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PREFACE

This report documents the results of the first phase of a proposed two-phase
study called "Focal-Plane Alignment Sensing" performed by the Optical & Infrared

Science Laboratory of the Environmental Research Institute of Michigan, Ann Arbor,
Michigan, for Phillips Laboratory, Kirtland Air Force Base, New Mexico, during the
period 03 April 1990 to 30 September 1992. This study was performed under Delivcry
Order 0028 within the Infrared Information Anialysis Center (IRIA) program, contract
number DLA900-88-D-0392, for which the Defense Electronic Supply Center (DESC),
Dayton, Ohio, serves as the contracting agency. The Phillips Laboratory project
managcrs were Nancy Miller and Christopher DeHainaut. The Principal Investigator

was Richard G. Paxman. The authors of this report are Richard G. Paxman ?;id

John H. Seldin.
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1.0 INTRODUCTION

The Multipurpose Multiple Telescope Testbed (MMTT), designed and built under
the direction of researchers at Phillips Laboratory, Kirtland Air Force Base, is the

first wide field-of-view phased-array imaging telescope to be built. An elaborate
sensor system, consisting of local laser interferometers and position detectors, is used
to estimate piston and tilt misalignments. This misalignment-sensing system works

but has two potential problems. First, the sensor optics are complex because many
individual measurements are required to determine piston and tilt misalignments
among all four subtelescopes. Second, the sensor is subject to bias errors arising from

drift and misalignments in the sensor optics.

We have investigated a technique known as phase diversity as a complement or an
alternative to the existing direct aberration-sensing system. Phase diversity requires
the collection of (at least) two incoherent images: one in the focal plane and a second

in a location that intentionally introduces a known amount of defocus. The additional

hardware required for the technique is modest and includes a simple beam splitter and
a second detector array. No local sources, such as lasers, are required. In addition,

the method relies or. an external reference - the object being imaged. Therefore the
method should be less susceptible to bias errors than direct-sensing methods.

Our research into the use of phase diversity in the MMTT system includes a two-

year effort documented in a report entitled Applied Phase Diversity [1.1]. The present

report documents a six-month effort that represents the first phase of a proposed two-
phase follow-on effort entitled Focal-Plane Alignment Sensing. Therefore, the results
contained in this report build heavily on the previous two-year effort. Although
we continue to conclude that phase diversity provides a viable alignment-sensing
approach, the MMTT program at Phillips was fundamentally redirected during the

course of this study and it is unlikely that the second phase of the current effort will

be undertaken.

1.1 STATEMENT OF PHASE-DIVERSITY PROBLEM

The concept of phase-diversity measurements in optical systems was first introduced
by Gonsalves [1.2, 1.3], who suggested using phase diversity to estimate atmospheric

aberrations in earth-based telescopes. An incoherently illuminated object is imaged



with an abei;-.ted imaging system. In general, these aberrations could derive from

misalignments, improper mirror figure, off-axis aberrations, or atmospheric turbu-

lence. The conventional image will then suffer from these aberrations. A second

image that is intentionally defocused by a known amount is easily collected with a

beam splitter and a second detector array. This "diversity" image will be degraded by

both the system aberrations and the quadratic phase aberration associated with the

defocus. The task is to jointly estimate both the object and the system aberrations

from the two images. This task was recently formalized using estimation theory [1.4].

Since the seminal work by Gonsalves, others have studied the use of phase diversity in

phased-array systems [1.1,1.5-1.7] and for imaging through the atmosphere [1.8-1.12].

So that this document will be self-contained, we now review the formal statement

of the phase-diversity problem. This review also serves to introduce mathematical no-

tation that is used throughout this report. Consider the space-invariant (isoplanatic)

incoherent imaging equation:

dk(x) = f*sk(x) +nk(x) (1-1)

= gk(x) + nk(X) , k = 1,...,K (1-2)

where f is the object, sk is the kth point-spread function (PSF), 9k is the ideal

(noiseless) image, nk is the detector noise, d is the detected image, and the asterisk

denotes convolution. The subscript k indexes the individual data sets. Traditionally,

there has been two data sets, a conventional image and a diversity image. In general,

however, K > 2. For incoherent imaging, the PSF is the modulus squared of the

coherent impulse response function, which in turn is just the Fourier transform of the

coherent transfer function:

Sk(X) = I.f{Hk(u)Iei1(u)eik(u)} 2 , (1-3)

where IHkJ is the binary pupil function, 0 is the unknown aberration function, Ok is

the kth phase diversity, and the operator .- f {.} takes the inverse Fourier transform

of the argument. It is often convenient to parameterize the phase aberration function

J

4(u) = Zaej (u), (1-4)
j=
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where {ai} is the set of aberration parameters and {0} is a convenient basis set. In

the phased-array misalignment problem, for example, it is natural to use piston and

tilt parameters. The set of parameters can be ordered in a single parameter vector,

a. We can now state the problem. Given the set of detected images, {dk}, the set of

phase-diversity functions, {Ok}, and the set of binary pupil functions, {IHkl}, jointly

estimate the object, f, and the phase aberration, 0, (or the parameter vector a).

1.2 SUMMARY OF RESEARCH AND CONCLUSIONS

The goal of the research was to investigate the use of the method of phase diversity for

the problem of sensing MMTT misalignments. Research activities included developing

regularization techniques to combat noise amplification, quantifying the convergence

of the algorithms, investigating performance when additional diversity images are

collected (K > 2), and upgrading and refining the Applied Phase Diversity (APD)

software package.

We have obser,,ed that noise amplification poses a significant problem both in the

nonlinear optimization procedure and in the final estimates. In the previous effort

[1.1] a regularized objective function was derived to combat this problem. In Sec-

tion 2.1 a refined version of this derivation is presented along with additional insight

into the method. The problem of regularization parameter selection is discussed in

Section 2.2. Strategies of regularization parameter selection in conventional deblur-

ring problems are surveyed and provide guidance for our more demanding problem of

joint estimation of object and aberrations. A generalization of the Constrained Least

Squares (CLS) strategy yields a well-defined prescription for adaptively selecting the

regularization parameter, based upon knowledge of the detector noise level. This

strategy is adaptive in the sense that the regularization parameter is a function of

location in aberration parameter space. In practice we expect that this variation will

be quite mild. A second strategy for regularization parameter selection derives from

a restatement of the problem in which the scene is no longer deterministic, but is

treated as a stationary random process. A maximum a posteriori formulation of the

problem will then give an objective function with the same form as in the determinis-

tic case, but with the parameter now being the ratio of the power spectra of the noise

to that of the scene. This is analogous to the parameter found in Wiener filtering.
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Whereas the class of problems for which there will he a priori knowledge about the
power spectra of both the noise and the object scene is significantly restricted, this

analysis provides insight into the role of the regularization parameter, gives a sanity

check on the order of magnitude of the parameter, and will be appropriate for some

classes of objects, such as homogeneous terrains.

