7 .
UNCLASSIFIED
0 =
W= AR-006-979
D=
D= a
n= DSTO) S
N= .
< = AUSTRALIA
|
) ELECTRONICS RESEARCH LABORATORY
*
Information Technology
* [] *
Division
REPORT
ERL- 0637-RE
RECOMMENDATIONS FOR THE :
USE AND TAILORING OF DOD-STD-2167A
by
Andrew P. Gabb, Peter C. Pollard
Stefan F. Landherr, Rudi J. Vernik
SUMMARY
This report is the culmination of a study into the use of DOD-STD-2167A in Australian
software development projects. It makes recommendations for the use and tailoring of the
standard. w
5§§
-——
© COMMONWEALTH OF AUSTRALIA 1992 @] g;'=_—f
| si
SEP 92 M=
m —

Hli

APPROVED FOR PUBLIC RELEASE

1 OuTAL LCORESS: Director, Electronics Research Laboratory, PO Box 1500, Salisbury, South Australia, 5108. ERL-0637-RE

UNCLASSIFIED

03 7 26 080

ERL-0637-RE UNCLASSIFIED

This work is Copyright. Apart from any fair dealing for the purpose of study, research,
criticism or review, as permitted under the Copyright Act 1968, no part may be
reproduced by any process without written permission. Copyright is the responsibility
of the Director Publishing and Marketing, ACPS. Inquiries should be directed to the
Manager, AGPS DPress, Australian Government Publishing Service, GPO Box 84,
Canberra ACT 2601.

UNCLASSIFIED

o

ERL-0637-RE
CONTENTS

Page No
ABBREVIATIONS 0 \
EXFCUTIVE SUMMARY o Vi
TOINTRODUCTION L e !
1.1 Purpose e e |
1.2 SCOpe 1
13 Nomenclature © ..o !
L4 Organisation of this report . 0000000 o0 0 Lo 2
LS CACKnowledgments o L 2
2 DOD-STD-2167A - THEORY AND PRACTICE 03
2.F The reasons tor usmg DOD-STD-2167A © ... 0 o 3
2.2 Retationship to other standards 0000000 oo 3
2.3 Audiences for documentation deliverables o000 0o o 0oL 4
24 Attudes 10 2V6TA L 4
2.5 UsC it practice .. . e 4
2.6 Omissions in 2067A © 0000 S
2600 System design Lo 5
2.6.2 Documentation overview and glossary ... Lo oo oL 6
2,63 Userinterface design oo 6
2.04 Customer interaction in requirements refinement and design choices .. L. O
2.6.5 Software representation and generationo 0oL 7
2.6.6 Tracecahility requirements .- oL L oL 7
3 BASISFOR USING 2167A .0 7
A1 Education and training .. oL 7
32 Communication and CoOperation L L 8
23 Dev@lopment methodology .0 9
4 PRINCIPLES OF TAILORING 10
0 General oL 10
4.2 Taloring references and tools © 0000000 o Lo 11

4.3 Project factors influencing tailoring o Lo |
4.4 Staying consisient with other standards o000 0000 oo Lo oL M
45 Add. deletc ormodify? oL 12
4.6 Over-detailed wiloring .. e 12
4.7 The costof tailoring 12
5 THE REQUIREMENTS OF 2167A 13
S dedeall necded? C 13
5.2 Reviews and audits ... 13
i

ERL-0637-RE

6

9

10

il

5.3 TeStMg . . e e
5.4 Softwarc product evaluations e
5.5 Configuration management

PARTITIONING THE SYSTEM INTO SOFTWARE ELEMENTS
6.1 Selecting CSCIs
6.2 Selecting CSCsand CSUs

DEVELOPMENT ISSUES
7.1 The Development PrOCESSo o oo i i e
7.2 Development Methods L

DOCUMENTATION ISSUES
8.1 General reccommendations
8.2 Documentation on clectronic media o
8.3 Tailoring the DIDs

8.3.1 General .. L
8.3.2 Adaptive tailoring
8.3.3 Using altcmate formats in DIDs L oL
8.4 Softwarc development files L

THE DATA ITEM DESCRIPTIONS (DIDS)

