droject so that ipeople could become more comfortable
with modeling concepts. People are still making the shift from
thinking in terms of tables (which, incidentally, is not their
natural mode of conceptualization) to thinking in terms of
objects and relationships. Most people desire to abstract away
the detail in structures, and the modeling aspect of the
initiation effort has forced the application area modelers to
reconsider the subtle structures embedded in their application
knowledge. We need to be much more aware of the work done in the
area of cognitive psychology when trying to determine a style of
representing application knowledge. PDES represents a new
approach that starts with humans and their knowledge, not with
computers.

5.4 Cognitive And Specification Models

One of the most significant things we discovered in our
effort was the distinction between the cognitive model and the

* specification model. (Recall that, roughly speakini, the
cognitive model is the one that provides the environment in which
to think, and the specification model is the one in which the
product of the thinking is packaged.) We learned the following
very sim'ple lesson: first the model is conceived and then it is
Dackaaed - don't attempt to conceive and Dackage the model at the
same time. The specification model itself is not to be thought
of as an implementation model, and should not be any less
powerful in expressive power than the cognitive model.

In terms of the particular techniques used in the initiation
work, the NIAM model is the cognitive model, and the DSL model is
the specification model. We believe that this decoupling between
thinking and specification is essential.

5.5 Modelin

We have learned some things about the state of our modeling
art within the Logical Layer. Some of these things are expressed
here in terms of the NIAM modeling technique that was used to
construct the global models.

One of our observations is that many of our NIAM conceptual
models contain relationships that are poorly named. We probably
have too many "has-of" relationships. This is an indication that

* we are modeling the structure of objects, not the meaning of

65

their relationships. This may have something to do with the
basic roots of our experience, which for the most part has been
program development and database design. On the other hand, the
field of knowledge representation seems to be almost obsessed
with identifying, naming, and classifying relationships. Should
we follow suit?

Our data base background and the types of modelincf lancuates
we are accustomed to (particularly IDEF-1 and NIAM) have caused
us -to focus our thinkina about relationships into two general
areas: functional dependency and cardinality. These two basic
notions of relationship may not be sufficientlv powerful to model
PDES artifacts. On the other hand, the only notions of
relationship that seem to have universal acceptance are those
which can be expressed as mathematical relations. The notions of
causation and definition, for example, do not have agreed-upon
meaning.

There was some concern early on in our effort that the
weakly typed NIAM language would not be able to model the
complexity of the artifacts we expected to be modeling. This was
not the case. Strong typing makes describing complexity more
convenient and more concisely presentable to a model reader.
Weak typing is extremely powerful when then structure of an
artifact is being explored and there is not yet a desire to bind
certain objects and relationships to a type structure. Weak
t•yping promotes amorphous model structures that feed the
cognitive process. Strong typing leads to more concise
definition and named abstractions which are good for model
packaging.

5.6 Translation Between-The NIAM Cognitive Model And The DSL
SDecification Model

Recall that the translation between the NIAM global model
and the DSL specification model is currently a manual
process. We have experienced certain difficulties in
the initiation work in carrying out this process.

In the DSL language it is obvious that the language
developer saw a significant distinction between a
mandatory relationship and an essentially defining
relationship. It is the notion of essentially defining
relationship that gives cohesion to most DSL entities.
(An example of a mandatory relationship that is not
essentially defining is a relationship enforced, say, by
company policy which states that an employed must be
referred to formally by an employee number. Certainly,
the relationship between a person and his employee
number is not essentially defining.)

66

Now, NIAM uses only relationship notions that can
be built from constructs that have the classical
semantics of sets and mathematical relations between
sets. So, in NIAM any other subtle notions of
relationship are hidden in the interpretation of the
name of the relationship. Therefore, in translating
between NIAM and DSL, one must carefully understand the
meaning of all the relationships.

We agreed that we would provisionally augment the
NIAM graphical notation by adding a "dot" on all
relationships that we felt were essentially defining
relationships. Our experience so far has been that this
greatly reduces the time necessary for the specifier to
understand and place the NIAM model into DSL.

We were, however, extremely reluctant to make any
changes to NIAM syntax as its power is in the leaness of
its syntax. We have reservations about ever formally
agreeing on a definition of the notion "defining
relationship." There is no mathematical formalism that
establishes the meaning of "defining relationship."

A crucial issue in building the specification model
from the global cognitive model is the development of a
rationale for aroupina the global cognitive model. We
recognize grouping as an act of preparing the global
cognitive model for specification we do not recognize
grouping as a cognitive act.

5.7 Sumary

Our experience has led us into a broader knowledge
of conceptual modeling. Perhaps the most important
lesson learned is that we had to remove the blinders of
our own experience and be able to assimilate the
knowledge of other people on the project and people in
related research fields.

0 67

Section Six

6.0 Critical Issues and Recommendations

This section will deal with general issues and specific
issues. General issues relate to foundational issues of the PDES
Logical Layer such as how people and the PDES working environment
relate to languages, conceptual formalisms, and the real world to
be modeled. Specific issues derive from specific problems
encountered during the application of the methodology and their
impact on the direction of the Version 1.0 Logical Layer
Activity. This section concludes with recommendations.

6.1 General Issues

Regardless of the specific direction in which the PDES
Version 1.0 effort heads there will be fundamental issues that
must be dealt with. This section hopefully will prevent us from
concentrating too hard on just the Initiation Experience.

6.1.1 Peple

We need to categorize the roles of people into three broad
areas: 1) those who are developers of methods, tools, and
languages; 2) those who support the application of methods,
tools, and languages; and, 3) application experts. This is a
rough breakdown for the purposes of exposition.

With regard to the developers of the methods, tools, and
languages for PDES Version 1.0, we should seek to find diversity
in experience and attempt not to focus too much on any one
particular style of method, model, or language. PDES itself is
quite diverse and it may require within the single method of PDES
a diversity of approaches. An example of diversity is to have
developers from the fields of information engineering, knowledge
representation, language development, natural language
translation, and cognitive psychology.

Methodology support persons must be willing to adapt to a
new way of doing things. It is hard to think that the PDES
method of the future will be just a simple adaptation of existing
methods. These people will have the key responsibility to
acclimate others to the method and in this sense the support
people are quite critical. Obviously these people should already
have some existing background in the fields of data base,
knowledge representation, or modern programming languages. We
cannot expect application experts by themselves to keep a new
method alive. That should not be their key role.

Application experts drive the method. Nothing in the method
can replace their expert application knowledge. There is some

680

question about how involved in the method these people should be.
We don't want to dilute their energies or throw artificialS barriers in their way (they may possibly perceive that any
modeling language is an artificial barrier). Actually we should
not speak in terms of a single expert but rather a group of
experts who cooperate. This gives more options. If the group is
large enough it may be possible to find a few individuals to
become more involved in the method and serve as representatives
to the others. The principal issue of the knowledge
representation field will always be with us: how do we get the
knowledge from the expert? There seem to be three main
approaches: 1) have a knowledge representation expert work with
the application expert; 2) teach knowledge representation
techniques to the application expert; 3) develop powerful natural
language translation software that can automatically build
conceptual models during a machine-expert dialogue.

6.1.2 Environment

The environment stages the development of the PDES standard.
It would include the basic methodology which frames the whole
process of development, giving it order and assigning skill and
management roles. It would also include generalized software
that will allow the integration of specific graphic tools,
modeling languages, and translation capabilities.

Much remains to be done in terms of developing the
environment. This is quite a critical issue, as we know that
these kinds of environments (particularly the distributed ones)
are just now coming into their own. Although we have seen
CAD/CAM equipment used in "spot productivity" modes, we are still
waiting for the synergistic environment. The "information
engineering environments", long overdue, are rapidly becoming
complex products running on small desk top computers or
workstations. At least these products should give us a vision of
a modern PDES environment. However, we must characterize the
PDES development environment and resist the urge to adapt an
existing one. Admittedly, this is an idealistic approach but it
should not be counted out. (The section on specific issues will
explore other alternatives not quite so idealistic.)

6.1.3 Models And Languages

Diversity is the single most critical issue in this area.
Diversity stems from the tremendous breadth of PDES application
and the wide variety of experiences of the people associated with
those applications. No attempt at building a PDES development
environment will escape the impact of this issue. It is no
harder to conceive the need for a variety of representation
techniques than it is to conceive the need for a variety of
people to run a company or a toolbox full of different tools to
build a house.

I6

We fully recognize that the need to have model and language
diversity seems to run against the need to build global models in
a single language. What we see here is almost the equivalent of
the problem that IGES/PDES is attempting to solve in the
evolution of a product. Each life cycle stage seems to have its
own representational needs but each desires a common way of
communicating that representation in an application free mode.

The need for diversity of language and representation leads
naturally to the development of a common representational
foundation that is "neutral" to all application representations
and languages. PDES must not get into a war of languages over
the need for diversity. Without a common foundation, pairwise
comparisons of languages will dilute our efforts.

We have done considerable research durina the initiation
effort to discover the "right" foundation formalism, We believe
the lancxuaae and notions of formal loaic are sufficiently
Rowerful to serve as this foundation. This is not just our
opinion. It is also shared by others in fields where diversity
and desire for unification are also occuring such as data base,
knowledge representation, and linguistics. We would hope that
such pragmatic issues as weak typing versus strong typing, text
versus graphics, atomic versus non-atomic, procedural versus
declarative, and representation styles such as rules, nets,
frames, and objects do not erode our desire to create this
essential foundation. This foundation is the "IGES within IGES".

6.1.4 Broad Knowledge

This issue is really just a statement of a common theme
running through the discussion of the other issues, but is
significant enough to demand special attention. We must be
careful in developing the PDES that our knowledge becomes too
narrow and focused. For instance, we could use traditional data
base development methodology as a start point for developing and
executing an initial PDES method, or we could use our knowledge
of strongly typed programming languages, or try the latest tricks
in logic programming.

The PDES initiation effort was probably too focused on data
base semantics (more about this later), but because of the time
frame it was justifiable to take an approach and run. The
Version 1.0 effort should assimilate as much knowledge as it can
in the time frame allowable. It is worth consideration that
building a broad knowledge base and perspective should actually
drive the schedule.

6.2 S~ecific Issues

70

O 6.2.1l OOI

Although there was a large family of participants in the
Initiation effort, the group that ultimately developed the method
and initial content of the logical layer was rather small.
Members of the group were separated by hundreds of miles and had
very limited personal contact with each other. This is probably
normal for standards efforts. But PDES is a different kind of
standards effort that may demand a shift from the norm. The
amount of time for which companies will volunteer their people
will have a direct impact on the quality of PDES results.

From our experience, the size of the application groups was
adequate in most cases, but there were some groups of just a few
people. A size of fifteen or so seems appropriate. It is
questionable how big the logical layer group can be and still
function without interferring each other. Obviously there are
some ground for specialization. The Phase I methodology efforts
in qualification can be independent efforts with, say, one
modeler dedicated to each application area. Phase 2 must be a
cohesive group of probably not more than 7 people dedicated to
pushing the leading edge of conceptualization. We recognize the
need for "spot" consulting support from academic and industrial
experts in the field. We emphasize "academic" support which was
almost totally missing from the initiation effort.

We have already written about our experience in allowing
unlimited selection and usage of languages on the part of the
application area. Perhaps we need to limit this language set to
a qualified five or six. Perhaps if more individuals were
assigned to qualify application models, each qualifier could be
teamed up with an application area using a modeling language that
the qualifier is already familiar with. In other words, try to
limit the qualifier to just two languages: the standard model
language of the logical layer and a single application language.

Participants in the PDES effort must believe that the
methodology will work and play their assigned role(s). Job
specialization may be the "revolution" within the information
revolution. We obviously need to learn from very-large projer -s
and how work is divided. The initiation effort gives a good
start in classifying the kinds of roles to be played.

People must agree on certain styles of modeling the
qualified schema as this will ease the burden of the Phase 2
conceptualizers. This brings up a serious issue: finding enough
people who model well in any modeling language who are willing t
adopt a common style. Because we had basically only one model
qualifier in the initiation effort, we were not able to gain
experience in this area.

71

A significant issue regarding people is the complexity of
language with which application persons will be willing to work.
If the language is weak then we lose valuable application
knowledge because the language cannot express it. If the
language is too rich we lose valuable application knowledge
because experts won't learn it. We have applied the "walk before
run" principle in the initiation effort and have settled on
fairly simple classes of languages that are easy to learn and
use. We want to "walk" now, but we perceive that we may have to
"run" later. We are not convinced that languages richer than the
ones we are already using will pay off in the near term.

6.2.2 Enviroment

The environment for the initial effort was minimal. It was
basically composed of a description of a methodology, an
allocation of languages to phases of this methodology, and a few
informal agreements with the application layer. Early on, there
existed no documentation standards, such as the kits in the IDEF
methodology. Later in the effort, a standard kit for application
model documentation was suggested.

Although the methodology was simple, it did serve to give us
guidance. The basic three phase methodology should be adequate
for the PDES Version 1 Logical Layer work; however, other aspects
of the environment must be further developed. A model
configuration management subsystem should be developed. Computer
assisted graphics for building models is badly needed to replace
the pen-and-ink approach of the initiation effort. A
computerized conceptual dictionary with a powerful query
capability will be needed in the PDES version 1 effort.

We envision an environment consisting of a network of
workstations (or at least personal computers) with a central
model administrator. Most likely the global PDES model will
become large-enough that it must be stored on a mainframe. We
are just now seeing examples of information engineering
workstation environments appearing in the marketplace. This is
encouraging, and we suggest that these new products be
investigated. Graphics support for information modeling is also
becoming available. A critical aspect of the PDES Version 1.0
work should be to investigate these emerging capabilities.

A critical issue that affects the development of the
environment is a thorough characterization of PDES information.
Is it mostly numeric or is there a significant symbolic
component? What is the mix of administrative, engineering, and
shape-related information? Bascially there is no "strategic"
picture of PDES information.

72

The methodology used in the initiation effort did not have a
strong project management component. It only suggested the
technical content with plausible deliverables between phases.
The methodology does not suggest a way in which it may be
operationally plac%3d within the IGES/PDES organizational
structure. The initiation effort did not attempt to determine
what kind of impact a methodology would have on existing
IGES/PDES operating principles and protocol.

6.2.3 Models And Languages

A critical issue is whether to allow an unlimited number of
application modeling techniques. The PDES Version 1 effort needs
to consider at least three alternatives: 1) unlimited modeling
techniques 2) a single standard technique or 3) a limited set of
techniques. The cost of living with several languages is quite
high. Because most people are not yet culturally locked into any
given modeling technique (although entity-relationship techniques
seem most popular), we should take advantage of the flexibility
that we still have to find the best language(s).

We stronalv recommend using araphics-suDDorted modeling
techniaues at the aoolication laver and in phase 1 and phase 2 of
the loaical laver methodoloav (the coanitive Rortion). We are
aware of the limitation of graphical techniques in voicing
constraints and suggest that mixed graphic/text techniques be
chosen. No modeling techniaue should be chosen that does not
have a sinale uniform text lanauage in which any construct of the
modeling techniaue (whether araphic or text) may be expressed in
a comouter sensible form.

It is strongly suggested that a single (i.e., the same)
modeling technique be used for phase 1 and phase 2 of of the
methodology. This technique should be a detail-exposing one. It
should allow completely ungrouped modeling to occur.
Particularly, it should not force the phase 1 and 2 modelers to
use the relational model, or the entity attribute relationship
model, as popular as these models are. It should exploit natural
language expression of relationships and constraints as much as
possible.

The Version 1.0 effort should be concerned about the
expressive power of the application modeling language(s). A
language that is expressively weak may only push the application
modeling work down into the qualification phase of the logical
layer. A language that is too strong may be perceived as an
artificial barrier to the application expert. A compromise is to
choose a reasonably strong language with graphical support and
let the expert express in English what he cannot express
formally. The mappings between a constraint in English and the
same constraint in a formal constraint language are almost never. straight forward even for the simplest of constraints. We

73

definitely see the phase 1 and phase 2 workers as being experts
in FORMAL constraint articulation. If the worker is not capable
of converting natural language constraints into well-formed
sentences in predicate logic, he is probably not expert enough.
We even suggest the possibility that first order logic be a
staging area for expressing constraints even before they are
voiced in a specific modeling language.

This leads us to another issue: the need for a common
conceptual formalism. PDES cannot become a circus of languages
with each language having its own set of proponents. The
formalism serves as common ground for the understanding of two
modeling languages and also can be a standard neutral form in the
translation between two dissimilar languages. The ISO TC97
guidelines for conceptual schema languages is an example of the
use of logic as a reference for evaluating languages. N&
strongly recommend that formal logic be used as the common
conceptual formalism. As suggested earlier, we suaaest
specifically the use of the first-order predicate logic lancuace
as the standard neutral language to be used in all cases of
arbitration of meaning and co0•arison of moadeling lanauaaes. We
further suaaest that before any lanquace is used that it be shown
how that language can be reconstructed in first-order predicate
l We realize the limitations of first-order logic and see
the critical need to extend it to be able to express arbitrarily
complex abstractions ranging from simple types to complex
generalization and aggregation abstractions. We have observed a
similarity between the complex utterances of natural language and
the complex artifacts of PDES and suggest that we investigate V
some of the same techniques being used to convert natural
language to conceptual models. Lambda abstracting is such a
technique.

The initiation effort basically borrowed data base modeling
techniques to do most of its work. This approach has only
partially captured application semantics and should not be
perceived as the ultimate modeling solution. The PDES Version
1.0 effort should be on a path to capture full application
semantics. This suggests a broadening of our modeling approaches
to include those being used by the field of knowledge
representation. Choosing languages which are expressively weak
will result in incomplete formal models of applications areas
(natural language patches will most likely get lost in the
process). It is critical that PDES Version 1.0 look beyond data
base languages.

Neither IDEF-1 nor the MIML s.bset of NIAM is considered
powerful enouah for the Version 1.0 effort. Neither has the
expressive Rower of the first-order logic. IDEF-I is extremely
weak in declarina constraints' The MIML subset of NIAM is
somewhat stronger. A language exists to extend the constraint
power of the MIML subset of NIAM, but our understanding is that

740

this language is proprietary. If neither IDEF-1 nor the MIML
subset of NIAM can be extended, we suggest looking for a new
lancuage. The developers of DSL are presently working on
extensions to extend its expressive power. We suggest, however,
that DSL be used exclusively as a specification language in the
Version 1.0 effort. It must have the expressive power of the
Phasel/2 language.

6.2.4 Broad Knowledge

The issue here is that those involved in the Version 1.0
effort must have a broader knowledge of modeling techniques and
languages than did those in the initiation effort. Because of
schedule constraints, the initiation effort concentrated on using
the modeling knowledge its members already had in order to
quickly test a methodology and build content. The Version 1.0
effort should not follow the same course. If maintaining
schedule within PDES is the driving motivation, we can expect to
see a narrow focus on modeling technology and a resultant loss of
capture of application meaning. The capture of application
meaning must be at the heart of any PDES effort that seeks to
follow the development guidelines of the second PDES Report.

A specific example of adopting a broad-knowledge attitude is
the acceptance of logic as formal foundation for modeling. We
have already seen this broadening aspect in the field of data
base, knowledge representation, and natural language translation.
The trend seems to be that workers in these fields are
understanding the importance of formalisms. We believe that PDES
should follow suit.

A specific area where we are lacking formal thinking is in
the development of the global models. We are presently using
informal terminology such as "resource model" and "user model."
In the language of logic and axiomatic systems, concepts that are
defined as true (the elementary building blocks) are called
axioms. Deduction is then used as a powerful tool to build new
concepts. A broadened knowledge of conceptual modeling should
accept the principles of logical deduction as a necessary tool.
Deduction adds a generative flavor that is missing from our
present repertoire of basic concepts.

75

Section Seven

7.0 Summary Of Lessons Learned And Recommendations

This summary section proceeds from two fundamental points:

1) it is the information in the application models that is
to be exchanged.

2) the needs of PDES dictate that these models are to be
computer-sensible, and able to be exchanged with their
structure intact.

Lesson Learned:
There is a shortage of good modelers.

Recommendation:
Encourage, sponsor, publicize, etc. programs that promote

modeling.

Lesson Learned:
Lack of modeling expertise can delay schedules.

Recommendation:
Insist on quality models over fast schedules.

Lesson Learned:
The Logical Layer work of conceptualization and integration

proceeds first by perception, concept discovery, and exposition
of detail, and then by specification. The decoupling is
essential.

Recommendation:
These two types of activity should be supported by cognitive

and specification models, respectively. The cognitive modeling
technique should have a graphics component. The two models
should have equivalent descriptive power, and both should have a
computer sensible representation. The two models should share a
common foundation based in first order predicate logic.

Neither IDEF-I nor the MIML subset of NIAM is considered
powerful enough for the Version 1.0 effort. If neither can be
extended to have the expressive power of first order logic, a new
language should be sought.

* Lesson Learned:
Global conceptualization and integration is a human

intensive activity that cannot be accomplished in large groups.

Recommendation:
Local conceptualization must occur systematically at the

Application Layer before expecting the Logical Layer to do global
conceptualization and integration

Lesson Learned:
The cost of living with several languages at the Application

Layer is quite high.

Recommendation:
Either mandate a single technique or limit the set of

techniques. If more than one technique is allowed, the
techniques allowed must share a common conceptual formalism. The
appropriate formalism is first order predicate logic.

Lesson Learned:
The discipline liasion role is the most important role of. the project.

Recommendation:
Find the application experts who have an interest in

modeling, and cultivate that interest.

Lesson Learned:
Don't automatically assume that traditional data base

techniques will suffice when dealing with our data exchange
problem. We couldn't model everything we wanted to in a useful
computer form because the modeling techniques we had were geared
to administrative type structures, not more complicated PDES type
artifact structures.

Recommendation:
Don't attempt Version 1.0 in this state of affairs, because

the needs of PDES call for computable models.

77

Lesson Learned:
There is a difference between following a development

process for writing a data exchange specification, and actually
using that specification to exchange data in the manner intended.
Data exchange involves user data bases and vendor translators.
Many data exchange issues have not yet even been raised, much
less resolved. The PDES effort in some ways is a multi-company
research effort based on volunteer labor.

Recommendation:
Begin immediately to learn what data exchange in a PDES

environment might involve. For example, what the structure of
user data bases must be, what translator capabilities will be
required. Achieve an understanding that the factor of the
unknown may affect schedules in ways unsuspected as yet.

Lesson Learned:
We were significantly affected by the lack of computerized

tools particularly graphics support for creating modeling
diagrams. We had no full-feature conceptual dictionary.

Recommendation:
Develope a specification for an information modeling

development envrionment and procure the environment before
serious effort at PDES V 1.0 is started.

Lesson Learned:
We believe that the methodology developed in the initiation

experience is a proper framework for development of PDES content.
Although some phases and techniques must mature, we believe there
are no major missing pieces in the methodology.

Recommendation:
Use the methodology as developed in the initiation effort as

the framework for developing PDES V 1.0 content.

78

REFERENCES

* 1. The Second Draft Report Of The Ad Hoc Committee On The Content
And Methodology Of The IGES Version 3 (The Second PDES Report),
by Kalman Brauner and David Briggs, The Boeing Commercial
Airplane Company, November 12, 1984.

2. IFIP WG 8.1 - "NIAM: An Information Analysis Method", by G.
M. A. Verheijen and J. Van Bekkum, Information Systems DesiQn
Methodologies: A Comparative Review, North Holland, 1982.

3. Concepts And Terminology For The Conceptual Schema And The
Information Base, J. J. van Griethuysen, Ed., ISO/TC97/SC21/WG5-3
Report SC21-N197, March, 1982.

4. Assessment Guidelines For Conceptual Schema Language
Proposals, J. J. van Griethuysen, M. H. King, Eds.,
ISO/TC97/SC21/WG5-3, August, 1985.

* 79

Appendix A

Comments By The Application and Resource Modelers

S

• S

. Comments By The Ap2lication And Resource Area Modelers On
The Modeling Experience

This appendix consists of statements by task leaders or other
persons involved in the developement of the various models used
in the initiation effort. The statements summarize their
reaction to the use of modeling techniques in carrying out the
work for the initiation effort. The contributors to this section
are also the contributors to Section 3.

Wireframe Geometry Modeling Experiences With IA - Edward ClaDU

Let me start by saying that this is an interim and purely
personal assessment of the utility of NIAM modeling techniques in
the building of PDES/STEP. I have not yet discussed my
reservations with either John Zimmerman or Paul Thompson. I have
very high regard for both of them and their efforts and feel that
it would be useful to work out my thoughts with at least one of
them.

This is a portion of an effort on my part to try to
critique the PDES efforts to date. A number of people have done
a lot of inadequately appreciated work which deserves both
careful review and analysis. This paper is neither, being merely
an attempt to indicate some concerns I have about the use cf NIAM
in PDES.

There are some poiitive things I can say about NIAM. Two of
the purposes of a formalism are to help organize and clarify.
NIAM does this in working with PDES constructs. The visual
approach may well make it easier to get an idea for what is going
on, much as state diagrams are easier to understand than
equivalent descriptions of finite state machines. This is
helpful both for the people working on a particular application
and for the people wishing to ensure that the constructs of one
application are not merely pieces of some other application
indisguise.

Now for the "howevers".

Two of the major criticism of IGES made by the user
community were the size of IGES files and the length of
processing time. While it might be reasonable to decide that
PDES be inherently less efficient in these ways, that decision
and the reasons for it should be made explicitly. NIAM was
designed to decompose data. This has led to L proliferation of
entities which would be expected to lead to increased file sizes
and processing times.

Just as state diagrams are not used in proving theories. about finite state machines, it seems to me that the correct
place to be formal about what is being said is in the DSL and

1

that the people working at the application level are the ones who
need to make the formal statements about the data.

The separation of file syntax from the application by two
(NIAM and DSL) levels makes it much harder to introduce
processing efficiencies.

Lastly, the extra process between the application and the
physical layers makes it much more difficult to incorporate
changes. In the initial stages of building PDES it would be
useful to be able to quickly build and test prototypes.
Applications writing to the DSL would be able to do so far more
efficiently than those writing to NIAM.

Electrical Schematic Modeling Exeriences - Curt Parks

Prior to the PDES initiation effort, model development
within the Electrical Applications Subcommittee had progressed to
the point where the benefit of information modeling for
application data requirements and for data relationship proofing,
given a target application environment, coula be verified. The
environment was the IGES physical format, and the data content
was that of several known CAD systems used for the design of
Printed Wiring Assemblies. (See Section 3.3.3) The model also
served as a guide when test cases were developed following the
definition of IGES extensions. The results of this experience
with modeling are extremely significant. The Electrical
Applications Committee will no longer propose data entities for
inclusion in a specification without first constructing and
validating a logical model.

The schematic model for PDES had several additional aspects:

1. The model was to be independent of any application
environment or physical data format.

2. The more expressive modeling provided by IDEF-1
Extended would be used.

3. Computer modeling aids were used or evaluated.

4. The resulting model would be subject to integration
with other application models.

The initial model required only a few hours work by two
people who were familiar with the application and the new IDEF-1
Extended rules. Either a related application model (as in this
case) or a collection of entities extracted from reference
reports serve well as input. Working with "collections" of
dependent and independent entities ranging from 5 to about 15 on
each page was quite effective. The model walk-throughs were made
much easier by the groupings, and no need was found to further
reduce the entities-per-page after consensus was reached.

2

The development from the initial model consumed the bulk of
time, and was mostly due to human factors, given 5 to 6 meeting
sessions per year and a changing membership. Each meeting
session required a review of the modeling language, and the
criteria for entities in the model. A frame of reference was
required wherein the members had to conceptualize the information
found in the application as opposed to the more vocationally
revelant view of its usage. Following an overview of the
previous model, and the changes made to it, problem areas could
be identified and discussed. After each meeting all agreed-upon
changes or additions were incorporated, and, following the IDEF
"kit" procedures, the new package was sent to attendees.

The model kits were also made available for comment to
people and organizations not attending the work sessions. No
comments were received from such sources, except the model
integration team. The EAC is presently exploring ways of
bringing a wider range of experts to the model reviews, or
holding the reviews at gatherings of users and experts.
Eventually, for the assurance of the acceptance of PDES by
vendors and users, they must (to whatever degree possible) be
brought into reviews for both application and logical layer
consensus.

At present, the modeling methodology is seen by the EAC as
the best means of developing a logical schema, but more people
must understand what logical models are and how they are
developed. The use of the picture-like language has greatly
increased meaning to people during reviews. Further, those
pictures must be drawn by people to insure human "readability".
The computer-automation was effective only as a normalization and
verification tool after the model was created. Interactive
graphics computers work well for producing "polished" model
views, but models produced by automation from model data were not
suitable for reviews or kits. The layout produced by the
automated software seems too spread out for convenient viewing.

During the intergration phase, the use of a different
modeling methodology had both good and bad aspects. The
conversion forced a complete "what was meant" review of the
application model views and glossary. Areas were thereby
discovered where entity/attribute names could be adjusted to
align with other models. The conversion was, however, an extra
step which tended to remove the results away from further review
by the application committee. The original model language seems
to convey something akin to poetic essence which is often lost
when translated, even though the content is retained. When the
model is further reduced (e.g., to Metamodeler output or a DSL)
to text, a group review becomes all but impossible.

3

Reduction of a model to English sentences seemed to help
only when done verbally as part of a model walk-through. Again,
pictures can retain interest where sentential facts are dry to V
the point of disinterest.

The process of integration would have been greatly aided if
a logical layer product model had been developed first. Each
model needed a focus in the form of a PART, COMPONENT PART, PART
VERSION entity structure. This is now being developed for PDES
and will greatly help future application modeling. In turn, the
product model should be constrained by a definition of domain.
The domain question is vital to the entire PDES effort. Is a
product in PDES format going to be able to produce, or to
replace, a drawing or blueprint? Is it to include the entire
product life-cycle (another dimension of product definition)? Or
must it convey the as-designed product against which an as-
manufactured and as-maintained product can be compared? The
follow-on electrical product model is being developed in a narrow
domain (no blueprint, as-designed) to avoid the multi-dimensional
aspect possible and the related confusion. The resultant model
can be expanded later given a consensus on the larger domain PDES
product model.

Tolerancing ModelinQ Experiences - William B. Burkett

1. Introduction

This article is a summary of the experiences garnered by the
Tolerancing Application Group (TAG) from the PDES Initiation
Task. It is intended to represent the viewpoint of the TAG as a
whole, but some of the thoughts expressed herein are those of the
author and may or may not reflect the feelings of the entire
committee.

One of the objectives of the PDES Initiation Task was to
serve as an educational prototype of a working PDES organization.
The intent of this article is to report on the lessons learned"
from that task. The topics covered here will start with the
generl procedure followed by the TAG and it's subsequent
interaction with the Logical Layer Committe (LLC). This will be
followed with a discussion of the major problems encountered, a
list of iportant observations made, and then a summary of the
entire process.

A description of content of the work of the TAG can be found
in Section 3.4.

4

2. Procedure Followed

The TAG was set up as an independent Application Layer Group
to develop a reference model of the information required to
tolerance a 3-D geometric model according to the ANSI and ISO
standards (ANSI Y14.5M 1982, ISO 1101, 1660). The model produced
was then delivered to the LLC and a review cycle involving the
LLC.and the TAG was started to monitor the cnversion/integration
process. Once the integrated model had been validated by the
TAG, the TAG's task was considered complete.

The TAG first met in early 1985 and spent eight months
developing the first draft of the Tolerance Reference Model
(TRM). Members of the TAG were Ron Bale (Caterpillar), Bil
Burkett (McAir), Bob Colsher (IGES Data Analysis), and Spencer
DePauw (Caterpillar). After the TRM was delivered to the LLC,
Mr. Colsher and Mr. Burkett spent the following four months
supporting the LLC's conversion and initial integration process.
During the last three months of the TAG's activity, Mr. Burkett
supported on the LLC's integration process and reviewed and
commented on the tolerancing subset of the integrated model.

There were three tasks undertaken by the TAG before an
actual modeling was started. First, a charter was prepared
outlining the scope of the TAG's activities and offering a
justification for the approach taken by the TAG. The second task
was a review of the work done by the PDDI project on the subject
of tolerances to determine the suitability of that work to the
needs of the TAG. The last task was the selection of a modeling
technique for the reference model. The TAG used a modified
version of the IDEF-l technique which was actually an extension
to enhance the ability of IDEF-1 to represent information (these
extensions were considered as "author conventions" in IDEF-I
terminology and originated from the PDDI'project).

The development of the model consisted mosty of reaching a
consensus on the interpretation of the standards and how that
interpretation could best be represented with the modeling
technique.

Once the TAG agreed on a "finalized" version of the TRM it
was delivered to John Zimmerman (Allied Bendix) of the LLC. It
was the LLCI's job to convert the reference model to a binary
Information Analysis (IA) model and integrate it with other
application reference models. From the integrated model,
entities were then defined in Data Specification Language (DSL).

As part of the review cycle, there were several in-person
meetings and numerous telephone conversations to verify/validate
that the meaning expressed in the TRM was maintained as the model
was converted to the IA model and integrated with other models.. Each time a new version of the converted/integrated model was

5

produced, a copy was provided to the TAG for review. The model
was finalized (as much as possible) in early 1986. The TAG did
not review the DSL specification formulation of the tolerancing
information.

The conversion and integration process discovered some
mistakes and unclear thinking in the orginal TRM. The TAG made
use of these discoveries to revise and correct the model. In
all, three versions of the TRX were created.

3. Soecial Considerations

There are several factors which influenced the modeling
processt that should be noted. First and most importantly, all
members of the TAG were very well versed in the subject area (the
ANSI and ISO standards). Second, Mr. Burkett was a member of the
PDDI project and was responsible for the approach to tolerancing
taken by that project; Mr. Colsher is chairman of the IGES
Drafting committee and responsible for the IGES approach to
dimensioning and tolerancing. Third, most members of tha TAG
were experienced with data modeling techniques before work was
started.

4. Problems Experienced

The biggest problem, obviously, was the amount of .time
required to satisfactorily complete the modeling/integration
process. The experience of the TAG and LLC held the time spent
to a minimum, but the entire process still took a considerable
length of time. The TAG spent about as much time in the review
process (with the LLC) as it spent to develop the origina TRM.
The amount of time that the LLC spent on the conversion and
integration process outside of the review process is difficult
for the TAG to gauge; a guess would be that the review process
constituted about ne-quarter of the time of the LLC spent on the
model.

Another problem that the TAG experienced during the
conversion/integration process also came up to a lesser degree
during the development process. By modeling the same information
using two different modeling techniques, it was very clear how
difficult it is for any diagramatic technique to represent
understanding of a particular subject domain. Human language
(and human understanding) is imprecise and inexact - diagrams are
not. It was very difficult to make the mental leap from the
understanding that the TAG had of the ANSI and ISO standards to
an expression of that understanding by means of a diagram.

The last major prolem experienced by the LLC (it didn't
really affect the TAG) was the fact that the TRM was very large,
looked complex and was, therefore, intimidating. This was

6

probably the result of overcompensation on the part of the TAG.
* Because of past experience with modeling techniques of limited

expressive power,the TAG attempted to get everything that they
knew about the subject domain into the model without resorting to
notes (such as the fact that a Flatness tolerance applies only to
planar faces). As a result, the model was semantically richer
(expressed more meaning) than a typical reference model, but it
was much bulkier, too. Once the LLC became familiar with the
model, the size did not turn out to be a problem because the
model was composed mostly of simple, similar, consistent
concepts.

5. ImDo-tant Observations

The following is a list of important observations made
during the entire modeling process. It is basically an
unstructured set of observations reflecting problems, benefits,
solutions, ideas which seemed to work best, problems with the
content of the model, and anything else which seemed to be
relevant.

"o A drafting representation of the tolerancing information
based on conventional graphical symbols (witness lines,
leaders, text position, etc.) cannot be generated solely from
the information contained in the reference model. Drafting
is a presentation concern which is "further away" from the
geometric model than tolerances.

"o The Logical Layer played the role of a model validator,
rather than a conceptual modeler. Most of the
conceptualization was done at the Application Layer.

"o Truly functional aspects of the PDES integrated conceptual
model did not at first drive the Logical Layer development
work. The PDES geometric entities at that time did not have
the necessary constructs to support the tolerance model (such
as topological constructs). (Instead, much time had been
spent on geometry and presentation reference models without
regard to the needs of the applications.) However, the needs
expressed in the TRM were eventually satisifed by the work of
the LLC.

"o The TRM was very "proactive". It described the subject
domain and contained well defined "links" to the integrated
model. It did not define geometry, yet it made certain
demands of it (i.e. topology).

o The fact that two subject experts were present during the
review process proved to be very valuable. Multiple points
of view allowed ideas to be played off of one another and
resulted in a more "accurate" model which was arrived at more

7

quickly. A single expert presents only a sigle viewpoint, so
the double coverage was very beneficial.

"o The TRM was well thought out beforehand so there wasn't much
ad hoc application modeling being done during the review
sessions. This allowed more time to be devoted to the
understanding and conversion of the model. This is not to
say that the review process (conversion and integration)
didn't uncover some bugs in the TRM; that process did prompt
several revisions of the TRX.

"o Knowledge of modeling was a key ingredient to the
communication between the TAG and the LLC during the review
cycle. By the time the last reviews were taking place, the
TAG was reviewing the LLC's IA models.

6. SumZ

Overall, the process followed by the TAG and the LLC seems
to have worked quite well and with a little experience (and more
than a little resources) could be used on a larger scale. Four
words succinctly summarize the process: Compose; Decompose;
Integrate; and Recompose.

The use of two data modeling techniques to support this
process was more a boon than a bane. Each technique has inherent
problems with expressiveness and understandability, but the use
of both minimize the effects of the problems. The conversion
process actually makes the models better because the weaknesses
of one technique are compensated by the strengths of the other,
thereby uncovering bugs in the original model. Perhaps in the
future when everyone is an expert modeler, one technique will
suffice. Curently, we don't understand either technique well
enough to fulfill our needs.

The conversion process forced the subject experts to dot
their "i"'s and cross their "t"'s. It was realized that the
understanding of the subject domain is inexact, incomplete and
often contradictory. The precision of the modeling technique
forces a formalization and rigor in the understanding of
information that words cannot convey.

The biggest weakness of the entire process and the source of
most of the problems are the tools used to support it. The tools
we have are good and are a big improvement over what was
previously done, but they still have problems which make them
difficult to use. Automated tools might help, if only for
generating graphics.

The only immediate solution for the problems encountered
during the work, of course, is experience. This problem is a
problem of any modeling technique and the best model is at best a

8

best guess. The biggest obstacle that a new modeler must
overcome is the flustered feeling that the ambiguity of the job
can cause. The solution is simply to ignore it; there is no
"right" way.

As for the time resource problem, it will become less of a
problem as people become better modelers and better understand
their subject domain. The entire process will still take a
significant amount of time, but it could be considered an
investment in a common understanding of an subject domain. A
common understanding improves both the completeness and the ease
of communication, and that is what we're all after, right?

FEM Modeling ExDeriences - W. R. Freeman

I applaud the overall approach to the creation of PDES, with
the three layer architecture, and the use of application experts
to initially define their "universes". Combing this with the
integration at the logical layer, and definition of the physical
file format AFTER the logical layer is completed gives a feeling
of a solid, sensible methodology. This methodology is
innovative, and if carried out as presented should result in a
consistent standards document with a relatively small, non-
repetitive list of flexible entities. There are a few flaws, but
they can probably be worked with if the project directors will
realize the limitations and plan and schedule the process to take

* them into account rather than force the methodology to fit into a
timetable. This is difficult with a volunteer organization, but
critical to achieve the advantages expected from the modeling
approach. I hope that it is possible to remain true to the
original process, even with the difficulties.

The primary problem at the application committee level is
actually getting the members to think "in the information plane".
The normal day-to-day work of most committee members is with
processes - that is, getting things accomplished; doing things to
other things, and with things. We can imagine that these
processes occur in a two-dimensional plane; let us call it the
'process plane'. The 'information plane' is where information
models reside, and is orthogonal to the 'process information
plane', and KEEPING THEM THERE is the real problem. Countless
hours have been spent discussing important issues (in the field
being modeled) that are irrelevant to the way that information
about that field is related. The problem of not understanding
the difference between the process of doing FEM and the list of
entities required to carry out that process, and their
interrelationships keeps coming up. If it seems that "important
issues" shouldn't be "irrelevant", remember that the model is of
data and the relationships between data, and NOT of the process
of finite element modeling and analysis.

9

It is critically important that at least one person with a
proper grasp of information modeling attend the majority (all is
better) of committee meetings when a model is being formulated.
This is especially important with the long hiatus between
meetings, and the variable membership of the committees.
Considerable time was spent each time attempting to bring new
members up to speed with IDEF, and keeping forgetful old members
in the information plane. If no reliable and respected modeling
semi-expert is available, much time will be wasted producing a
model of a process, not an information model. This is almost
guaranteed.

The second potential problem seen with the methodology is
the error of trying to run all three layers simultaneously. Given
the time constraints and the exploratory nature of the PDXS
Initiation Effort, it was acceptable and probably necessary to
run all three processes simultaneously. However, I would object
strongly to running the full scale PDES project on the same
schedule. If a technically solid PDES with good long term
viability is to be developed, adherence to the methodical and
systematic approach offered by the three schema architecture is
important.

The third problem with PDES is conceptual. While I support
the concepts and goals expressed by many of the people
contributing to this effort, I strongly suspect that not one in
five of the committee members has a real feel for the size of the
task being undertaken. There has probably been no previous W
attempt to organize the world over such a broad range of
applications. I'm fairly sure that the project is much larger
than most individual applications experts understand, and that
without proper understanding of the scope of this project it may
flounder or even fail. If the project is intentionally limited
in scope it could succeed. If the PDES project is kept as is
defined (rather open-endedly), AND SCHEDULING IS OVERLY
OPTIMISTIC, the appearance of failure will be the result of
regardless of the quality of the work. The scope of the project
is great, and realistic scheduling is needed, rather than
limiting the scope.

The need for high level planning on scope is in addition to
the need for a better understanding of the FUNDAMENTAL
interrelationships between different technology areas encompassed
by the PDES project. This need was first (and far more
competently) addressed at the Knoxville IGES meeting by Roger
Gale, and I recommend that his counsel on this subject be sought.

On the plus side, the natural language quality assurance
loop was used successfully to verify both the veracity of the
modeling for FEM, and to validate the conversion from IDEF to IA
modeling language. This is a valuable tool, and should be used
in the future.

10

Liaison between the application committees and the logical
layer integration personnel is very important. I frequently

* interacted with John Zimmerman during the Initiation Effort, and
it is amazing how severe the "can't see the forest for the trees"
problem can be. Application committee members frequently feel
that a model is clear when it is not, and logical layer
integration has a tendency to inadvertantly modify or even
destroy relationships. Liaison between these areas should be
close and occur frequently.

Overall, the PDES modeling approach is a real advancement
over the previous haphazard, cut and past approach to a standard.
A good bit of project leadership and committment by qualified
information modeling experts is required to make it work. I
sincerely hope that the project is successful since it will be a
real landmark of integration, communication, and order in a
disorderly world.

0

* 1

S

Appendix B

Original Loaical Laver Methodologv Paper

2

PDES Initiation Logical lAyeer Methodology

Principal Author: John Zimmerman, Allied/Bendix Aerospace, Kansas City

The primary mission of the Logical Layer initiation Effort is to develop
the definition of the logical entities required to meet the needs of all
applications within the initiation scope. This includes "generic entities"
which are required by two or more applications and "application specific
entities" which are used in only one application area. This set of
entities and their relationships is referred to as the conceptual schema.

The Primary goal of the PDES Initiation Logical layer Methodology is to
guide the Logical Layer Initiation Effort in the development of the
conceptual schema for Task 1 and Task 2 of the PDES Initiation Effort as
described in the PDES Logical Layer Charter.

The following are key success factors for this methodology:

1. Maximize usage of state-of-the-art conceptual modelling techniques and
tools.

2. Support the integration of the three PDES architectural layers
(application, logical, and physical) as described in "The Second PDES
Report".

3. Maximize the usage of human resources in development of the conceptual

schema by defining and establishing project roles.

* 4. Simplify the methodology as much as possible.

5. Give the methodology growth potential so that it can support future
PDES efforts.

6. Maximize the potential of the conceptual schema to serve as a central
resource from which all other PDES forms can be computed.

Methodology Overview

Refer to the accompanying figure for a graphical overview of the
methodology. The numbering of the models is consistent with the US
Position paper "Reference Models, Development Methodology, and Entity
Subsets for STEP" submitted to ISO/TC184/SC4/WGI by the US TAG.

The methodology is broken into three phases:

PHASE 1: Pre-conceptualization. In this phase all application area
reference models, regardless of modelling form, are reduced to binary form
to maximize potential for conceptualization and integration. When these
binary models are verified against the original application area-moodel they
are considered "qualified".

Uotl3;.. Arco___A.1 _

I uow

Pt5G4sc 2A.~~~~~ 4Al f-4cci
k-__ __ __ _ __ __ __ _

P4/ de JD.S/

FIGURE

PHASE 2: Conceptualization and Integration. In this phase conceptual
entities and relationships are discovered. An integrated conceptual modelO is built from which can be derived (via mappings) any application area
reference model. A conceptual architecture will be built that models all
conceptual categories. This architecture will be stored in a dictionary
which will be developed in this stage. It is in this phase that the
maximum potential of the conceptual schema will be realized.

PHASE 3: Post-Conceptualization. In this phase the binary conceptual
schema will be conditioned in preparation for development of the physical
file format. The conceptual schema is grouped into a nested record form
called Data Specification Language (DSL). This DSL form is the ultimate
deliverable to the physical file layer. The ultimate source of the DSL
will always be the binary conceptual schema.

Methodology Details

PHASE 1: Pre-conceptualization

Goal: To maximize the conceptualization and integration potential of the
application area models.

Input: Application area reference models.

Deliverable: A computerized binary model verified to be equivalent to the
original application area reference model.

Description: This phase of the methodology conditions the application area
reference model in preparation for conceptualization and integration. Ir
the PDES Initiation Effort application area reference models may be of any
form that has a reasonable degree of rigor. The conditioning process
converts these diverse forms into a single standard semantic form. The
standard semantic form is the binary model. Specifically, Nijssen's
Information Analysis Model (NIAM) will be used.

All application area reference models are manually reduced to binary form
and entered into an electronic data base (CDC's Information Ana•is
Support Tool - IAST). This model database is echoed back to the
application area in the form of natural language sentences derived manually
from the binary model and in computer-generated relational structures. The
relational structures are used for the validation of binary models that
have been translated from record-oriented application area models. The
natural language sentences are returned to the application area for
approval. The binary model is considered to be "qualified" when the
natural language sentences are approved and the relational structures are
verified to be equivalent to the original record-oriented model. It is
presumed that most application area reference models will be record or
relationally oriented.

Even though the computer generated relational model may be useful inO follow-on PDES efforts, its only use in the Initiation Effort is the
validation of record-oriented reference models. The deliverable of this
phase is the binary conceptual model.

PHASE 1 roles identified:

1. Model translators

2. Model software support tool technician

3. Liasion between application and logical layer to support natural
language verification.

4. Data modelling expert who is able to verify equivalency of the computed
form with the original application area reference models.

PHASE 2: Conceptualization and Integration

Goal: To build the conceptual schema and maximize its potential as a
central resource in the PDES Initiation Effort and to develop a conceptual
dictionary tool to hold t'.. components of a conceptual architecture.

Input: Qualified binary models of the application areas.

Deliverable: A computerized conceptual schema in binary form, and a
computerized data dictionary containing the conceptual architecture and
conceptual-to-application area mappings.

Description: It is in this phase that the actual conceptualization and
integration occurs. The reader is encouraged to refer to Appendix A which
is an excerpt from "The Second POES Report". It overviews and describes
the three layer architecture. This phase is the most challenging of the
three phases of the logical layer methodology. It is from this phase that
the crucial aspects of extensibility, stability, resilience, and technology
independence will be confronted. Some cultural resistance to this phase is
to be expected as it seems to draw out the process of getting to the
ultimate PDES deliverable, the physical file format.

As an initiating effort, this phase will start with popular concepts and
notions of conceptual schema that have been derived from ANSI/X3/SPARC,
ISO/TC97/SC5/WG3, NASA IPAD, and PDDI. The logical layer team realizes
that conceptualization across the broad spectrum of product data
represented in tihe application models is a new area for standards work.
The team also realizes that the conceptualization of engineering and
manufacturing artifacts is fairly new. The team expects to adapt the
principles of conceptualization as they apply to business systems to
engineering and manufacturing artifacts as much as possible, but realizes
that new conceptualization principles must be developed.

PHASE 2 is divided into two sub-phases, PHASE 2A and PHASE 2B. PHASE 2A is
concerned with the building of the conceptual schema from detailed
application area reference models (in a general sense a bottom-up process).
PHASE 2B deals with a conceptual schema architecture that will give
high-level structure for the guidance of PHASE 2A activities (in a general
sense a top-down process). It is anticipated that the software support
tools for PHASE 2A and 2B will be separate but manually coordinated. The
primary support teol for PHASE 2A will be IAST. The primary support tool
for PHASE 2B may possibly be a relational data base system such as RIM.

PHASE 2A Description: The construction of a conceptual schema is not a

well-defined process and this methodology will serve only as a guide.

The following tasks are identified:

1. Develop a set of entity categories. To the greatest extent possible
these categories will be generic in that they may be used across a
broad set of applications. These categories can be discovered as the
qualified application reference models are being reviewed (bottom-up)
or an initial set can be adopted provisionally from other sources such
as PDDI.

2. Develop a set of structural categories. A structure in this case is a
recognizable pattern of inter-related entities that appears in multiple
application area models. The conceptual schema will consist of generic
entities, generic structures, and application specific structures.

3. Examine each qualified application area model and attempt to break it
completely into generic entities, generic structures, and application
specific entities. This partitioning of the application area model is
recorded in the data dictionary (this tool is created by PHASE 2B
activities.).

4. Once the application area model has been completely translated into the
conceptual schema, logical layer workers in conjunction with
application layer workers verify that the original application area
model can be recovered. It is the job of the logical layer worker to
be familiar with the generic entitiies and structures. It is the job
of the application area worker to find a best fit for his application
entities. A cooperation effort between logical and application workers
is crucial in this task.

5. Once the application area model is verified to be recoverable from the
conceptual schema all mappings must be defined and recorded in the
dictionary. The logical layer team may possibly not be concerned in
the Initiation Effort about formally defining these mappings although
in future PDES efforts it will become more important. In this case
narrative sentences may suffice.

6. Make any adjustnents to the conceptual schema (hopefully an addition of
a new generic entity, not a change to an existing generic entity). It
may be necessary to regressively test all previous application area
models for recoverability after a major change to the conceptual
schema.

PHASE 2B Description: This activity is similar to the strategic data
planning activity for the development of a large integrated business
information system. The tasks are as follows:

1. Adopt a conceptual schema architecture. Appendix B is an excerpt from
the US position paper "Reference Models, Development Methx•dology, and
Entity Subsets for STEP" submitted to ISO/TCl84/SC4/WG. The subsets
referred to in this paper are the major architectural components we are
looking for. These architectural components will be dictionary
categories. Refer to Appendix B for a complete rationalization for the
need of a conceptual schema architecture.

2. Develop a conceptual dictionary tool to hold the architectural
components. It would be advantageous if this dictionary were an
integral part of the IAST but the PDES Initiation Effort delivery
schedules will not permit this. It is suggested that a simple
relational tool such as RIM be used provisionally. The following
dictionary categories would be a start: Life Cycle Stage, Discipline,
Functional Area, Application Area, Class, Entity, Version. This
initial set of categories should greatly assist in giving the
conceptual schema development project direction and cohesiveness. An
effort should be made to keep the number of dictionary categories as
small as possible. Obviously new categories must be added to cover the
mapping of the conceptual schema to application area models.

PHASE 2 roles identified:

I. Model software support tool technician

2. Liason between application layer and logical layer

3. Dictionary administrator

4. Conceptual model administrator

5. Data architect who has broad knowledge of engineering and manufacturing
life cycle, disciplines, and applications.

6. Data analyst

PHASE 3: Post-Conceptualization

Goal: To condition the conceptual schema in preparation for conversion to
the PDES exchange format.

Input: The binary conceptual schema and mappings to application area
models.

Deliverable: A complete specification of the conceptual schema in Data
Specification Language (DSL).

PHASE 3 Description: The purpose of this phase is to convert -the binary
conceptual schema into a grouped logical record form (a structural form).
This form is still neutral as it has not yet been committed to a physical
form. The Data Specification Language (DSL) has been chosen as the PDES

Initiation Effort standard structural form. It was chosen because its form
(nested array) naturally models the hierarchical structure of most
engineering and maunfacturing artifacts. It is also a compact textual form
suitable for documentation.

The major task is the actual conversion of the binary conceptual schema
into DSL. For the PDES Initiation Effort this will be done manually but it
is suggested for follow on efforts that this conversion be automated.

The DSL specification oi the conceptual schema represents the official
documentation, however the binary conceptual schema will always be the
source from which the DSL specification is generated. The binary
conceptual schema is the principle resource for the Initiation Effort.

PHASE 3 role identified:

1. Translator from binary conceptual schema to DSL

Appendix A

0

4.4 TOE A.RCU1'ECTURE OF THE PDES

The task of developing a data standard for industries using CAD/CAM is a
huge undertaking. The problem must be broken down Into smaller pieces in

order to make progress. Modularization is the separation of a process into

small, separate functions with precise interfaces between the functions.

This separation makes each function manageable and eases maintenance

since changes can be isolated to a specific function. Modularization

provides flexibility to make changes since, as long as the interface between

functions remains the same, one function cannot tell if another has been

changed or even replaced. Modularization of the development process is a

philosophy recommended for the PDES development. That is, different

groups will be tasked with different functions of the design process. The

function of data analysis and design will be partitioned into three parts

based on the level of abstraction of the data. Thus, the application

information will be separated from the conceptual entity definition which
will be separated from the physical definition. Each such partition will be

called a layer.

As alluded to above, the PDES will be structured into a three layer

architecture. These layers correspond almost identically with the layers of

schema in the ANSIVX3/SPARC three schema architecture (cf. appendix

C.1.1) for defining and implementing data bases. The layers are described

in the following sections and illustrated by figure 4-3.

4.4.1 Appliation/IUser Layer

In the chosen architecture, the top layer is the user or application layer.

This is the layer at which the ultimate user lives and thinks. He formulates

his data requirements in his own terms stating concisely what he needs. He

draws from his own experience and from the established terms,

conventions, techniques, and methodologies of his discipline. He isn't

concerned with the number of different ways that a single thing, event, or

phenomenon can be represented. He isn't concerned with analogous notions

used by different applications. For example, he doesn't care-thit electri•aJ

-31-

30-

0

ILa 0 uuIL~
*P

UjU

w LU

0 z 0
w z

Iii

-J Z

CC

-32-

and piping networks share much in common. The different application

groups such as Electrical Products or Finite Element Modeling define the

information relevant to their application and model the interrelationships

that exist between the informational entities. This information is defined

by using a reference or information model. The reference model helps

structure and validate the data in the application.

This layer of the Standard contains as many different applications and

entities within those applications as there is apparent need for.

4.4.2 Logiml/Cooeeptual Layer

The second layer is the logical or conceptual layer. This is where the data

content for the set of generic entities is defined. This set should be a

normalized, minimumly redundant set (cf. see. 4.3) that supports the

information defined by the applications.

At this layer, logical commonality will be sought across all applications.

Things, events, and phenomena which are identical except for the renaming

of components will be treated as being logically identical. Thus the

connectivity of a piping network and an electrical network will be

considered logically identical. Also at this layer, there will be exactly one

way, not several, to represent a directed line segment, perhaps by a point

together with a direction vector.

At this layer, complex things, events, and phenomena will be constructed

of less complex things, events, and phenomena whenever possible. The

purpose is to maximize the utilization of conversion processors !or simpler

entities in the process of converting a complex entity.

Similarities in the information requirements of different applications will

be integrated into single conceptual entities. The integration of different

application requirements wiU control the definition of redundant entities

and will help to ensure a consistent, coherent entity set.

-33-

The entity definitions at this layer will be in a logical form. That is, the

data content of an entity will be defined but not the physical format. As

described in Section 4.2, a definition language will be defined in which the

entities will be specified. This language will be a formal, rigorous language

which will help reduce ambiguity as is present in the IGES. In addition,

reference models wil be built to verify consistency among the definitions.