In the previous effort we defined operational convergence to be achieved when the
optimization sequence returns an aberration estimate that is within a given tolerance
of the true solution, in a RMS sense. This definition eliminates the need to identify

local or global maxima, since operationally we only care about the proximity of the
estimate to the true solution. In Section 3 we review an elaborate Monte-Carlo
experiment that quantifies the probability of operational convergence for the MMTT

in the absence of noise. In this case the probability of operational convergence is found
to be approximately 94%. Under the current effort these experiments were extended

to the case in which noise was present. For noise having a standard deviation of
0.5% of the peak pixel in the image, the probability of operational convergence was
found to be a little more than 50%. This level of noise is somewhat greater (or more
pessimistic) than could be achieved if the full dynamic range of a good CCD were

used. The probability of operational convergence as a function of RMS misalignment

is plotted in Figure 3-4 (page 31). Whereas we have shown that the likelihood of
algorithm operational convergence for the worst-case scenario of no a priori knowledge
of misalignment is smaller in the presence of noise, we feel that the probabilities for

startup and tracking is sufficiently high to make this an encouraging result.

In Section 4 we present simulation results in which the number of diversity frames

has been increased (K = 3). Simulated imagery (Figure 4-1, page 36) provides evi-
dence that under very noisy conditions an additional diversity image can significantly
improve estimates foi both the object and aberrations. Moreover, the probability of

operational convergence is seen to improve dramatically with an additional diversity
image. The 3-frame operational convergence in the presence of noise was found to be

over 90%, as shown in Figure 4-2 (page 37).

Appendix A presents a variety of upgrades to the APD software that were accom-

plished in this effort. These include the implementation of a closed-form expression

for the gradient of the objective function, the ability to operate on multiple diversity
frames, the option to output a restored object image when regularization is used, and
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certain improvements to insure numerical accuracy.

The milestones and results achieved in this and the previous [1.1] research efforts
suggest that the prospect of using phase diversity to sense misalignments in phased-

array telescopes is good. A variety of computational tools have been developed to

reduce the computational expense and accommodate real data from scenes. There
is strong evidence that the method is robust to noise. Moreover, the probability of
operational convergence is sufficiently high to suggest the use of phase diversity in

start-up or tracking modes.
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2.0 REGULARIZATION IN PHASE DIVERSITY

In the case of additive Gaussian noise, the derivation of the phase-diversity objec-
tive function involves substituting an intermediate estimate for the object (given the
aberrations) into the log-likelihood function for the joint estimation of the object and
aberrations. The intermediate estimate has the form of an inverse filter estimate,
which is known to be ill-conditioned, or intolerably sensitive to noise. We have ob-
served that the objective function develops a rough, fractal-like texture when noise is
introduced into simulations [2.1]. Of course, such a texture will pose severe problems
for almost any nonlinear optimization algorithm. We believe that this fractal-like
texture is the direct result of noise amplification induced by the inverse filter.

The problem of noise amplification that arises in conventional image deblurring
problems has often been addressed by means of regularization. In the broad sense of
the word, regularization is a procedure to bridle noise amplification by limiting the
class of feasible solutions. The restriction of the class of feasible solutions represents
some type of a priori knowledge that is brought to bear on the problem, explicitly or
implicitly. In a previous research effort, a regularized objective function was derived
for the phase-diversity problem. In the research effort described by this report, the
regularized objective function was refined and strategies for the selection of a regular-
ization parameter were developed. In the next section we highlight the derivation of
the regularized objective function. Section 2.2 presents two strategies for the selection

of a regularization parameter from the data.

2.1 REGULARIZED OBJECTIVE FUNCTION

In this section we highlight the derivation of the regularized objective function, which
is carried out in detail in [2.2]. We also provide new insight regarding the basis of the
theory. There is a considerable body of literature on the subject of regularization for
the problem of image deblurring. This literature serves as a guide in the generalization
to our problem, in which both the object and the aberrations are jointly estimated.

2.1.1 Constrained Least Squares Problem

As with the unregularized estimate [2.2,2.3], we wish to maximize the log-likelihood
function, L. However, we now introduce a constraint on the object estimate that is

9



intended to bridle the noise amplification. Formally,

I -
max{L = - IIDk(u) - F(u)S(u)ll2 } (2-1)fI, N2 ,~

subject to IIQ(u)F(u)1 2 = C1 , (2-2)

where I1 112 represents the norm squared (sum over u of squared magnitudes), C1 is a

constant, and Q: ?.) is a multiplicative regularizing operator that influences the role of

the constraint. A common choice of Q(u) is unity. In this case the constraint simply

fixes the norm of the object estimate, thus preventing wild oscillations that otherwise

might occur due to noise amplification. The function Q(u) can also be selected to

enforce a smoothness constraint on the object estimate [2.4]. This formulation of

the problem is analogous to a deblurring method proposed by Hunt [2.4] and may

be properly referred to as a constrained least-squares method. The prior knowledge

being invoked is knowledge that the weighted norm of F(u) is fixed and equal to C1.

It is difficult to imagine many realistic problems in which such knowledge will be

available.

Consider an alternative problem statement:

min{iIQ(u)F(u)JII} (2-3)

K

subject to E IlDk(u) - F(u)Sk(u)112 = C2, (2-4)
k=1

where C2 is a known constant. In this formulation, the constraint restricts the sum

of squared differences between the noiseless image and the detected data to be a

constant. For the case of additive Gaussian noise, this expression is just the detector

noise and we are suggesting that this value (C2) is fixed and known. It is quite

reasonable to expect that one might know the level of detector noise a priori. The

goal here is to find the object with the minimum weighted norm, subject to'a fixed

amount of detector noise. Philosophically, this viewpoint is quite different from the

10



constrained maximum-likelihood problem given in Eqs. (2-1) and (2-2). However,

both problem statements can be analyzed using the method of Lagrange multipliers

and yield the same auxiliary function:

K

A(f,a) E iDk(u) - "U)Sk(u)112 + AIIQ(u)F(u)II2 . (2.5)
k=I

Therefore, these two problem statements will give the same form for the objective

function. Whereas the constrained maximum-likelihood formulation may be more

satisfying philosophically, the minimum-norm formulation utilizes a priori knowledge

that is more accessible. One can view the minimum-norm formulation as a means of

converting a priori information about detector noise (C2) into a priori information

about the weighted object norm (CI). The Lagrange multiplier A must be adjusted

to satisfy the constraint being used, so that there is a coupling between the values

C1, C2, and A.

It is worth noting that the atuxiliary function given in Eq. (2-5) is often the point
of departure for regularization schemes. Tikhonov [2.5] and others have viewed the

second term in Eq. (2-5) as a regularizing term with A serving as a regularizing pa-

rameter that can be continuously varied to adjust the degree of smoothing in the

estimate. However, Tikhonov regularization applies to the case for which only f is to

be estimated and a, or equivalently S, is considered known.

2.1.2 Derivation of Regularized Objective Function

The objective function is formed by first temporarily assuming that the aberration

parameters are fixed and finding an expression for the regularized object. This is

accomplished by taking the derivative of A with respect to the real and imaginary

parts of F and setting to zero. The regularizcd object estimate is expressed by

AFQ(u) 2 + T!Ki ISI(u)l (2-6)

* 11



Substitution of the regularized object estimate into the auxiliary function yields the

regularized objective function: I
LR(f,a) = y' A Q l DjSi 2  (2-7)u-'AIQJ1 + EKIIS l1

where an inconsequential constant term has been dropped and the u-dependence has I
been suppressed. The details of the derivations of Eqs. (2-6) and (2-7) are found in

[2.2]. We have observed that the regularized objective function no longer has a fractal- j
like texture and accommodates nonlinear optimization. Furthermore, a closed-form

expression for the gradient of the regularized objective function has been derived [2.2j. 3
2.2 SELECTION OF REGULARIZATION PARAMETER 3
Having developed a regularized objective function, we now turn to the important

question of selection of the regularization parameter. Recall that increasing the reg- 3
ularization parameter reduces noise amplification, but only at the expense of spatial

resolution. We need some strategy for selecting the regularization parameter that

appropriately balances these two effects. a
2.2.1 Existing Strategies in Image Deblurring I
Researchers interested in applying regularization concepts to conventional image de-

blurring problems have developed a variety of strategies for the selection of the reg- I
ularization parameter value. Regularization parameter selection continues to be a

subject of active research in this area. We briefly enumerate some of the more promi- I
nent strategies that have been proposed, as they provide a guide for us in developing

strategies for our problem. The first approach is referred to variously as Constrained 3
Least Squares (CLS) [2.4,2.6,2.7], Chi-square [2.8], arid the discrepancy principle [2.9].

