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Abstract

A multi-input Muller C-element has frequently been used for joining signal transitions or
completion time detection in self-timed circuits. This paper presents an n-input Muller C-
element design which uses the multi-level login design technique and has a symmetric format
for any integer n > 2. In comparison with series-parallel MOS structure implementations
and C-element tree implementations, our design has fewer restrictions in terms of n. less path
delay, less delay variance from inputs to output, and less area consumption. Experimental
validation in this paper is based on an industrial standard cell library.

1 Introduction

A Muller C-element (5] is used as a basic component in the design of speed-independent
circuits. A C-element is functionally equivalent to an SR latch. Under the assumption of
unbounded gate delays it is not possible to guarantee that S and R will not be 1 simul-
taneously. This problem does not arise with -. C-element [4]. The output of a two input
C-element will equal the value of the inputs after both inputs have reached the same value;
otherwise the output remains unchanged. That is, if il and i2 are the two inputs and 0 is
the output, then the defining equation of the C-element is 0 = ii • i2 + 0- i1 + 0 - 2 [5]. A
two input C-element can be viewed as a logical and of two events, where an evw nt can be a
0-1 or 1-0 transition (7]. This behaviour is shown in Figure 1.

A C-element is commonly used for joining signal transitions to signal the completion of
an operation [1, 2, 3, 4, 6]. For example, the 16 output computational block in Figure 2 will
require a 16 input C-element to join all 16 completion signals in order to generate one signal
transition to indicate the completion of the block.

The output of an n-input C-element is 1 if all the inputs are 1 and it is 0 if all the inputs
are 0; otherwise its value remains unchanged [6]. The state diagrams for two-input and
three-input C-elements are shown in Figure 3, where the state is labeled "inputs/output".
The initial state of a C-element is having all inputs and its output zero. This is denoted by
the double circle in the state diagram.
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C-elements with large numbers of inputs are very useful and an efficient implementation
in terms of area and speed is needed. Two designs of multi-input C-elements have been used;
a series-parallel MOS structure [6] shown in Figure 4(a) and the C-element tree [4, 6] shown
in Figure 4(b). Because the C-element is associative, the tree implementation uses (n - 1)
two-input C-elements to form an n-input C-element. The input-output delay of the series-,
parallel MOS structure is less than that of the tree structure. However, the series-parallel
implementation is not feasible for large n. For this reason, most existing designs employ the
tree structure. The main disadvantages of the tree implementation are that it is very slow
and the variance in the delays over different input-output paths is very large.

In this paper we present an efficient design of a multi-input C-element. Our design is
symmetric and the variance in delay over different input-output paths is very small. In
Section 2 we derive a symmetric form of an n-input C-element and provide estimates of
delay and area. In Section 3 we demonstrate the advantages of our design by presenting
experimental results for C-elements with inputs ranging from 2 to 128.

2 Design of a Multi-input C-element

The target technology of our design is CMOS. Since inverted logic is faster than non-inverted
logic in CMOS, we will use and-or-invert (AOI) logic and inverters instead of and-or logic.
The defining equation of an n-input C-element with a reset is given by

OUT = ((Ih * I 2 .... In) + (I + I 2 +... + In)oOUT)o RESET (1)

where Ii, for i = 1,...,n, are inputs of the C-element, and OUT is the output of the

C-element. Using DeMorgan's law we transform Equation (1) as follows:

OUT = ((1, *12 .... I) + (h + 12 +... + I). OUT) 9 RESET (2)

= ((h.oI 2 ... *In)+(I,+2 +...+In)oOUT).RESET

= ((I 1 .I 2 .... o In) +O(I 1 2  +.In).O UT) + RESET

= (h.I 2oo...9In,)o(I,+1 2 +...+I,,)oOUT+ RESET

= (, e h1 *... e In) ((I 2 + . + I,) + -U-T) + RESET (3)

Equation (3) can be further decomposed to following equations. 0

NANDTREE = (1,* 12 ... In) (4)

NOR.TREE = (+I2 +... + I) (5)

OUT = NANDTREE * (NOR-TREE + OUT) + RESET (6)

4
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The above decomposition is very useful when it is mapped to a CMOS cell-based imple-
mentation. In Figure 5 we show a C-element design consisting of 3 parts: a NANDTREE, a
NOR-TREE, and a OAOPART (or-and-or), each implemented separately. The OAOPART
shown in Figure 5 remains the same for all values of n.

Therefore, we only need to find a proper NANDTREE/NORTREE implementation. In
the HP C34000 library [81, there are n-input NAND and NOR gates for 2 < n < 8. For
larger n, NANDTREE (NOR-TREE) can be further decomposed into two-level NAND-OR
tree (NOR-AND tree). When a two-level structure is not sufficient, we can use more levels,
i.e., use a nand-nor-nand three level structure to implement a NANDTREE or a nor-nand-
nor structure to implement a NORLTREE. Figures 6 (a) and (b) show the two-level and
the three-level implementations for NAND.TREE. In order to minimize the variance of the
input-output delays, the structure of the NANDTREE implementation is identical to the
structure of the NOR. TREE implementation.