9.1 Softwarc Development Plan L
9.2 System/Scgment Design Document
9.3 Interfacc documents (IRSand IDD)
9.4 Softwarc Requircments Specification
9.5 Softwarc Design Document oL L
9.6 Software Product Specification and Version Description Document
9.7 Test documents
9.8 Computer Resources Integrated Support Documento
9.9 Manuals (CSOM, SUM,SPMand FSM)

FURTHER WORK
10.1 Assessment of developers and customers ... oo
10.2 Preparation of RFTs and tenders
10.3 Electronic documentation and communication
104 Tailoring for intcmal Dcfence projects oo o L
10.5 DOD-STD-2167A reSOUICCS . . .o oot et e
10.6 Guidance for diffcrent applications and dgevclopment methods .. .00 00
10.7 Guidancce for the usc of V&V in 2167A projects
108 Follow-upstudies
10.9 Updatc for DOD-STD-71ATR o

CONCLUSIONS .

15
15
16

16

26

26
26
27
27
28
29
30
a0
30
34

ERL-0637-RE

4GL
CALS
CASE
CDR
CDRL
CIDS
COTS
CRISD
CSC
CSCl
CSOM
CSu
DID
DSTO
FSM
HWCI
IDD
IRS
PDR
PIDS
RFT
QA
SDD
SDF
SDp
Sow
SPM
SPS
SRS
SSDD
SSR
SSS
STD
STP o
STR
SUM
Ul
V&V
vDD

ABBREVIATIONS

Fourth generation language

Computer-aided Acquisition and Logistics Support
Compulter aided software cngineering

Critical Design Review

Contract Data Requircments List

Critical Item Dcvelopment Specification
Commcrcial off the shell (ic non-developmental)
Computcr Resources Integrated Support Document
Computer Software Component

Computer Softwarc Conliguration ltem
Computcer System Operator’s Manual
Computcr Softwarc Unit

Data Ttem Description

Defenee Science and Technology Organisation
Firmwarce Support Manua!

Hardwarc Configuration ltcm

Interface Design Document

Interface Requirements Specification
Preliminary Design Review

Prime Item Devclopment Specification
Request for Tender

Quality Assurance

Softwarc Design Document

Software devclopment files

Soltware Devclopment Plan

Statement of Work

Software Programmer's Manual

Soltware Product Specification

Softwarc Requircments Specilication
System/Scgment Design Document

Software specification review
System/Scgment Specilication

Softwarc Test Description

Software Test Plan

Software Test Report

Softwarc Uscr's Manual

User interface

Verification and validation | Aceession For

Version Description Document NTIS GRAXI d
DTIC TAR
Unancownced O

Juastilication . e e

By

Dist . ilatisn)

-

Avalilability C"d"_'., .
T jAvail andfer

ERL-0637-RE

Vi

ERL-0637-RE

EXECUTIVE SUMMARY

DOD-STD-2167A is a U.S. military standard establishing requircments for software
development. Much of the operational software currently being developed for the Australian
Department of Defence is being developed in accordance with this standard: its usc is likely 1o
be mandatory in almost all future opcrational systems.

The transition to this new standard has not been straightforward. There have been numerous
criticisms about DOD-STD-2167A particularly with regard to the amount of documentation
required nd the offert needed to produce it. Doubts have also been raised as to the actual
value of such documemation to the customer or developer. These problems are not unique 1o
2167A, however. Similar problems were experienced with carlier standards, but 2167A s
affccting more projects and developers and thus is perceived as a larger problem.