The CLS method is widely known and has been popular throughout the use of reg- I
ularization techniques. Similar in spirit to our constrained least squares problem

formulation, this method assumes that a priori information regarding the level of

detector noise is available. A second strategy for regularization parameter selection,

due to Wahba, is referred to as Equivalent Degrees of Freedom (EDF) [2.7,2.8,2.10].

This method is slightly more sophisticated than the CLS method, however it still

12
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3 Irelies upon knowledge of detector noise. A third approai seeks to estimate the reg-

ularization parameter from self-consistency criteria using only the detc:ted data. No
a priori information about the noise level is presupposed. This approach can be de-

rived from the leave one out principle. This class of strategies includes ordinary and
generalized cross validation (CV) (2.7,2.8,2.11). Cross-validation methods are com-

putationally burdensome but because no a priori information about the noise level

is required, they are currently a subject of intense research. There have even been
efforts to estimate both the regularization parameter and the regularizing operator

from the data alone [2.12]. A fourth strategy often goes unmentioned but has been

used very often historically. This is the interactive choice of the parameter. In this

method, the image interpreter interactively adjusts the parameter to the level that
gives the most pleasing or useful image estimate. This method accommodates the

reservoir of informal a priori information that resides within the interpreter. Whereas
this method is suspect when the image content is unfamiliar to the interpreter, it has

significant merit for cases in which image components can be recognized. A final

strategy for the selection of the regularization parameter actually requires restating3 the problem so as to treat the object as a realization from a stationary random pro-

cess. The maximum a posteriori (MAP) solution to this problem is well known as
I a Wiener estimate [2.13] and the regularization parameter can be identified as the

ratio of noise variance to the object variance [2.14]. This approach demands even

more a priori information since object statistics must be known in addition to noise

statistics. For certain homogeneous terrains, such information may be available.

Each of the strategies surveyed could probably be generalized to accommodate

the problem of joint estimation of object and aberrations. Rather than generalize

each method and then determine the relative performance of each, we choose to con-3 centrate on two of the more straightforward methods. The two that we choose to

generalize are the CLS and the Wiener methods. These two methods demonstrate3 that noise amplification can be suppressed in a reasonable fashion for the joint es-

timation problem. The remaining methods could be investigated given additional

3 resources.

1
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I

2.2.2 CLS Parameter Selection 3
In many circumstances, the level of detector noise will be available a priori. When

this is true, tien the CLS strategy for selecting a regularization parameter in the case

of deblurring problems can be generalized to the problem of joint estimation of object

and aberrations. We assume that the noise is independent and identically distributed

at each detector element with a variance of a.. It is straightforward to the

constant C2 defined in Eq. (2-4).

K
02 = E IIDk(u) - F(u)S(u)!12  (2-8)

k=1 2a

= KN 2n , (2-9)

where N2 is the number of detector elements in a single detector array. By sub- I
stituting the regularized object estimate, FR (Eq. (2-6)), into Eq. (2-8), we get an

expression that implicitly defines A for each aberration vector estimate. 5
K

C2  - Z Z IDk(u) - FR(u)Sk(u)12  (2-10) £
uEX k=1

= - :x D - Ski + 2 (2-11)

= ] Dk,(AIQI2 + Z, 15112) - Sk , >D)S;uEX k SA Il sl 2 
+ + I +Is2 ; (2-12)

z IDk(AIQI 2 + E, IS112) 2 + S k F, DSI2  ( CC.)
UEX k (QF 2 + I

(2.13) I
where the u-dependence has been suppressed, the summations over j, k, and I run from 3
1 to K, and 0.0. represents a term that is the complex conjugate of the preceding
terni. Notice that the summation over k only affects the numerator in Eq. (2-13). 3
We now distribute the k-summation over each term in the numerator to get

I
U
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numerator = FlDk[2 (AlQ12 + )2  S 2  D12  + Z--S[Sk)2[ DjS
k I k

-E.D ,Sk(AIQI 2 +E IS,12) DS;- DkSZ(AIQ 12 + E_,Js, 2) E D':S;

IZ D kI D ( IQ I 2  + E IS 2 ) - A IQ I 2 1 2 D -2  - ( A .Q I2  + ( S 2 ) 1 )

(2-15)

Reintroducing the denominator and factoring out common factors where appropriate,

we get 1 62= FD2 - z -D 'S12 AIQI 2IJDS-I2  (2-16)

C2 D AIQI 2 + E, ,I (AIQI2 + (

Equation (2-16) implicitly defines the parameter A for specific OTF estimates, {Sk)},

or equivalently for the aberration vector estimate, a. Thus the value of A that appears

in the regularized objective function should properly be regarded as a function of the

aberration parameter vector:

LR(f,a) =) 1 FQ", D Su.I1 (2-17),, A)(a )IQ 12 + T "= I I1

In order to strictly evaluate the constrained/regularized objective function for a spe-

cific aberration vector, one must implicitly solve for A(a) by applying an iterative

method (such as Newton's method) to Eq. (2-16) and then use this solution to eval-

uate Eq. (2-17). Whereas in the conventional deblurring problem A is fixed, in the

joint-estimation problem A adapts as the aberration vector varies. In practice, A is ('X-

pected to be a slowly varying function, so that its value may only need to be updated

occasionally during an optimization sequence.

We now have a well-defined prescription for adaptively selecting the regularization

parameter, based on knowledge of the detector noise level, in the joint estimation of

the object and aberrations.
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2.2.3 Wiener Paranieter Selection 3
To this point we have modeled the object as a deterministic function. If we view the

object as a single realization of a random process, then the problem statement must be

modified. We now assume that the scene is a stationary, Gaussian stochastic process

with a known power spectrum, P(u). A maximum a posteriori (MAP) estimator

[2.15] for the joint estimation of object and aberrations can then be constructed. To U
do so we use a uniform prior probability for the aberration parameters (since we treat

these as deterministic). An intermediate assumption that the aberrations are fixed I
yields the MAP estimate for the object, also known as the Wiener estimate [2.13]:

Fw kDkS; (2-18)

KN2al/p + E, IS112

Equation (2-18) is identical to the regularized object estimate, expressed in Eq. (2-

6), if the ratio of power spectra is substituted for the product of the regularization

parameter and the modulus squared of the regularizing operator,

AiQ(u)1 2 -- KT 2 a%2/P(u) . (2-19) 3
This correspondence has been noted by numerous authors, including [2.14]. Substitu-

tion of Eq. (2-18) into the expression for the a posterior? probability gives an objective I
function that has no explicit dependence upon the object:

I ZEK=1 DjS;I= J

Lw(fa) = + Itl ISI (2-20) 