The data content of the set of application-specific entities will also be

defined at this layer. These entities will be defined in the same rigorous

manner as the generic entities above, that is with their data content

specified using a formal definition language and reference models.

It is expected that the concepts of the logical layer will be organized a.s

the product data itself is organized. This organization is discussed in

section 2.1 and is outlined in figure 2-1.

4.4.3 hTsicyal/Itrtrl Layer

The bottom layer is the physical or internal layer. This layer contains one

or more actual file format definitions. It consists of the desceiption of the

sections, records, fields, sequencing, and associated formats for the

exchange file. Again, a formal definition language will be used to reduce

ambiguity. A reference model will be built for each format definition.

Since the content is separated from the format, multiple formats can be

defined for logical entity definitions which only affect the read/write

routines of a processor. Thus the majority of a PDES processor will be

independent of the file format.

Appendix B

ARPP E'irl £

6.0 Subsets of the Conceptual Schema
One or more mechanisms are required within the Conceptual Schema for

defining subsets of entities. These will be used in a variety of ways for

creating, understanding and using STEP.

6.1 Recuirements for Subsets

6.1.1 Human Understanding of the Standard

0 T3 understand any large collection of facts (such as the

Conceptual Schema), a human must categorize the facts into

collections (subsets) which are intellectually manageable.

-11-

0

o The names on the subsets can be used to understand the scope of

the collection.

o Subsets for the Conceptual Schema act as a directory for users

or logical modelers (developers) to find existing entities that

perform a function.

o An entity can be better understood if other members of its

subset and the nature of the subset are known.

o Users can match an application with others which can do the same

or related jobs based upon Conceptual Schema subsets.

6.1.2 Functional Reouirements

o Subsets provide an abbreviation efficiency within the reference

models. For example, when a certain attribute may be any valid

curve, we can specify the class "CURVE" rather than enumerating

all valid curves.

o Schema management procedures may be used to propagate common

attributes to every member of a class.

o Subsets can be used by validation checking software to certify

translators and other applications.

6.1.3 Management of Development

o Subsets of the Conceptual Schema represent subsets of the work

required in developing the standard. They can be used to define

the scope, development milestones, and subdivision of labor and

expertise.

o A uniform system of subsets may be useful in recognizing voids

in the standard. For example, if analysis reference models had

been defined for mechanical and architectural disciplines, but

not for electrical, the void would be obvious.

-12-

o Versions of the standard could be regarded as natural,

time-dependent, subsets.

6.2 Identification of Subsets

The best method of subset identification would be to exercise the

methodology discussed in Section 4 and use logical layer processing to help

discover natural functional subsets. However, logical layer processing

would be enhanced by a pre-existing, coordinated set of subsets selected

fron common knowledge of data, functions, and applications within the

CAD/CAM cornuunity. This set will undergo continual review and updating as

the standard develops -in the logical layer deliberation.

6.3 Proposed Subset Types of the Conceptual Schema

To address all of the above, a network of subsets of several types are

required. The structural relationships between the types is depicted in

Figure 3. The types are defined as follows:

Versions - Time sequenced sets of the entire standard. Each

version would contain all entities and subset

structures valid in a particular release of the

standard.

Functional Area - A high level set of application area subsets can be

used for a particular function. It can be regarded as

a two dimensional matrix of engineering disciplines and

product life cycle as shown in Figure 4. Each cell on

the matrix defines a functional area and may contain

multiple application area subsets. This chart and

concept is adapted from document (4). In that document

the matrix is part of a 4 dimensional matrix called

"Level". The term "Level" derived primarily from

another dimension which classified geometric

complexity. That concept is part of a following-class

structure.

-13-

-14-

FUNCTIONAL AREAS

PRODUCT7 LIFE CYCLE

DISC!?LIN7E DESICN ANALYSIS PRODUCTION ASSEMLY CONTROL PRODUCT SM??0R:

ELTEC-.. ENC.
E.LZC-.O% ICS

DESATI IC1k

aItR RAARSGNM

-15-XCH AR ESC

* Application Area - A set of entities and classes for modeling the concepts

of a particular application (such as forging design) or

related applications (such as forging design and

manufacture). Application area subsets may apply to

multiple Functional Areas; e.g. FEM Application Area

will be used for analysis in several disciplines. An

application area may contain other application areas;

e.g., manufacturing forging area may be different from

but may include design forging area. A combination of

version and application area could be used to specify

capability of an application.

Class - A set of entities or classes (but not both) which are

semanticly similar. Each entity is contained in

exactly one class. Each class is contained in zero or

one higher level class.

m A class may be generic or application area specific.

This means it may be used in multiple applicdtion areas

or may simply collect the entities which are unique to

.a single application area.

In Figure 3 the relations between subset types and entities are

represented as single diamond leaders for one-to-many relations and double

diamond leaders for many-to-many relations.

See Appendix B for-the reconmended classes and entities for STEP.

6.4 Storing Subset Definitions

One method for defining subsets within the conceptual schema is the

"class" structure defined in the Data Specification Language in WG1 N20.

Additional methods may be required, particularly for versions.

I,.

- 16-

STEP Classes

2.1.1 Geometry/Topol ocy
2.1.2 Tolerance
2.1.3 Form Feature
2.1.4 Part/Assembly
2.1.5 Administrative & Control Generic Design Classes

2.1.6 Constraint Dependency (Used by Multiple Life

2.1.7 Material Cycle Stages)

2.1.8 Process

2.1.9 Instances

2.2.1 Analysis

2.2.2 Manufacturing

o Planning

o Fabrication Classes for Specific

o Assembly Stages of Product Life

2.2.3 Quality Assurance Cycles OR Specific

2.2.4 Testing Application Areas

2.2.5 Product Support

2.3.1 Product Manifestation

o Documentation

o Drafting

o Bill of Materials

0

o Display

2.3.2 Metadata

2.3.3 Parametric Design

2.3.4 Data Base

2.3.5 User Defined Entities

Appendix B

Figure 1

-23-

Appendix C

Logical Layer Content

Task 1 Deliverables

Cl Wireframe Geometry Resource Model

C2 Presentation Resource Model

C3 Flat Plate Mechanical Part Discipline Model

Task 2 Deliverables

C4 Electrical Schematic Application Model

CS .Tolerancing Application Model

C6 Finite Element Modeling Application Model

C7 Topology Resource Model

C8 Geometry-Topology Associativity Resource Model

3

Appendix Cl

Task 1

Wireframe Geometry Resource Model

(RESOURCE)

C1.1 Initial Model and Documentation

C1.2 NIAM Model

C1.3 DSL Model

4

Appendix Cl.)1

Task 1

Wireframe Geometry Initial Model and Documentation

(RESOURCE)

0

S• • • um m • n nunnmun un lnll nu | |

October 10th, 1985

PROPOSED WIREFRAME GEOMETRY FOR PDES

Edward Clapp
IBM

The first draft of this document was the result of the February
1985 Cincinnati meeting of the PDES Logical Layer Initiation Task
Group. The major influences for this proposal were IGES 3.0, the IGES
Experimental Solids Proposal, and the personal idiosyncrasies of those
present at that meeting.

I have received written comments from a number of people, which are
available as Curves and Surfaces Committee documents CS85-2 to CS85-l0.
We have also discussed it at two IGES meetings. Unfortunately it has
not been possible for me to present it to the ISO TC184 SC4 WGl, though
the German delegation has extensively commented on it. All of these
have been most welcome. My summary of these comments and responses to
them is document CS85-16.

This document is the proposed wireframe geometry for PDES. There
are changes but this does not represent a major technical revision of
the first draft in terms of the content of the geometry. I have attempt-
ed to more fully explain some of the constructs and the reasons for them.
Where there was controversy, I have so indicated.

The entity set has been divided into two parts. The first is that
which is explicitly geometry. The other is a collection of entities
needed to support geometry and a discussion about the things that we
need to be able to say symbolically about the geometry. This includes
some discussion on definitions and instancing, external referencing,
and grouping.

The text entity has been dropped as the Presentation portion of PDES
is now well underway.

I think this paper does address the wireframe portion of geometry
adequately. It is not complete in that:

- we need some sort of formal language to express these constructs
precisely. I have used an informal Pascal-like language here.
For the geometry of curves, this is sufficient to understand the
intent. For the kinds of ways we need to be able to relate the
geometric entities, it is not.

- parameterization of curves, needed to define surfaces, is in-
complete. This will be addressed when we start work on surfaces.

- 2D offset curves can be added when parameterization has been com-
pleted.

- some mechanism for parametric evaluation of geometry is needed,
but that is beyond the scope of this effort.
geometric tolerancing is inadequate. Contributions from anyone
wishing to make them are welcome.

-1-

- topology for B-rep modeling needs to be addressed in the context
of this proposal.

- also needed is a general framework in which these entities are
used; in particular descriptions of some of the structural ent-
ities such as model, view, drawing, and library.

The people who helped most in preparing the original document were:
Steve Bodnar, CDC
Richar Fuhr, Boeing
Don Hemmelgarn, ITI
Tom Railing. ITI
Doug Schenck, McDonnell Douglas
Chia Hui Shih, SDRC
Peter Wilson, GE

Subsequently, J.C. Kelly (Sandia), John Zimmerman (Bendix), and
Paul Thompson (CDC) made a number of helpful comments as a result
of attempting to use the document in creating an IA model for wire-
frame geometry.

However, final responsibility for any errors and/or omissions is mine.
Comments, verbal or in writing, are requested and should be directed
to me at

IBM Dept 75E
11601 Wilshire Blvd.
Los Angeles, CA 90025

Telephone: (213) 312-5975.

2-

The primitives are positions, directions, and scalars. The geom-
etry is limited to points and curves, both bou .Aed and unbounded.
Vectors are defined but not used, as we found it more natural to work
with the direction portion in constructing the conics.

All entities may be named; however the entity name is always op- S
tional. The symbolic use of names has not been completely worked out

yet. For this document the type 'Pointer' will be used to hide some of
the various ways entities may be used or referred to. This is a complex
problem that is not fully addressed here. The examples at the end of
this section and the section on grouping mechanisms provide some dis-
cussion of this issue.

We came to a number of conclusions about the geometry and how it
should be treated:

We attempted to pick a minimal set of geometric entities. Where
this rule has been violated, I have explained the reasoning behind
our choices.

2D and 3D geometry have been separated explicitly. This saves
space for 2D data and makes it explicit when data is planar.
This has been a controversial issue. However, I think that we
made the correct choice. There are systems that are inherently
2D: drafting coordinates, parameter space, and 2D viewing coord-
inates. Offset curves need to be 2D. The IGES AEC committee
did a survey of vendors' use of subfigures which indicated that
the distinction would be of use.

It is necessary to be able to say as much symbolically as is
practical. It is better for an exchange file to be able to
state that two curves share a common endpoint or that two com-
posite curves share a segment than to try to compute this sort
of information. Since we are attempting to build a standard
that will be able to grow to meet future needs, these sorts of
capabilities need to be built into the standard even if there
is no great need for them at present. This is especially true
for solid modeling considerations.

A generic set of entities should be used for geometry so as to
be able to use them also to deal with topology and numeric
control. I did not discuss here how to implement these other
uses (but hope to deal with topology no later than 3/86).

We need ultimately to say precisely when an entity is well de-
fined. Some of this is syntactic and some semantic. The form-
alisms for the syntactic aspects are well known and understood;
those for the semantics are not. The geometric tolerancing
issues discussed here are the beginnings of that issue as seen
by the computational geometer.

We have tried to choose the most stable representations for the
commonly used CAD/CAM geometric entities. By stability we mean 0

-3-

that a small change in the data for the entity, due perhaps to
truncation in its ASCII representation, results in a small
change in the pointset defined by the geometry. The case of
the original definition of the IGES conic entity is a good
example of an unstable representation.

I,.

C-

-4

PART 1: GEOMETRY

The Wireframe geometric entities are points and curve segments. To
aid in their definition we have some auxiliary entity types:

Positions
Directions
Vectors
Curves
Transformation matrices

Tolerancing is addressed here as strictly a geometric approximation
issue.

-5-

Position

Position2 = entity type
Name : optional string;
X : real;
Y : real;
end;

Position3 = entity type
Name : optional string;
X : real;
Y : real;
Z : real;

* end;

There is a subtle distinction made here between Positions and Points
(defined later). Points are considered to be CAD/CAM entities which
are to be translated as geometry; Positions are constructs used in
defining geometry (for example, control points for a B-spline). In
use in an exchange syntax, one would want to allow any Pointer to
a Position to be satisfied by a Pointer to a Place.

The objection to homogeneous coordinates is that they are only
used for control points for splines and it then becomes difficult
to symbolically express that the same point is being on two or
more curves if the homogeneous coordinate is different.

-6-

Direction

Direction2 = entitytype
Name optional string;
X real;
Y real;
end;

Direction3 entitytype
Name optional string;
X real;
Y real;
Z real;
end;

where
(X.*2 + Y**2)**l/2 = 1 for Direction2
(Xv2 + Y----2 + Z':*2)*I/2 = 1 for Direction3

We have made Position and Direction the lowest level of what can be
addressed symbolically. It might be desirable, and it would be
simple, to allow addressing the component scalars.

Vector

Vector2 = entitytype 0
Name : optional string;
Direction : Position2;
Magnitude : real;
end;

Vector3 = entitytype
Name : optional string;
Direction : Position3;
Magnitude : real;
end;

This representation allows for least error in cases where the
vector magnitude is small. It also makes it easy to symbolically
express that two or more vectors have the same direction.

0

Transformation Matrix

Trans mtx2 = entity_type
Name optional string;
NewX Pointer(Direction2);
NewY Pointer(Direction2);
NewO Pointer(Position2);
end;

Trans mtx3 = entitytype
Name optional string;
NewX Pointer(Direction3);
NewY Pointer(Direction3);
NewZ Pointer(Direction3);
NewO Pointer(Position3);
end;

The transformation matrix is as defined in IGES. Most systems
probably store the data in this fashion. The rotation portion is
viewed as orthonormal vectors. As such, they must meet the criteria
for being perpendicular and unitary established under the heading of
Geometric Tolerance.

If one wishes to scale in any direction, this can be done separately
(consistent with the definition and use of vectors), with scale factors
for the different directions.

Transformation matrices may be applied to geometry, instances of
geometry, and to groupings that have explicitly been labelled as
movable (or copyable) in space.

0

Curve

A curve is to be thought of as a parameterized, continuous, possibly

unbounded curve in space. The curve entities are:
- line
- circle
- ellipse
- parabola
- hyperbola
- spline
- composite curve

Note that the last three of these have bounded parameter spaces.

The choices made for the representations of the conics reflect:
- geometric stability.
- one of the many conflicting sets of design intent.
- the expectation that most systems already have available pro-

cedures to go between their native system representations and the
geometric ones used here. This is one of the major reasons why
the B-spline was not chosen as the sole representation form for
curves.

Curves are bounded by the segment entity type. A Segment consists
essentially of a Pointer to a curve (or the definition of the curve
embedded within the segment) plus the endpoints of the segment.

A number of the comments suggest that the first draft failed to des-
cribe our intent as to the use of curves and segments with sufficient
clarity. We had intended that the language for PDES should make much of
this transparent to systems not interested in the flexibility we created.
We do not, in general, expect that people will be passing lines, conics,
and splines as they do now in IGES. Rather, they will be passing seg-
ments composed of these entities. We have tried to set up the informa-
tion content of these entities so that the PDES syntax could deal with
them in a straightforward and efficient manner. The examples given to-
wards the end of this paper should be of some help in understanding this
issue.

C
Some notation has been set up to describe the parametzrization of

the conic sections:

Mtx(A.B,C) is the rotation matrix created by using 3D vectors A, B,
and C as the columns of the 3X3 array. If A and B are 2D, the third
coordinate of the corresponding 3D vector is 0.0.

Tr(X) is the transpose of the vector X.

A X B is the cross product of vectors A and B.

"-9-

Line

Line2 = entitytype
Name : optional string;
Pt2 : Pointer(Position2);
Vt2 : Pointer(Direction2);
Parm : optional parameterization;
end;

Line3 = entitytype
Name : optional string;
Pt3 : Pointer(Position3);
Vt3 : Pointer(Direction3);
Parm : optional parameterization;
end;

where
Pt2 (Pt3) is a point on the line.
Vt2 (Vt3) is the direction of the line.

and the default parameterization is
C(u) = Pt + Vt*u

Two lines are identical as point sets if they have the same named
Position and Direction (i.e., the referencing is symbolic). When
we define parameterization techniques, they may still be different
lines if the parameterizations differ. This distinction between
point sets and parameterized curves will be maintained for the conics.

-10-

Circle

Circle2 = entitytype
Name : optional string;
Center : Pointer(Position2);
Radius : real;
Sdir : optional Pointer(Direction2);
Parm : optional parameterization;
end;

Circle3 entitytype
Name : optional string;

SAxis : Pointer(Direction3);
W- Center : Pointer(Position3);

Radius : real;
Sdir : optional Pointer(Direction3);
Parm : optional parameterization;
end;

where
Axis is normal to the definition plane of the circle

(the value of Axis for the 2D case is (0,0,1)).
Center is the center of the circle.
Radius is the radius of the circle
Sdir points from the center to the start point of the circle.

and the default parameterization is
C(u) = Center

+ Radius*Mtx(Sdir,Axis X Sdir,Axis)*Tr(cos u,sin u,0.0)

r

-1±

Ellipse

Ellipse2 = entitytype
Name optional string;
Center Pointer(Position2);
Mjdir Pointer(Direction2);
Axmj real;
Axmn real;
Parm optional parameterization;
end;

Ellipse3 = entity_type
Name : optional string;
Axis : Pointer(Direction3);
Center : Pointer(Position3);
Mjdir : Pointer(Direction3);
Axmj : real;
Axmn : real;
Parm : optional parameterization;
end;

where
Axis is the normal to the definition plane of the ellipse

(the value of Axis for the 2D case is (0,0,1)).
Center is the center of the ellipse.
Midir is the direction of the major axis of the ellipse.
Axmj is the magnitude of the major semi-axis.
Axmn is the magnitude of the minor semi-axis.

and the default parameterization is
C(u) = Center

+ Mtx(Mjdir,Axis X Mjdir,Axis)*Tr(Axmj*cos uAxmn*sin u,0.0)

12

-12-

Parabola

Parabola2 = entitytype
Name : optional string;
Vtxpt : Pointer(Position2);
Faxis : Pointer(Direction2);
Fdist : real;
Parm : optional parameterization;
end;

Parabola3 = entitytype
Name optional string;
Axis Pointer(Direction3);
Vtxpt Pointer(Position3);
Faxis Pointer(Direction3);
Fdist real;
Parm optional parameterization;
end,

where
Axis is the normal to the definition plane of the parabola

(the value of Axis for the 2D case is (0,0,1)).
Vtxpt is the vertex of the parabola.
Faxis is the direction of the axis of the parabola.
Fdist is the focal distance of the parabola.

and the default parameterization is "
C(u) = Vtxpt

+ Mtx(Faxis,Axis X Faxis,Axis)9Tr(u-ýý*-2/(4*Fdist),u,0.0)

-13-

Hyperbola

Hyperbola2 = entitytype
Name : optional string;
Center : Pointer(Position2);
Mjdir : Pointer(Direction2);
Axmj : real;
Axmn : real;
Parm : optional parameterization;
end;

Hyperbola3 = entitytype
Name : optional string;
Axis : Pointer(Direction3);
Center : Pointer(Position3);
Mjdir : Pointer(Direction3);
Axmj : real;
Axmn : real;
Parm : optional parameterization;
end;

where
Axis is the normal to the definition plane of the hyperbola

(the value of Axis for the 2D case is (0,0,1)).
Center is the center of the hyperbola.
?Mjdir is the direction of the major axis of the hyperbola.

When positioned at Center, it points to the chosen branch
of the hyperbola.

Axmj is is the scalar magnitude of the major semi-axis of the
hyperbola.

Axmn is is the scalar magnitude of the minor semi-axis of the
hyperbola.

and the default parameterization is
C(u) = Center

+ Mtx(Mjdir,Axis X Mjdir,Axis)*Tr(Axmj*sec u,Axmn*tan u,0.0)

where -PI/2 < u < PI/2.

14-

Spline

Spline entitytype
Name : optional string;
Dim : integer value(2..3);
Order : integer value(2..maxint);
Ctlpts : array(O..K) of Pointer(Position);
Weights : optional array(O..K) of real;
Knts : case of

array(-(Order-l)..(K+l)) of real;
array(-(Order-l)..(K+l)) of integer;

end;

where
Dim is the dimensionality of the spline.
Order is the order of the polynomial.
Weights is the array of weights of the control points if the spline

is a rational one.
Ctlpts is the array of control points. They are all either Position2

or Position3 and must agree with Dim.
Knts is the knot sequence. It is either an array of real numbers

or an array of integer values (in the uniform case).
K is one less than the number of control points in the spline.

It is arbitrary but must be greater than 0.
maxint represents the largest integer the computer can represent.

This is merely a notational convenience for saying that the
order must be at least 2 - i.e., the spline must be at least
linear - but otherwise of arbitrary order.

The B-spline was chosen as it:
- provides a stable representation form;
- it completely describes the class of polynomial splines;
- is used by a large (and increasingly so) percentage of CAD/CAM

systems as their representation scheme for curves.

The spline has been limited to being 2 or 3 dimensional. For NC and
.'!. other use in the future it may be desirable to relax this restriction.

This why we did not create types spline2 and spline3.

Further clarifying details of computation of B-splines may be found
in the IGES documents. The spline information used here and the nota-
tion, except for the uniform spacing case, is as found in the IGES 126
entity.

-15-

It is desirable that the syntax of the file structure be able to ex-
press repeated knots and control points in some compact manner. One
way of doing this would be for the default values in sequences of tuples
to be the coordinate of the previous tuple.
Examples:
(1) in a knot sequence,

2,,3
would be the same as

2;,2,3
(2) in a sequence of ordered pairs

2,3, ,,6,7
would be the same as

2,3,2,3,6,7
if the sequence were really (2,3),(2,3),(6,7)
(3) in a sequence of ordered pairs

2,3,,5,6,7
would be the same as

2,3,2,5,6,7
if the sequence were really (2,3),(2,S),(6,7)

0
"-16-

Composite Curve

comp constituententity2 = record
Constituent : Pointer(Segment2);
Sense : optional boolean;
Cntseg : optional integer values(0..2)
end;

comp constituententity3 = record
Constituent : Pointer(Segment3);
Sense : optional boolean;
Cntseg : optional integer values(O..2)
end;

CCurve2 = entitytype
Name : optional string;
Cntflg : optional Integer Values(O..2);
Closeflg : optional Boolean;
Seglist : list of comp constituententity2;
end;

CCurve3 = entity type
Name : optional string;
Cntflg : optional Integer Values(O..2);
Closeflg : optional Boolean;
Seglist : list of comp constituententity3;
end;

where
Sense is 'T' (default) if the underlying curve segment has the same

sense as the composite curve. Otherwise, sense is 'F'.
Cntflg indicates whether the curve is:

0 - continuous (CO is required)
1 - has continuous tangent direction
2 - has continuous curvature direction

Cntseg indicates the same for the point common between this segment
and the next.

Closeflg is 'F' (default) if the curve is open, 'T' if closed.
Seglist is an arbitrarily large list of constituent entities.

The constituent curves must have the correct directionality. That is,
the end point of one is the start point of the next. This is some-
thing that can be said symbolically by having the end of one curve
and'the start of the next pointed to by name. It can also be tested
for by determining the points are within a tolerance to one another.
The former method is the preferred one.

They must also have the same dimensionality. The composite curve is
either 2D or 3D so all of the constituent elements must be 2D or they
must all be 3D.

-17-

There has been a request that the CO requirement be dropped. This
would impose no great hardship on PDES processors or the specification.
We would need to spell out in the standard when this was required. E.g.,
loops in topology would need to be CO.

The parameterization of the composite curve is the inherited parameter-
izations of the constituent curve segments.
That is, if we let

C be the composite curve;
N be the number of constituent curves;
CC(i) be the i-th constituent curve (1 <= i <= N);
PS(i) be the parametric value of the start of CC(i);
PE(i) be the parametric value of the end of CC(i);
T(i) be the sum from j=l to j=i of (PE(j) - PS(j)),

where T(O) = 0.0. (T(i) is the accumulated parametric
length up to the end of the i-th constituent).

Then
(1) the parametric values of C range from T(O1 to T(N);
(2) for 0 <= u <= T(N),

C(u) = CC(i)(u - T(i-l) + PS(i))
where i is such that T(i-l) <= u <= T(i).

0
-18-

Point

Point2 = entity type
Name : optional string;
Position : Position2;
end;

Point3 = entity_type
Name : optional string;
Position : Position2;
end;

-19-

Curve Segment

Segment2 = entity_type
Name : optional string;
Cry : optional Pointer(Curve2);
Stpt : Position2;
Endpt : Position2;
Pst : optional real;
Pend : optional real;
end;

Segment3 = entitytype
Name optional string;
Cry optional Pointer(Curve3);
Stpt Position3;
Endpt Position3;
Pst optional real;
Pend optional real;
Path optional boolean;
end;

where
Cry is the curve that is bounded by the endpoints.

Cry is optional as the default is a line segment,
whose definition is in terms of its endpoints.

Stpt is the start point on the curve.
Endpt is the end point on the curve.
Pst is the parametric start point of the curve.
Pend is the parametric end point of the curve.
Path is 'T' if the segment is counterclockwise as seen from the

Axis direction (the value of Axis for the 2D case is
(0,0,1)). Otherwise it is 'F'. The default is 'T'.
This is only needed for the closed curves (circle,
ellipse, and closed composite curve) when there is
ambiguity as to the path the segment is on.C.

The endpoints are the primary means of trimming segments. This makes
explicit when continuity is desired. Parametric values were specified
as being optional and were intended to be used only in those cases
where the curve was self-intersecting.

Pst and Pend must be used if the curve has more than one parametric
value for either the start or end point. That is, if there are t0
and tl such that

Stpt = crv(t0) =crv(tl) or Endpt = crv(tO) = crv(tl)
Otherwise, they need not be used.

The direction of the curve segment is from the Stpt to Endpt.

-20-

It is desirable that the syntax of the file structure be able to ex-
press curve segments which are defined in terms of already bounded
curves (e.g., full circles and ellipses, splines, composite curves)
and in have the same endpoints in some compact manner.

f0

-21-

Geometric Tolerances

There seem to be two distinct sorts of tolerances:

T V to indicate that two vectors are perpendicular or parallel.

T P to indicate that two points are identical or that a point
is on a curve.

TV can be used as follows:

SVI is parallel to V2 iff (I-TV) < abs(Vl dot V2) < (I+T_V)

V1 is perpendicular to V2 iff 0 <= abs(V1 dot 112) < + TV

VI has magnitude 1 iff (1-TV) < abs(Vi dot VI) < (I+TV)

TP can be used as follows:

P1 = P2 iff dist(PI,P2) < TP

P1 is on C1 iff dist(Pl,Cl) < TP

where P1 and P2 are points and CI is a curve.

Also, for open bounded curves one can require that
dist(Start_pt,End_pt) > T P

and for closed bounded curves one can require tna.
dist(Start_pt,End_pt) < T P

Of course, computationally one would probably wish to use T -P*2
and distW2.

Discussions in the IGES Curves and Surfaces Committee suggest that
the sending system should document its criteria for establishing tol-
erances. The receiving system should document its criteria for accept-
ing data and its fixups, if any, and it should output some sort of mes-
sage for any entities that are either altered or rejected.

-22-

Examples:

A line segment in the WF proposal is a line with endpoints. There is
no reason why the line couldn't be defaulted to the nil name so that the
result is a line segment defined by two points. Similarly, with the
closed conics (circle and ellipse) the file structure might well be set
up so that null endpoints indicate that the segment is a full circle or
ellipse. Segments composed of splines and composite curves that are not
trimmed could use the same mechanism.

The following would all define the same line segment. It illustrates
the systematic approach of being able to use either data or pointers to
data. This is a generalization of the approach taken by PDDI. In fact,
the second and third cases fit that defining methodology.

There is a more subtle issue of the need to be able to reference the
same geometry in different ways that is covered later in the discussion
of the grouping mechanism.

The notation used is only merat to be suggestive. One would expect
the actual physical representation to be far more compact.

(1) LSA = Segment2
segtype = Line2
Position2(Xl,Yl)
Position2 CX2 ,Y2)
seg2_defend

(2) LSA = Segment2
seg type = Line2
PTl = Position2(Xl,Yl)
PT2 = Position2(X2,Y2)
seg2_defend

(3) PTI = Position2(Xl,Yl)
PT2 = Position2(X2,Y2)
LSA = Segment2

seg type = Line2
PT1
PT2
seg2_def end

(4) PT1 = Position2(Xl,Yl)
PT2 = Position2(X2,Y2)
LSA = Segment2

segtype = Line2
Line2((XS,YS),M'V,VY))
PT1
PT2
seg2_def end

-23-

Ll = Line2(CXS,YS),CVX,VY))
LSA = Segment2

seg type = Line-2
LI
PTl
PT2
seg2_def end

(6) PT1 = Position2(X1,Yl)
PT2 = Position2(X2,Y2)
PTS = Position2(XSYS)
VT = Direction2(VX,VY)
Li = Line2(PTS,17)
LSA = Segment2

seg type =Line2
Li
PTI
PT2
seg2_def end

Cases (4) to (6) are subject to the constraint that PT1 and PT2
must be within some tolerance of the line defined by the point
(XS,YS) and the vector (%,",VY).

-24-

PART 2: ASSOCIATED ENTITES

These consist of

Definition and Instance entities
Group
External Referencing

e

0

-25-

Internal/external instancing

Instancing is the use of entities (or structures of entities)
defined as quasiprimitives, perhaps with arguments. The term quasi-
primitive is deliberately left undefined, but it is intended here to
refer to geometry that is use as a primitive definition by the CAD
system. Many systems use this technique, along with libraries to
contain definitions for use throughout the installation.

definition-entity = entitytype
Name : string;
Dim : optional integer;
constituentlist list of Pointer(Geometry)
end;

where
Name is the required name of the definition to be referenced when

used.
Dim is the dimensionality of the definition. We are currently

restricting it to 2 or 3. The default is 3.
Pointer(Geometry) means that the entities in the list must be

geometric entities or named instances of them. Nesting of
instances of other definitions within a definition is allowed
provided there is no self-referencing.

instance entity = entitytype
Name : optional string;
Def name : string;
trans : Pointer(transmtx);
def ref : Pointer(definitionentity);
scale : optional case of

array(l..3) of real;
optional real;

end;

where
Defname is the name of the definition being instanced.
trans is a transformation matrix used to position the instance.
def ref is the name of the definition being used.
scale is an optional scale factor for the X, Y, and Z directions

respectively of the definition entity before it is
positioned by the transformation matrix. If only one
value is used (probably the most commonly used mechanism),
it applies to all three directions.

There has been a request to put a nesting level into the definition.
We did not do so because a strict define-before-use semantics would make
this unnecessary.

-26-

Grouping Mechanism

group-entity = entity-type
Name optional string;
Movableflag optional boolean;
trans optional Pointer(trans_mtx);
constituent-list list of Pointer(Geometry);
end;

where
.,ovableflag indicates whether the group is to be considered as a

physical thing that can be moved in space. The default
is 'F'.

trans is a transformation matrix used to position the group.
It may only be used if the Movable flag is set to 'T'.

The movableflag is optional and its presence indicates that the
geometry defined or instanced in the group is to be moved by any
transformation matrix applied to the group. Note that in case (2)
below the geometry has been defined elsewhere.

No doubt there will be other attributes one might wish to add to
the grouping mechanism, but this seems sufficient for a start.

-27-

The issue of the kinds of addressing that may be done is complex
and has not really been resolved within IGES. Here is a discussion
of some of the kinds of addressing that need to be done.

The elements in the list may be:
(1) defined within the scope of the list.

ex:
begin group

begin point (optionally named)

end point

end group
(2) referenced by name from outside the group.

The geometry already exists within the model.
ex:

begin group
ref PT A

end group
(3) an instance of a definition made from outside the group.

ex:
begin group

inst PTA

end group

(4) an instance of geometry defined elsewhere that already exists
in the model and is not a definition.

One example is the same as (3) above. A more illustrative
example is the following:

"Consider two ruled surfaces:
RSl is defined by segments Sa and Sb.
Sa and Sb are defined inside the scope of RS1.
RS2 is defined by segments Sb and Sc.
Sc is defined inside the scope of RS2.

Suppose one wishes to apply a transformation matrix to RS1.
There are two choices as to what can happen to RS2. It can
change, being dragged along by RSl, or it can remain the same,
being uncoupled from RSl. In the latter case, one might well
wish to continue to say symbolically the following:

if the two surfaces were joined together, they would be
-8 CO continuous.

-28-

If a reference to Sb were used, the first meaning would be
used; if an instance of Sb were used, the second would.

Another way to look at this is to go back to the example in which
a line segment was defined in 6 different ways. Assume for this dis-
cussion that the segment has a transformation matrix associated with
it. Then in cases (3) to (6) one needs to be able to specify that
the transformation matrix is (inst case) or is not (ref case) applied
to the position of the point or line that has been defined outside of
the scope of the segment. The language must be able to express both of
these cases.

-29-

External Referencing

Xref = entity type
Entity name string;
Entity class entitytype;
File optional string;
end;

Xreftab = entitytype
Table name optional string;
Refs list of Xref type;
end;

where
Entityname is the name of the entity in its defining file.
Entity_class is from (Curve2, Curve3, Segment2, Segment3,

Definition-entity, Group).
File is the name of the PDES file in which the entity

is defined.
Table name is the name of the table of external references.
Refs is a list of external references.

Use of external referencing is dependant upon the general organization
of the PDES file structure, so further details will not be given here.

o

-30-

Appendix C1.2

Task 1

Wireframe Geometry Model (NIAM)

(RESOURCE)

6

Az

'Its

Je 0

S~"

S n i i I I l I II
I II

L.

N

K

.' '.

9

C-.

' U

I

¶3-

Ti
A�

-� I
-k

Ir�
It?

- - -�

- '

'4 I A'
- -

_ "

A 'I

fb 1 I.

Ii 1 1 '4

'1�*

V

-� .�

Ad' -'

4

U

'4

I

'a

N

*�10

- 11

'a

N

-A
3'
*

O
-'

* � �':
-' q �

� ,.' .¶
C N'�

'4-

N 'a 'a 'a
V 'J*� ' '�
C '.�

N

'4')
T

'a

.Z W% � £
i�

.� *', �

"4-

4

'4.'

¾.

'1�

-a
.3

VS *,� U

£ �
-'

U
'�

'1

4i
U

I I

N

'1

' .i*�

�
#4 � N,

�

I-.-' .� N it,

*.� �k
t. ;4

N �-.&�i �
U

.1

'N,

'-1
� -

- 'I� m J I. �

'YB #4
U,

Sc
-I.'�qJ

41

-�

(%J

1L1

A4

h •

la

, .

• ' .: .• ,

"I O

--4 • NlIl I II I [

to

444I%

0,~

. . i i n i II I I I

N.

k

0

I'

)

4
0

V

I

1 - - 0

i
.4

U

0

N

I

.1

A0
- K

� '�

0

N

4-

n

C
k -�

.1�

M

.- -

- -

- %.- S

1/:
� \�

N

00

-l
*pro

1-

0

0

4�'z
1�

'I

U

r

N 0
S

'bN

2�. 5-

A 5 ,. 4? 5-

'5'

�q

.5

S
.5,

'I

0

N

bii

MIA'

I7 0
-6

I \

A-A~

%

t4

Appendix C1.3

Task 1

Wireframe Geometry Model (DSL)

(RESOURCE)

7

PDES SCHEMA

TYPE
t-continuity = ENUMERATION OF (cO, cl, c2);. -- used to indicate continuity state at curve junctions.

t_closure = ENUMERATION OF (open, closed, intersecting);
-- used to indicate the closure state of a curve.

t-cart-coord = REAL;
-- used for position, direction attributes.

t_magnitude = REAL > .. 0;
-- used whereever a positive (non-zero) real is required.
-- the syntax for qualifying values is still up in the air.
-- I am looking at Chai-Hui Shih's work which covers this
-- kind of thing quite completely.

t_bit = LOGICAL;

t_projectiontype code = ENUMERATION OF(perspective, parallel);

t_clip indicator ENUMERATION OF(clip, noclip);

t_parallelogram = STRUCTURE;
width : REAL;
length : REAL;

END;

0@

@1

PDES SCHEMA

-- START OF WIRE FRAME GEOMETRY ENTITIES
-- VERSION 0.4
-- AUTHOR CLAPP

CLASS wireframe OF
(wireir-ame geometry, wireframe-auxiliary);

CLASS wireframe geometry OF
(point, wireframe segment);

CLASS point OF
(point2, point3);

CLASS wireframe segment OF
(single_segment, composite segment);

CLASS single~segment OF
(curve-segment2, curve-segmentZ);

CLASS composite segnient OF
(composite-curve2, composite-curveZ);

CLASS wir-eframe-auxiliary OF
(auxiliary~curve, position, vector, transformation 7-matrix);

CLASS auxiliary_curve OF
(curve-", curve.3, spline);

CLASS cur ve2 OF
(ellipse2, parabola2, hyperbola.", line2, circle:);

CLASS curve"ý OF
(ellipseZ, parabola3, hyperbolaZ, line3, circleZ);

CLASS position OF

CLASS vector OF
(non-unxtvector-, direction);

PDES SCHEMA

CLASS non unit vector OF
(vector-, vector>);

*LASS direction OF
(direction2, direction3);

CLASS transformationmatrix OF
(transmatri:.2, trans matrix3);

ENTITY place2;
NOROLE

name : OPTIONAL string;
ROLE

x : t cartcoord;
y : t-cart_coord;

END;

ENTITY place3;
NOROLE

name : OPTIONAL STRING;
ROLE

x, : t cartcoord;
y : t-cart_coord;
z : t-cartcoord;

*ND;

ENTITY point:;
NOROLE

name : OPTIONAL STRING;
ROLE

location : REFER(place2);
END;

ENTITY point3;
NOROLE

name : OPTIONAL STRING;
ROLE

location t REFER(place3);
END;

0

PDES SCHEMA

ENTITY vector2;
NOROLE

name : OPTIONAL STRING;
ROLE

i : t cart coord;
j : t-cart-coord;
1 : t_magnitude; -

END;

ENTITY vector3;
NOROLE

name : OPTIONAL STRING;
ROLE

i : t_cartcoord;
j : tcart coord;
k : t_cartcoord;
1 : tmagnitude;

END;

ENTITY direction2'
NOROLE

name : OPTIONAL STRING;
ROLE

i : t cartcoord;
j : t-cartcoord;

END;

ENTITY direction.;1;
NOROLE

name : OPTIONAL STRING;
ROLE

i : t cartcoord;
j : t cartcoord;
k : t-cartcoord;

END;

ENTITY line2;
NOROLE

name : OPTIONAL STRING;
ROLE

place : REFER(place2);
direction : REFER(direction2);

END;

0
4

PDES SCHEMA

ENTITY line3;
NOROLE

Sname : OPTIONAL STRING;
OLE

place : REFER(place3);
direction : REFER(direction3);

END;

ENTITY circle2;
NOROLE

name : OPTIONAL STRING;
ROLE

center : REFER(place2);
radius : tmagnitude;
start : REFER(directiont);

END;

ENTITY circle3;
NOROLE

name : OPTIONAL STRING;
ROLE

axis : REFER(direction3);
center : REFER(place3)
radius : t magnitude;
start : REFER(direction3)

ND;

ENTITY ellipse2;
NOROLE

name : OPTIONAL STRING;
ROLE

center : REFER(place2)
majoraxis : REFER(direction2);
semimajor : t..magnitude;
semiminor : t-magnitude;

END;

ENTITY ellipse3;
NOROLE

name : OPTIONAL STRING;*
ROLE

center : REFER(place3);
majoraxis : REFER(directionZ);
semimajor : t magnitude;
semiminor : t magnitude;
normala,.is : REFER(direction.);

END;IU

PDES SCHEMA

ENTITY parabola2;
NOROLE

name : OPTIONAL STRING;
,ZLE

vertex : REFER(place2);
axis : REFER(direction2);
focaldist : tmagnitude;

END;

ENTITY parabola3;
NOROLE

name : OPTIONAL STRING;
ROLE

vertex : REFER(place3);
axis : REFER(direction3;);
focaldist tmagnitude;
normalaxis : REFER(direction3);

END;

ENTITY hyperbola2;
NOROLE

name : OPTIONAL STRING;
ROLE

center : REFER(place);
majoraxis : REFER(direction2)
semimajor : tmagnitude;
semiminor : tmagnitude;

END;

ENTITY hyperbola3;
NOROLE

name : OPTIONAL STRING;
ROLE

center : REFER(placeZ);
majoraxis : REFER(direction-):
semimajor % tmagnitude;
semiminor : tmagnitude';
normalaxis : REFER(direction3);

END;

6

t-iLS SCHEMA

ENTITY spline;
NOROLE

name £ OPTIONAL STRING;
ROLE. order £ INTEGER WHERE RANGE 2 TO MAXINT;

dimension : INTEGER WHERE RANGE 2 TO 3;
uniform : LOGICAL;
controlpoint : ARRAY(O:*) OF REFER(position);
weight : OPTIONAL ARRAY(O:UBOUND(controlpoint)) OF REAL;
knotsequence : ARRAY(-(order-1): (UBOUND(controlpoint)+l)) OF

NUMBER;
END;
-- NOTE: UBOUND is a built-in function which returns an integer
-- number which is the upper bound of an array.

ENTITY curvesegment2;
NOROLE

name : OPTIONAL STRING;
ROLE

base : REFER(curve2d);
path : LOGICAL;
startpoint : REFER(place2);
endpoint : REFER(place2);
pstart : REAL;
pend : REAL;

END;

ENTITY curvesegment7.;
OROLE

name : OPTIONAL STRING;
ROLE

base : REFER(curve3d);
path : LOGICAL;
startpoint : REFER(place.);
endpoint : REFER(place3);
pstart : REAL;
pend : REAL;

END;

ENTITY composite-curve2;
NOROLE

name : OPTIONAL STRING;
ROLE

closure : tclosure;
degree : tcontinuity;
constituent : LIST(2 TO *) OF

STRUCTURE;
element : REFER(curve-segment2);
sense : LOGICAL;
degree : tcontinuity;

END;

7

PDES SCHEMA

ENTITY compositecurve3;
NOROLE

name : OPTIONAL STRING;
ROLE 0

closure : t closure;
degree .; tcontinuity;
constituent : LIST(2 TO *) OF

STRUCTURE;
element : REFER(curvesegment3);
sense : LOGICAL;
degree : tcontinuity;

END;
END;

ENTITY trans-matrix2;
NOROLE

name : OPTIONAL STRING;
ROLE

irow : REFER(direction2);
irow : REFER(direction2);
translation : REFER(place);

END;

ENTITY trans-matrix3;
NOROLE

name : OPTIONAL STRING;
ROLE

irow : REFER(direction3
jrow : REFER(direction3);
krow : REFER(direction.);

translation : REFER(place7)
END;

8

Appendix C2

Task 1

(RESOURCE)

Presentation Resource Model

C2.1 Initial Model and DocuAentation

C2.2 NIAM Model

C2.3 DSL Model

o4

0 8

0

Appendix C2.1

Task 1

Presentation Initial Model and Documentation

(RESOURCE)

9 0

Issues - Presentation Entities for PDES

Richard C. Winfrey
Consulting Engineer

CIM Technology
Digital Equipment Corporation

SHRl-3/E10
Shrewsbury, Massachusetts 01545-4112

(617) 841-2192

November 4, 1985

Introduction

The following is a list of comments by reviewers of the DRAFT
proposal dated June 14, 1985. I would like to thank them for
their time in reviewing the document and for their perceptive
comments. Following many of the comments, I have tried to offer
an answer, or add further explanation, and these are marked as
"RCW response:". These are strictly my personal comments and
are not necessarily those of the PDES/IGES committee.

The purpose of the DRAFT proposal was to specify the
presentation needs of PDES. Once those needs had been defined,
with the help of the PHIGS, GKS-3D, and CG-VDI proposals, the
result was very nearly that of PHIGS. Therefore, rather than. spend additional time (redundant) refining the DRAFT proposal,
the following recommendations are made:

"o Identify the few additional needs of PDES that are not
included in PHIGS, and offer them to the PHIGS committee for
inclusion in their standard.

"o With the help of the PHIGS committee, define a PDES level of
implementation. The entire scope of the PHIGS functionality
is not needed for PDES.

"o Create a new document having a title something like: "PDES
Implementor's Guide to the use of PHIGS". This would answer
many of the questions that have been raised by the PDES/IGES
committee members as well as provide a convenient place to
keep examples and recommended practices that relate to
graphics. Typical questions might be; "How do I set up the
viewing pipeline?", "How do I set up the pipeline to create
a drawing or views?", or "How do I use the pipeline to
provide for scaling?".

Issues - Presentation Entities for PDES k'age 4

Issues

1. Alan Peltzman, Inter CAD Corp., (301) 224-2926

a. On page 4, the diagram incorrectly shows the origin of
the UVW coordinate system to be different from the view
reference point. This contradicts the rest of the
document, which states that the origin of the UVW is the
View Reference Point.

RCW response: You're right, thanks.

b. On page 5, section 2.2.2, the N-axis needs to be
explicitly defined.

RCW response: See "Implementor's Guide".

C. The view matrix on page 5, section 2.2.4, should be
eliminated. Redundant information.

RCW response: This was included for computational
efficiency. It is certainly redundant and could be
eliminated.

d. On page 8, section 2.3.3, UMIN, UMAX, VMIN, and VMAX
need to be explicitly defined.

RCW response: See "Implementor's Guide".

e. As a side issue, please ask PHIGS how they propose to
deal with light source information. This is very
important in shading applications.

RCW response: This will be part of the comments to
PRIGS.

2. Don Hemmelgarn, International TechneGroup Inc.,

(513) 576-3900

a. Requirement for Drafting (Drawing) Coordinates.

There is a required presentation concept which is not
addressed by the document "DRAFT of Presentation
Entities for PDES." This is the concept of an
independent coordinate space for the location of views
and the definition of drawing entities. This "drawing
space" coordinate system will need only to be a 2-D
coordinate system. One requirement for this capability
would be the specification of the extents of the drawing
or drawing size.

One possible way to do this in the context of the given
viewing pipeline would be to locate views and specify
drawing entities in NPC coordinates. This would then

allow the NPC space to map exactly to the drawing. This
would require, however, that NPC extents be made more
flexible by allowing 0.0 to 1.0 in one direction and 0.0
to some value in the other direction to allow
rectangular drawings.

RCW response: See "Implementor's Guide".

b. Scaling

The document does not include any details on view
scaling. It would be helpful to see examples of how
view scaling is accomplished in the pipeline, in
addition to how a traditional view matrix and scale
factor would be mapped into the proposed viewing
pipeline.

RCW response: See "Implementor's Guide".

c. Device Coordinates

My feeling is that the Display Transformation need not
be specified or included as part of a product data
exchange file. For a post-processor, it is better to
work with NPC coordinates and map these to the
particular device configuration that he uses.

RCW response: My feeling is that the specification of
the complete viewing pipeline from model coordinates to
the display surface must be provided- for. However,
remember that since the Presentation is not actually
part of the Product Definition, it can be treated
optionally. Thus, if a vendor wishes to work with NPC
coordinates and ignore the Device Transformation, that
is his prerogative. The important point is that the
specification is complete if the user wants to use it.

d. Character Set

It should be mentioned that the ASCII character set is
to be used in defining text strings. For clarity, we
should spell out the difference between character set
and text font. These concepts have been muddled in
IGES. Text font is merely a way of presenting the
characters in the defined character set. Also, there
will need to be a set of special symbols (to be defined
by drafting application and others) added to the
standard character set.

RCW response: See "Implementor's Guide".

ISsues - Presentation Entities for PDES Page 4

3. Martin Marietta Aerospace, Orlando, FL

a. Optional Presentation Section.

Will the entire Presentation section be made optional in
a file? This would be desirable from the standpoint of
passing product definition data from design to
manufacturing, where display characteristics and
"drawing" information such as formats are not needed.
If this is the case, presentation entities should not
contain information needed in geometry/manufacturing
instructions such as text.

RCW response: As presently envisioned, Presentation
entities are not mandatory; however, they will remain
quite important for those who use PDES in the same
fashion as they are now using IGES. With regard to
text, it must exist both in and out of the presentation
entities. Text such as dimensions and notes that are
part of a drawing are, by definition, part of the
presentation set, while text such as process plans and
technical documents are not. It would probably be a
good idea to allow the text string (T STR in the TEXT
entity) to be optionally a pointer so notes and comments
that are part of the product definition could be
referenced and displayed on the screen or a drawing.

b. Colors and surface attributes.

The color table and color attribute appear to be
redundant and also the color table will not allow
precise color specification. See Ted Berenyi's work on
RGB vs HSL, etc. Again, colors should be assignable to
bodies in solids; therefore, they should be available
outside the presentation part. The same argument
applies to filling. The fill options must also be
expanded eventually to include surface texture display
attributes, as well as glossiness, translucency/
transparency and light source information.

RCW response: It is generally agreed that the HLS color
model is more "convenient" for people and the RGB model
is more convenient for computer hardware. Since one can
easily convert back and forth between the two, it was
decided to specify only one in the interest of
simplicity. Since the PDES file is presumably to
transfer data between computer hardware rather than
people, the RGB model was selected. The COLOR ATTR
entity (para. 4.9) provides a means for specifying a
single color (to about 6 or 7 decimal places for each of
the red, green, and blue components). The COLOR TABLE
entity acknowledges that display hardware can only
display a limited number of different colors at any one
time, and that these displayable colors are typically
defined in a hardware color look-up table. The number

of different colors depends on the number of pixel
planes in the hardware and on how these planes are used.
Hence, each index (IND 1...IND N) is a pointer to a
specific color - each of which Ts defined with more

* precision than is available in the hardware.

with regard to assigning colors, fill patterns, etc. to
geometrical entities, we must remember that the object
of PDES is to exchange product definition data. By
contrast, Presentation is intended to aid in viewing a
model, but in general has nothing to do with its
definition. Hence, it is important to separate the two
and not allow them to become intermixed as they are in
IGES. On the other hand, attributes such as surface
texture, glossiness, and translucency/transparency could
easily be either, or both, Product Definition and
Presentation. These latter attributes, along with light
source (which, again, is Presentation), were discussed
by the Logical Layer Group, and it was decided to add
them at a later time. It is now recommended that they
be included in a recommendation to PHIGS.

Sb

.. A....U-. .. .
a .

I~ ~ c ~ 6...

3 0- coo I. *. r,6 . ;~*~~* aova C a. be *aM.~ 33 W0U0 .66G~ -azo -6 ho *1 3 a. U 62 6
-- C 0..az b-Q3am0 a.: *..aa MCM1b .6 .3 0 *0 0.l ** 0 us a s .a. aa 6 6S-6a-I. -0 C- ii M.fl

1'.6U-~..0g 'S 2 -6 'a6 0.g C

*~U -6s .0. -0, W--0.0 m 2-0c

OC23131clax'C , 0. 6. aa94# . I

ftV4.44I~P4 4.4u..4.4Goble. . go44w.. .4.4e.4.seow10,4r. .4 .4
a a

am

o 0
f-a q ;f ,4m44 4 WWI %O-11

u CPU0 ISO

ac , aa
0 ~ ~ Uweie

ae a 901 -"0. 046 *Sdeb sse-ao 0 31

M 010 a C O U O * -0 0 0 C * k0 0 S40 ~ 0 C.~ Mma V% a ~ Wa- :~ 0M 0, a
a .0 ass .22 %d~ * aw 0DW P46 0.5W 3.p0- l _041 C

- 4 :- -C. u -W co m a ON as
S el-s;e S0.3.L C 0** ~ W0 ~ -

Iwo C ; cca*! - 2.41 --
46E a.. C Go A U 6 FA OX

loa 0-0-. 96u. 0 C~- &

-W U.MP C ~~ ag 40 -A o Do~aO

a C a 0 -a~~~a ~ ~ ~ 4 441U Z :. we ~ 7;~.@ ~
04 4 MM w GO C CI w' 0 n

* ~ P -a 4p*. 5wUM 0 cc- 3 ~ M M -C- 00o0- GOgo 0 . -a" d6A ou AL4 so. c ;.go fa; C 3. w000;0- 0U isgO~ -3g0 g a a .2. ft cc2 00Z:Ca N a" a U L. .U w b~ aC ** - u - m'U A

- A 0 N- U- M1 U A 3006 U oI. 3 96 -g S a -os2a . *0 6 M0Z ; 13 . O W'4fl a.6 ft "M g~ C.::M Z' C-I
SO " -A.*e. 04 130 _V 3.a 00

.0 4 S O.6- *- *o -oBM~ S , aM LU-j -" CUbuIn" -a 0gg Oe QCL U. a,.. 0 . a -I. EM S 6 * 3aU . C6BG A aB6@ @ * -
%. -C aa Su a u Uw4 C u CLgeor 0

C6 0 0503 5 O M U B

31 M. c M0. G~0. M0 U_ 3.U - U 0 00

- 4M a 0 =SVwa. aL62m3 OC -6 L V - 2 a .
Cp p 5 . & CCU M.AAO-

- C a e ..
- u "-

lo t3. C 0 W2Sq - W C " e 3
4'A d" b

0.

16

N AM

man

0 ~

l2 c .5

a.-
b *gq ol

& 4-Co.

.0 U0. ME

ho 'Ua a-

o~U cJIg
wo c U 64

T 2 do C M.0-6 *-. 'U a- - -- - ~
C.g 0c 1w a* a - I

isG, : us-s a , , , , a a2 @ S M E* SM I IUMP I SU : a 000: t: C6. eon -go.~* ~ ~~ :N Op w C: w I0I V Eg w 4 4.00 0

. 1 itso, 1~ 1 4ota 6. .. :

Va 0 1 V a C. V ca0~ Pu I1 ;; I : Is op 4#M~l~
c ** 1 0 41

-0 Uo 4 fluWO a ab .0006

3~ 16 Q 5

C c a - .~
0~~ 0 - -E~

fb OUM V

aC 8

c~ ... 00-3.

16 OES .- 40066 -0.MS
bE 0 AEC Im 0 44,4-5.6z0 . 0 :41 0L a0 p

A, 40-o aU~ '5 0 1ME.

40: ~ 2 L@ W=0. a ae c
40 M 0 0 0 3E - pa a 30 -

a 6 Aig a E -o 4, a*US

2w 3. .o 0. aO S.; a62 ; 4

gO 0' A6- L. 0@

v AM I** A4 V. a % 040.

GU.lea M :@ 0 0

U)~ ~~~~ AU0 3 0 3 Q 6
ZO. a -a U a S 300

a *Mae g MilS C60.W
*6& 40 gO 0 336. 2.0

3~~~~~ !S. 300 .0'wg J0 M
00 ob gov Qc a .o go.ow
a ~ 0. £ 00 %.. a5 A

as0 `0~ 00 00gd.0 M£

3- .0L - 0 ago 10. C 0 "a 0
I . . *E & * A4 doO a

. e . @0 4 OW 6

I : 0.0 :. a
cc %S0 6 0O E0£

* ~ s Ag S 000
40 C UaV OC0. aOM E 00'U 2

V=q 4w0 0 0 Sa

0~ £ 1.3 S330

9 .: 5 U O %O ; 4 a..
£.O S 0 4 a ~o-.3 X. 0C.5""a, M~. 0 .

b00 40 0E *sgII!H~~~ A-. %. a .. Ug

1a a0. a. 22.2. l

aa. ua u * a. a c

"a a~ .a 0 -

o 00 LU -a' a.
0&11 u-to -o

a ~ - a. CNOC
- -I-C -I 'I -. 0ZU

'. -.0 VVPC . a. a - a 2--5
- v

- aU
C

-- ~~ C UC 0. CO
3

C X-C
t.T. s u aaSS

C6" atu 3 I.
b.~a w. a mS

Sc.. 0 , . a- "S"A : ,& , S 2f. Oq""a6 b -. 33Ub 3. Ln 0-0

- . X. 0 as 1 00 41 Ce- u a a- CU

9 0 @3 Z40- a
- 5 Eu ~ j g... g.

1 ; U a .TQ 0 42 - a. ta 31C -S -* ~ C - MLA * CU a

3 0, .0 11 C 3,ug a
a.~~ U) .3.0C.r . -. 0 C-L.- q

- "P PC - I

u .1 w .,

0£.0

a.,:a Cc .3

w AI. la8a

do a. a a c
a i ,! '

C 0C

A a.

