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Chapter 1 

Introduction 

1.1     Overview 

The importance of the joint flexibility effects on the behavior of structural frameworks has been 
recognized for many years. This problem is relevant to diverse areas of structural engineering. In 
civil engineering for example, the commonly used methods of analysis and design of steel struc- 
tures are based on the assumption that the member connections behave as pinned or perfectly 
rigid joints. However, early experimental studies on steel frames revealed that few real connec- 
tions behave according to this assumption, and thus extensive research has been performed to 
characterize the behavior of flexible riveted and bolted beam-to-column connections. Besides 
the conventional steel building frames there are other civil engineering structures in which the 
flexibility of the joints can be important. For example, in steel bridges the degrading of the joint 
connections, besides other undesirable side effects, may significantly alter the dynamic character- 
istics of the structure. In mechanical engineering, it is important to assess the influence of body 
connection flexibility in vehicle structures which consist of irregular and complicated members 
connected by overlapping sheet metals fastened by spot welds. This is also the case in piping 
systems, in which in order to calculate the correct bending moment acting at the joints it is 
necessarv to take into account the flexible behavior of the connections. 

f 

In view of the above, it is important to have available a rational and effective methodology 
to take into account the effect of the joint flexibility in both the dynamic properties and the 
overall response of the structure. The goal of the present study is first to examine the modeling 
of structures with flexible connections by finite element methods. Secondly, the effect of the joint 
flexibility on the natural frequencies, vibration modes and on diverse response quantities will be 
examined. The results of this research project should contribute to the better understanding of 
the behavior of structures with flexible connections. The study can also be very useful for the 
safe and economical design of these complex structural systems. The modeling of structures with 
partially rigid connections is a complex and challenging problem due to many factors that will 
be discussed in the sequel. 

Due to the many factors and elements contributing to their behavior, the stiffness and other 
properties of the connections are usually known only with some degree of certainty. For example, 
the localized damping characteristics of a structural joint are the result of a complex combination 



of several physical phenomena. Moreover, the local damping mechanisms can vary significantly 
in different parts of the structure, thus making their evaluation very difficult. In those cases in 
which the value of these structural parameters can be experimentally determined, the measured 
quantities should be regarded as the mean value of a set of experimental observations. Indeed, 
the set of observed values represents a distribution of the structural properties, with the spread in 
the distribution being a function of the uncertainties due to measurement inaccuracies or system 
complexities. 

The best way to quantify through a rational approach the effects of the uncertainties in the 
parameters of the structural system is to use probabilistic methods, so that these structural 
parameters can be considered as random variables. The uncertainties can be mathematically 
modeled either as timevariant uncertainties or time-invariant uncer tainties. The model of systems 
with parameters that vary randomly in time are very complicated to analyze since the response 
of the system is statistically correlated to these parameters. In general, it is very difficult if not 
impossible, to quantify the probability structure of the uncertain parameters. Therefore, it is 
common to use certain simplifying assumptions such as Gaussian density functions, stationarity, 
ergodicity or white noise characteristics. In the second model the system has parameters which 
vary randomly in space only, and the expressions "random field or stochastic fields" are used to 
denote these stochastic processes. If the uncertainties are limited to localized points of the system 
(e.g.joints), then the random parameters are represented not by a continuous random field but 
by a vector of random variables. This latter case is more amenable to analytical treatment, and 
the present research is focused on this type of uncertainties. 

1.2    Literature Survey 

1.2.1     Structures with Flexible Connections: 

A review of the previous research work on this subject is presented in the sequel. For the 
organization of the presentation, the studies are divided into static and dynamic analyses. It 
must be pointed out that most of the reported research work on flexible connections is concerned 
with local deformation and stress analysis of the joints themselves [1, 2, 3]. Here, only those 
studies that deal with the overall effect of the flexible joints on the behavior of the structure will 
be surveyed. 

1.2.1.1     Static Analysis 

Most of the research on structures with flexible connections has been limited to static analysis. 
During the early sixties, the first methods to incorporate partially rigid connections to the tradi- 
tional matrix analysis procedures were introduced. Monforton and Wu [4] derived relationships in 
matrix form between forces and displacements at the ends of members with elastically restrained 
ends. To calculate the stiffness matrix cf a member with elastic restraints they proposed to 
modify the stiffness matrix of a member with rigid connections by multiplying it by a correction 
matrix.   The elements of the correction matrix are a function of two parameters referred to as 



the "fixity factors" of the member. 

Romstad and Subramanian [5] presented another procedure to evaluate the partial connection 
rigidity in the design process using modified element stiffness matrices, putting special emphasis 
on stability analysis. Significant changes in the buckling capacity of the structures examined were 
reported after incorporating the connection flexibility effects. To take into account the nonlinear 
connection behavior due to local yielding, they used a bilinear model for the moment-rotation 
curves. 

A linear static analysis of frameworks with elastic connectio- was presented by Lightfoot 
and Le Messurier [6]. The stiffness matrix for a prismatic member with elastic spring supports 
at both ends was obtained in a closed form. A correction matrix amending the perfectly rigid 
condition was employed to obtain the stiffness matrix for two types of structural members (grids 
and plane frames). The corrected stiffness matrix was defined in terms of fixity factors for all the 
possible degrees of freedom of the two models. 

Frye and Morris [7] also presented a procedure to incorporate the effects of flexible connections 
by modifying the stiffness matrix of plane frames. They proposed a method for expressing the 
moment-rotation behavior of all connections of a given type in terms of a single standardized 
function. A generalization of this procedure to three- dimensional steel frames was introduced 
by Ang and Morris [8]. 

A method to evaluate the drifts and moments of flexibly connected multi-story frames was 
presented by Arbabi [9]. The method, which is very simple to apply, gives exact results for 
symmetric single-bay frames subjected to static lateral loads. 

Chen and Lui [10, 11] introduced a method for the nonlinear static analysis of plane framed 
structures with flexible steel beam-to-column connections. To account for the flexible connections, 
the stiffness matrix of a frame element is first modified by adding rotational springs at the ends 
of the member. The rotational degrees of freedom of the original member are then statically 
condensed. The force- displacements relationships are written in incremental form to incorporate 
the nonlinear behavior.       ■* 

The nonlinear connection behavior as well as the geometric nonlinearity of the frame members 
were investigated in a study by Dhillon and Abdel-Majid [12]. A polynomial model was used to 
describe in a standardized form the moment-rotation curves of several types of connections. The 
secant stiffh ss coefficients of the beam-to-column connections were added to the stiffness and 
geometric matrices of the frame member using the same technique developed by Monforton and 
Wu [4]. Once they obtained the overall nonlinear stiffness of the frame member, the incremental 
equilibrium equations were solved through an iterative procedure. It was observed that the con- 
nection flexibility changes significantly the force distribution, causing a shift in bending moments 
from support to span. It was suggested that more economical structural design solutions could 
be found investigating the use of different types of connections with variable stiffness. 

Many of the aforementioned studies present different but equivalent methods to incorporate 
the flexible connection effects into the common matrix analysis procedures through the definition 



of an appropriate stiffness matrix. These methods can be found nowadays in some textbooks on 
advanced structural analysis [13]. 

1.2.1.2     Dynamic Analysis 

As mentioned before, most of the reported studies on structures with partial connection rigidity 
were limited to static analysis. Probably the first authors to study the dynamic behavior of 
these structures were Lionberger and Weaver [14] who examined the dynamic response of plane 
rectangular building frames. They adopted a bilinear relationship to approximate the actual 
moment-rotation curves. Axial deformations in beams and columns were considered negligible 
and the non-rigid connections were modeled by rotational springs at the ends of the members. 
The effect of finite connection size was taken into account by assuming that the portions of a frame 
element common to the intersections of beams and columns are rigid and introducing small rigid 
bars at each member end. The stiffness matrix of a typical member with these characteristics was 
developed. Damping in the frame was modeled using viscous dashpots at each floor level, where 
the masses were assumed concentrated. The possibility of eiasto-plastic behavior of the columns 
was taken into account by inserting rigid-plastic connections at the end of column members. The 
method was used to analyze a multi-story frame subjected to an impulsive lateral load. The 
example presented demonstrated that the joint flexibility causes an appreciable increase in the 
overall dynamic response of the structure. 

The vibrations of Timoshenko frames with flexible connections were studied by Yaghmai and 
Frohrib [15]. Using a continuous model, they derived the dynamic moment and shear slope 
deflection equations for a Timoshenko beam element with flexible joints. By employing these 
equations along with the compatibility relations, they obtained the equations of motion for a one 
bay multi-story plane frame. The determinant of the dynamic matrix yielded the characteristic 
equation for this structure. Different beam-joint models were formulated and both the rotational 
and translational components of the joint deformation were taken into account. The joint flex- 
ibilities were assumed to obey a linear load-deflection relation. The effect of the flexibility and 
geometric size of the connections on beams with rotatory inertia and shear deformation were 
studied with numerical examples. 

An analytical and experimental vibration analysis of framed structures was carried out by 
Kawashima and Fujimoto [16]. The energy-dissipating semi-rigid connections were idealized by 
rotatory springs and dashpots in parallel using the concept of equivalent viscous damping. The 
dynamic stiffness matrix was derived in an explicit form by means of a transfer matrix approach. 
The static stiffness, damping and mass matrices were obtained by expanding the elements of 
the dynamic stiffness matrix in power series with respect to the frequency of vibration and 
neglecting the terms higher than third order. A portal frame and an L-type frame with synthetic 
rubber connections were considered for the experimental investigation. The stiffness and damping 
factors of the connector were measured by a torsional free vibration test. The natural frequencies 
obtained from the test compared well against those predicted by the analytical formulation. 

The dynamic response of flexibly connected frames, considering the nonlinear behavior of the 
connections, was studied by Shi and Atluri [17]. A Ramberg-Osgood model was used to approxi- 



mate the actual moment-rotation characteristics for static and dynamic cases. A complementary 
energy approach was used to obtain the flexibility matrix of a frame member with rotational 
springs at its ends. Several numerical examples previously solved by other researchers were con- 
sidered in order to check the accuracy of the model. The results compared well for both static 
and dynamic problems. 

1.2.2    Uncertainties in Structural Parameters 

The studies in which this problem was examined can be divided into two groups. The first 
approach is to consider the complete structural model as a deterministic system and to perform a 
sensitivity analysis to study the influence that a variation in a structural parameter has upon the 
response characteristics. The second approach is based on a probabilistic analysis of the system. 
and the effects of the uncertainties are evaluated by examining the probabilistic character of the 
response. 

1.2.2.1     Sensitivity Analysis 

A unified and complete presentation of the mathematical theory of structural design sensitivity 
analysis can be found in the monograph by Haug, Choi and Komkov [18], where the treatment 
of this subject is based on functional analysis and linear operator theory. The sensitivity of 
the static response, eigenvalue problem and dynamic response of finite-dimensional systems is 
analyzed. Both direct design differentiation and adjoint variable methods of design sensitivity 
analysis are presented. Infinite-dimensional problems are also treated in some detail. 

An excellent survey of methods for calculating sensitivity derivatives for discrete structural 
systems was presented by Adelman and Haftka [19]. They examined most of the literature 
dealing with derivatives of static displacements and stresses, eigenproperties, transient response, 
and derivatives of optimum structural designs with respect to problem parameters. 

With regard to the sensitivity of eigenvalue problems, the early work of Fox and Kapoor [20] 
deserves to be mentioned. They developed techniques for computing the first-order derivatives 
of eigenvalues and eigenvectors for a generalized eigenvalue problem with symmetric matrices. 
Two formulations for the calculation of the eigenvector derivatives were presented: the first 
method is based on the differentiation of the matrices in the eigenvalue problem and it leads 
to a set of simultaneous equations. One drawback of this approach is that the resulting set of 
equations is singular and it is necessary to perform some algebraic manipulation to overcome the 
singularity. This method leads to an expression for the rate of change of an eigenvector that 
involves only the eigenvalue and eigenvector under consideration, and thus a complete solution 
of the eigenproblem is not needed. The second method consists of expressing the eigenvector 
derivative as an expansion or series in terms of the eigenvectors. The coefficients of the series are 
obtained substituting the modal expansion into the differentiated form of the eigenvalue problem. 
This approach requires to know, in principle, the complete solution of the eigenproblem. However, 
it is possible to approximate the derivative by truncating the modal expansion, as it is often done 
in structural response calculations. 

A general method for determining the sensitivity of structural response variables defined by 



an eigenvalue problem or by a system of equations was presented by Romstad. Hutchinson and 
Runge [21]. They studied the effect of changes in the design parameters represented by a first- 
order perturbation of the structural matrices. Particular emphasis was placed on the sensitivity of 
the solution of the generalized eigenvalue problem. The eigenvalues and eigenvectors were defined 
in terms of power series of the perturbation parameter. The series are convergent for sufficiently 
small values of this parameter [22]. The expansions are then substituted into the eigenvalue 
problem and the equations for each order in the perturbation are separated. The method was 
applied to a simple structural stability problem where the changes in the first buckling load and 
mode shape caused by small modifications of the structural parameters were considered. 

Nelson [23] presented a method to calculate the first-order derivatives of the eigenvectors 
for large eigenvalue problems. In this case, the modal expansion approach for expressing the 
eigenvector derivative may become prohibitively expensive. The proposed method also overcomes 
the singularity of the set of equations of the eigenvalue problem without destroying any bandness 
associated with the original matrices. 