We see that the objective functions expressed in Eq. (2-17) and Eq. (2-20) are also

identical, given the correspondence prescribed in Eq. (2-19). Thus the MAP or \Viener

perspective has given a new strategy for estimating both the regularization parameter

and the regularization operator and has provided an additional interpretation for these 3
entities. It is worth noting that, whereas the CLS prescription yields a regularization

parameter that adapts as the aberration parameters are varied, the Wiener viewpoint

prescribes a regularization parameter that is constant throughout the optimization I
sequence. This suggests that the CLS regularization parameter adapts very slowly.

as expected.
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3.0 MMTT OPERATIONAL CONVERGENCE

In a previous MMTT phase-diversity research program [3.1], a Monte-Carlo exper-

iment was used to estimate the probability of operational convergence for phase-
diversity and for expected MMTT misalignments. Estimates were given for the prob-3l ability of estimating a misalignment with a certain Root-Mean Square (RMS) phase
error to within a prescribed tolerance, our definition of operational convergence. These
experiments were performed for the case of no noise, and we discuss here the same
experiments performed in the presence of additive Gaussian detector noise, using

the Wiener regularization strategy discussed in the previous section. In this section,
the Monte-Carlo approach to estimating operational convergence is reviewed, and a
summary of the original, noiseless experiment is given. The assumptions made in
determining the appropriate level of additive noise are also discussed and the re-
sults of the probability of operational convergence experiment in the case of noise are

*presented.

_. 3.1 REVIEW OF MONTE-CARLO APPROACH

An undesirable attribute of a nonlinear optimization algorithm, such as is required in5the phase diversity problem, is the potential for stagnation at a sub-optimal solutioa
in the search for the true solution. Ideally, one would like to comprehend the surface3contour of the phase-diversity objective function to infer the concentration of local
maxima and the volume in parameter space for which convergence to the global
maximum is guaranteed. Moreover, one would like to know this contour as a function

of the true parameter values. For the MMTT, this amounts to sampling the objective
function in an 18-dimensional parameter space (9 true parameters and 9 estimated
parameters). Such a task is obviously intractable. We took a more modest Monte-

Carlo approach that allowed us to infer the probability of operational convergence.
In Lhe case of a 4-segment aperture with piston, x-tilt and y-tilt misalignments

there are a total of nine independent parameters to estimate. A representative sam-3 pling of the parameter space is required for a sound Monte Carlo experiment. The
nine-dimensional parameter space was sampled based on the value of the RMS phase
error of the misalignment. This approach has some advantages. First, an alternative,

uniform sampling of the nine-dimensional parameter space would require the testing
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of tens of thousands of misalignment parameter sets, requiring months of comput- 3
ing. By approaching this problem with respect to the RMS error of the random
misalignments, we can significantly reduce the number of simulations. 3

Second, because misalignments with an RMS phase error below the Marechal

aberration-tolerance condition of 1/ 14 "h of a wave (0.0714 wave) (3.2] already pro-

duce images of sufficient quality, we can avoid testing the global convergence of mis-

alignments satisfying this condition. In addition, the condition provides a tolerance

for "operational" convergence. The Marechal condition insures that the intensity

at the diffraction focus is at least 0.8 (= Strehl intensity) times that given by a

diffraction-limited system. This relationship between the Marechal condition and the 3
Strehl intensity is independent of the design of the binary pupil function and there-

fore applies to phased-array systems. Systems that meet the Marechal condition are 3
considered to be well-corrected, giving imagery for which the degradation would be

difficult to perceive.

A third advantage to sr.mpling the parameter space with respect to RMS phase er- I
ror is that the severity of image degradation typically increases as this error increases.

Thus the operational convergence is naturally linked to image fidely via RNIS mis-
alignment error. By testing algorithm convergence with respect to RMS phase error,
we can gain an understanding for just how much misalignment can be tolerated be-

fore the probability of operational convergence is no longer acceptable. This provides

a measure of the phase-diversity capture range, or misalignment-acquisition ability. 3
The issue of accurately tracking the MMTT alignment in an adaptive system also is

addressed by this approach. The probability of operational convergence allows us to

predict how far out of alignment the telescope can drift before phase-diversity can

be reliably used to realign it. Furthermore, if the parameter sets to be tested are

carefully chosen over a wide range of RMS phase errors, then through interpolation
we can estimate the probability of operational convergence for misalignments that

are not directly tested. 3
3.2 EXPERIMENT DESIGN

The first step in designing the probability-of-convergence experiment was to estimate

the probability density of the RMS phase error for random MMTT misalignments. 3
20 1
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To do this we generated random MMTIT misalignments according to the following
probability densities: (1) piston errors errors are uniformly distributed from -A/2

and A/2, and (2) x- and y-direction tilts are uniformly distributed from - A/3 and

A/3, where A represents the wavelength of the illumination. We have assumed narrow-

band illumination throughout, which is a valid assumption for intended laboratory

demonstration experiments. These aberration intervals are based on the expected

range-of-motion of the mirror segments as prescribed by Phillips Laboratory engi-

neers. Thus piston errors are permitted over a full, single-wave range, and tilt errors

are constrained over a more limited range. When generating random misalignments,

all of the mirror segments were free to move. As far as the phase-diversity algorithm

is concerned, there are only nine free parameters, and one of the mirror segments can

be considered fixed. However, we decided it would be more realistic to investigate

the misalignments that typically arise when all the segments are free to move.

It is difficult to estimate the probability density function (PDF) for RMS misalign-

ment error analytically, due to global tilt and piston ambiguity issues [3.1]. Therefore,

the RMS phase error was calculated for 5-million random sets of misalignments. and

the resulting estimate of the PDF for RMS misalignment error is shown in Figure 3-1.

As is appropriate for a PDF, this plot has been normalized to unit area. The mean

RMS misalignment is approximately 0.16 waves, which is quite close to the location

of the peak of the density. No random misalignments were found with an RMS error

less than 0.02 or greater than 0.27 waves. The probability of a random misalignment

having an RMS error less than the Marechal criterion of A/14 is about 0.1%; thus,
given uniformly-distributed misalignment parameters, it is highly likely that real-time

or post-detection aberration correction will be needed. It should be reiterated that

the PDF in Figure 3-1 is based on the assumption of uniformly-distributed random

piston and tilt parameters and should not be considered a refined model for expected

misalignments once the telescope is operational. The total probability of operational

convergence (a single number) is found by multiplying the RMS-misalignment PDF

by the probability of operational convergence as a function of R.IS misaliqninent

error and then integrating over RMS error. It remains to choose the number of RMS

bins and the number of parameter sets to test within each bin.
The RMS-misalignment PDF aids us in the design of the Monte-Carlo experiment.

The ultimate goal is an understanding of the phase-diversity probability of operational
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convergence. Choosing regions of interest over the range of the density function
enables us to investigate the convergence rate in terms of the RMS phase error of the

misalignment. We selected six RMS bins with a very small width of 0.0025 waves and

generated random misalignment parameters with RMS phase errors that fall within
these bins. These bins are located at RMS misalignment levels of 0.075, 0.0875, 0.10,

0.15, 0.20, and 0.23, as shown in Figure 3-1. Given a particular bin and a large

number of misalignment parameter sets that fall into this bin, the next step is to

apply phase diversity to each of the parameter sets. The percentage of parameter

sets for which the algorithm converges to an acceptable solution provides an estimate

of the probability of operational convergence for misalignments within the particular

range of RMS error defined by the bin location and size. By obtaining estimates of

the probability of convergence for a handful of bins spanning the range of the PDF,
we can interpolate to roughly predict the probability of operational convergence for

all points within this range. This effectively reduces the number of trials of the

Monte-Carlo experiment.