We now provide estimates of delay and area for our design and compare them with the
tree implementation of a C-element. A comparison with a series-parallel MOS structure is
unnecessary since such an implementation is not feasible for large numbers of inputs.

Delay: For an n-input C-element, the input-output delay of a C-element tree implemen-
tation is equal to the number of levels in the structure multiplied by the input-output delay
of a 2-input C-element, where the number of levels is [log2 n], i.e.,

Dee,.(n) = [log2n] * ( 2-input Muller C-element delay ) (7)

;t [log2n] * ( 2-input NAND/NOR delay + OAOI delay) (8)
; flog2n] * OAOI delay + [log2n] * 2-input NAND/NOR delay

The input-output of our design is .

Dmuti(n) = OAOI delay + n-input NANDTREE/NORTREE delay (9)

The n-input NAND.TREE/NOR.TREE can be implemented by [log2n] stages of a NAND2-
NOR2 tree, and can be made faster by using [logn] stages of NANDm-NORm tree. There-
fore,

Dmati(n) <_ OAOI delay + [log2 n] * 2-input NAND/NOR delay (10)

ehviously, our design is much faster than C-element tree implementation for n > 2, although
both Dt...(n) and DmIti(n) are O(log(n)).

Delay Variance: In order to have less delay variance among the input-output paths in
our design, two sufficient conditions need to be met.

1. Transistors in the OAOI element of 1he OAO.PART must be sized so that the delay
from one OR gate input to the output and the delay from one AND gate input to the •
output is the same.

6
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2. the structure of NANDTREE should be symmetric and identical to the structure of
the NOR.TREE.

These two conditions are easily satisfied for cell-based designs, and they are a property of
the HP standard cell library. However, the tree implementation of an n-input C-element is
balanced only if n = 2F1 9g211. For this reason, the variation in delays among the different
input-output paths is very large.

Area: In comparing our design with the C-element tree implementation, the routing area
is not considered. Similar to the delay comparison above, the C-element tree has a big
overhead in terms of size due to the repeated use of the OAO.PART in every two-input
C-element in the tree. An estimate of the area of a C-element tree implementation is

Atr,,f(n) ; (n - 1) * (ANAND2 + ANOR2 + AoAoI + AINV) (11)

,z (n - 1) * (AoAoI + AINv) + (n - 1) * ANAND2 + (n - ) ANOR2

The estimate of area for our design is

Amuiti(n) -- AoMot + AiNv + An.input NANDTREE + A n-input NOR-TREE (12)

The n-input NANDTREE/NOR.TREE can be implemented by (n - 1) number of NAND2-
NOR2 elements, and it may have a similar sized implementation by using [logn] stages of
NANDm-NORm tree. Therefore,

Amuti(n) -_ Ao0oj + AINV + (n - 1) * ANAND2 + (n - 1) * ANOR2

Obviously, our design is much smaller than C-element tree implementation for n > 2, al-
though both At,...(n) and A.u.ti(n) are 0(n).

3 Experimental results

We present experimental results using the HP C34000 standard cell library (8]. The input-
output path delay is obtained by simulating a VerilogTM I model distributed with this cell
library. Wiring capacitances are included in the model. For each n-input C-element, both
the rise and fall delays for all input-output paths are simulated, i.e., 2n path delays are
collected. The path delay of an n-input C-element is taken to be the average of these 2n
delays. The delay variance among input-output paths is calculated by the difference between
the maximum input-output path delay and the minimum input-output path delay of all
input-output paths. The area of a design is computed as the sum of the area of all cells in
the design. The results are shown in the Table 1. In this table, the name of Muller C-element
suffixed with "A" is the series-parallel structure implementation, the name suffixed with "B"
is our design, and the name suffixed with "AT" is the C-element tree implementation using
"mullerC2AW, and the name suffixed with "BT" is the C-element tree implementation using
"UmullerC2B".

'Verilog is a hardware description language, and it is a trademark of Cadence Design Systems, Inc.
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min (nsec) max (nsec) avg (nsec) max - min (nsec) I area (p2)

mullerC2A 2.8 3.6 3.2 0.8_ 3319_ _

mullerC2B 2.9 J.2 3.0 0.3 4085
mullerC3B 3.0 3.1 3.1 0.1 4596
mullerC4B 3.0 3.3 3.1 0.3 5107
mullerC5B 3.0 3.5 3.3 0.5 5874
mullerC6B 3.9 4.5 4.1 0.6 6384
mullerC7B 3.9 4.8 4.2 0.9 6894
mullerC8B 3.9 4.6 4.2 0.7 7661
mullerC9B 3.9 4.4 4.1 0.5 6384
mullerC16B 3.9 4.4 4.2 0.5 16343
mullerC32B 4.2 4.8 4.6 0. 32175
mullerC64B 4.4 4.9 4.6 0.5 61287
mullerC128B 5.3 6.0 5.6 0.7 122063