A survey of methods for sensitivity analysis of eigenvalue problems for non-hermitian matrices 
was presented by Murthy and Haftka [24]. They pointed out the importance of incorporating 
the second order derivatives into the analysis, since eigenvalues are usually nonlinear functions 
of the structural parameters and a second order approximation offers a much wider range of 
applicability than the first order expansion. The authors presented a comparative analysis of 
the various methods available for calculating the derivatives oi the general eigenproblem and 
proposed some modifications to existing techniques. 

1.2.2.2    Probabilistic Analysis 

Randomness, defined as a lack of a pattern or regularity, is a common characteristic found in most 
engineering systems. There are two sources of randomness that can be observed in a physical 
system. One is a inherent irregularity in the phenomenon that makes impossible a deterministic 
description. The second source is the lack of complete knowledge about the characteristics of a 
given system and the proc^es that dictate its behavior. In principle, this level of uncertainty 
could be reduced by performing more observations of the system and improving their accuracy. 
However, sampling at all locations or at a relatively large number of points is usually impractical 
or uneconomical, and unavoidable measurements inaccuracies will tend to dilute the value of 
the information gathered. Therefore, the process of analysis and design must proceed on the 
basis of incomplete information about the medium. It is apparent from the preceding discussion 
that deterministic models can only be regarded as approximations to the actual physical reality, 
analogous to the linear models used as approximations to the actual nonlinear behavior of the 
systems. 

The randomness in the response of a structural system can be induced by the excitation or 
by the system operators. Problems in which the input is random and the coefficient matrices 
are deterministic have been studied intensively for many years, especially in the field of signal 
processing and random vibrations. The case of systems with random operators, with random or 
deterministic input, is much more complicated and many of the analytical and computational 
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tools for the analysis of these systems are still at the development stage. In structural mechan- 
ics the random operators assume the form of algebraic or differential equations with random 
coefficients due to the spatial statistical variation of the geometric or material properties of the 
systems. The variation in space of the attributes of a physical system can be modeled by means of 
random variables or random processes. The random processes in space are referred to as random 
fields. The concepts and applications of random field theory can be found in Reference [25]. By 
representing a random process by its values at a discrete set of points in its domain of definition, 
the uncertainties in the distributed properties of the system can be modeled as random variables. 

When the time response of the system is studied, the discretized form of the random field 
leads to a system of coupled ordinary differential equations with random coefficients. Although 
the formal study of the theory of random differential equations has been undertaken only recently, 
there is already a significant body of knowledge (see for example. References [26-29]). Many of 
these studies are devoted to fundamental mathematical concepts such as existence, uniqueness 
and stability of the solution, without focusing on methodology and practical applications. 

An engineering-oriented treatment of the subject of differential equations with random co- 
efficients can be found in Chapter 8 of a book by Soong [30]. Following a brief discussion of 
equations with constant coefficients and problems in which the coefficients have a completely 
erratic behavior in time (Gaussian white noise process), a more detailed analysis of problems 
with random coefficients that fall between these two extremes is presented. The perturbation 
technique was applied to obtain the approximate solution of a general vector differential equation 
with a random differential operator. The basic idea of the perturbation scheme is to expand the 
differential operator and the solution vector around their respective mean values via a Taylor 
series. By equating terms of the same order, the random system of equations is replaced by a 
theoretically infinite number of deterministic equations with random inputs. The random inputs 
are function of the randomness in the system since they depend on the solution of the lower order 
equations. 

The final goal in the study of random differential equations is the determination of the family 
of distributions of the response variables. This goal, however, is extremely difficult and usually 
impossible to achieve. Besides the mathematical complexity of the problem, it requires con- 
siderable information about the joint probabilistic behavior of the random coefficients of the 
equations. However, quite often the only information available on the probabilistic structure 
of the coefficients is the first two moments, i.e., the mean and correlation functions. In many 
cases, for example for reliability analysis, engineering decisions are also based upon the first two 
moments of the solution process. It may be more efficient in this situation to try to determine 
directly the so called moment equations, that is, the set of differential equations satisfied by the 
moments of the solution process. It can be shown that the moment equations of a given order 
contain only moments of the same or lower order which implies that the moments can be solved 
successively. Soong [30] applied this approach to the study of the random one dimensional wave 
equation and to a system of random spring-mass oscillators. Another procedures to obtain the 
solution properties outlined in Soong's monograph are the Truncated Hierarchy Techniques used 
in statistical physics. These methods, however, are not very popular for engineering problems. 
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A powerful approach for the solution of random differential equations is the so-called Stochas- 
tic (or Probabilistic) Finite Element Method (SFEM). This term embodies several numerical 
techniques used to simultaneously discretize and solve random differential equations. In its pre- 
vailing form, the SFEM involves the use of deterministic finite element techniques coupled with 
the perturbation method to estimate the mean and variance of the response of the system. The 
most attractive features of the SFEM are its conceptual simplicity and easy of implementation 
into existing finite element computer codes. A report on the state-of-the-art in stochastic finite 
elements and random fields was presented by Vanmarcke et al. [31]. This paper provides a 
brief overview of the fundamentals of random field theory, the second order representation of 
homogeneous random fields and their digital simulation. The problem of the discretization of the 
coordinate space of a random field is also examined. It is indicated that the resulting discretized 
stochastic representation and consequently, the accuracy of the solution, depends strongly on the 
finite element mesh size. An example of the SFEM formulation for static analysis of a structure 
subjected to deterministic loads is presented. The problem of misfit of members in assembled 
structures and the case of structures with elastic foundations are briefly considered. An outline 
for the application of SFEM to dynamic problems, eigenvalue analysis or time-history analysis, 
is also presented. 

Another excellent review on the application of finite element methods for the treatment of 
random differential equations can be found in the review paper by Benaroya and Rehak [32]. They 
described the use of both the perturbation method and the linear partial derivative approach to 
obtain approximate solutions for systems with coefficients which are stochastic processes in space. 
It was shown that both methodologies result in the same governing equations. In the linear partial 
derivative method the first and second order correction terms of the perturbation expansion are 
defined as partial derivatives with respect to the random parameters evaluated at the mean values. 
Benaroya and Rehak pointed out that the variance of the uncertainties must be small in order to 
obtain acceptable accuracy when only a few terms of the infinite expansion series are used. As 
with all perturbation methods, neglecting higher order terms can be justified only when there is 
a rapid rate of convergence of the series. The rate of convergence is controlled by the variance of 
the random parameters: the, smaller the variance, the better the approximation [32]. 

Additional discussions regarding the discretization of a random field may be found in the 
paper by Vanmarcke and Grigoriu [33] who evaluated the second-order statistics of the deflection 
of a beam whose rigidity varies randomly along its axis. In order to characterize the spatial 
correlation of the random material property, they defined a single parameter called the scale of 
fluctuation. The spatial discretization of the stochastic functions and the associated finite element 
mesh size depends on the statistical correlation of the underlying random field. The mesh should 
be fine enough for accuracy of computation but large with respect to the correlation length. The 
use of two meshes for computational efficiency, one depending on the structural topology and the 
other on the correlation length, was proposed by Der Kiureghian [34]. 

The development of a SFEM based on second-order perturbation expansion for static and 
transient problems was presented in a series of papers by Liu, Belytschko and Mani [35-38]. In 
Reference [35] the authors presented one of the first consistently derived SFEM for structural 
systems with uncertainties described by discrete random variables. The mean value and variance 
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of the response vector is obtained as the sum of the response evaluated at the mean value of 
the random parameters and second order correction terms. Both vectors were obtained by time 
integration of the equation of motion. The second order correction terms are defined in terms of 
sensitivity derivatives and each derivative is obtained integrating the equations of motion. The 
authors later extended their work to nonlinear structural dynamics problems with random fields 
[36]. The probabilistic characterization of the random field can be defined in terms of a covariance 
matrix if the random field is discretized with the shape functions used for the discretization of 
the displacement field. In Reference [37] the same authors presented a development of the SFEM 
based on the potential energy principle that permits to account for randomness in the geometric 
properties such as the shape of the domain and boundary conditions. They also presented a 
formulation for static analysis of continuous media with large deformations. Several aspects of the 
computational methodology were addressed [36-38]. For instance, they showed that a reduction 
in computational effort can be obtained transforming the non-diagonal covariance matrix of the 
discretized random variables into a diagonal variance matrix. This transformation comprises the 
solution of an eigenproblem similar to that employed in modal analysis in structural dynamic 
problems. Only a few modes are required to capture the major characteristics of the probabilistic 
distribution of the underlying random field. However, contrary to the modal analysis method of 
structural dynamics where only the lowest eigenvalues are used, the highest eigenvalues have to 
be employed. 

Additional discussions regarding the application of SFEM for transient analysis can be found 
in the work by Liu, Besterfield and Belytschko [39,40]. In the application of this method for dy- 
namic analysis, secular (unbounded) terms arise in the higher-order equations causing erroneous 
results. The authors presented a methodology to eliminate these secuJarities via Fourier anal- 
ysis. In a later work, the same authors presented an application of the three-field Hu-\Vashizu 
Variational Principle as a basis to the SFEM [41]. The motivation for using this variational 
principle is that it permits to incorporate in a consistent manner into the analysis, probabilistic 
distributions for compatibility conditions, constitutive laws, the shape of domain and boundary 
conditions. The three stationary conditions of the resulting probabilistic variational principle 
are used to obtain the zeroth-, first-, and second-order variations in displacements, strains, and 
stresses; which can be later used to compute their statistics. 

Nakagiri, Hisada and Toshimitsu [42] applied the SFEM to time-history analysis of a linear 
mult i-degree-of-freedom system with uncertain damping. The equations of motion were decoupled 
making use of the orthogonality properties of the eigenvectors of the system. Since both the mass 
and stiffness matrices were considered to be deterministic, the eigenproperties also remained 
deterministic. The randomness in the damping values was introduced through modal damping 
ratios in the decoupled equations of motion. These equations were expanded following a second- 
order perturbation approach with the coefficients of the expansion obtained by time-integration. 
The calculation of mean and variance displacement time-histories for a deterministic ground 
acceleration excitation were selected to present numerical examples. 

In a more recent work, Kareem and Sun [43] also considered the time response of structural 
systems with uncertain damping using a second-order perturbation technique and introducing 
uncertain damping ratios in the decoupled equations of motion.   In Kareem and Sun's work 

13 



the excitation is assumed to be represented by a Gaussian white noise process and hence it is 
possible to obtain a closed-form solution for the problem. Both a time and a frequency domain 
formulation were presented. The numerical results demonstrate that the uncertainty in damping 
does influence the system response, although the effect is not very pronounced. Depending on the 
mean value of the damping ratio, the effects are more pronounced as the variance of the damping 
values increases. 

The accuracy and range of application of SFEM may be verified by means of a Monte-Carlo 
numerical simulation (MCS). This is another very powerful and general approach for the solution 
of random equations. It is particularly useful for complex problems where numerous random 
variables are related through nonlinear relationships. Its applications are limited, however, by 
the expensive computational effort associated with its implementation. Compared to Monte- 
Carlo simulations, the computational requirements of the SFEM are often one order of magnitude 
smaller [37]. The first step in the Monte-Carlo solution of random equations is the generation of a 
set of random numbers for each random parameter in the equations. The deterministic equations 
of motion are solved by using each number in the set and the corresponding solutions are then 
analyzed statistically [44]. The means and variances of the response quantities tend to the exact 
solution as the size of the samples of random parameters becomes infinitely large. Examples 
of the application of the Monte-Carlo technique can be found in References [45] and [46]. The 
accuracy of SFEM, as compared with Monte-Carlo simulations, is well documented in several 
numerical applications involving trusses, bars, beams, and plates [35,36.37,38,41]. 

Shinozuka and Deodatis [47] proposed to use a Neumann expansion to study the response 
variability resulting from the spatial variation of the material properties of structures subjected 
to deterministic static loads. Instead of beginning with the solution expressed as a truncated 
series, the inverse of the operator in the governing equations (the stiffness matrix in this case) 
is approximately obtained in terms of a Neumann expansion. Replacing the approximate inverse 
operator in the equations of the system, the solution vector is at this stage expressed in a series 
form. An axially loaded rod with a Young's modulus which varies randomly in length was 
analyzed using the finite element method along with a first-order expansion of the inverse stiffness 
matrix of the system. In a^ollow-up paper, Yamazaki, Shinozuka and Dasgupta [48] used the 
Neumann expansion approach and the perturbation method to carry out a static finite element 
analysis of a plane-stress model considering a two-dimensional spatial variation of the material 
properties. The Neumann expansion was used in conjunction with the Monte-Carlo Simulation in 
a technique that they referred to as the Expansion MCS. The perturbation method was compared 
against the Expansion MCS and the Direct MCS (i.e., a simulation applied to the original random 
system). The numerical examples showed that the results obtained with the Expansion MCS 
compared very well with those obtained from the Direct MCS while requiring less computational 
time. The first and second order perturbation analysis also showed good agreement with the 
MCS when the range of variability of the properties is small. 