3.3 EXPERIMENTAL ASSUMPTIONS

Perhaps the most important experimehtal assumption is the follcwing: all phase-

diversity parameter estimates had a starting guess of zero misalignment. This is
quite important for the following reason. Convergence to the global maximum is

highly dependent on where the search is started. Thus, any measure of the proba-
bility of finding the global maximum is also highly dependent on the starting guess.

We designed the experiment with the worst-case scenario in mind: the telescope is

misaligned and there is no a priori knowledge available about how badly it is mis-

aligned, which mirror segment(s) has moved, what the state of the telescope was after

the last alignment, etc. Beginning the search with a zero misalignment implies an

assumption that the telescope is already aligned. Because of this, the result of the

experiment will provide information about the capture range of the algorithm; i.e.,

how much misalignment is tolerable before the probability of operational convergence

falls below some desired bound. It also gives an indication of how much misalignment

is tolerable for accurate real-time tracking.

A definition of "operational convergence" is also necessary. A maximization se-
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quence is defined to achieve convergence when the RMS phase error of the estimate 3
with respect to the true misalignment falls below the Marechal condition of 1/ 14 h of

a wave. Stagnation is verified by restarting the gradient-search algorithm twice after

the stopping criterion has been initially satisfied. The stopping criterion is based on

a perccntage change in the objective function, and the effect of restarting the search

is to reset the search vector in the direction of steepest ascent. If the search again I
stagnates, and the RMS error of the estimate is above 1/14t" of a wave, then we say

that convergence to an acceptable estimate has not been achieved.

3.4 REVIEW OF NOISELESS EXPERIMENT 3
A 128 x 128 image of a jet was used as the object for the noiseless operational conver-

gence experiments. Therefore, the estimated probability of operational convergence

technically applies only to this single image. Given additional resources, the Monte-

Carlo experiments could easily be expanded to include a variety of scenes. Still, the 3
single-image results provide an important flashlight into more general operational

convergence. 3
Two wavelengths of quadratic diversity were used, and the MMTT fixed aberration

was not added because this would have no effect on misalignment estimates if included

in the imaging model [3.1). A total of 600 parameter sets for each of the six RMS phase I
bins were tested for convergence. For a given range of RNMS phase, each experiment

has a binary outcome (operational convergence or stagnation), so that the number 3
of successful convergences for each RMS bin is analogous to the number of times a

weighted coin turns up heads in a series of coin-toss experiments. Therefore, the 3
number of successful convergences will follow a binomial probability law

N )rn p ( 1 - P)N (3 - 1)
PN~r) -(N - rn)!.m.

where p is the probability of operational convergence, N is the number of trials, and

m is the number of successful convergences. We are interested in determining the 3
parameter p, which has a maximum-likelihood estimate

=m/N , (3-2) I
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which is just the percentage of operational convergences in N trials. The standard

deviation of the estimate P is

= (p(l - p)/N)1 12 , (3 - 3)

which reflects the uncertainty of the estimate of the probability of convergence. For

example, the standard deviation of P for 600 trials of a binomial experiment with

probability p = 0.9 is 0.01. One the other hand, if p = 0.5, then ao is a maximum

with a value ao = 0.02. Therefore 600 trials per RNIS bin will provide an estimate of

the probability of operational convergence in which we can have high confidence.

The results from the experiment are shown in Figure 3-2, which also has the

RMS PDF superimposed for reference. We expected the convergence rate to drop

as the amount of misalignment moved farther away from our initial guess of zero

misalignment. The worst case was the [0.23,0.2325] bin at the edge of the distribution,

yet there is still an 89.5% success rate for these most severe aberrations. We can

conclude from this experiment that, given the assumption of uniformly-distributed

piston and tilt misalignments over the ranges specified above and an initial guess

at the origin of parameter space, the probability of operational convergence for the

most-expected types of misalignments is above 90%.

We conjecture that stagnation is primaiily due to objective-function surfaces for

which the initial estimate of an aligned system (naive initial estimate) falls within

the capture range of a local maximum. When a naive initial estimate stagnates, it is

quite possible that another initial estimate will avoid the local maximum and yield an

acceptable convergence. A polling approach that selects the misalignment estimate

from estimates computed in parallel and obtained from various initial guesses could

be used. The hope is that the probability of operational convergence for a given

misalignment and as a function initial estimate will be roughly comparable to that
for a fixed initial estimate and as a function or misalignment realization. If this turns

out to be true, then only a few initial estimates used in parallel could increase the

operational convergence dramatically.

A rate of 100% convergence was obtained for the 0.085 bin (close to the 0.071.1
Marechel criterion), and even at 0.1 wave of RMS error a global convergence rate of

98.8% was observed. An RMS phase capture range of the algorithm call be estimated

25



It
I
I
!

I I I
1.001 _

0.90 _ _ _

S0.70 _ - -I
0.3 -

~5 0.40O - - i-i

0.40. lPobabift dnsfty fturEO!L 
*

0.30 (overlay) _____-" _

0.20 ___ ___ ___ ___I

0.10 _ i//
0.00 0 _

0.00 0,03 0.10 0.15 0.20 0.23

RMS misalignmcnt (wives) 5
Figure 3-2: MMTT Probability of Operational Convergence with No Noise. The
upper curve is the probability of operational convergence for a given RMS bin, and
the lower curve is the PDF of Figure 3-1. The overall probability of operational
convergence would be obtained by multiplying these two curves and integrating over
all possible RMS values. Piston-plus-tilt misalignment errors were used.

I
I
I

26 1



via interpolation for a desired probability of operational convergence. If applied in
a real-time tracking mode, the phase-diversity algorithm could be used to update

the alignment before the RMS error strays too far beyond the "knee" in the curve,

perhaps around RMS = 0.1 wave. The random misalignment model here is an unlikely

scenario for alignment degradation over short periods of time. From this model the

probability of obtaining a random misalignment with an RMS less than 0.1 wave

is only about 2%. This probability would likely be much larger for a system that
"gracefully" drifts out of alignment. The probability-of-convergence curve is useful

in this case for estimating the capture range as the telescope gradually misaligns. In

conclusion, the likelihood of algorithm stagnation is quite small even for the worst-case

scenario of no a priori knowledge of misalignment, and for the ideal case of noiseless

imaging we expect the algorithm to find ar. operationally acceptable solution with

high probability.

3.5 OPERATIONAL CONVERGENCE WITH NOISE

The results of the noiseless phase-diversity convergence experiments are quite useful.

but not necessarily applicable to real MMTT operation. Certainly if we found the

probability of operational convergence to be unacceptable in the noiseless case, then

we would only expect performance to degrade when CCD noise was added. Because

the noise-free performance was so good, it was worth pursuing additional experiments

that included noise. We conducted the same experiment in the presence of noise with

the hope of adding more realism to our estimates of the probability of operational

convergence for the MMTT.