- 0 a. a u .2,

0 a. 0.. a. -

£~ ~~ c ~ *

C 9- a~g@ W~.00

9 n

C6qq

0 *4• .c
_ _ _ _ _ _ - C 8

a. VI S-

Il. -- " °
!1 1 " 0-

.. . ..*o U, U-•.=

,, £ a..eq

I A -aa

a D. cz

...........-"W."W

oto k. a..-&.

0 CH a

U- . . C a c* Jo
a. S 5 I . K

a * a CL ' 1. 3

•].. 0 ""

I.
c I di" 96o "

- -+o - .

.. ; ;I - 0

IL I I C I I II I

. u* a c -. s
ii - - ~ a * a5 4 U -w

"0

I 65

a 0-
40 . - 6 A. u.a;*
b. Ua faM

s -. 1 c

*~ 1O

* 0

no 0o. S. W.....

S2 - 1 3
- .1

* ft

*003003h0.

CP a- .4 .
. *CC *u3

0a0 Qa. 6- - C3-c

w 0 .03. A 30
% 0. 40 41=2~
C6 0

U2 IV 4 Ivvaa
'K 0 a 4 -050 0 Iro. .C

00.C

I. U 2. 6 a A 1auM4 -
CU 116 6C'

0. ,-

a-.
-u -

- a .-24 I x2 00 X1 300*.
--"-a2C -0 6).4 0.

-~~~~C C O 0 ~ ~ .
0 & -A 3 - 0C 31 Q.4 . A

0. 0£guw.400c -0 1 4156 3 C1 OF W -w U 1

e W ")eo -- b *; .Lt0 c a b 3
I., Ic b . C2 2 3 . A Z.0Ca 0 lllil!0 I4 C

0. .w . * A. go :.4.4. c u&A s C044O 0. 0 a. -5C U -z -0." 0A 0 C-0 a - -.~O4 - - - -
0~~1 §1.44 00.4 3 u Cc~' CU1.0.9 --g Io.*0 0- a. I

_c 4V 16f1* X 3uC X. 29 Z 0.52
4 0005 a. Q. 45 U . ~0 - 0 ' -a ; MO-. m- X6.2 * aa 0 - cl IL I

IL a ~ 0g &.qgL16C

IL 4c, Ica
0 ~ ~ .0- evooU)0..u

6 06 "A CW 6

.12 ~ ~ 4 40220L;

3.4 .5 . 1

g00*44 Ac

£- L. U

-*42 402C

'M .0 U 1.4
IAL 3 0 w a
h3~s - 0 w t1.. 0

3.A 5 . £ 3 3.1 5

- ~ ~ ~ ~ 0 !. Aa .o 44£ A.- 1. -
c C W '440-UoU " 4 C I.20 c upU

- 3% .2 20 1
.4 a 4 ~ El0q2 4 a6 0 u I4

* .4 X L. .0 5.40 s - -4 4 - - 4 c
w.40 30 U) 0~U I440 00 .40 - .0

o.9 -- 1- - c d
- 2.0.O I.0 -

-C 0 a- C- 0 0O

0A - 6 ~ w
r .3 - - --0

10 U;. ;~A..C6 o 14

.!RZ 2
0 -a:

ala. 1-

.. I .

•a W ;= .1... ,

b.-g
4. 0

cc a 906 as

00- - -- - 0-

aO a. 0 0 --- l2-

ZZZ -. - 41 '• -

Nat

C b. a: - dc d4

0",- a mhU

I, I I 3 •-- -•I

a. 1.

. -- 10

.b jj.- O.k Cc-

-. .. M, . •, ¢ - - ,,. 0 2
* - *.** ,9 .4 4. C2...*@-2 CW • dl u

Az 1 , mU- s

16 Aa0 m I

,. L~l l-ot" 0 l=,o ., AAo •

.0 c Sa

- OSSu- e eL •5- -0.- u

* 4d 4 * U• •"C4- -' l -Q, g~,, O.G U 12b1.hl'

0 4ZZZ30Z .0 -- oS 2 --. * I 1A 0M " C,

a... , =3 ZM .NN.,,eL22 iw.4& .4., . .. *U •Ze -f.bI"

a.. t ,a . -- ,.:2i ;-

v ~ AA0 C

2-m, -ý C

0 . .1-do w

w0 S Iq C. 16um

a o ts- ~m~cA of w

a a -. X Z

1.' 0'*~~~ 'A W3£t A
m sa be.-4 . -

me a - a- v
0. do 0 5. a

a' a- 20 v.-
lu *55 02c0 a a. C

0ua s- J, -am. 0£ 30
te I .- Z. -U0; Q.Q

W.J~ ~ ~ ~ 9.0 wt - d
2 .it ..- s V 4

*~~~. 0s6-0O g q
OW' Ic S. I,~* 1 U

01 1 b" so we

go C. US
=0-- ft~ a-at - C-

i r gaf I.. .--,j .0 SOp -c 0-

9.0 1 000 *- 1 0 .'-a .M

Is ". 0I'.. - U 5 0- £
hi -a -Ca- 0 o-C~.u p.: 02 0 0

s p"l1;.01:07.1 ý:=.
q~~~ CLaa CcU 4

96 ki- Su Sa ZS uP L.2 0 a

IV SM0 itMS c7 vw w Vo
ml-,-..4 U4~~l

0- A
0. Wi a 49 I-U4.

w a 40 S a C.- 0 -

0-&.~b 4-M05 a5 a

see .60. - M2 1"
* ~ ~~~~ c a.&.A& & c a 4aa 05 ~ M . - i

* * "a 2 2 ILOM 2S~ 90 1 2 OCo
- * -~ - -- 0. .4MM54

a, c Sc ccg s c cc c *c.M a£ 1:6 a = 20 uCh102- I

3.
M

is.MM M - ! see~ I, -*; i l -20

- 4 S~~~1% 44C 3S0~44 --kk* " M , I. "' - "t ;c M64~ Uf 04..

0.,a .v CJ~IA rU

IL@ib a.. M S OW

4c 0, c646 - a I ocO SU MMu-05M .
0 39 1- U v4 .. d 1 a C SIC, 00

16 24; z M *Oi." Xi4 3 -. 25&"6
-L 14.0 02S "a 60

-c I- 0 4 5-1 S W 3. A

Mi3 pho, 6. 0 0 5

0 22 .0
_2 1. 0..-.

0. 4 - C6 0.

52- cep c-
7; U 0 I 05

-00%. 0

4Ui0 "- .5

0 c 0 3. I
U~.1 ; . a 03. c cc.

i.Z....~~ 0 5

40 %S IU "c""c" "
M0 M.- 30 -- -Z - C

-~~ ~ '1 2 a i. 3 O MM M

a5 u we sa 5 4 5 0
.0' AM ll

j - , iM 5. 3. a
-00 -9 A.5 00 A 0ai ~ i c -g 5 4 i M-

u--i.~~3 a.3 Ac Mc 0. 55 00 O OP

C '512 .a S 3S 54 ----
4 04 MO .5 Sea 04 -0mg -M M - IL SMW IM, 5. 0 Ul 0 093

IL M.66 CM- %6 M MS &pft I ~ 1I-.M
cc -e Oa ia 2 -C.5* -a

0MM 5 G ~ 0 4 i

a a6 Adde .0I1bI.30 *0 a vw
- ~ 6 -m 2 . g 6 U0 £ mi h

S11-~ 11.6-30

pW C-
1

.0aa.-UI0. I .!
IL Wh s- WA303 U h -Cc

0M 0 i. 16 H0 - 00
00.0)a- I. deO a0 *0

C 3 hp."- h.m e 1% 111 -

A 4 "£0 - 9 Iq Z

i. .. &q~ 0m£&tA*63j .3 a to--I. u aA I J 0 3 It.
hi 10111111111 0 0 3 4 . 1 C C F 0

4 to. A, 36 z? &MkU A

£P 06- , a M

01 C 3 M 0 00 .~ 0 m -3 . . go
V 19 12 h aC C 0112 0 U0- M;c %-

1. UM0 . -' 3 .3 .3- 83 .9.M-0 2. C-
- 0 uics0 - Am dc -C 4d 4" 04
3 - ZNIO60mM.0 u wI u -I eLIN -6

we US -I.- 3 hi . i- . 3 ' M

1U W m0g Z a3 l0 ;. 3.. Cc ~ 0
a cc lb0hi .3M 006 30 63 '0 21o 0; w. 3- IQ 0 g

-0 G 4~ 4t0 0. 0 3M 2, mM 4.: M S.C Uz U-S V-06" 1
CU3 u .3 - .- uJ - .U. !Az 0 U

0% .S 06hU IWO . -1 4.3 4.c 3 A.. .34 111 U
as 02 8 4 60. CL-.1~U a. a*#. ai W ~ k

0 0.. sw MMUUO.611.tm 7= 6l*; C 363 1-Z 33 4 - L6-
-6 on,30b U- LI1

cc =0w C40 - 7

h. 0. 0-. h.2 0w "mh.a 0 C I
mu :1- 2-M6 M 0 .1 2 3 5 96 * dc0

t rhI. £h. 0 a .2 O
O 00 12 1. me 0 U 4,0

1.3-. Co.3- C3

3- 3 0I.9 Ifd ic .iN 3

- . M .1. 1

-7- --- - - -- - Iw 1- 04W)t-f-.

-~ 0 3 00; 0

I-a I. III.-6 SM

L. IN K ll a a Cc.

I41 -1.. 1n o

_ _ _ _ _ _C a

I- -C 4 4 CLA.
U UU vI SOE3L GO

-~ ~ 5 0Z O$ MN W0hi 0 06 'u

C 2C 3P-- bI-0

-0 0- -0 2 0- 0.K 'A
0- WM6 ; 0

'4 t*L4 1-gSh
h.Z S .0 .X4Z

a.~~V 0..O

";Us Ua
p-640I014

U 6Ol lap- a a* -U- a aw

C. - CS. Zi £

b.a 'a q- al 4

Sts0-14 01.0 l

S ~ .eaGS M I 31.
-~~~~~~ I.S pL£ . 3* -

*.It 2M -C~i m Mb -

a 0 %. M .0 4 -
hi .. M g0 -l "aUUC. £02 . M

tA a 0b a .- CM. i
IL C I. 1 U 04 MuG I. sc -

31 44 2 0 A0 OM 4b a-

ta 63- 6 -i - -. W,
It !0~CO .. Up VW1'3I

C A 2 Uq 01 b U- C6 c .4
=~~~~~ C 6. e A

4~I i -c P1 ei o0r0CC L

FA 303. V.0
OL C 0£.

1 14, _W - 7 lg V
A. 0 4 0~

0 W I-oo . %3m U.

At Ai 3E L L 2' 0c.-w

Q 0M O..O ZU S
* ~~ 6 .. 3 M

00 . a 7

C0 IL -0
t0' MM Z bU W -. 6-v0

.1C W@0-Li

Ma W 20

-~A 3W U a~ WE 2MM "
I- mA., eUb v 4

Za0

44

o 0

'a a 04

C
-9,0

'A :=a = ,

* .1 - .19

0.4

5~ ~ 4 0

-(0

ee ~.. _-of..

-~t I C

~~ 0 0

= 500 * ~ ~ b..2tug

4 04w

C

1I4 W
Ll -1001 £44-

kiv

0 Cb. COC
- 3 *0 C

F; Z Z, f6- U 4 I00 &-a

0 iw 0 "W 30 t4

-~& 2- KJ b1 #IEV

Al dc c . 4*ha.w

CT CIO. I I=` ,,

U6W so UUZ

00 cc,

0:5 1- cc _3.~~r 4 4 a. =~
-~~~~ x~ .X06 O

.4 -C O I &
49.- -=-3 3.00

-~ a L0 U a U O.cS
C 44 01 -'- 36. u (C oo m. uu ý

m- .@= A- -0-*- %. e.c

; 'a"01%a* ; 4 O
ccU a,. 5 .40 0 540 U.. C60.

U4 0.S ' Z LM91 x .2 C w

Cc= 6 M3 - #A6

6 'U 0. 60 C C IS 0

60. P4 S.! 3. .6

~A I vq*. C

34010 3t

EM 0.3 00-. 5- 00a sacUO 4.0 EO 1..

C1 a~ go. c0 -C l "-00z4c .0 C.g. z4
a. as C' M wit. .0 ca 11156 & - 3.5 I 7

-. v-. 1.

W. - *.. 3. '. 3 .. 0 6 cc 55.

aoI ;t *a MaL *9- A. 0Ef U-0 Z U C &54.2-46 A. c .0 ILOU 00UC 0

6- C -C A. o ~ 0 EE. - UU.0
049 C -01 w T%.. 0 3.9

116 C0.6 a0 5 *a a4 w5 f* c.O a- £UUI- C UP 4U A 0

CL 3-C o a m~ gor Mg OVT 4 .2 a %7 o.
0 Co. a 31 "!d 0 0 31- CA9 00 .2 U £ -

0 ~ ~ c C .0 5.M .- '4 53 Mj c. 010 MSWU *

lo e I11 -c :;S M.U 40.B *3.U 40 0 VC4M 0

01 ~ ~ ~ o;AQ:A 311C WM 4.J5U *5UI 0. 636
a04 0 A 6 % a43s M A. 0 301.01".1" c S0-4

C 00&. 5153 6 1 3 -6 6-- 9 .

I 'S l a . . 0
34 0 52 21 45. 0 1- O6EL a%£00 aS w

S C.60 '£ , UE 3. &.C ISI
*~~~~~~~ 6O0 0~~ M3C *0f

01 1 0 z 'c .
'.02A.L -. IAE Uw &..*- 3MOSCS I 3O 0 3

00 6 . 44 6 S 2 -0 a5 a -it0 . 0.MC ... Z-454
1. , :&C 3U 6- .. 2 beM46. w cc. 0.91U' 0650.5'c

Z':.£0 0. Aza. . 1 a281--

t.C0 4 .4 ; !* -2 .. ;. o .

* 5.. 2~C3 *MIA . AOM 6.10 OMOo
0U6 64M 03. 03. U3.Ode W3U' 9 0Owu * 0U3

j 5 *~ .2 0£g 00 - 3- £04 dig 6 2 0 06.
6-.U M3 S 9-BU W UE £ 4 0

- - .-. ."- *,, Z 4OC0

145 4* 6
CC

."

4. 00* * 0 u -

• •----tox"oq V• a m
* d:q,-.*U 3

ea... aol.

an * * ,*g a.Ea

"" Lxa oaq

qw H r c

-oa. -C V.

........................ ~~~

0. "B B; -4., Wa -

el

gO. g il qI 1£ V

a 40 910

"4 0 0 O0

, ' • -!'0

0".* t* eq ,. t ."q-g• ,

- S.. I,* C -.. C -- -

• -- -, *- *-6" _

Iu- 0 1 -c

96 =1 "I* C .

-O €:*q . .,. q a,, ~fl,

• .- o-* +- - z.- a
U" -

I.-..m•a I . .• Z;

0 Ccd-I•0q

,, 0 U

I

Ea. h.0 1- .
ow.~2

'n - 4 OW-c

6 o*4c 1 .- I .

IWA 42o W. c

a
c

Mc a 61

*a -3 0 u MM'

0. Ao t U"edC6F 1a
7ijw -C w*, 2 -C c w

.5 Ig'. -Cu

SI Cvt. oo o

u- a a3 W1,5' .0 6 -
*~ ~ a,1U cc so~.

in c wa a J J - a 0 0
C~~ au r 'u* a M

443e a' tao. N4 ILN

CS ~ ~ 6 £u: 'I0 *'ae £M hc3 0.6

00 41ti uug dC Z 01 c~ t.-

a ac CL aa-u N I-
A - - 4a0.0 MS a.c 2 I gS 4* .00.J -C O6 4

122 ~ c 44-a 00'.Fl C -4 oi.h 6 .t a

6. g' .M wU lo. .z 0 44 0

.3 a SM " - m a I
C C M

WC 2S :.cc -Z -a 44 C I.2c
-~~ MM.U0 00 MCOA CM' 0

WI ~ ~~ 2. 41-42 M. O 3 . 1 tb 1

ZNo- I. £Zaa' 0l Z-.aS 4 .u w - M2 M- 146 46O~ MM29 06- Z a-M -.6

- ;: &a-og w Iee . '~ -caac
M 1-M 1, a'J -E &-f 3 C a '.-0

hi I S.C.9 oa W ba Z.- M US KM M'_MW -
0 C1. gin cla -~ I- = ga.

-- 2~~~~ -CM 5- S £.
o g .JMM£ 0-J~ hi~au MC 0 M010

CCWC

U9 X - U- U. a go aihh - l- gi-
S ~ ~~~~ hih .-- 3IJJ63.66.

I - GIL -a. -IL4 ~ a a
C6 a- 0U ot. **.h 1i. c 1 I0 cm *a

~~-.30-a-hi --. 43 4-f hi0-0 3 'u

a-w 1- hiU 64
hi ~ ~ t it TO..b I 0 G) -11a4,CU~

.3ECJ1 0. a--cc 4 U

ow Mt a- is
- S Co

0-0

C.

CcC

& ~ c' . s*

S~c - c.2 £M

U,~~~~~~* cc *IZ'2 U.Z I whi U

ft a I. a *0,04 0 *e to

at *E CL. WA 1 c-2

0 -able-.60 061-WCX l

C l v I.,u a -' 0 MI !M~ or O u- MO

r 0 a~ Is i ;:4N U

J2 0 , 9
0 ,Cub. O0C O

20- UO I6OJ N0- 6J CM ns

C. CU

(ac w) Uf e . -0

aN 60 CQ.u 0 ~ 4 4 w
C~4 C. 3, bU vZ .)

-- OM .6 0.0 N Z 0 6S

OP C- -4 Cu 0o *A~. ce" oa~~
-~~ ~ I I I - Se A 5 U U u - 6 .*x mm Na a 0U Cu-

C M06S.C C.'

upa. 40 le 0. 5

C £0U~.@3 O
40 0 a6 %-4 -C-. S

q~~ v - . 10M ~ b u

0U~ CO-'b IPA

20 .0 0C-- OOOC-C0

c X a C 541 m- 4 V
o -~ q10 W CC.a.

-9 1.C C2.6* s 0C A
V; C.-1.

00-660 -S.MO. OSA Kn a--t

.. -CC :2 CC -
.0 1 U USCL0.UO N

V C *0 O . M0 em
UUM'U. I.- SC Co C0

06C M A C~o- MO

P%.: C - -
Iwo 0b -. goMU OU Z

.6 .

C a: C C 0

! V SM0OSE.-"ai

M- 0 - .0 V 6:
.6 xjP~ - I V- b.. 6CU1 .

.6 .DO IM 0. w.UN

0 6 V 0- 0 C- 0 -0 1 .. c .0

.6 £.6g -g .:6£UM5 .

.6~ ~ do P 0 wS U P

Cal
1 6. "m ;1 MS I S mC- 2i C. a. CZ * M.

a.~ ~ CM 0~2 do C5 M ;M 6

cr E 31 P.S ~ & ~. C i.C &to, -C aU .S -.u ON0 W. 06D1"

o
1

.1660 a0 - LI 0 MA
04 a- -6

C~ l M -1. -:0. C&J4 u 0C a
-;I Wa c Ua c ea 1,01106 o

LI CO. -- =.1 94, 0.£ 3

a. ow c a. 4 Z.. 0 L. 3
a..- U.- -aau - 4 ..
1P.- O~a 2 a IF -Z 6c c a

C. u. c. 6 -' a .53CI
W CL C - Ma A-.- c I'-EA A ma. LI 3wQ ?A!*.6

a . k. ~ Va . am 1 x La~. .06 .63k u-S -Z m 8 " 0 a.a a"0eU 61350 lee C .- at- a*64 0. ~~ 2-i.0 63 a Cl .3-0.S:c

- 0 CC, *10 e Ot -Ca0 -I@M bL-~ 'U 1 M IU 4.64 1.M 1
6 0 3 0 ~~~~~1 U a . - - a UU ' . U - -%. 10 MM I. U 5 0 ~ C ut a, 3

.--4 I 6 aE 6 vM Nas Zza . 00 .0 &1M W 61 31 04 06 6 'Ma-.W Irm a ~ W .0 M -. 0 . .M 5LI S.C - -0. C660 -ý W -1 0 aU-
6~ I NJ3. 00 0 00

-ZC W to M.M.C 40 *Z'
ai aig - e . meg 1.1- C 0zeWa Zac 3h6 . S. 5.~~I . 1 ~-6 2 a* ~ ~~ ~~~ W 0 -63 £- O s .11

Au-) Ce 1. 1 C a. 1 S- C .3 Wei .- -C
Im SACC' = *of f(-(M ~ . M - . SJ I

K C 6 M 43Ora U34 m LeLI CL-S * a mA 0 dig 3
o m . 0 .0. ZS 1- -S6 -0 &I br. £ . a M -

C eI. 1-..- 4 -M0 4A. 6 1.0.I w-. . a66 M1... 4w

-- CLI C~ M*I .- @ Cc A, 1M -0 H- .
a.~~4 I- OI. I.2*c SL a a. U lk. L

A.~ ~~~~ aO- 01 @ .0£ -a M MO * .1 1. "
0,6 - P - SI. 7.;c' E 3 M 0.0 M L

5565 -4 2.-C Z a.- C 5 - U .10 -

t25. am*5 o AE I M 6M 3a A c VI u a 4l0L6M CC 4-u , 4 M- 2C b 'U "wA.- to -
£660 £o M U4 C M I a; 0£ 0 S£ C 5 6

&O.C C I.'U.. iS .3 CC Oz UL b. r.
aU- SC To me c6 S at

ale -Ih6f. U 1,4 0 'U A6. 6 000-a ~ ~ ~ V 6MI'EM as: :og -. cow M*0.1 ~~ ~ N a C.. 0 ~ mOn. '6 JOC 2 C 15.

0..AI 6 *&- 6 .6 C £I ' aU . ads 1 041 a C 0 Lor 3 66MG qm M O IL S M U .W A 6 CM.#e *L. 36 0, 04W :VC~ 6060 a#MI C I. C aa

.0 M M-0 'U5
K *. 3~ ~ O~ iL~a - 0 *M UI 6S*.M~CL Mc 6 M 0. 6-a MC CaSM . 6. 3.Cl 6 4 6M0£ 6 1.6. E C0ES MC' L.-

C~2 40 55C -M - ML CIE *.3..LI c.MI C. C4 z.M I tP£M zC 60 6F H :1 I..S.0. C-3, M CZ G V~d W121U..'U m COt. PU m e w 6 I c 0'Z 5 "0-
0L @ dCe S A~ FA. UC- c 6 0 1. 1 6 - 6 8

06 5 6 £C 0. 05 - C t' I.C4 C-450- 0ago -G " . 36 .1- .u£50w- . -c 0.- 2C a -W00. S
g .66 01 -*MCc6 2c U-- 3'. *6-M '. O-a066

... 6 ~ ~ ~ ~ - 60 21,- L. 0IN 41C%. CCL *0 036 *Ole*

-0 - 1L F

ON0 - 6- 4-0-L LIE -3- -l 6MW ~ j: We M1 &$: t. 11 x.1 ;L 1.C :J0 a. -
4M . c a.~ E . p . u0 .0 a1 1 c W cc a £ E M

I.MC1 AM IAC MU.
0%. t

we aJ~ aa~ . .0 6. -P. SV I. w

0.0- a

I go -C

a_ 0 . i bg.0

1-
000

Ed .1 .4

ZO•-a- -- '-- * a- ,
30~ .- a

a ;• Z M ,0 2, Z•n O

Sxa I. .o - I

" "If l... am W m l I.• ~l,,.:t 0 1 M- 1i -Z

040 +s+b 0 -

* Ul.., : .. ,...,0 ,,. o
dCC

__qSOO.og=o .4 . Sa
-0'~~ V0 0 &agC gg g a 00

@0000000000 0. atC G 3
oa ' 000000 -0

o 0.; ".;---a- -,.. -- - - -

aa * -u : j " 'aCU

* I C -.000 abi.,,

S6.1 . .. ! 3_.

a. O, 0 .h 1. -1 0
4 b5 ' 0 C,.. 4 5 =--a.--.

0 0 4 a' a a,,, do- . .a'a S- ,: !a.-
S"" '" " " " h , 0o z

- I W-0.'=, -. , -o- = i M -L.1 L 11Ww I At.I*4 -c I 1, -0... " .-

--' U-- a - •-=" • •• . O-

P. 41. w zJ.. U Q aM- c

A.t. CP aa

tI~ w c z w lbJ 0 I- ,,LI M•~,,•

a. go &XI &Z

&. I_ CIL - -L ., • = e-

2p V 0 d e• L" C , I

-. oMz o -0.0

l.4 .4 I. a-
0' 0 1 C6. -. A U Z.0

a.. 0 -0 -0

N o a "a' a. t.-4 C6 6 405 U 0dl Ua - C t.'d~_ _- a .00.

-C

416.0- a* 4tla -w ..a z
- 0. 4 0 0 a. !. 0&.a 54M se -6V .-- !.

66~. h. 054 $a a£4 1.4 0 b-. C l b-a..I .C
r;~ a. 2 'an m-'a.- air 0,0 -u
a b-- c 005 ---1 .

-- a. 0C
hi a

Ci UbIO -I am a4 P~ PZ -WI
*~~~~4 0M3 gu

5
I

3
C I- ZWbW i

a- W- ~- M0 59t.1 -

U40U1. -0 P

40 agA-. 16.S.2. a.7 C Z-U4:0 P 2;

w aa

A-.

6 61 1. q- a- it U

w =- I- I 04
SW6 * *u 03

w 4 *Sz-V.C I- a 30.C a'..$
U q .:- .2 0~ k.IgO.4.a

's-
-0

1A990 a..66N 0.6

0 1# 9ý a 0 0c c -a *u ..a !Ow!
c c a a v a. Go - - - S 0

a ~ ~ ~ ~ C 0 1 *mq* S- I 66 46
-~44 -a- 0. c-- M- ccccc Cb.c:

c~~~% c aaa - -6q -
00 00 0 aZZ 000si %9% COSS

C4 -O a aa a "00 .0 " C.0 - acccccc ~I cc--------- la ::doe aa a-------------- 75 . il01
ac *CSC - 1 -- - - -n -o

Il~l~lla a- .2i.
wx.;co a dle j111 C de .. W de I f-00-

* .j&w a b u. a I.- fi. (a bi .9 O S

v 0 -4
-~ a I A4

a 0 a.- -0

~q a A O

1.

P l. w. 2

C a~ c a

Ea 0 0
A 6.4

0.. 6!

a V 0
Caw C c
0-9 a6

-0 0

SE I 46 I6 6 6c ~ cew so ec

ft -c %c c

a wee I a. A.1. b._61
1* 1 EU 2c0O!C

*~~- .1 .5 .S U. I IL I 4.

I c 1. .- .

qv A
q. .1m

- a- aa Cag h.S1£ 0
4W -e. .-.. a.S " .

a.~~~ a $.-.b a.

a 40 IML C

6 c 10 ca -.- .0 c
C a.U SS : £3 1.6b.4 0 4 :

10 4 - c .

0 0 QI- o

-c u0 31
-~~ 06 .4 1 *g £ ' 2S 5

* I.0 *- 0 Ia -a -0 0 - lat

a ;: CL0 aO C- W3 aU. 1. as

0 0 *I. we. '. a. 4 I CA "a
- MU £ z 64 0 O e *0 a3 5

04 -A MO M b. 4 C0 a 0 . £6 10
ad 0 43 u ud - a... - 0 q -I a U3 S

** 6 OC aa 34 a6 do a.-W 0 a . 0
0.. £01..C 4 61g 4 £60 s-a. % u~ 1~ 00

3. - .0 .M 0 a I- 06V
o a a 3M4 0 a £4-# WO -.

COL a AM C C6 4Oa C6*:- "a. OC all

* -. W-4 M 64 034 63 S

tC C6 I - 1 1 1 6 - I-DC1£ AA a ~ V 4d -

-p C0 h. OR01 60 5 . ESM 4 00

:.-c 1. 3 -2- " C0 C4S S- .1cC 5 2

16E *1 "C 4c, M"1 u- 6..aa 19,0 0
M ~ ~~~ -- -u S C.M 4

31 aa C2M eU Of .2a.UC 301S
e.E0 .k 1.1 Al. a -%

1. .13 lm 96C .- .00 -se 16 toa 49'1s
a.~~ dc a. Ca. 0.-a £4'A"..g M E o. £6 @

Ll CL e.C c i ES- * 03 ~ a

op Iw *6cc O 4 0

0 L-. - 1£.10 C4 s L

Z! ! .0 !** io -

gos 4. at a.. .03

a.. gO 30 S C .. -a. 3 501

a. b. La 3i 4. % #A 4. 40 l
MO - -2 6 3 a-C 003

CS-~~ 0 U*.
-0 b. sw w a..6 -C6 a 43 0

3 - - 60. .e~~S- ~ CC03

Isu * a 0 ellC weUS Alb

444 366 0 --

~~%. 1. c-0 -
oo MS w. a. A.-- .

2 .2 !.! ! %. 0,0
I 0. - a 4.0

wo a.. - 3 M 0 S

400 6 0 ..- A
6 .* UC - @5 S 0. 160.3 a. c a
5 * 3 a * l 3. * . - - ~ a~.M-.M0

0- - Q iI S * **I~

1 40 .0 a*@

0 b
-ud, 5- P I F-. •L mok

aoo

* 1- -W, *+ * a - --a
- - .I' q . i i

a • 2 0 01 I

E "•' al
5-.I 4 . u - w- .

--
a~ 1

I1
'. Id - c

b. OA *
ad- a z &P P. 50 wdo. IO Is ft 111

If i I 0 1.i.
40• It 411 ,• I l. 0 II l l

a•w
A iU

a leg MW a 0

S.a. ""• ••1' S'

'A bl
Us . *" OU-. .

s- - - - 40 0., 0 u

I -as g •

IL 41;. *4

. alo * 0 is.
* . z a

U1e - t f . d

I.

44

2 V
PA

W~e
O o.ll I

SIio ..

...... f

C *6 - Ui

t~~a Ckql q

5 . 050 * Sq1

* so

e* o** * * **• * • r[I m

.5............. -. -ll *-+- -. 60

• ••. •. 1• I ; -- .- Ul e
@1 £55.

*.................' - ,-- ,,$,
- - r Iii - i 4 .

II . - I z I-

L , - ,, I.

S. ... I . l l llllII I II

0

Appendix C2.2

Task 1

Presentation Model (MIAM)

(RESOURCE)

0

%I%

144

30

- 'C'

I I i

•

I ,. ,•
'4i

!a

--'-' -:.•, • , 4

-/.- . -.

-I

E
-�

''A
i

N.

�

�

14J

~14

4t~

'Ib4

Lie

f N

*N4

"I'o

* '4

/
'�-

/

K

r
1

V
¶� 4 �4

''S � z�
!��j

�

* 1*

\
'- _ -

4

0
* �4q,

In

LIIS

%-

-J

ti

Na.

4:1~

Adb

S

Appendix C2.3

Task 1

Presentation Model (DSL)

(RESOURCE)

"5 1

PDES SCHEMA

-- START OF PRESENTATION ENTITIES
-- VERSION 0.1
-- AUTHOR WINFREY

ENTITY picture;
NOROLE

name : OPTIONAL tname WHERE UNIQUE;
ROLE

initial-visualappearance : SET OF REFER(visualappearance);
picturepart : DEPENDENT SET OF REFER(picturepart);

END;

ENTITY picturepart;
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
ROLE

picturepartappearance : SET OF REFER(visual_appearance);
element : LIST(O TO *) OF REFER(picture_element);

END;

ENTITY curve_4ont;
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
ROLE

pattern : REFER(curve_font_bitpattern);
cND;

ENTITY curve-font_bitpattern;
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
ROLE

numof bits : INTEGER;
bitpattern : ARRAY(l:num_oi_bits) OF t-bit;

END;

ENTITY curve-width;
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
ROLE

width : tmagnitude;
END;

ENTITY curvecolor;
NOROLE

name : OPTIONAL t-name WHERE UNIQUE;
ROLE

color-value : REFER(color);
'ND;

9

PDES SCHEMA

ENTITY edgefont;
fROROLE

name : OPTIONAL t-name WHERE UNIQUE;
ROLE

edgefontpattern : REFER(curveafont);
END;

ENTITY edge_color;
NOROLE

name : OPTIONAL tname WHERE UNIQUE;
ROLE

color-value : REFER(color);
END;

ENTITY edgewidth;
NOROLE

naee : OPTIONAL tname WHERE UNIQUE;
ROLE

width : tmagnitude;
END;

ENTITY interiorstyle;
NOROLE

name : OPTIONAL t name WHERE UNIQUE;OLE

styledefinition : REFER(interior-styledefinition);
END;

ENTITY interior-color;
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
ROLE

color-value : REFER(color);
END;

ENTITY uvwindow;
NOROLE

name : OPTIONAL tname WHERE UNIQUE;
ROLE

clip : tclip_indicator;
u_min, umax,
v_min, vmax : t-magnitude;

END;

0

I O)

PDES SCHEMA

ENTITY npc~viewport;
NOROLE

name i OPTIONAL t name, WHERE UNIQUE;
1OLE

x~min,p x~max,
y~mi n, y~max,
z~min, .z max : t-magnitude;

END;

ENTITY view~mapping~transform;
NOROLE
name : OPTIONAL t name WHERE UNIQUE;

ROLE
clip front t t magnitude;
clip~back t~magnitude;:-
view~plane~distance : t-magnitude;
uv-window : REFER(uv window);
npc~viewport : REFER(npc~viewport);
projection~type : t~projection~type~code;
projectionyreference : REFER(place);

END;

ENTITY view transform;
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
ROLE

up : REFER(direction);
v~iew~plane -normal : REFER(direction);
view re-ference : REFER(place);S

END;

ENTITY color.-
NOROLE
name : OPTIONAL t name WHERE UNIQUE;

ROLE
red : t-magnitude;
blue : t-magnitude;
green : t~magnitude;

END;

ENTITY restricted-text;
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
ROLE

location : REFER(place);
basic-te:-t : STRING;
appended text : LIST(O) TO *) OF STRING;
outline : t~parallelograma-

END;

PDES SCHEMA

ENTITY normal text;
NOROLE

* name : OPTIONAL tname WHERE UNIQUE;OLE

location : REFER(place);
basic-text : STRING;
appended-text : LIST(') TO *) OF STRING;
outline : tparallelogram;

END;

ENTITY pattern; -- Note(l)
NOROLE

name : OPTIONAL tname WHERE UNIQUE;
END;

ENTITY solid; -- Note(l)
NOROLE

name : OPTIONAL tname WHERE UNIQUE;
END;

ENTITY hollow; -- Note(l)
NOROLE

name : OPTIONAL tname WHERE UNIQUE;
END;

ENTITY empty: -- Note(l)
NOROLE

name : OPTIONAL t-name WHERE UNIQUE;
END;

ENTITY char_4ont; -- Note(l)
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
END;

ENTITY text color; -- Note(l)
NOROLE

name : OPTIONAL tname WHERE UNIQUE;
END;

ENTITY te:,!t_allignment; -- Note(l)
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
END:

0
12

PDES SCHEMA

ENTITY char expansion; -- Note(l)
NOROLE

name : OPTIONAL tname WHERE UNIQUE;
".ND;

ENTITY charheight; -- Note(l)
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
END;

ENTITY char spacing; -- Note(l)
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
END;

ENTITY char-orientation; -- Note(l)
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
END;

ENTITY textpath; -- Note(1)
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
END;

ENTITY textprecision; -- Note(l)
NOROLE

name : OPTIONAL t name WHERE UNIQUE;
END;

ASSOCIATION text_element;
OF (text, textappearance(*

-- specifying the cardinality of an association has not been
-- settled. This tries to say that one "text" may be associated
-- with many "textappearance".

END;

ASSOCIATION curveelement;
OF (curve, curveappearance(*));

END;

ASSOCIATION surface element;
OF (surface, surface appearance(*

END;

13

PDES SCHEMA

CLASS pictureelement OF
(definition element, picturepart);0

CLASS visualappearance OF
(textappearance, surface-appearance, curveappearance,
view_operation);

CLASS surfaceappearance OF
(edgeappearance, interiorappearance);

CLASS curve-appearance OF
(curvefont, curvecolor:, curve-width);

CLASS text-appearance OF
(charfont, te-t_color, text allignment, charexpansion,
char_height, char_spacing, charorientation, textpath,
textprecision);

CLASS view operation OF
(view-transform, viewmappingtransform,
work station-transform);

W ASS definition element OF
(curve-element, surface-element, textelement);

CLASS interiorappearance OF
(interior-style, interiorcolor);

CLASS edgeappearance OF
(edgefont, edgecolor, edgewidth);

CLASS interiorstyle definition OF
(pattern, solid, hollow, hatch, empty);

CLASS text OF
(normal text, restricted text);

-- NOTE(l) These entities require ROLE attributes, but the NIAM
-- model did not specify what those ROLE attributes are.
-- This will have to be corrected after L.L. Initiation.

0
14

Appendix C3

Task 1

Flat Plate Mechanical Part Application Model

(DISCIPLINE)

C3.1 Initial Model and Documentation

C3.2 Scernarios for Presentation of Flat Plate with Holes

C3.3 Qualified Model (NIAM)

C3.4 Global Model (NIAM)

C3.5 Specification Model (DSL)

12 0

0

Appendix C3.1

Task 1

Flat Plate Mechanical Part Model Initial Model and Documentation

(DISCIPLINE)

0

*- 13.r~.

pA Z

Flat Plate Reference Model

Scope of the model

For the purposes of this initial document, flat plates are

considered to have the following characteristicss

- Plate has two major (large) faces; a top and a bottom

- Uniform thickness; i.e. top and bottom faces are parallel

- The top and bottom faces are not required to have congruent
perimeters

- The thickness is small realtive to the top and bottom face
dimensions

- For any traverse from top to bottomface, along the
intersection of an arbitrary plane perpendicular to the top
and bottom faces, only one "side face" will be encountered.

- Only round, through holes of uniform diameter are allowed.

- Edge conditions, e.g. chamfer/radius specifications will be
treated as attributes. If the chamfers/radii are large enough
to require more detailed definition, they are outside the scope
of this model.

Definitions:

Flat Plate

This is an entity that is the "top of the tree" in the
definition of a single piece part. Under this entity is all the

* definitional information for the part.

Face

Face is a topological entity. It is essentially a bounded surface.
The boundaries are topological entities, edges, with their end
points defined by vertices. This is the relatively standard BREP
notation.

Surface

The geometric (mathematical) entity that defines the shape of a
face.

. Dat um

One of three planes that in principle define the coordinate
system of the plate. The three planes are mutually perpendicular
and intersect in a point. That point is the origin. The planes
or some manifestation of them are referenced as datums in
tolerances and other entities.

Angular + Location + Geometric tolerances

These tolerances are defined in the tolerance model. Their
presence in this model is to indicate the relationships of
tolerances to the flat plate part.

Heat Treat Specification

A specification defined by industry groups or a company that
defines a specific set of heat treatment procedures and results
to be applied to a part.

Drawing. A manifestation in human readable form of some of the
definitional information about a part.

Process Plan

This is a grouping of all the information needed to manufacturiw
the plate from raw material.

3D Views

These views are 2D projections of the complete 3D model(definition on a viewing plane with or without hidden line and
surface removal. They are used for many purposes, such as
instruction sheets for the shop.

Cross section views

These views are 2D representations of a part as though a plane
has cut away the portion of the part nearest the viewer. These
may also be used for many purposes such as instructions,
visualization or drawings.

O Profile views

These views are 2D representations of a part from standard
viewpoints. These might be used on a drawing or by a process
planner to nest plate parts in raw material for NC burners.

Edge

The topological entity that bounds a face. It is essentially a
geometric curve, bounded by end points (vertices).

Curve

The geometric (mathematical) entity that defines the shape of an
edge.

Vertex

The topological entity that bounds an edge. It is essentially a
geometric point.

Coordinate Point

The geometric (mathematical) entity that defines a location in
space.

Hole

A feature of the flat plate. It is defined by its diameter,
centerline vector and a coordinate point contained on a surface
of the plate. This feature entity may be required, in some
applications to be transformed into topology and geometry, e.g.
an assortment of faces and edges, but for purposes of model
definition, this one is informationally complete within the
scope of the model.

Surface texture

This is an entity that describes the allowable deviation from
(perfection (at the micro level) of a surface. The exact

definition is given by ANSI and ISO standards.

Vector

A geometric (mathematical) entity that defines a direction in
space.

Size tolerance

One of the tolerance entities that applies to the diameter of a
hole feature.

isM 777- ?1 - 7 1. - --

. Process Instructions

This class of information covers machining steps, feeds &
speeds, NC programs, surface treatment instructions and such.
This area is quite undefined as structured information today.

Configuration management

This is the information the enterprise requires to control the
part. Examples are:

W design control responsibility
release status
effectivity
designer
checker
approvals

Some of these items might apply to portions of the part
definition (e.g. effectivity of material spec.) as well as to
the total part definition.

e4

0

14

I Il'

_ *1--

.dw

cat-

Appendix C3.2

Task 1

Scernarios for Presentation of Flat Plate with Holes

(DISCIPLINE ,

* 14

Scenarios ror Presentation of
Flat Plates with Holes

Submitted by: Don Hemmelgarn, ITI
(513-576-3931)

At the June '85 meeting of the PDES Logical Layer Initiation Task Group it was
decided to focus our entity integration efforts on a particular mechanical
application to put more 'meat' into the results of that work. The application
chosen was the design of flat plates with round holes. It was also agreed that a list
of scenarios for viewing flat plate models may be helpful in identifying data
requirements (eg. associativities) for the logical layer integration effort. This
document represents a first shot at briefly describing various ways flat plate
models may need to be presented to the mechanical designer (user view). The
intent is to provide information meaningful to the integration of flat plate,
wireframe and presentation entities proposed for PDES. However, my feeling is
this will more likely serve as impetus for some good discussions concerning PDES
entity requirements. For this reason I have included some words about required
associativities,etc. with some of the presentation descriptions.

This is by no means an exhaustive list of viewing options for flat plate design.
Therefore, I welcome the results of any add/modify/delete operations you may
wish to perform on this list.

Each viewing scenario appears as a numbered statement with special data
requirements shown in italics.

(1) Need ability to present one to six orthogonal views of the plate, at various
scales and positions. This is starting point for description of a flat plate
drawing. Requires view scaling and independent view positioning. in addition to
identification of 'model' geometry to be transformed thru the view(s).

(2) Must be able to display only outside edges(perimeter) of the plate. This is
useful for determining material utilization. Requires association of perimeter
attribute to some plate edges.

(3) Similar to (2), display only cut edges; perimeter, cut-outs, and non-drilled holes
for generation of N/C flamecutting data. Requires association of 'cut' edges.

(4) Display a cross-section thru the plate model at a given location and orientation.
Requires knowledge of holes or cut-outs and view clipping capability.

(5) Be able to display or not display geometry representing threads. Requires emity
blanking and association of thread geometry with holes.

(6) Display surfaces with like finish specifications in the same color. At this point,
this means display of color on wireframe plate edge entities. Requires
association of surface finish with plate geometry and ability so assign colors to
selected group of entities.

(7) Display rotated and/or perspective views of the plate geometry.

(8) Hidden lines. Either not display hidden lines or display them as dashed lines.
Requires ability to handle view dependent fonts and inclusion of geometry in
oneseveral, or all defined views.

(9) Display only drilled holes and their center points for point to point machining
operations. As in (3). requires knowledge of process to generate hole as an
attribute for the hole, as well as entity blanking.

(10) Display or blank a point with an associated text string representing the C.G. of
the plate. Requires a point entity associated with the plate and ability to(associate text entity with geometry.

(11) Display.or blank an arrow with associated text string indicating material grain
direction.

(12) Display the following textual information along with the views of the plate, at
a specified position:

- Part number
- Revision number or code
- Effectivity date
- Material specification

This requires text entity with ability to orient text string and define text
characteristics (height. width.etc.). Also requires association of this data with the
part being displayed.

Appendix C3.3

Task 1

Flat Plate Oualified Model (NIAM)

(DISCIPLINE)

150

Pz A rg k_• •,

6€o•

g z/T•Z'A L "r,•'4 •J s/.A Tto N

A t, I •
•UA t.tFs•O MOOE!.. 4-Io

Apendix C3.4

Task 1

Flat Plate Global Model (NIAM)f

(DISCIPLINE)

16

000

6; OlrNbjI
00001,

414
MO'P

M..m

Ku '.4 do- ,*

6.0I

NJ16

44t

duIb 4

VIA4

do,,

Pam"

0

Appendix C3.5

Task 1

Flat Plate Specification Model (DSL)

(DISCIPLINE)

170

PDES SCHEMA (DRAFT 01/11/1986)

-- START OF FLAT PLATE ENTITIES
-- this function computes a face based on the input bodies and the
-- parameter value which normally would be O.O(bottom) or 1.0(top).

FUNCTION calc uniform bodyface
(plus:uniform body; -- input/positive body
minus:LIST(O TO *) OF uniform body; -- input/negative body array
param:REAL) -- input/parametric value
a face: - returned/4ace

BEGIN;
-- how this is done is left to the reader.

END;

-- this function computes the side face of a uniform-body as
-- specified by side-number.

FUNCTION calc uniformbody side
(plus:un1form_body) -- input/positive body
: LIST(1 TO *) OF face; -- returned/face

BEGIN;
-- how this is done is left to the reader.

END;

the uniform-body is a constructive solid based on a sweep of a
-- planar 2d closed curve.

ENTITY uni4orm 5ody;
NOROLE

name t OPTIONAL t name WHERE UNIQUE;
ROLE

outline : REFER (closedplanar-curve2);
thickness & tmagnitude;

END;

ENTITY uniform-flatplate;
NOROLE

name s OPTIONAL t-name WHERE UNIQUE;
ROLE

positivebody s REFER (uniformbody);
negativebody t LIST(O TO e) OF

REFER (uniform-body)I
top t calc-uniform-body #ace

(positive body,negativebody,1.0);
bottom a calcuniform-bodyface

(positivebody,negative body,0.0);
side % calc uniform body sxdeface

(positive body)l
END;

. END a pdes schema *

", ~MI9

Appendix C4

Task 2

Electrical Schematic Application Model

(DISCIPLINE)

C4.1 Discipline Model and Documentation

C4.2 Qualified Model (NIAM)

C4.3 Global Model (NIAM)

18 0

Appendix C4.1

Task 2

Electrical Schematic Discipline Model and Documentation

(DISCIPLINE)

* 19

4.4 4-A a- CL *% w.
4J4. &A 4 .4- 3.

'~ E gi . eaCu

4. =u 4@1 V i - 0 A CL4

4.0 t EC U- C 4.0

ou a. ** .to 0: go 4.4. -a

- ka - (U

w .j .ww .C @06V W,- S.

U in 0 Vi .C C.w 0'a , 0.
C WJ G~nUGJ 0 4j' IM 0.)1.-0

'.'J -- CL r- 0* Ew =LU. .UQJ GJ.) i t

P~q IA *.U #a0 06 CL ' 40VJL)
u 1 .' 6 ~ 4.p W 41.C 06 0) 4A~ 4 I

00 t)Q C 4A 0 LAn J a 1.. wQ .0C
4jC o) 4-C in UO.J P--u. @04' - 4.3.-

0# 3 .0)wCL 6JL1

MC Q 4) 4 4Atu Ow cC L LO) o N%-
V 10 L) fa 4.1. A.))L 4.1 4- *. a -

c~~~ -0 - 1"00".AJI
41- V1 l z - E L. l u

0.) C- C... - 1

#a 0 c ~ z 0UItog
0L -7 "o0Q C.L.r Az

wt a; c10L 0U ecJ

ine .0 0 4 c

1:; .0 4n. S

xW Lf .3@

00'- iCCinn E

C140% u00.0EUam3 .9

@1j0 (U L. SAEU "-1
Cr 06.. 4- '4.C0L. 4A.6b0aG 0 . 0
W1 06E -r- to E ~ ' U

c) a4 cu "0O@J. 0

@1 C . 0 CD W0 -

L6wE u@ V 1*-~ 0- C0'
un GJ ~ 4' 0 sm L.C' F 4'J)

-~t to a)'4 _C @ do ý 4. 0UE
C ~ t u.- 0%I (U '-' *9- 4%C Z

L. C in inC 0A cc.inJWE W

Ia 0-.. 3., c fe a 0

S- 0 in U ccW.W n o
ko in9 L~0. > (7C~ 1

in4 C .- 0 ~ x. 16U 4'- U

w3 00i w~'-.
41~~@ 3 .CA

6AL =O~ CLa-=-4.) LI 0W -1-4 t.-
LA V1 C- 20 &A. = = h 4

li. L.
z.w0 - in

Model notes for reviewers
C. H. Parks

* Inasmuch as the model intended use is a logical view of the data, independent
of existing systems or methods, for development of a neutral product data
exchange structure, the reviewer is asked to keep in mind several important
modeling constraints.

The entities and attributes are to reflect the data inherent in schematic, as
opposed to the information conveyed by a schematic. An example is that the
User View preceeding the logical IDEF-l model describes a netlist. The netlist
is here recognized as information assembled by a query against schematic data.
In turn, the model must be capable of supporting such a query. Elements of
information found in the netlist are found in the Network, Symbol Connection
Place and Symbol Instance entity classes.

The model must exist independent of implementations. The entity classes in
the logical model must be equally valid for a pencil-drawn schematic'or a
CAE system with nodal data structures. The Text Template entity found in the
IGES PWB model has no validity under this rule and has not been included in
this model. The data concept of a "place where a connectior line can terminate"
would be valid, and has been included as a Line Connection Place entity.

The model must provide for a union with other related models. This has
resulted in entity classes which also belong in other models, but are in-
cluded to show the key migration and the relation classes. The entities
"Product Assembly Definition" and "Component Part" are examples of such

* entities from other models..

The entity classes involved in circuit analysis have been developed more than
necessary for a schematic because of the high degree of coupling with schematic
entities. While packaging requires information from the schematic data,
analysis is an interactive data-exchange with the schematic. No requirement
for conveying analysis data in a product assembly structure should be assumed
by this.

Several entities classes have been created as part of the normalization
processes. These entities are not included in the Overview FEO. An example
is Electrical Symbol Instance, which provides a home for the Reference
Designator (key) attribute. This attribute can be null for some Symbol
Instances (e.g., utility symbols), creating a separate entity class.

The author's opinion is also offered that a schematic (all of this model) is
not part of a "product definition": Schematics exist as a design aid and as
reference documentation.

N-1

ELECTRICAL SCHEMATIC APPLICATION - USER VIEW
Draft 1/31/85, C. H. Parks

I. Definition
The schematic is a symbolic representation of component parts and

their electrical connections. The schematic may be for any hier-
archical level of product definition, and becomes part of the packaging=
requirements at that level. Schematics may also contain details of
related mechanical nature (e.g., heat sinks, connectors, etc.) and d

transmission of optical, magnetic or microware energy.

II. Inputs (sources of design constraints)

o Block diagram, system or subsystem with target block identified

o Interface requirements (e.g., signals and power)

o Mechanical package requirements (e.g., chip, hybrid microelectronic
assembly or printed board size and mounting)

o Design (and product) constraints and characteristics (e.g.,

specifications, system equations, test requirements)

o Schedules and/or budget

o Approved (or preferred) parts lists

o Symbol set and drafting stindards

111. Items schematic relates to during design

o Design block diagram

o Boolean operators

o Detail equations/transformations

o Static or dynamic models and simulations

IV. Schematic constituents

SYMBOLS: a 2-dimensional figure commonly accepted as a representation
for a part's functionality.

SYMBOL IDENTIFICATION: part family, part number, part values, part
tolerance and reference designator (identifies an instance of the
part, and may be later changed to match physical package assignment)

SYMBOL CONNECTION POINTt: Indicates where connections to symbol can
oc cur.

V-1

SYMBOL CONNECTION POINT IDENTIFICATION: Function code (e.g., Q,
Q, D1, 02, VCC, GNO) and pin number (the latter may be different
after physical.design is completed)

JUNCTION POINT: Symbol (usually a filled small circle) indicating
an electrical union of 2 or more connection lines

CONNECTION LINES, SINGLE: a 2-D line or string between symbol
connection points or junction points

CONNECTION LINES, BUS: a 2-D line or string (usually bold or
highlighted) which represents a collection of connection lines

CONNECTION LINE IDENTIFICATION: signal name (single), bus name or
trunk ID (bus)

UTILITY SYMBOLS: non-part symbols for simplification purposes
(e.g., off page connector, ground connection,. power connection,
test point, antenna)

FUNCTION SYMBOL: identification of (usually) ncn-electrical re-
quirements or parts (e.g., optical energy source, heat sink)

V. Schematic outputs

PICTORIAL: used to review circuit design and as part of final
product documentation

NET LIST: a topology derived by examining the logical relations
(links) created by the connection lines (joins). Resultant list
must be formatted, and contain information, for each use (e.g.,
physical packaging process, circuit analysis methodology, test
development system). Minimal net list information includes part
identification (which must match identification of parts in the
library of each using system), symbol connection point identification
and unique link identification. May be augmented with electrical
characteristics (waveform, delay, etc.).

BILL-OF-MATERIALS: a list of parts cited in schematic. Used for
st-_3s analysis, packaging the physical circuit and in documentation
parts lists.

V-2

C C 41 CL

IA 4.& *' uc 'C C

C.w -f 'UO. EV 0 -

c c c S'U Li %A ' CV' m ~4
-j~L~ Q1 V41 . 'bj On a)- w C IO

ah L.E S LC L

C .C ~ A~ C0 L. 1U .. C0 -v-C -

to CL 4a 01ý OL tU v *)L
0u 00 t.- a)-. ouL C ~

01 'U - c4 cW tj do *-
L4 0 cU aC 4j ~ C#A~a4- ia

L V %- 4W aU C 3 * .S '
4) 0cC C'- - CC- - 03

p- -C W -v- &A 6A41 I -C C 4-b

toL 0 04-i f" 41 Wp Cm.L %
a) Um z w- Uo 'U .4 *.D1 I- L

U*C WI FA r_~ t~p .u. L. S.- .0~

~4) 41 a-) 0 W1 AO c 4) Q i w UUI~
4-b .. C 4- A al - _
u to 0 r'-

4c 0) C L L U' a 0
u do a0 P- ma W- 4-h. S1 C 'Udi

U 4 C . ~ g-C U-P. C0'C .0 c

0.0 'L 0 t-C -0 Q caJL
o * 91 01 I- ~ b0V 3-- CcO- 4)

Qoj~~q 3; 4Jv S a ua-

-0 L.. a 4)' CU 30. Esw 0 CL. 4fl a cl V

CL C.wu mC 01
0X 4c ka- 41u

COto ..- u 1

oc 41 "C , - vs a-'
vI1O " tU aO *a 0-' - 0 1 4

cc A0 = 0 01 V Cw 01 V C; ~ -06 * 50 C A 01 L- 4-b UaI ' 0

V% *. ." iS(j 'u C C41 1 V U' U 0. VC)
U, ~ý C1a* 0 cL'

Ogg j a -' - w'U 0 0 v 010

c 4j .- .w b n (U ac . IL4.P--~aV fa' 00 ' C ai a) 4.0U
41ui m L.4- C ib Ci C) 'U=

01. V. C U. a1 1,. W u 1 Cu 0 41. L.U
W) ~ -b w" %-a- 0i .C 01 Uj -CMp

ULc 40 CA WW 44- w 0 wW 0

'U fC 01f
0) 0 ~4-b IA 0 A 01 oe %A U0
"L.01 **' toC =.- &a0 0 * *

L. tol 43~ ci. 01. C)

.CV C M 1ý U.-r- =i 4)
.. 1~ . i 0 14-0 41 o- E-'- (I. V~

a-v 0 w I. aW 4C c U- w 4

! A a. uC1'~ -P- 04' 0 0 06 al c V
=* =. 4)l. = L. aC

W* a-b 4.) C4 7 1 010 1' . CC = w0

a) 4'

IV:

6w U

Ln ~ ~ 91 wa* a1hZ
zC,

c a-

iC
U

- 4a

a, j I.

rdz I- 6

IIt

z" - .- 0..-- .. I- ,
0

zI~z Z

L6L

~Cc

CL

il I.. IA

4I aJ -

"= -

-AJ
'66

IL 3

'A 6W•

,,,. -:•.~

a.. hi.J 4-
.z, i -.

low -

I~j *

I'm'"0

-Ab

C
Lhl

zU U
uIn

ha~ 4 a-i

0 4w

-Um.
VA0

cc ke --. -&

~C'l
bi IALWL. 7

0b

4WK
CE C

I a.-N
U, 3 Z N

t o-

C,% -

2 wa

c ILI "-x..