This report is the culmination of a study into the use of 2167A in Australian soltware
devzlopment projects. A prior report addressed the problems expericneed in the use of the
stundard in this country.
The study was planned 1o be as open as possible. In addition to a comprehensive survey of
2167A policy and usage in the carly stages, drafts of both reports were widely distributed to all
interested parties and workshops were held in Canberra and Adclaide 1o discuss the findings.
DOD-STD-2167A is uscd in projects becausc it is the preseribed standard for most Defence
software developments in Australia. In some cases customers outside Defence specily it
becausc it is the only well known comprehensive standard available.
It is not simple to use - developers with less structured development cnvironments find it
particularly difficult to understand. It also leans heavily on other military standards which must
also be understood if it is to be used cffectively. In some cases there are conflicts between
different standards which make the task more difficult.
DOD-STD-2167A is ncither perlect nor complete. It contains contradictions and omissions
which must be rectificd by tailoring the standard. Successful use of this standard is critically
dependent on the quality of the taitoring. Tailoring must be applied for all projects, and
whenever possible, tailoring should be carried out as a joint effort between customer and
developer.
Most problems with 2167A stem Itom the following:

. The standard is poorly understood by cither the customer or developer or both,

. The standard is often inadequately tailored 10 mect the needs of the project.

. The developer does not have a systematic development process.

. There is insufficient meaningful communication between (he customer and developer.
Not surprisingly. the following principles for using 2167A arc recommended:

. Provide appropriate education and training for all stalf involved in the usc of 2167A.

. DOD-STD-2167A must be tailored.

ERL-0637-RE

. Special consideration needs 1o be given to enhancing the communication and
cooperation between customer and developer,

. The development methodology selected for the project must match the requirements
of 2167A (appropriately lailorcd) and must be adhered to.

There is no "silver bullet” for wiloring. Tools and guidcelines are available but they arc no
substitute for knowledge and expericnce. They merely assist in the process of tailoring, but not
in making the hard dccisions which will arisc. Tailoring must also consider the family of
standards to be used, not DOD-STD-2167A in isolation. Guidelines in 2167A and its tailoring
handbook also restrict the scope of tailoring 1o Iess than what is necessary in most
circumstances, reducing the advantages that tailoring can achicve. There arc numcerous
occasions when the tailoring should cxceed that suggested by the guidelines.

It appears to be popular to criticisec 2167A for its dependence on the "waterfall” model of
software development - to claim that it is outdated and inappropriate for "modem” development
mcthodologies. The authors suggest that many such criticisms arc based on an inadequate
understanding of 2167A, olten coupled with an unwillingness to imposc systematic control on
the development process. An inability or unwillingness (o apply appropriate tailoring is also a
harricr 1o adapting 2167A to different models.

Specilic recommendations arc made for reducing the amount of documentation, streamlining
reviews and audits and identifying the retationship of the standard 1o testing and configuration
management.

I'he study has also identified arcas for further rescarch in the development and acquisition of
Delenee software in Australia. These include the assessment of the capability of developers and
customers to participate in 2167A projects, problems in the preparation of RFTs and tenders for
soltware intensive projects, the use of clectronic documentation, the establishment of 2167A
resource repositories and the application of verilication and validation (V& V) to Defence
Projects,

This report offers advice and recommendations which enhance the understanding and use of
DOD-STD-2167A, and which arc atready helping to improve the development of software for
Delence projects. The most important reccommendation, however, is that both customers and
developers must dedicate more cffort to the education of their staff - DOD-STD-2167A is a
standard which docs not forgive ignorance or amatcurism.

Copies of this document on magnetic media are available from the authors on request.

Vit

ERL-0657-RE

I INTRODUCTION
1.1 Purpose

DOD-STD-2167A is a U.S. military standard cstablishing requirements for software
development. Much of the operational software currently being developed for the Australian
Depantment of Defence is being developed in accordance with this standard: its use is likely 1o
be mandatory in almost all future operational systems.

The transition o this new standard has not been straightforward. There have been numerous
criticisms about DOD-STD-2167A (and its precursor DOD-STD-2167). particularly with regard
to the amount of documentation required and the effort needed to produce it. Doubts have also
been raised as 1o the actual value of such documentation 10 the customer or developer.

This report is the culmination of a study into the use of DOD-STD-2167A in Australian
software development projects. It makes recommendations for the use and tailoring of the
standard.

As the initial phase of this study the authors conducted a survey of 2167A policy ang vsage in
software development projccts [GAB91]. Although the study was primarily aimed at defence
projects. there are several non-detence applications of the standard in Australia, both in internal
developments znd in commercial applications. These were also considered in the survey.