We were unable to obtain specific information about the expected signal-to-noise

ratio in the MMTT CCD arrays, so we used ,ome general knowledge about CCDs

in arriving at the appropriate noise level. The signal-to-noise ratio in a CCD will be

limited by the number of sampled photoelectrons in each detector element, assuming

that readout noise can be neglected. CCD cameras have a full-well depth of about

4 x 10' photoelectrons. At room temperature, a medium-sized format CCD array

( - 400 pixels on a side) can operate at approximately 60 Hz with photon sampling
being the dominant noise, so long as the number of photoelectrons is a reasonable

percentage of the full well [3.3]. Assuming that a given detector element records
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half full well, the signal-to-noise ratio will be 4.47 x 102. Stated differently, the

noise will be about 0.2% of the signal. For a low-contrast object, this noise is well I
approximated with a Gaussian noise model. Improved signal-to-noise ratios can be

achieved by averaging frames, so long as the imagery does not change at the frame I
rates employed.

We feel that the signal-to-noise figure specified for the CCD arrays is fairly high 3
and that a more pessimistic figure would be appropriate for these experiments. Rather

than assuming a signal-to-noise of about 450, we cut this figure roughly in half to

about 200. In other words, we assumed the expected noise to be about 0.5% of the

signal. Also, the standard deviation of the noise for ,!I the detector elements was set

to 0.5% of the peak value in the diffraction-linited jet image. Thus, the Gaussian

approximation to photoelectron noise is responsible for a larger-than-expected noise

level at those detector elements receiving a small number of photons. For a good

CCD array and a strong signal, this noise level is therefore pessimistic. However, if

the phase-diversity probability of operational convergence is acceptable for this higher 3
noise level, then we can expect even better performance for CCD arrays with better

signal-to-noise ratios. These noise levels are appropriate for laboratory denionstra- 3
tions, however photon levels that would be expected in an actual field application

have not yet been determined. 3
3.6 EXPERIMENTAL RESULTS 3
To facilitate comparisons with the n.:iseless probability-of-convergence experiment,

the noisy experiment was performed using the same 6 bins and the same 600 mis-

alignment parameter sets within each bin. We have observed in previous work [3.1]

that the accuracy of the parameter estimation can vary not only with noise level,

but also with the realization of the noise at a given level. A unique noise realization I
was added to every simulated image in the experiment, adding another d;mension

of randomness to the experiment. The regularization parameter was selected as the

ratio of the variance of the noise to the variance of the collected conventional imago

This results in a slightly larger parameter than would be obtained when using the 3
variance of the object. However, our experience has been that estimates are relatively

insensitive to comparable variation in the regularization parameter. 3
28 £
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The portability of the software and the parallel nature of the Monte-Carlo com-

putations enabled us to utilize the computing power of an entire network of resource-
sharing workstations. A simple extension of the C language enabled us to use nearly

20 Sun workstations of various speeds as a distributed parallel processor. Each pro-
cessor works on an assigned parameter set, sends its results to a central location, and

begins work on a new parameter set until none remain. This has the advantage of

bringing to bear machines of various speeds without a significant loss in throughput.

due to one or more particularly slow processors. For this task we processed the 3600

parameter sets nearly 18 times faster than if a single workstation had been tasked.

The results from two of the bins are shown in Figure 3-3. This figure plots the

probability of operational convergence versus the convergence threshold for two bins:

the 0.075 and 0.23 RMS phase error bins. These plots contain all the information from
the experiment for a particular bin. For our definition of operational convergence, we

have chosen the Marechal condition of 0.0714 wave RMS error. Figure 3-3 indicates

that, for this condition, the probability of operational convergence for the 0.075 bin

is 1, whereas the probability for the 0.23 bin is about 0.66 (roughly two out of every

three). If the operational convergence criterion were made more stringent and set to

0.05 wave, then the probability of operational convergence for these two bins would

drop to 84% and 42%, respectively.

With the convergence threshold set to the Marechal condition, we added the

probability of operational convergence for the noisy experiment to Figure 3-2. This

plot, shown in Figure 3-4, demonstrates the performance loss associated with the

addition of noise to the collected images. The probability of convergence is lower for

the noisy experiment in all but the 0.075 bin. The probability drops to 87% in the 0.10

bin and then drops dramatically to 44% for the 0.15 bin. We were surprised that the

probability then increases for the two largest bins at 0.2 and 0.23. The approximateiy

monotonic behavior observed in the noiseless curve is not demonstrated in the noisy

curve as we might have expected. Ve would need additional samples on this curve to

better understand this behavior, and we currently have no explanation for this trend.

The overall probability of convergence can be estimated by multiplying the prob-

ability of convergence curve with the RMS phase error probability density and inte-

grating. The overall probability is roughly 50%. This probability is still favorable for

MMTT startup. That is, the phase-diversity algorithm will estimate the misalign-
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Figure 3-3: Probability of Operational Convergence Versus Convergence Threshold.
Two RMS bins are considered and the simulated MMTT data included noise.

ment to within the Marechal condition half the time when starting up the system. In 3
terms of tracking the misalignment during operation, the probability of convergence

curve offers insight into how far out of alignment the MMTT should be allowed to 3
drift. The probability of convergence is greater than 95% when the misalignment is

less than 0.08 wave RMS, just above the Marechal condition. A more relaxed tracking

could allow the system to drift to between 0.1 and 0.12 wave RMS misalignment with

a greater than 70% probability of realignment via phase diversity. In cases where

the misalignment estimate error is greater than the Marechal condition, the system

could be realigned to these parameters, reimaging could be performed, and a new set

of misalignment parameters could be estimated with a higher probability of conver-

gence. Alternatively, multiple initial estimates could be used in parallel to improve

the probability of operational convergence. Strategies for selecting the number and 3
values of multiple initial estimates and quantifying the corresponding improvement

in probability of operational convergence are important issues for future research.
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I Figure 3-4: MMTT Probability of Operational Convergence. The upper curve is
the probability of operational convergence for a given RMS bin with no noise, and
the lower curve is the probability of convergence for a given RMS bin with noise.
The probability density function of Figure 3-1 is overlaid for reference. The overall
probability of operational convergence would be obtained by multiplying a probability
of operational convergence curve with the probability density and integrating over all
possible RMS values.

3.7 MONTE-CARLO EXPERIMENT SUMMARY

A Monte-Carlo approach allowed us to infer the probability of operational convergence

for the case of piston-plus-tilt misalignments and noisy collected images. Quantifying

misalignments by RMS phase error enabled us to conveniently characterize the phase-

diversity capture range and tracking ability. By assuming a smooth degradation with

increasing RMS phase error, we were able to infer the probability of convergence for

all possible parameters from experiments on a small subset of these parameters. We

compared the results of this experiment with an identical experiment with no noise

and found that overall probability of convergence is less for the noisy case. The prob-

ability of convergence did not exhibit the monotonic decreasing behavior seen in the

noiseless experiment, and the probability in the 0.15 RMS error bin dropped by more

than one-half. This behavior is not fully understood, and we feel that more samples
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along this curve would provide additional insight. The overall probability of conver- 5
gence was estimated at between 50 and 55% as compared with an approximate 94%

convergence rate for the noiseless case. Tracking the misalignment with greater than

70% probability can be achieved by keeping the MMTT from drifting beyond 0.12

wave RMS misalignment. Overall we have shown that the likelihood of operational

convergence for the worst-case scenario of no a priori knowledge of misalignment is I
smaller in the presence of noise, but we feel that the startup and tracking probability

is sufficiently high in the regime of bright (photon-rich) scenes, particularly in light of

the fact that the noise levels were set to slightly pessimistic levels given this regime.

In Section 4.3 we show that an additional diversity image can be used to drarnat-

ically increase the probability of operational convergence in the case of noisy data.