To study the effect of the uncertainties in the structural parameters on the natural frequen- 
cies and modes of vibration of the system, one needs to solve an eigenvalue problem in which the 
elements of the system matrices are random variables. The solution of this problem, referred to 
as the Random Eigenvalue Problem, are eigenvalues and eigenvectors which also random vari- 

14 



ables. The solution of random eigenvalue problems is a relatively new and challenging problem 
in applied mathematics that has attracted the attention of both mathematicians and engineers 
[45,49,50.51,52,53]. There are several solution methods available, such as asymptotic methods 
[49], integral equation methods [54], hierarchy methods [55], and perturbation methods. A rig- 
orous treatment of the subject is presented in the monograph by Scheidt and Purkert [51]. They 
only used the perturbation technique as the solution method because, as they pointed out, the 
other methods can only be used on a limited scale. The authors examined first the standard 
eigenvalue problem defined in terms of a symmetric deterministic matrix and a random pertur- 
bation matrix that satisfies the condition of being sufficiently "smalP in a certain norm. It is 
possible to show that, under these conditions, the perturbation expansions for eigenvalues and 
eigenvectors exist and converge. Closed-form expressions for the coefficients of these expansions 
up to the fourth order are given. They computed approximate values for the expectations and 
correlations in terms of previously defined correlations between the coefficients of the pertur- 
bation matrix. The generalized eigenvalue problem, which is the form of interest in structural 
dynamics problems, is also examined using the same approach considered previously to determine 
the expansions for the eigenproperties. However, the correlation relations were not computed ex- 
plicitly in this case. Mathematically rigorous discussions of several limit and existence theorems 
as well as a study of the eigenvalue problem defined in terms of random differential operators are 
also included in the monograph. 

It should be pointed out most of the studies on random eigenproblems are limited to the 
calculations of the first moments of the eigenvalues and eigenvectors. The calculation of the 
probability distribution of the eigenvalues and eigenvectors is a problem that has been solved 
only for a very few simple cases [51,56]. It was shown [51], however, that for the case in which the 
random quantities involved in the eigenproblem are weakly correlated, the probability distribution 
function of the eigenproperties tends to be Gaussian. 

One of the first studies on the solution of the eigenvalue problems with random matrices is 
due to Collins and Thomson [50]. They obtained expressions to define ihe differentials of the 
eigenvalues and eigenvector components. Based on these equations, they obtained the eigenvalue 
and eigenvector statistics a»1inearized expressions in terms of small variations about their mean 
values. The eigenvalue and eigenvectors associated with the longitudinal oscillations of a fixed- 
fixed rod and with a chain of equal springs and masses were calculated using the expressions 
developed. The validity of the formulation was confirmed by comparing the results with a Monte- 
Carlo simulation. In order to consider the correlation of the cross sectional area of the rod, they 
introduced a correlation coefficient matrix in which the elements are exponentials that decrease 
with the distance between the segments. 

Shinozuka and Astill [45] obtained estimates of the variance of the n-th natural frequency 
of vibration of a beam-column with random properties using a Monte-Carlo simulation. They 
considered the special case of a continuous model of a simply supported beam-column with 
rotatory springs. The spring constants and the static axial load were considered independent 
random variables with zero mean whereas the material properties (Young's modulus and material 
density) and geometric properties (cross sectional area and moment of inertia) were zero mean 
correlated homogeneous random functions. The results obtained using the MCS were compared 
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with the corresponding results using the perturbation method. It was found that the perturbation 
method provides a reasonable solution over a much wider range of variation of the material and 
geometric properties than would be found in practice. 

Hasselman and Hart [52] presented a method for computing the variance of the eigenprop- 
erties of large structural systems using a modal synthesis technique, which is compatible with 
Hurty's formulation of component mode synthesis [57]. The method is based on a first-order 
perturbation approach. The effects of modal truncation on the accuracy of the modal statistics 
were investigated and the results showed that component mode synthesis can be effectively used 
to compute the mean values and standard deviations of the eigenproperties. It was noted that 
the mean eigenvalues are the fastest to converge, followed by the mean eigenvectors, eigenvalue 
standard deviations and lastly by the standard deviations of the eigenvectors. The standard 
deviations of the eigenvalues and eigenvectors depend not only on the accuracy of the mean 
eigenvectors, but also on how well the derivatives of component eigenvectors are represented by 
the particular reduced set of component modes used in the synthesis. 

Hart also examined in a following paper [53] the problem of calculating natural frequencies and 
vibration modes of a structure acted upon by external static loading. This results in the structure 
being stressed for the eigenvalue analysis. The complexity of the problem is compounded by the 
fact that in order to formulate the geometric stiffness matrix for the structure it is necessary to 
solve first a static problem to obtain the values of axial forces in structural members. Therefore, 
if the structural parameters are random variables, there are two levels of randomness involved in 
the problem. The first level is associated with the uncertainty in the values of the axial forces 
used to compute the geometric stiffness matrix. The second level is associated with the solution 
of the eigenvalue problem. The numerical examples showed that the results obtained with the 
first-order perturbation model compared well with those obtained via a Monte-Carlo simulation. 
It was observed that as the system loading approaches the buckling load, the uncertainty in 
the system fundamental natural frequency also increases. Therefore, a probabilistic eigenvalue 
analysis is advocated for the design of a structure with highly stressed members. 

1.3    Scope and Organization 

The objectives of the present study is to investigate the dynamic properties (natural frequencies 
and modal shapes) and the dynamic response of structural systems with random flexible con- 
nections. The study is divided into two parts. In the first part the problem is examined from a 
deterministic point of view. The second part examines the problem from a stochastic point of 
view. The report is also divided in two parts: the deterministic analysis is presented in Part I 
and the stochastic analysis in Part II. Each part contains three chapters. 

In Chapter 1 of the first part a finite formulation is developed to incorporate the flexibility and 
the eccentricity of the connections. The flexible connections are modelled by rotational springs 
with linear moment-rotation relationships. The stiffness of the connections are defined in terms of 
non-dimensional "fixity factors". The effect of the connections on the mass and stiffness matrices 
of beam elements are represented by correction matrices that are added to the standard matrices. 
Numerical examples are presented to examine the influence of the connection characteristics on 
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the dynamic properties and the response to different dynamic loads. As an application example, 
the design response quantities of a building with flexible joints subjected to a seismic excitation 
defined in terms of ground response spectra are calculated. 

Chapter 2 of Part I contains a Sensitivity Analysis of structures in which the stiffness of the 
connections are deterministic quantities. The objective is to develop closed form expressions to 
calculate the derivatives of eigenvalues and eigenvectors with respect to the fixity factors based 
on a second order perturbation expansions. These expressions will constitute the basis for the 
stochastic analysis undertaken in the second part. Part I of the report concludes with Appendix 
A which contains the final expressions of the eigenvalue and eigenvector derivatives. 

In Part II of the report the stiffness of the flexible connections are regarded as random 
variables and a stochastic analysis of the problem is carried out. A Stochastic Finite Element 
Model (SFEM) is develop to take into account in a rational and systematic way the inherent 
uncertainty in the stiffness coefficients of the connections. In Chapter 1 the SFEM is used to 
characterize the probabilistic nature of the system eigenproperties. This requires the solution of 
a random eigenvalue problem. Second order perturbation expansions are used to calculate the 
statistics of the random eigenproperties. To validate the formulation and to assess its accuracy, 
numerical examples are presented in which the perturbation-based results are compared against 
Monte-Carlo simulations. 

Chapter 2 of Part 2 address the problem of the calculation of the statistics of the time 
history response of structures with random flexible joints subjected to deterministic excitations. 
It is shown that the solutions based on straightforward expansions contain unbounded terms. 
A solution methodology based on the method of multiple scales that is free of the problems 
associated with the straightforward expansion is formulated. The formulation to calculate the 
expected value and variance of the response of multi degree of freedom systems subjected to a 
simple loading case is presented. 

The final chapter of the report presents a summary and conclusions and some suggestions for 
future work. 



Chapter 2 

Formulation of the Finite Element Model 

2.1 Introduction 

In this chapter a finite element model of a beam element that incorporates the effects of the 
flexibility and eccentricity of the end connections on the dynamic behavior is introduced. Al- 
though different versions of the stiffness matrix of a beam with flexible end restraints have been 
obtained before, herea different approach is taken to define the finite element matrices in such a 
form that the effect of the connection size and flexibility can be clearly identified and separated. 
The formulation presented also provides the proper form of the consistent mass matrix for the 
first time. 

2.2 Effect of the Connection Flexibility 

For the dynamic finite element analysis of a two dimensional beam the displacement field W(x,t) 
is usually expressed in terms of four shape functions *V,(x) and the end displacements w\(t), 
9\{t), w2(t), B2(t) (see Figure  2.1): 

W(x,t) = {N(x)}{    M;V'     }=[N(x)}u(t) (2.1) 

where: 

[N(x)\ = [Nxlx); N2(x); iV3(x); N4(x)\ (2.2) 

with: 

x2        x3 

Nx(x)= 1-3-^+2^3 (2.3) 

2 3 

.V2(x) = x-2j+^ (2.4) 



x2        x3 

i.o 

(2.6) 

One could, in principle, use this displacement field to develop a finite element model for beam 
member with flexible joints at both ends. However, since the end rotations of two members 
concurring at a node are different, such a formulation would increase the number of degrees of 
freedom of the structural model. It is therefore, more convenient to formulate a finite element 
model in which the rotational coordinates are the joint rigid body rotations <t>\ and O2 instead of 
the usual end member rotations 9X and 92 (see Figure 2.1). The rotations 0, and Ot are related 
as follows: 

Ox = Bx + o,   ; i = 1,2 (2.1 

where o, is the additional end rotation induced by the flexibility of the joint. The rotations a, 
depend on the rotational stiffness A't and bending moment A/, : 

a,  =  - — ; 1 = 1,2 
A, 

(2.8) 

Substituting equations ( 2.7) and ( 2.8) in equation (2.1), the displacement field can be written 
as: 

where: 

W(xJ) = {N(x)]{v(t) + p(t)} (2.9) 

*? ~ \  W2(t) 
hit) 

;   P«)=< 

0 
Mi(Q 

0 
Ma(Q 

(2.10) 

We need to express the end-of-member moments A/i and A/2 in terms of the node displace- 
ments. This can be done substituting the assumed displacement field W(x,t) in: 

Mx(t)= EIw"(xJ)\x=0      ;     A/2(*)=-  £ I w"(xj) |X=L (2.11) 

This leads to: 

A/j  - £/   iV (x)        >> = £/ \N {x) 
r=0 

(2.12) 

A/2 + £/ ;V (x)\  _r p=-EI y (x)i  r * (2.13) 

The second derivative of the shape function matrix can be obtained from equations ( 2.3- 2.6): 
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f.V"(r)|        = -1 [-6. -4L, (), -21} 

A"U)|        = j-2 [6, 21. -6. 4L] 

(2.14) 

(2.15) 

We define two nondimensional parameters 71 and 72 as follows: 

/1 = 

£7 J_ 
L   A*i 72 = I   A', 

(2.16) 

These parameters characterize the linear behavior of the connection, and their values vary from 
zero for a perfectly rigid connection to infinity for a frictionless pin connection. Using equations 
( 2.10) and { 2.11), equations ( 2.12- 2.13) can be written in matrix form as: 

1 + 471 272 

27i -I-472 - 

El -6 -4L   6 -2L 

L2 

-6 -2L   6 -4L 

Solving for A/i and A/2 we obtain: 

A/i 
A/2 

1     El   T41    J 

e2 

(2.17) 

(2.18) 

where: 

0 = (l+47i)(l+472)  - 47i72 (2.19) 

and the elements aXJ are: 

[A] = 
«11     <*12     Qi3     «14 

a2i     a22     Ö23     <*24 

(2.20) 

ail     =     -«13 = -TO +272) 

al2    =    -4(1 + 372) 

au    -    -2 

(2.21) 

(2.22) 

(2.23) 
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6 t 
an    =    -«23 = -j (1 -h 2-yi) 

«24    =    -4(1 + 37!) 

Equation ( 2.18) permits to express the vector p denned in equation ( 2.10) in terms 
vector of end displacements v, as follows: 

where: 

P=i[S]* 

(2.21) 

(2.25} 

(2.26) 

of the 

(2.27) 

[5] = 
5/ 

si 

(2.28) 

and: 

5,  = 7i [an , «12 < an . «M] (2.29) 

52   = 72   [<*2l < «22 , Ö23 - «24] 

Substituting equation ( 2.27) inequation (2.9) we obtain the displacement field \V{xJ) in 
of the end displacements W\% Wi and the total end rotations <pi, <tn'- 

(2.30) 

terms 

W(xJ) = [N(x)} W +  5 P] 9(0 (2.31) 

The presence of the matrix [5] in the above equation reflects the effect of the connection 
flexibility. If the connections are rigid, then all elements of [5] are zero and equation ( 2.31) 
reduces to the classical definition of the displacement field in terms of the nodal displacements. 
The use of equation ( 2.31) in the development to be presented in the sequel will enable us to 
identify distinctly the contribution of the connection flexibility to the finite element matrices. 

2.3    Effect of the Connection Eccentricity 

In some cases the size of the end connections may not be negligible and its effects should be 
incorporated in the finite element model. The connections are represented in Figure 2.1 as short 
rigid bars of length lx and l2. When /i and h are not small values, the displacements w\. W} and 
w2< W2 are approximately related as follows: 
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U'l   = Wl   +   01 lx (2.32) 

w2 =\\r2  +  O2 '2 

Introducing a new displacement vector g: 

(2.33) 

9(0= { 

f Wilt) 
ox(t) 
W2{t) 

( <h(t) J 

and considering equations ( 2.32-   2.33), we can relate the vectors q(t) and v(t) as follows: 

2.34) 

*t) = [[I) + [X]]q(t) (2.35) 

where: 

[Al = 

0 /l 0 0 
0 0 0 0 
0 0 0 -h 
0 0 0 0 

(2.36) 

The separation of the transformation matrix relating v(t) and q(t) in equation ( 2.35) into 
an identity matrix [/] and another matrix [X] is done to keep the contribution of the connection 
size to the finite element matrices separately identified. 