LaJ

I

hii

o hi
w

4 -

4L z~

*a - i

LO Z)-p..hi

awUoI.. --; T-12
cull-

hi hi1

z U9 z- -c Y -

WII
IL W 0.. 6 -

13 1 .C-

2z wa
Ii..z

=~~ I YOI
z u

r - --- - - - - - - - - -

aOne
Itsg

FE

all.

4t

6& T

0*

IL z

4 oe
Uz RE 165

-J 4- --

&e'cog
Oq92

a at

AL am5 as

0
,0

5-p

.j t~3

33

LL&J

Uw - wI1.AI~

319i

-O00

-DZ

bi is
6--la

s-o-

rN W, -

CA~

GA.

qp

Appendix C4.2

Task 2

Qualified Electrical Schematic Model (NIAM)

(DISCIPLINE)

* 20

4rIC I O

as,

4FZ ZrcM tCA 1

IN

0&4Z..

Appendix C4.3

Task 2

Electrical Schematic Global Model (NIAM.)

(DISCIPLINE)

021

_

A1

Thp/O y4'2f

clare

i'~ewda1~ ~L~LECR/CA

9' GLO8AL

Appendix C5

Task 2

Tolerancing Discipline Model

(DISCIPLINE)

C5.1 Discipline Model and Documentation

C5.2 Qualified Model (NIAM)

C5.3 Global Model (NIAM)

C5.4 Specification Model (NIAM)

S 22

Appendix C5.1

Task 2

Tolerancing Discipline Model and Documentation

(DISCIPLINE)

S

23 0

Scope

This document provides the definition of functional content for. tolerancing practices as specified by A!7SI Y14.5::-1982 and ISO 1101
and 1660. These specifications are considered to be functionally
identical for the purposes of this effort.

This information model is intended to completely define all tolerance
information specified by ANSI Y14.511-1982 and the corresponding ISO
specifications. Any deficiencies should :e commented on in writinc.

Excluded from the scope

Computing tolerances

Process tolerances

Pictorial representations of tolerances

Dimensioning practices.

!Non-mechanical part tolerances (e.g.electrical component values)

Assum:ptions

Product models are assume- to be 3D wireframes with surfaces.

flodels contain exact definitions of nominal product geometry.

Dimension information is implicit in model geometry.

Topology constructs, where used in this model, are included to satisfy
the functional requirements of tolerancing. Since a completely' sur-
faced wireframe and a BREP model are essentially equivalent, vie hava
adopted the BREP terminology of face, edge and vertex in our tolerance
model.

Many entity classes defined here are known to be incomplete. Usually
these classes are dependent on other reference models that are not
available yet.

e4

0-1-

mw m|| -1-

General Definitions

Product

An item(s) which is(are) manufactured, or used in the manufacture of
an another item.

model

A digital definition of a product.

Drawing

A pictorial representation of a product.

Dimension

A numerical value which is a measure of the product implicit, in thl
model geometry.

Notation

.'here entities are referenced that are not properly tolerance entities
(e.g. conic arc), those entity references are marked witha an "*". "'o *
definitions are provided for those entities.

The Pascal-like "data structure" notation used herein is not intenIe-
in any way to indicate or specify any particular physical representa-
tion of the information. These structures are include& only to clarify
the intent and content of the information model.

-2

Entity and Class Definitions

. (100) Geometry

Geometry elements or entities are mathematically exact constructs such
as points, lines and the like, that represent topological eley:,ents
which are physically present on a part. Geometry defined here is only
that explicitly contained in the tolerance information model.

Class of: Unit-Vector (101)
PointVector (102)
Vector (103)
Curve (106)
Coordinate (107)
Point *

Endclass;

(101) Unit vector

A sequence of three real values that are the direction cosines o0 a
unit vector. The Euclidean norm is exactly 1.

Start-entity
iCosine : Real
jCosine : Real
k._Cosine : Real
End-entity;

(102) Point vector

A point vector is three real values that are direction cosines, a
coordinate point through which the vector passes and a length value.

Startentity
Position : Coordinate (107)
Direction : Vector (103)
End_entity;

(103) Vector

A vector is three real values that are direction cosines and a leng:th
value.

Start-entity
Direction : UnitVector (101)
Length : Real
End-entity;

-3-

(106) Curve

A curve is a class of entities. These entities are assumed to be
defined by the information model for 3D surfaced wire frames.

Class of: line *
circular arc *
conic arc *

End-class;

(107) Coordinate

A set of three real values that specifies a theoretical position in
space.

Start-entity
.X_coorCinate : Real

Y-coordinate : Real
Z_coorCinate : Real
Endentity;

0

-- 4

(200) Topology

Topology elements or entities are constructs that define touchable or
viewable portions of a part. Topology elements are defined in terms of
geometry elements and other topology elements.

Class of: vertex (201)
edge (202)
face (203)

Endclass;

(201) Vertex

A vertex defines logical connectivity of edges.

Start-entity
Point-reference : Point *
End-entity;

(202) Edge

An edge bounds a curve and defines logical connectivity of faces.

Start-entity
Curvereference : Curve (106)
Start..?oint : Vertex (201)
End-point : Vertex (201)O End_entity;

A Circularedge and Planar-edge are q;ualified types of edge.

(203) Face

A face is a bounded geometric surface.

Startentity
Surface-reference : Surface *
Boundary : Array (1 to maxint) of

Edge (202)
End-entity;

Circular-face, Planar-face, Cylindrical-face, DiskZace an-
Runout_face are qualified types of face.

(204) Circular edge

Circular edge is an obvious subset of Edge (202).

5

(205) Circular face

A circular face is a subset of Face (203). A circular face exhibits c.
circular cross section in any plane perpendicular to the axis of
symmetry. 9
(206) Planar face

A planar face is a subset of Face (203). A planar face references a
surface that is planar in the region of interest.

(207) Cylindrical face

A cylindrical face is a subset of Face (203). The surface referenced3
by the face must be cylindrical in the region of interest.

(208) Runout face

A runout face is a su:3set of Face (203). The subset consists of
circular faces (205) and disk faces (211).

(20,) Planar edge

A subset of rcdge (202). Planar edoes have all constituent elements in
a single plane.

(211) Disk face

A subset Face (203). A disk face refers to a surface perpendicular to
an axis of symnetry with a circular boundary (edge).

-G

TOLEPANCZ MODEL 23 Oct 1985 Feature Entities

(300) Feature. A feature is a referencable geometric subset of interest in a model. 7
feature is also a class of entities:

Class of: face (203)
edge (202)
vertex (201)
datum (301)
size-feature (303)
formjfeature (304)

Endclass;

(301) Datum

A theoretically exact geometric reference to which toleranced features
are related.

Start-entity
Referenced-entity : Topology (200) or Featureof

-size (306)
flame : String(2)
End-entity;

Attribute Descriptions:

Referenced-entity: An entity which serves as the
exact definition of the datum.

Name: An alphabetic string that provides a uni.ue
designation for the datum (range: A..Z AA..Z7,
excluding I, 0, and Q)

(302) Conditioned Datum

A conditioned datum is a datum to which a material condition speci2i-
cation applies.

Start-entity
Base : Datum (301)
Haterial-condition : (W, L, S)
End-entity;

Attribute Descriptions:

Base: A datum entity which serves as the exact
definition of the datum.

Material-condition: An enumerated list that indicat23
the material condition at which the tolerance
applies: '.! - maximum material condition; L -
least material condition; or S - regardless of
feature size.

-7-

TOLERANCE IrODEL 23 Oct 1985 eeature Lniteb

least material condition; or S - regardless of
feature size.

(303) Size feature

A feature whose tolerancable geometric location is derived from physi-
cal feature geometry and is symmetric about a point, axis, curve or
surface. Size tolerances of the feature are independent of feature
location. This entity exists to allow the application of tolerancez
to partially modeled or incomplete Features_of-size.

Start-entity
Tolerance_entity : Array (2 to maxint) of

face (203)
Endentity;

(304) Form feature

A referenca.Dle geometric subset whose name implies a specific physica!
configuration. The subset does not include the size feature entities.

Class of: Hole (305)
Featureofsize (305)

End_class;

(305) Hole o

A circular opening, of possibly stepped or graduated diaieter, into or
through a workpiece. It is oriented at an angle, possibly nor:mal, to
the surface of the workpiece.

(30G) Feature of size

A feature of size is a subset of Form feature (304). An example is the
Eole (305).

~0o

TOLEI.AITCE iODIL 23 Oct 1985 Tolerance Entitiea

(400) Tolerance

* The allowable deviation of a geometric aspect of a product froin its
design nominal geometry.

Class of: coordinatetolerance (401)
geometric-tolerance (402)

Endclass;

(401) Coordinate tolerance

A coordinate tolerance is a class of entities:

Class of: angle-tolerance (404)
location-tolerance (403)
size-tolerance (405)

End_class;

(402) Geometric tolerance

A geometric tolerance is a class of entities:

Class of: angularity (406)
circular-runout (407)
circularity (408)
concentricity (409)
cylindricity (410)
flatness (411)
parallelism (412)
perpendicularity (413)
position (414)
profile-of_a_line (415)
profileof_a_surface (416)
straightness (417)
totalrunout (418)

End-class;

9

TOLECRA1CE MODEL 23 Oct 1985 Tolerance Entities

(403) Location tolerance

Allowable deviation of measure of a feature from its design no;ninal
position relative to a specified base location along a specified; path.

Startentity
Origin : Location-origin (503)
Path : Locationpath (504)
Tolerancedentity : Array (I to maxint) of

Locationtoleranced.entity (302)
Basic : Boolean
PlusTol : Real
i4inusTol : Real
Endentity;

Attribute Descriptions:

Origin: An entity that serves as the base or origin
of the calculated dimension. It is the "from"
entity of the directed dimension.

Path: A curve along which (or in the direction of
which) the dimension is measured.

TolerancedEntity: An arr'..y of entities to which
the tolerance applies.

Basic: A boolean (true/false) flag that indicates
whether the entity is used as a DASIC ci::m;n-
sion.

Plus-Tol: The absolute value of the tolerance that is
added to the nominal dimension value to esta-
blish the maximum allowable deviation of the
toleranced entity from the nominal.

ninusTol: The absolute value of the tolerance that
is subtracted from the nominal dimension value
to establish the minimum allowable deviation of
the toleranced entity from the nominal.

- 10 -

TOLERANC•E MODEL 23 Oct 1985 Tolerance Entities

(404) Angle tolerance

A llowable deviation of measure of a toleranced entity from its design
nominal orientation relative to a specified base orientation.

Startentity
Origin : Angle-origin (501)
Tolerancedcentity : Array (I to maxint) of

Angle-toleranced.entity (50G)
Basic : Boolean
PlusTol : Real
Z!inusTol : Real
Sense : Boolean
Endentity;

Attribute Descriptions:

Origin: An entity that serves as the base or origin
of the calculated dimension. It is the "from"
entity of the directed dimension.

TolerancedEntity: An array of entities to which the
tolerance applies.

Basic: A boolean (true/false) flag that indicates
whether the entity is used as a BASIC dimen-
sion.

PlusTol: The absolute value of the tolerance that is
added to the nominal dimension value to esta-
blish the maximum allowable deviation of the
toleranced entity from the nominal.

MinusTol: The absolute value of the tolerance that
is subtracted froro the nominal dimension value
to establish the minimum allowable deviation oZ
the toleranced entity from the nominal.

Sense: A boolean (true/false) flag which indicatec
whether or not the angle is measured in a
counter-clockwise manner. The orientation of
measure is determined by the cross-product from
the origin to the toleranced entity vector.
If the cross-product is zero, the path vector
is required to determine the orientation.

- 11 -

TOLERANCE MtODEL 23 Oct 1985 Tolerance Entities

(405) Size tolerance

Allowable deviation of measure of a toleranced entity from its design
nominal magnitude, e.g. hole diameter.

Startentity
Toleranced-entity : Array (1 to maxint) of

Sizetoleranced_entity (505)
Easic : Boolean
PlusTol : Real
1linusTol : Real
Endentity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Basic: A boolean (true/false) flag that indicates
whether the entity is used as a BASIC dimen-
sion.

PlusTol: The absolute value of the tolerance that is
added to the nominal dimension value to esta-
blish the maximum allowable deviation of the
toleranced entity from the nominal.

MinusTol- The absolute value of the tolerance that
is subtracted from the nominal dimension value
to establish the minimum allowable deviation of
the toleranced entity from the nominal.

o
- 12 -

TOLERAUCE :lODEL 23 Oct 1985 Tolerance 7ntities

(406) Angularity. Angularity is the condition of a surface or axis at a specified angle
(other than 90 degrees) from a datum plane or axis. An Angularity
tolerance specifies a tolerance zone defined by two parallel planes at
the specified basic angle from the datum plane or axis within which
the surface of or axis of the considered feature must lie.
See ANSI Y14.511 1982, page 106, section 6.6.2
See ISO 1101, pages 18-19, section 5.9

Start-entity
Tolerancedentity : Array (1 to maxint) of

Angularity-tolerancedentity (506)
Tolerance : Real
Naterial-condition : (1I, L, S)
Projection : Optional Point-vector (102)
Primary-datum : Conditioned_datum (302)
Secondary-datum : Optional Conditioned-datu:m (302)
Tertiary-datum : Optional Conditioned-datum. (302)
Endentity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowable deviation from
the design nominal value.

L 1aterial-condition: An enumerated list that indicates
the material condition at which the tolerance
applies: !, - maximum material condition; L -
least material condition; or S - regardless of
feature size.

Projection: A point-vector which specifies the
additional height and direction of the
projected tolerance zone outside the feature
boundary.
Note: I-ust be parallel to the toleranced

features. Length of vector determines the
extent of the zone.

Primary-datum: A conditioned-datum entity from which
the dimension is measured. This primary datu_.;
is the most important datum relative to the
tolerance.

Secondary-datum: A conditioneddatum entity whicai is
the second most important datum relative to the
tolerance.

Tertiarydatum: A conditioned-datum entity whiclh is thi
third most important datum relative to the
tolerance. With the primary and secondary cata,

-13-

TOLERANCE IlODEL 23 Oct 1985 Tolerance Entities

it establishes a datum reference frame that exactly
locates the toleranced feature.

0
S- 14 -

TOLERAVCE M1ODEL 23 Oct 1985 Tolerance Entities

(407) Circular runout

SCircular runout tolerance defines the maximum allowable deviation of
position of a coordinate on the toleranced feature during one complete
revolution of that feature about the datum axis, without relative
axial displacement of the measuring position. Where applie .to
surfaces constructed around a datum axis, it is used to control the
cumulative variations of circularity amd coaxiality. Where applied to
surfaces constructed at right angles to the datum axis, circular
runout controls circular elements of a plane surface.
See ANSI Y14.51! 1982, page 109, section 6.7.2.1
See ISO 1101, page 22-23, section 5.12

Start-entity
Toleranced-entity : Array (1 to maxint) of

Circular-runout-toleranced-entity (507)
Tolerance : Real
Primarydatum : Datum (301)
Co-primary.datum : Optional Datum (301)
Endentity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowable deviation fro-..
the design nominal value.

Primarydatum: A datum entity from which
the dimension is measured. This primary datum
is the most important datum relative to the
tolerance.

Co-primary-datum: An additional datum entity which
establishes an axis with the primary datum.

-15 -

TOLERANICE !ICDEL 23 Oct 1985 Tolerance Entities

(408) Circularity

Circularity is a condition of a surface of revolution such that all
points of the surface intersected by a plane perpendicular to the axisW
or center point are equidistant from the intersection point of the
plane and the axis or center point. A Circularity tolerance defines
the distance between two concentric circles within which the
coordinates of the toleranced feature must lie. These circles are
perpendicular to and centered on the axis of the toleranceO feature.
See ANSI Y14.5I 1982, page 95, section 6.4.3
See ISO 1101, page 14, section 5.3

Start-entity
Toleranced-entity : Array (1 to maxint) of

Circularity-toleranced.entity (50E)
Tolerance : Real
End-entity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowa'Dle deviation frc:,
the design nominal value.

-16-

TOLERANCE I1ODUL 23 Oct 1985 Tolerance inc~ies

(409) Concentricity

S A Concentricity tolerance specifies the diameter of a cylinder cen-
tered on a datum point or axis within which the center or axis of the
toleranced circular or cylindrical feature must lie. The specifies
tolerance and datum reference apply only on a Regardless-of-Peature-
Size basis.
See ANSI Y14.51 1982, page 84, section 5.11.3
See ISO 1101, page 21, section 5.11.1

Start-entity

Toleranced-entity : Array (1 to maxint) of
Concentricity-toleranced-entity (5C9)

Tolerance : Real

Primary-datum : Datum (301)
Co-primarydatum : Optional Datun. (301)
End-entity;

Attribute Descriptions:

Tolerancezd_Entity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowable deviation from
the design nominal value.

Cylindrical-zone: A boolean (true/false) flag that
indicates that the tolerance value is the dia-
meter of a cylindrical zone within w:hich tie
axis or line must lie. If false, the zone is
parallelepipedic or the space between two
parallel lines or planes.

Primary-datum: A datum entity from which
the dimension is measured. This primary datum
is the most important datum relative to the
tolerance.

Co-primary.datum: An additional datun. entity which
establishes an axis with the pri~mary datum.

1
- 17 -

TOLERANCE NODEL 23 Oct 1985 Tolerance Entities

(410) Cylindricity

Cylindricity tolerance defines the distance between two coaxial cylin-
ders within which the toleranced cylindrical feature must lie. Unli.:e *
circularity, the tolerance applies simultaneously to both circular and
longitudinal elements of the surface.
See ANSI Y14.514 1982, page 96, section 6.4.4
See ISO 1101, page 14, section 5.4

Start-entity
Toleranced-entity : Array (1 to maxint) of

Cylindricity-toleranced_entity (510)
Tolerance : Real
Endentity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which

the tolerance applies.

Tolerance: The specified allowable deviatiorn from

the design nominal value.

0

- 18 -

TOLERANCE MODEL 23 Oct 1985 .o.Lerance r111L.LL.L

(411) Flatness

SFlatness tolerance defines distance between two parallel planes
between which the tolerance& surface must lie. The tolerance may be
applied on a unit basis as a means of preventing abrupt surface
variation within a small area of the feature.
See ANSI Y14.51, 1982, page 94, section 6.4.2
See ISO 1101, page 13, section 5.2

Start-entity
Toleranced-entity : Array (1 to maxint) of

Flatness-tolerancedentity (511)
Tolerance : Real
tMaterialcondition : (H, L, S)
Per-unit_square : Optional real
End-entity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowable deviation from
the design nominal value.

f!aterial-condition: An enumerated list that indicates
the material condition at which the tolerance
applies: r- - maximum material condition; L -
least material condition; or S - regardless of
feature size.

Perunit-square: Specifies the side of any square
region on the tolerancedentity over which
the tolerance value applies. Used to prevent
abrupt surface variation in a relatively small
area of the feature.

1
- 19 -

TOLERANCE MIODEL 23 Oct 1985 Toierance Entizies

(412) Parallelism

Parallelism is the condition of a surface equidistant at all points
from a datum plane or an axis equidistant along its length from a@
datum axis. A Parallelism tolerance specifies the distance between two
planes or lines parallel to a datum plane, or axis, within which the
line elements of the surface or axis of the considered feature mus:
lie, or a cylindrical tolerance zone whose axis is parallel to the
datum axis, within which the axis of the considered feature must lie.
The allowable feature position zone may be cylindrical(fig 45), paral-
lelepipedic (fig 51) or planar (fig 47,54) for line features and is
similar to a flatness tolerance zone for surface features (fig 57,60).
These figure references are to the ISO 1101 standard.
See ANSI Y14.5S! 1982, page 106l, section 6.6.3
See ISO 1101, page 15-17, section 5.7

Start-entity
Tolerancedentity : Array (I to maxint) of

Parallelismtoleranced-entity (512)
Tolerance : Real
m:aterial-condition : (A', L, S)
Cylindricalzone : Boolean
Projection : Optional Pointvector (102)
Primarydatum : Conditioned-datum (302)
End-entity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowable deviation fro:-,
the design nominal value.

M•aterial-condition: An enumerated list that indicates
the material condition at which the tolerzance
applies: 1M - maxirmum material condition; L -
least material condition; or S - regarless of
feature size.

Cylindrical-zone: A boolean (true/false) flaT that
indicates that the tolerance value is the dia-
meter of a cylindrical zone within which the
axis or line must lie. If false, the zone is
parallelepipedic or the space between two
parallel lines or planes.

Projection: A point-vector which specifies the
additional height and direction of the
projected tolerance zone outside the feature
boundary.
Note: Ilust be parallel to the toleranced

features. Length of vector determines the
extent of the zone.

-20-

TOLERANCE MIODEL 23 Oct 1985 Tolerance Entities

Primary-datum: A conditioneddatum entity from which
the dimension is measured.

(413) Perpendicularity

Perpendicularity tolerance defines the allowable linear deviation fro:•
a true right angle of line or surface features with respect to line or
surface datums. Several interpretations of the exact tolerance zone
are possible for line feature with respect to surface datums. See
figures 65,67 and 69 in ISO 110lpage 17.
See ANSI Y14.5M 1982, page 105, section 6.6.4
See ISO 1101, page 17-18, section 5.8

Start-entity
Toleranced.entity : Array (I to maxint) of

Perpendicularity.toleranced-entity (513)
Tolerance : Real
Material-condition : (*!, L, S)
Cylindrical-zone : Boolean
Projection : Optional Pointvector (102)
Primary-datum : Conditioned-datum (302)
Secondary-datum : Optional Conditioneddatum (302)
Endentity;

Attribute Descriptions:

TolerancedEntity: An array of entities to wich
the tolerance a3plies.

Tolerance: The specified allowable deviation from
the design nominal value.

Material-condition: An enumerated list that indicates
the material condition at which the tolerance
applies: M - maximum material condition; L -
least material condition; or S - regardless of
feature size.

Cylindricalzone: A boolean (true/false) flag that
indicates that the tolerance value is the dia-
meter of a cylindrical zone within which the
axis or line must lie. If false, the zone is
parallelepipedic or the space between two
parallel lines or planes.

Projection: A point-vector which specifies the
additional height and direction of the
projected tolerance zone outside the feature
boundary.
Note: Must be parallel to the toleranced

features. Length of vector determines the
extent of the zone.

- 21 -

TOLERANCE N;ODEL 23 Oct 1985 Tolerance Entities

Primary-datum: A conditioneddatum entity from which
the dimension is measured. This primary datum
is the most important datum relative to the
tolerance.

Secondary-datum: A conditioneddatum entity which is
the second most important datum relative to the
tolerance.

(414) Position

Position tolerance defines the allowable deviation of position of the
center point, axis, or center plane of a feature of size. A center
point tolerance defines the diameter of a spherical or circular zone,
an axis tolerance defines the measure of a cylindrical, parallelepi-
pedic or planar zone and a center plane tolerance defines a zone
specified by the distance between two bounding parallel planes. Each
zone is considered to contain the true position of the toleranced
feature.
See ANSI Y14.5r1 1982, page 53-89, section 5.2
See ISO 1101, page 19-20, section 5.10

Start-entity
Toleranced.entity : Array (1 to maxint) o.ZPosition-toleranced-entity (51.ý)
Tolerance : RealMaterial-condition : ('11 L, S)
Cylindrical-zone : Boolean
Projection : Optional Point-vector (102)
Primary-datun : Conditioned-datum (302)
Secondary-datum : Optional ConditioneddatuT (302)
Tertiarydatum : Optional Conditioned_datum (302)
End-entity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowable deviation from
the design nominal value.

Material-condition: An enumerated list that indicates
the material condition at which the tolerance
applies: F - maximum material condition; L -
least material condition; or S - regardless of
feature size.

Cylindrical-zone: A boolean (true/false) flag that
indicates that the tolerance value is the dia-
meter of a cylindrical zone within which the
axis or line must lie. If false, the zone is
parallelepipedic or the space between two
parallel lines or planes.

- 22 -

TOLERANICE IODEL 23 Oct 1985 Tolerance Entities

Projection: A point-vector which specifies the
adoitional height and direction of tne
projected tolerance zone outside the feature
boundary. Vote: The length of the vector
determines the length of the zone.

Primary-datum: A conditioneddatum entity front which
the dimension is measured. This primary datu:.,
is the most important datum relative to the
tolerance.

Secondary-datum: A conditioned-datum entity which is
the second most important datum relative to the
tolerance.

Tertiarydatum: A conditioned-datum entity which is the
third most important datum relative to the
tolerance. With the primary and secondary dat3,
it establishes a datum reference frame that exactly
locates the toleranced feature.

2

- 23 -

TOLERANCE MODEL 23 Oct 1985 Tolerance Entities

(415) Profile of a line

Profile of a line tolerance specifies the diameter of a circle w:hich,
when its center, or one tangent, moves along the design nominal curve w
feature, sweeps the region in which the feature must lie. The
tolerance is two-dimensional and applies normal (perpendicular) to the
true proiile at all points. Where a sharp corner is includej, the
tolerance zone extends to the intersection of the boundary lines.
See ANSI Y14.5fI; 1982, page 97-104, section 6.5.1
See ISO 1101, page 14, section 5.5

Start-entity
Toleranced-entity : Array (1 to maxint) of

Profile_of_a-linetoleranced_entity (515)
Directrix : Optional unit vector (101)
Tolerance : Real
Application : (I,3,O)
Primarydatum : Optional Conditioned_5atum (302)
Secondary-datum : Optional Conditioned_daturm (302)
Tertiary-datum : Optional Conditioned_6atum (302)
End-entity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowable deviation from
the design nominal value.

Application: An enumerated list that specifies the
tolerance application to be I-inside,
B-bilateral, or O-outside.

Primarydatum: A conditioned-datum entity froii which
the dimension is measured. This primary datui
is the most important datum relative to the
tolerance. Required only when a unique plane
cannot be calculated from the toleranced_entity.

Secondarydatum: A conditioned-datum entity which is
the second most important datum relative to the
tolerance.

Tertiary-datum: A conditioned-datum entity which is the
third most important datum r3lative to the
tolerance. With the primary and secondary data,
it establishes a datum reference frame that e::actly
locates the toleranced feature.

Directrix: Cross sections of the toleranced face taken in
planes normal to the directrix establish the line
profile that is toleranced. The directrix is
required only if a datum i• not included in t-e
line tolerance entity.

- 24 -

S~- 11 -

TOLEPAV•CF MODEL 23 Oct 1985 Tolerance Entities

. (416) Profile of a surface

A profile of a surface tolerance specifies the distance between twc"ball-offset" surfaces located on equally on either side, or totally
on one side, of the design nominal feature. The toleranced feature
must lie between these surfaces. The tolerance is three-dimensional
and applies normal (perpendicular) to the true profile at all points.
Where a sharp corner is included, the tolerance zone extends to the
intersection of the boundary.
See ANSI Y14.511 1982, page 97-104, section 6.5.1
See ISO 1101, page 14, section 5.5

Start-entity
Toleranced-entity Array (I to maxint) of

Profileof_a_surface.tolerancedentity (516)
Tolerance : Real
Application : (I,B,O)
Primary-datum : Optional Conditione&-datum (302)
Secondarydatum : Optional Conditioned_datum (302)
Tertiary-datum : Optional Conditioned-datur: (302)
Endentity;

Attribute Descriptions:

TolerancedEntity: An array of entities to wiich
* the tolerance applies.

Tolerance: The speciiied allowable deviation fror
the design nominal value.

Application: An enumerated list that specifies the
tolerance application to be I-inside,
B-bilateral, or O-outside.

Primary-datum: A conditioneddatum entity from which
the dimension is measured. This primary datur
is the most important datum relative to the
tolerance.

Secondary-datum: A conditioned-datum entity which is
the second most important datum relative to the
tolerance.

Tertiary-datum: A conditioned-datum entity which is the
third most important datum relative to the
tolerance. With the primary and secondary data,
it establishes a datum reference frame that exactl!,
locates the toleranced feature.

0

II

TOLERANCE MODEL 23 Oct 1985 Tolerance Entities

(417) Straightness

Straightness tolerance defines the allowable deviation of a line or of@
line elements of a surface feature. The tolerance zones for line
features are cylindrical, parallelepipedic and parallel planes.
Straightness tolerance for surface features specify the distance
between two parallel lines within which a linear element of the sur-
face, in a specified direction, must lie. The linear element is a
cross section of the surface in a plane parallel to the direction
vector and normal to the surface. See figures 27,29 and 31 in the ISo
1101 standard, page 17.
See ANSI Y14.5M 1982, page 91-94, section 6.4.1
See ISO 1101, page 13, section 5.1

Startentity
Toleranced-entity : Array (I to maxint) of

Straightness.tolerancedentity (517)
Direction : Optional Unitvector (101)
Tolerance : Real
,laterial-condition : (W, L, S)
Cylindrical-zone : Boolean
Perunit.length : Real
End-entity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Direction: A unit vector that specifies the
straightness tolerance for linear surface
elements. Required when the tolerancedcentity
is a surface. It must be parallel to the surface.

Tolerance: The specified allowable deviation froz.
the design nominal value.

Material-condition: An enumerated list that indicates
the material condition at which the tolerance
applies: n - maximum material condition; L -
least material condition; or S - regardless of
feature size.

Cylindricalzone: A boolean (true/false) flag that
indicates that the tolerance value is the dia-
meter of a cylindrical zone within which the
axis or line must lie. If false, the zone is
parallelepipedic or the space between two
parallel lines or planes.

Per-unit.length: Specifies the linear distance
within which the tolerance value applies. Use- to
prevent abrupt changes in the direction of the
toleranced entity.

- 26 -

TOLERA!7CE :IODEL 23 Oct 1985 Tolerance Entities

(41G) Total runout

* A total runout tolerance specifies the maximum allowable deviation of
position for all points on the toleranced feature during one complete
revolution of the feature about the datum axis, with relative axial
displacement of the measuring position. Where applied to surfaces
constructed around a datum axis, it is used to control the cumulative
variations of circularity, straightness, angularity, taper, profile of
a surface, and coaxiality. Where applied to surfaces constructeC at
right angles to the datum axis, total runout controls perpendicularity
and flatness.
See ANSI Y14.5:4 1982, page 109, section 6.7.2.2
See ISO 1101, page 22-23, section 5.12

Note that A::SI and ISO do not explicitly define total runout for
non-cylindrical surfaces. It is assumed that this is due to
mechanical measurement limitations.

Startentity
Toleranced.entity : Array (1 to maxint) of

Total-runout-tolerancedentity (513)
Tolerance : Real
Primary-datum : Datum (301)
Co-primary6daturn : Optional Datum (301)
End-entity;

Attribute Descriptions:

TolerancedEntity: An array of entities to which
the tolerance applies.

Tolerance: The specified allowable deviation fro2
the design nominal value.

Primary-datum: A datum entity from which
the dimension is measured. This primary datu:5
is the most important datum relative to the
tolerance.

Co-primary-datum: An additional datum entity which
establishes an axis with the primary datum.

- 27 -

TOLERANCE MODEL 23 Oct 1985 iniscellaneous Entities

(500) Angle toleranced entity

Angle toleranced entity is a point vector and a member from the class@
edge (202), planar face (206) and size feature (303).

Start-entity
Tolerancedentity : Face (203), edge (202),

sizefeature (303)
Plane of measure : Unit_vector (101)
Toleranced-location : Array of I:N of Point-vector

(102)
End-entity;

Attribute Descriptions:

TolerancedEntity: An entity to which the tolerance
applies.

Plane of measure: Unit vector which specifies the
normal to the plane in which the angle is
measured.
Note: The path vector must be normal to the

ang-tol-ents(500) point vector anj the
ang-org(501) vector. The path must exist
vector(500) and the vector(501) do not
define a unique plane.

Toleranced-location: A point-vector which specifies
the reference orientation on the tolerance6
entity. It must lie on the toleranced entity.
M:ultiple point-vectors apply to ruled surface
tolerancedentities.

(501) Angle origin

Angle origin entity is an origin vector and a member of the class egce
(202), face (203) or datum (301).

Startentity
Origin-entity : Face (203), edge (202), or

datum (301)
Origin-vector : Unit-vector (101)
Endentity;

Attribute Descriptions:

Origin-entity: A face, edge, or datum that serves as
the base of the calculated dimension. It is
the "from" entity of the directed dimension.

Origin-vector: A unit-vector which specifies the
base orientation. The origin vector must be
contained in the origin entity and at the
location of the toleranced entity.

- 28 -

TOLERANCE MODEL 23 Oct 1985 M1iscellaneous Entities

. (502) Location toleranced entity

Location toleranced entity is a location coordinate and a member from
the class of edge (202), face (203), location tolerance qualified form,
feature (533), size feature (303), vertex (201).

Start-entity
Toleranced.entity : Face, edge, vertex,

sizefeeture, or
locationtolerance_

qualified-formjfeature
Toleranced-location : Coordinate (107)
End-entity;

Attribute Descriptions:

TolerancedEntity: An entity to which the tolerance
applies.

Toleranced-location: A coordinate which snecifies
the reference location on the toleranced entity.
The coordinate must lie on the toleranced entity.

(503) Location origin

O Location origin is an origin coordinate and a member from the class
edge (202), face (203), datum (301), vertex (201).

Start-entity
Origin-entity : Face, edge, vertex, or

datum
Origin-location : Coordinate (107)
End-entity;

Attribute Descriptions:

Origin-entity: An entity that serves as the base of
the calculated dimension. It is the "from"
entity of the directed dimension.

Origin-location: A coordinate which specifies the base
position. The coordinate must lie on the origin
entity.

- 29 -

TOLERANCE MODEL 23 Oct 1985 Miscellaneous Entities

(504) Location path

A location path is a class of entities:

Class of: unit-vector (101)
curve (105)

End-class;

It is used to specify the path along which a dimension measure is
calculated. A curve instance must contain but not necessarily enz: with
the toleranced coordinate point(s).

(505) Size toleranced entity

Size toleranced entity is a class of entities:

Class of: size-feature (303)
circular edge (204)
cylindrical face (205)size-tolerance_

qualified-formfeature (519)
End-class;

Each of these entities has a symmetric set of geometric entities which
is toleranced as to size of the syn, netric elements.

(506) Angularity toleranced entity

Angularity toleranced entity is a class of entities:

Class of: face (203)
edge (202)
sizefeature (303)
angularity-tolerance_

qualified.form_feature (52r)
End-class;

(507) Circular runout toleranced entity

Circular runout toleranced entity is a class of entities:

Class of: circular edge (204)
runout-face (208)
circularrunout-tolerance_

qualified.formfeature (52')
End_class;

- 30 -

TOLERAVCE MODEL 23 Oct 1985 miscellaneous Entities

(508) Circularity toleranced entity. Circularity toleranced entity is a class of entities:

Class of: circular-face (205)
circularedge (204)
circularity-tolerance_

qualified-form-feature (524)
End-class;

(509) Concentricity toleranced entity

Concentricity toleranced entity is a class of entities:

Class of: circular-face (205)
circular-edge (204)
concentricity-tolerance_

qualified_form_feature (521)
Endclass;

(510) Cylindricity toleranced entity

Cylindricity toleranced entity is a class of entities:

Class of: cylindrical-face (207)cylindricity-tolerance_
qualified-forn,_feature (525)

Endclass;

(511) Flatness toleranced entity

Flatness toleranced entity is a class of entities:

Class of: planar-face (206)
flatness-tolerance_

qualifiedforntfeature (522)
End-class;

(512) Parallelism toleranced entity

Parallelism toleranced entity is a class of entities:

Class of: face (203)
edge (202)
sizefeature (303)
parallelism-tolerance_

l qualified_form_feature (527)

End_class;

- 31 -

TOLERANCE TIODEL 23 Oct 1985 Miscellaneous Entities

(513) Perpendicularity toleranced entity

Perpendicularity toleranced entity is a class of entities:

Class of: face (203)
edge (202)
sizefeature (303)
perpendicularity-tolerance_

qualified_fornfeature (525)
Endclass;

(514) Position toleranced entity

Position toleranced entity is a class of entities:

Class of: size-feature (303)
position-tolerance_

qualified-formfeature (520)
End-class;

(515) Profile-of-a-line toleranced entity

Profile of a line toleranced entity is a class of entities:

Class of: face (203)
planar-edge (209)
profile-of-a-line_tolerance_ *

qualifieCA-form_feature (531)
End-class;

(516) Profile-of-a-surface toleranced entity

Profile of a surface toleranced entity is a class of entities:

Class of: face (203)
profile-of-a-surface-tolerance_

qualifiedform.._feature (532)
Endclass;

(517) Straightness toleranced entity

Straightness toleranced entity is a class of entities:

Class of: face (203)
edge (202)
size-feature (303)
straightness-tolerance_

qualified-form_feature (523)
End-class;

- 32 -

TOLERANCE ZIODEL 23 Oct 1985 Miscellaneous Entities

(518) Total runout toleranced entity. Total runout toleranced entity is a class of entities:

Class of: runout-face (208)
total-runout-tolerance_

qualifiedform-feature (530)
Endclass;

(519) Size tolerance qualified form feature

Size tolerance qualified form feature is a class of entities:

Class of: Hole (305)
End-class;

(520) Position tolerance qualified form feature

Position tolerance qualified form feature is a class of entities:

Class of: Hole (305)
End-class;

(521) Concentricity tolerance qualified forn feature

O Concentricity tolerance qualified form feature is a class of entities:

Class of: Hole (305)
Endclass;

(522) Flatness tolerance qualified form feature

A flatness tolerance qualified form feature is a class of entities
which exhibit the properties of a plane in the region of interest.

Class of: <null>
End-class;

(523) Straightness tolerance qualified form feature

Straightness tolerance qualified form feature is a class of entities:

Class of: Hole (305)
End-class;

- 33 -

TOLERANCE MODEL 23 Oct 1985 Miscellaneous Entities

(524) Circularity tolerance qualified form feature

Circularity tolerance qualified form feature is a class of entities:

Class of: Hole (305)
Endclass;

(525) Cylindricity tolerance qualified form feature

Cylindricity tolerance qualified form feature is a class of entities:

Class of: Hole (305)
End-class;

(526) Perpendicularity tolerance qualified form feature

Perpendicularity tolerance qualified form feature is a class of
entities:

Class of: Hole (305)
End-class;

(527) Parallelism tolerance qualified form feature

Parallelism tolerance qualified form feature is a class of entities:

Class of: Hole (305)
Endclass;

(528) Angularity tolerance qualified form feature

Angularity tolerance qualified form feature is a class of entities:

Class of: Hole (305)
End-class;

(529) Circular runout tolerance qualified form feature

Circular runout tolerance qualified form feature is a class of
entities:

Class of: Hole (305)
End-class;

(530) Total runout tolerance qualified form feature

Total runout tolerance qualified form features is a class of entities:

Class of: Hole (305)
Endclass;

- 34 -

TOLERANCE !IODEL 23 Oct 1985 Miscellaneous Entities

. (531) Profile of a line tolerance qualified form feature

Profile of a line tolerance qualified form features is a class of
entities:

Class of: <null>
End-class;

(532) Profile of a surface tolerance qualified form feature

Profile of a surface tolerance qualified form features is a class of
entities:

Class of: <null>
End-class;

(533) Location tolerance qualified form feature

Location tolerance qualified form features is a class of entities:

Class of: Hole (305)
End_class;

-35-

DATR MODELLING CONVENTIONS
31 OCTOBER 85

This model should be interpreted as an IDEFI model with the
following conventions and assumptions:

1. An arc is used below or above the subject entity through a number of
it's relationships to denote an exclusive-or. This means that only
one relationship of those thorugh which the arc passes can exist for
a given instance of the subject entity.

2. An unlabeled relationship that has parentheses on it near the
independant entity denotes an "equivalence" relationship that is
read "can be/is." This relationship exists primarily between class
entities and the members of the class.

3. On "diamond" relationships a range indicator of the form N:M is
placed beside the diamond. This indicates the minimum and maximum
number of entities which can be referenced in the relationship.

4. There is a distinction made between two types of relationships and
two types of entities. The two types of relationships are the
typical IDEF1 relationship with a verb-like label and the
relationship described in item 3. The two types of entities are"class" entities and the typical IDEFi entities which have
attributes. Class entities have no attributes and are used to group
entities that are similar in nature.

D: An asterisk that is used in place of an entity number indicates that
the definition of that entity is outside the scope of the model.
The entity, in this case, serves as a link to other models.

4o

0--

Lii

0:-71LI

iiii

CF0-

23

9,,o

'a'

I �iI
U

0

II
I
V

'I
0

U'

ii z

I -N0

vi
U.'

ea

e

j

00

jL~i

CV)

'I

I
ala

* .

a.

-a

0

-5
CD

I

IOO

•aa

xw

S.... • • • 1• i

Lii

* a K-M

IEI

'a,

z

x
hi
g

U

-I

0

4cU

'V-

-op
cnI

MEI

b0

044

F 7A

Ll

J ft- -Ij

0

IA

en

i

I-

L L

mlc

I0 £•

, m i

C

U

I

N
_I

Oz

z

-% %

coU

U U,

c

*w

Ii.
24

ZE

0

-- •• ii i i i i i

b.

S h.

.4.

a-

*A
FAft

a L

aa

a hi

CDU

ft N

W •

V

b.

0

N
U,
-j

N

I
I

-I

I
e-J

N

i
-5

a�.

w

Li

I Sad tv
wU

'i k

- -

ccg
C"l

W
E ,,

- l

zz

I 0

z ___O_

0S

C S

2.

L!aJ Fi

q..

v II

Or4

IEI

L U.

fv p

zb

ccw
0 0

Jim

_• • Il 1... .

IbI

4c:

w'

IO

ih

-J •

a O

Lo

co I II I | I

0L

b.m

mw
• t4

So n • A

o'• .1

Q -a

00

(00

qqP

ICI

a

I II I I AJ

0N

I
0,0

0?2

I.

-!J

zW

0 f

Ot

0L

cza

Cri
S -

H • 0

al

aia

ccj

DI

cn.

aE) 0

00

z

EI
* U

Ii7

coi
mN

ii

a4

cb I

CR1IL';.1W 0

IgoI

iii
0

* 0 0

w

*

I
� C

C

U
S

0
S

-J

CCC

3E-

II

• m l I

Lii
03

57

U U

I E

I
(3 Wi

* a

CID
cr0

ccS

d~-J

0di

aIT

C-2 d:ii

,00

z .

ZEW

- I-

w i
S•| iI

I I I ~ I I

*O

', ib
mt I

i, I

£ I
4

o•• 0

fp

b

I I I l i i

03

" _ I3

I"
I ml

Q 0 S

c , a i l J

I

cc
4 <!

OU

£ --- C

YI "g

1

a,

InI

Nt

Fhi

*0 Ii
owl

ccA

Li

Maa

cc1

z(ii1*hi w I

a IAw

z
- w
S

0w

Ew

I
I

(0

C�) 1*

a

z

I
hi

V
I

#0 i
#0

'a

S

Li 9

I -R

Vp
R.

z0

I ii

I4

a..

I
b

I - 0
IH �. 5!

S.. A. II
S -

8 ee
* 4

I

a.

I..

C. I
S
-a

i.. I II i i0

Ie

I
i

* 0

_ _ _ _ _ _ Il

wI

I.

wI
mI

nI

N- L __N
mS

!tS

/ i!

.°0

30 am-

CRI'D

.4.

lo
a2

I! 2! II 4h

00

tz

9

3k- -o

IA
z _ _j

9- I!w __

- S _ __.-

* U o

-- i
40U

:E-

i

I

Ul Lu

L0-uI

cncc.

ccM

cni

IEI

q. FIllp

4c0-

4c
J.

16a

Ii. -

cnI

3EI

0 I I II ' ..

al

a, 4

U, ml

'S4.

z

se.

-WS

9 1 S

z0-uI�.
0Au

I.
00 _

- I-.

Au

I-

0
S

-I,,

5!I In I

z w

0- w -

8 Id

-J I S

-I.j

ME0

Xi

q. hi

CC) 4

cnCO
qci

U

p -

* 2 1 -

Im
I

0
I

_ Ua 9-

3

S

Appendix C5.2

Task 2

Tolerancina Qualified Model (NIAM)

(DISCIPLINE)

24

'4.

'lica

IiZs

'IQ

%4 :

Nt

L41'

ljj

ku

%4

Inu

4'1

4e4

"4r

V AI I

In4

~4h

444

Vol*

0.*

VIA

ib

It
fl)

-�

-'-,-�-

� -j� x 44
� ".3

�

0

LU

Ne 4..

13

"lu

NJ

ol4

16

Lii

, *;.' --Q11,

\lj

N.

Appendix C5.3

Task 2

Tolerancina Global Model (NIAM)

(DISCIPLINE)

25

-EV4

N4J

de

'a) I

I3

\4

00.

""N

'.,Li

hAp .4

'3c

4'4

144

*k1

41

k 0,

-41

3mbj

(4 K f

iI
gI

ikl

II
"440

" Ilk4

OI O

Ott
1.4

'4J

~X '44
I I "-

.;-

.A2

'I

0

>4--, ,• .

Ni 5

S. • . -- uilnn li innililiin lil llm lia li lnoxl

%lj

QQ

744%.

1A dop

-VI I N.

0jUiq

'44

NO

"Wft

- '~ C .000'

100

qIAJ

Q-

400,i

Ole

Ol O

m Nt.

'-99

- 'N3

ASW A0
AW4

*As

qm/

All

SO.,N

i

~-
.e

r*dOO

NIMO

14-J

IL~

'4)i

14moo

NJ

doI

ifI

- -N1,

/ -V

-vi

T-

A

'U
l.a

* .4

Q

N.

/
I � *1�

O

Appendix C5.4

Task 2

Tolerancina SDecification Model

(DISCIPLINE)

o

26

PDES SCHEMA

-START OF TOLERANCING ENTITIES
-VERSION 0.1
-AUTHOR COLSHURE/BURKETT

IRAS S tolerancing OF
(datum,. tolerance);

CLASS datLIM OF
(coordinate-toler~datLtM, geometric-toler-datum);

CLASS coordinate toler datum OF
(angle~toler-datum, location-toler~datum);

CLASS geometric toler datum OF
(angularity~toler_datum, circular -runout toler -datum,
concentricity~toler datum, parallelism..toler_datum,
perpendicularity~toler_datum, position~toler-datum,
profilejine toler_datum, pro~ile-surface-toler-datum,
total rUnout toler-datum);

CLASS tolerance OF
(coordinate-toler, geometric-toler);

LASS coordinate toler OF
4v(angle toler, location toler, size-toler);

CLASS geometric -toler OF
(angUlarity~toler, circular runout toler, circularity~toler,
concentricity toler, cylindricity~toler, +latness~toler,
parallelism -toler, perpendicularity~toler, position -toler,
pro~ile~line -toler, profile-surface~toler, straightness-toler,
total-runout-toler);

CLASS angle-toler-datum OF
(+ace, edge, feature-o+-size);

ENTITY location toler datum;
NOROLE

name : STRING;
ROLE
END;

01

PDES SCHEMA

ENTITY angularitytoler datum;
NOROLE

name : STRING;
ROLE
END;

ENTITY circular-runout tolerdatum;
NOROLE

name : STRING;
ROLE
END;

ENTITY concentricitytolerdatum;
NOROLE

name : STRING;
ROLE
END;

ENTITY parallelism-toler.datum;
NOROLE

name : STRING;
ROLE
END;

ENTITY perpendicularitytoler_datum;
NOROLE

name : STRING;
ROLE
END;

ENTITY position tolerdatum;
NOROLE

name : STRING;
ROLE
END;

ENTITY profle_line_toler-datum;
NOROLE

name : STRING;
ROLE
END;

ENTITY profile_surface.tolerdatum;
NOROLE

name : STRING;
ROLE
-ND;

16

PDES SCHEMA

ENTITY total runout toler~datum;
NOROLE
Sname : STRING;
OLE

*ND;

ENTITY angle toler;
NOROLE

name % STRING;
ROLE

applies : LIST(l to *)OF REFER(angle~toler~object);
toler-value : list(I to 2) of t-magnitude;
primary~datum : refer (angle toler datum);
angle direction : logical;

END.

ENTITY location-toler;
NOROLE

name : STRING;
ROLE

applies : LrST(1 to *)OF REFERO;
toler-yalue : t-magnitude;

END;

entity location~toler;. ?NTITY size toler;
OROLE
name : STRING;

ROLE
tolval : list(1 to 22) of t magnitude;
appies : LrST(1 to *)OF REFER(size-toler object);

END;

ENTITY angularity..toler;
NOROLE

name : STRING;
ROLE

applies : LIST(1 to *)OF REFER(angularity~toler object);
tolervyalue : t~magnitude;
primary~datum : refer (angularity~toler~datum);
secondary~datum :OPTIONAL refer (angularity toler_datum);.
tertiary datum :refer (angularity~toler~datum);
projecte;dtoler---one : refer(line);

END;

1.7

PDES SCHEMA

ENTITY circular-runout-toler;
NOROLE

name : STRING;
ROLE

applies : LIST(l to *)OF REFER(circular-runout-toler~object);
toler..value : t~magnitude;
primarydatum : refer (circular - runout -toler -datum);
secondary~datum : OPTIONAL refer (circular-runout-toler~datum);

END;

ENTITY circularity toler;
NOROLE

name : STRING;
ROLE

applies : LIST(1 to *)OF REFER(circularity~toler~object);
toler-value : t~magnitude;

END;

ENTITY concentricity~toler;
NOROLE

name : STRING;
ROLE
applies : LIST(l to *)OF REFER(concentricity~toler_object);
toler value : t magnitude;
primary datum : refer (concentricity toler datum);
secondary-datum : OPTIONAL refer (concentricity~toler-datum);

END;.0

ENTITY cylindricity~toler;
NOROLE

name : STRING.
ROLE
applies : LIST(l to *)OF REFER(cylindricity~toler~object);
toler value : t 4nagnitude;

END;

ENTITY flatness toler;
NOROLE

name : STRING;
ROLE
applies : LIST(1 to *)OF REFER(flatness-toler~object);
toler value : t~magnitude;
material-conditi on :t-material-condi tion;
unitSqUare

END;

18

PDES SCHEMA

ENTITY parallel ism-toler;
NOROLE

name : STRING;'OLE
applies : LIST(l to *)OF REFER(parallelism-toler~object;
tolervyalue : t-magnitude;
primary~datum : reier(parallelism-toler datum);

END;

ENTITY perpendicularity~toler;
NOROLE

name : STRING;
ROLE

applies : LIST(l to *)OF REFER(perpendicularity~toler~object);
toler value : t magnitude;
primary~datum arefer (perpendicularity~toler-datum);

END;

ENTITY position-toler;
NOROLE

name : STRING;
ROLE

applies : LIST(l to *)OF REFER(position~toler~object);
toler~value : t-magnitude;
primary~datum : refer(position...toler-datum);
secondary~datum arefer(position~toler~datum);.tertiary~datum arefer(position_toler~datum);

ND;

ENTITY profile-line_toler;
NOROLE

name : STRING;
ROLE
applies : LIST(l to *)OF REFER(profile line-toler_object);
toler-value :t~magnitude;
primary~datum : refer(profileli ne toler..datum);
secondary~datum :OPTIONAL refer (profile-line-toler-datum);
tertiary-datum :re-fer(pro-filejline-toler-datum);

END;

ENTITY profi 1esurface-toler;
NOROLE

name : STRING;
ROLE

applies : LIST(l to *)OF REFER(profxle-surface-toler-object);
toler~valuie : t magnitude;
primary~datLum : re-fer (profile-Surfacq~toler-datum);
secondary~datum aOPTIONAL refer (pro~ile-surface..toler-datum);. tertiary datum are-ier (pr o-Fiilesur ace-tol er dat Lm);

ND-.

19

PDES SCHEMA

ENT ITY strai ghtness tol er;
NOROLE

name i STRING;
ROLE

applies : LIST(l to *)OF REFER(straightness-toler~object);
toler-value : t-magnitude;

END;

ENTITY total runout_toler;
NOROLE

name : STRING;
ROLE

applies : LIST(1 to *)OF REFER(total _runout~toler~object);
toler -value t t-magnitude;
primary datum : refer(total _runout...toler...datum);
secondary~datum aOPTIONAL ref er(total~runout-toler-datum);

END;

Appendix C6

Task 2

Finite Element Modelina Discipline Model

C6.1 Discipline Model and Documentation

C6.2 Qualified Model (NIAM)

C6.3 Global Model (NIAM)

0

* 27i I III

Appendix C6.1

Task 2

Finite Element Modelina Discipline Model and Documentation

(DISCIPLINE)

28

DEFINITIONS OF TERMS USED IN FEM IDEF MODEL

NOTE: These definitions were approved by the
IGES FEM Committee on Oct 16, 1985.

APPROVAL - This is an attribute of a model, refering to the
model's acceptance by the creating organization.

CONNECTIVITY CROSS REFERENCE (CR) - the assignment of a node to
an element. This refers to a single occurence of this cross
reference (CR), not a list of all the multiple occurences of
this entity.

COORDINATE SYSTEM - a frame of reference used to define the
location of a FEM or its components in 3D space.

COORDINATE SYSTEM TYPE - This is a label which is used to
distinguish between cartesian, cylindrical and spherical
coordinate systems.
CREATING SOFTWARE - The name of the software package used to

create the FEM model.. CREATION DATE -. The date on which the FEM model was created.

CREATION TIME - The time of day that the model was created.
Time and date may be used to distinguished between similar models.

DEFINING COORDINATE SYSTEM - A coordinate system used to define
the location of a FEM entity. [See Comments at end of document]

DESCRIPTOR - Text associate with the model which can contain
any information about the model supplied by the creator.

ELEMENT - basic FEM building block defining the relationship
between its nodes.

ELEMENT/ENVIRONMENT CR - the assignment of an environment to an
element. This refers to a single occurence of this cross
reference, not a list of all the multiple occurence of this
entity.

ELEMENT/GROUP CR - assignment of an element to a group. This
refers to a single occurence w of this cross reference (CR), not
a list of all the multiple occurences of this entity.

ELEMENT/GEOMETRIC PROPERTY CR - assignment of a geometric
property to an element. This refers to a single occurence of
this cross reference (CR), not a list of all the multiple
occurences of this entity.

ELEMENT ORDER - the mathematical definition for the allowable
deformation of an element edge. An element with nodes only at
corners is linear or first order element. An element with an
additional node on each edge between corner nodes is a parabolic
or second order element. The order equals the number of
non-corner nodes per element edge plus one. The element order
and the element shape together imply an expected number of nodes
to define the element. Missing nodes are caused by transition
elements, and excess nodes imply face-located nodes.

ELEMENT PURPOSE DESCRIPTOR - Text which is used to describe the
intended purpose for a particular element, and generally to
define tha limitations of the element capabilities. This may be
important for element mapping between dissimiliar analysis
codes. For example, a four-noded element could be a membrane
element, a bending element, a shear panel, or a plate element
with coupled bending and membrane behavior. This item will
distinguish between geometrically similar element types.

ELEMENT SHAPE DESCRIPTOR - Text which is used to describe the
shape of a particular element, i.e. wedge, brick, quad,
triangle.

ENVIRONMENT -any external or internal influence on a FEM.

ENVIRONMENT/GROUP CR - assignment of an environment to a group.
This refers to a single occurence of this cross reference (CR),
not a list of all the multiple occurences of this entity.

ENVIRONMENT TYPE - A label that defines the type of environment
being specified from a list of available types. For example,
load or constraint.

FEM - rinite Xlement Model - a collection of elements and
nodes that approximates a part or assembly; it may include
geometric and material properties and an environment.

GEOMETRIC PROPERTY - values that may be used to describe the
physical characteristics of an element. For example, shell
element thickness, beam element area moment of inertia,etc.

GEOMETRIC PROPERTY TYPE - A label that defines the type of
geometric property being specified from a list of available
types. For example, shell, beam or composite layup properties.

GROUP - a collection of FEM nodes, FEM elements or FEM
environments or any combination thereof.

LENGTH UNIT - the selected unit for specifying length throughout
the model, such as inches or meters.

MASS UNIT - the selected unit for specifying mass throughout the
model, such as kilograms or slugs.

MATERIAL PROPERTY - values that may be used to describe the
constitutive nature of an element or a node.

MATERIAL PROPERTY TYPE - A label that defines the type of
material property being specified from a list of available
types. For example, mechanical, thermal or electrical
properties.