I
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4.0 MULTIPLE DIVERSITY FRAMES

The generalization of the Gonsalvez two-image phase-diversity method [4.1,4.2] to

multiple diversity images is presented in a recent paper [4.3]. We have traditionally

used just two diversity images in MMTT phase-diversity research, and we discuss

here the use of additional diversity images for improving MMTT-based misalignment

and object estimation. An example of this improvement in severe noise conditions

is shown, and the Monte-Carlo noise experiment discussed in Section 3 is modified
to use 3 diversity images, resulting in a dramatic improvement in the probability of

operational convergence.

4.1 POTENTIAL ADVANTAGES OF MULTIPLE

DIVERSITY FRAMES

The collection of more than two diversity images (frames) offers several potential ad-

vantages. With the addition of diversity images the number of quantities to estimate

remains unchanged (the object and a set of aberration parameters), but the amount

of information available to perform the estimation is significantly increased. More ob-

servations of quantities related in a known way to the desired estimates will usually

result in lower estimate errors. This is of particular importance when collecting data

that are corrupted by noise. Additional diversity images can be thought of as col-
lecting new information from another "look" or "perspective," reducing ambiguities

created by noise or by insufficient diversity. Another advantage is that 1he collection

of a series of images in different focal planes provides improved sampling of the fo-

cal volume, which is a viewpoint considered by H6gbom [4.4]. Better estimates of

aberration parameters could significantly improve the probability of operational con-

vergence. An experiment to verify this supposition is discussed in the next section.

With improved aberration estimates also comes the ability to improve the object

estimates. Not only will the object estimate improve due to the fact the misalignments

are known more precisely, but the restoration will be aided by additional MTF fill-

in. Additional diversity can supplement spatial frequency information that otherwise

may have been missing or severely attenuated. These additional spatial frequencies,

which are typically high frequencies, produce sharper object estimates with more

information. In the case of a sufficiently bright (photon-rich) object for which the
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detector dynamic range limits the signal-to-noise on all detector arrays, the signal
collected with each additional frame of diversity also aids the suppression of noise in

the estimated object.

4.2 THREE-FRAME DIVERSITY EXPERIMENT

The addition of diversity frames in an operational system could be hindered by a

number of factors, including cost, power, space, and available light. With this in

mind we decided to explore the simplest case of a single additional diversity image. 
We first identified a set of misalignment parameters which, in the presence of noise,

had a 2-frame objective-function with an apparent global maximum that predicted a 3
very poor misalignment estimate. A misalignment estimate is presumed to be a global

maximum of the objective function if it is identical to the misalignment estimated 3
from a search that begins at the true solution. In the case of no noise, a conjugate-

gradient search that begins at the true solution would stagnate immediately at the

true solution; however, when noise is present in the imagery, the search often moves
away from the true solution to a set of misalignment parameters that give rise to a

smaller value of the objective function.

The simulated images from this set of misalignment parameters are shown in
Figure 4-1. Using the ratio of the image variance to the noise variance, the signal- I
to-noise ratio of the collected images is 20 dB. Stated another way, the ratio of
the standard deviation of the noise to the image peak is 2.24%, roughly five times 5
more noise than used for the Monte-Carlo probability of operational convergence

experiment. This is a much larger noise level than expected for a bright object and a
good CCD array, but it presents the phase-diversity algorithm with a greater challenge

and a larger potential gain. Figures 4-1(A) and (B) present the conventional and 2-

wave quadratic diversity images, respectively, simulating the MMTT with a 0.2 wave
RMS misalignment. The objective function defined by these images and the MMTT
system has an apparent global maximum that yields a misalignment estimate with a 3
0.11 wave RMS error with respect to the true solution. The object estimate for this
2-frame misalignment estimate, the Fourier transform of which is defined in Eq. (2- S) )
for K = 2, is shown in Fig. 4-1(D). Residual misalignment phase errors are manifest

in the blurred edges along the wings, in the camouflage areas, and at the shadow 3
341
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boundaries.

Another maximization from the true solution to find the global maximum was

performed with the same misalignment, but with an additional diversity image. This

image with -1 wave of quadratic diversity is shown in Figure 4-1(C). With the objec-
tive function utilizing all three frames in the first row of Figure 4-1, a misalignment

estimate with a residual error of only 0.068 wave was found. The 3-frame maximum-
likelihood restoration of the objcct is shown in Figure 4-1(E). This image is far su-

perior to the 2-frame object estimate in part (D) for two main reasons. The first
reason is that, unlike the 2-frame estimate, the misalignment estimate error is below
the Marechal condition, and an error of this size does not have significant visual im-

pact on the image quality. Second, an additional diversity frame provides an overall
sharper estimate due to additional MTF fill-in and some averaging out of noise at

all spatial frequencies. In fact, we find that the 3-frame restoration with a 0.068
wave residual RMS phase error is superior yet to the ideal 2-frame restoration from

an aligned system displayed in Figure 4-1(F). A comparison of Figures 4-1(E) and

(F) clearly shows that, for a strong signal source, additional diversity improves the

estimate of the object. We feel that this improvement will be significant regardless

of the level of noise in the collected images.

4.3 THREE-FRAME PROBABILITY OF OPERATIONAL

CONVERGENCE

The noisy Monte-Carlo probability of convergence experiments discussed in Section

3.5 revealed a substantial reduction in performance over the case of no noise. In

particular, the three largest RMS phase error bins (0.15, 0.2, and 0.23) exhibited the
largest drop in probability of convergence with the addition of noise. We performed

the same experiment with 500 of the 600 parameters in these three bins, but with an

additional frame with -1 wave quadratic diversity. Our goal was to investigate the

impact of a single additional diversity image on operational convergence.

The results of the 3-frame Monte Carlo experiment, shown in Figure 4-2, were

impressive. The 3-frame probability of operational convergence is the dashed curve

in Figure 4-2. For these 3 bins, the probability of operational convergence using the

Marechal criterion improved in all cases to greater than 90%. The 3-friame probability
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(A) (B) (C)

(D) (E) (F)

Figure 4-I: Thiree-Frainue Phase Diver-,ify. (A) Noisy conventional iniage wvith 0.2 wave
RMS niisalignmient; (B) Noisy dliversity imuage I with 2 wvv,, quadratic diversity; (C) Noisy
diversity image 2 with - I wvave quadratic diversity; (D) 2-framec restoration using niiisa lign-
mecnt estiiate wvith 0. 11 wave RMS error, (E) 3-thi restoration using mnisalignient esti-
mnate with 0.068 wave RMS error, (F) Ideal 2-Frame restoration f~romi pe~rf(ctly aligned
systeml.
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Figure 4-2: MMTT Two- and Three-Frae Probability of Operational Convergence.
The upper solid curve is the 2-frame probability of operational convergence for a
given RMS bin with no noise, and the lower solid curve is the 2-frame probability
of operational convergence for a given RMS bin with noise. The 3-frame with noise
curve is shown for the largest three RMS bins. The PDF of Figure 3-1 is overlaid forI reference.

of operational convergence for the 0.13 RMS phase bin is roughly double that of the

i 2-frame counterpart, the 0.2 RMS bin approximately matches the 2-frame noiseless
probability, and at 96% the probability of operational convergence for the 0.23 RMS

phase bin exceeds the corresponding 2-frame, no noise probability- The implication is

that a single additional diversity image will significantly improve MMTT startup from

an unknown misalignment, and that realignment update intervals in the real-time

tracking mode could be relaxed. From these results combined with the results from

the previous section, we conclude that object and misalignment parameter estimates

will be enhanced by collecting a single additional diversity framne. The value added
by collecting frames for K > 3 frames has not been explored.
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4.4 SUMMARY OF MULTIPLE-FRAME PHASE 3
-DIVERSITY