Substituting equation ( 2.35) in equation ( 2.31) one obtains the displacement field in terms 
of the new end displacement vector: 

Wx,t) = [N(x)] [[/] + [R]}q(t) 

where the matrix [R] is defined by: 

[R] = ~ US) + D [X] + [5] [X]} 

(2.31 

(2.38) 

This matrix takes into account the combined effect of the flexibilities and eccentricities of 
the connections at the two ends. The first matrix in the definition of [R] reflects the effect of 
connection flexibility only, the second matrix reflects the effect of connection eccentricity only, 
and the last matrix introduces the combined effect of the flexibilities and eccentricities of the 
end connections. By setting one or more of these matrices to zero, the corresponding effects can 
be conveniently eliminated from the response computations. Substituting for [5] and [A'] from 
equations ( 2.28) and ( 2.36), respectively, into equation ( 2.38), and after carrying-out the matrix 
products, we obtain [R] in explicit form as: 
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0     r12     0      0 

w = 
1 

D 
^21      r22      r23     r24 

0      0      0     r34 

r41    r42    ^43    >*44 

The elements r,; are: 

r\2 = fiDL 

r2\ = -7*23 = 7l flH 

r22 = 7i *\2 + 6/171(1 + 272) 

^24 = 7i «14 + 6/27i(l + 272) 

^34 = -f2DL 

**41 = ~r43 s= 72 021 

7*42 = 72G22   -   6/1 72(1 + 27i) 

r44 = 72 a44 + 6 /2 72 (1 + 2 71) 

The two coefficients f\ and {2 are 
defined as follows: 

non dimensional parameters 

t  - h    ■     f  -h 

cb 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2-47) 

(2.48) 

These parameters will be referred to as the eccentricity ratios of the element. 

2.4    Equations of Motion 

The equations of motion for a vibrating beam element with flexible connections of finite length 
will be obtained using the Lagrange's equations for a discrete parameter system: 

dt\dq)       dq +  dq     W{t) (2.49) 

in which: 

q: Vector of generalized coordinates. In this case, the set of generalized coordinates are the 
joint displacements in equation ( 2.34). 

T: Total kinetic energy of the element. 
U: Total elastic potential energy of the element. 
Q: Vector of generalized non conservative forces. 

To apply equation ( 2.49) we need to express the energy terms of the beam element as function 
of the generalized coordinates. The total kinetic energy of the element takes the form: 

2 Jo 
m(x) W(x,t)2dx (2-50) 
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and considering equationt( 2.37} it is possible to write: 

T = -2q(t)T l[\t0} + [A/,]]?m 

where the matrices [Mo] and [M\] are defined as: 

[Mo] = f    rn(x) [X(i))T [y(x)] dx 
Jo 

[A*i] = WT [A/0] [R] + [Mo] [R] + [[Jib] WY 

(2.51) 

(2.52) 

(2.53) 

The matrix [A/o] is the conventional "consistent"1 mass matrix for a beam element, and the matrix 
[Mi] is a correction matrix due to both the flexibility and finite size of the connection. Using the 
definition of [R] in equation ( 2.38), it is possible to identify the contributions of the connection 
flexibilities and eccentricities to this correction matrix. It is noted that the fact that a new mass 
matrix is required for the dynamic analysis of a structure with flexible connections was missed 
in the previous studies. Moreover, the change in the mass matrix due to the combined effects of 
the flexibility and the eccentricity of the connection has not been reported before. It should be 
realized that the modification of the mass matrix is only due to the set of end coordinates used, 
since it is obvious that the massless rotational springs in the beam model cannot affect the total 
kinetic energy. 

Now we will turn our attention to the potential energy U in order to obtain the stiffness matrix 
of the finite element. The potential energy of a beam with flexible connections is composed of 
two terms: 

u = ue + u9 

The first term Ue accounts for the elastic deformation of the element: 

• * • s r«w * 
(2.54) 

(2.55) 

The second term U3 takes into account the rotational deformation of the springs modeling 
the flexible connections: 

U^^h\a\ + \K2a\ (2.56) 
1 
2 '   '   2 

Substituting the displacement field W(xJ) from equation ( 2.37) in equation ( 2.55) yields: 

U. = j««)T((A'o] +[A"iJH(«) 

where: 

[Ao] = I    El [N"{X)\     [N"(x)\ dx 

(2.5; 

(2.58) 
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[A",] = [ft]7 [A'o] [ft] + (A'o] [A1] + [[A'o] [R}]T (2.59) 

According to the above definitions, [A'o] represents the standard stiffness matrix of a beam 
element, whereas [A"i] is a correction accounting for the presence of flexible finite-size connections 
at the ends of the element. 

Now we need to express the potential energy of the rotational springs U$ in terms of the 
generalized coordinates. Using equations! 2.8), ( 2.10), ( 2.27) and { 2.28) we can write: 

V/l 1 T 

ai = -T2
=-DS*v (2-61) 

And using equation ( 2.35) to take into account the connection finite size we obtain: 

Ql   =  -jjRi* (2-63) 

where R2 is a vector with elements r2i, r22, r2z, r24 defined in equations ( 2.41 -   2.43), and A4 
is a vector with elements 7*41, r42, r43, r44 defined in equations ( 2.45 -   2.47). 

Substituting for ai, a2 from equation equations ( 2.60- 2.61) in equation ( 2.55), the potential 
energy U9 can be expressed as: 

v, = \f ■MX. t *W* .XI *? 7* 

-^2 R2 Ä2    +   pj A4 A4 (2.64) 

Finally, the total potential energy U in equation ( 2.54) is obtained adding the terms in 
equations ( 2.57) and ( 2.64): 

U = 5«(')T[[A'o] + [AM + [A2]]«(() (2.65) 

where: 

[A'2]= [§AJ£ + §A*f] (2.66) 

Substituting for T and U from equations ( 2.51) and ( 2.65) in the Lagrange's equation ( 2.49) 
and carrying out the derivatives, the equations of motion for a beam with flexible end connections 
become: 

[[M>] + [Mi]] q(t) +[[Ao] + [AM + [K2]] q(t) = Q(t) (2.67) 

where Q(t) is the vector of generalized non conservative forces associated with the nodal coordi- 
nates q, we need to calculate the virtual work SWnc of the distributed force field f(x,t) acting on 
the beam through a virtual displacement SW(x,t). From equation ( 2.37) we can write: 
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Jo 
HVnc    =     /    f(xj) SW(xJ) dx 

f    f(xj) [S(x)] [[/] + [*]]  dx 
Jo 

fiq (2.68) 

The elements of the vector of generalized forces are the terms multiplying each generalized coor- 
dinate qt in the expression of the virtual work. Therefore, writing equation ( 2.68) as: 

SWnc = Q(t)TSq (2.69) 

and comparing equations ( 2.68) and ( 2.69), we conclude that the vector of generalized forces 
Q(t) is obtained by adding the contributions of two terms: 

Q(t) = QQ(t) + Qx(t) (2.70) 

where the first term is the standard force vector for a beam element: 

QoW =   /    /(*,*) [N(xf  dx (2.71) 
Jo 

The second term in equation ( 2.70) stems from the presence of the flexible connections and 
it is defined as: 

Qiit) =   f    f(xj)dx  [R]T [N(x)}Tdx (2.72) 
Jo 

2.5    Explicit Form of the Element Matrices 

The element matrices will be only defined for the flexural effects (transverse displacements and 
rotations) since the connections are assumed to be rigid for the axial and torsional displacements. 
The matrices for a three-dimensional beam element can be obtained by combining the matrices 
associated with the flexural effects in the two principal planes of the cross section and adding the 
standard matrices for axial and torsional displacements. 

To obtain more conoact expressions for the correction matrices, we will define a new set of 
nondimensional parameters to characterize the connection flexibility. These parameters,referred 
to as the fixity factors of the element, are: 

l+37i 1 + 372 

The subscripts 1 and 2 designate the two nodes of the element, and 71, 72 are the nondimen- 
sional parameters defined in equation ( 2.16). For the three-dimensional case, it is necessary to 
define pairs of fixity factors at both ends of the element, corresponding to each principal plane 
of the cross-section. 
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2.5.1     Mass Matrix 

The mass matrix for a element with flexible connections of finite size is defined in equation ( 2.67) 
as the sum of two parts. The first component is the consistent mass matrix, which for an element 
with constant cross sectionai area and mass density can be written as follows: 

A/ol = 
m L 

420 

156 

22 L 4 L2 

symmetric 

54 

-13L 

13 L 

-3// 

156 

-22 L 4L* 

(2.74) 

in which: 

m: Distributed mass per unit of length. 
L: Length of the element. 

To obtain the explicit form of the correction matrix is necessary to carry out the matrix 
products indicated in equation ( 2.53). The algebra involved makes this task very burdensome. 
Therefore, a computer program with symbolic algebra capabilities [58] was employed for this 
purpose. The final expression of [M\] after all the matrix manipulations are carried out is: 

:•'■! - s 

-156ßi {vi>M2) 

54 32(fJ.\^2) 

13 1 ^4(^2,^1^/2) 

-4L235(fil^2Jl) 

-13 L2 34 (ni,H2,h) 

3I2J6(Mi^2,/i./2) 

symmetric 

-156/Ji (/i2,Mi) 

22I/33(/i2,/ii,/2)       -4£2.J»(/i3,Mi./l) . 

where the following auxiliary functions were introduced: 

3x(a,b)    =     (64 + 7a2fc2 + 55 a2b - 50 ab2 - 32(a2 + &2) + 

+     16a6 - 224 a +  196 b) / (39 R(a,b)2) 

32(a,b)    =     (l28 4-  14a262 + 5(a26 + a&2) - 64(a2+62) + 

(2.75) 

(2.76) 
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+ 32afe - 28 (a + 6)) / (.39 Ä(a.&)2) (2.77) 

J3(a,fe,c)     = 2 (%% - cfi(a,6) - 7 a2fe2  + 43 a26 -  16 a62 - 

- 32a2 + 36a6 -  112a) / (llÄ(a,6)2) (2.78) 

J4(a,6,c)     = 2 (l04 - C£2(a,6) - 21aV + 32a26 +  19a62- 

- 2ab + 64 fe2 - 1966) / (l3/?(a,fe)2) (2.79) 

J5(a,6,c)     = 2 (l6 - c2fi(a.6) - ce3{a.b) - 7 a2b2 + 31 a2b - 

- 32a2 - Safe) / (ä(O,6)
2
) (2.80) 

J6(a,6.c,d)     =     (48 - 2cd£2(ß*fe) - cs4(a.b) - ds4{b,a)- 

- 28a262 + 64(a26 + afe2) -  148ab)/ (3Ä(a,6)2) (2.81) 

in which the functions £j, £2^ -3 and -4 are defined as: 

£i(x,y)     = 32x2y2 - 55 x2y + 50 xy2 + 32 <x2 + y2) - 

- 328 xy + 224 x - 196 y 4- 560 (2.82) 

£2(x,y)     = 41x2y2 + 5<x2y + xy2) - 64(x2 + y2) - 

- 184 xy - 28 (x + y) + 560 (2.83) 

£3(x,y)     = 25 xV - 86x2y 4- 64 x2 + 32 xy2 - 160 xy + 

+     224 x 

£4(x,y)     =     55x2y2 - 64x2y - 38 xy2 -  100 xy -  128 y2 + 392 y 

and the function R(a,b) is given by: 

(2.84) 

(2.85) 

Ä(a,6) = 4 - ab (2.86) 

Figures ( 2.2.a-f) show the functions 3\ to 36, for the case c = d = 0, that is, when both 
eccentricity ratios are zero. The functions take a zero value when the fixity factors are equal to 
one. that corresponds to the perfectly rigid joints case. The surfaces representing the functions 
J2 and J6 in Figures ( 2.2.c) and ( 2.2.f) are symmetric with respect to the vertical plane defined 
by a - 6 = 0. The two functions J2 and ^6 are associated with the coefficients of the mass matrix 
that relate, respectively, the translational and rotational degrees of freedom at both ends of the 
element. All the functions have a unit value when the fixity factors represent a pin connection 
(that is, when a = fe = 0), with the exception of the functions ß\ and ^2- These two functions 
correspond to the coefficients of the mass matrix that relate translational coordinates. 

2.5.2    Stiffness Matrix 

The stiffness matrix for a element with flexible connections of finite size is given in equation 
( 2.67) as the sum of three parts. The first component is the standard stiffness matrix which, for 
an element with uniform cross sectional area and homogeneous material, is defined as follows: 
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[A'o] = 

6 

2E I U 2L* 

L3 

-6 -3L 6 

31 L2 -31 

(2.87) 

2Z2 

Here again to obtain the explicit form of the stiffness correction matrix a symbolic algebra software 
[58] was used. The outcome of carrying-out the matrix products in equations ( 2.59) and ( 2.66) 
and combining the two resulting expressions is: 

[A\ + A*2] = 
2EI 

L3 

-6QI (|ii,/x2) 

-ZLa2{ßuß2Ji) 

6«1 (/il,/i2) 

-3IQ2(MI^2,/2) 

symmetric 

-6ai (/ii,^2) 

3 I 02 (/i2^l,/2) "2 I2 «3 (^2^}j2 

where the auxiliary functions a, are defined as follows: 

-2 I2Q3(^1^2i/l) 

3Lo2(/ii,/i2,/i) 

-JL2Q4(/il./i2,/l,/2) 

(2.88) 

öl(a,^   = (4 - 2a* - a - ft) / Ä(a,ft) 

a2(a,6,c)     = 2 (2 - abc - ac - be - ab - a) / R{a.b) 

a3(a,6,c)    = (4 - 3c2(a6 + a + 6) - 3 a6c - 6 ac - 

- ab - 3a) / Ä(a,6) 

a4(a,6,c,d)    = (4 - 6cd(a& + a + 6) - 3a6(c 4- d) - 

- 6 6c - 6 ad - 4 afc) / R{a<b) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

Figures ( 2.3.a-d) show the functions a\ to Q4 , for the case c = d = 0. The four functions are 
equal to zero for the case of perfectly rigid joints. The functions a\ and a4, which are associated 
to coefficients relating the translational and rotational degrees of freedom at different ends of the 
element, present a symmetry with respect to the vertical plane defined by a - b = 0. For the 
pin connection case, the functions are equal to one, and the coefficients of the matrix defined in 
equation ( 2.88) become the opposite of the corresponding ones in equation ( 2.87). Therefore, 
for this case, the stiffness matrix of the element is the null matrix. 
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Note that since all the coefficients a, that define the correction stiffness matrix are positive, 
the potential energy of a structural system with flexible joints is always less than for a system 
with rigid joints. Considering the definition of the eigenvalues in terms of the Rayleigh's quotient, 
one could conclude at first sight that the eigenvalues of the first system will always be less than 
those with rigid joints. However, the mass matrix and consequently the denominator of the 
Rayleigh's quotient is also modified by the presence of flexible connections. Moreover, some of 
the coefficients J, that define the correction mass matrix have variable sign. Therefore, it is 
possible that some of the eigenvalues of the system with flexible joints, especially the higher ones, 
could be larger than those of the rigid joint system. 