NODE - a geometric location in a FEM; used to define elements
and environments.

NODE/COORDINATE SYSTEM CR - The assignment of a coordinate system
to a FEM node. This refers to a single occurence of this cross
reference, not a list of all the multiple occurences of this
entity.

NODE/ENVIRONMENT CR - the assignment of an environment to a
node. This refers to a single occurence of this cross
reference, not a list of all the multiple occurences of this
entity.

NODE COORDINATE 1 - The first value from an ordered set of three
values that define the spatial location of a node.

NODE COORDINATE 2 - The second value from an ordered set of three
values that define the spatial location of a node.. NODE COORDINATE! 3 - The third value from an ordered set of three
values that define the spatial location of a node.

NODE/GROUP CR - assignment of a node to a group. This refers to
a single occurence of this cross reference (CR), not a list of all
the multiple occurences of this entity.

NODE/MATERIAL PROPERTY CR - assignment of a material property to
a node. This refers to a single occurence of this cross
reference, not a list of all the multiple occurences of this
entity.

NODE SEQUENCE NUMBER - The number which represents the position
of a node in a ordered list of nodes which defines an element,
(the connectivity list). A single instance of the connectivity

CR entity will use this sequence number to cross reference a
node with a particular location on a particular element.

ORIGIN - The position in a coordinate system located with all
zero coordinate values.

PART/FEM CR - the assignment of a FEM to a part. This refers to
a single occurence of this cross reference (CR), not a list of all
the multiple occurences of this entity.. TEMPERATURE UNIT - the selected unit for specifying temperature

throughout the model, such as degrees Centigrade or Rankine.

TRANSFORMATION MATRIX - The matrix used to specify the
orientation and location of an entity in space, as well a, the
scale of the entity.

TIME UNIT - the selected unit for specifying time throughout the
the model, such as seconds or hours.

ERLES

1. Ay change in a FE Model will result in a new model, and
therefore, requires a new FEM ID.

2. Any sequence number in the FEM connectivity entity greater
than those indicated by order and shape must refer to an excess
node or several excess nodes.

COMMENTS AND SUGGESTIONS

1. The "defining coordinate system" is only used in the NQDE
entity, and probably should be replaced there by "coordinate
system" since the defining coordinate system definition and the
coordinate system definition are essentially identical. This
means changing the non-key attribute name in the NODE entity and
eliminating the definition from the data dictionary.

2. The PART/FEM CR entity may or may not be appropriate, since
we removed the PART definition from this data dictionary.

W. R. Freeman
Allied Signal Bendix Aerospace
Oct 1985/corrections Jan 1986

S

Finite Element Modeling Relationships

Natural Language Version of IA Model, Derived from
IDEF Model created by IGES FEM Subcommittee

NOTE: These statements are only valid when the terms
used are defined as per the FEM IDEF Model
dictionary of terms.

1. A defining coordinate system may have many nodes.

2. An approval may be for many models.

3. An author may create many models.

4. A connectivity must always have only one node sequence
number.

5. A connectivity must always have only one node.

6. A connectivity must always refer to only one element.

7. A coordinate system may be referenced by many node/coordinate
system CRs.

8. A coordinate system type may refer to many coordinate systems.

9. A coordinate system must always have only one coordinate system.
type

10. A coordinate system must always have only one transformation
matrix.

11. A coordinate system must always have only one origin.

12. A coordinate system may be referenced by many material
properties.

13. A coordinate system must always refer to only one model.

14. An origin may refer to many coordinate systems.

15. Creating software may refer to many models.

16. A creation date may refer to many models.

17. A creation time may refer to many models.

18. A descriptor may refer to many models.

19. An element/environment CR must always refer to only one
environment.

20. An element/environment CR must always refer to only one element.

21. An element/geometric property CR must always refer to only one
geometric property.

22. An element/geometric property CR must always refer to only onW
element.

23. An element/group CR must always refer to only one group.

24. An element/group CR must always refer to only one element.

25. An element/material property must always refer to
only one material property.

26. An element/material property must always refer to
only one element.

27. An element order may refer to more than one element.

28. An element must always have only one purpose descriptor.

29. An element must always have only one element order.

30. An element must always have only one shape descriptor.

31. An element may be refered to by many element/environment
CRs.

32. An element may be refered to by many element/material
property CRs.

33. An element may be refered to by many element/geometric
property CRs.

34. An element may be refered to by many element/group CRs.

35. An element must always be referred to by many
connectivities.

36. An element must always refer to only one FEM model.

37. An element must always have only one element number.

38. An envirinment/group CR must always refer to only one environmen

39. An environment/group CR must always refer to only one group.

40. An environment type may be used by many environments.

41. An environment may refer to many element/environment CRs.

42. An environment may be referenced by many environment/group
CRs.

43. An environment must always have only one environment type.

44. An environment may be referenced by many node/environment
CRs.

45. An environment may be referenced by many element/environment
CRs.

46. An environment may include restraints.

47. An environment may include constraints.

48. An environment may include temperatures.

49. An environment may include loads.

50. A geometric property type may refer to many geometric
properties.

51. A geometric property must always have only one geometric
property type.

52. A geometric property may include beam geometric
properties.

53. A geometric property may be referenced by many element/geometri
property CRs.

54. A geometric property may include a composite layup.

55. A geometric property may include point geometric
properties.

56. A geometric property may include shell geometric
properties.

57. A group type may refer to many groups.

58. A group must always be of only one group type.

59. A group may have only one node/group CR.

60. A group may have only one element/group CR.

61. A group may have only one environment/group CR.

62. A group may include a region.

63. A group may include a color.

64. A group must always refer to only one model.

65. A length unit may be used in many models.

66. A mass unit may be used in many models.

67. A material property type may refer many material properties.

68. A Material property must always have only one material
property type.

69. A material property must always reference zero or one coordinate
system.

70. A material property may be referenced by many node/material
property CRs.

71. A material property may refer to many element/material
property cRs.

72. A material property may include electrical properties.

73. A material property may include acoustical properties.

74. A material property may include thermal properties.

75. A material property may include mechanical properties.

76. Node/environment CRs must always refer to only one environment.

77. A node/environment CR must always refer to only one node.

78. Node/material property CR must always refer to only one mate•
property.

79. A node/material property CR must always refer to only
one node.

80. Node/coordinate system CRs must always refer to only
one node.

81. A node/coordinate system CR must always reference only
one coordinate system.

82. Node coordinate 1 may refer to many nodes.

83. Node coordinate 2 may refer to many nodes.

84. Node coordinate 3 may be used by many nodes.

85. A node/group CR must always refer to only one group.

86. A node/group CR must always refer to only one node.

87. A node sequence number may be referenced by many connectivities.

88. A node may reference many node/coordinate system CRs.

Appendix C6.2

Task 2

Finite Element Modeling Oualified Model (NIAM)

(DISCIPLINE)

* 29

CIA

/ -. t /•,,

'4.,

-

Nb ;' I /ImI ||I

KIN

- 0 iZ4:

01- -

I*1.�

4

0

0

'I'i

,a,

I rI

Til
ool

.1
�a- V

/ - -% Wi

- -. 4%

- -

- - -

\

Appendix C6.3

Task 2

Finite Element Modeling Global Model (NIAM)

(DISCIPLINE)

0 30

%I1

4I N I

U .2.
Ual aan&

4;0*

'S.r

V. 5

zs.~

I I
I I

* I II �
I

'I
I

Iq�% -
h.1

-� I
UI I

I U 1�II

I I
* I I.,.

Al 4

4'

1 1

I

S

I I
I6

I I
1 I

0

Appendix C8

Task 2

Geometry-Topology Associativity Resource Model (NIAM)

(RESOURCE)

0

34 0

PDES SCHEMA

- TOPOLOGY SCHEMA
VERSION 0,0

OLASS topology OF
(vertex., edge, loop, Face, shell, object);

ENTITY vertex;
NOROLE

name : OPTIONAL string;
ROLE

basepoint : REFER(point);
END;

ENTITY edge;
NOROLE

name : OPTIONAL string;
ROLE

basecurve : REFER(curve);
limitO : REFER(vertex);
limit1 : REFER(vertex);

END;

ENTITY loop;
NOROLESname : OPINLstring;

QOLE

member : LIST(1 TO *) OF REFER(edqe);
END.

ENTITY 4ace;
NOROLE

name : OPTIONAL string;
ROLE

basesurface : REFER(surface);
boundloop : REFER(loop);
interiorloop : LIST(O TO *) OF REFER(loop);

END;

ENTITY shell;
NOROLE

name : OPTIONAL string;
ROLE

member : LIST(1 TO *) OF REFER(face);
END;

22%

PDES SCHEMA

ENTITY object;
NOROLE

name : OPTIONAL string;
ROLE

boundshell : REFER(shell);
interiorshell : LIST(O TO *) OF REFER(shell);

END;

0

* -D

CL

0

Appendix C7.2

Task 2

ToDologv Resource Model (DSLQ

(RESOURCE)

33

Appendix C7

Task 2

Topolorv Resource Model

(RESOURCE)

C7.1 NIAM Model

C7.2 nSL Model

O31

Appendix C7.1

Task 2

To~olocr Resource Model (NIAM)

(RESOURCE)

32

ft 3

I I-
V. a,

-i

�41�

�rt�

�4b

I IFI

sf
9%I

Appendix D

Primers

Dl. IDEF-1 And IDEF-1 Extended (IDEF1-X)

D2. Nijssen Information Analysis Method (NIAM)

D3. Data Specification Language (DSL)

* 35

Appendix Dl

IDEF1 And IDEF1-X

36

PDES INITIATION EFFORT REPORT

APPENDIX D1
PART1

A BRIEF OVERVIEW OF THE

IDEFIX MODELING METHODOLOGY

Prepared by Roger Gale

In this Appendix, references to Conceptual Schema, External Schema and Internal Schema are based
upon the concepts advanced by the ANSI/X3/SPARC committee.

IDEF1X is the latest version of the Data Modeling methodology developed underthe USAF ICAM project.
Because of the USAF ICAM contracts, it is probable that more product data modeling has been performed
in IDEF1 X and its original version, IDEFI, than in any other methodology.

it is important that the reader understand that IDEFIX is a language with syntax and semantics for
expressing a data model oiUI a discipline, or method, for developing the model. A data model
representing a portion of the Conceptual Schema of an enterprise may only be reached if the discipline is
applied. The modeling language in and of itself does not guarantee a Conceptual Schema model.
Persons using the language without understanding and applying the discipline tend to model portions of
an External Schema or Internal Schema.

The developers of IDEF1 X assigned overriding importance to its use to communicate among humans.
There is a belief that a Conceptual Schema demands considerable review by people before the rules
embodied in it have been validated. Therefore, the language consists of graphics and text with the most
semantically important ideas being given graphic importance as an aid to that necessary human. communication.

The largest text portion of the model is the Glossary in which all names of entities and attributes are
defined. Another text portion contains identification of constraints which are not shown graphically such
as Data Types and Domains for Attributes, and Path Assertions.

Part 1 of this appendix is primarily a brief explanation of the discipline for developing an IDEF1X
conceptual model. Part 2 is an explanation of the graphic syntax and semantics. Part 3 explains the
differences between IDEF1 and IDEF1X.

The discipline for IDEFI X is asedes of steps beginning with definition of the areas of the enterprise which
are of interest and continuing through a series of specific refinements to a fourth normal form, relational
model. Within the scope of interest, this is a'top down" methodology. It permits modelers to begin with a
model of considerable abstraction and progress in steps to the desired degree of detail.

In the paragraphs which follow, the sequence of IDEFX modeling steps is outlined very briefly. The
reader should not expect to be able to model adequately from this material. A detailed text can be
obtained from the USAF. For information about obtaining a copy it is suggested that the following person
be contacted:

David L. Judson
AFWALJMLTC
Bldg. 653, Area B, Room 221
Wright Patterson AFB, Ohio 45433-6533

(513) 255-6976

Appdx D 1

The modeling procedure has five phases. The initial phase is Phase 0. In phase 0, the scope and 0
objectives of the modeling project are established. One of the key factors is to define whether the model
isto represent an "AS-IS" condition or a"TO-BE" condition.

Phase 1 involves the initial defintion of Entities. Phase 2 defines the relationships among the entities.
Phase 3 defines keys for each entity. In Phase 4, non-key attributes are defined and final refinement of
the model is performed.

PHASE I

The first step is to create an Entity Pool. An Entity is defined as a kind of thing about which the enterprise
keeps data. The thing may be concrete such as an employee or a machine, or an abstract thing such as a
schedule event. There are tests for entities. Each instance of an entity must have a unique identifier. For
example, each employee has a unique employee number assigned by the enterprise. There should be
attributes (properties or characteristics) of the entity which represent data the enterprise maintains. In the
employee case, the enterprise normally keeps data about such attributes as name, birth date,
employment date, etc.

Each candidate entity must be given a definition and a name. There may be a variety of names in common
use in the enterprise which are applied to the entity. However, in order that the model will have stability, a
specific definition and name must be chosen as the Conceptual name. A basic rule for a conceptual
model is "same name/same meaningo.

PHASE 2

The next step is to discover the direct relationships among the entities. It is recommended that this be
started by preparing a matrix with the list of candidate entities on each axis. Then each pairof entities is
examined to determine if there is a direct relationship between them. If there is, an "X" is placed at thaz
intersection of the matrix. It is useful here if sentences are written stating how the entities are related. For
example:

During his tenure with the company an Employee is assigned to one or more Departments.

A Department has many assigned Employees.

From the entity relationship matrx, an initial entity-relationship diagram is drawn. This diagram uses the
entity boxes and relationship lines, labels and cardinality symbols shown in Part 2 of this appendix. The
relationships are defined and labelled. At this stage, many of the relationships will be non-specific (i.e.
many-to-many). The definition of the realtionship between two entities must be examined in both
directions. Determine how many instances of one entity can be related to one instance of the other entity
in each direction. The relationship must be labeled. If It is non-specific, the relationship must be labeled to
describe the relationship in each direction. A specific relationship only requires a label reading from parent
to child.

Here it is important to remember that it is the data of the enterprise which is being modeled not acomputer
system. Computer systems have frequently been developed so that their data files contain only the
current knowledge. Meanwhile, the enterprise keeps copies of former states of knowledge. A computer
system may only show the name of the current General Manager of a Division. The records of the Division
show al previous General Managers. Consequently, the enterprise data model should show that a
Division has one or many General Managers.

Appdx D1 2

. PHASE 3

The objectives of Phase 3 are to:

Refine the non-specific relationships from Phase 2.

Define key attributes for each entity.

Migrate prmary keys from parent entities to child entities to establish foreign keys.

Validate relationships and keys.

The next step is to resolve all non-specific relationships. The non-specific relationships from the initial
diagram must be refined into existence-dependency (parent-child) relationships or generalization
relationships (see Part 2 for examples). The process of refining non-specific relationships converts each
non-specific relationship into two specific relationships. New entities evolve out of this process. Each of
the new entities must be provided a name and defintion in the Glossary. Entities resulting from this
process are informally referred to as *derived entities0 . A derived entity tends to be more abstract than the
initial business ernities.

When specific realtionships have been defined, it is time to establish "keys" for each entity. A key is an
attribute, or concatenation of two or more attributes, which wiN uniquely identify a single occurrence of an
entity. Candidate keys are developed and defined for each entity.

When an entity has more than one candidate key, one must be established as the primary key and the
O others identified as alternate keys. Alternate keys are shown below the line in the entity box and identified

W by placing (AKn) following their name (see Part 2 examples). Because there may be more than one
alternate key, the On" is a number indicating which attributes belong to which alternate key. Keys are an
attribute, or combination of attributes, of the entity. Each of the key attributes must be provided a
definition and name in the model glossary.

The Primary Key of each parent entity must be migrated to each of its child entities. It may migrate to
become part of the key of a child, or it may migrate as a non-key attribute of the child. In either case, it is
shown in the child and identified as a foreign key by placing (FK) after its name in the child. Role-names
are assigned to migrated keys as required (see Part 2 role name examples).

Key attributes must be validated by testing that they conform to several rules as follows:

1. No attribute of an entity may have more than one value for each instance of the entity (No-Repeat
rule)

2. No attribute of an entity may have a null value for any instance of the entity (No-Null rule).

3. Where an entity has a compound key, it must not be possible to split that entity into multiple
entities with simpler keys (Smallest-Key rule).

4. Where there are dual relationship paths between two entities, assertions must be made as to
whether both paths from the dependent entity reach the same or different instances of the
independent entity (Path Assertions).0

Appdx D1 3

PHASE 4 i

After the relationships have been refined and keys established, the next step is to determine the non-key'
attributes of each entity. For each entity, candidate attributes are listed. These represent the properties
or characteristics of each entity about which the enterprise maintains data. Each candidate attribute must
be given a definition and name in the model glossary.

Each candidate attribute is assigned to an entity, its "ownero. Attributes are then tested with the
"No-Repeat" and "No-Null* rules. Attributes which viloate the rules require the introduction of new
"derived* entities for their ownership. These new entities must be named and defined in the Glossary,
their appropriate relationships defined and keys migrated to them.

An additional rule must be applied now. It is applied to attributes of entities with compound keys. This is
the Full-Functional-Dependency rule. This rule requires that no owned attribute value of an entity
instance can be identified by less than the entire key value for the instance. The correct application of this
rule is equivalent to the second normal form of relational theory.

A final rule is the No-Transitive-Dependency rule. This rule requires that no owned, non-key attribute
value of an entity instance can be identified by the value of another owned, or inherited, non-key value of
an attribute of the entity instance. This rule is equivalent to third normal form in ralational theory.

These last two rules can be summed up in the statement; "a non-key attribute must be dependent upon
the key, the whole key and nothing but the key".

SUMMARY

The IDEFIX modeling methodology is a *top down" method which startswith abstraction and progresses
to required detail. It utilizes the Entity idea to collect data (Attributes) in the manner in which they appear
in the enterprise being modeled. When the model is fully refined according to the rules, each entity
represents a statement that values for all of the attnrbutes of that entity appear at the same time and place
within the enterprise.

The IDEF1 X modeling language and discipline, when used by trained modelers, and properly validated will
result in the definition of a stable Conceptual Schema For PDES, instability in the Logical Layer
Conceptual Schema will result in compatibility problems among versions which is an undesirable
characteristic.

The IDEFlX language is not only useful for modeling a Conceptual Schema. It may also be used as a
planning tool by preparing models of high degrees of abstraction to illustrate fundamental data
relationships in an enterprise. The next two pages are an example of such a'Data Planning Model". This
model is at a very high degree of abstraction. For example, I have been working with an enterprise where
there is a model containing about 300 entities which are represented by the handful of entities on the
second page. Such models are used to establish scopes of projects by examining data affinities. This
model probably represents a significant percentage of the potential future coverage of PDES.

Appdx Dl 4

r'ID

AIE1I

IppID D1 5iD i

Ii .IDI
771

a4

17I
ILJI

I

a

Ii
kD1� hD�1

4pdxDl

6

I- 'Cq
0

W 4c 0
z

CLC

0 0
IL.4

LU

z

0
Cl)

0ow
0.0

.j LL UJ

0L.
44uco

oFpm 2L)

LU L0 O
w) C.)

0u 0
CL C

zI- Mm

U' LuO

0 C

w o z

w

wr z0w
X L

LLLww
o hl

w w0aIL Lw

m0

uz
z

LL 0.
>

00

cn~c W .4
m 0 - I -

LU
Ln

CL U U)

z u
w LUI

0 LU I--

w I-1

W 0. LU z L

0 4.

LUa

0- ~ ~ I- .
II.

20- ,- W

0- U

P P4 z ZW

* * E 0L

,- YC'4

0

z
cc C.L

U.>

o~~ LW..CJ L

z z £ u jJ

0 jZVU I nJ u
0LL LL >qJ4 L, CCZ Q

0.LI n ju

I.- -E141-zt-§ZDVP cujC. ucn u

Uj~~~- 0 .<> c L

o.. < P L . ou

W~z
-C ~ >8. Lt- r-u)WLLcJL L J

wt w < _- E9

LLLJ

z cc

rn

ui z

z LU

I- 4

a. x -

0 00. w
I . -LCcr

F CL w

0 . 0
U. 0

z Z-
0O B 0.

w~ z c-
P 4F
zL w- w 0jCl) IL a.

z. w U c
uj z 0

1. 0w RW
zZ CC)

I- Z
LLI 0

z.) a, wfo 0
0 O U.U)0 LU

a. Z

-0 0 w

Za 0. -S 0

ca zJ
*o Ow0

w z IC w c

Bo
CLC

z
I L

0.
000
L-
LU

z
0
P

z z
w z

ILl z
C wCL

0.. z

z44
0..

Zw 0 U4

C')C

w

uJ.

cn u LI u
-ZC I- Oilo z C

Lu xt

C-40

X~~ CC

z

ccI-

0

0.

z
* z z

Nj N 0
-J

o Nr0 0 0 0
0 ',

0~
cc cc --

V- C4e~

0.

0. XC

000
LU-a

wL 0
0

z

P 0.

C. N 1

m cni N N CL

N N

ZWU
0

w C.)

- U.

ww
0 CL)

z U

C4

WW 0
Z 0

o 4u

LI. 0 F
5 zI.,

0

z VL

'a

WU z

o) 0

w C

-Jj

* CC)
z 0c

00

C.

-Jj

C<C.

D 0 6 0

U,

-j
Lu V) w W

M g
CLum

g, sz U* czL

C4

0 1-

CL M c
w 54 6
mz CL -

0 L0 004
4L <

z OW w

0- 0 4c)I

wc LU
zF 4

z ~ 4 0 0LUc
z- (/) _ L

LU LU 1-
LULzj z LLW

cc z ui . -
w UEUU)

Z .. LU Z L
Wcfn

LU cr U
ZW 4W W cr

w 1- t-~ LUc

OLLZ M~ tw -aý

WOW~ zO 42)

*U LL SJ Sz-

u(N -mz M 0 Im CC-

c

m 0

om CL Z CLC

CL W>W - 1W

o z 0 x l 0LL Co~CL.

wL 'L n L.
1z21 ': .U ZU L

2ULiX j-(Z - V) J1.- z(
3H4wz L Ux(

0_LL CLLJ rX r

zz

-J W E~

w

E- EwiI u
O Z

Z +

Fw U-

o
>- C. 0 0.

U- d

0 a

CL E.IjI

P.- V-c~

0u
oL o

CC
om 0

m 0. L)0
L).C

LI.wj z

zLW O W-

z LU I-

W Z CJ

cf Z U

Z 0 Z X
CL 0 :tz 0 Q

cc W ?- Ln: WL

0 OwM

LU ~Z ul U
z ZL iL2

LU zCD-> 0 0 Z

.j- LUZ W c

0 z . 0 0

0 c

CL c
z ww0

w © L
0 L

0 t.

u-Ij
ow ccL-

LLJ En

i~itwxmqUc

* Ci ID

4,.
w wL

Ennui

0i CL

z En

IL E

0 S.

m~ V

.8~

I-- V 'C4

0. WLL J)I.- L

w oz 0UQ
2 z

2L ab LL w0)QUl ~

w wU

02~ z

w LL3 Q)S

oJ E

E ,

zww
Z 0 CL0o

£c
o L~~u <c

z E v.
0 mm
LLIU~ z 7 c

o M
0. X~ M

Lu 34% Q
CLC

00

o .
U..

z

z
U) 0

wW i.5 _5 LL (

-n -JZ 2 -

~~ <E

cnc L
zz

wu <

< UJ4 P uz ;
w.c . .C L

S0

U.

0

z

z 0j

U, 2

0. w

LU wZw0c=
a** 0. 1- j

w o

~.j0-LL00

,-0 UOo

m, WOu
a -

I-- CV

x cc
ui oo

I- z

0
LL.
ui

z

LuJ

0 U, 0
LLI u

a W2
cc LL

I- 0
Q- E

Z LIL 0L U

zoz0
0 0.

w 0
0 cc

uLu
m0

0
Ucc
- 0L

.~~

I- 0
0

z
oIL.

U. 1-1\

'LI z

0 P~
P 0

z~ P

0
x z w

o W uw
a.a

LL U.

z SO

-, 0

S0

x

mU

0CL x

o 0
L.
IL

z
0
P

Lu

CLC

-J a

z*0
I-- zz

z
w z

uw z

w 00
. LU 0.j

U). LU 0C

9L

z
Lu
el

0. X

o 0

U.

W
z
0
P

Cla)

z

0 eu

U)U

0.I

-IE

U-U

CC C
LLI 0.
LL-

-

PLIJ

-z
-Uj

0

CL x

z

0.

z
0
P

z C
U)

LUL

oc

-w

@0.j

w

ý0

z

cli z
wt 9 -

U- z

x >
C.m
-J ~ X- w Lj

0
CL X 6

z

w <

z
0

w
0

0..

LLa-
.jw

x0
ui

wz

ui 2

C,, z

LL~

LO LU I2

0 zD

0 a
00

w z CL

w

U.
w 02

00

0w

Q..l

w
-j

w

00

0z z

-sM Z

p.p-.IZ _

LL

00

D0
4z

0
0. x 0

LU -

0.

LL.
LU

z
0
I.

F

a. I *0cc

1 1C

w

LL

- ~(
xx >-

LU

w U

og I-

Z1t 0tm
cc0.

49 W M

0

o ',- 0

.. x C..

o o

L0L-

04
LL.

z .6

9" -

(1) E

w =c

0!

Cl) AL

0c E

00

00

ccc

ui E

C0

Z.2 .
p .C C

z 0

C/) - a
.. l) 0u
<.

0

z

(U.C

LA.W
Lu <

zz

LW I

Q LL
CL LLJ W

0L Fq

0~0

.j.

Z LU

zw
a:

CL

I~l o

a-. x
0u c

IL0 0

0 o.z u
0 C

LU

z L.U

0
Pz

Lu
0

a- U
U,

LLLu

ww

zz

IL
uLu

Llu

,- o-
0

0

0. X'Cccz CL .wc
0.QoL <. E

U. Unn
Lu-

z a

zz

LU
0
IL

w u

< 0

wz z
I-

uui
<J 0

aJ)

LI

aZ
uw

cc a
0 0
0. x~ ccc

z 0

M 0

0
U. in

22

z

wLU z
0. 0 Q

m .

Cll)

ww

.j&

oc

LL z

I-- E;c

0.u

mz 0.
I- w 0

IL 0

Lu w

0- 06 S

LUL

z
(In

Lu

4(z

Cl)
z Iz w II

LU-
Mlw 4i

z C0Ja C
2-I E- ES

4a0 o i0
.5 .c

0
CL x M

mz

IL
IL

z>
0 t

z

00

w >

LL CLi-l

0w LUL0L

=C, ui)
L)CdD

Appendix D2

Niissen Information Analysis Method (NIAM)

37

NOTICE

THIS MATERIAL HAS BEEN COPYRIGHTED BY THE CONTROL DATA
CORPORATION. PERMISSION IS GRANTED FOR REPRODUCTION OF THIS
COPYRIGHTED MATERIAL FOR PURPOSES RELATED TO IGES, PDES OR THE
ISO STEP PROJECT. COPIES MUST INCLUDE THIS NOTICE AND RETAIN THE
CONTROL DATA CORPORATION COPYRIGHT NOTICE.

N IAM
Infonmation Model

Paul Thompson

Control Data

*Copyflght Contol kt 19M 8.01.01

CONTRPL

DATA WHAT IS NUAM?0
1. A binary semantic conceptual model.

2. A means of capturing (complex) information
requirements in user understandable terms,

modeling and analyzing the requirements in a
feature-rich formal information model,

and translating conceptual information
requirements into implementable specifications.

WHY NIAM?

o More power and precision in knowledgp

reprcsentation

o More discipline and rigor in the methodolog.

o Greater user (expert) participation

o Cleaner separation of expert models from
specification models

o Easier generation of neutral data model
specifications

o More real-world semantics for data and rule bases

0

CONTRO
DATA

User-Machine Gap

LANGUAGE, 1985

COGNIIVE STRUCTURES

t
BINARY SEMANTIC 1980

MODELSt
NEUTRAL DATA 1972

MODELS

DATABASE 19t3

t
DATA STRUCTURE 19b

* 5

CONTROL. DATA

BACKGROUND

ca.1970 Recognition of need for better data modeling

techniques

1972 NIAM research into information analysis

1975 ANSI/X3/SPARC - 3 Schema Architecture
Conceptual Schema proposal

1975 NIAM real-world applications

1980 NIAM released

1981 IFIP-CRIS conferences
NIAM rated high

1982 ISO TC97/SC5/WG3
Evaluation of Conceptual Schemas proposals
NIAM selected as binary approach

1985 NIAM used within PDES initiation effort

1986 NIAM usage worldwide
> 120 organizations
> 5 universities

0

CONTain
D~ATA

Information Analysis

NATURAL

LANGUAGE

BINARY SEMANTIC
.MODEL

NEUTRAL DATA
MODEL

DATA STRUCTURE

/ Social
0 Sacurity
% Number,,

o%

(iMaiden Wit f Company\

\Name I • Payroll' ,•WiNumber/

IHouse %
-Real

Address Ofsban

Of With With

Tax Ni income\
SName |tAmount I

/ Sociat lf Security
% Number

Maiden I €company.\

\Name 1 PayrollI

""House ' a
Address o Husband

-N

icm amiamJl i) Erl

rC'tMKA(O'

%

Maiden with Company\

Name I Payroll I
Number/

Of (Means 01
-Is-a-Kind-of]

w;lh With

WIFE PERSON

Live' In X
Which is of
Home of of

WhoHouse Earning husband
Address 01 HOUSE Pays

Paid by Earned HUSBANO Name
with with T by With

Real Estate Earning
On Property Paying Earned

Value of Paid by by
TAXES On INCOME

Which has

of With With Of X

Tax income
% Name Amount I

Ir1

'4 4

The REAL WORLD or

Environment is Described by
Conceptsal

Ideas
Constraints

-i - qkI..mmh.

The Information System Contains a Lexical or Coded
Character-based Data-model

Concept Type

A concept type is a set of instances within a Universal of Discourse having
common properties.
A concept type is independent from symbols used to represent it.
A subtype shares (inherits) all properties of its supertype. A subtype may
have multiple supertypes.

S~PERSON

M WOMAN

Total Subtype Constraint

A total subtype constraint prescribes that for every occurrence of a certain
concept type there must be an occurrence of one of the specified subtypes.

1 I

I ,

PERSO

MA WOA CIE

C'OTATA

D ! !

Subtype Exclusion

A subtype exclusion constraint mutually excludes the sets of occurrences of

two or more subtypes within one concept type family.

, I

IANIMA

OVPRU BIDFS
ANIMA

D*AýTA

Idea Type

An idea type is an information-bearing connection of concept types.
An idea type has two different roles, each role being played by one concept
type.
An idea type can have uniqueness constraint(s) indicating the identifying
role(s).

URTHPLPLACE

BIRTH o

[I .oI~o,,-,I ~WOMAN~

F MOTHER-OF JDAUGHTER-OF I
MOTHER-DAUGHTER-RE.ATIONSHIP

I. . I= m m n nmn nmnnmm nn n lI

Uniqueness Constraint

A uniqueness constraint restricts the instances of one or more roles.

I

1 1)

J INVOLVING iNVOLVED

I I

3) fk

PERSO

GDATA

Role Subset Constraint

A subset constraint prescribes that the set of occurrences of one role (or
role pair) is a subset of the set of occurrences of another role (or role
pair).
According to the drawing conventions, the arrow points from domain to rangt
(indicates what implies what).

orRIN OSALJ.ARY

PERSON(

ILIVING-AT OF ADDRESS
I I

S~DATA

Cardinalities

role.Ainimur and max:=, cardinality uay be expressed for each concept type and

T C)

1,8
, 0I I

I
I

DATA

Total Role Constraint

A total role corstraint prescribes that, for every occurrence of a concept,
there must be an occurrence of a specified role.

WITH

I I

LIVING-AT OF •'ADDRESS

PERSON

WITH] OF' PHONE

I I

CONTROL
DATA

Role Exclusion Constraint

A role exclusion constraint prescribes that the set of occurrences of two
roles (or role pairs) must be disjoint.

aJII

IOWNING OWNED-BY SO

I I

iC~ONTK~O

DATA

Equality Constraint

An equality constraint prescribes that the set of occurrences of two roles

must be equa2.

E o r

E E

I ORKING-F-OR EMPLYN DEPAPTmflC I

Combined Constraints

A person may have a primary skill and one or more secondary skills. Before
having a primary s.ill the person must have a secondary skill. No secondary
skill may be the duplicate of or equal to the primary.

,WITH PRI•ARY SKIL
PRI-IARY

PERSON,

SECONDARYSECONDARY D
S I

I I

CONTROL
DATA

Advanced Constraints

Since each binary is a logical predicate, the power of predicate logic is
available in a natural way for the expression of complex constraints.

T

INLFORMATION

_for each u: USER
Ii u makes an. INTOPRKATION MODEL describing a PROBLEM: AREA
then u must know the PROBLEM AREA.

Symbol Type

A symbol type is representable. It can be used to refer to a concept type
(also called lexical object type).

T U
_ I

I SSN II
I I I

I \ I
I I
i I.

0

CONTR4OL
DATA

Bridge Type

A bridge type is the name-giving association between a concept type and a
symbol type.
Depending on the position of uniqueness constraints on the bridge type, four
different sorts of bridge types are recognized:

- One-to-one
- Synonym
- homonym
- Syno-homonyn,

OF WITH WITH OFI \- -- - ---- I • /I 'I

I IKXT A i ! IsLrr

I /-CHRISTIAN FAM
-NAME O WTHWITH OF

I = - - -, -hYI-omonmV homonym

IWAI

AN EXAMPLE

The next page contains a small binary semantic
information model. Some of the sentences described by
this model are:

"A user knows his problem area.

A user makes an information model which describes
the problem area.

An information model is reviewed by an information
analyst and may be implemented by a data base.

An information expert may be an information
analyst or an information engineer or both.

Before a user can make an information model, he
must know his problem area and attend a training
course.

An information analyst must have experience."

(9r)
N

LEAM

AREA

A

USE

iI,

R AT A

NNFORMITR TI
TRANIN £51@b g~ANALYST ENGINEER

4, A

IL IL

DATE LOAINEXPERIENCE

QUERY PATH/CONSTRAINT

All legal query relationships and accesses are defined

in the model. Invalid query paths cannot occur.

This provides two advantages:

1) a high level and very natural interface
to the model information and

2) rejection of invalid accesses.

EXAMPLE: HIGH LEVEL NATURAL UNDERSTANDING

LIST EXPERIENCE of the INFORMATION ANALYSTS
reviewing the INFORMATION MODEL
describing the PROBLEM AREA
"Manufacturing Automation."

SELECT EXPERIENCE FROM ANALYST-EXPERIENCE
WHERE PERSON # IN
SELECT PERSON # FROM INFORMATION-ANALYST;
WHERE PERSON # IN
SELECT INFORMATION MODEL-I) FROM REVIEWING
WHERE INFORMATION-MODEL-ID IN
SELECT INFORMATION-MODEL-ID FROM INFORMATION

WHERE PROBLEM-AREA-DESCR =
"Manufacturing Automation"

0

CONTROL EXAMPLE VALID/INVALID QUERIESDATA

INFORMATION ANALYST
*-----------------------------------

Person 0 P21 P22 P23

Residence location : Mpls Boston Seattle

Work location Mpls NY Seattle

Qualification Cnslt Analyst Cnslt
4.----------------------------------

Valid - List all information analysts whose residence
location is the same as their work location.

Invalid - List all information analysts whose quali-
fication is the same as their work location.

T Resolution of
O* Ambiguity

object S
orientation

V1 EW I

VVIEW

0d

0VIE

DR IEN -O H•.- OBJ E CT

= , T ION

Qj 0

Constraint Expression

Integrity rules are captured naturally. Other techniques require artificial
structures which in many cases still don't handle all the constraints.

WITH SECONDAR EODR-O

KACHINE OPERATIO0,

Iv

, M-O

PRIMARY S * SECONDARY
H 1.O. , ' M.O..

I I e

Scope

A scope is an abstraction tool.
The scope concept serves the user to abstract from details while studying an
information system grammar and to concentrate attention on the interesting
part of it.
A scope is a conglomerate of concept types, symbol types, idea types, bridge
types, constraints, and scopes, belonging together according LO user
semantics.
A scope can be specified in terms of other scopes. There are no restrictions
to the number of concepts and the overlap of scopes in scopes.

II '•N -

CM. "

I \ I I

I iC

CONTKOL

DATA

Zoom

A zoom is an ordered set of scopes, each lower level being more detailed than

a hi&her levei.
Therefore. an,, concept present at a certain level of a zoom must, at least,

exist as such on all lower levels of that zoom.

Like a scope, a zoom is a powerful abstraction tool.

but the zoon mechanism adds another dimension: a scope can be seen as a way

to staKe out a .ilat) area of special interest. Suppose that a certain scope

coincioes (probab-y not by accident) with an intermediate level of a certain

zoom; then it is possible to zoom in and out on that scope.

in tiiis way it is possibe to observe a certain area of interest from a

distance, witrnou- its kirre.evant; details, or, on the other hand, to observe

it in great detail.
Thne advanltage o0 a zoom over a collection of scopes is that the zoon

mec rasr. guarantees consistency between the levels.

so .scope -

I BT*YER V

scope
SALESMAN

scope I
GARAGE 4

0

IPMJZeCr-ASSI=MZT FIRST

-to-

With ot

I -SAME

havin

TAS? I
I'%. -MMP

An idabig sceaMutai h

gruig*pin

iCONTR)

I~ I'

IsL

U;c a

T L

b: k; i

EXPRESSIVE POWER

ISO TC97/SCS/WG3

Interpreted Predicate Logic

Binary Semantic
Network

0- -
Entity Attribute
Relationship

EAR BSN IPL

Propositions modeled 25 40 47

Based on Data Semantics Math

Graphical notation X X

Tools x x

0

FEATURES OF NIAM

o Founded in logic and set theory with strong links
to linguistic theory.

o Provides a feature-rich semantic modeling
technique for high quality modeling efforts.

o Permits rigorous analysis and specification by
user experts in a language close to their problem
description.

o Provides mathematical and linguistics checks on
the correctness of the model and makes visible
specification of (hidden) assumptions.

o Maps easily to data specifications; this has been
automated for normalized models.

o Has international recognition at ISO and IFIP
levels. Is a true ANSI/SPARC conceptual schema.

o Proven in more than ten years of real world
experience.

SOME ADVANTAGES OF NIAM

o User statements may be captured naturally with
minimal re-interpretation by a "data expert."

o The technique encourages the specification of
integrity rules which may be overlooked by other
techniques.

o Mapping to the data model (normalization) is
automated and does not have to be performed by the
analyst. This avoids distraction during a user
session.

o All relationships are shown and all views equally
valid yielding greatest conceptual uniformity and
simplicity.

o More documented semantics and knowledge rules
yield more precision and less ambiguity. The
Object-Role style of modeling promotes
conceptualization.

o Some university and industry experiments indicate
a higher degree of consistency than with other
techniques.

o The technique is stable, others are still
evolving.

0

RECAP

The NIAM Binary Semantic Information Model consists of:

OBJECT TYPES - Fundamental categories of the real world;
divided into two kinds, CONCEPTS and SYMBOLS.

SUBTYPES - Flexible generalization links between the
OBJECT TYPES.

FACT TYPES - The basic business rules of the real world;
divided into two kinds, IDEAS and BRIDGES;
all relationships (connections) are shown.

INTEGRITY CONSTRAINTS - Integrity rules containing
knowledge of valid system states and transitions;
basic SET ORIENTED constraints and extended
LOGICAL PREDICATE constraints.

QUERY CONSTRAINTS - The definition of all legal queries
or processing access to the knowledge.

REFERENCES

1. "In4ormatiesystemen en Do Volgende Gentratie Data Dist Management
Systeen'", 6. M. Nijissen, in Amgrj , asterdam, 1976.

2. 9A 6ross Architecture* for the Next Beneration Data last
Management Systems", 6. N. Njjssen, in the Pgrg40g! 2i i!E!:1Q:Z
Freudenstadt, 1976, published by North Holland.

3. ISO TC97ISC5IW63 - ~G~gtt 100 !gittgi0guxY fý tt C22~tkl
5cttj leg 1nfqt!jtjL2 lilt, edited by J. J. Van 6riethuysen, 1992.
(Available from ANSI.)

4. IFIP WS 8.1 - "NIAM : An Information Analysis Nethod', 6.M.A.
Verheijen and 3. Van Bekkum in 1iomr•!ig syllm P1j12g
ttppggatn A gRitivr tliiig, North Holland, 1982.

5. "Modelling and Manipulating Production Data Bases in Tares of
Semantic Nets", Robert Meersoan and Frans Van Asschi, Control Data,
1982.

6. 'The RIDL Conceptual Language: An Abstract', Robert Meersean,
Control Data, 1982.

7. ANSI/X3/SPARC - Itgg~t 2ei M eO G21t In' Ng•jgtt!

G. *The Automated Mapping from a Binary Concetual Schema to a 5th NF
Data Base Schema', Frans van Assche, Danielle Sisons, and Marleto
Vanhoedenaghe, Control Data, 1993.

9. *Experience with Information Analysis in the US.' - Paul
Thompson, Control Data 1981.

10. *A User-Driven Hethodology for the Design fO CAD/CAM and
Engineering Databases', Roger Thyr, Proceedings of AUTOFACT 6
Conference, 1954.

11. 91A Literature List*, ICIAS, Control Data. (A reference of
approximately 130 articles on Information Analysis.)

0

(PSTI 22 (updated Feb 14, 1995l

NATURAL LANSUASE ANALYSIS,
INFORMATION MODELING,

AND DATAPASE EN6INEERINS

Paul Thompson
Control Data Corporation
Minneapolis, Minnesota

An overview of some concepts in knowledge engineering is presented:
How to analyze the content of user expert natural language; hoo to
build an Information Model semantic network; and how to transform
tie Information Model into a database design.

(0)copyright Paul Thompson, 1935

tPSTJ I (updated Feb 14, 19353

0

1. INTRODUCTION

The introduction o4 database technology in the 1960's caused & great
change in the way information systems mere developed.

Previously information systems were set up to maintain their data an
process-orzented files. Some files simulated the manual systems.
Others mere designed by programmers as scratch pads for data which
couldn't all be processed within the program during one computer
run.

Database technology, on the other hand, provided a single control-
ling mechanism containing #11 of the data needed by an application.
And it stored the data in a may that it was easily accessible and
easily relatable. This nee capability to get at data caused people
to thinl of data as having an existence independent from the pro-
grats wtich stored or processed it.

After initial experience with database technology, people realized
two 4acts:

I. Database technology is not just a new and better file access
technique. It is a radically different approach to information
syster development.

2. To make progress it is necessary to rethink concepts of data and
ho. it represents information and to remark our approaches to syste:

design.

This paper preserts some of the rethinking which as taken place.

2. NATURAL LANSUASE ANALYSIS

2.1 It! egm~tR2! ej erjutt1J raS

Let's step back fror the complexities of system design, program
developeent and database management, and look• at the fundamental
nature of information systems.

Quick. What do payroll systems, accounting systems, engineering
documentation Systems, and clinical pathological laboratory systems
have in common ?

They are all information systems.

They all store and process L!Mt112t for the benefit of their
users.

They all store selected, pro-determined categories of information of

MPyT) 2 Cuodated Feb 14. 198!]

interest to the organization and select, combine and present subsets
04 this information at a time and place remote from the capture of
the information.

Information consists of facts, facts about the "real world" and
events that have happened in it, and conclusions that people have
drawn about it.

Feadamemtl Fact fit The purpose of amy isfereatiem system is to
stere facts.

An airlines information system stores facts about airplanes, passen-
gers, flight schedules, fares, bookings...

A clinical pathological laboratory system stores facts about pa-
tients, doctors, machines, tests that have been ordered, samples
that have been received, test results, OC results, and so on.

Based on these facts application programs can select, arrange and
present useful information. For example, a list of patients ordered
by the ward and room, preprinted labels for specimen collection,
trend analysis of a patients' glucose level or the performance of a
SMAC 20 (a laboratory machine which can make multiple tests on one
blood sample).

2.2 itt Vit R! WVC21!11,22 1111M|

There are always at least two users of any information system. For
organizational information systems, this fact is obvious. For pri-
vate information systems - an individual's notes, memories, files,
etc - we can assume that he plays the roles of two different users
first when he stores and then later when he retrieves the inform&-
tion.

Feeavaietal Fact 0*2 The sters ef as jefsreaties system establish
a dialegue with each other threugh the stered facts.

User I will input a fact and at a later time User 2 will make use of
this fact. (See Figure 1.)

This principle is so fundamental and obvious that it is often over-
looked, but the consequences are very Important. If User 2 does not
understand what User I is saying when he enters his facts then User
2 cannot make use of them or may misinterpret thee and may take
mistaken actions.

Even in the same discipline users frequently misunderstand each
other; and it is a common experience for someone new to the disci-
pline to go through a learning curve of a few weeks or months before
he understands the 'jargon' of the discipline. Think about the time
required to become a doctor, and how difficult it is for a doctor to
talk technically with a patient.

[PST2 3 [updated Feb 14, 19851

Think also about how many ordinary subjects like sports, politics,
religion, and business in which we misunderstand what another says.

2.3 611 ~99U1ft!lorgft I!

There are many ways User I can communicate facts to User 2. He can
speak to hit, write a message, make a sign or symbol (like STOP),
use body language, Horse code, write a mathematical formula, fill in
a data collection form, type a message at a computer terminal, draw
a computer flowchart, paint a picture, etc.

because of the many varieties and complexities of communication, ae
select only one way to concentrate on as the basis for our work.
This is communication in natural language sentences (written or
verbal).

Fudaneeital fact 93s All cowsevicatiem betwe## a user amd as
ismfreaties systes cao be regarded as a simplified fate of natural
la]g*age semtemces.

(This includes textual, tabular and graphical communication. These
can all be eupressed in natural language by examining each part and
asking the question, Okhat does this mean?")

This principle was first enunciated (in the database world) in the
middle 1970's by Dr. S.M. Nijssen, head of the IFIP (International
Federation of Information Processors) working group on databases. He
had the novel idea to regard information systems not as massive
flowcharts of program logic and syster processes, but as a vastly
simplified model o0 human communication.

26.4 AmolvYl Ing It! Mg f :~!

When humans communicate in natural language, they hope they will be
understood. Unfortunately, communication is rarely perfect. When a
message is subject to multiple interpretations it is said to be
ambiguous.

Let's look at some examples of ambiguity. First we'll look at

Natural Language ambiguity, then at information system ambiguity.

(alsgtv:1L Lemual! WvitrL

Consider the statement:

BITING DOGS CAN SE DANGEROUS

What does this mean 1 If your Content (mental model) is Canine
hydrophobia, then it means dogs which bite can be dangerous to you.

On the other hand, if your context has the human as the subject then
It might mean if you bite the dog, it could be dangerous for both o0
you.

tPST) 4 [updated Feb 14, 19953

In general , the sander of a message has a mental image of the0
situation which is only imperfectly referred to by the communication
mesuage. In order to recover the correct seoning, the receiver must
share the same mental image. Otherwise, he makes wrong
*assumptions% Good communication occurs when the receiver provides
feedback or queries the sender to discover the context intended.

(b)-b:10 11nft ormaiVn al

Now letts take an uxample from a record keeping system. Suppose we
have the following data on a form. To keep the example simple we
will limit it to five data items. (Sao Figure 2.)

Many people, particularly programmers and designers of information
systems, tale the 'data' for granted. It's obvious that this table
represents data about doctors, patients, and diseases.

It's also very easy to design a data file to hold this information.
The data managesmet system can then search for any particular doctor
or patient. Sorts can be used to report by patient or doctor or
disease or year or nationality.

All looks well until we ask the question *3ut what does it mean '

It could mean a doctor named Salon treated a patient named Lucius
Commodus for a disease named Malaria. Or it could mean Salon know
Coarodus and Commodus suffered from Malaria but Salon had nothing to
do with treating the disease. Or it could mean Salon wrote about
Commodus' Malaria. Or even that Salon treated Comeodus but it was
Salon who had Malaria. Or....

Similar questions could be asked about who was a Britt (Commodus or
Salon) and what does the year 130 signify in relation to the other
data elements.

I think you can see there are innumerable interpretations among the
data elements in this simple table.

The consequences of this ambiguity are that a user of the
information system can draw the wrong conclusions; and that
redundant and inconsistent data say be stored, with all its
attendant costs of clean-up.

feaee la#at a I act 04f Is #rocto for easabiffews coersiecaties to
take place$ both the sesder acEl receiver of the message Dsut share
the sale seatal &@eld.

If you are developing an information system, you should stop at this
point and ask yourselfo, 'Have we documented the common mental model
or do the users and programmers just assume they understand each
otherl' Because if you haven't, you're going to let into trouble.

EPST] 5 updated Feb 14, 19951

02-5 !7u-p J! gJ#21* Ig ! I pg!J II

Wtat we need is a way of insuring that both communicating parties
share the same mental model. Nhat me mould lake is to make this
mental model visible. Then ae can document this model and
communicate at publicly to prevent ambiguity and errors.

First we'll look at twe methods people have used to analy:e
sentences. Then well choose aen of them for documenting
inforeation structure.

One way o4 analy:ing communication is to use English grammar to
breaL a sentence down into its elementary parts of speech. This
method has an advantage that it has been used for centuries and is
taught to everyone in school.

For example, every basic English sentence consists of a subject noun
phrase (NP) and a verb phrase (VP). Symbolically, ae represent the
sentence by the 4ormula:

S -, NP * VP

The noun phrase identifies the subject of interest, and the verb
phrase tells what the subject does, is or has done to it. (The arrow
sears "comsise 4W or "is produced when'.)

Let's tare an example.

LUCIUS CODMMDUS WAS TREATED BY GALEN
FOR MALARIA.

NP * Lucius Cosmodus
VP a was treated by Salen for Malarial

In turn each part of the sentence can be decompose4 into smalle-
parts according to linguistic rules used by every speaLer of
English.

0

[P5T3 6 [updated Feb 14, 1993)

S -> NP * VP
(noun phrase + verb phrase)

NP -)DP + N
(determiner phrase 4 i.oun)

VP -) Aux 4 MVP
(auxiliary 4 main verb phrase)

MVP -> V 4 (NP) * (MAN)
(verb * optional noun phrase

4 optional manner phrase)

Another way of analyzing communication is to use the object - role
model. In this model, every sentence is regarded as the combination
of one or sore objects which play parts (roles). This model gives
equal weight to all objects, and doesn't single out any one of thee
as the 'subject". Also, this model requires the class or type of
each individual object to be explicitly named.

The object-role model breaks a sentence down into its elements 04
m e a ni n g .

Let's take the same sentence.
LUCIUS COMMODUS WA5 TREATED BY 6ALEN
FOR MALARIA.

object type I PATIENT
object I Lucius Commodus
role I suffering

object type 2 DOCTOR
object 2 Salen
role 2 treating

object type 3 DISEASE
object 3 malaria

role 3 afflicting

This model has several advantages over the grammatic structure
model:

- it's independent of English language specific grammar hence it's
valid for all speakers

- it's independent of the order of the objects. ('Salem treated
Lucius Cosmodus for Malarla" is recognized as the same fact.)

- it communicates both the template from the mental model as well as
the particular instances

(PST] 7 1updated Feb J4, 1985)

0
Language is a vehicle for communicating facts and creating
understanding. It uses vocabulary and graomer and poetry as a
complex envelope for carrying its message. When we need to analyze
the envelope (the form of the message)l ae will use principles of
grammar. But when the message itself is important, when se mant to
get at the main thoughts or ideas that people want to express and
that ite at a deeper level, we mill use the object role model.

There4ore, because we are interested in the content of the message,
from now on we will use the object - role model as the basis for
documenting the mental model. In the nert section we mill present a
formal defanitiot of the basic object-role model and extensions to
it which have proven very useful in practical applications.

The population table is the graphical means for illustrating the
object role model. It clearly distinguzshes between the general
template and the particular instances. It gives the opportunity to
all additional instances if necessary to confirm understanding.

(See Figure 3.)

In the population table, the object types are in circles connected
to t~e roles. The object instances are in the body of the table.
Population tables are smaller than data tables because they are only

ade for elementa-y sentences.

A sentence is elementary when it cannot be decomposed into smaller
sentences without loss of information or introduction of ambiguity.
Each elementary sentence contains a single indivisible message, a
single fact about the Oreal world'.

A compound sentence conveys many facts. It is composed 04 tmo or
more elementary sentences. The problem with compound sentences is we
don't always know hop they are put together. The receiver doesn't
always know the rules of cemposition. Thus they are more susceptible
to incorrect interpretation.

We can avoid these problems by always decomposing compound sentences
into elementary sentences. In our example there are three different
elementary sentence types. (See Figure 4.)

Finally, we mention Fundamental Fact 65: 122 21 Itt Vgt:*1

The Information system can enforce correct usage and prevent

[PST) I [updated Feb 14, 198!)

pollution and nonsense only if it knows all Of the rule$ the
information must obey.

Me have seen that numerous interpretations are possible to people
with different mental models. The administrator who specifies the
system say have one set of meanings, the doctor who queries the
information system may have another assumption, and the laboratory
technician who enters the data may have a third interpretation.

Ant that means someday, someone could sale a very serious mistake.
In a medical situation, it could cost a life. A computer can do
nothing te prevent the situation until it is provided with the
correct Information Model.

All i nnte-gr:g t i 9l *t: ftally ~ttmit vtti 1tnt La Iet i ntl

THE INFOR"ATION MODEL

3.1 Whal 1 #: *n 1±9:9fl1O 12111

An Information Model is a blueprint for understanding a user's
information world. It is both an abstraction of the real world and a
prescription for any computerized information system.

An Information Model is a formali:ed object-role model . It contains
speoification of all object types, fact types (and roles) and
constraints organi2ed in a semantic network. It documents the user's
mental model.

3.2 Why eYttg

The main purpose of an information model is to document an
understanding of the real world in order to permit unambiguous
communication to take place. When two communicating partners share
the sate mental information model, then they both interpret the
communication in the same way.

A second important purpose of the Information Model is to organi2e
locally discovered facts into a global network, showing how they are
related to previously understood information.

There are two kinds of Object types Shown in the Information Model:
entities and symbols.

(Refer to Figure 5 to see examples of these symbols.)

fItir 12rit - a Solid oval representing all possible instances of
some real world objects or concepts.

IPSTI 9 (updated Feb 14, 19951

Examples: Doctor, Patient, Treatment, led-Assignment, Ipecisen, etc.

Irflp Irpt - a dashed circle representing the set of symbols which
can refer to, or identify entities.

Easpples: Doctor-amee, Patient-Nr, Treatment-Code.

In general, there is not a one to one relationship between symbols
and entities. You will find some entities with orte than one symbol
used to refer to them (for example Doctor-nase and Dztor-auober),
and some entities with non-unique symbols (for euample, there say be
several unconscious eJohn Doese in the emergency room.), and some
entit:es and concepts with no officially recognized identifying
sybmols (for example, a lab technician's visual inspection of a
testing machine or the informal group of workers playing cards at
lunch).

JV •rgt - a dire:ted line-segpent connecting two Entity types,
ppinting from the subtype to the supertype. All instances of the
subtype are automatically instances of the supertype, and all
properties of the supertype are inherited by the subtype.

For ezaaele, all Doctors are Health Care Personnel, and share their
properties, such as concern for patients health, assignment to
hospitals, state licensing, etc. In addition, doctors have
properties not possessed by the supertype, for esample, the
authorization to prescribe treatments.

Frequently, subtype relationships occur in families. This reflects
the humar mind at work g1jifting sets of entities. In Figure 5
there are two families headed by PERSON and by TEST.

111t - the part played by an object type in a relationship. Each
object in the relationship plays a role.

For example, if a laboratory technician performs a test on a
specimen, then the two roles are performing and tested. The
technician is the performing technician and the specimen is the
tested specimen. 14 the technician later does a quality check on a
test result, then that technician is the checking technician.

- There are two kinds of fact types# ideas and bridges.

ftia irgf - is an information bearing relationship between two
Entity types. Each Entity type plays a role in the relationship. The
roles are placed in boxes next to the corresponding Entity types.
This relationship can be read in both directions.

For example, A Doctor (is) treating a Patient, or the Patient (is)
treated-by a DOCTOR.

1rj r " is a naming relationship connecting an entity type
with a symbol type. A bridge represents an arbitrary naming
convention.