We have demonstrated the ability of the phase-diversity software to simulate multiple- 3
frame phase diversity, and we have recounted two experiments using 3 diversity im-

ages. The first experiment was an example of how, under very noisy conditions, an 3
additional diversity image was capable of improving the misalignment estimate so as

to satisfy the Marechal criterion. This experiment also demonstrated the improve-

ment in quality of the object estimate obtained with an additional frame. The object

estimate from 3 frames of data derived from a misaligned system was still better than

the restoration from 2 frames of data derived from an aligned system. The second

experiment, an expansion of the 2-frame noisy Monte-Carlo probability of conver-

gence experiment discussed in Section 3.5, was an exhibition of the improvement in 3
misalignment estimate accuracy provided by a single additional diversity image. The

3-frame probability of operational convergence was significantly improved to greater 3
than 90% for misalignments with a 66% or less convergence rate in the 2-frame case.

This dramatic increase has implications for improved MMTT start-up accuracy and

more relaxed real-time tracking.
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APPENDIX A

APPLIED PHASE DIVERSITY SOFTWARE

UPGRADES

This appendix gives an overview of the current state of the UNIX workstation-
based Applied Phase Diversity (APD) software. Upgrades to the software that im-

proved both the speed and accuracy of phase-diversity misalignment estimation are

discussed along with some new features and capabilities.

A.1 APD OVERVIEW

The phase-diversity algorithm is currently implemented in a piece of software called
APD. The program is basically interactive, with a command-line lexicographical in-

terpreter delegating the requested tasks. The program can also be run in a batch

mode and has a session-loggi ng capability that is useful for debugging and exper-

iment documentation. The software is currently tailored to a segmented-aperture

telescope with piston and tilt misalignrents, yet it is written in a modular fash-
ion that enables an easy adaptation to incoherent imaging systems with monolithic

apertures and/or different misalignment parameterization schemes. The program can
perform simulations of an imaging system using ideal, digital objects and known mis-

alignments, or it can emulate the imaging process and use real, collected data to

estimate the unknown misalignment parameters. The APD software was used pri-

marily in the first mode to perform simulations of the MMTT. This enabled us to test

the misalignment-estimation performance of the phase-diversity algorithm for vari-

ous misalignment parameters, amounts and types of diversity, detector noise levels,
objective-function regularization parameters, etc. A more detailed discussion of the

basic capabilities of the APD package can be found in Appendix C in [A.1].

A.2 APD UPGRADES

In this section we present the upgrades to the APD software that were accomplished

in the current effort.
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A.2.1 Analytic Gradient

Misalignment estimation is performed by maximizing the phase-diversity objective
function. In practice we minimize the negative of this objective function using a i
conjugate-gradient algorithm. Past versions of the APD utility implemented a two-

sided finite-difference approximation to the gradient of the objective function. An 3
analytic gradient was derived in [A.1] and was implemented in software later as a

replacement for the finite-difference approximation. Not only is the analytic form

a more accurate means for calculating the gradient, but it also provides a great

computational savings. In the case of a J-parameter minimization using K diversity

images, the two-sided finite-difference method requires 4JK FFTs for each evaluation I
of the gradient. The analytic gradient reduces the number of FFTs to 4K. For the

case of two diversity images and 9 independent parameters (piston, x- and y-tilt for 3
a 4-segment aperture), the finite-difference estimate would require 72 FFTs while

the analytic gradient would compute only 8 FFTs. The evaluatin of the analytic 3
gradient requires more non-FFT computations than does the finite-difference method;

however, the FFT is the most computationally intensive portion of the calculation,

and the gain in using the analytic gradient is still considerable. Note as well that

the number of FFTs required by the analytic gradient is independent of the number

of parameters being estimated. Because of its direct dependence on the number l
of parameters, the finite-difference technique would not be a feasible approach for

large J. As an example, the use of finite differences for a point-by-point misalignment 3
characterization would be computationally prohibitive.

A.2.2 Multiple Diversity Images i

The previous version of the software assumed that there would be a single diver- 3
sity image to complement the conventional focal.plane image. However, the phase-

diversity theory generalizes to include an arbitrary number, K, of collected images; 3
thus, the APD software was upgraded to facilitate K-image, or multi-frame, phase
diversity. Each diversity image can have any combination of linear (piston and/or

tilt) or quadratic diversity. The generalization to K images manifests itself in all

parb of the phase-diversity software, including the objective function evaluation, the

analytic gradient calculation, and the object estimation (see below). Multiple-frame
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diversity experiments are discussed in Section 4, where we conclude that even a single
additional diversity image can have a significant impact on both parameter estima-

tion accuracy and object estimate quality and can also help to improve the capture

range of the phase-diversity algorithm.

A.2.3 Object Estimation

Given a fixed aberration function, a closed-form expression exists for the underlying
object that maximizes the regularized log-likelihood objective function. This expres-

sion of the regularized maximum-likelihood object estimate is the natural means for
obtaining a post-detection restoration of the image data. The APD software allows

the user to save the object estimate for any set of misalignment estimates and any
regularization parameter. This feature complements the other APD image-save op-
tion that assumes a real-time realignment of the optics followed by a reimaging of the

object.

A.2.4 Numerical Improvements

Two significant numerical improvements were made to the APD code. The first
change enables the user to choose between a single-precision and a double-precision

implementation of the software. We consistently used the double-precision version
for our simulations. The single-precision version runs with less allocated memory

and may be preferable in certain situations. No study of the effect of precision on

misalignment estimation has been performed.

The second improvement was the result of an investigation of round-off errors
when summing a set of numbers spanning a large dynamic range. The summation

under consideration is the sum over the spatial-frequency variable u in the objective

function. The frequency-domain quantities being summed span a very large dynamic
range, with a handful of very large numbers at the low spatial-frequencies (DC does

not change over the misalignment parameters and thus can be ignored). Severe round-
off errors are likely if these very few large terms are included in the summation prior

to adding the smaller terms, which account for the majority of the numbers. To

minimize round-off error, one ideally would sort the surnmands in ascending order
and then would sum over u starting with the smallest value.
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This sorting procedure is quite expensive computationally, so a sub-optimal al-

ternative that exploits the low-pass nature of an incoherent imaging system was em-

ployed. Rather than sorting the summands, the sum is performed in the spatial-

frequency domain roughly along semi-circular arcs about the DC point. We start

along the arc farthest from DC and gradually move inward toward the large values

at the low spatial frequencies. We investigated this technique and found that the

resulting residual round-off errors were insignificant and that the results compared

favorably with a pre-sorted summation.

A.3 SUMMARY

The latest version of the phase-diversity algorithm has some new benefits and makes

some improvements on the previous version. The analytic gradient provides a faster 3
and more accurate calculation of a quantity that is crucial to parameter estimation via

conjugate-gradient objective-function minimization. The ability to simulate the col-

lection of multiple (greater than two) diversity images is important for analyzing the

gain in misalignment estimate accuracy, the effect on phase-diversity capture range,

and the improvement in object estimation. Improvements in numerical accuracy make

the phase diversity software a more reliable tool.
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