2.6    Numerical Examples 

2.6.1     Example No. 1: One-Story Frame 

The simple plane frame shown in Figure ( 2.4) will be used for the first numerical example. In 
order to obtain an accurate description of the dynamic behavior of the structure, each column 
was discretized with 12 elements and the beam was divided into 24 elements. The total number 
of degrees of freedom was 141. The flexible connections are those in the union of the beam with 
the columns, identified as joint (a) and joint (b) in the figure. 

2.6.1.1     Effect of Flexible Connections on the Dynamic Properties 

The variation in the values of the six lower frequencies with respect to the fixity factors is shown 
in Figure ( 2.5). The fixity factors are assumed to be identical for both connections. It is observed 
that all the frequencies diminish monotonically as the stiffness of the connections are reduced. 
It is interesting to note that curves corresponding to the 5th and 6th frequencies intersect at a 
fixity factor equal to 0.973. From this point on, the difference between the frequencies increases 
as the fixity factors decrease. In Figure ( 2.6) the curves of variation of the natural frequencies are 
plotted normalized by diving them by the corresponding frequency of the structure with rigid 
joints. It can be seen that the 2nd frequency shows the maximum departure from the rigid joints 
reference. The reason for this seems to be that the second mode is associated to the deflection of 
the beam as a single element, as it can be seen in Figure ( 2.7.b). The relative variation seems to 
be less important for the higher frequencies, with the exception of the 5th frequency. The curve 
of this frequency is a nonlinear function of the fixity factor, as opposed to those of the remaining 
frequencies in which the variations are almost linear. 

The modal shapes of the portal frame corresponding to the lower six natural frequencies are 
presented in Figures ( 2.7.a-f) for three different values of the fixity factor. The height and length 
of the structure were scaled by a factor such that the modal shapes can be plotted in the same 
figure. It can be seen that the higher the modes, the more pronounced the effect of the flexible 
connections in the modal shapes. In general, the reduction in the value of the connection stiffness 
has the effect of "smoothing" the modal shapes in different parts of the structure. For example, 
this can be observed in the beam for the 1st and 4th modes and in the columns for the 2nd 
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and 3rd modes. The flexural modal deformation in these elements diminish as the fixity factors 
decrease. The crossing of the 5th and 6th frequencies previously pointed out can be noticed in 
the corresponding modal shapes in Figures ( 2.7.e) and ( 2.7.f). For the structure with rigid joints 
the 5th mode is symmetric with the modal deflection pattern of the beam associated with flexural 
deformations. The 6th mode, on the other hand, is antisymmetric with the flexural deformation 
pattern associated to the columns. For the structure with flexible joints and with fixity factors 
lower than the value at the crossing point, for instance equal to 0.1 and 0.5. the modal shapes 
are interchanged with respect to the rigid case. This can be seen by comparing Figures ( 2.7.e) 
and ( 2.7.f). 

2.6.1.2     Effect of Flexible Connections on the Dynamic Response 

We will consider now the influence of the flexibility of the beam connections on the dynamic 
response of the structure. In all the numerical examples the modal damping ratio was assumed 
to be equal to h% for all the modes, and both the initial displacements and velocities are assumed 
to be zero. 

First the response to a a step loading function acting on joint (a) in the horizontal direction 
will be examined. Figure ( 2.8) shows the response time histories for the horizontal displacement 
of joint (a) for three values of the fixity factor. The displacements are normalized by dividing them 
by the maximum value of the displacement of the rigid joints case. A normalized time was also 
used to plot the response: the time ordinates were divided by the fundamental natural period 
of the rigid joints frame. The different response curves oscillate about the static equilibrium 
position with peaks that increase for the low fixity factors. The effect of the flexible connections 
in the natural frequencies can also be seen in this figure. According to Figure ( 2.6), when the 
values of fi are reduced from 1.0 to 0.10 the fundamental frequency of the frame decreases up to 
a 72% of the fixed case value. This change can be noticed in the curves of Figure ( 2.8) since 
due to the type of excitation it is the first mode that governs the response. 

To emphasize the increment of the response due to the joint flexibility, Figure ( 2.9) displays 
the behavior in the initial i»stants of time. It can be observed that the maximum displacement 
is increased by 100% when the fixity factors are reduced from 1.0 to 0.1. This increment is even 
larger when the rotation of the joint (a) is considered. The time history of the response of joint 
(a) is plotted in Figure ( 2.10). The first part of the time history shown in Figure ( 2.11) reveals 
that the maximum rotation of the structure with fixity factors equal to 0.10 is more than three 
times that of the structure with rigid joints. 

Secondly we consider the response of the structure to an impulsive load acting on joint (a) 
in the horizontal direction. Figures ( 2.12) and ( 2.14) show, respectively, the normalized time 
histories for the horizontal displacement and the rotation of joint (a) for three different values of 
the fixity factor. The effect of the flexibility of the beam connections in the natural frequencies 
and the peak values of the response can be seen in these figures. Figures ( 2.13) and ( 2.15) 
show the initial behavior of the time histories, where it can be observed that higher frequencies 
participate in the initial stage of the response. 
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2.6.2     Example No.  2: Two-story frame 

In the next example we will examine the effect of the flexible connections on a non-symmetric 
plane frame. The structure, shown in Figure ( 2.16), was modelled with seventeen frame elements 
and a total of 42 dof. Only the connections between the beams and columns are assumed to be 
flexible. These are identified in the figure as joints (a) through (f). 

2.6.2.1 Effect of Flexible Connections on the Dynamic Properties 

Figure ( 2.17) shows the variation of the first three natural frequencies of the structure as a 
function of the values of the fixity factors of those joints. The fixity factors for joints (a) and (c) 
are assumed to be equal. The remaining connections are assumed to be all rigid in one case and 
all flexible with the same fixity factor equal to 0.7 in the other case. The solid lines represent 
the variation in the natural frequencies when all the joints, except (a) and (b), are rigid. The 
dotted lines correspond to a fixity factor equal to 0.7. The three frequencies decrease when the 
stiffness connections decrease. When the fixity factors of the other joints of the structure are 
reduced from 1.0 to 0.7, the curves have the same form but lower values. The variation in the 
frequencies normalized by dividing them by the corresponding rigid joint frequencies is shown in 
Figure ( 2.18). 

Figure ( 2.19) shows again the variation of the lower three natural frequencies but this time 
the fixity factors of the connections (a),(b),(c) and (d) of the beams at the lower level are simul- 
taneously varied. The remaining connections (e) and (f) are either assumed to be flexible with 
/i=0.7 or perfectly rigid. Figure ( 2.20) displays the variation of the natural frequencies normal- 
ized as explained before. The figure indicates that the 2nd frequency is practically insensitive to 
the reduction in the stiffness of the connections, except for values of /x less than 0.35. 

2.6.2.2 Effect of the Flexible Connections on the Response to a Harmonic Load 

The two story frame is subjected to a harmonic load acting in the vertical direction at the middle 
of the beam between joints (a) and (b). Any steady state response quantity associated with a 
particular dof of a structural system subjected to a harmonically varying load at a given point 
can be completely defined by the (Complex) Frequency Response Function. For a linear system 
with N dof, the Frequency Response Function for the r-th dof due to a force applied at the s-th 
dof is defined as: 

.v 
0rj 031 1 H„M = £ ^-P        ,    N2     r^ (2.93) 

where ft is the excitation frequency. 

Figure ( 2.21) shows the magnitude of the Frequency Response Function (FRF) corresponding 
to the vertical displacement of the point of application of the load. The joints (a),(b),(c) and 
(d) were assumed to be flexible and two values of the fixity factors were considered: 0.1 and 0.5. 
For comparison, the FRF for the frame with rigid joints is also shown in the figure. The driving 
frequency ft in the horizontal axis was normalized by dividing it by the fundamental frequency 
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of the structure with rigid joints. The three curves were also normalized with respect to the 
peak value of the FRF for the rigid joints case. As it was expected, the maximum amplification 
occurs for the lower values of the fixity factor. Moreover, it can be observed that the frequency 
corresponding to the peak values of the FRF also decreases with the fixity factors. When /i=0.1. 
the maximum amplification occurs at the 6th frequency whereas for //=0.5 and ^=1.0 this happens 
at the 7th frequency. 

2.6.3    Example No. 3: Ten-Story Plane Frame 

One of the transverse planar frameworks from a ten story unbraced steel building will be used 
to illustrate the effect of the joint characteristics on the dynamic properties and seismic response 
of practical structures. The structure is shown in Figure ( 2.22), along with its geometry and 
member properties. The model has 33 nodes and 90 dof. In addition to the distributed mass 
of the members, lumped masses of 2400 slugs due to the floor mass were added to each node. 
Only the beam-to-column connections were considered to be flexible and all the connections were 
assumed to be identical. 

2.6.3.1     Effect of the Flexible Connections on the Dynamic Properties 

Figure ( 2.23) shows the variation of the first five natural frequencies as a function of the fixity 
factors defined in equation ( 2.73). The natural frequencies were normalized by dividing their 
values by the frequencies corresponding to the structure with rigid connections. Observing the 
figure one can see that the flexibility of the connections has a more pronounced effect on the 
lower frequencies. This is an important characteristic for seismic analysis since the response ol 
these structures is generally dominated by the lower modes. Moreover, since the response is also 
strongly influenced by the frequency content of the earthquake motion, a proper consideration 
of the flexibility of the joints is necessary to obtain the actual values of the natural frequencies 
because resonant phenomena may be otherwise unexposed. 

The change in the first five participation factors with the joint flexibility is displayed in Figure 
( 2.24), where the participation factors have been normalized with respect to the corresponding 
values for a structure with rigid connections. It is observed that the lower participation factor, 
and consequently the relative importance of the first mode on the total response, decreases as the 
flexibility of the connections increases. On the other hand, the participation factor of the higher 
modes increases with the joint flexibility. Hence, the relative contributions of the higher modes 
to the seismic response become more important as the beam-to-column connections become more 
flexible. 

Figures ( 2.25.a-c) show how the different fixity factors alter the first three modal shape 
vectors. The modal shape vectors plotted in these figures are the horizontal displacements of the 
nodes located along the right column of the structure. Figure ( 2.25.a) shows that the effect of the 
joint flexibility on the first modal shape vector depends on the floor level considered. As expected, 
the modal displacement at the highest level increases when the flexibility of the connections 
decreases. However, this trend reverses for the lower floor levels. The joint flexibilities also 
affects the higher modal shapes in different way depending on the floor level considered. Figures 
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( 2.25.b) and ( 2.25.c) show the second and third modal shape vectors calculated with three fixity 
factors. As it can be seen from these figures, the location of the nodal points also changes with 
the fixity factors. 

In all the previous cases the size of the connections was considered to be negligible. The effect 
of finite size connections is studied next. Figure ( 2.26) shows how the fundamental frequency of 
the building is affected by the eccentricity ratio, defined in equation ( 2.18) as the ratio between 
the length of the connection and the member span. The three curves, which were obtained for 
fixity factor values of 0.1, 0.5 and 1.0, show that the first natural frequency increases with the 
eccentricity ratio. The rate of change in this frequency due to the finite connection effect is 
almost independent of the fixity factor, except for low values of this parameter. Inspection of 
Figure ( 2.26) reveals that the change in the natural frequencies is small: even for an eccentricity 
ratio of 0.1. the fundamental frequency increases only by 15% for a structure with fixity factors 
between 0.5 and 1. Figure ( 2.27) presents the variation of the second natural frequency as a 
function of the eccentricity ratios. In this case, the influence is even smaller than in the previous 
case. 