For example, PERSON with SSN.

geSlinj• is a restriction on the allowable states of the
information base and/or on transitions between them.

A constraint is a rule of behavior, either a business rule such as a
patient say not occupy more than one bed, or a commonly accepted
natural law such as babies may be born only to feease patients.

Z.4 Hq 2lcst

An Information Model is constructed by connecting together the
21!!ni:X pieces of information discovered during analysis. These
elementary pieces do not have to be derived in any given way. They
can be used as they are found, when they are found, from any source.
This 41exibility exists only when the pieces are truly elementary.

The Information Model is constructed graphically, usually on large
sheets of paper. First objects and their subtype connections are
drawn. Then ideas and bridges are connected to the objects. Finally
constraints are drawn connecting objects and roles.

As the diagram is constructed its correctness and meaning are
constantly checked by verbalizing the symbols in English and by
using population tables.

There are two methods of gathering the information for making the
diagram: the guru method and the archeology method. The guru method
involves interviewing subject matter experts whose knowlege is so
thorough that recourse to other sources is not necessary. It is the
easiest and most common technique. The archeology method involves
examining reports, computer listings, policies and procedures and
other documents to ektract the elementary facts and build a coherent
information model from them. It is much more difficult and slow.

Interviewing is the most common technique used in the initial stages
of building an Information Model. Users tend to be at ease
explaining in English the information they need, the objects of
their environment and the rules of information behavior. Later in
the analysis they begin to understand the symbolic language of the
Information Nodel diagram and can participate in their construction.

During the initial stages a professional Information Analyst is very
helpful in guiding user discusssions, keeping them focused on the
subject and explaining the techniques.

[PSI) II [updated Feb 14, 1985]

The most important questions he asks during the interviews are

"*ell me about ... "

ONhat does this mean "

These questions elicit English replies which are rich in semantic
relationships (facts) about objects. The information analyst then
breals down sentences into elementary facts and diagrams them.

Ol need to keep information about patients and doctors and
laboratory tests.

"6hen a patient is admitted to the hospital ae collect basic
demographic information such as his nmae and social security number
and so:: and year 0f birth. Ue also record his date of admission and
later his date o4 discharge.

"Patients are treated by one doctor. However, they may also be seen
by other doctors, who may give advice. Only the patient's primary
doctor may prescribe laboratory tests. And a patient must be
assigned a primary doctor before he can be seen by other doctors.

"A doctor may order tests for a patient. There are various kinds Of
test he as order. Each test is performed by a lab technician. A
doctor could order several different kinds of tests for a patient on
the same day and may order the s$me test to be performed sore than
once.

"The lab technician carries out the tests. Lab technicians and
doctors are both health care personnel, but no One can be both a
doctor and a lab technician. The lab technician performs patient
tests and quality control tests on his equipment. These are the only
kinds of tests allowed. Some tests are run more than once and the
results are judged by the technician who writes Comeents on the
reports. Di44erent test results for the same requested test are
distinguished by sequence numbers.

"Each test can be performed by only one lab technician, be ordered
by only one doctor and be for only one patient. While it is possible
for doctors or lab techniclans to be admitted as patients, Our
hospital does not permit them to order or perform tests for
themselves.

"Furthermore, if a doctor is admitted as a patient he may not treat
himself.*

S~3.7 Itt Itietttii e figtl Unti~!

The results of this Interview are documented in an Information
Nhdel diagram. ISee Figure 5.1 Please note that this model is only

[PST) 12 (updated Feb 14, 19315

for illustration. It is too simple to be realistic. In a real
project more analysis would take place and many improvements made.

An information model diagram is a pictorial representation of the
problem. It is processed by the right half of the analyst's brain.
This activity complements the interviewing or verbal stage of
information analysis which draws mostly on the left half of the
brain. The left half analyses the information and understands the
elementary pieces of meaning; the right half syntheses the facts and
understands the organization of knowledge.

W&ta rules are guidelines for the correct and consistent
construction of an Information Model. They represent accumulated
knowledge about knowledge engineering, and they help the designer of
an information model detect fuzzy thinking and construction errors.

Some eramples of met& rules are the following:

- no isolated object types.

- every subtype family has one common ancestor.

- every role must be connected to one and only one object type.

- in any constraint or query which involves a comparison, the roles
compared oust connect to the same object type or a subtype and
supertype in the same family.

- every fact type has a simple uniqueness constraint; if not, the
fact is not elementary or an object type has been omitted.

- in any constraint or query the path specification oust be
unambiguous.

rany beginners initially have trouble distinguishing between a role
and an object. It's common to see a model with two objects DATE of
admission and DATE of TEST. In reality there is only one object
(DATE) and it plays two roles: (DATE) of admission of (PATIENT) and
(DATE) of (TEST).

Use of distinct object types for distinct concepts and common object
types for common concepts eliminates redundancies and prevents
nonsense.

For example, the query, Olive te a list of all PATIENTs whose DATE
of ADMISSION equals their DATES of discharge" is a sensible query.
It involves the comparison of the common object type DATE. 0
On the other hand, the query, Olive ae a list of all PERSONs who
were born-in the same YEAR as their AEX is clearly nonsensical. It

IPATI 13 (updated Feb 14, 19653

involves the illegal comparison of distinct object types.

3.10 011 6ost !fi 1

The Information Model has the interesting and useful characteristic
that all logical access paths to any piece of inforeation are shown.
Unlike other methods, access paths are never eliminated for
"O44a1Clency" reasons.

API~ ttttLtHfl 2VMt 0HQLIM t &M It UU2LkBtLI~ It 2B11h W292tHt t!2tL512 Le g tlL

Let's look at threw cases:

"- jgi VtEfjt% - the query pathWs) is unambiguous; this query makes
sense.

7-:61ve me a list of all PATIENTs treated-8
: by DOCTOR John Kildare'. !

6:ve me the VALUES of all TEST-RESULTS :
Ifor all TESTs for PATIENT with NAME i:Marv C. Ste~a-t".

"- tig2p! q3f: 1fI - the query path intended is unclear

6S:ve at a list o4 all PATIENTS and their:

:DOTORs,. This could mean:

a) PATIENT treated-by DOCTOR
b) PATIENT also-seen-by DOCTOR
c) or both
d) or even some longer path involving

intermediate objects

- ig2911g01t 2titl - there is no path

:Sive me a list of al PATIENTS who
:haven't paid their bills%.

To answer this question you Dust extend the InWormation Model.

Queries are ouch easier to formulate, discuss, revise, understand,

[PBT) 14 tupdated Feb 14, 1985)

and agree-upon when using the Information Model than with

traditional program documentation.

3.11 Wh 91:iJ

Constraints are formalized knowledge rules about natural laws or
organizational policy. They are the rules of behavior which are
enforced when information is added to or deloted from the
information base. They are also the conditions which hold among all
information facts in the base. They guarantee the quality I
usefulness, and consistency of the information. With constraints no
user can accidentally or deliberately introduce nonsensical or
inconsistent information.

Traditionally, checks for the correctness of the information base
have been buried deep inside programs, unreadable and unverifiable.
This situation has led to rather haphazard constraint enforcement.
The amount of constraint checking has tended to be a function of the
experience of the programmer, the ease of programming the
constraint, and amount of time given to the project.

Users typically assume sore constraint checking in their data than
there really is. When converting a typical production system to one
with enforced constraints they are amazed and distressed at the
number of errors discovered in their production data.

Information Analysts are unique in recognizing the importance of

constraints and in developing methods and notations for assisting
users in finding and specifying constraints.

It turns out that in a typical Information Mode), construction
effort, sooe 30% of the constraints uncovered fit into a small
number of already recognized categories.

A few of the commonly occurring constraint types and examples are:

- subtype exclusion - two or sore subtypes are mutually exclusive.
(A TEST may be either a PATIENT-TEST or a CC-TEST, but never both.)

- subtype total - the union of two or more subtypes equals the total
supertype. IA PATIENT-TEST and a GC-TEST are the only kinds of TEST)

- role uniqueness - every fact in the Information Model has one or
more roles unique. (A PATIENT is treated-by a unique DOCTOR. A TEST
is uniquely for one PATIENT.)

- role subset - the population of role! oust be a subset of the
population of role2. This is a set algebraic formulation of
constraints involving the concepts of "before" and *implies'.
(Wafre a PATIENT can be seen by other DOCTORs, he oust first be
treated by his own DOCTOR.)

[PST) 15 [updated Feb 14, 19153

- joint uniqueness - the combination o4 two or Gore roles uniquely
determines an object. If you know the PATIENT, and the DATE, TIME,
and KIND o4 TEST, then you know which PATIENT-TEST. (On the ether
hand BC-TEST oust be determined in a different way because no
patient is involved.)

- equiva!ence of path - two different paths frog object type I to
object type 2 give the sate result. (The DOCTOR treating the PATIENT
oust be the same DOCTOR ordering the TESTs for the PATIENT.)

Recently the International Standards Organization conducted a study
t" the *Concepts and Terminology for the Conceptual Schemea., ISO'
Binary approach is essentially the Information Model described
he-&.

4. DATABASE EN1NMEERIN6

After the information problem has been analyzed, the next step is to
design the database. A good database design will be easy to
understand, modify and enhance, high in performance, secure and
reliable, easy to use, and meet the needs of its users.

4.1 !-ht gil M-a

The designer of a database expresses his design in terms of a data
model. A data model is a map 04 the data organized into a network o4
record types. Each record type contains one or more named data
elements. A data element is the smallest addressable unit within a
database. Solid lines link together data elements in different
record types, or connect froe *out of the blue" into a data element.
These paths into and through a data model allow the user to find the
data he needs. Advanced data models also contain data integrity con-
straints. (See Figure 4.)

4.2 Pyyfr

The database user has several reasons for needing a data model as he
plans his use of the data.

Wis most fundamental need is to know the naoes of the data elements
which ae documented in the data model so he can tell the computer
which data to access.

(Because so many data elements have the some foreaSt, it is not
possible to distinguish them just on the basis of their
representation. Consider for teample the date 01105/14. Is this the
Date of admission, the DATE of discharge, or the DATE ef birth '?)

Secondly, the database user needs to know which data elements ore
organized together into the same record type. Because most computer

rPcl I& (updated Feb 14, 1935•

languages access data one record type at a time, It's important to
know which data elements will be available together.

Thirdly, the database user needs to know the semantic paths through
the data model in order to retrieve data related it I 2|lgtax g to
the data he already has.

(These are not physical paths such as the CODASYL network structure,
but are the basic understanding of meanings needed to ask
intelligent questions.)

It is in this last aspect of the need to know the path or paths to
related data that the user is likened to a navigator and the data
mode! to a map. In planning complex data applications, the data
nodel map is an indispensable tool for the data navigator.

4.3 t Mtnu

The computer's database management system (dbms) also needs to know
the data model. A description of the data model is written in a
computer syntax called a database schema. The dbms reads, checks and
safely stores away the database achema. Then it uses the schema to
plan how to organize and retrieve the data efficiently, and to
guarantee its correctness.

Whenever the user asks for an update or retrieval, the dbms consults
the schema first before accessing the data. In this say it can carry
out the users' commands correctly and efficiently.

4.4 i±figi!D X~pj29!uj1ahiD

Efficient implementation of large databases on present day computing
machines requires a grouped date model. The data model is formed by
grouping together the concepts of an information Nodel into
efficient record types, data elements and their connections.

(An ungrouped Information Nodel, though more semantically rich, more
detailed, and more flexible, requires advanced computer architecture
for efficient implementation.)

Two cost characteristics of today's computers are important
considerations for the grouping algorithm:

- Storing large amounts of data is expensive. Compressing data to
reduce redundancy decreases storage costs by 50% or more.

- Accessing a block of data from a storage device and bringing it
into main memory is a slow and expensive process. However, reading
the data elements from the block once it is in main memory is fast
and cheap. Hence data elements which are used together should be
grouped together into the same data block to reduce access costs.

[PS?) 17 [updated Feb 14, 19953

4.5 Itt 1COV202 OLUCMt n

In the previous section we discussed that too few data elements
grouped together result in an inefficient design. On the other
hand, it is also well known that too many date elements grouped
together result in redundant storage and complem programs. What at
reed is an intermediate amount of grouping which is just right.

The 4u1l grouping algorithm also includes steps for checking the
Information Model for consistency and referenceability, for
selecting some tuning options, for grouping the constraints, and for
constructing the full data model. This algorithm is taught in
Infortation Analysis seminars and has been computerized and
implemented for about a half a do:on current database managers.

Neroe's the simple selection criterion used in the grouping
algorithm:

For each entity class: HtIt1t tot 011Vaiu foLr ELtuH11x 9o2tittda

This sio;le grouping rule generates record types which satisfy

efficiency and ease of use criteria.

- A fact is stored only once (non-redundancy)

- A fact is stored in a fixed location (predictability)

- Every data element is determined by *the key, the whole key and
nothing but the key' (normalization)

- No wasted storage space (low cost)

In short, an elegant method

4.6 it lIMt i 12 Mi ! QQL EH UHM

Logic programming using languages such as PROLOS and LISP is a
rapidly advancing new style of problem solving. Instead of
Specifying the flow of process as in a conventional programming
language, the programmer specifies the relationships or predicates
which hold and rules for deriving new knowledge.

Just like in the database world, it is necessary to first analy:e
the communication and build an information model of the information
problem. lefore logic and deduction can be applied we must first be
sure that we understand which problem ae are solving.

The predicates which are declared to the program are the elementary
sentences or groups of elementary sentences from the information
model. When grouping the sentences the same rule as before is used
with the addition that the total role constraint is Observed: only
single valued facts which are connected to the object with a total

[PMY) to [updated Feb 14, 199!1

role constraint are grouped together. In this way so-called missing
values are avoided.

.cp 5

So far we've talked as if each database system has only one *chesa.
And while in fact many do, modern database management is evolving tZ
a three schema architecture. This need was first recognized by ANSI.

4.8 Wi !jt~t I&jbIgi
Database systems with one schema suffer from lack of data
independence. Ea:h user has the same view of the data. If any
change is made to the data model, then all users will have to
change.

In a two schema environment users have sore data independence and
protect:on. The database schema can change somewhat, and the users'
subschemss stay the same. They continue to use and view data in
their preferred subschemsa model.

Ir a three schema environment the database schema is replaced by a
conceptual schema which defines the WHAT of the data problem, one or
sore internal schemas which define HCD the data is most efficiently
stored and retrieved, and one or sore external schemas which define
HOU the user groups prefer to view and access their data. The
conceptual schema is created automatically by the grouping
algorithm. (See Figure 7.)

A database system engineered with a 3 schema architecture provides a
number of direct and indirect benefits to its users. The direct
benefits are

- Any user can alter his preferred view of the data described in the
external schema without affecting any other user.

- A database engineer can completely reorganize the physical
databases described in the internal schemas without affecting 4
single line of user source code or interactive procedures. In
particular, the database engineer can tune the physical database
structures following implementation.

- An enterprise administrator can turn constraints on or off and can
enlarge his data model described in the conceptual schema to support
new functions with no effect on ex:sting programs, interactive
procedures, or data organization.

Secondary benefits include the following:
- Less fear of change, because systes-wide correctness is guaranteed
by the conceptual schema.

- Smaller update prograos, and much less development cost.

[PSI 19 [updated Feb 14, 19952

- Elimination of garbage from the data with constraint enforcement

- Avoidance of lock-in to current physical dbms technology.

Figure I shows the steps from problem recognition to 3 schema
implementation.

s. CONCLUSION

5.1 Pt-1 1 einfut !

Since 1976 a group of Information Consultants have been applying the
concepts o4 natural language information analysis, information model
constructo-, and data modeling to large, real world inWormation
system projects. In these nine years they have helped more than 120
clients develop modern effective information systems. In several
cases, the clients had spent 5 years and as many million dollars in
traditional analysis methods without results.

During this work, the natural language basis of factual information
communication and the object - role model have been tested
successfully in about 20 languages, including Indo-European,
Semitic, and Oriental languages. This practical experience has given
us confidence in the fundamental validity of our linguistic
analysis.

5.2 h!.ekil OR 2LCitLent

Large scale application of the Information Analysis methodology has
been to computerized database application systems for manufacturing,
service and governmental organizations. Examples from various
industries include a clinical pathological laboratory system, ar
engineering documentation and configuration management syster, a
combined turbine engineering design and drawing data base, a health
physics records keeping system for a nuclear utility, a petroleum
exploration database, and the entire application portfolio for two
insurance companiet.

5.3 rQft1 lIre hfr1ni;is

The most striking iharacteristics of these qrojects are the
increased user understanding of his requirements; his increased
participation in and commitment to the requirements specification
effort; and his satis'action with the final implementation.

Typically, a user can become proficient with a few days* classroom
training and learning experience in a project team environment.
Thereafter, he takes a direct hand in the analysis and documentation
work.

In these efforts, Information analysis has found more requirements,
and specified them sore precisely than traditional analysis
methods,...sometsmes dramatically more. As a result the implemented

applications are sore Complete, have fewer errors, and require less is
programming remark both during initial construction and after
implementation. Database design, previously extremely difficult, has
become more routine.

Data processing professionals report greater productivity, users
receive more flexible and complete solutions, and management sees
better cost and schedule control.

5.4 Wider giitil

But Information Analysis is not limited just to application
development. It has been applied to the analysis of a user guide to
find unclear passages, to the analysis of industry standards for the
interchange of graphical computers:ed drawings, to a work
environment prior to the introduction of office automation, to the
design of a database manager and an information dictionary, and to
the analysis and improvement of development methodologies including
itself.

5.5 !ht Ult: (SetCl 11 Rt~tjegt:

When computers were first introduced, the first programmers were
user *;;ports who had to learn the language of the computer. Later,
when computers became &are complex, specialists were trained in the
intricacies of computers. These specialists knew a lot about the
machine but very little about the business and information needed to
support it in user areas. Morse, they built computer software upon a
sental model of a machine (disks, tapes, records, keys, formats,
pointers, pages, sectors, etc.) foreign to the user and hence a
barrier to development.

Today with Information Ana'ysis we are seeing a change in how
systems are developed. The user expert is now taking charge of
analysing his ownproblem and giving his specifications as require-
ments to the data processing shop. He is no longer accepting a
passive role as the victim of automation; today he is controlling
it. As a consequence, the nature of the software development process
is changing. In this process the professional information analyst
acts as an educator, reviewer, guide, and friend.

71 luodated Feb IA. 198!1

REFERENCES

1. 'In4ormatiesysteomen an Do Volgende Seneratie Data lase Management
Systemon', 6. M. Nijissn, in 1n±ptlillil, Amsterdam, 1976.

2. 'A Gross Architecture for the Next Seneration Data lose
Management Systems", S. Ff. Ujossen, in the ft•je;t gj if [P-:I-:

frWg?:Wljigt, l97t, published by North Holland.

3. 150 TC97/SC5ISN6 - G;2tat * log t•ei•gLu 12t t:t ;2ntjtjL
jttt!t t jtjgtelto lilt, edited by J. 3. Van 6riethuysen, 1962.
(Available from ANSI.)

4. IFIP WS 9.1 - "NIAH : An Information Analysis Method', S.H.A.
Ve-heojen and 3. Van lekkur 'n In 1010miS hir•flm Pusmg•
!2t~gp1qg1I A ;qj~ty Ilyigt, North Holland, 1992.

5. 'Modelling and Manipulating Production Data lases in Terms of
Semantic Nets", Robert oeersman and Frans Van Asscho, Control Data,
198Z.

6. 'The RIDL Conceptual Language: An Abstract', Robert feersean,
Control Data, 1982.

7. ANSI/13/SPARC - Rtglg t jjVgj Itjp 2t Rill li t e:jt~ftf

S. OThe Automated Mapping from a linary Concetual Schema to a 5th NF

rita lase Schema', Frans van Assche, Danielle Simons, and Marleem
Vanhoedenaghe, Control Data, 1993.

9. "Erperience with Information Analysis in the US." - Paul
Thompson, Control Data 1961.

10. 'A User-Driver Methodology for the Design 40 CADICAM and

Engineering Databases'" Roger Thyr, Proceedings of AUTOFACT 6

Conference, 1904.

11. 91A Literature List's ICIAS, Control Data. (A reference o0

approximately 130 articles on Information Analysis.)

P.0A..~... SE

DIOSRAPHY

Hr. Thompson is a Principal Consultant with Control Data responsible
4or seminar development, client consulting, and methodology
development and introduction. He has supported Information Analysis
projects 4or the last eight years. Prior to that he has had 14 years
Operience in scientific and commercial data processing. Mr.
Thompson has a B.S. 4rom Yale University and an H.S. in Computer
Science 4roe Purdue University.

(An earlier version of this paper was presented at the eighteenth
annual International Conference on System Sciences, January 2-4,
199M.)

(PST) 23 [updated Feb 14, 19951

I

* =* I
.9 -

* '"I

* I
U

a'-

-4

DOCTOR PATIENT DISEASE YEAR NATIONALITY

Salen Lucius Coamodus Malaria 130 Greek
Salen Marcus Aurelius Sprain 130 Greek
Vesalius Charles V Chest cold 1514 Belgian
Harvey Francis Bacon Baldness 1579 English
faur•sy James I Indigestion 1579 English

Figure 2. Date Table

0

AvgIin!

% i- I % do, aw
lolaH

p

1. salen treated Lucius Coamodus for Malaria.
Salon * Marcus Aurelius S Sprain.
Vesalius * Charles V a Chest cold.
Harvey Francis Bacon D baldness.
Harvey James I a Indigestion.

2. Salen was Broek.
Vesalius B Delgian.
Harvey English.

3. Salon was barn in 130.
Vesalius 15J4.
Harvey 1578.

Figure 4. Elementary Sentences

0

lEAR -mum- sol-IN PEI=0 l o0v

•, ,
FIUEAN PATIENT

PATIENT

tip

TESTE

TDATE

FIGUR W NIFRARMO TMOEL

I

,11

_ _

0

III

0

511

INFORMATIJON
PROBLEM

NHATUA

LANGUAGE
SENTENCES

EXTRNA ANALYSI

INFORMATION

SCCHEMA

NO

WOW F OW

FIGURE INFORMATION ANALYSIS IETHODOLOGY

INFORMATICN ANALYSIS CENALIM DIAGRAM) KEY
a tisau15

3
IS 1F" P 4

& ~~ e3*Ila l, 1 a'"
A !V IS U . E Cr Muff "M

3 1 aSAN *A* AS I= O•mir--

A O IS Or M. OE 00 M41fAW .

A 'IN *A 6S 2 . Cpg CM,& age.
3 2A 3S* IS W .f~ MINV Aw.

4 a

A w* ms c OR

NAS *'8" ,A ES ar•i ._.__V.

3

A V It V It p M A.

INA OW IS or" o4€w V.
A2 4330 13

AN A;"NOSER OR SLY&E'V

A -8- .1 Cu 2M * 8 De -.-.

OWS V AND OLT SE a.
a~ IS CUV A M ORS S ~ OW *A.?sE.

£ 3
avo OV I11 CP ag AN0 PLY Cm we.

em-.. "WI IF a 2C

AN aew CI 2pfC w
4 3

EVVY 08 IS Or OW C Wf -A-.

NMIs WLs 9SSA WI6 WT U'I 0 *V ULA0 OA W Cr WI Jr.

O A C7 OF NCNLEXICAL (NC:
U0EAAB.;E) CBsECTS.

f" %N B RE=RESENTS A SET OF LEX I CAL
' 1 t{UTTERA5LE) OBJECTS.

yA?1 BRIDGE WHICH RELATES A NONLEXICAL OBJECT
TO A LEX I CAL OBJECT THROUGH ROLES R! AND R_.

I\

% -

1 DEA WH I CH RELATES TWO NONLEX I CAL OBJECTS
THROUGH ROLES RI AND R2.

D THE OBJECT "A" OCCURS ELSEWHERE
ON THIS OR ANOTHER IA DIAGRAM.

B

6, C AND 0 ARE SUBSETS OF A. A MEMBER
A C OF A CAN BE A MEMBER OF B, C OR D (OR

ANY COMBINATION OF B, C AND 0).

0

T"'TAL. S..J5S~7 CZS7AI NT.

AL: CF -;- W-=S!'RS C.r A Ak.E= CCNTA I NSM
T~ I N S"BSSTS S, C Oq 0. 17 MAY ALSO BE

CONTA IN:=: N VCRE THAN C*Z SL*B^SET, AND
CCDJL Aý..SZ CCZA I N SL'5=-T E.

EXC6LL'SIN SZSE CONSTPLINT.

A NEM!UER C-- A I S CONTA I ý = I N AT MOST
ONE Me'TI-Z SUSSTS 9,CC OR ITODOES
NOT HAVE TO 5E IN ANY CF T~-iM AND Lf
ALSO BE =NTAINED IN SUBSSET E.

TOTAL-EXC...US I ON SUBS-CET LCLS~TRA INT..

A NMEBER CP A MUST BE I N ONE AND ONL.Y
ONE OF Tl-= SUBSETS B, C OR 0. TH IS
OCECS NCT M-CAN THAT I T CANNCT ALSO BE
CONTAINE"C IN SUBSET E.

J I NT UNI W'NEES
A M-C5E.R OF 5 PART ICIPATIN* IN POL. RI INA COMBINATION WITH A Z&5q-:-R CF C PJ.RTIC!PATING~O IN RCL.E R2 UN IO.'L.Y I CE.N-TI rIES A MEV4ER or A.

JOINT ECLJALITY C,-S-,RAINT.

ALL MEWERS OF. A THAT ARE REAft-mrA YTO 15 TWRLJH ROL R I ALSO ARE
y RELATED TO C TIP.-JGI. ROLE R2 A.NL;

C VICE VERSA.

0

ff1JO I NT EXCLIUS I QN CONS"RA I NT.

ANY. WM" OF. A NHAT IS REL-A-iTE TO

TOB THRCUG % ROt.. R2.-0 E EAE
qA =~~~T C5 THROUGH ROLE R, C.%*0 EFEA

JOINT TOTAL CQNSTR6'NT.
T ~A M6EMER OF A MIJS7 PARTICIPATE IN EITH.ER

A 5~ TlQ.A ROLEE R I OR I N C TkPZL.G ROLE R2

C

xA MeENIE. OF A WLST, PARTICIPATEI IiEA 5 THKXG RCLE R P OR I.N C THROQSN RoLE Rz
BUT NOT IN BOTH.

Appendix D3

Data Stecification Lancfuage (DSL)

S 38

b., ... r 14 MAR 1986
DATA SPECIFICATION LANGUAGZ xUTHOR'S NOTES

AUTHOR'S NOTES

This issue of the Data Specification Language replaces the
draft dated 01/27/86. The changes are mainly additions to the
text which explains how the language is used. Concentrating on
Part III, here are some items that might be of some interest:

111-3.3 defines lexical substitution which is patterned after
the 'C' Language implementation.

111-4 gives some detail about the schema block.

111-5 gives some examples of entities. The association entity
has been removed, but the capability is implemented differently.

111-8 expands on the idea of semantic types. This is new for
this issue.

111-9 talks to static constraints. This also is new for this
issue.

There is now a table of contents for each section, but the
page numbers have not been filled in. I am waiting for the
document to become more stable before doing this since it is a
manual operation on the equipment I have been using.

Some planned additions are: a discussion of the differences
and similarities between DSL and Entity-Relationship modeling and
Binary-Relationship modeling (that should be interesting); and
more annotated examples. The part about zapping to different
physical implementations will probably resurface as an appendix
sooner or later too.

Comments on this work may be directed to:

Douglas Schenck
McDonnell Douglas Aerospace Information Services Company
MDAISC
P.O. Box 516
Dept. W315
Building 271D
St. Louis, MO 63166

(314) 234-5258

0
1

ISO/TC184/SC4/WG1:4.1.1 (DRAFT) 14 MAR 1986
DATA 8PECIFICATION LANGUAGE PART I -I INTRODUCTION

Table of Contents

1. INTRODUCTION
2. The INFORMATION MODEL
3. DATA MODELS
4. ELEMENTS of the INFORMATION MODEL

4.1 Entity
4.2 Attribute
4.3 Class
4.4 Rule
4.5 Operation
4.6 Function
4.7 Procedure
4.8 Relationship
4.9 Schema

S. The n-SCHEMA FRAMEWORK
6. The DISCOVERY PROCESS
7. REQUIREMENTS for the INFORMATION MODEL
8. The ROLE of the INFORMATION MODEL

I

Dd

I-i

I5O/TC1S4/8C4/WGl:4.1.1 (DRAFT) 14 xaR 1966
DATA UPECIFICATION LANGUAGN PART X - INTRODUCTION

I. Introduction

The Data Specification Language (DSL) is a declarative
language used to express an information model. This manual
explains the principles of information modeling and how DSL is
used to create models of information that are useful in
understanding how an operation functions.

Part I explains the information modeling process; Part II is
a formal definition of DSL in terms of (a form of) BN?; Part III
is a guide to the use of DSL; Part IV is a glossary of the terms
used throughout the manual.

The aim of information modeling is to capture the essence of
the information needed for the operation of some enterprise. Its
aim is not to model data, i.e., to model the form of information
as it might be used in an application environment. It is impor-
tant, however, that the information model be able to produce such
a data model. In fact, the production of data models[l] is the
second most important role of the information model.

This begs the question - what is the most important role of
the information model? It is simply this - to express what is
known about enterprise information. This expression is aimed
equally at human users and computing machines.

The purpose of the information processing system is to
encourage the use and exchange of information. Both the provider
and the receiver of data should be able to understand it in
exactly the same manner. i.e., to treat data as information. The
use of an information model is aimed at avoiding errors in
interpreting the meaning of data.

Data and information, as used in this document, have the
following meanings:

-- Data is the representation of information independent of
its meaning. e.g., an integer number.

"- Information is the data plus the meaning connected with
it. It is any kind of knowledge about things or concepts
that is exchangeable among users. e.g., an integer number
is the age, in years, of some person.

The Data Specification Language (DSL) enables the expression
of the information needs of an enterprise. Its purpose is to

C1] You will notice that information model is always treated as a
singular thing while data model is treated in a plural sense.
This is because there should be only one information model,
but several data models that implement the information model
are possible.

1-2

DATA SPECIFICATION LANGUAGE PART I - INTRODUCTION

capture the meaning of data so that the provider and receiver of
data may interpret it without error. DSL is not a database
design tool, although it is possible to derive a database design
from the information model written in DSL.

2. The Information Model

The information model establishes the framework within which
information may be expressed. Not all kinds of information;
only the information that can be represented by an information
processing system. In general this means data, with meaning, that
has a realized form and predictable structures and relationships.
It is not possible, nor is it necessary, to represent all kinds
of information about things. When modeling a person for example,
there are all kinds of qualities that defy a meaningful
representation[23; how does one feel about something or what does
one believe about some topic. Fortunately, information
processing systems usually deal only with concrete facts such as
a person's name or age, or withsimulations of abstract feelings
(do you strongly agree, agree, strongly disagree, etc. with this
or that statement).

The information model is concerned with the expression of
things (and concepts) needed by (for the operation of) the
enterprise of interest. The concepts needed to accomplish that
expression are briefly described here and will be discussed in
more detail in subsequent sections.

An e is the abstraction of some artifact or concept of
interest and use to the enterprise.

An attribuit is a defining fact about an entity.

A class is a collection of entities that are (thought to be)
alike in some manner.

A rule& is a constraint which must be enforced by the infor-
mation processing system. e.g., an employee must belong to
exactly one department, or all points must be in the first
octant. Rules may vary somewhat among different, but similar,
enterprises. Most, but perhaps not all, businesses will be in
accord with the first example. Few geometric modellers would
agree with the second example.

An o defines how an entity may be used within the
enterprise and what the result of the operation may be. e.g., a
number may be used in an add operation and the result is a
number.

[2] Artificial Intellegence (AI) and advancing computing

technology may someday alter this viewpoint.

1-3

ISO/TClS4/6C4/lGl: 4.1.1 (DRAIT) 14 MR 1966
DATA OPSCZFXCATION LANGUAGZ PART X - M TRODUCTION

"A fuction is an algorithm which yields some result object.

"A PItcqdLr is an algorithm which operates on information to
produce some desired end state.

The relationship is a mechanism used to connect two entities
in some fashion. e.g., a Line uses a Point as one of its
attributes. That would be a defining relationship.

The schema[3] is what we call the the information model. It

embodies what we (think we) know about enterprise information.

3. Data Models

There may be a number of data models within an enterprise
that implement (part of) the information model. It is simply
impossible to cover all of the possible data models that might be
employed. Even when talking about a generic data model (e.g.,
relational) we cannot cover all of the possible implementation
variations.

However, the purpose of this section is not to discuss
specific data models, but to explain how data models are
different from the information model. Consider this parallel: we
have a problem for which there are many possible solutions. Some
process of elimination will yield a single solution that seems to
be the best according to some criteria. When separate groups
attempt to solve the same problem we might expect to find that
each group produces a different solution. Very possibly each
group would evaluate the alternatives based on differing
criteria.

The same thing happens with the translation from the infor-
mation model[4] to a data model. Group A and Group B look at the
information model and come up with a data implementation that
best suits their needs and environment. The best solution for
Group A may not be the best for Group B. This does not become a
problem until Group A wants to share information with Group B.

Now we need the information model to stand between the
separate implementations to interpret the meaning of data found
at either side of the exchange. This works best when the infor-
mation model is formal rather than ad hoc.

[3] Not to be confused with the term conceptual schema as used by
the ANSI/X3/SPARC DBSG.

[4] We assume that all are looking at exactly the same infor-
mation model and all understand it exactly the same way.
When the basic understanding is different, effective
communication is impossible.

1-4

LSO/TC184/SC4/WG1:461.1 (DRAFT) 14 203 1986
DATA SPECIFICATION LANGUAGE PART Z -- INTRODUCTION

MMMMN NB M I

So, the data models are concerned with application needs and
the implementation environment. The information model must not be
concerned with these issues. The information model must express
concepts in a common language. The data model d have to do
this (but it doesn't hurt if it does).

4. Elements of the Information Model

A brief description of the elements of the information model
was given earlier. This section explains them in complete detail.

An entity is the abstraction of some artifact or concept of
interest and use to the enterprise. An entity must posess these
qualities:

-- it must express an entire concept

-- it must exist independently

This means that an entity must not express a partial concept.
By way of contrast, data models often express partial concepts in
physical structures. To exist independently means that an entity
must not depend on any other entity for its existance[5]. Again,
data models often rely on dependent relationships, especially
where partial concepts are required. An example vill help to
illustrate these ideas.

We wish to define a FairCurve, which is a smooth curve that
passes through two or more points. The behaviour of the curve at
each point is defined by attributes telling whether or not slope
and curvature continuity is required. The very first and last
points have no such attributes. Furthermore, there is an integer
number attribute of the FairCurve that somehow determines the
method of interpolation between points.

One way of building a data model is with the following
relational tables (there are other ways of doing this):

[5] There is the possibility that a particular entity may be
treated as "dependent with respect to" another entity. See
dependent in 4.8.

I-5

X8O/TC1S4/1C4/WG1:4.1.1 (DRAFT) 14 MAR 1986
DATA SUPCIFICATION LANGUAGE PART I -- XYTRODUCTION

FAIRCURVE

ID IINTERPFIRST ILAST I

FC0001 I 3 IPT1234 PT3456
FC0002 4 PT0123 I PT5600

I etc.

FAIRCURVE-POINT

lID SEQ I PTREF I G1 IG2 I

SFCooo1 I 003 I PT7164 I TRUE I FALSE I E63
FCooo2 I 001 I PT4617 I FALSE I FALSE

I FC0002 I 003 I PT4614 I TRUE j FALSE
FC0002 I 002 I PT7117 I FALSE I FALSE

I FCOOO1 I 002 I PT4314 I TRUE I TRUE
FCOOO1. 002 I PT4143 1 FALSE I FALSE

I FCoool 004 I PT4341 I FALSE I FALSE
FCO002 I 004 I PT4334 I TRUE I FALSE

I FCO002 I 006 i PT4146 I TRUE I TRUE
FC0002 I 005 I PT4943 I FALSE I FALSE

I etc.

First, it is clear that the records in FairCurvePoint are
dependent on the FairCurve table. i.e., if a record is removed
from FairCurve, then all corresponding records in FairCurvePoint
must be removed also. This is a clue that FairCurvePoint is
really an attribute of FairCurve. But more on this later.

It is not so clear whether or not a record in FairCrvaePoint
can be deleted vithout affecting the definition of a given
FairCurve.

Second, does FairCurvePoint express a complete idea? In
other words, could we explain what this relation means without
calling up the context in which it is used. The answer to this is
an unqualified maybe, but the claim here is that FairCurvePoint
cannot be explained without bringing FairCurve into the
discussion also.

We can conclude from this that FairCurvePoint is not an
entity, at least in the context of the information model. Neither
is FairCurve, since by itself it is not complete. They may be
called entities in the jargon of the particular data model that

[6] Notice that the combination of ID and SEQ must be unique. SEQ
gives the ordering of points interior to the FairCurve.
Moreover, in relational tables there is no guarantee that
"key" values will be in any meaningful order. They are shown
in random order to emphasize this consideration.

1-6

XSO/TC184/SC4/WG:4. 4.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART x -- INTRODUCTION

is being employed. A solution to this problem, in information
modeling terms, will be given later.

4.2 Attribute

An attribute is a particular fact about an entity, such as •,
is a fact about Point. Each entity will have a set of attributes
that make it unique from all other entities. The name of the
entity is shorthand for the set of facts needed to define it.

Attributes may be classified according to the purpose they
play in the description of an entity. The terms used are: Role
and NoRole. A purely conceptual schema will employ only Role
attributes in the description of entities. NoRole attributes will
be used as the schema, migrates toward a physical implementation.

A Role attribute is essential for the description of an
entity. If one or more of the Role attributes were eliminated
from the description, the meaning of the entity would be lost.

A NoRole attribute, on the other hand, is not essential for
the understanding of the entity in question. A NoRole attribute
is (or may be) necessary for the function of an operational
system.

One common example of a NoRole attribute is the key attribute
which is used to gain access to a specific entity. These key
attributes are, more often than not, manufactured. The data
representation of the key attribute is likely to be different for
different implementations. e.g., a relational database would
probably use a character string for key values while a network
database would probably use memory addresses or record pointers
for that purpose.

In either event the NoRole attributes may be ignored for the
purpose of understanding an entity; only the Role attributes are
essential for that purpose.

An attribute may be viewed as having three components: the
name of the attribute; its semantic type; and any constraints
that might be enforced on particular values for its semantic
type. Constraints may or may not be present, and if not the
semantic type is unconstrained.

The name of an attribute is known only to the entity in which
it is defined. i.e., if two entities have the same attribute
(name) there is no inference that the two attributes mean the
same thing.

The semantic type defines what the attribute is. It does not
define how the attribute is to be represented in a specific
environment. One should not assume that the semantic type Integer
will be realized as a binary twos complement number. It could
also be encoded as a packed or unpacked decimal, or as a
character string (of digits).

1-7

XSO/TC184/BC4/W01:4.1.1 (DRAFT) 14 MMR 1986
DATA BPECIFICATZON LANGUAGE PART Z -- I)ITRODUCTXON

Even though a semantic type and a data type are used in
different roles, it is difficult to separate these concepts in
practice.

The semantic types built into DSL are listed below. Part III
explains how the semantic types are used.

-- Number
-- Integer
-- Real

-- Float
-- Fixed

-- String
-- Logical

RELATIONSHIP
-- Refer

GROUPING
-- Array
-- List
-- Set

EXTENSIONAL
-- Defined

COMPLEX
-- Enumeration
- Structure

Note that the c semantic types (enumeration and
structure) may not be used directly as semantic types. They must
first be given a semantic type name by the use of the defined
semantic type.

4.3 Class

A class is a collection of things that are (thought to be)
alike in some manner. Unlike entity, which has some kind of
implementation, the class is strictly abstract. There are no
Instances of a class in a database environment.

A class may contain either classes or entities as members.
When a class is a member of a class it is called a sub-class.
Sub-classes can be used to define a hierarchial structure such
as:

I-s

DATA -SPZCIPICATION LANGUAGE ART -I INTRODUCTION

Geometry
Point
Curve

circle
line
ellipse
etc.

Surface
plane
cylinder
cone
etc.

A member of a class can also be a member of another class.
This allows an entity to be organized in different ways for
different purposes. e.g.,

Animal
wolf
dog
cat

Canine
wolf
dog
fox

Pet
dog
cat

Dog is in the classes animal, canine, and pet. Wolf is a
canine and an animal, but not a pet (well, lets hope not).

The purpose of a class in a conceptual schema is to organize
and simplify. We could define a class called Geometry with its
members being the entities that are used to represent position
and shape. Then, whenever we need something that represents
position and shape we would refer to Geometry instead.

A rule is an expression of a constraint that is to be
enforced in some manner when an entity instance is created or
modified, or possibly, when it is deleted. A rule might be
enforced by a DBMS, application code, manual procedure, or by
other means. The expression of a rule in the information model
does not mean that the responsibility of enforcement falls on the
DBMS.

Rules can be simple or complex. A simple rule might state
that an attribute can only have the values zero through ten. If
we look at the FairCurve example given earlier we can observe a
more complex constraint; one involving two attributes. The table
containing Gl and G2 has either True or False values. However,
when the value of GI is False then the value of G2 must also be
False.

1-9

!80/TC184/SC4/WG1=4.1.l (DRAMT) 14 MAR 1986
DATA BPZCIFICATiON LANGUAGI PART X --- NTRODUCTION

More examples of rules can be found in the User's Guide,
Part III of this manual.
4.5 Operation

Each type of data will have some (possibly open ended) set of
operations that may be performed on it. Each operation will
yield some well defined result; e.g., Curves may be intersected
yielding a point, dates may be subtracted yielding an age,
vectors may be crossed yielding a vector, numbers may be added
yielding a number, and so on. Presumably, if no operations are
defined for a given type, there is no need for that type.

A significant part of the discovery process should be
concerned with the identification of the operation set that
applies to the data. Without that information the information
model is incomplete.

It is interesting to note that in mathematics, operations on
numbers, sets, vectors, etc. are rigorously defined and are in
place as part of the discipline. This account in part for the
ability of mathematicians to communicate well in unambiguous
terms with one another. No less should be expected from other
"disciplines".

4.6 Function

A function is a procedure that yields some object as a
result. That object may be simple (e.g., a number) or complex
(e.g., a point entity). A function can be compared to an
operation. The difference lies in the way it is invoked and in
the manner in which inputs are presented.

e.g., an operation is stated:

object operation-symbol object 5 + 6

where a function is invoked by:

function-name (parameter-list) add(5,,6)

In this case the result is exactly the same (the number 11).
The decision that selects either a function or an operation to
produce some result is based partly on convention and aesthetics.

4.7 Procedure

A procedure is a collection of expressions that produces a
desired end state. Rules, operations, and functions are forms of
procedures. Procedures may have parameters that provide the
variable data on which operations are performed.

0
1-10

ISO/TC184/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART I -- INTRODUCTION

4.8 RelationshiD

A relationship relates two entities in a particular manner. A
relationship can be viewed as a special kind of entity with the
following attributes:

CARDINALITY defines the ratio of things that are being
related to one another and is specified by the Array, List, or
Set semantic types, or the absence of any one of these.

Cardinality applies to relationships through the Refer
semantic type and to the other non-relational semantic types.
e.g.,

entity a;
role

b : array(10) of real;
c : array(10) of refer(d);
a : real;
f : refer(g);

end;

for each 11 there are 10 b's; for each I there are 10 £'s; for
each & there is one j; and for each A there is one C. In the case
of the 2 attribute a relationship between a and d is established.
In the case of the . attribute a relationship is established to

For non-relational semantic types the following reverse
cardinality holds (using A for the entity and k for theattribute):

for each A there are n k's

for each k there is one A.

For the relational semantic type (refer) the following
reverse relationship holds:

for each I there are n b's

for each k there may be n L!I.

That is, because entities are independent, they may be freely
referenced by any other entity. This has the effect of yielding a

many-to-many relationship whenever a refer semantic type is
employed.

REQUIREDNESS states whether a particular attribute is
manditory or optional. Optional attributes are sometimes
meaningful; e.g., in the definition of a Face the Cutouts are
optional. The use of optional has the effect of producing a
zero-to-n relationship.

0
I-11

IS0/TC184/SC4/WG1 4.101 (DRAFT) 14 MAR 1986
DATA OPECIFICATION LANGUAGE PART I -- INTRODUCTION

DEPENDENCE states whether or not the referenced entity of the
relationship owes its existance to the refering entity. This is
meaningful only when used with the refer semantic type. When
DEPENDENT is used it states that the referenced entity exists (in
this context) only for the purpose of defining the referring
entity. In effect it treats the referenced entity the same as a
non-relational semantic type.

PURPOSE states whether an attribute provides a fact (a Role
purpose) or ancilary data (a NoRole purpose) about an entity. It

s not common in information models to provide NoRole attributes.
They are often used in data models.

4.9 Schema

The schema embodies all of the separate constructs discussed
before as an information model. This should not be confused with
the terms conceptual schema, external schema, and internal schema
as used by the ANSI/X3/SPARC DBSG. Schema is used simply as
shorthand for information model.

5. The n-Schema Framework

The ANSI/X3/SPARC DBSG<l> gives us a basic framework for a
three schema architecture comprised of conceptual, external, and
internal schema. This architecture assumes that a database
management system (of some kind) will be employed by the
information processing system.

The conceptual schema comprises a central description of the
data that may be in a database. This conceptual schema may be
viewed in a number of different ways by users of the data. These
views are called the external schema. The view of the data as it
is stored in a file is called an internal schema.

This architecture conveniently permits different viewpoints
to be expressed without interfering with the requirements of
others and works well in a homogeneous information processing
system environment.

We can diagram this architecture as:

ECONCEPTtYAL JI
÷-------

I I<cp> <P>1

[EXTERNAL] [INTERNAL]

(<p> denotes a "to-many" relationship)

1-12

IsO/TC1S4/SC4/WG1:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART X -- INTRODUCTION

A fourth schema (the information model) can be introduced
into this framework to account for a heterogeneous information
processing system environment.

[INFORMATION MODELJI
<p>

[CONCEPTUAL]

+ .I I

[EXTERNAL] INTERNAL]

That is, there may be many conceptual schema, each one
expressed in the terms of the particular database environment.
Each of these conceptual schema are derived from the information
model of which there is only one.

6. The Discovery Process

The information model acts as a bridge between the discovery
of data and the eventual implementation of it. The discovery
phase consists of the identification of information and how it is
used within the enterprise. Several existing methodologies might
be employed during this discovery phase. One important aspect of
this discovery phase is the identification of the operations that

* may be performed upon information, the results of operations, and
the behaviour of information while the operations are being
performed.

The implementation phase takes into account the environment,
which includes the specific computer, operating system, database
management system, development language, performance needs, and
many other considerations and constraInts.

Mapping functions are used between these three phases. The
mapping function between discovery and the information model is
probably manual in nature. It is possible to automate the mapping
between the information model and the implementation given that
the information model is sufficiently complete.

PRASE

I DISCOVERY

--------- <M P> ------------

S..aa..>I INFO MODEL
* JMA> *

.. >1 IMPLEMENTATION I

X-13

ISO/TC184/SC4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGN PART I - INTRODUCTION

7. Recuirements for the Information Model

The information model must fulfill a number of basic require-
ments. In addition, it is desireable that it be able to support a
number of peripheral activities related to the process of
creating, maintaining, and documenting the information model.

Basic Requirements

Describe the artifacts needed for the operation of a given
enterprise. Mainly this means accounting for the entities,
their names, attributes, and semantic definitions.

Define the operations that are permissible for each entity
(and class where appropriate). This also includes the
definition of any preconditions and assumptions connected
with the performance of an operation (e.g., the two
vectors in a cross product must not be parallel), the
possible error conditions (e.g., what if two curves don't
intersect), and the result type of those operations.

Define the way entities are organized into classes which
may be treated as a whole for certain purposes.

Define the constraints that must be enforced on single or
complex values.

Accomplish this in a way that is usable by both people and
computing equipment. W

Secondary Recuirements

Capture the information model as an encoded computer model
(not just a text file).

Produce from this encoded computer model a variety of
presentations aimed at different people and activities.
Some examples of these presentations are: entity
relationship diagrams, binary relationship diagrams,
natural language (English, German, French, etc.)
narriative of the content of the information model, cross
references, and so on.

Automatic production of end user documentation. This has
been separated from the paragraph above to emphasize its
importance.

Production of reports to isolate differences between
versions of the information model.

Production of secondary forms of the information model.
e.g., database definitions, procedural code, data
declarations, exchange file formats, etc. 0

1-14

ISO/TC184/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART I -- INTRODUCTION

8. The Role of the Information Model

The information model is a central, unique, and neutral
expression of the information needed by some enterprise. It is
independent of the form actually taken by an implementation. It
makes visible to both human users and computers the content,
structure, and most importantly, the meaning of the data
described by it; albeit meaning probably has a different flavor
to humans and computers.

Since the information model might be implemented in different
ways by different systems, a way of coordinating those
differences is needed. These are differences of form and not
meaning. The information model provides this coordination, along
with mapping schema, which at this time must be expressed in
procedural terms.

For example, say the information model defines line as a
point and a vector, but that some foreign CAD system defines it
as two points. The mapping between the different forms is
accomplished by a collection of procedures called a translator.
The translator must convert the intent of the foreign format to
the intent of the information model. These conversions are
sometimes trivial, but they can be vexingly difficult also. One
important consideration while building an information model is to
make conversion (as) easy (as possible).

The roles of the information model are summarized below:

1. To provide a common basis for understanding thecharacteristics and behaviour of the information for theenterprise of interest.

2. To provide a basis for the realization of the physical
form which represents these information.

3. To provide a basis for the mapping between different
physical

The enterprise determines the requirements for what is in the
information model and how it is expressed. Since STEP is an
exchange enterprise the focus is on the transfer of meaning,
rather than on computational efficiency. The external view
(i.e., the way a particular CAD/CAM system sees an entity) of the
same data may be very much different since its priorities are
probably different. The external system may choose to represent
geometry by coefficients to agree with particular algorithms and
to improve computational efficiency. Each external environment
will have its own viewpoint about what is needed to support its
operational requirements.

I
1-15

ISO/TC184/8C4/WG1::4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART 11 -- SYhTAX

AIDhabetical Index to Elements

11-000 <ACTION-BODY>
11-00 °° <ARITH-OP>
11-00 °. <ARRAY-TYPE>
11-00 <ASSIGNMENT-STATEMENT>

(Basic) 11-00 <ATTRIB-ID>
II-00 <ATTRIBUTE-BODY>
11-00 °.. <ATTRIBUTE-DECL-STMT>
11-00 <ATTRIBUTE-DECL>
11-00 o....... <ATTRIBUTE-HEADER>
11-00 <BETWEEN-CLAUSE>
11-00 o....... <BI-PRECISION-SPEC>
11-00 <BLOCK-DECL>
11-00 <BLOCK-MEMBERS>
11-00 0. <BOUND-SPEC>
II-00 o....... <CASE-ACTION>
11-00 <CASE-BLOCK>
II-00 .°.°.... <CASE-LABEL>
II-00 <CASE-OTHERWISE>
11-00 <CASE-STATEMENT>

(Basic) 11-00 <CHARACTER>
11-00 <CLASS-BODY>
II-00 .. o..... <CLASS-DECL>
11-00 ..0 o <CLASS-HEADER>

(Basic) II-00 °o. <CLKSS-ID>
11-00 .0 ...o.. <COMP-OP>
11-00 <COMPLEX-SEMANTIC-TYPE>
11-00 o <COMPOUND-STATEMENT>
11-00 o.o.... o <CONDITION-SPEC>11-00 <cCONDITION>
1I-00 .. oo.... °<CONSTITUENT-LIST>
11-00 0........ <CONSTITUENT>
11-00 <DEFINED-TYPE-BODY>
11-00 .°. <DEFINED-TYPE-DECL>
11-00 <DEFINED-TYPE-READER>
11-00° <DEFINED-TYPE>

(Basic) 11-00 <DIGIT>
iI-O0 <DUMMY-STATEMENT>

(Basic) 11-00 <EMBEDDED-REMARK>
11-00 <ENTITY-BODY>
11-00 o.. <ENTITY-DECL>
II-00 <ENTITY-HEADER>

(Basic) II-00 o <ENTITY-ID>
(Basic) II-00 ...0...° <ENUM-ID-LIST>
(Basic) 11-00 <ENUM-ID>

11-O0 <ENUMERATION-TYPE>
11-00 O <ESCAPE-STATEMNT>
11-00 <EXPRESSION-EXT>
II-O0 .S...... <EXPRESSION>
II-O0 o. <FACTOR>

(Basic) 11-00 <FIXED-LITERAL>
II-00 <FIXED-TYPE>

(Basic) 11-00 <FLOAT-LITERAL>
11-00 <FLOAT-TYPE>

J 11-i

IBO/TC164/SC4/WGI:4.1.1 (DRAMT) 14 MAR 1986
DATA SPECIFICATION LANGUAGR PART - SYNTAX

II-00 <FORMAL-PARAME M -LIST>
11-00 <FORMAL-PARAMETER>
II-00 <FT.UlC-BODY>
11-00 <FUNC-DZ•CL>

11-00 <FUNC-HFADER>
(Basic) II-00 <FUNC-ID>

II-00 <FUNCTION-CALL>
(Basic) 11-00 <ID-CHAR>

11-00 <IDENTIFIER-LIST>
(Basic) 11-00 <IDENTIFIER>

11-00 <IF-STATEMENT>
11-00 <IN-CLAUSE>
11-00 <INCREMENT-CONTROL>
II-00 INT-LIT-ID>

(Basic) II-00 <INTEGER-LITERAL>
11-00 <INTEGER-TYPE>

(Basic) 11-00 <LETTER>
II-00 <LEXICAL-CONSTANT-BODY>
11-00 <LEXICAL-CONSTANT-DECL>
II-00 <LEXICAL-CONSTANT-HEADER>
II-00 <LEXICAL-CONSTANT>

(Basic) 11-00 <LEXICAL-ID>
II-00 <LIXE-CtAUSE>
11-00 <LIKE-STRING>
11-00 <LIMIT-SPEC>II-00 <LIMIT>
II-00 <LIST-TYPE>
11-00 <LIT-ID>
II-00 <LITERAL-LIST>
i11-00 <LITERAL>
II-00 < • LOCAL-BODY>
11-00 <LOCAL-DECL>
11-00 <LOCAL-HEADER>

(Basic) 11-00 <LOCAL-ID>
II-00 S<LOGTAL-CLAUSE>

(Basic) 11-00 <LOGICAL-LITERAL>
11-00 . •. .0 00 <LOGICAL-OP>
11-00 <LOGICAL-TYPE>

(Basic) 11-00 <LOWER>
11-00 <NEST>

(Basic) 11-00 <NEWLINE>
II-00 <NULL-CLAUSE>
11-00 o. <OPER-DECL>

(Basic) 11-00 <OPER-ED>
11-00 <OPERATION-BODY>11-00 ... o <OPERATION-HEAD-ER->
11-00 o.... <OPERATOR>
11-00 <PARAMETER-LIST>
II-00 o. <PARMTR
11-00 o... ,<PRECISION-SPEC>
11-00 <PROC-BODY>11I-00 oo < PROC-CALL- STATEMENT>

11-00 o <PROC-DECL>
11-00 *....... <PROC-HEADER>

(Basic) 11-00 <PROC-ID>

11-2

XSO/TC184/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART TI -- S YNTAX

II-00 <QUALIFIED-SEMANTIC-TYPE>
(Basic) II-00 <QUOTE>

11-00 <REFER-TYPE>
(Basic) II-00 <REMARK>

II-00 <REPEAT-CONTROL>
11-00 <REPEAT-STATEMENT>

(Basic) II-00 <REPLACE-ID>
II-00 <RESULT-TYPE>
11-00 <RULE-BODY>
II-00 <RULE-CALL>
11-00 <RULE-DECL>
11-00 <RULE-HEADER>

(Basic) 11-00 <RULE-ID>
11-00 <SCHEMA-BODY>
II-00 o......o <SCHEMA-DECL> ** ROOT CONSTRUCT *
II-00 <SCHEMA-HEADER>

(Basic) 11-00 <SCHEMA-ID>
11-00 <SCHEMA-INFO-KEYWD>
11-00 <SCHEMA-INFO>
11-00 <SEMANTIC-TYPE>

(Basic) 11-00 <SIGN>
11-00 <SKIP-STATEMENT>

(Basic) II-00 <SPACE>
(Basic) 11-00 <SPECIAL-CHAR>

11-00 <STATEMENT>
(Basic) 11-00 <STRING-LITERAL>

11-00 o.. <STRING-OP>
11-00 <STRING-TYPE>
II-00 <STRUCTURE-TYPE>

(Basic) 11-00 <TAB>
(Basic) 11-00 <TAIL-REMARK>
(Basic) 11-00 <TYPE-ID>

11-00 <TYPE-SPEC>
(Basic) 11-00 <UNSIGNED-NUMBER>

11-00 <UNTIL-CONTROL>
(Basic) 11-00 <UPPER>

11-00 <WHERE-CLAUSE>
11-00 (WHILE-CONTROL>

(Basic) 11-00 <WHITE-SPACE>
-O0 00900066 <WITH-STT T

11-3

I8O/TC184/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGI PART X1 -- SYNTAX

I. Notation

A kind of BNF is used to present the syntax of the Data
Specification Language. The notation conventions are given
below. These syntax definitions are given with a minimum of
commentary. Part-III explains usage.