A dralt of this report was circulated to interested parties for comment and was the subject of
workshops held in Canberra and Adclaide in April/May 1992, This final report includes
feedback from these activities

The opinions cxpressed in this paper are those of the authors and do noet represent the policy or
official standpoint of DSTO or the Department of Delence.

1.2 Scope

This report provides discussion about and recommendations for the use and tailoring in
DOD-STD-2167A projecis. Much of the material is based on the assumption that the reader is
generally conversant with the requirements of 2167A, and that the software development oceurs
as the result of a contract between an organisationally distinet customer and developer.

Initially it was assumed that the major cause of difficultics in the use of 2167A in Australia was
in the complexity of the tailoring activity and it was therefore intended that this study would
concentrate mainly on the tailoring of 2167A. The survey indicated that tailoring was enly part
of the problem and the scope of the study was broadened to encompass the more general issues
of 2167A use. Consequently, less effort has been directed towards providing detailed guidelines
for taiforing.

Similarly, this report docs not address other aspects of software development projects which
some readers may regard as critical. One cxample is the relationship of 2167A to quality
standards such as DOD-STD-2168, AS 3563 and AS 3901,

1.3 Nomenclature

The terms “customer” and “developer” are used in this paper to indicate those responsible for
softwarc system procurement and development respectively. In some cases the terms are used

ERL-0637-RE

10 indicale individuals in the customer ang development teams rather than the organisation that
they represent. The terms "users”™ and "maintainers™ are used 1o indicate those who will use the
soltware (the operators for example) and those who will maintain it in the customer's
organisation.

1.4 Organisation of this report

Scetion 2 examines the purpose for 2167A, some of its deficiencies and experiences with is use
i Australia,

Scetion 3 recommends a basis for the use of the standard - advice 1o customers and developers
in preparing to use the standard.

Secton 4 discusses the general principles of tailoring 2167A and related standards,

Scctions 5 and 6 address the general requirements of 2167A and the allocation and partitioning
of the basic software clements, Computer Software Configuration Tiems (CSCls), components
AUSCsy and anits (CSUS).

Scction 7 addresses the development process and development methods. their relationship with
2T67AL and possible changes 1o the process, methads or the standard that may be necessary.

Scctions 8 and 9 examine the documentation issues, lirstly in a general sense, then for
mdividual documents,

Eraly. Scetions 10 and 11 discuss the necessity of turther work and the conclusions ol the
study

1.5 Acknowledgments

The authors thank all those in industry, academic institutions and the Department of Defence
who have given their time and assistance in contributing to this study. We wish o
acknowledge the assistance of the following organisations:

Ansctt Technologics

Australian Defence Industries Lid
Australian Submarine Corporation Pty Lid
AWA Defence Industries Pty Lid

BHP Information Technology Lid

British Acrospace Australia [.td

CAA Systems Support Group

Compucat Research Py Ltd

Computer Sciences of Australia Py Lid
Ferranti Computer Systiems (Australia) Pty Lid
Hawker De Havilland Victoria Litd
Kinhill Engincers Pty Lid

Lasotell Py Lud

Logica Pty Lid

RADE Systems Pty Lid

Rockwell Ship Systems Australia

State Rail Authority of NSW

Technology Australia Pty Lid

Telstar Systems Pty Lid

ERL-0637-RE

Tripal Svstems Py Lad
TRW Systems Integration Group
Wormald Advanced Systems Engineenng

2 DOD-STD-2167A - THEORY AND PRACTICE
2.1 The reasons for using DOD-STD-2167A

DOD STH-2167A is usually used in projects not by choice but because it is the presceribed
standard for software development. The develeper uses it because it is specified in the contract
the customer specifies it cither because it is the customer’s prescribed policy to do so, or
because there are no other reasonable altematives. There are of course many standards which
address the issues of software development, but none which covers the same breadih with the
same levels of preseription as this standard.