mullerC2AT 2.8 3.6 3.2 0.8 3319
mullerC3AT 2.8 7.9 5.9 5.1 6638 0
mullerC4AT 6.0 7.9 6.9 1.9 9957
mullerC5AT 6.4 12.1 8.6 5.7 13276
mullerC6AT 6.5 12.1 9.6 5.6 16595
mullerC7AT 6.0 12.1 10.2 6.1 19914
mullerC8AT 9.3 12.1 10.6 2.8 23233 •
mullerC9AT 9.7 16.3 11.7 6.6 26552
mullerC16AT 12.5 16.3 14.4 3.8 49785
mullerC32AT 14.5 20.0 17.9 5.5 102889
mullerC64AT 19.0 24.7 21.7 5.7 209097
mullerC128AT 22.3 28.9 25.4 6.6 421513 0

mullerC2BT 2.9 3.2 3.0 0.3 4085
mullerC3BT 3.2 7.4 5.9 4.2 8170
mullerC4BT 7.2 7.6 7.4 0.4 12255
mullerC5BT 7.1 11.6 9.0 4.5 16340
mullerC6BT 7.5 11.9 10.3 4.4 20425
mullerC7BT 7.5 11.8 11.1 4.3 24510
mullerC8BT 11.4 12.0 11.7 0.6 28595
mullerC9BT 11.5 15.8 12.6 4.3 32680

mullerC16BT 15.7 16.5 16.1 0.8 61275
mullerC32BT 19.9 21.1 20.4 1.2 122635
mullerC64BT 24.1 25.6 24.7 1.5 257355
mullerC128BT 28.3 30.1 29.1 1.8 518795

Table 1: Delay and delay variance and area comparisons of Muller C-element 0

8



Figure 7 shows the path delays in terms of 1og 2n. As expected, the path delay of the
C-element tree is approximately equal to [log2n] * K, where K is the delay of a 2-input
C-element including wiring delay. Our design is much faster than the C-element tree im-
plementation, and path delay grows very slowly as n increases. For example, our 32-input
C-element design is 3.89 to 4.43 times faster than C-element tree design. Figure 8 shows the
delay variance among input-output paths in terms of n. The delay variance of our design is
small for any number of inputs, but the delay variance of the tree implementation is only
small for a balanced tree, i.e., where n = 2r[,g2nl. Finally, the area comparison between our
design and the C-element tree implementation is shown in Figure 9. In both our design and
C-tree implementation, the cell area grows linearly with n. However, the increasing area
in our design is due to its NANDTREE and NOR-TREE whereas the increasing area for
the C-element tree implementation is due to the number of 2-input C-elements. Therefore,
the rate of increase of area for our design is much smaller than for the tree implementa-
tion. For example, our 32-input design is 3.20 to 3.81 times smaller than the C-element tree
implementation.
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4 Conclusions
We have presented a new design for an n-input C-element. which is faster. has less delay
variance among input-output paths, and is smaller than the C-element tree implementation.
We have also demonstrated the advantages of our design using an industrial standard cell
library.

Acknowledgement

The authors thank the MOSIS group at USC-ISI for the netlist-to-parts service, the use
of the standard cell library, and the implementation tools.

References

[1] E. Brunvand and R. F. Sproull. Translating Concurrent Communicating Programs into
Delay-Insensitive Circuits. Technical Report CMU-CS-89-126. School of Computer Sci-
ence, Carnegie Mellon University, April 1989.

1
[2] I. David, R. Ginosar, and M. Yoeli. "An Efficient Implementation of Boolean Functions

and Finite State Machines as Self-Timed Circuits". ACM Computer Architecture News.
17(6):91-104, 1989.

0 [31 A. J. Martin et al. The Design of an Asynchronous Microprocessor. Proceedings of the
Decennial Caltech Conference on VLSI, pages 351-373, March 1989.

[41 T. H.-Y. Meng. Synchronization Design for Digital Systems. Kluwer Academic Publish-
ers, 1991.

S([5] D. E. Muller and W. S. Bartky. "A Theory of Asynchronous Circuits". Proceedings of
an International Symposium on the Theory of Switching, 29:204-243, 1959.

[6] C. L. Seitz. "System Timing". In Introduction to VLSI Systems. by C. Mead and L.
Conway, Addison Wesley, pages 128-262, 1980.

[7] I. E. Sutherland. "MICROPIPELINES", The 1988 Turing Award Lecture. Communica-

tions of the ACM, 32(6):720-738, 1989.

[81 The HP C34000 Standard Cell Library Data Manual (Draft). Hewlett-Packard Company,
Integrated Circuit Business Division, June 1992.

11