It was shown before that in the finite element modeling of a framed structure with flexible 
joints the mass matrix must also be corrected to account for both the flexibility and finite-size 
characteristics of the connections. As pointed out earlier, this fact was ignored in previous studies. 
In building structures the effect of ignoring the correction mass matrix is not important because 
the lumped floor masses are the dominant terms in the global mass matrix of the structure. 
However, the effect could be important for other framed structures. To examine this effect we 
will consider only the skeleton of the same structure in Figure ( 2.22) without the lumped floor 
masses. The global mass matrix is then only made up of the conventional consistent mass matrices 
representing the distributed mass of the members. The lower 20 natural frequencies calculated 
with the model using the corrected and the conventional mass matrices are shown in Figures 
( 2.28.a-d) considering four different fixity factors. Figure ( 2.29) summarizes the information 
and it shows the relative error in the calculated frequencies in each case, considering that the 
"exact" values are those obtained with corrected mass matrix. It is seen that this error varies 
with the frequency number#end, at the same time, is larger for the lower fixity factors. For the 
first ten frequencies the difference is small, but for the higher frequencies the error increases, 
although not in a monotonic way. The reason for this behavior seems to be the following. The 
effects that the changes in the flexibility of the joints have on the mass matrix of the element can 
be evaluated examining the variation of each one of its terms. For the case of equal variations 
of both fixity factors, the coefficients more strongly affected, are those that relate rotational dofs 
with themselves and those that relate rotational with translational dofs. The effect in the terms 
of the mass matrix associated with the translational dofs is rather small. Hence, the importance 
of the corrected mass matrix will be larger for those modes in which the node rotations have a 
prevailing effect. 

2.6.3.2    Effect of the Flexible Connections on the Seismic Response 

We will examine next the influence of the connection flexibility in the response of a structure 
subjected to an earthquake ground motion modeled as a stationary stochastic process. The seis- 
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mic input is defined in terms of a set of ground response spectra. These spectra were obtained 
from an ensemble of 50 synthetically generated time histories. These sample time histories were 
generated from a broad-band Kanai-Tajimi spectral density function. The accelerograms were 
then modulated by envelope functions to reflect the build-up, strong motion and decay phases 
observed in recorded accelerograms. Figures ( 2.30) and ( 2.31) show the mean relative velocity 
and pseudo acceleration spectra obtained after statistically processing the ensemble of time his- 
tory spectra. The response spectrum method was used to calculate the seismic design response, 
combining the modal responses according to a modified version of the SRSS rule [59]. Figure 
( 2.32) shows the relative displacement response at three floor levels as a function of the flexi- 
bility of the connections defined in terms of fixity factors. The displacements were normalized 
by dividir f their values by those corresponding to the rigid connection case. In all the cases the 
response always increases with the flexibility of the connections. Also, for a given fixity factor, the 
relative importance of the flexible-connection effect increases with the floor number. The same 
observation holds for the elastic force response. The variation in the total shear force and the 
bending moment at the base of the structure are plotted in Figure ( 2.33). Comparing Figures 
( 2.32) and ( 2.33), one can see that the joint flexibility has a more pronounced effect on the 
relative displacement response than on the elastic force response. It can be noticed that the rates 
of change of the variation of the displacement and moment responses increase notably when the 
fixity factors have a value less than 0.4. 

Finally, the influence of the connection length on the seismic response is examined. Figures 
{ 2.34- 2.36) show the effect of the eccentricity ratio on the relative horizontal displacement at 
three different floor levels. The values of the displacements were normalized with respect to those 
corresponding to connections with negligible size. As expected since the structure becomes stiffen 
the value of the displacements diminish as the length of the connections increases. This reduction 
in the response, however, is not significant: for a structure with rigid connections and eccentricity 
ratio of 0.1, the reduction is less than 15%. Comparing Figures ( 2.34- 2.36), one can see that 
the lower the floor level considered, the higher the influence of different values of the fixity factor 
on the connection-size effect. Figure ( 2.37) shows the influence of the eccentricity ratio on the 
design base shear. As the length of the connection increases, the base shear increases. This effect 
is more pronounced when t*e joints are rigid. 
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Figure 2.1: Beam Element with Flexible Joints and Connection Eccentricities. 
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Figure 2.2: Correction Coefficients for Mass Matrix. 
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Figure 2.3: Correction Coefficients for Stiffness Matrix. 
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Figure 2.4: One-Story Frame for Numerical Examples. 
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Figure 2.5: Natural Frequencies as Function of Fixity Factors. 
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Figure 2.6: Normalized Natural Frequencies as Function of Fixity Factors. 
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Figure 2.7: Scaled Modal Shapes of One-Story Frame. 
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Scaled Modal Shapes of One-Story Frame (cont.). 
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Figure 2.8: Response to a Step Load: Horizontal Displacement of Joint (a) 
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Figure 2.9:  Response to a Step Load:  Horizontal Displacement of Joint (a) (Initial Instants of 
Time). 
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Figure 2.10: Response to a Step Load: Rotation of Joint (a). 
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Figure 2.11: Response to a Step Load: Rotation of Joint (a) (Initial Instants of Time) 
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Figure 2.12: Response to an Impulse Load: Horizontal Displacement of Joint (a) 
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Figure 2.13: Respose to an Impulse Load: Horizontal Displacement of Joint (a) (Initial Instants 
of Time). 
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Figure 2.16: Two-Story Frame for Numerical Examples. 
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Figure 2.18: Normalized Natural Frequencies as Function of Fixity Factors of Joints (a) and (c) 
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Figure 2.20: Normalized Natural Frequencies as Function of Fixity Factors of Joints (a)-(di 
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Figure 2.22: Ten-Story Frame for Numerical Examples. 

51 



1.00 

0.30 
0.10    0.20    0.30    0.40    0.50    0.60    0.70    0.80    0.90     1.00 

Fixity Factor 

Figure 2,23: Normalized Natural Frequencies as a Function of Fixity Factors. 
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Figure 2.24: Normalized Participation Factors as a Function of Fixity Factors. 
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1.15T— 

fr 
§    1.10 

S 
km u. 

|   1.05 
i 

1.00 

I 1 

f 

FMly Factor 

Fh*f Factor • 0 50 v 

v 

»too. 

.. ■  FT 

IK 

9?' 

,M 
;(**' Fhrity Factor • 0 10 

*£, 
0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09   0.10 

Eccentricity Ratio 

Figure 2.27: Normalized Second Natural Frequency as Function of Eccentricity Ratios. 
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Figure 2.31: Pseudo Acceleration Ground Response Spectra 
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Figure 2.32: Normalized Design Displacement as Function of Fixity Factors. 
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Figure 2.33: Normalized Design Forces as Function of Fixity Factors. 

LOOT 

I 
Q   0.95 

0.90 

FbKy Factor * 0 10 

tV riiwy Fcctof .0»/ *' 

"> 
FMy Factor » 1.00' 

^ 

Ö.00   O.Öl    0.Ö2   0.Ö3   0.Ö4   0.Ö5   0.Ö6   0.Ö7   0 08   009   0.10 
Eccentricity Ratio 
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Chapter 3 

Sensitivity Analysis of Structural Eigenproperties 

3.1 Introduction 

It was previously mentioned that one of the goals of the present research is to characterize how 
the response of structures whose connections are not perfectly rigid is modified by changes or 
perturbations in the values of the stiffness coefficients of the connections. One approach to solve 
this problem is by means of a sensitivity analysis of the structural eigenproperties with respect 
to perturbations in the values of the fixity factors. 

Sensitivity analysis was first used to asses the effect of varying parameters in the mathematical 
models of control systems.    More recently, interest in automated structural optimization led 
to the development of methods to calculate the derivatives of structural response quantities. 
such as stresses, displacements, buckling loads and natural frequencies. The calculation of these 
derivatives with respect to the design variables (cross-sectional areas, widths, thicknesses, etc.) 
is required in all the optimization algorithms and it is the dominant contribution to the total 
cost of the optimization process. In addition, structural sensitivity analysis was also applied in 
approximate analyses, improvement of analytical models, and to study the influence of design 
changes without a trial and error process. 

* 
In this chapter, we will obtain closed-form expressions to calculate the derivatives of the 

eigenvalues and eigenvectors with respect to the fixity factors associated with the stiffness of the 
connections. This sensitivity information, besides providing the tools to understand and predict 
how the changes in the design variables (the connection stiffnesses) affect the dynamic behavior of 
the structure, will be the starting point in the calculation of the statistics of the eigenproperties 
when the stiffness values are regarded as random variables. 

3.2 Derivatives of Eigenvalues and Eigenvectors 

A central step in the calculation of the response of discrete- parameter multi-degree-of-freedom 
systems by modal superposition is the solution of the algebraic eigenvalue problem: 

{[A*] - Jx [A/]} 4 = 0    ;    i = 1.2 X (3.1) 
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where [A/] is the global mass matrix. [A'j is the global stiffness matrix, and _•. is the i - th natural 
frequency of vibration associated with the i - th modal shape vector ^t. The total number of 
unconstrained degrees of freedom of the system is .V. 

The global structural matrices are obtained by assembling the contributions of the finite 
element matrices in the usual way. For a structure modeled as an assemblage of frame elements 
with flexible connections, these matrices depend on the fixity factors of each element. Tc c.tudy 
the effect produced by changes in the stiffness values of some of the connections, the eigenvalue 
problem will be written as a function of the vector of fixity factors p: 

{[A'(/i)] - \t(p) [A/(/i)]} *,(JI) = 0    ;    i =  1,2 X (3.2) 

where A, = ujt
2 is the i - th eigenvalue and: 

fi = {jdX ß2 ••• m] (3.3) 

The subscript R represents the number of fixity factors that are considered to be the variables of 
the problem, i.e., the number of flexible connections. 

The eigenvectors 4>x associated with the eigenvalue problem in equation (3.1) will be normal- 
ized with respect to the global mass matrix: 

4>tili)T [A/(/!)] A(jt) =  1 (3.4) 

The changes in the global matrices produced by a finite perturbation of the variables from a 
set of initial values can be expressed in the form of a Taylor series expansion as follows: 

D R       R 

im?)] = [Al + Y. [A~]'« + 5 E E [*'«»] '■»*• <3-3> 
m = l m = l   n=l 

R R        R 

[Af(|l)]   =   [.V7]   +    £     [K]   *m   +   5   E   E    [C]   *m*n (3.6) 
* m = l m = l   n=l 

where the series is truncated at the second order. The following notation was introduced in 
equations ( 3.5) and ( 3.6). The variable St represents the change of each fixity factor from the 
initial state, 

<*>«  = px  - li% (3.7) 

where ji, the initial value of the t - th fixity factor. The system matrices evaluated at the initial 
state are denoted by: 

[A'j  =  [Kffl]    ;     [.V]  = [M (ß)\ (3.S) 

and the superscripts { and II denote, respectively, the first and second order rate of rhange of the 
system matrices, which are obtained as the derivatives of the system matrices evaluated at the 
initial state vector ß: 
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rrl d[h'(ß)\ 
0 ßr 

.„]   a   c?2[A'(/i)j 

M=A 

/<=/* 

-U 
#[A/(|i)] 

# Air M=M 

A/ // 
c?2[A/(/i)j 

n=n 
In order to obtain more condensed expressions, the following matrices are introduced: 

[A",] =  £  [*i] *»    :    [-Wi] =  £  [< 
m = l rn = l 

Ä        /? R       R 

[*'»! = 5 £ E [*'£»]    :    [-Wal = |lE K 
rn = l   n = l *"   m = l   n=l 

Equations ( 3.5) and ( 3.6) can now be written as: 

2 [K{ß)\ =  [Ä'] + £[A'i] + e2[K2] 

f 3.91 

13.10) 

13.11) 

(3.12) 

(3.13) 

[Miß)] = [A/] + s[Mi] + s2[U2) (3.14) 

The changes in the system matrices from a initial state are expressed in terms of a perturbation 
parameter s which is a book-keeping device that will allow us to keep track of the order of the 
terms in the expansions. The subscripts 1 and 2 identify, respectively, the first and second order 

contributions to the perturbed matrices. 

Akin to the previous representation of the changes in the system matrices, the changes in 
the eigenvalues and eigenvectors are defined through expansions which will be truncated at the 

second order level: 

A,(j* = Ä,+  f; A/m 6m +  £  £ A&, tm Sn 

m = \ m = \   n = l 

(3.15) 

R R       R 

m = l rn = l   n=\ 

The rates of change of the eigenvalues and eigenvectors are defined similarly to those of the 
system matrices given in equations ( 3.9) and ( 3.10), that is: 

X     = 
dX, 

'd\ir, 

d2Xt 

d4>, 
;   4f   = 

A"    = ,m"     dßm dßn 
s   4?.'   = 

ß=ß 

li=ß dßm dfJLn 

(3.17) 

(3.18) 

ß=ß 
Using the perturbation parameter notation, we can also write equations ( 3.15) and ( 3.16) 

as: 
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A,(/j)  =  A, 4- £ A,,   + £* A,2 (3.19) 

A (M) = Ä + 5^.  + -:2<t>t 

where: 

ft P 

m = 1 m = 1 

13.20) 

(3.21: 

m = l n = l **   m = l n=l 

Substituting equations ( 3.13- 3.14) and ( 3.19- 3.20) in equation ( 3.1), the perturbed eigen- 
value problem can be written as follows: 

{([Ä] + s [A',] + c2 [A'j]) - (Ä. + <r A„ + r2 A,2) 

([Xf]+e[A',]+e2[Jtf,))} (* + «*, + «'*,) = 0 (3.23) 

Collecting the terms of the same order in the perturbation parameter, we obtain the following 
hierarchical equations: 

0(£°) :     {(A'1-Ä, [A/]} ^  = 0 (3.21) 

Off1)  :     {[Ä]-X, [A/]}*,-    = 

=   {X, [A/,]-[A,]}*, + A„  [M] ^ (3.25) 

0(J2)  :     {[Ä]- Xj [£]}*,  = 

= {X, [A/,] - [AM} #,-, + {X, [Af3] - [A',]} Ä + 

*+ A„ [A/,] 4>, + A„  [A/] *,, + A,2 [A/] 0, (3.26) 

The normalization condition ( 3.4) can also be expressed in terms of the perturbation expan- 
sions. Substituting equations ( 3.11- 3.14) in equation ( 3.4) leads to: 

(*, + £*„ + e2*i2)
T {[Al] + f[A/,] + f2[.Wa]}(* + £*„  + ^2*,2) = 1        (3.27) 

The following equations are obtained after carrying out the products and collecting the terms 
of the same order in the perturbation parameter s: 

0(e°] 

0(El) 

Off2) 

4? [A/] Ä = 1 (3.28) 

2 4>J [A/] <fc,  + #>/,]*, = 0 (3.29) 

24>J [M\ 4>,7 + 24? [Mi] *, + i-l [•*! *„ + *f I-W2] * = o    (:':W 

65 



Zero-th Order Equations: The first equation ( 3.24) in the hierarchy of equations ( 3.2 4- 3.26.) 
reproduces the original or unperturbed eigenproblem, whose eigenvalues and eigenvectors are As 

and ^, respectively. Examining the corresponding 0-th order equation ( 3.28) we note that 
the original eigenvectors # must be normalized with respect to the original mass matrix [A/] . 