One advantage of using 2167A is that ivis part of & (very large) standards family which should
guarantee its consistency with other standards. It mects ihis objective reasonably well, although
not without some problems (Sce secti n 4.4y, Requirements not defined in 2167A are generally
provided in other refated military standards, reducing the likelihood of omissions and conflicts

I also provides o consistent basis for management of @ soltware development project by the
customer As ML HDBK 287 desenbes,

It establishes standard terminology. provides a standard set of deliverables. reviews
and audits to choose from. and defines a standard set of software management
practices that may be imposed

Visibiliny ol the development is assured not only by the reviews and audits, but also by the
detailed reguirements for the Tormat and the content ol the delivered documentation, The
system of reviews also provides increasing visihility as the design becomes more detaifed.
allowing the customer 10 assess both the effect of design choices on the operational requiremet
and the developer's ability to complete the develepment successfully

Finally. it imposes standards for the development process that are arguably higher than those
that many contractors might employ il not obliged otherwise. In this way the customer tries o
guarantee a reasonable level ol quality Tor the product.

These reasons are imponant in understanding how 2167A should be used and how, or 11, il
should be changed (tailored) for a panticutar project.

2.2 Relationship to other standards

DOD-STD-2167A has been designed (o be part of a targe famity ol infegrated military
standards. and it assumes that several of these standards will also be specilied when using
2167A. providing an integrated framework for software development. I one or more of these
standards are not specilied. 2167A must be tailored both 10 remove the references o them and
10 compensate for the fact that their requirements are no longer included. The relevant
standards arc:

THIS
PAGE
IS
MISSING
IN
ORIGINAL

DOCUMENT
7

ERL-0637-RE

clfect of the tailoring on the remainder of the standard, resulting in conflicts with other parts of
2167A and with other standards.

Pcrhaps more scrious is the authors’ experience that, whether Z167A is tailored or nol,
contractors rarcly mect their full obligations with regard to the standard. In these cases the
shortfalls arc often overlooked by the customer’s monitoring tcam or not enforced when
detected.

There is also cvidence that both customers and developers concentrate their attention on the
documentation deliverables at the cxpense of the development requirements.

Developers” criticisms of the “inappropriatencss” of 2167A documentation requirements ofien
stem from the lack of a systematic approach to development. DOD-STD-2167A requires a
systematic development mzthod and its documentation requirements reflect this. Problems arise
when developers attempt (o document a poorly structured cxisting design using the 2167A
formats [MCG90]. Morc gencrally, 2167A specifics activitics and provides a strict framework
for their documentation. If the activities are not performed, or arc not carried out in the
required manner or order, the documentation process is difficult and the resulting documentation
i< likely 1o be of fow value.

1L s interesting to note that while developers are concemned about the amount of documentation
required. many customers belicve that developers tend 1o provide too much data in requirements
and design documents, while omitting critical information. 1t appears that some developers
anticipate that a customer is less likely to reject a thick document, perhaps based on previous
cxperiences. The authors have observed some evidence of truth in this belicf.

Many projects have scemingly been burdened by a tack of understanding and expericnce with
2167A on the part of the developer, the customer, or both. Developer inexperience has resulied
in difficultics in developing software and its associated documentation (o the required standard.
Customer inexperience has resulted in inadequate and inconsistent tailoring, and an inability to
adequately monitor the development and review delivered documentation. The incvitable result
of incxperience is that either or both of the parties arc unable to identify limitations in the
development process or arcas of potential risk.

One ol the side effects ol developer and customer incxperience is that some developers do not
assess the full costs of using 2167A in tenders for software projects, cither through fack of
understanding of the standard. or on the assumption that the customer will not enforce what are
in fact contractually binding requircments. Not only is this unfair 1o developers who include
the full cost of 2167A development in their tenders, but it also adds risk to the project - cither
in the quality of the product if the [ull requirements are not met, or in the developer being
obliged 10 meet requiremenis for which he has not hudgeted.

2.6 Omissions in 2167A

This section addresses perceived omissions in 2167A and is mainly concemed with the
documentation of commonly nceded information. These omissions should normally be reclified
by cither tailoring cxisting requircments or by the specification of additional requirements in the
SOW (Statement of Work) or CDRi. (Contract Data Requirements List).