1. A word enclosed in angle brackets is an element of the
language. The word inside the brackets is the name of
the element.

e.g., <character>

2. A literal is displayed as Italic characters. All
literals are written exactly as shown, except either
upper or lower case letters may be used.

3. The vertical bar is the "or" operator, which means that
a choice is to be made from the elements separated by
it.

e.g., <letter> I <digit>

4. An element enclosed in square brackets is optional, that
is, it may occur zero or one times.

e.g., [<optional>]

5. An element with an ellipsis suffix may be repeated many
times.

e.g., <one-or-more>...
e.g., [<zero-or-more>j...

8. The symbol ::- indicates a production. The element on

the left is defined to be the elements on the right.

e.g., <identifier> ::- <letter> C<id-char>]...

9. A remark in the syntax descriptions is designated by >>
and the text following on the same line. This is
similar to the tail remark of the language.

10. Parentheses are used in the grammar as necessary to
avoid ambiguity.

11. The grammar rules are divided into three sections and
are listed in alphabetical order within each section.

1
II-4

Z8O/TC1S4/8C4/WGI: 4.*1.1 (DRAMT) 14 MAR 1986DATA SPECIFICATION LANGUAGE PART II - SYNTAX

<ACTION-BODY>::
t <BLOCK-DECL>)
(<LOCAL-DECL>)
<COMPOUND -S TATEMENT>

<ARITH-OP> ::-
<AD OP
<SUB-OP>
<MULT-OP>
<REAL-DIV-OP>I
<EXP-OP> I
<INT-DIV-OP>
<1400-OP>

<ARRAY-TYPE>::
array <BOtflD-SPEC> of <QUALIFIED-SEXANTIC-TYPE>

<ASSIGN1ENT.-STATEMJEN> : :=
<IDEN4TIFIER> = <EXPRESSION>

<ATTRIBUTE-BODY> : :=
<ATTRIBUTE-DECL-STMT>...

<ATTRIBUTE-DECL-STM>::-
<IDENTIFIER-LIST> [option~al] [dependent]
<QUALIFIED-SEMANTIC-TYPE> (<WHERE-CLAUSE>)

<ATTRIBUTE-DECL, ::-
(ATTRIBUTE-HE-ADER>
<ATTRI BtTE-BODY>

(ATTRIBUTE-HEADER> :
keyg
role
keyrole
norole

<BETWEEN-CLAUSE>::
<LIT-ID> between <LIT-ID> and-op <LIT-ID>

<BI-PRECISION-SPEC> : :=
(<INTEGER-LITERAL> . <INTEGER-LITERAL>)

ISO/TC1S4/SC4/WG1:4.1.*1 (DRAFT) 14 MAR 1986
DATA SPRCIFICATION LANGUAGR PART 11 - SYNTAX

<BLOCK-DECL>::
[BLOCK-MEMBERS>) ...

<BLOCK-MEMBERS>::
<DEFINED-TYPE-DECL>
<ENTITY-DECL,
<CLASS -DECL>
<FUNC-DECL>
<PROC-DECL,

<RULE-DECL>I
<OPER-DECL'

<EXICAL-CONS7ANT-DECL>

<BOUND-SPEC> ::-
(<EXPRESSION> (:<EXPRESSION>3)

<CASE-ACTION> ::-
<CASE-LABEL> : <STATEMEN~kT>

<CASE-BLOCK> ::-
<CASE-ACTION>...
t <CASE-OTHERWISE>]
end;

<CASE-LABEL>::
<LITERAL> f,<LITERAL>] ...

<CASE-OTHERWISE> : :-
otherwise : <STATEMENT>

<CASE-STATEMENT> :: -
case <cIDENTIFIER> of
<CASE-BL4OCX>

<CLASS-BODY> ::-
of <CONSTITUENT-LIST>

<CLASS-DECL> ::-
<CLASS -HEADER>
(<CLASS-BODY>)

<CLASS-HEADER> : :
class <CLASS-ID>

IBO/TC1S4/8C4/WG1 :4.2.1 * DRAPT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART 11 - SYNTAX

<COMP-OP>::
<LESS-THAN>
<GRE.ATER-TNAN>I
<EQUAL> I
<LESS-EQTJAL>I
<GREATER-EQUAL>
<NOT-EQUAL>

<COMPLEX-SEMANTIC-TYPE> ::
<STRUCTURE -TYPE> I
'ENUMERATION-TYPE>

<COMPOUND-STATEMEN'>,:::-
begrin
[<STATEMENT>] ...
end ;

'CONDITION-SPEC> ::
<CONDITION> ['LOGICAL-OP> <CONDITION>] ...

<CONDITION> ::-
<LOGICAL-CLWUSE>
<BETWEEN-CLAUSE>
<IN-CLAUSE> I
'LIKE-CLAUSE>

<CONSTITUENT-LIST>
(<CONSTITUENT> E, <CONSTITUENT>] ...)

'CONSTITUENT>::
<CLASS-ID>I
<ENTITY-ID>

<DEFINED-TYPE-BODY> ::
'DEFINED-TYPE>...

<DEPINED-TYPE-DECL., ::=
<DEFINED-TYPE-HEADER>
<DEFINED-TYPE-BODY>

<DEFINED-TYPE-HEADEP.> :
type

11-7

ZSO/TC184/8C4/WGI:4. 1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART 11 -- SYNTAX

<DEFINED-TYPE>::
<TYPE-ID> a- <QUALIFIED-SEMANTIC-TYPE> E<WHER.E-CLAUSE>j;

<DUMY-STATEMENT>::

<ENTITY-BODY>::
<ATTRIBtJTE-DECL>...
end *

<ENTITY-DECL>::
<ENTITY-HEADER>
(CENTITY-BODY> J

<ENTITY-HEADER> ::-
entity wENTITY-ID> [<WHERE-CLAUSE>3

<ENUMERATION-TYPE> : :=
enumeration of <ENUM-ID-LIST>

<ESCAPE-STATEMENT>::
escape ;

<EXPRESSION-EXT> ::
<OPERATOR> <FACTOR>

<EXPRESSION> ::-
[+I <FACTOR> £<EXPRESSION-EXT>J...

<FACTOR>::
<IDENTIFIER>
<LITERAL> I
<FUNC!TION-C;ALL,>
<NEST>
<NOT-OP> <FACTOR>

<FIXED-TYPE>:-
fixed t(<PRECISION-SPEC> <I<l-PRECISION-SPEC> 3

<FLOAT-TYPE>::
float [<PRECISION-SPEC>J

ISO/TC1S4/9C4/WG1:4. 1.1 (DRAPT) 1.4 MAR 1986
DATA SPECIVICATION LANGUAGE PART 11 - SYNTAX

<FORMAL-PAP.AMETER-LIST> ::
(C <FOR1MAL-PARAMETER> C; <FORMAL-PARAMETER>3 ...)

<FORMAL-PARAMETER> :: -
(var] <TYPE-SPEC>

<Fr3NC-BODY> ::-
(ACTION-BODY>

<FUNC-DECL> ::=
<FTXNC-HEADER>
<Ft7NC-BODY>

<Ft7NC-HEADER.> : : -
function <FUNC-ID> (<FORMAL-PARAMETER-LIST>)
) : <RESULT-TYPE>;

<FUNCTION-CALL> : :-
< FUN C-ID> <PARAMETER-LIST>

<IDENTIFIER-LIST> : :-
<IDENTIFIER> C, <IDENTIFIER>])...

<IF-STATEMENT> ::-
if <CONDITION-SPEC> then <STATEMENT>
[else <STATEMENT>]
end;

<IN-CLAUSE>:-
<LIT-ID> in-op <LITERAL-UIST>

<INCREMENT -CONTROL> :: -
<LOCAL-ID> w <LIT-ID> to <LIT-ID> [by <LIT-ID>)

<INT-LIT-ID>:-
<INTEGER-LITERAL>
<I DENTIFIER>

<INTEGE-R-TYPE> : :
integer (<PRECISION-SPEC>)

11-9

180/TC1S4/8C4/WG1:4.*1.*1 (DRAFT) 14 HMR 1986
DATA SPECIFICATION LANGTUhGN PART 11 -- SYNTAX

(LEXICAL-CONSTANT-BODY> ::
<LEXICAL-CONSTANT>...

<LEXICAL-CONSTANT-DECL> :
<LEXICAL-CONSTANT-HEADER.>
<LEXICAL-CONSTANT-BODY>

<LEXICAL-CONSTANT-HEADER>::-
define

<LEXICAL-CONSTANT> ::
<LEXICAL-ID> = <LEXICAL-CONSTANT>

>> Note that the semicolon character may not be part of <<
>> the lexical-constant as it is used as a terminator <<

<LIT-ID> like-op <LIKE-STRING>

<LIKE-STRING> ::-
<STRING-LITERAL)'
<IDENTIFIER>

O '<LIMIT-SPEC>::
(<LIMIT>)

<LIMIT> ::=
<EXPRESSION> to <EXPRESSION> 1 ?

>> ? is used to denote an indefinite upper bound <<

<LIST-TYPE> ::=
list <LIMIT-SPEC> of <QTIALIFIED-SEMANTIC-TYPE>

<LIT-ID> ::=
<LITERAL>I
<IDENTIFIER>

<LITERAL-LIST> ::m
(<LITERAL> (,<LITERAL>])...)

11-10

14 XAR 1986DATA SPECIFICATION LANGUAGE PART XX -g YNTAX

<LITERAL>::
<FLOAT-LITERAL>
(FIXED-LITERAL>I
<INTEGER-LITERAL>
<STRING-LITERAL>
<LOGICAL-LITERAL>

(LOCAL-BODY> ::-
<ATTRIBUTE-DECL-ST1.T>...;

<LOCAL-DECL> : :
<LOCAL-HEADER>
(LOCAL-BODY>

<LOCAL-HEADER.>::
local

<LOGICAL-CLAUSE>::
<EXPRESSION> E<COMP-OP> <EXPRESSION>]

<LOGICAL-OP>::-
<AND-OP>
<OR-OP>

<LOGICAL-TYPE>::
logical

<NEST>:-
(<EXPRESSION>)

<NULL-CLAUSE> :: m
<IDENTIFIER> is null

<OPER-DECL> ::-
<OPERATION-HEADER>
[<OPERATION-BODY> J

<OPERATION-BODY> ::
<ACTION-BODY>

IBO/TC1S4/5C4/WGI:4.1.1 (DRAFT) 14 M(AR 1986
DATA SPECIFICATION LANGUAGE PART 11 - SYNTAX

<OPERATION-HE.ADERt>: *
operation <IDENTI?IER>

(<IDENTIFIZR>]J <STRING-LITERAL> <IDENTIFIER>)
:<QUALIFIED-SE!4ANTIC-TYPE>;

<OPERATOR>::
<ARITH-OP>I
<STRING-OP>
<LOGICAL-OP>
<COMP-OP>

<PARAMETER-LIST>: -
([<PARAMETER> 1,<PARAMETER>]J...3)

<PARAMETER>::
<FACTOR>

<PRECISION-SPEC> ::
(<INTEGER-LITERAL>)

<PROC-BODY> ::-
<ACTION-BODY>

O ~<PROC-CALL-STATEMENT> ::
<PROC-ID> <PARAMETER-LIST>;

<PIROC-DECL> ::-
<PROC-HEADER>
<PROC-BODY>

<PROC-HEADER> ::-
procedure <PROC-ID> (E<FORXAL-PARAMETER-LIST>J

<QUALIFIED-SEMANTIC-TYPE> ::
<FIXED-TYPE>I
<ARRAY-TYPE>I
<LIST-TYPE>I
<REFER-TYPE>
<STRING-TYPE>I
<INTEGER-TYPE>I
<FLOAT-TYPE> I
<LOGICAL-TYPE>I
<NUMBER-TYPE>I
<TYPE-ID>

11-12

ISO/TC1S4/8C4/WGl :461.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART 11 - SYNTAX

<REFER-TYPE>::
refer [<CONSTITUENT-LIST>]

<REPEAT-CONTROL> ::-
[<INCREMENT-CONTROL>) [<WHI LE-CONTRL.>] (<UNTIL-CONTROL> l

<REPEAT-STATEMENT>::
repeat <REPEAT-CONTROL>;
[<STATEMENT>]J...
end ;

<RESULT-TYPE>::
<QUALIFIED-SEMANTIC-TYPE>
<ENTITY-ID>

<RULE-BODY> ::-
<ACTION-BODY>

<RULE-CALL> :
<RULE-ID> <PARAMETER-LIST>

<RULE-DECL> ::- I
<RULE-HEADER>
<RULE -BODY>

<RULE-HEADER> :: -
rule <RULE-ID> ((<FORMAL-PARAMETER-LIST>)

<SCHIEMA-BODY> ::-
[:<SCHEMA-INFO>] ...
<BLOCK-DECL>
and;

<SCHEXA-DECL>:-
<SCHEMA-HEADER>
(<SCHEMA-BODY>)

<SCHEMA-HEADER> :-
schema <SCHEMA-ID>;

11-13

ISO/TC1S4/8C4/WGI: 4.*1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART 11 - SYNTAX

. ~<SCHEMA-INFO-KEYWD>::
title
authorI
Version

<SCHEMA-INFO>::
<SCHEMA-INFO-KEYWD> <STRING-LITEPAL>;

(SEMANTIC-TYPE> ::=
<COMPLEX-SEMANTIC-TYPE>
<QUALIFIED-SEMANTIC-TYPE>

<SKIP-STATEMENT>:-
skip ;

<STATEMENT>::-
<REPEAT-STATEMENT>I
<CASE-STATEMENT>I
<IF-STATEMENT> I
<COMPOUND-STATEMENT,
<WITH-STATEMENT> I
<PROC-CALL-STATEMENT>I
<ASSIGNMENT-STATEMENT>
<ES CAPE-STATEMENT, I
<SKIP-STATEMENT>I
<DUMMY-STATEM ENT >

<STRING-OF> ::=
<CONCAT-OP>

<STRING-TYPE> : :w
string (<PRECISION-SPEC>) [varying

<STRUCTURE-TYPE> : :m
structure ;
<ATTRIBUTE-DECL-STMT>...;
end

<TYPE-SPEC>::
<IDENTIFIER-LIST> : <QUALIFIED-SEMANTIC-TYPE>

<UNTIL-CONTROL> : :-
until <CONDITION-SPEC>

11-14

XSO/TC1S4/5C4/WG1:4.*1.1 (DRAFT) 1.4 MAR 1986DATA SPECIFICATION LANGUAGE PART 11 - SYNTAX

<WHERE-CLAUSE, >
where <RULE-CALL> E , <RULE-CALL>j ...

<WHILE-CONTROL> :: -
while <CONDITION-SPEC>

<WITH-STATENZN>::
with <IDENTIFIER>
C COMPOUND-S TATEMEnT>

11-15

IBO/TC1S4/8C4/WGI:4.*1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART II - SYNTAX

<ATTRB-ID>::m ASIC CONSTRUCTS

CIDENTIFIER>

<CHAR.ACTER>::
<LETTER>
<DIGIT>
<S PECIAL-CHAR>

<CLASS-ID> ::-
<IDENTIFIER>

<EMBEDDED-REMARK>:-
(* (CHARACTEP.>J... *

<ENTITY-ID>::
<IDENTIFIER>

<EKUM-ID-LIST> ::-

. ENM-ID> ::m
<IDENTIFIER>

'CFIXED-LITERAL>::
<I&NTEGER-LITERAL> . tCINTEGER-LITERA.L)3

<FLOAT-LITERAL> : :-
<FIXED-LITERAL> a [+ j JINTEGER-LITEPAL>

<IDENTIFIER>

<ID-CHAR>:-
<LETTER>
<DIGIT>I

>> The Underscore Character <<

<IDENTIFIER> ::-

<LETTER> (I7D-CH.AR>J .

11-16

ISO/TC184/SC4/WG::4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART 11 -- SYNTAX

<INTEGER-LITERAL> : :-
<DIGIT>...

<LETTER> ::m
<UPPER> I
<LOWER>

<LEXICAL-ID> ::-
I <IDENTIFIER>

<LOCAL-ID> ::-
<IDENTIFIER>

<LOGICAL-LITERAL> : :-
true I
false

<OPER-ID> ::-
<IDENTIFIER>

<PROC-ID> ::-
<IDENTIFIER>

<REMARK> ::-
<EMBEDDED-REMARK>
<TAIL-REMARK>

<RULE-ID> ::-
<IDENTIFIER>

<SCHEMA-ID> ::-
<IDENTIFIER>

<SIGN> ::-+ -

<STRING-LITERAL> : : -
<QUOTE> <CHARACTER>... <QUOTE>

>> If a quote is to be part of a string, then use tvo <<
>> consecutive quotes. e.g., 'John's book <<

11-17

ISO/TC184/SC4/WGI:4.1.1 (DRA..T) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART II -- SYNTAX

*-• <TAIL-REMARK> ::-
-[[<CHARACTER>] <NEWLINE>

>> Two consecutive hyphens start a tail remark <<

<TYPE-ID> ::-
<IDENTIFIER>

<UNSIGNED-NUMBER> ::-
<INTEGER-LITERAL> I
<FIXED-LITERAL>
<FLOAT-LITERAL>

<WHITE-SPACE> ::"
<SPACE>
<TAB> I
<NEWLINE> I
<REMARK>

11-18

IBO/TC184/SC4/WG1:4.1.1 (DRAFT) 14 MAR 1986DATA SPZCIFICATION LANGUAGE PART I1 -- SYNTAX

BASIC ELEMENTS<DIGIT> : :-
o0 11213141516171s19

<LOWER> ::-
a lb d l fi i i i
ji kI 1 am ni c Ip q r
a I tI u v vl x y1 z

<NEWLINE> : :-
>> Implementation Dependent <<

<QUOTE> ::-
I >> Apostrophe <<

<SPACE> ::-
>> Blank Space Character <<

<SPECIAL-CHAR> ::=
>> Any Character That Is Not A <LETTER> Or A <DIGIT> <<

<TAB> ::-
>> Implementation Dependent <<

<UPPER> ::-

S ITIUIV WlXIYI Z

11-19

ISO/TC184/5C4/WGI:4 .1.*1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART 11 SYNTAX

OPERATOR EQUIVALENCE TABLE

---------------- a- -------- m

I OPERATOR ISYMBOL
Immft=m~~mwwnm= xmuin

I <ADD-OP> I +
------------- a--- aaaa- --- - -

I 'SUB-OP> -

---- --- --- --- - ------

< MtLT-OP> I '

I 'REAL-DIV-OP> / I
----- a------ ---- -------

I EXPOP> I

< IvN-OP> Iin
----------------- ---- --

I INT-DIV-OP> Idiv

-,VDJP mod I
ý.CONCAT-OP> 11II

--- -- -- -- --- - -a ------ seI LESS-THAN> <

I LTIM-OP> Ilike

<GREATER-THAK> >

< RANGE> IrangreI

(LESS-EQUAL> <

I GREATER-EQUAL> >=~

I NOT-EQUAL> <>

I AND-OP> Iand
----------------- aaa --------

I <NOT-OP> Inot

I OR-OP> I or
+---------a----------------

11-20

XBO/TC184/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART XX -- SYNTAX

TABLE OF KEYWORDS

A ARRAY ASSOC AUTHOR

B BEGIN BETWEEN BOUND
BY

C CASE CLASS

D DEFINE

E ELSE END ENTITY
ENUMERATION ESCAPE
---------------------------------- fi n-------

F FIXED FLOAT FUNCTION
----------------------------------- ------fn

I IF INPUT INTEGER
Is
---....

K KEY KEYROLE
------------------------nf-----------------

L LIST LOCAL LOGICAL
-- -- ------------------- - -------C--------eee

N NOROLE NUMBER

0 OF OPERATION OTHERWISE

P P ------------------PROCEDUR
------------------------------------ Cn nnnn

R RANGE REFER REPEAT
ROLE RULE

S SCHEMA SKIP STRING
STRUCTURE
-------------- C-------------------------------

T THEN TITLE TO
TYPE
-----------------------C----------------------

U UNARY UNTIL UPDATE
------------------ - se-----------------

V VALUES VAR VARYING
VERSION
------------------ -------------- -----l------

W WHERE WHILE WITH
-------------------- - - -----------------------------

11-21

ISO/TC184/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIPICATION LANGUAGE PART II- USER'S GUIDE

Table of Contents

1. SYNTAX
2. BASIC LANGUAGE ELEMENTS

2.1 Character Set
Letters
Underscore
Digits
Special Characters
Compound Symbols

2.2 Reserved Words
2.2.1 Keywords
2.2.2 Standard Identifiers
2.2.3 Compound Symbols

2.3 Program Lines
3. USER DEFINED LANGUAGE ELEMENTS

3.1 Identifiers
3.2 Literals

3.2.1 Integer Literal
3.2.2 Fixed Literal
3.2.3 Float Literal
3.2.4 String Literal
3.2.5 Logical Literal

3.3 Lexical Substitution
3.4 Comments

4. SCHEMA
5. ENTITY
6. CLASS
7. ALGORITHMS

"7.1 Procedure
7.2 Function
7.3 Rule
7.4 Operation
7.5 Expressions
7.6 Built-in Functions

8. SEMANTIC TYPES
8.1 Simple Types
8.2 Grouping Types

9. STATIC CONSTRAINTS
9.1 Range
9.2 Bound
9.3 Values
9.4 Summary

bI

Il-

ISO/TC184/SC4/WIG1:4o1.1 (DRAMT) 14 MAR 1986
DATA SPECIPICATION LANGUAGE PART ZZ -- USER'S GUIDE

The syntax of DSL is defined formally in Part I of this
document. This part is aimed at explaining how the constructs are
put together to create a schema definition.

DSL can be characterized as block structured and free form.
The free form characteristic means that one statement may span
several physical lines, or that several statements may be written
on a single physical line.

Blocking gives scope to the names used to identify things.
These names are not known outside the scope of the block in which
they are defined.

A block is a collection of statements. Each block has a
particular kind of statement (called a block header) that begins
it. All blocks are explicitly terminated by the END statement.
Some examples of blocks are:

SCHEMA blockl;
ENTITY block.2;

ROLE
a :REAL;
b : INTEGER;

END;
ENTITY block3;ROLE

a : INTEGER;
b : REAL;

END;
END;

In this example blockl contains block2 and block3. Since the
schema block is always the outermost block, the scope of its name
(blockl) is global. The two entities (block2 and block3) are at.
the sama level and their names must be different. A name inside
one entity block may be the same as a name in the other entity
block as in the example shown. The attributes a and 1 of block2
have no connection with the attributes a and k of block3.

A statement is a collection of tokens (words, literals,
punctuation) ending with a semicolon character.

Tokens make up the basic building blocks of DSL. All tokens
are character strings that observe certain formation rules,
always based on the first character, e.g., a word always begins
with a letter of the alphabet, and no other token begins in that
manner.

0
, III-2

ISO/TC184/SC4/WG1:4.1.1 (DRAFT) 14 .AR 1986
DATA SPECIFICATION LANGUAGE PART III -- USER'S GUIDE

O �. BASIC LANGUAGE ELEMENTS

2.1 Character Set

A schema written in DSL consists of a string of characters,
which consists of letters of the alphabet, digits, and special
characters.

Letters
A to Z and a to z

Underscore
- (used as letter except as first letter ina word)

0 to 9

S~ecial Characters
+ - * / - < > () # , : ; ' I j ? blank

Com•pound Symbols

Certain symbols are made up of two or more characters.

<> <- >= ** 1i -- (* *) AND DIV IN LIKE MOD OR RANGE

No distinction is made between upper and lower case letters
except when they appear within a quoted string.

2.2 Reserved Words

Reserved words are part of the DSL environment and may not be
redefined, i.e., used as identifiers. Reserved words are
classified as keywords, standard identifiers, and compound
symbols.

111-3

ISO/TC184/8C4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART III -- USEROS GUIDE

2.2.1 KeyMords

ARRAY ASSOC AUTHOR
BEGIN BETWEEN BOUND
BY
CASE CLASS
DEFINE
ELSE END ENTITY
ENUMERATION ESCAPE
FIXED FLOAT FUNCTION
IF INPUT INTEGER
IS
KEY KEYROLE
LIST LOCAL LOGICAL
NOROLE NUMBER
OF OPERATION OTHERWISE
PROCEDURE
RANGE REFER REPEAT
ROLE
RULE
SCHEMA SKIP STRING
STRUCTURE
THEN TITLE TO
TYPE
UNTIL UPDATE
VALUE VALUES VAR
VARYING VERSION
WHERE WHILE WITH

2.2.2 Standard Identifiers

The following standard identifiers are part of the DSL
environment and may not be redefined.

FALSE TRUE

2.2.3 Compound Symbols

Certain operator symbols are formed from letters and look
like words. However, they might just as well have been
represented as combinations of special characters. The compound
symbols are:

AND DIV IN
LIKE MOD OR
RANGE

2.3 Program Lines

A physical line ends with a newline character (either an
explicit character or combination of characters, or in the case
of fixed length records, the last character in the record).
A single word or literal must fit entirely in a physical line.
The effect of this is that the limitations of the implementation
(with respect to line length) determines the maximum length of

111-4

IaO/TC184/8C4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART ZII -- USER'S GUIDE

identifiers and other elements of the syntax. Obviously, the
* minimum possible line length must be greater than or equal to the

length of the longest reserved word.

3. USER DEFINED LANGUAGE ELEMENTS

3.1 Identifiers

An identifier is a string of characters (a word) used to name
some element of the schema. The first character in the string
must be a letter, and the remaining characters, if any, must be
letters, digits, or the underscore character.

No distinction is made between upper and lower case letters.
e.g., POINT, Point, and point are all the same identifier.

An identifier must not be the same as one of the DSL reserved
words. A table of reserved words may be found at the end of
Part II of this document.

Some examples of valid and invalid identifiers are:

valid
point
line
CenterOfGravity
endpoint 2

invalid
abc -- starts with underscore

Wend -- starts with digit, not letter
continuity flag -- has embedded space

3.2 Literals

Literals are self defining constants used to form
expressions. The types of literals permitted by DSL are:

Integer Float
Fixed String
Logical

3.2.1 Integer Literal
is a string of digits. A unary sign[+-] operator may be used

to negate the number. The unary operator is not part of the
literal however.

"I-

ISO/TC1S4/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART IZI -- USER'S GUIDE

3.2.2 Fixed Literal
is an integer literal followed by a decimal point and an

optional integer literal. The scale of the fixed number is taken
to be the total number of digits in the number and the precision
is taken to be the number of digits to the right of the decimal
point. A unary sign[+-] operator may be used to negate the
number. The unary operator is not part of the literal however.

Examples of valid and invalid fixed literals are:

-123.45 scale-5 precision-2
0.01 scale-3 precision-2
4.599999 scale-7 precision-6
4. scale-i precision-0

invalid
-. 45 No leading digit
4. 56 Embedded blank
4 Not fixed, treated as integer

3.2.3 Float Literal
is an integer literal followed immediately by a decimal

point, an optional integer literal, the letter 1, and an integer
literal which is the exponent. No spaces are permitted within
this string. A unary sign[+-] operator may be used to negate the
number. The unary operator is not part of the literal however.

The first part (before the E) defines the mantissa of the
number. The last part (after the E) defines the exponent.

Examples of valid and invalid float literals are:

valid
-1.E16 -10000000000000000.0
568.99E-3 0.56899
0.001E5 100.000

invalid
-IE16 No decimal point
568. 99E-3 Embedded blank
-. 001E5 No leading digit

I11-6

ISo/TCI84/8C4/WGI:4.1.1 (DRAFT) 14 NAR 1986
DATA SPECIFICATION LANGUAGE PART III -- USER'S GUIDE

3.2.4 String Literal
is any string of characters enclosed by single quotes. A

string literal is the only context where upper and lower case
letters are significant. i.e., 'ABC' is not equal to 'abc'.

If a single quote is part of the literal it is written twice.
e. a.. IJohnI''s dog' is interpreted as 3on1's dog.

The string literal may contain escape characters to represent
special symbols, e.g., Kanji or mathematical symbols. At the
present the escape mechanism is not defined.
3.2.5 Logical Literal

is either the word TRUE or FALSE.

3.3 Lexical Substitution

The author may define character strings to be substituted
within the body of the schema. This is done by:

DEFINE
#abc - any text you wish ;

The substitution string consists of the first significant
character through the last significant character between the
equal mark and the semicolon mark. Note that a semicolon may not
be part of the substitution string. In this example the
substitution string is: any text you wish.

V ENTITY qwerty;
#abc ;

Each time #abc is seen it is replaced by the text defined in
the DEFINE block. Note that this is a simple text substitution
and no checks are made (at the time of the substitution) for
correctness. However, when the substituted text is processed, any
errors will be flaged.

The example would yield:

ENTITY qwerty;
any text you wish

which, of course, would produce an error when it is
processed.

Substitution does not take place within string literals, or
within comments. Thus,

a w IOabc';
or

(* #abc *)

would not produce a substitution.

111-7

ISO/TC184/SC4/WGX:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART XII -- USER'S GUIDE

3.4 Comments

Comments may be used to document the schema. The entire
comment, including the (C, f), or -- symbols are ignored. They
may be written in two ways.

Embedded comments follow the form:

(* anything you wish to say C)

(with the exception of *) which must not be part of the comment),
and tail comments follow the form:

- anything you wish to say <newline>

Embedded comments may be written any place a blank character
is permitted and is treated as a blank.

Tail comments must appear at the end of any significant part
of a statement as the double hyphen and all of the remaining
characters on the same physical line are ignored.

The schema is everything known about some enterprise of
interest. It includes entities, classes, rules (and other
algorithms), and operations. It is expressed in a way that is
independent of possible implementations. It is structural, but
not structural in the sense of a given implementation, i.e., the
mapping of relational tables from the schema will yield an
entirely different structure.

A schema is written as:

SCHEMA schema-name;
-- type declarations
-- entity declarations
-c class declarations
-- rule declarations
-- etc.

END;

The elements of the schema must be defined before they are
referenced, except that entities may make forward references to
classes and vice versa.

Each element of the schema must have a name that is different
than every other name known to the schema, e.g., if there is an
entity named R there may not be a class named Mint-

"I11-S

d

ISO/TC184/SC4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART III - USER'S GUIDE

An entity is an abstraction of something about which
information is to be kept. Generally speaking an entity
represents some artifact. An entity is made up of a set of
attributes which are the facts about it. Each attribute has a
name and a semantic type. Attributes may also have either static
or dynamic constraints. These constraints define the set of
values that are permissible for a given fact.

The names of attributes must be unique within the scope of
the entity in which they are declared. Attribute names do not
have to be unique within the schema. The name of an entity may be
the same as the name of one of its attributes (since the entity
is in the scope of the schema, while the attribute is in the
scope of an entity). Thus:

ENTITY a;
a : integer;

END;

is permissible (although perhaps poor style).

Attributes are classified either as role, norole, or
associative (assoc).

A role attribute is an essential fact about the entity.
Without it the meaning of the entity is impossible td determine.

A norole attribute exists only for the purpose of supporting
some implementation. A norole attribute could be removed from the
declaration without affecting the meaning of the entity.

An associative attribute defines a special relationship
between two or more other entities. All associative attributes
must be of the semantic type refer. Like role attributes,
associative attributes are necessary for understanding although
they are not strictly part of the definition of the entity.

An entity is written:

ENTITY entity-name [WHERE constraint3;
NOROLE

-- norole declarations
ROLE

-- role declarations
ASSOC

-- association declarations
END;

The different kinds of declarations may be given in any
order.

111-9

I8O/TC184/8C4/WGl24.1.1 (DRAFT) 14 XAR 1986DATA SPECIFICATION LANGUAGE PART III -- USER'B GUIDE

An attribute is declared as:

attribute-name : semantic-type [WHERE constraint];

See Section 8 for a discussion of semantic types. Theconstraint is optional. When given, a combination of static anddynamic constraints may be specified. See Section 9 for static
constraints.

examples:

1 ENTITY point;
2 NOROLE

name : STRING;
3 ROLE

x,y,z : REAL;
4 END;

5 ENTITY line
WHERE disjoint(definingpositionl,definingposition_2);

6 NOROLE
name : STRING;

7 ROLE
defining_position 1: REER(point);
definingpositioni2 : REFER(point);

8 END;

1) begin definition of entity called 'point'.
2) begin norole declarations, i.e., 'name' which is a string

semantic type.
3) begin role declarations. This also ends the norole

declarations. x,y,z are the names of the role attributes
all of which are of the semantic type real.

4) ends the entity definition.
5) begin definition of entity called 'line'. The where clausecalls for a dynamic rule (not shown) that says the two

defining points of a line must be disjoint.
6) begin norole declarations, i.e., 'name' which is a string

semantic type.
7) begin role declarations. This also ends the norole

declarations. definingposition 1 and definingposition_2
are both references to a point Tentity). An alternate
definition strategy is shown following. This definitionsays that the defining points may be shared (i.e., used in
the definition) by other entities.

8) ends the entity definition.

III-10

14 MAR 1986

DATi 8PECIFICATION LANGUAGZ PART III -- USER'S GUIDE

Alternate Definition of Line

ENTITY line
WHERE disjoint (definingposition l,definingpositionf_2);

NOROLE
name : STRING;

9 ROLE
definingposition 1 : point;
definingposition-2 : point;

END;

9) here we define line by two points, not references to
points. This says that the two defining points may not be
used by other entities. This definition has a stronger
sense of dependence than the case given next. The same
disjoint rule would apply just as in the other case.

INTITY line
WHERE disjoint (definingpositionl, definingposition_2);

NOROLE
name : STRING;

10 ROLE
definingposition 1: DEPENDENT REFER(point);
definingposition-2 : DEPENDENT REFER(point);

END;

10) here we define by references to point, but say the points
may be shared (since there is an instance of each point,
they may be referenced by anything). However, if we
delete an instance of line, we must also attempt to
delete both instances of point. This attempted delete may
or may not be possible depending on how those two points
are otherwise used.

A class defines a grouping of things that are thought to be
alike in some manner. When reference is made to a class it means
that any member of that class will satisfy the reference. e.g.,
if we define the class:

CLASS fruit;
OF (apple, orange);

END;

and then make reference to fruit, we are saying that either ar.e
or orange is a permissible reference. A class is a good way to
mix apples and oranges so to speak.

O III-l1

ISO/TC184/SC4/WG•X:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART XII -- USER'S GUIDE

A class may have other classes as members. We could define:

CLASS tart fruit;
OF (lemon, grapefruit, cranberry);

END;

and

CLASS sweet fruit;
OF (pear,-strawberry, apple);

END;

and then:

CLASS fruit;
OF (tart fruit, sweet-fruit);

END;

A class is defined by the block:

CLASS class-name;
OF (member-list);

END;

class-name is a valid identifier which names the class being
defined. The member-list is a list of names of classes or
entities, that are members of the class being defined. Each
member in the list is separated by a comma and each member must
be of the same type (i.e., they all must be classes, or entities,
etc.).

7. ALGORIT-MS

DSL provides for four kinds of algorithm definitions. A
procedure is a general algorithm which performs some sequence of
operations. A function is a procedure that yields a particular
result which may be either a simple type or a complex type. A
rule is a special kind of function that yields only a true or
false result. An operation is a way of expressing a result in
infix or prefix style. It is, in fact, a way of extending the set
of built-in operators of the language.

0
II1-12

I3O/TC184/SC4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGZ PART III -- USER'S GUIDE

7.1 Procedure

A procedure is written in the same manner as ordinary
procedural languages. The general form of the procedure block is:

PROCEDURE proc-name(formal-parameters)
LOCAL

any local declarations go here
BEGIN;

body-of-procedure
END;

A procedure is invoked by the call:

proc.name(actual-parameters) ;

The number and type of the actual parameters and formal
parameters must match exactly. A procedure may be written without
formal parameters, in which case the procedure header and
invocation would look like:

PROCEDURE proc name();
BEGIN;
END;

proc name();

That is, the left and right parentheses are not optional.

7.2 Function

A function is a procedure that produces the specified result
type. The result type may be simple or complex. The invocation
of a function is exactly equivalent to writing a variable of the
given type in an expression.

7.4 Operation

Built-in operations such as add, subtract, multiply, and
divide are commonly written as:

Ell a+b*c/d

but could also be written:

E2] add(a,divide(multiply(b,c) ,d))

taking into account the usual hierarchy of operation.

S
11I-13

I8O/TC184/5C4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGZ PART III -- USER'S GUIDE

Whichever style is used depends somewhat on individual
preference and accepted practices. We (most of us) would prefer
to see the arithmetic expression written as style (1] instead of
style (2].

The operation construct allows for extension of the built-in
set of operations such that the written language reflects the
style that is most natural to the user community.

An operation is written:

OPERATION infix(id:type; symbol; id:type):type;

END;

-or-

OPERATION unary(symbol; id:type):type;
BEGIN;
END;

where:

i or unary are the names given to the operation being
defined (actually names like add, invert, cross, ae,. etc.
would be used. Infix and unary refer to the characteristic
of the operation itself).

j is either the input or result objects, which may be
simple objects such as numbers or strings, or complex objects
such as entities. JA is the local identifier of the object
for reference within the algorithm.

symbol is a string literal that defines a new reserved word.
Even though it is written as a string the following
restrictions apply:

-- no embedded blarks are permitted

-- the first character must be a letter [A..Z, a..z]

-- the remaining characters must be letters, digits, and
underscore

-- the symbol becomes part of part of the DSL environment and
has global scope.

Once an operation has been defined it may be used in the same
manner as built-in operations. First vector dot product and
vector cross product operation will be defined, then they will be
referenced to illustrate this construct.

111-14

- - e -, **. ~g14 MAR 1986
DATA SPECIFICATION LANGUAGE PART III -- USER'S GUIDE

ENTITY vector;
ROLE

i,j,k : FLOAT;
END;

OPERATION vector dot~product (a:vector, 'dot' ,b:vector)
: real;

LOCAL
c : real;

BEGIN;
c - a.i * b.i + a.j * b.j + a.k * b.k;
vector dotproduct -;

END;

OPERATION vector crossproduct (a:vector, 'cross. ,b:vector)
: vector;

LOCAL
c : vector;

BEGIN;
-- body of procedure
vector dotproduct - c;

END;

PROCEDURE some-name;
LOCAL

vl, v2, v3, v4 : vector;
dotpr : real;

BEGIN;I
dotpr - v2 dot v3;
-- operations are processed left to right, thus:
vl - v2 cross v3 cross v4;
-- is the same as:
v1 - (v2 cross v3) cross v4;
-- nesting may be used to alter the left to right order
v1 - v2 cross (v3 cross v4);

END;

7.5 Expressions

Expressions are constructs giving rules for the computation
of values. They consist of operands: variables, literals, and
function invocations, combined by operators as explained in the
following paragraphs.

I
I11-15

ISO/TC184/8C4/WGl:4.1.1 (DRAlIlT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART XII -- USER'S GUIDE

Each operator has a priority which determines when a
particular subexpression is evaluated.

1. Exponentiation Prefix- Prefix+ Not
2. Multiplication Division
3. Addition Subtraction

String Concatenation
4. Relational
5. And
6. Or

Expressions are evaluated from left to right taking into
account the priority of each operator. i.e., each subexpressionof priority 1 is evaluated from left to right; then each sub-
expression of priority 2 is evaluated in the same manner; etc.
until the entire expression is finished.

7.6 Built-in Functions

A number of conceptual functions are built into the DSLenvironment to operate on numbers, strings, etc.

Number Functions

ABS(n)
COS (n)
SIN (n)
TAN(n)
LOG(n)
LOG=O (n)
SQRT (n)
SQUARE (n)

8. Semantic Tvies

Semantic types are to information modeling as data types areto data modeling. In data modeling we are concerned with the form
and character of data. In information modeling we are concerned
with the abstract representation of information.

To illustrate this difference consider: in information
modeling the notion of integer is simply that of a whole number.
There is no assumption about how that whole number might berepresented. In data modeling we become concerned with thedetails of implementation. e.g., do we use twos complement binary
representation using four bytes? do we use numeric characters? dowe use packed decimal format? and so forth. As a practical matter
the difference between data type and semantic type is probably
not important.

III-16

IO/TC184/SC4/WG1:4o1*1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART III -- USER'S GUIDE

DSL supports the following semantic types:

Number -------- \
Integer I--Simple types
Real I

Fixed I
Float I

String I
Logical ------- /

Array ---------
List 1--Grouping type
Set --------- /

Refer ------------ Relational type

Defined ---------- Extension type

Structure ----- \--Complex types
Enumeration --- /

The simple types correspond to the data types found in almost
every programming language or database management system. The
grouping types provide for homogeneous grouping of other semantic
types (including perhaps grouping types). The relational type

* provides for forming relationships between things. The extension
type provides for an extension of the set of semantic types.
Complex types provide for heterogeneous groupings or arbitrary
naming of values. The complex types must be treated as extensions
of the semantic type set, i.e.$ they may not be used directly by
attributes.

In all of the examples the attribute declaration

example : semantic-type;

will serve as an example to show the proper usage each semantic
type.

8.1 Simple TvMes

Number
Integer
Real

Fixed
Float

String
Logical

111-17

ISO/TC184/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART IXX -- USER'S GUIDE

Number is an abstraction of integer or real. It is an inexact
specification. It is used when the exact specification is
unknown, i.e., it is not known yet whether an attribute is
integer, fixed, or float.

example : number;

Integer defines an attribute to be a whole number either
signed or unsigned. This is an exact specification. An optional
precision may be specified along with the integer specification.
If no precision is given the integer is assumed to have an
indefinite number of (decimal) digits. If the precision is
provided the value of the integer has an implied constraint on
the values an instance of the attribute.

example : integer;
example : integer(p);

where p is an unsigned integer literal.

neal is an abstraction of either a fixed or a float number.
It is an inexact specification which is used when it is not known
whether the exact type is fixed or float.

example : real;

Fixed is a number that has an exact or implied precision and
resolution. The precision is the number of decimal digits in the
number and the resolution is the number of digits to the right of
the decimal point. Fixed numbers would commonly be used for money
transactions for instance. A fixed number may be specified:

example : fixed;
example : fixed(,r);
example : fixed(p,r);

where p,r are both unsigned integer literals.

Float is a number that has an exact or implied mantissa
precision and an exponent value of arbitrary magnitude. It is
commonly used for scientific calculations* A float number may be
specified:

example : float;
example : float(p):

where p is an unsigned integer literal which defines the minimum
number of decimal digits in the mantissa.

0
1II-18

ISO/TC184/SC4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART III -- USER'S GUIDE

String is a sequence of characters, which are normally
printable. A string would be used to represent a persons name,
address, etc. A string may also hold special non-printable
characters which are used to control a printer or to represent
special symbols such as those used in mathematical formulas or
those needed for non-English alphabets (e.g., Kanji).

example : string;
example : string(l);

where 1 is an unsigned integer literal which defines the maximum
length in characters of a particular string. Note that 1
corresponds to the number of characters, not the number of units
of storage needed to represent the string value. e.g., a single
Kanji character may occupy two bytes of storage.

Logical represents the states True or False. This is often
called a Boolean value. It is specified as:

example : logical;

8.2 Grouping TyMes

Array
List
Set

The grouping types provide for homogeneous groupings of
semantic types.

Array is a homogeneous group that has a defined lower and
upper bound, which must be integer values. The lower bound must
be less than or equal to the upper bound. Given that L is the
lower bound and U is the upper bound, then there are exactly

U - L elements in the array.

Li " is an ordered homogeneous grouping that has a defined
lower bound, but a possibly indefinite upper bound. The lower
bound specifies the minimum number of elements that are required
to be in the list. This lower bound must be an integer which is
zero or greater.

Set is an unordered homogeneous grouping that has a defined
lower bound, but a possibly indefinite upper bound. The lower
bound specifies the minimum number of elements that are required
to be in the set. This lower bound must be an integer which is
zero or greater. A set is similar to a list with this exception:

0
II1-19

ISO/TC184/SC4/WGl:4.1.1 (DRAFT) 14 XAR 1986
DATA SPECIFICATION LANGUAGE PART XII -- USER'S GUIDE

The order of the elements in a list are significant. The
order of the elements in a set are not significant. Thus, if
we had:

ENTITY group;
ROLE

member : set(0 to ?) of refer(geometry);
END;

we would assume no significance by the order or position of
one element of the set. But if we had:

ENTITY loop;
ROLE

member : list(2 to ?) of refer(edge);
END;

the position of one edge within the list is significant,

i.e., the edges must be ordered.

9. STATIC CONSTRAINTS

A static constraint specifies the values that a simple
semantic type can (is permitted to) attain. Static constraints
may be ranges of values, discrete values, or value bounds. This
does not preclude the use of rules when specifying static
constraints. It is recommended that rules be used when there are
a number of static constraints on a particular semantic type.

9.1 RANGE is used to constrain values to a discrete range. For
example, an integer number is valid only if it has the values
1 thru 10. The specification allows for inclusive and/or
exclusive ranges. The specification format is:

WTGE (lo-value < v < hi-value)
RANGE (l-value <-value < hi-value)
RANGE lo-value < alue <a hi-value)
RANG (lo-value <- value <m hi-value)

io-value and hi-value must be literals and must correspond to
the semantic type which preceeds this specification. The semantic
type may be any simple semantic type except for logical. lo-value
must be less than hi-value.

Note that value• is a keyword which equates to the name of the

attribute being constrained.

examples:

x : real ranqe(0 < value < 100):

This reads: x is a real number which must satisfy the
condition 0<x<100 (zero is less than x, and x is less than 100).

111-20

ISO/TC1S4/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART III -- USER'S GUIDE

i : integer range(l < value <- 10:

This reads: i is an integer number which must satisfy the
condition i<i<-10 (1 is less than i, and i is less than or equal
to 10). Since integers have a discrete resolution this could also
be written as:

i : intecer(2 <- value < 111:

with no loss of meaning. Note that this is only possible with
integer and fixed semantic types. Number, real, and float are
assumed to have an unknown resolution.

s : stringf4) range'Al' <- value <- 'zzzz'1,

The value of a must satisfy:

if 'A' <- a then
if s <- 'zzzz' then

result :- true;

This assumes that if the two comparands are of different
lengths the shorter is padded on the right with blanks to the
length of the longer before the comparison is made. The result of
the comparison will depend on the character set being employed -
ASCII, EBCDIC, etc.

9.2 BOUND defines a value half space. e.g., only the values
greater than 10 are va.lid for a given semantic type. The
specification follows the form:

BOUND (value rel-op constant);

where rel-op must be one of:

c cm > >-

The relational operators - (equal) and <> (not equal) are not
permitted in this context. The constant must correspond to the
declared semantic type which proceeds this specification.

examples:

x : real bound(value > 0)-

v : real boundtvalue >- 01:

s : strina boundfvalue > ' 'I:

111-21

ISO/TC184/SC4/WGI:4.1.1 (DRAFT) 14 KAR 1986
DATA SPECIFICATION LANGUAGZ PART III -- USER'S GUIDE

9.3 VALUES defines a set of discrete values. Each of the discrete
values must correspond to the declared semantic type. The
specification follows the form:

VALUES (constant, constant, ... 3;
where each constant must correspond to the declared semantic type
which preceeds this specification.

examples:

x : inteaer valuesfl.3.5.7.91s:

s : strina values('3AN'. 'FEE., 'MAR'. ... $. DEC')

9.4 Summary

The specification of static constraints can help to define
the context and use of an attribute declaration. These
specifications do not suggest how the implementation might
enforce the constraint, only that the constraint must be enforced
somehow.

More than one static constraint may be applied to a single
attribute. e.g.,

x : integer ranqe(0Ovalue<202
values(31.41.51)
ranae (100<-value<-2355 1

Note that static constraints can be used to determine the
minimum storage required for certain semantic types. In the
previous case it is obvious that the total range of values is
1 through 255, but with some gaps. This value can be held in a
single byte of memory. But consider the following:

V : intecer(3) ranae(0'<value<-1000):

This is a conflict because the precision specification is not
compatible with the range; one says that y can hold the values
-999 through 999 while the other says the values can range from
0 through 1000. Other conflicts or confusion can result from
mixed specification. e.g.,

z : real bound(value<0) range(l10<value<-100000)i:

This is confusing. It either says & can have any value less
than zero or any value between 10 and 100000. Or it can be
interpreted as saying that Z must be both less than zero and also
between 10 and 100000 which is of course nonsense. To avoid this
possible confusion in interpretation mixing of bound and range is
not permitted. A rule could be written to handle that case.

But what about a case such as the following.

111-22

IS0/TC184/BC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART III -- USER'S GUIDE

a : integer rane(Oc<value<1001 range(40<value<300):

A particular value of A, say 35, would satisfy the first
specification but not the second. The strategy in this case is to
issue a warning and reduce the specification to a common range.

a : integer range(0<value<3001.

111-23

I8O/TCXS4/SC4/WG1:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART IV -- GLOSSARY

"When I use a word," Humpty Dumpty said in
rather a scornful tone, "it means just what I
chose it to mean - neither more nor less."

from "Through the Looking Glass"
by Levis Caroll

1-NF, 2-NF, etc. The technique of organizing
attributes into records such that
maximum stability in the developed
structures is achieved.

? (OPEN UPPER BOUND) Used to specify a to-many
relationship.

APPLICATION A set of procedural or non-
procedural code used to accomplish
some end state.

ARRAY SEMANTIC TYPE An ordered collection of some
semantic type having a fixed lower
and upper bound (index).

ATTRIBUTE A fact about an entity.

BACK POINTER A physical implementation that
accounts for the users of a given
entity.

A way of accomplishing a
many-to-many relationship.

BNF Bachas-Nauer Form (or Bachas-Normal
Form). A method of expressing the
grammar of a language.

CARDINALITY The number of entities involved in a
given relationship.

CLASS A collection of entities that are
(thought to be) alike in some
maxiner.

CONCEPTUAL SCHEMA See ANSI/X3/SPARC DBSG

CONSTRAINTS A condition of any kind which must
be enforced on values of attributes.

COLLECTION SEMANTIC TYPE ... A semantic type, similar to list,
which requires that all elements are
of the same kind.

IV-1

ISO/TC184/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART IV -- GLOSSARY

DATA The representation of information
independent of its meaning. e.g., an
integer number.

DATA MODEL A method of expressing the data
content and relationships of a data
processing system.

DBMS DataBase Management System

DEFINED SEMANTIC TYPE A semantic type that is defined by
the schema author. An extension to
the built-in semantic types.

DEPENDENT A relationship attribute which
stipulates that the referenced
entity exist only for the purpose of
defining the refering entity.

DISCIPLINE A branch of knowledge or training.

DISCOVERY The identification of information
needed by an enterprise.

ENTERPRISE e............... A business, or a significant segment
* of a business.

ENTITY A thing of interest about which data
is to be kept.

ENLMRATION SEMANTIC TYPE .. An ordered collection of values, any
one of which being the value of an
attribute of that type at a given
instant.

ENVIRONMENT The total of circumstances
surrounding a system, specifically:
the combination of external or
extrinsic physical conditions that
affect the behavior of a system

EXCHANGE The process of moving information

from one environment to another.

EXTERNAL SCHEMA See ANSI/X3/SPARC DBSG.

FIXED SEMANTIC TYPE A real number which has a defined
precision (total number of digits)
and resolution (number of digits to
the right of the decimal point).

IV-2

IS0/TC184/SC4/WGX:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART IV -- GLOSSARY

FLOAT SEMANTIC TYPE A real number which has a defined
precision (total number of digits in
its mantissa) and an exponent.

FUNCTION An algorithm which yields some
result object.

INDEPENDENT A relationship attribute that
stipulates that the referenced
entity may exist without the
existance of the refering entity.

INFORMATION Data'plus the meaning connected with
it. It is any kind of knowledge
about things or concepts that is
exchangeable among users. e.g., an
integer number is the age, in years,
of some person. database

INFORMATION MODEL What STEP calls the schema.

The process of formalizing the
structure and semantics of data;
i.e., information.

INSTANCE An individual entity in a physical
database.

INTEGER SEMANTIC TYPE A whole number.

INTERNAL SCHEMA See ANSI/X3/SPARC DBSG.

KEY An attribute that is used to
identify an instance of an entity.

LIST SEMANTIC TYPE An ordered collection of a given
semantic type which may contain
zero, one, or more elements. Similar
to ARRAY, but may not have a
negative lower bound and the upper
bound may be indefinite.

LOGICAL SEMANTIC TYPE A semantic type which has only the
values True and False.

KANDITORY A relationship attribute that
stipulates that a value is manditory
(not optional).

rV-3

ISO/TC184/SC4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART IV -- GLOSSARY

MANY-to-MANY A kind of cardinality that allows an
indefinite number of entities on
either side of the relationship. Not
usually permitted by data models;
not parmitted by this information
modeling technique. See back
pointer.

MAPPING FUNCTION A function that transforms one
schema to another schema, or
transforms the instances of entities
defined by one schema to instances
defined by another schema. A
translator.

NOROLE An attribute that is not needed for
the meaning of an entity.

NUMBER SEMANTIC TYPE A semantic type representing any
number format: integer, real, fixed,
or float.

ONE-to-MANY A cardinality where one entity is
related to zero, one, or many other
entities.

ONE-to-ONZ A cardinality where one e itity is
related to exactly one other entity.

OPERATION An action that may be applied to an
entity which yields a known result.

OPERATION SET A set of operations that apply to a
specific entity or class.

OPTIONAL A relationship attribute that
stipulates that an attribute value
may be non-existant. This does not
imply that the value is unknown.

PROCEDURE An algorithm which operates on
information to produce some desired
end state.

PROVIDER The person or system that provides
information to (for) the receiver.

REAL SEMANTIC TYPE A semantic type of which fixed and
float are sub-types.

RECEIVER The person or system that receives
information from the provider.

IV-4

ISO/TC184/SC4/WGl:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGE PART IV -- GLOSSARY

REFER SEMANTIC TYPE A semantic type used to establish a
relationship.

REFERENCE An instance of a relationship
between two entities. The mechanism
for establishing this link is
implementation dependent.

RELATIONAL TABLE One kind of data model in which data
is arranged into columns and rows.

RELATIONSHIP A mechanism used to connect (link)
two entities in some fashion.

ROLE An attribute that is necessary for
the meaning of an entity to be
complete.

RULE A constraint which must be enforced
by the information processing
system.

SCHEMA A description, or definition, of the
data elements of interest to an
enterprise. The schema may be cast
as conceptual, external, or
internal.

It is what we call the the
information model. It embodies what
we (think we) know about enterprise
information.

SEMANTIC TYPE An abstraction of the physical
representation of an attribute.
i.e., the way we think of the
realization of data.

SET SEMANTIC TYPE A semantic type, similar to list, in
which the order of elements is not
meaningful.

STRING SEMANTIC TYPE A semantic type representing an
ordered list of characters, i.e.,
letters, digits, special characters.

STRUCTURE SEMANTIC TYPE A semantic type which is a set of
attributes that together have a
meaning.

SYSTEM A computer system.

IV-5

ISO/TCl84/SC4/WGI:4.1.1 (DRAFT) 14 MAR 1986
DATA SPECIFICATION LANGUAGZ PART IV -- GLOSSARY

S T E P

TRANSLATOR A mapping function. The application
that accomplishes translation from
one schema to another.