First Order Equations: To_obtain the first-order correction term for the eigenvalues WP pre- 

aultiply equatic 
This leads to: 

multiply equation ( 3.25) by 0t  and take advantage of the symmetry of the matrices [A'] and [M] 

K  = % {[A'i] + Ä. [.Will +i (3.311 
Each first order perturbation term in this equation is defined in terms of a summation of first- 

order derivatives. If we substitute these summations and equate the coefficients of each variable 
<^m . we obtain the following expression for the first-order eigenvalue derivative with respect to 
the m - th variable: 

>L = #"{[**] - 'x< {■<}}+> (3:?2> 
The corresponding first-order correction term for the eigenvectors, however, cannot be ob- 

tained directly from equation ( 3.25) since the coefficient matrix in the left hand side of equation 
( 3.25) is singular. The solution ^ would not be unique and it cannot be found without some 
previous reduction of the rank. We will use here an alternative approach to solve for the first-order 
perturbation terms ^tj . The method consists in expressing these terms as a linear combination 
of the eigenvectors of the unperturbed system, which constitute a valid set of basis vectors in a 
A'-dimensional space and hence they can be used to represent any iV-th order vector: 

v 

*n  =  [*] ft,  = £*i.*j (3-33) 

where [<£] is the modal ma.rix of the unperturbed problem, and the coefficient J:J1 represents 
the projection of the perturbation term 0 over the vector ^ of the basis. It is convenient to 
rewrite equation ( 3.33) as: 

v 

*.,  = %.*i +    E   J**j (3;*4) 

in which we have defined 7,, = 3Ul. If we substitute this expansion into the first-order equation 
( 3.25), we obtain: 

.v 

We can now premultiply this equation by $    . with j ^ i and make use of the orthogonality 
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relationships for the eigenvectors of the unperturbed system. It is straightforward to show that 
this leads to: 

Jo. = Ir-^-r I #" IA< Ml - [A'i]} Ä   :   * * 7 (3.36) A, - A, 

Recalling that, according to equation { 3.11), the first order terms [M\] and [A*i] are defined 
as a summation of R first-order derivatives, we can equate the coefficients of each perturbation 
variable, and write equation ( 3.36) as: 

JtJl    =     E    3L Srn      ;       i?j (3.37) 
m = l 

where: 

j- = (^)*nM<<]-K]u; «^ (3.38) 

Equation ( 3.29) will allow us to determine the remaining coefficient 7M in the definition of the 

first-order correction vector ^M in equation ( 3.34). If we premultiply equation ( 3.34) by ^ [A/] 
we obtain: 

7i,  = *r [A/] *,-, (3.39) 

Substituting for the right hand side term from equation ( 3.29) in equation ( 3.39). we have: 

7„  = -\4t[Mi]*i 

Finally, substituting for [Mi] from equation ( 3.11) and equating coefficients we obtain: 

(3.40) 

*i = E iLs" 
m = l 

where: 

Ml Ä 

(3.41! 

(3.42) 

Substituting for 3t]l from equation ( 3.37) and for 7M from equation ( 3.41) in equation ( 3.34). 
<frXi can be expressed as: 

*, = E [iL * + E 4, *,) ^ (3.43) 

Comparing the second of equations ( 3.21) and equation ( 3.43) we conclude that the first-order 
derivatives of the i - th eigenvector can be written as follows: 
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4?   = -.' 
^Ijn '«rr Urn  *0 m = 1.2 R (3.44) 

Second Order Equations:   To obtain the "2nd order correction terms for the eigenvalues we 
- y 

premultiply equation ( 3.26) by <frt  and use again the symmetry of the matrices [A'] and [A/] . It 
is straightforward to show that this leads to: 

^ = *J {[A'i] - A, [A/J} ^  + *f {[A*2] - A, [A/2]} 4t - 

An tf M] Ä ~ Atl tf [A/] ^ (3.45) 

The first-order perturbation terms in this equation represent a summation of first-order deriva- 
tives while the second-order perturbation terms represent a double summation of second-order 
derivatives. The expressions for these summations are given by equations ( 3.11- 3.12) and ( 3.21- 
3.22). Equating the coefficients of each product of variables SmSn , we obtain the second-order 
eigenvalue derivative with respect to the m,n - th variables as follows: 

*!L=% {[*£]-**{*!]} *L + 

^{[Ki]   -Ä,["n]K + 

+ # {[*£]  - Ä, [Mün]} * ~ *£.# [A/n'J * " 

- A/n $ [A/M * " A?m % [M] 4fin - \\n $ [A/] *[n (3.46) 

To obtain the expression of the second-order correction term for the eigenvectors, we will use the 
same approach than for the first-order case. Using the set of eigenvectors of the unperturbed 
system as a new basis for the iV-dimensional space, it is possible to write the vector #,2 as follows: 

;V 

*, = [*] ft, = E ** *> 

Here again this expression can be arranged more conveniently as: 

(3.47) 

v 

Substituting the above expression into the second-order equation ( 3.26). we obtain: 

(3.48) 
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{[A"]  - A, {M}}     £    JtJ2i   = 

=  {Ä,[A/,] - [A',]} A,  + {A, [A/2] - [A'2]} 0,+ 

+ A„ [Mi] & + A„  [A?] 01, + At2 [.17] <f>t (3.49) 

In order to obtain the expression for JU2 , we premultiply this equation by ^ . with j £ t. 
After applying the orthogonality relationships for the eigenvectors of the unperturbed system, 
we obtain: 

-'i/o     ~ 

1 
A;     -    A, 

~4>*{\i[Mi] - [*,]}*„ + 

+*] {Ä, [A7]  - [A'2]} * + Atl *J [M,] 0t; + 

K% [-*]*,) **j (3.50) 

Each first and second order term in this equation is defined in terms of the single or double 
summations in equations ( 3.11- 3.12) and ( 3.21). Substituting these summations and equating 
the coefficients that multiply the variables 6m6n, equation ( 3.50) reduces to: 

where: 

R      R 

m = l   n = l 

3 ii    _ 
lJmn X} - X, 

$■{*,-K] - [A-i]}< + 

(3.51) 

+*r{>. [A/4] - K]}<+ 

+ *[{ä,[.V/»]   -  [*&]}* + 

+ A,'m#[Afn'] *, + \\n% [Mi]   * + 
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+ A,'m tf [A/] < + *ljj lü\*L) (3.52) 

The term -,2 in equation ( 3.48) remains undefined. To obtain this term we need to utilize the 
2nd order normalization condition, equation { 3.30). First, we premultiply equation ( 3.48) by 
<frl  [Si] to obtain: 

iT 
%a  = * [A7] *, (3.53) 

The term in the right hand side of the above equation can be expressed in terms of known 
quantities using equation ( 3.30). This leads to: 

zT 1   -J 
^ - -# [Mi] K - \*l [-*] *i - f # ^ * (3.54) 

All the perturbation terms in this expression are defined in equations ( 3.11- 3.12) and ( 3.21) in 
terms of summations of the incremental variables St . Substituting these expressions in equation 
( 3.54) and re-arranging coefficients we obtain: 

in which: 

R       R 

t., = E E i!L<«'« ; »' / J 
m = l   n = l 

.11       = i*    flf/1    A/ -tf   <  < - * Lvi ^ - 4SL [*] < " 

(3.55) 

l -T r.w/ - - # [A/»nj A (3.56) 

To obtain the second-or^er derivatives of the eigenvectors we replace equations ( 3.51) and 
( 3.55) in ( 3.48): 

K= E E (%'!*.+  E -*iL>,W (3.57) 

A comparison of equation ( 3.57) and the second equation ( 3.22) leads to the conclusion that 
the second-order derivatives of the i - th eigenvector can be calculated as: 

Aft        =    ^tt     1     + y        j//       2 (3.58) 



3.2.1    Numerical Examples 

The model used in this chapter to present numerical examples is the plane frame shown in Figure 
(2.16). The non-rigid joints are those at the ends of the three beams. 

For the first example the joints (b),(d),(e) and (f) are assumed to be all rigid in one case (solid 
lines), and all flexible with the same fixity factor equal to 0.70 in the other case (dotted lines). 
We will examine the effect of introducing the same perturbations to the stiffness values of joints 
(a) and (c). Figure (3.1) shows the variation in percent in the lower eigenvalue of the system 
when the stiffness coefficients in the connections (a) and (c) are increased in 10% and 20%, and 
the stiffness coefficients of the remaining connections stay unchanged. It should be emphasized 
that the 10% and 20% perturbations are applied to the stiffness coefficients and not to the fixity 
factors, Figure (3.1) shows that the first eigenvalue is affected the most when the joints (a) and 
(c) have a fixity factor between 0.30 and 0.35. Within this interval, when the stiffness of these 
connections are increased by 10%, the eigenvalue increases in about 1.20% and when they are 
increased 20%, the eigenvalue changes in about 2.30%. The stiffness of the rest of the connections 
does not have a significant effect in the curves of variation. Changing the fixity factors of the 
remaining joints from 1.00 to 0.70 only slightly increase or decrease the amplitude of the variation. 
As it can be seen in the figure, the two curves intersect when the fixity factors of joints (a) and (c) 
is 0.38. Figures (3.2) and (3.3), respectively, show the variation in the magnitude of the second 
and third eigenvalues when the stiffness of the connections (a) and (c) are perturbed by 10% 
and 20%. The curves in Figure (3,2) show that the second eigenvalue is almost insensitive to the 
perturbations in the stiffness values. This fact was already noticed in the numerical examples 
of the previous chapter. For the case of the third eigenvalue the curves attain maximum values 
of 1.21% and 2.32%. The range of maximum sensitivity is between JX = 0.50 and \i — 0,55. In 
this case decreasing the stiffness of the remaining connections always provokes an increase in the 
curves of variation. 

Similar curves describing the variation in the eigenvalues are presented in Figures (3.4-6), but 
this time the perturbations are introduced in the stiffness values of joints (a),(b),(c) and (d) of 
the frame. Two cases are considered again: the remaining joints (e) and (f) are either regarded 
as rigid or flexible with the same fixity factor equal to 0 JO. The variations in the first and third 
eigenvalue are increased with respect to the previous example. The maximum variations are now 
2.20% and 4.10% for the first eigenvalue and 2.40% and 4.50% for the third eigenvalue. The 
behavior of the second eigenvalue presented in Figure (3.5) differs notably with respect to the 
previous example. Not only the sensitivity of the eigenvalue increased but the shape of the curves 
present maxima for very low values of the fixity factors. Moreover, the value of the fixity factors 
of the remaining connections has a more pronounced effect in the variation curves. 

The eigenvalues of the frame are nonlinear functions of the stiffness of the connections. For a 
structure with R flexible connections, a particular eigenvalue A; of the system can be represented 
as a surface in an (R + 1)-dimensional space. For the case in which only two connections are 
flexible it is possible to plot this curve. This type of analysis will permit us to quantify the 
relative importance of the perturbation of an individual connection. We will assume that the 
flexibility of the joints (a) and (c) can vary from the pinned case (/i = 0.00) to the fixed case 
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(ß = 1.00) while the rest of the joints are rigid. The variation in the first three eigenvalues of the 
frame can be represented by three surfaces in Figures (3.7), (3.9) and (3.11). In these figures the 
eigenvalues were normalized by dividing their values by the corresponding eigenvalue associated 
with the rigid joints structure. The figures show that the sensitivity of the eigenvalues depends 
on which stiffness connection is varied, that is, the curves are not symmetrical with respect to a 
vertical plane at 45° with respect to the horizontal axes. These characteristics can be appreciated 
better using contour lines of the surfaces. They are shown in Figures (3.8), (3.10) and (3.12) for 
the first, second and third eigenvalue, respectively. It is noted that the dotted-line trayectories 
representing states of the system defined by equal fixity factors for joints (a) and (c) do not 
necessarily coincide the trayectories of maximum variation, For instance, Figure (3.8) shows that 
the gradient vector evaluated at fixity factors (0.40, 0.40) forms an angle with respect to the 45° 
line. 

Figures (3.13-15) show the normalized components of the gradient vector along the ßa and 
ßc axes evaluated at ßa — ßc for the first three eigenvalues. The gradient vector is defined as: 

VAt «J^ + gi* (3.59) 
Oßa Ößb 

where the vector ^ represents the unit vector along the ßm axis and the derivatives were calcu- 
lated using the expression ( 3,32) developed in this chapter. 

Figure (3.13) shows the components of the gradient vector for the first eigenvalue as a function 
of the fixity factors. The graph reveals that perturbing the joint (a) has a more pronounced effect 
than perturbing the joint (c). Figure (3.14) shows that the relative contribution of joints (a) and 
(c) to the second eigenvalue, measured in terms of the gradient, depends on their fixity factor. 
For a fixity factor less than 0,85, joint (c) is predominant and, on the contrary, for values greater 
than 0.85 joint (a) is dominant. In the case of the third eigenvalue, Figure (3.15) shows that the 
third eigenvalue is almost completely insensitive to perturbations to the stiffness of joint (a). 