2.6.1 System design

A notablc omission from 2167A is the lack of a requircment (or an overvicw of the software
system design, mapping the requirements o the design and illustrating how the functions of the

ERL-0637-RE

system arc met in terms of exccution and data flow (at a relatively high level) [MARSS,
SPR89Y). Such information is extremely ueeful in understanding how a complex system works
and for tracing the source of defects during maintenance. To some cxtent this information is
included in the Software Design Document (SDD) in paragraph 3.1 wiih regard (o “stites and
modes” but it is inadequate in its level of detail and description.

FFor a system of scveral inicracting CSCls there is no obvious place for such a description, apart
from the System/Scgment Design Document (SSDD) which is at too high a level and is
delivered too carly in the project. In this casc one or morc additional documents arc needed,
possibly called "System Architecture and Design Description”, coordinating the design ol the
(SCls. The authors see such a document being developed incrementally in a manner similar (0
SDDs, with preliminary information being provided at the Preliminary Design Review (PDR).

2.6.2 Documentation overview and glossary

In larger projects, an overview of the interaction between the different specifications and other
documents is required, to allow specialists and casual project staff to find specific information.
A project-wide glossary of abbreviations and definitions is also often essential, both to assist
neweomers and o maintain a consistent nomenc'zture throughout the project.

2.6.3 User interface design

One difficulty that several developers have faced with 2167A is its lack of guidance with
respect e the documentation of the design of the system's user interfaces (Uls) [MEY89]. The
most obvious place for this information is in the Interface Design Document (IDD) which docs
nol. however, provide appropriate formats for its definition. The Soltware User’s Manual
(SUM) is intended eventually as a manual for the system and will be derived from the Ul
design, However it is developed far too late in the process, and in most projects would not
contain all the decign information needed.

U design should occur carly in the development process and be reviewed at PDR [1521B].
Where there is a complex Ul its design should be specified in a separate document (the "User
Interface Design Document” is an apt name); if the Ul is simplc it may be included in a
tailored 1IDD. MIL-STD-7935A"s requirements for its "Users Manual™ and "End User Manual”
may offer assistance in determining the contents of such a specification [7935A1

2.6.4 Customer interaction in requirements refinement and design choices

In many projects the refinement of requirements and detailed design can lead to
implementations that the customer regards as unsatisfactory. This is particularly likely in arcas
such as the definition of the user interface and in the specification of detailed performance
tsuch as response times). More imponantly, although the impicmentation may be unacceptable,
it is often cither compliant with the higher level requirements or the judgement of compliance is
a subjective issuc. While it might be claimed that such a situation is a result of poorly
specificd requirements, this will frequently not be the case. Customers are encouraged to avoid
detail in requircments that might inhibit the design (see also Section 9.2). The penalty for lack
of detail is a devclopment resulling in an unacceptable design.

It is obvious that, regardless of whether the design is compliant or not. the cost of rectification
will be minimised if the deficiency is detected carly. The review process required by 2167A
and 1521B is insufficiently responsive to solve this problem, and is likely to result in cither
additional costs bome by the customer or developer or both, or the deficiencics not being
rectificd.

§

ERL-0637-RE

In most projects the likelihood of such a sitvation arising can be predicted and catered for in the
development process, particularty if it is identified as a risk arca (which it is).
DOD-STD-2167A addresses this problem only broadly, requiring that the developer identify
areas of "potential technical, cost ot schedule risks” {2167A 4.1.4]. The SOW should include
the requirement for the developer to additionally identify arcas of potential disagrecment or
subjective interpretation and to proposc procedures to resolve these as carly in the development
process as possible. These might include for example user interface prototyping or the use of
an incremental development process.

2.6.5 Software representation and generation

The design of cach CSCI will often result in specific decisions being made with regard to the
representation of the software (such as source file partitioning and naming) and the cnvironment
in which the software is 10 be gencrated, including the use of standard librarics, compiler
dircctives and options for the use of the compiler and linker. Where these decisions are made
as part of the dcetailed design process, and are therefore relevant to the coding, integration and
testing activitics, they should be documented as part of the design.