ZV-6

Appendix E

Paper On PDES Delivered at Federal Computer Conference

39

THE

PRODUCT DATA EXCHANGE STANDARD

(PDES)

BY

J. C. KELLY

SANDIA NATIONAL LABORATORIES

CHAIRMAN, PDES LOGICAL LAYER INITIATION TASK

PDES SCOPE AND OBJECTIVES

PDES stands for Product Data Exchange Standard. A long-term project
currently exists within the IGES Committee to develop PDES. This project
Jas two primary objectives:

1. to develop an exchange standard for product data in support of
industrial automation

2. to represent the US position in the International Standards
Organization (ISO) arena relative to the development of a single
worldwide standard for the exchange of product data

A new standard is being developed out of the belief that no existing
standard can be extended to support industrial automation sufficiently
well.

"Product Data" is taken to be more general than "product definition data'.
It includes data relevant to the entire life cycle of a product:
manufacturing, quality assurance, testing, support, etc. Development of an
exchange standard for product data involves settling on a set of logical
structures to contain the product data information, and also settling on
the manner in which these structures will be implemented in computer form.

The ISO Technical Committee TC 184 (Industrial Automation Systems) and its
Subcommittee SC4 (External Representation Of Product Model Data) are
relatively new committees within ISO, SC4 having first met in July, 1984.
There is agreement within the Subcommittee that a single worldwide standard
for the exchange of product data is needed. The goal of the standard is
"...the capture of information comprising a computerized product model in a
neutral form.. .throughout the life cycle of the product". The name of the
standard is to be STEP - Standard for the Transfer and Exchange of Product
Model Data.

The PDES Project has been designated to take the leadership role in the
development of STEP. It is the US intention that PDES and STEP will be
identical. Participating countries to this date, besides the US, include:
France, Germany, Japan, Switzerland, and the United Kingdom.

THE PDES RELATIONSHIP TO IGES AND ITS DATA EXCHANGE HERITAGE

The IGES Steering Committee has outlined the relationship that is to exist
between the IGES and the PDES specifications. work within IGES Technical
Committees will simultaneously be directed toward future, upward compatible
versions of IGES and also toward a draft version of PDES. This version of
PDES is to be, at a minimum, functionally equivalent to the then-current
version of IGES. PDES need not be directly upwardly compatible with IGES,
but must accommodate a conversion path. An IGES Long Range Plan, now in
draft, will further explain this relationship and other topics as well,
such as test methodology and committee structure.

Other data exchange efforts besides IGES will affect PDES in one way or
another. In broad terms, the legacy of some of these other efforts is as
follows: The IGES efforts form one "tier", or logical grouping, of

efforts. These have data exchange between dissimilar interactive graphics
CAD/CAM systems as their driving force. Early versions were implicitly
targeted toward systems of the 70's and early 80's, and toward mechanical. applications. Thus, from the start, 2D drawings, 3D wireframe models, and
certain generative type surfaces were emphasized. With the exception of
those entities expressly intended for the drawing application area (eg.,
linear dimension, angular dimension, general note, etc.), most entities
were generic (eg., line, arc, composite curve, associativity), so that the
intent of the exchanged data had to be imposed from outside the data
itself. Typically, this would involve a human viewing a representation of
the data on a graphics system, keying off such things as geometric shape or
placement relative to the part itself. Thus, the early versions of IGES
were intended for human oriented interpretation of the data rather than for
automated interpretation and use of the data.

A second tier of efforts consists of the CAM-I XBF-2 effort, the IGES ESP
effort, the ICAM PDDI effort, and the follow-on GMAP effort sponsored by
the Air Force CIM Program. (These acronyms denote, respectively,
Computer-Aided Manufacturing-International, Inc.: Experimental Boundary
File-2: Initial Graphics Exchange Specification: Experimental Solids
Proposal: Integrated Computer Aided Manufacturing: Product Definition Data
Interface: Geometric Modelling Applications Interface Program: Computer
Integrated Manufacturing.)

These efforts between them bring two innovations to the fore, and in effect
usher in a more modern product data exchange era. The first innovation is
the emphasis on a more complete definition of the shape of a part - that
is, the emphasis on solid modelling, in which the set of spatial points
occupied by an object is completely determined. In addition to this
complete "quantitative" description of an object, some systems also provide
a "qualitative" description by decomposing the object into topological
entities such as faces, edges, and vertices which describe the connectivity
of the part. These two types of descriptions are then related by having
the topological entities indicate which geometry entities are needed for
their definition.

The PDDI project went a bit further than just geometry and topology
entities, identifying entities for other higher level qualitative
structures called part or form "features". Features allow high-level
concept communication about parts. Examples are hole, flange, thread, web,
pocket, chamfer, etc. The PDDI feature entities relate specific topology
and geon)etry entities to a given feature so that identifying information
for that feature can be explicit in the data, a necessary condition for the
support of automation. Geometry, topology, and feature information are
often collectively referred to as "shape information".

The other innovation from this class of data exchange efforts, in fact,
from the PDDI and the GMAP efforts, is the emphasis on having the
computnrized part model be a "complete" model. This means that the model
contains all necessary shape and non-shape information sufficient to
accomplish a given function: that t-e information is in a suitable, i.e.,
automation-enabling, computer form: and, that the different types of
information are associated as required. For example, tolerance information. would be carried in a form directly interpretable by a computer rather than
in a computerized text form intended primarily for interpretation by a

human, and, this information would be associated with those entities in the
model affected by the tolerance. Other non-shape entities include
administrative entities having to do with such things as effectivity,
specifications, material, notes, etc. Thus, the general notion associated
with a complete part model is that it obviates the use of human-oriented
drawings and other paper documents as a necessary means of passing
information between different functions.

It is interesting to note that the first tier of efforts are all standards
efforts, concerning themselves with existing systems and techniques, while
the second tier of efforts are research and development projects concerning
themselves with finding out how things should be, and ultimately
intending to effect change.

THE CONTENT EMPHASIS OF PDES

The PDES effort will reflect this dual heritage, and will extend it. It is
intended that the PDES effort will also have a proactive influence on both
users and vendors.

PDES will extend the heritage from the standards efforts and the research
and development efforts by providing a means for an organization to
communicate its product breakdown structure. This implies accommodating
such notions as part, subassembly, assembly, version, effectivity, release,
etc., and also accommodating the natural correspondence between these kinds
of items and the configuration documents, test data, change directives,
etc., that pertain to these items. Many questions remain to be answered
here. For example, a way must be found to relate the product breakdown
structure to the PDES file or files representing that product (as when a
model has to be spread over several files, or several models are contained
in one file), and to do this in a way that will serve diverse companies
that have diverse needs in this area.

THE PDES METHODOLOGY A-ND ITS CHALLENGES

The distinguishing charac:eristics of the PDES methodology reflect recent
developments in data base and information systems in general. They also
reflect techniques used and experience gained in other data exchange
efforts. The PDES methodology is significantly different from the IGES
methodology.

The PDES methodology involves: a three-layer architecture similar to the
three-schema framework for data base management systems as identified by
ANSI/X3/SPARC: reference models: formal languages: and coordination with
other standards efforts.

Three-layer Architecture

The three-layer architecture is similar to the three-schema framework in
which external, conceptual, and internal schemas are identified. In that
framework, the conceptual schema comprises the unique central description,
from the standpoint of the enterprise, of the meaning of the data, and the
relationships among, and constraints upon, the data. It embodies the

"rules of the business". This description is computer independent, i.e.,
it is conceptual. The external schema represents the manner in which

* individual users and applications need to view the data represented by the
conceptual schema. Each external schema can therefore be supported by the
one conceptual schema. The internal schema represents the actual physical
computer storage structure being used to store and access the data. Within
PDES, the three layers corresponding to these three schemata are the
logical layer, the application layer, and the physical layer.

The application layer will contain the descriptions and combinations of
information peculiar to various application areas. Information modelling
techniques (or, data modelling techniques, as they may sometimes be called)
will be used to formally express what the required pieces of information
and their relationships are for a given application area. These models are
examples of what are termed "reference models".

This layer will be supported by application subgroups such as the standing
subcommittees now in IGES: Advanced Geometry, Electrical, Mechanical, AEC,
FEM, Drafting, etc. The challenge here will be to actually do the
modelling, then to manage the networking of the models into "clusters"
depe.nding on the product under consideration. Consistency and sufficiency
wit.ain each cluster must be insured. The modelling itself will be a
challenge because the application of information modelling techniques to
production artifacts seems to be a new area.

The purpose of the logical layer is to provide a consistent,
computer-independent description of the data constructs that will contain
the information to be exchanged. Both generic and application-specific
constructs are expected to be identified. The central challenge here, and
perhaps in the entire PDES effort, will be to devise and carry out a
conceptualization and integration methodology by which a minimally
redundant set of generic data structures and relationships can be produced.
That is, this set must be as lean as possible, and at the same time
sufficient to support the wide range of applications. Some experience will
be needed to be able to settle on such a methodology, but it will likely be
a combination of a bottom-up approach (i.e., abstracting from information
about individual application areas) and a top-down approach (i.e., deducing
needed structures and relationships starting from some global
classification schema for product data). Another challenge will be to
build into the methodology the flexibility of being able to consistently
extend the schema to accommodate new applications. Establishing modelling
technique requirements is also expected to be challenging.

The physical layer corresponds to the internal schema and will be concerned
with the data structures and data formats for the exchange file itself.
The main challenge here will be to establish and maintain efficiency in
such areas as file size and processing time.

Reference Models

A reference model for some universe of discourse is a model that collects
together the necessary pieces of information and also their relationships. to each other. The notion includes some mechanism, usually graphical, for
describing the pieces of information and the relationships.

Reference models will be used throughout the PDES architecture. The
purpose is to promote thoroughness in domain analysis and precision in
definition and commnunication of information, especially between different
layers.

The first challenge here for a standards group that historically has been 0
concerned with product data exchange issues is simply to learn something
about reference models and information modelling, and about the
requirements that any particular technique must satisfy in order to be
useful. Another challenge is to effectively communicate the substance of
these issues to people who are familiar with information modelling, but are
probably not familiar with product data exchange, and to do this in a way
that results in new talent being brought to bear on our problems.

Formal Languages

Formal languages will be used for the definition of data structures and for
the PDES file syntax. Emphasis will be on languages with context-free
grammars so that parsers can be built more simply.

Coordination With Other Standards

A final characteristic of the PDES methodology will be its relationship
with other standards efforts, both national and international. How data is
represented within PDES, as well as what data is represented will be
coordinated with other efforts to insure compatability and to minimize
duplication.

Experience from the IGES efforts has shown that segmentation of the
development -of a standard along the lines of the thkee-level architecture
would be a desirable thing. In the IGES efforts, there was no explicit
segmentation. One result was that, in the course of pursuing new
application areas, application-oriented people were being held responsible
for things outside their area of expertise, such as the formulation of
physical data structures. Another result was that there was no one
explicitly charged with maintaining a global viewpoint toward the entity
set and toward the consistency of the makeup of new entities. Thus, for
example, relationships between application-specific entities and generic
entities may not be consistent whenever these are used together. In some
cases the application specific entity may be subordinate, while in other
cases the generic entity may be subordinate. Along the same lines, it was
difficult to insure that the generic entity set was kept as lean and
minimally redundant as possible.

0

PDES VERSION 1.0 - PROPOSED CONTENTS

The proposed contents of PDES Version 1.0 as of this time are as follows:

. Application Layer:

1. Mechanical Products - Several classes of parts modeled, including the
classes of machined, turned, flat, and sheet

2. Electrical/Electronic Products - Electrical Schematics, Printed Wiring
Board Physical Design

3. Architecture, Engineering, and Construction (AEC) - Heating,
Ventilating, Air Conditioning (HVAC) Distribution Model

4. Finite Element Modelling (FEM) - Nodes, Elements, Loads/Constraints,
Displacements, Postprocessing

5. Drafting

Constituent Technical Areas

1. Manufacturing Technology - Administrative Data, Tolerances

2. Solid Mode-lling - Boundary Representation (B-Rep.), Constructive Solid
Geometry 3 CSG)

* 3. Curve And Surface Modelling - Wireframe Geometry, Surface Geometry

4. Presentation Data - Viewing pipeline, View Mechanism, Text Definition

Logical Layer - Develop conceptualization and integration methodology, and
apply to application reference models

Physical Layt-c - Develop ASCII file format for a single PDES file

PDES PROOF OF CONCEPT WORK NOW UNDER WAY

A PDES proof-of-concept and general learning exercise has been under way
since January of this year. This work is collectively known as the PDES
Initiation effort. The effort will involve all three layers of the
architecture, but is being administered by two task groups. one is
associated with the logical layer, and the other is associated with the
physical layer.

The goal of the Initiation work for the physical layer task group is the
specification of a file structure for the PDES exchange form. The current
draft of the specification specifies the file structure as being language
based, described by an unambiguous, context free gramnar expressed in
Backus-Naur form. The specification draws heavily on previous PDDI
experience in this area.

The Initiation work for the logical layer is divided into two tasks. The

goals of the first task are to illustrate that a conceptual schema can be
developed in support of a specific application area, and then to
communicate this schema to the physical layer using a Data Specification
Language (DSL). The master reference model for the conceptual schema will
use the Nijssen Information Analysis Model (NIAM) information modelling
technique, with the DSL description being generated manually from this.

The goals of the second task are to illustrate that the initial conceptual
schema can be sequent ally augmented in a consistent manner to support
additional application reas, and then to communicate the augmented schema
to the physical layer g oup.

The spirit of the initiation work is that we will do the best job possible
and then will examine and evaluate the products of our efforts and our
methodologies. For PDES longer term efforts, what is good will be retained
and what is not will be discarded.

Many fundamental PDES topics are yet to be widely discussed. (Examples are
requirements on pre and post processors for effective implementation of
PDES, requirements on user databases to allow full advantage of PDES, and
interplay between these.) The precise articulation and subsequent
discussion of these topics should be an important part of the longer term
PDES effort.

THE PDES SPECIFICATION - SUMMARY

1. PDES is being developed to support industrial automation. It will deal
with the entire range 6f product data and will represent the US
position internationally in the quest for a single standard.

2. PDES content will emphasize solid modelling, complete product models,
and product breakdown structure. It is intended that PDES will have a
proactive influence on both users and vendors.

3. The PDES methodology is significantly different from the IGES
methodology, and offers many challenges. It is based upon a
three-layer architecture, reference models, conceptualization and
integration, and formal languages.

4. Proof of concept work is currently under way and is known as the PDES
Initiation effort. Content and methodology beneficial to long range
PDES work will be kept.

0

Appendix F

Logical Layer Charter

040

Charter

Of The

PDES Logical Layer Initiation Task Group

Submitted By:

J. C. Kelly
Sandia National Laboratories
Chairman, Logical Layer Initiation
Task Group

July 30, 1985

Charter Of The PS Logical layer Initiation Task Group

The PDES Logical layer Initiation Task Group is an ad hoc subcommittee
of the PDES Committee. This Tfak Group will perform work as described
below as part of the PDES Initiation effort.

The purposes of the work of this Task Group are:

1. Examine the possibility and feasibility of developing PDES
according to the three level ANSI/X3/SPARC architecture as
suggested in the second PDCS report.

2. Establish logical layer content which potentially could serve as a

baseline for future PDES development.

The two main tasks of this Task Group are:

1. Illustrate that a conceptual schema can be developed in support of
a specific application area, and communicate the structure of thin
schema to the PDES Physical File Structures and Formal Languages
Task Group.

2. Illustrate that this conceptual schema can be augmented in a
non-redundant manner on an application-by-application basis.

The first task will contribute to illustrating the use of all three
levels of the three level architecture. The second task will
illustrate that the conceptual schema can be incrementally augmented as
the need arises - a characteristic of the PDES environment.

Each task will result in a communication of the conceptual schema
content to the Physical File Task Group. A Data Specification Language
will be used for this. Communication for the first task will be
approximately mid-September, 1985, and comrunication for the second
task will be approximately November 1, 1985.

Requests will be made of application groups to compose reference models
to be used in the second task. These groups could conceivably be based
in existing IGES Subcommittees, or could be ad hoc.

A final report will be written. The report will describe and document
what work was performed, and will make recommendations based on this
experience. The general time frame for this report is January 1, 1986.

The Task Group will meet as required in order to accomplish its work,
and will periodically report on its progress.

0

Task Overview

Task I A conceptual schema vill be developed to mupport the
ichnical design of flat plates with circular holes. Wirefrwre
geometry vill be used. The schema will support some user-view
presentation (viewing) scenarios pertinent to this area of mechanical
design.

The wireframe geometry entities and the presentation entities will be
developed as part of this task. A reference model describing the
conceptual schema will be produced. The Information Analysis (IA)
information modeling methodology will be used for this reference mode..,
and the Dta Specification Language (DSL) description of the conceptual
schema will be based on this reference model.

Task 2 Four Application Task Groups will be contacted to compose
reference models. These models will be used one at a time to
cumulatively augment the conceptual schema produced in the first task.
A reference model depicting the *final" conceptual schema will be
produced, as will a mapping illustrating how each application makes use
of the conceptual schema. The cumulative augmentation of the
conceptual schema will involve integration in the sense that a minimum
number of "generic" entities and structures will be sought to support
the cumnon needs of the various applications.

The integration work is the focal point of this task. The Information
Analysis (IA) modeling methodology, and associated Software Tools (ST),
will be used to support this work. (Specifically, IAST, a CDC software
product in the possession of those who will be doing the integration
work, will be used.) In order to provide a common footing for the
integration work, and to make possible the use of the supporting
software, each reference model from an Application Task Group will be
translated into an equivalent IA-based reference model, and entered
into IAST. The resulting translated reference model will be
scrutinized from a 'Quality Assurance* point of view. A liason from
the referring Application Task Group will assist in understanding and
possibly refining the reference model, thereby closing the OA loop.

IA will be used to describe the final conceptual schema, and also to
illustrate how each application makes use of the conceptual schema. As
in the first task, the Data Specification Language description of the
conceptual schema will be based on the IA reference model of the
conceptual schema.

The Application Reference Models Are:

1. Mechanical Design - Flat Plates With Circular Holes

2. Electrical Design - Schematics

3. Tolerancing - Tolerances In Y14.SM And ISO 1101 and 1660

4. Finite Element - Finite Element Environment

5. AEC - AEC/HVAC

Recommendations For General PDES Evaluations, recommendations, and

experiences based on this work will include:

1. An evaluation of the three level architecture as an environment for

developing PDES.

2. Recommendations for a logical layer integration methodology.

3. Recommendations for application layer information modeling

techniques.

4. Experiences with the use of automated tools.

0

S

PDES Logical Layer Initiation Task Group

I. Bodnar, CDC
D. Briggs, Boeing
R. grown, Hughes (New Memeer)
E. Clapp, IBM, Wireframe Geometry Tasic Leader
S. DePauw, Caterpillar, Flat Plate Design Task Leader
'R. Gale, DA'C
D. Hemmelgarn, ITI
J. C. Kelly, Sandia, Chairman
P. Kennicott, GE
H. Ladd, DuPont (New Member)
D. Schenck, McDonnell-Douglas, DSL Task Leader
D. Theilen, Allied/Bendix, Logical Layer Integration Task Leader
D. Winfrey, DEC, Presentation Task Leader
J. Zimmerman, Allied/Bendix

Application Layer Tasks Initiated By Request Of 7he Logical Layer
Initiation Task Group And Their Coordinators With The Logical Layer

1. Mechanical Design - Reference Model For Flat Plates
S. dePauw - Caterpillar, Task Leader
D. Heummelgarn - ITI

2. Electrical Design - Reference Model For Schematics
C. Parks - General Dynamics, Task Leader
P.-Kennicott - General Electric
Work Supported By: IGES Electrical Subcommittee

3. Tolerancing - Reference Model For Iblerances In Y14.5M
R. Colsher - IGES Data Analysis, Task Leader
B. Burkett - McDonnell-Douglas
Work Supported By: IGES Drafting Information Model WG

4. Finite Element - Reference Mo'del For FE Environment
R. Ivey - Westinghouse, Task Leader
B. Freeman - Allied/Bendix
Work Supported By: IGES FEM Subcommittee

5. AEC - Reference Model For AEC/HVAC
F. Stahl, IBM, Task Leader
P. Rourke, Newport News Shipbuilding
J. Turner, University Of Michigan
Work Supported By: IGES AEC Subcommittee

Appendix G

Response to Call For Alternative Modeling Lanquages

*41

Memorandum
ALLIED Bendix Bdx Kanmas City DMSon

Aerospace KAM" City. MIsuOri

Date: March 5, 1985

To: Roger W. Gale, Chairman, PDES Reference Model Selection

From: J. J. Zimmerman, PDES Physical Layer Committee Member

Subject: SUMMARY OF NIAM MODELING MTHOD

I understand the critical nature of selecting an adequate
reference model for the BDES logical layer. In response to
your call for alternatives to IDEF1 , I present this NIAM
overview.

NIAM (Nijssen's Information Analysis Method)' is a binary data
modeling method developed in Europe by Dr. G. M. Nijssen in
1972. The method as it is used today is nearly the same as
the 1975 version with some dialectical changes. It has been
applied to application projects in Europe since 1975 and is
well recognized and respected there. It has been used in the
states, however, only since about 1980 and now several major
U.S. corporations are using NIAM. Since 1984, Qint Database
Systems Corporation has supported NIAI! with QINT/IAM and
QIN'T/TINA support tools. Since 1980, Control Data
Corporation has supported NIAM with IAS (Information Analysis
Support) which consists of education, consulting, project
management services, and support software.

The method itself, its nomenclature, and graphical language
are public domain and are well described by ISO working group
ISO/TC97/SC5/WG3 in report SC5-N695. I understand this
working group is now ISO/TC97/SC21/WG5-3 and the original
report has been republished as report SC21-N197.

This working group was formed to bring some formality to the
ANSI/X3/SPARC three schema DBMS architecture--particularly
the conceptual schema. As you will notice in the report, the
working group used NIAM as a representative for a broad
category of models called binary models. The other categories
were EAR (Entity Attribute Relationship--which I think is the
category IDEF belongs to) and IPL (Interpreted Predicate
Logic). The fact that ISO chose NIAM as a representative for
binary modeling indicates European recognition. I am sending
you a copy of ISO report SC5-N695. You will find a pretty
thorough comparison of the EAR and binary approaches which I

March 5, 1985

Page 2

think represents a fair theoretical comparison of IDEF 1 and

NIAM.

The following are the major strengths of NIAM:

o It has international acceptance.

o The method is in public domain.

o There is a body of people with experience with the
methodology in Europe and North America.

o End users find it easy to learn.

o The method has a rigorous basis in classical linguistic
and mathematical theory. This rigorous basis is the
foundation for a formal language description for NIAHI.
This formal language is computer sensible.

o NIAM clearly separates the process of problem space
semantic analysis from the design of logical and physical
record structures.

o Computerized tools are commercially available to support
model creation, model access, and model conversion to
logical record structures and physical file formats.

Both NiAM and IDEF methods are striving for the same goal--
the rationalizatioA of information in preparation for integrated
system development. More specifically, in Appendix A I have
summarized areas in which NIAM is superior to IDEF 1 as you
requested in your letter.

In general, I believe NIAM is superior to IDEF1 as a concep-
tual data modeling reference language for PDES logical layer
development.

March 5, 1985

Page 3

We are prepared to bring more information to you in greater

datail. Thank you for you attention.

Address correspondence to:

John J. Zimmerman, MI39
Allied Bendix Aerospace
P. 0. Box 1159
Kansas City, MO 64141

JJZ :mca/7

Attachment

APPENDIX A

Features provided by NIAM that are not provided by IDEFI.

1) NIAM is an internationally recognized and respected modeling
method. It is used by major corporations in North America
and Western Europe. Its formal basis in linguistics and set
theory are well recognized.

Why the difference is important:

PDES logical schemas must be communicated internationally.
International recognition of the modeling language will be a
critical factor in ISO negotiations.

2) NIAM is a binary entity-relationship modeling technique that
clearly separates the process of determining meaning of
entities and their relationships from the process of designing
logical data records (the process of determing key
structures, normalization, and inter-record linkages).

Why the difference is important:

The information analyst should be dedicated to the task of
understanding the meaning and relationships of the entities.
The thought process should not be split between semantic
analysis and logical record design. Increased concentration
on the meaning of the problem space is the most significant
benefit to logical data modeling.

3) IAS software provides for the automatic conversion of the
NIAM binary model representation to normalized logical
record structures.

Why the difference is important:

Reduces human labor and human error.

4) IAS software provides for the automatic conversion of the
NIAM binary model representation to target physical data
representations. These converters are called "PIPES."
Several DBMs pipes are already in existence.

Why the difference is important:

A. This capability allows the conceptual schema to stand
alone, independent of any physical data representation.
It allows for multiple expevrmental or optional physical
file formats to exist. I believe there is significant
potential to pipe NIAM constructs from the NIAM ccncep-
tual schema to the PDES physical transfer file format

0I

without any other intervening formal conceptual
languages.

B. The minimization of the number of conceptual languages
used in building the PDES logical model should enhance
efficiency of communication and reduce learning overhead.
for logical modelers.

5) The NIAM graphical language contains a rich set of inter-

entity constraint constructs.

Why difference is important:

Explicit constraint representation in the model reduces the
amount of narrative associated with the conceptual schema
and provides improved communications by using a standard
constraint notation. The end result is a conceptual schema
that is richer in meaning without introducing interpretation
error.

6) NIA4..separates functional dependency notation from existence
dependency notation. This modularity allows the analyst to
use all 16 combinations of functional dependency (4) and
existence dependency notation (4).

Why difference is important:

It allows the analyst to be more expressive by using any
combination of functional and existence dependency. The
analyst does not need to add extensions to the modeling
language.

7) The NIAM model uses a simple set of rigorously defined model
constructs that have foundations in classical linguistics.
The four most significant constructs are LOT (lexical object
type--classes of object representations), NOLOT (nonlexical
object type--classes of objects), IDEA (relationship between
two ncnlexical objects) and BRIDGE (relationship between a
LOT and a NOLOT).

Why difference is important:

A. These constructs form the basis for a simple but
rigorous modeling language that is computer sensible.
A computer sensible language provides capability for
computer assisted access to complex model structures.

B. These constructs improve the analyst's ability to
understand and denote the difference between an object
and the object's name.

2
2

C. Gives analyst the ability to rigorously denote synonyms,
abbreviations, homonyms, and arbitrary lexical mappings.

8) IAS software provides the automated capability to integrate
complex functional area model views by resolving different
functional area or problem specific naming conventions with
synonym tables.

Why the difference is important:

Resolving naming differences within various PDES application
reference models is a mandatory step in the process of model
integration at the conceptual layer. Synonym capability
also allows the conceptual modeler to use abstract naming
conventions that will promote integration. This capability
will allow separate groups to work independently and yet
have their model intersections reconciled.

9) LAS software provides a set of automated cross reference
tools that serve functions similar to Entity Class/Attribute
Class Matrix, Class Migration Index, Attribute Class Migration
Class Index, and Relation Matrix.

Why the difference is important:

Building these kinds of cross reference tables manually as
in'IDEF1 is extremely labor intensive and error prone.
Analyst resistance to model changes will grow as manually
derived tables become more complex and interweaved. The
analyst should not be required to manually build model
indices that can be built automatically.

10) NIAM allows for, but does not demand, refinement of relation-

ships in which existence independence exists on both ends.

Why the difference is important:

It is understandable that the most stable information
structure is desirable in the end result. It is unreasonable
for the modeling language to dictate that all relationships
be refined. The demand for mandatory refinement can often
be arbitrary and place an unnecessary burden on the analyst.
The modeling of physical artifacts in PDES will involve
naturally occurring many-to-many relationships which have
legitimate existence. Refinement is artificial except when
an relationship is better thought of as an object (in the
case when the relationship itself is associated with many
entities).

3

Appendix H

Summary of Responses to Call for Alternative Modeling Languages

42

. TO: PDES Committees and Working Groups

FROM: Roger W. Gale -- Logical Layer Reference Model
Selection

SUBJECT: Comparison of Proposed Modeling Methods and
Recommendations for Selection

Dan Appleton is fond of saying, "the methods used have more to do
with the outcome than the objectives". My experience leads me to
agree with him. I believe that we should be concerned not only
with the elegance of a selected model for the logical layer but
with the method used to arrive at the model as well.
Accordingly, I am biased toward how we are to arrive at the model
somewhat more than toward a resulting model which has one or two
more bells or whistles.

There are only two models which have been given support as
candidates for the PDES Logical layer reference model. The ICAM
IDEFI model received four recommendations and the ISO TC97/SC5 -
N 695 received one.

There are differences in the methods behind the two models which,
I believe, affect their utility for the purposes of PDES. The
most significant difference is that, in essence, IDEFl is a. "top-down" method while the ISO is a "bottom-up" method.

The advantages I see in the IDEFl method are that it is
"top-down" and is more "people friendly". The "people friendly"
aspect is important. The ICAM experience seems to have
demonstrated that the IDEFI method assists people to arrive at a
conceptual model of the enterprise data. That model is of the
conceptual data view of the business we are in. It is not a
model of computer systems, but rather, a definition of
requirements for data integrity which must be met when computer
systems are implemented. It is not easy for people who have been
trained in classic, two-schema, computer systems development
methods to learn to think in terms of the third schema, the
conceptual enterprise model, rather than the bits, bytes,
records, fields, etc. of computer implementation. We need all
the help we can get because, in the end, it is the people who
must do it.

In addition, the PDES logical layer model is ultimately a part of
a larger enterprise model on which work already is underway in
many firms. Much of that enterprise modeling is already in the
IDEFI method (for example, the ICAM, MFG1 model).

1 39 PDES-mod-2
3/20/85

The disadvantage of IDEFI may lie in the lack of a standard,
structured definition language for text description of the model
and those needed data constraints not shown in the graphics.
This disadvantage may tend to go away if one of the software
tools for IDEFI models is used because some of those tools, such
as the one from the Dan Appleton Co. use a structured modeling
language to define the model which has similarities to L.he
definition language found in the ISO Standard.

I have received from J. C. Kelly, "A Preliminary PDES Logical
Layer Document* dated March 13 1985. Attachment G of that
document is by Douglas Schenk. In it is a proposed specification
language for the PDES Logical Layer which would describe a
different model from the IDEFi model. The concept of a
structured model description language is well represented in his
paper.

The methodology behind the ISO model is available with automation
from Control Data. I think it can be summarized as an approach
in which "attributes" are related to each other and the data
structure is determined from the binary relationships. The model
provides a graphic representation which is supported by a very
specific, structured model language in which data constraints are
defined.

An advantage of the ISO model is that the very structured model
definition language is very attractive to computer system
implementors. A disadvantage is that the graphics convey only a
limited portion of the model and the language statements must be
studied to find most of the data constraints. My personal
reaction is that it is difficult to grasp the model because it is
hard to see the data context in the business sense which should
be a primary objective of the model.

The methodology behind the IDEFl model is one of; identifying
objects of interest (entities) about which the enterprise
maintains data, determining how the enterprise relates those
entities, identifying the attributes of the entities and then
refining the model according to some simple rules to arrive at a
normalized, relational model.

Software is available from several sources providing more or less
assistance with developing the IDEFI models. AUTOIDEF is
basically a computer aided drafting tool for models developed
under ICAM. Other software may be purchased from its developers.
Some of the software provides extensions beyond the basic IDEFI
which produce graphic illustration of additional data
constraints.

0
2 39 PDES-mod-2

3/20/85

* Action is underway now to produce a new version of IDEFI which
will contain additional model conventions to illustrate data
constraints. One effect of the new version will be to reduce the
difference between the two methods in terms of the degree of data
constraint definition.

According to Dave Theilen, John Zimmerman with him at Bendix, is
of the opinion that he will not find it difficult to translate
from one model form to the other in either direction. John has
considerable experience with the Control Data modeling software
and some experience with the IDEFl model. It is Dave Theilen's
intent to perform those translations in the course of integrating
the various PDES application models into the logical layer. If
that proves successful, we may be able to take advantage of.
desirable features of both methods.

Based upon my understanding of the differences and utility of the
two methodologies, and the expressions of support from the IGES
community, I recommend the following:

1. Adopt the IDEFI modeling methodology for the PDES
logical layer (utilizing new versions as they become
available).

2. Pursue the possiblity of translating the IDEFl model
into an ISO model and, if found feasible, make that a
practice for PDES.

3. Ask Douglas Schenk to revise his specification language
so that it is a description of an IDEFI model plus those
additional data constraints considered necessary but not
contained in the IDEFI.

4. Develop written additions to the documentation of the
IDEFI methodology to describe the methods to be used to
arrive at the definition of those additional data
constraints found necessary for item 3. above.

It appears to me that there is some confusion regarding the roles
and contents of each of the three schemas identified by ANSI
SPARC which are the three layers proposed for PDES. It is going
to be difficult to go forward with a three-schema idea if
everyone has a different idea if what is in each schema. There
is a need for people working on a schema to understand what it is
and what it is not.

3 39 PDES-mod-2
3/20/85

It should be understood that the IDEFI method is for modeling the
Logical Layer (conceptual schema), or portions of it. There
appears to be some confusion about the use of this modeling.
method to model applications. Applications are in the realm of
the ANSI SPARC external schema or user views. IDE1l is for
modeling data. External schemas contain information as well as
data. Information is derived from data through some sort of
algorithm. For example, a persons age is information derived
from current date and the persons date of birth. The IDEFI model
can contain "current date" and "persons birth date" but not
"age.

The task of each application sub committee should be to examine
their application and produce an IDEFl model which identifies
that set of entities, attributes and relationships of the logical
layer (Conceptual Schema) which are necessary for the
application. This might be more easily understood as a
sub-schema of the logical layer.

I have not found much work relating to methods for modeling, or
describing, a "user view" or external schema which are, I
believe, other names for an application.

The choice of description of the physical layer (or internal
schema) is dictated by the choice of implementation. The
description of a CODA.SYL.data base _dfff.ers. tram thLat of a
relational database which is different from that of a
hierarchical database.

Rog!r W. Gale

4 39 PDES-mod-2

3/20/85

Appendix I

Letters on Critical Issues

Written During Initiation Effort

43

PRODUCT DEFINITION DATA SCOPE

The PD in PDES stands for Product Definition. It is eMy to speak freely of PDES but it is
difficult to establish just whet is Product Definition. In this paper I will offer a few thoughts
about what sorts of data might be within the scope of Product Definition.

For the moment, let us consider four cla of data. The first I will name Product Data. This is
data about the objects to be manufactured. Produ Data is mostly setting requirements stated in
terms of functional and physical characteristics which should be prisent in the objects when
they have been manufactured It Includes text and geometry data as well as alpha-numeric data
The second I will call Production Data. Closely related to Product Data, this data describes how
the objects are to be manufactured. The third I will call Operational Data. This data is closely
related to Production Data but describes the events of production, such as lot size, schedule,
sequence of assembly, etc. The fourth class I will call Resource Data. This data is closely
related to Operational Data, but it describes the rtesourc hat are involved in operations, e.g.,
machines, people and money.

Product Definition Data probably includes all Product Data, most Production Data, some
Operational Data and little or no Resource Data.

Now let us think about a method for documenting the Product Definition Data Scope and
establishing its content

For yeas we have considered the use of computers from the standpoint of automating particular
processes. Planning methodologies were baeed upon establishing the relationship of data to
processes. There is already an activity going on related to STEP wherein a very complicate
matrix is being developed esseitially relating process to data modified by life cycle stages.

Now that we have data mean ment technologies such as data base manqiient systems, we can
realize that data is a shareable ase which can be considered on its own merits. This is as true
of the data which describes product as It is of any other data within an enterprise. I suggest that
we should consider the Product Definition 3pe as a data scope In the Data Scope we become
interested in how etere etedt!L

(The tool for describing a data scope is the some tool that we can use to define the Logical Layer of
PDES. That is a logical data model. The data male] which, with its companion method, has
already been most widely used for CIM data in this country is IDEF1. There is an extended
vrsion of the model now in work which provides improved definition of data rules and
constraints. However, when we are constructing a Data Planning Model we do not need to
identify all of the attributes of entities and fully normalize the model. It should be enough to
resolve non-specific relationships and establish the Key attributes of the Entities. We call this
a Key-Base•d model. The examples I use will be in the D. Appleton Go. Data Modeling Technique
which is essentially the same as the extended IDEF 1.

0
J03 July 25. 1915

EBQDUCT DEFINITION DATA SOPE

If we begin with the design of a product we find that, until the eavent of computers, the product
as-desiged' exists as a set of documents which completely describe the functional and physical

ciaracteristics of the product and each of its subdivisions. For the subdivisions we have used a
lot of terms such as assembly, subassembly, part and material. I will use the single term
"item" to include all of these.

Let us begin with some simple definitions and business rules-

I. An Item may contain other Items as components.

2. An Item may be a component of other Items.

3. A document which contains all or part of the characteristics of an Item is a Configuration C
Document

4. A Configuration Document may invoke other Configuration Documents to establish Item

characteristics

5. A Configuration Document may be invoked by other Configuration Documents.

6. Every Configuration Document has at least one Revision, the original, and may have
subsequent Revisions.

/. Different Revisions of a Configuration Document may invoke different Configuration

Documents.

8. Any Revision to a Configuration Document for an Item results in a Version of the Item.

9. Every Item has at least one Version, the original, and may have subsequent Versions

10. Different Versions of an Item may have different Components.

11. A Configuration Document defines characteristics for one or more Items.

From these rules we can construct the data model of Figure 1. I believe that this is the most
pivotal portion of the Product Definition data madel. All of the early efforts to establish the
requirements which the design must satisfy drive toward the "as-designed" product. In turn, it
drives the subsieqt manufacturing actions which first establish the "as-planned"
configuration and finally result in an "as-built" configuration.

J03 2 July 26. 1985

PRODQUC DEFINITION DATA SCOPE

AS-DESIGNED 0M O
A.U6hiD CONFIGURATION eao

A-OOIiI 3lW500C 3

K~l•[I IgDI iS15
FINUK) mIBacp0

MUM KKVM

I believe that a primary hurdle confronting CIM is to succesfully capture the "as-d:esigned"
protluct definition and trnse it in a marner that allows automated geoeration of the
".as-planned" configuration.

We have startedI to capture some of the Product Definition in CAD systems and IOES was an early
effort to aid automated truisfer of data from the CAD systems. However, the dMta in tociey's CAD
sysJtems is far" from a complete Product Definition. Furthermore, th dlata which are P.e ut
usually require a human in the loop for interpretation. For example, tolerencae have usually,
been expri~e in su a way that we cannot make a computer proq en interpret them to
automatical ly control the output of an NC machine.

S~~Let me suioes here that Configuration Documents may come in a variety of med~ia which canwinclude digital ta. I think that a CAD system file may be an of those document in the dta

modlel of Figure 1.

So far, I believe that the focus of InS CnM of Psuehss been an the very difficult task of

understanding and defining the datet by which we describe the shape of Items. In Figure I we
have a date made] which will provide e context into which we may fit the tme.e-defining date
models an which we have concentratedt

Another key element of Prouct Definition ise thatt atecific versmona of
"eha-dvignei" Items should cpu e arer in specific units of diniveredI product. This ws generally
eknown ad Effectivityd. Effectivitya usuraly is aigned at the time of Release. Releate, in Co cept,
sms to be mstabliming ae status for De onfigurnrtion of en Item which permits, or directs,
menufFcture of the Item.

J03 d d3 July 26. 19dr

pQDjJT DEFINITION DATA CO.PRE

There seems to be e popular opinion that whet we releae is Documents. A good friend of mine in
the Configuration Muaaien t business Suggests that what we really ougt to be releaing is
Item Versions. In Figure 2,1 have modeled the releae of Item Configuration Documents which
saems to be an attempt to do both. However, this model would only releme Configurat;on
Documents to the degree that they define specific Item!. Items defined on the Configuration
Documents which have no product usage ere not releaed.

A OI GTM AS,-DESIGNED .W

0 17M CONFIGURATION

L2W

FIA TI sIO

t-CESIOI SThLCTUM L., Kj
A-ATM i.A- ," IDU . 'VIM 051 em,10

A-0 i1U¶IXFW2

ITM UP)W10. yo

Ismx vtr. comm WC

FI4Uy .

J03 4 July 26, 191!5

PRODUCT DEFINITION DATA SCOPE

Now let me take this Product Definition data model a step or two further. It is common for the
people planning the manufacture of something which engineering has designed to find that they
cannot manufacture items in exactly the manner in which theV are described in the design. For
example, the designer of a multi-layer printed circuit board treats the board as a single item
for which he describes the circuit paths to appear on each of the layers. The manufacturing
folks have to take the multiple leyers apart and make several items, each with layers of circuit
on each side, and then bond them together to arrive at the item the design engineer described.
Thus, manufacturing has several items where the designer had one. These "phantom" or
"synthetic" items appear in the "as-planned' product structure for manufacturing and cause it
to contain items not identified as items in the "e-designed" product structure.

The result of the planning process is that there is an 'as-planned set of Items and Configuration
Documents which has a data model structure like that of the "as-deuigned" but is, fact a different
structure with some differing content The Configuration Documents for these Items are
documents created in the manufacturing planning process; operation and routing sheets is one
term for such documents These documents usually will refer to the "as-designed"
Configuration Documents to establish the configuration chain. The Entities and Attributes of this
structure must be given unique names and definitions. The logical relationship of the"u-designed" and "as-planned" structures needs to be established. Figure 3 suggsts a possible
logical relationship.

During the design process, we typically evaluate the functionality of the Items by modeling or
simulating the performance of the Item bond on the charateristics established in the
Configuration Documents This is the design process equivalent of the performance of tests on
actual product units once fabricated. The evaluations and their results should be related to the
pcific versions of the Items to which they apply and should be considered a part of Pro&uct

Definition Data

After Release, formal procedures and documentation are required to alter Configuration
Documents (at least for the "a-designed"). There usually is a sequence of a Reqest for Change
which, If approved, results in some sort of Change Directive. The Change Directive results in
specific revisions of one or more Configuration Documents and represents those revisions until
such time as the directed changes are incorporated into the contents of the Configuration
Documents. Thes Change Directives are part of Product Definition.

During the course of manufacturing, Items come into being which do not conform to the
har acterictics within the limits prescribed by the Configuration Documents. Some of those

non-conforming Items are found ecceptable for use "as-is". The "as-built" configuration
documentation seems then to consist of the "as-designed" plus differences introduced in
".a-planned" plus the documentation of Items having acceptable variances from the prescribed
limits.

0
JD05 5 July 265. 1985

- DEFINITION BAT SCOPE

00-

Iifl
i _____Il__________

mS ~I•

J03 6 July 26. 1985

gv

PRO0DUCT DEFINITION DATA SCOPE

With Figure 3 we now have a model of a central structure for Product Definition Data. Other
Produjct Definition Data probably has direct or indirect relationships to entities in this central
structura.

The "as-dewigned' and 'as-planned" Items are actually "logical Items". That is, the Itom
Identification represnts the st of characteristics which a Physical Itemn should have whenew~e
It actually isfabricated. When we move to the data about "us-built" we are now trying to keep
track of what is known about Physical Items. This is not hard if each Physical Itemn has a unique
identifier which distinguishes it from its siblings such asa serial number. We do not serialize
most Items. Instu we fabricate them in bunches, or manufacturing lots, atd it is the group that
we keep data about and what we know is Mostly statistics about groups of items. It will take a
little work and considerable thought to prod=c a logical data model in this are, which will
satisfy' the rules for such models.

I have constructed a modal which may, provide the core data relationships upon which we can
construct the relationships of the other Proukct Definition Data. Whet other data?? Well, hare
is where you have to start thinking.

I will finish by pointing out that the Mo111ls I have included are what we call Data Planning
modlels They' have only been developed to Indicate basic relationships and entities. They' are
key-based. That is, the entities have been tested for validity by establishing that they do have
"ky and the keys have been migrated through relationships as required by the methodlogy.
However, these modls are still quite abstract- Giving attibutes to the entitles and applying the
rules to attributes will caus the models to grow additional entities, perhaps byea factor of three
to five.

Anyone wishing to discuss these ideas maycall meat the phone number below or write to the
listed addresandlI will try to respnd

D. App leton Comnparry, Inc.
1 104 Highland Ave., Suite I
Manhattan Beech, CA 90266
(213) 318-2451

J03 7 JMy 26. 19B5

August 28, 198S

THE DOCUMENT PROBLEM
IN

PRODUCT DATA MODELINO

There are two ma)or forces at work driving most efforts to model Product Definition Date. One
of these is the "Paperless System", the idea that we should be able to eliminate the need for
paper copies and use e,!itronic copies of data instead. Marry of the people talking about.paperless" environments -.ave not given a great deal of thought to what that might mean. Many
of them in their minds se images of familiar documents on a CRT or other electronic display
device. The more advence• thinkers see only that data needed to answer a particular question
rather than the complete ::itents of one of today's documents.

The second force is Corr,:,uter Integrated Manufacturing (CIM). Here the visions are of
automated systems transle':ng designs into manufactured articles with very little or no human
intervention To accompi,sn this end, we will either have to give the automated system the
perception, intuition and reasning powers that people have, or alter the way the data is
presented and combined to define the product so that it can be interpreted correctly by
computers.

When we are working on t- Product Definition Data Model we keep bumping against the issue of
"documents". In one sense documents are external views of data. In another sense, many of the
documents are conceptual c -ties.

As an example, take "Drawing" Drawing seems to pass the tests as a conceptual entity because
it is a thing, it is a thing that the enterprise keeps data about (schedules, completions,
releases, revisions, etc.) and each instance has a unique identifier. A drawing is an aggregator
of requirements (characteristics) for items. The manufacturing enterprise has developed
significant business systems to utilize the drawing as the means of managing some of the
physical and functional characteristics of its products. Other documents, such as specifications,
are used to manage other characteristics.

When a team starts modeling product definition data, they soon reach" drawing" When we try to
factor the drawing into Its data elements, we find a variety of data aid Information. There are
such elements as a drawing number and title. There are general notes stating requirements in a
narrative form. There are am or more "views" of the shape definition. There may be various
kinds of annotation associated with elements of the shape definition. There may be a bill of
materials listing items which are constituents of the item being depicted by the drawing.

The IOES specification provides for a dr awig, drawing views, flag notes and generl notes as
entities and that thinking carries over into the PDES initiation thinking.

The PDES Logical Layer committee has found the "Drawing" aid is developing data models related
to presentation of "views". There have been discussioms as to whether or not the "presentation"
is a legitimate part of a conceptual scheme or is it not a user view or external schema In the
sense of the ANSI /X3/SPARC definitions.

DACOn
D. Appletor Company. Inc.

August 28, 1985

It is probably the case that there are both a conceptual drawing which is an aggregation entity
for data which defines iter- characteristics and a drwing presentation which is a user view of
the drawing data We have a hard time accepting these as different and separating one from the
other.

In order to achieve an unoe-standing of a TO-BE, conceptual drawing, we need to set some sort of
discriminator in place i --jr minds. Currently, I find it useful to ask myself if the conceptual
data model has a simple 7-.ysical implementation which could be computer interpreted. This
leads to realization that "'r awings" of the future are likely to be different from those of today in
more ways than just beinc -n digital format.

For example, "everbody" -"ows that drawings have general notes. I can model the statement that
a drawing has zero, one •" many general notes. That is small use to the developer of automated
planning systems wftn wr:,, a general note saysi s, "faces marked P shall be cadmnium platedper
O0-P-XXX, type II, class 3 and shall be painted with paint conforming to MIL-P-NNNN, color
number 276, except that c-osshatched areas shefl be plated but not painted"

With the present state of '"e art we are going to have to have a person interpret that note if we
are going to plan the produr 'on of the part.

In order to make "drawin. interpretable by computer, we are probably going to have to make
our elecronic drawing so "nat associations such as those between surfaces and their required
finishes .'N learly understandable to the automated planning system. This is going to requir!
some cultural change in the enterprise. In the Defense industry, the culture, standards andspecifications of the customer will also have to change.

The "drawing" is only one sample of the "document" problem How should we attack that
problem'?

I think that we are unlikely to be able to take the "giant step" to the future where the business is
managing the product data as electronic data and paper documents have beme merely one of the
ways to present the data. That Is particularly true when we consider that we are evolving from
paper documents to electronic dat Some of each will continue to exist for some time to come.

In the beginning we will probably have to treat the paper documents as business entities For
such entities, our conceptual model will be of the data the business relates to the documents.
This data is much like the date found in a library card catalog about the library collection. There
is the data required to select the document appropriate to the need and data about the location
where the document can be found. As we apply automation to the generation of Product
Definition, we will begin by treating the resulting data collections as electronic documents and
maintain and model the date in much the same manner as for the paper documents.

DACOW
2 0. Appleton Company, Inc

August 28, 1985

S
Oradually, as we begin to better understand what it is that we are domg, we may commence to
model and manage the product definition date in a way that capitalizes upon the evailable
computer technology. Th's will require changing the thinking of many people which is not a
trivial task,

The PDES project is grappling with the Conceptual Schema of some of the data which is
traditionally part of the orawing content. The prime focus is on the definition of an item shape
This is data which has been captured in Computer Aided Design systems. There shape is
constructed from geometr,: elements such as lines, arcs, splines, etc. POES is building upon
the PDDI work which con aded that in order for computers to readily interpret the geometric
shape data, it is necessar) "o collect it into topological entities such as edges, vertices, faces and
shells.

Another look toward the T BE suggests that the Oroup Technology ideas of Form Features such as
holes, pockets, slots, grooves, etc. may also be used to collect geometric elements and give them
meaning.

The original versions of IGES were based upon the desire to find an intermediate format for the
transfer of data presently '.nd in CAD/CAM systems. I believe that the primary motivation of
PDDI was to find a more e',cient way to do what IGES did and add some ability to transfer date
not neccesserily found in e, sting CAD systems.

Neither of these projects rs demonstrated much thinking or modeling of the relationships of the
data they have modeled to other product'definition data

When we examine the PDDI aid PDES thinking, we still find that they tend to model documents
and include presentation elements in their conceptual schemata. For example, they provide for
"color" attributes which have no bearing upon the meaning of the data The "views" found in a
drawing tend to appear ms proposed conceptual entities. If there is a three-dimensional model of
the shape of an item, views ere not required to define the Item. Views are then a projection of
the three-€dimensional shape onto a two-dimensional surface for presentation to people.

Another problem encountered when we are trying to model documents rather than data is that a
particular kind of document may have cme to be used for many different purposes in an
enterprise. For example, in one enterprise, an Engineering Order (EO) is a document. It is
used to ram the release of up to ten drawingr. It is also us as the formal release of canges
to the content of a dawing prior to incorporation of the changes in a new version of the drawing.
It is used as a "stop order" to halt fabrication or procurement of parts. Occasionally the EO is
even used as a request to purchase parts.

I&OI
3 DACON

D. Appleton Comnany. Inc

August 28, 1985

0
When we try to model something like this EQ we usually decide that these different things
documented on an EO are actually different categories of the EO. When we are working on a
conceptual schema with:,%* the handcuffs of documents we are more likely to model an
"engineering release", a manufacturing stop", a "procurement stop", a "change order" and a
"purchase order request" a: separate and distinct business entities

4 DACOM
0 Appleton Company. Inc

October 22, 1985

I

i had a number of arversations in Knoxville representing some disquiet about the Steering
Committee policy statements about the relationship between POES and IGES. As a result I wrote
the attached memo.

I am sending an info copy to everyone I can remember having such conversations with si that
you can see my thinking written down.

1 would aporecate your views on what 1 have said.

I

T 11PD. Ao p e I cr n.
1 104 Higr'and Ave.
"ianhattan ?ewlc,, CA W"266

Phone: 217-3 :-Z4;I 4

I

October 2 1. 1985

To 1CES Chairman and the PDES Project Manager

From Rxger W Gale

Subject: Steering Committee Policy Statement that PDES Version 1.0 Shall Have the Same
Functionality as the Then Current IGES Version

The Steering Comrittee has issued a policy statement that version 1.0 of PDES shall have the
same funcicalitv as .I.e then current version of tOES. The problem is the defln".,= of
"functionality" If it 13 taker to mean, "the ability to transfer application data found in
computer graphics files", then i contend that we do not know what the "functionality" of an IGE$
file is because there is no knowledge of the meanings of the entities contained in a file. Another
way of stating this is, "we do not know the uses to which the ICES Entities have been put"' Tne
reason Vat "he meanings are not known is that IGES is essentially a "one schema" device. It has
been developed Drimarily as a transform from one internal c.-hema, a source CAD system, to
another, me iGES transfer file.

Some •pplication committees have attempted to inject some meaning through defined properties
such is the Eiectrical Committe witn the "Layer Property" to indicate that certain elements
-ep"esen! o.c','y e• , -c'. lers of a multi-layer mrnr'd circuit board. However,
wtnout the use of a Conceptual 3cnema, these will rema!, 'stlan of meanina witnout

-he oniv way Irn wri cn -.3ua' functorai tV couliO De esta iished v.- ,id be to develo p a 'onceotuai
Sch--ema ovrr the ac' at ageý 3an,ý e7a~s ~raz' 3o;,n to ~e le-r-nerts
,y` 3n 16E.., file This woula result, effectiveiy i. converging !fE. 3no PDE5 E believe tha me
resu; would necc:essitate the prcuction of an iGEZ fie wich no.t:. •roratl' rO. meet t'ie
cor~~t of ",ward compat i.,61iy" because it wculd remcve a:ir- wy aV•rea.•e' :er'nt t,
ex!--t'Cn 'moiemnentations. it would aisom•mnd ,ntrocuction of ... ,,e tc the ore-orrxe--sor
w,,:, :-: nc" now a part of :mi, iemer.tations •ar. example wc.,: :e a. ar;;c at:, ',yer-ng
sc~ee -,F " ':m._uterv~sior us.age).

'zr example. mn one enterpr~se :erforming the desigr of mecna-e " arts. vere .,'t:e a
-heme that l)v"r 10 of !he CADf -st.e.r fil e is re-ervec f- -;erlenrr wl',C rer•.e."

construction lines used as referenc;es for the constructlon of the -e-:metric r,.odei of a par'.
another enterprise, the choice mlqht be for 'ayer 20 to carry the -!7,e
known in the .orresoondinC :vE. flies would De that there ar-! nt!i'ies wncr nave a 1evel
asscia -ca-on There 1s ric ý,%, :'c"e * the geometry or, level 1 ̂ C :he case, an: 'e'-, "-
other, !s not r art of t!',e refrirn,',,n. of tne snaoe anm size :f the par. !n rEý _f " .r '

meaning must be transmitted from tr e sender of the i3E3 file to '.e receiver .v memo or cme
S mt-er . e-!h.." e "l.e oar :e ,-cr t y ' ter ret1 . ev ... :'"-

;'E31/GE3F.•nc

October 21, 198S

It is true that today, different CAD systems have different devices for capturing user-defined
meanings. What is designated by assignment of CAD entities to a layer in one system may be
accomplished with the use of a user-defined property in another There is reason to believe
that, for PDE3, there may not be a simple map from a CAD system "layer" to a "level" as there
is now in IGES. When the date meanings are understood through the use of a Conceptual Schema.
the "level" may not be found to be an approoriate device for such a meaning.

Phil Kennicott keeps insisting to me that there Is a conceptual schema for tOES. I keep trying to
tell him that I will believe that when I see it. By "see it" I mean expresseo in IDEFIX or IA
which are the only two languages I find with a comprehensible format for expression of most of
the content required for a Conceptual Schema.

An !OES "Level" or "Oroup Associativity" is not an IDEFIX Conceptual Schema Entity or
Attribute. It is an Internal Scnema, physical file entity which may take on many meanings
depending upon the source application, or even individual user. If the user "grouped" some
geometric entities with the Intenr tnat chey defined a hole, then the transfer file should tell me
that this is a "hole defining group" not just a group without a reason for being grouped.

I believe tlat because PDES is going to De developed with the three-schemra concept from the
beginning and IOES was mostly one-schema and at best two-schema, there is a low probability
trat there will te,,,,,,,.,'u",s mappings between them. Everyone involved in PDES including
the Steering Committee need to develop a deeper understendinc - the differences between IGES
arc PDES 1,,efcre maktag pronouncements onf chedulles and relatior, -nips.

Sam concerned that we ar.e about to embark on ;DES with a very ý7.realistic set of expectations,
-c? only among ourselve, nut IM, an edee w grs ieqree among "*e non-,articipants who are
aireacy making noses about POES being the integration tehnol.c%' ,ill

su.,-est that t+4,- is a topic which cumnt to be on the Agenda for !.e next -eneral M1eerg !r!
DroaeDiv for suDvseuent General Meetlnos.

;oger Gale
ronsultant
i neD 0.pp!eton Co., Inc.
S104 Highland Ave .Suite .
,-vnnttan eecn ,A 90C'A 6

Pt•.$!IGE;,Jnc