We will examine next the effect on the components of the gradient vector of varying the 
stiffness of joints (a),(b),(c),and (d) from an initial state defined by equal values of the fixity 
factors. The gradient vector is now defined as: 

V*t = -£— ea + TT~ eb + — ec + ^— ed (3.60 
djia otxb dßc dßd 

In Figures (3,16-18) are represented the normalized components of the gradient vector for the 
lower three eigenvalues. It is seen from Figure (3.16) that the joints (a) and (b) have a stronger 
influence on the first eigenvalue, although the difference is not very significant. In the case of the 
second eigenvalue considered in Figure (3.17), the influence of joint (c) is dominant except for 
higher values of the fixity factors. For instance, according to Figure (3,17) if the original value of 
the fixity factors for all the joints at the first level is 0.40, the maximum variation for the second 
eigenvalue is attained altering the fixity factor of joint (c). The components of the gradient vector 
for the third eigenvalue are shown in Figure (3.18). Contrary to the previous cases, it is seen 
that the third eigenvalue is not affected by perturbations in the stiffness of joints (a) and (b). 
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Appendix A 

Explicit Form of Derivatives of the Element Matrices 

This Appendix presents the explicit expressions of the derivatives of the stiffness and mass ma- 
trices of a flexural element with respect to the fixity factors fix and fi2 • It is assumed that the 
connection eccentricity at the ends of the element is negligible. The derivative matrices are then 
obtained for eccentricity ratios fi and f2 set equal to zero. 

A.l     Mass Matrix 

The mass matrix for a element with flexible connections of finite size is defined in equation 
( 2.67) as the sum of two parts. The first component is constant with respect to the fixity factors, 
thus the only non zero contribution to the derivatives is due to the correction matrix defined in 
equation ( 2.75). 

a) First derivative with respect to ß\ : 

dsi 
ßß\. 

m L 
-156//i(/ii,/i2) 
-22 I %(/ii,/i2) 

54ift(/ii.ji2) 
13 l rjA(ßX,ß2) 

-4 L2r)5{fiUß2) 
-13 l rfs{ßUß2) 
3L2 m(P\iP2) 

-156»te(/ii./i2] 
22 L 7fe(/ii,/i2) 

symrrtfAric 

-4 I2i7io(A*i«^3) 

(A.l 

b) First derivative with respect to [L2 : 

dM 
ßvi 

m L 

420 

-156 7te(/ii,/l2) 

-22 L 79(^1^2) 

131 r/6{^,,/i2) 

-4 I2 moiPi*V2, 
-13 L r?4(/i2,/ui) 

-156/?i{/i2,/ii 

22Ir?2(/i2,Mi) 

symmetric 

-4 L2 n$(fi2^\) 

(A.2) 
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c) Second derivative with respect to (j\ : 

&2M 

dp* 

m L 

420 

-156fi(/ii,/i2) 
-22L(2(/*i./u2)    -4L2(5(/Ui,/i2) 

54^3(^1.^2)       -13 L^6(ßi,fi2) 

symmetric 

-156(8(f*i*/*2) 
22 L(9(/ii,/i2)    -4I2do(/*i,/*2) 

d) Second derivative with respect to //1 and /i2 : 

<92A/ 

dnidm 
m L 

420 

-156(11(^1,^2) 
-22 I (l2(//1,/i2) -4 I? (is(/*i, /i2; 

■54&3(/4l,/i2) -13Z(i4(/i2^i; 

13 £(14(^1^2) 3I2fi6(A*i»/*2) 

symmetric 

-156(n(/i2,/ii) 

22£(12(/z2,/ii)    -4l2(15(^2,/*i) 

e) Second derivative with respect to /i2 : 

d2M 

dn\ 
m L 

420 

-156(u(A*2»/*i) 
-22 I (12(/i2,jzi) -4 I2 (is(/*2,A*i 

54(3(/i2,/i1) -13L(4(/*2,Mi) 
13I(14(/i2,/xi) 3 Z,2 (7(^2^1) 

symmetric 

-156(i(/i2^i) 
22 I (2(/i2, /ii)     -4 L2 (5( ji2, /i! 

(A.3) 

(A.4) 

(A.5) 

where the following auxiliary functions were introduced for the definition of the first derivatives: 

T]X(m,n) =  -(oOmn3 -  72mn2 - 216 m n + 256 m + 64 n3 - 

-192rc2 -  192 n + 896) / (39 R(m,nf) 

772(771,71) = (-2)(l6m7i3 + 20mn2 - 232 m n + 256m + 64 n2 

-320n + 448)/(llÄ(m,n)3) 

Tfr{m,n) =   (omTi3 +  144 m n2 +  12 m n - 512 m 4-  128 n3- 

-36n2 + 384 n - 112) / (27 R{m,nf) 

m(m*n) = 2 (l9 mn3 -  170 m n2 + 256 m n + 128 n3 - 

(A.6) 

(A.7) 

(A.8) 
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-316 a2 + 200)/(l3Ä(m,n)3) (A.9) 

rj5(m,n) =- (64 m n2 - 248 m n 4- 256 m) / (/?(m, nf) (A.10) 

Tj6(m,n) = 2 (32 mn3 -  170 m n2 - 44 m n + 512 m +  128 n2 + 

+ 200 n - 784)/ (l3/?(m,rc)3) (A.11) 

r/7(m,rc) =  (64 m n3 - 372 m n2 4- 512 mn + 256 n2 - 

- 496/1)/ (3Ä(m,rc)3) (A.12) 

//8(m, a) = (.55 m rc3 -f 72 m n2 - 204 mn - 256 m - 64 rc3 - 

-228 712 + 192 n 4- 784) / (39 Ä(m,n)3) (A. 13) 

r/9(m,n) = 2 (43 m rc3 - 20 m n2 -  128 m n - 64 n3 - 

- 52n2 + 320n)/(llÄ(m,n)3) (A.14) 

iy10(m,n) =  (31 m n3 - 64 m n2 - 64 rc3 + 128 n2) / ( Ä(m,n)3) (A.15) 

The following auxiliary functions were used to facilitate the definition of the second derivatives: 

fr(m, n)  =a  - (lOOmrc4 -  144 m n3 - 432 m rc2 4- 512 m n + 192 n4 - 

-376n3 - 864 n2 4- 1824 n + 1024) / (39 Ä(m,n)4) (A.16) 

?2(™,7i) = (-2) (32mn4 + 40 m n3 - 464 m n2 4- 512 mn + 256 n3 - 

-880n2 + 416 n 4- 1024) / (ll Ä(m,n)4) (A.17) 

?3(m,n) =  (lO mn4 + 288 m n3 + 24mn2 - 1024 mn - 384 nA - 

-88n3 + 1728 n2 - 288 n 4- 2048) / (27 Ä(m,rc)4) (A.18) 

f4(m.n) = 2 (38 mn4 - 340 m n3 + 512 m n2 + 384 n4 - 872 n3 - 

-80n2 + 1024 n)/ (l3Ä(m,n)4) (A.19) 

£5(m,n) =  - (l28 mn3 - 496 m n2 4- 512 mn + 256 n2 - 

-992n 4- 1024)/(fi(m,n)4) (A.20) 

£6(m,n) = 2 (64 mn4 - 340 m n3 - 88 m n2 4-  1024 m n + 512 n3 - 

-80n2 - 2528n 4- 2048) / (l3 fi(m,n)4) (A.21) 

Zi(m%n) a   (l28 mn4 - 744 m n3 4- 1024 m n2 4- 1024 n3- 

-2976n2 + 2048)/(3 Ä(m,n)4) (A.22) 
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&(m,n)  =   (llOmn4 +  144 m n3 - 408 m n2 - 512 m n -  192 n4 - 

-464rc3 + 864 n2 +  1536« -  1024) / (.39 £(m. n)4) 

£9(m, n)  = 2 (86 m rc4  - 40 m n3 - 256 m n2 -  192 n4 +  16 M
3
 - 

-SSOn2 - 512 n) / (ll R(m,n)4) 

Sw(m,n) =  (62 m n4 -  128 m n3 -  192 n4 + 496 rc3 - 256 n2)/(/?(m.n)4) 

£u(m,n) =  (72 m2 n2 + 432 m2 n - 768 m2 - 408 m n2 + 960 m n - 

-1824 m - 768 n2 + 1536 ra + 768) / (39 Ä(m,n)4) 

f12(m,n) = (-2) (20m2 rc2 - 464 m2 n + 768 m2 + 256 m n + 

+ 416m + 512n -  1280) / (ll Ä(m, n)4) 

^13(m,n) =   (l44m27i2 + 24 m2 « - 1536 m2 + 24 m n2 + 1920 m n - 

-288 m - 1536 n2 - 288 n + 1536) / (27 £(m,n)4) 

£14(m,n) = (-2) (l70m2n2 - 512 m2 n + 88 m n2 -I- 960 m n - 

-1024 m - 1536 rc2 + 2528 rc - 80o) / (l3 Ä(m, rc)4) 

^15{m,n) =  - (64 m2n2 - 496 m2 n + 768 m2 + 512 mn - 992 m) / (fl(m. rc)4) 

£i6(m, n) =  -  (372 m2 n2 - 1024 m2 n -  1024 m n2 + 3968 m n - 

-2048 m - 2048 71 + 1984)/ (3 R(m, rc)4) 

in which R(mji) is given by equation (2..54): 

Ä(m,rc) - 4 - m rc 

(A.23) 

(A.24) 

(A. 25} 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

A.2    Stiffness Matrix 

The stiffness matrix for a element with flexible connections of finite size is given in equation 
( 2.67) as the sum of three parts. As in the previous case, *he uon zero contributions to the 
derivatives are due to the second and third correction terms: 

a) First derivative with respect to /ii : 

ÖK 

dm. 
2EI 

-6$i(/ii,/i2) 

6$I(MI*A*2) 
3L foinufo) 

-2L2^3(/ii,/i2) 
3I62(/ii,u2) 
- L2 64(nun2) 
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symmetric 

-6£i(/*i,/i2) 
3 L62{ni*H2)   -2 I2 h{fii,fi2) 

b) First derivative with respect to /i2 

[dt*2 

2EI 

£3 

-6<5i(/i2,/ii) 
-3 L63{ß2,ßi) -2 L2 fi6(fi2,ßi) 

6^l(^2^l) ZLb3{ß2,ß\) 
-3 Lh2{ß2^\) ~ L26${n2iV>i) 

symmetric 

3 L62{{i2,ßi)    ~2 L2 S4({t2,ßi) 

c) Second derivative with respect to /ii : 

ö/i? 

2£/ 

I3 

-6pi(/Xi,/i2) 
-3 Lp2(pi,p2)   -2I2/>4(/ii,/i2) 

3Lp3{ß\^2)      - L2 p${ßi,ß2) 

symmetric 

-6/?i(^i,/i2) 
3Ip3(^i,^2)   -2 L2 pe(ni,ti2) 

d) Second derivative with respect to /ii and /z2 ■ 

<92A' 

d^xdp2 

2EI 

L3 

-6/»7(A*I^2) 

-3 L PS(A*I>A*2) -2 I2 p4{A*2^i 
6p7(/ii,M2) 3Lpg(nup2) 

3I/?8(A*2,MI) - L2 ps{pi,ß2) 

symmetric 

~ep7{fii,ß2) 
3 Lp8{ß2,ß\)    -2L2p4(Mi^2] 

e) Second derivative with respect to ^i2 : 

rd2A' 

V2 

2£/ 

L3 

-6pi(/i2,/xl) 
-3£/)3(^2iMi) -2 L2 p6(fi2^i) 

§P\(p2,m) 3 Lp3{n2,ßi) 

-ZLp2(ii2<ß\) - L2 p$(p2,H\) 

symmetric 

-6p\{p2*V\) 
ZLp2(n2,Pi)    -2L2 p4{ß2,ß\) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.3; 
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where the following auxiliary functions were introduced for the definition of the first derivatives: 

n) 

n)     = 

62{m, 

Cß( m. 

hi nun)    = 

6^{m,n)    = 

- (V + An + 4) /R{m,n)2 

(-4)( n 4- 2)/R(m.n)2 

< -4) (rz2 + 2n) /R(m.n)2 

(-12)/Ä(m,n)a 

(-12) n/R{m,n)2 

(-3) n2/Ä(m,n)2 

(A.38) 

(A.39) 

(A. 40) 

(A.n.) 

(A.42) 

(A.43) 

The following auxiliary functions were used to facilitate the definition of the second derivatives: 

Pl(m,rc) = (-2)n(n2+4n4)/Ä(m,n)3 

p2(m,7i) = (-8) n ( n + 2)/R(m,nf 

p3(m,n) = (-4) (TI
3
 4- 2n2) /R{m,nf 

p4{m,n) - (-24) n/R{m,n)3 

pb[m,n) = (-24) n2/R(m.nf 

p6(m,n) = (-6) n3/R(m,nf 

p7{m<n) = ( -4) ( m n + 2 m n + 2 n + 4) /Ä(m,n f 

ps(m%n) = (-4)(m/i + 4m + 4)/fi(m,n)3 

p9(m.rc) = (-12)(mn +  4)/Ä(m,n)3 

(A.44) 

(A.45) 

(A.46) 

(A. 47) 

(A. 48) 

(A.49) 

(A.50) 

(A.51) 

(A.52) 
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