This information should be documented in the SDD for cach CSCI, CSC or CSU as applicable.
2.6.6 Traceability requirements

DOD-STD-2167A specifics that requirements are to be traceable from the high level
specification (eg SS8S) to CSCls, CSCs and CSUs, and from the CSUs to the SRS and IRS.
The DIDs, howcever, require this information in a diffcrent form, providing traceability:

. From thec SSDD to the SSS (in the SSDD)

. From the SRS to the SSS. CIDS or PIDS (in the SRS)
. From the SSS, CIDS or PIDS to the SRS (in the SRS)
. From CSUs to the SRS and IRS (in the SDD).

This provides traccability from CSUs to the high level specification in an indirect form (through
the SRS). To ensurc that the high level requirements are met, it is morc uscful 0 have a
traceability matrix from the high lcvel specification directly to the CSCls, CSCs and CSUs (and
lo the IDD if necessary). For larger projects this would require a scparate document uscd solely
for showing traccability. Where automatcd traceability tools arc uscd this should cntail little
extra cffort.

3 BASIS FOR USING 2167A

This section provides obscrvations and recommendations for using DOD-STD-2167A.

The prime recommendation (which might appear to be obvious) is that both customer and
developer must have a detailed understanding of, and preferably experience in, the requirements
and purposc of DOD-STD-2167A and. when specified, the related military standards.

3.1 Education and training

To achicve a thorough understanding of the purposc and requirements of DOD-STD-2167A and
rclated military specifications is not an casy task and requires considerable cducation and
training. Tertiary computing qualifications arc desirable but by themselves are not cnough,
since graduates arc not adequatcly prepaied in these arcas. Experience in real software

ERL-0637-RE

engineering is critical, cspecially exposure to working with standards. For a successful project
hoth customers and developers must have the appropriate levels of knowledge and cxperience
IMCGY0. MEY89, SPR90J.

Ideaily, all development staff should have scveral year's experience in software engincering
{preferably in the same application domain as the project), should have cxpericnce in the
programming language, development method and development environment to be used, should
have been trained in using 2167A and should have used the standard in a previous development
task. This happy state is rarcly achievable. The technical software manager and the senior
designers should have this level of expertise, however, before the project starts. Other members
of the development team must have appropriate computing qualifications, and must be given
appropriate training in the language, mcthods and environment, and in the use of rclevant
standards including 2167A.

The customer’s technical team for a large sofltware projcct should have at least onc person with
the level indicated above for the developer's senior designers. It may be adequate in small to
medium soltware projects for the project office to rely on cxtemal expent advisers, but at lcast
one person in the day to day management of the project must have experience and
understanding of the usc of the reievant standards and software engincering management and
methods.

In some cascs, the developer may need to educate the customer, particularly in the development
miethod and CASE tools used. This may involve additional cost to the project. in both time and
money.

The authors recognise that the pool of experienced software engincers in Australia is limited by
the relatively small size of the defence/acrospace software market and that low mobility
exacerbates the problem. Nevertheless, developers and customers must place a high priority on
the recruitment and retention of appropriately skilled staff.

3.2 Communication and cooperation

There arc many reasons supporting a close working relationship between developer and
customer {SPRY0]. but the authors are aware of few projects where such a relationship cxists.
In some cases the customer’s team does not have the experience to support such a relationship
and the developer is understandably reluctant 1o provide the needed cducation [MEY 891,
Developers are also wary of the visibility that informal communication might bring, and the
potential for subscquent critic'sm of their development process.

The benefits of increased communication and cooperation between developer and cusiomer are
seen to be:

a. Better mutual understanding of cach others’ problems and a subsequent increase in
mutual trust. The benefits of this will also be shown by more meaningful and more
successful negotiations and reviews [FIS87].

b. Improved risk management. Risk arcas can be highlighted carlier and may be
asscsscd by both customer and developer before a solution is proposed.

¢. Fewer misunderstandings and misinterpretations. Problems are identified carlier and.
when they cannot be resolved informaily, may be flagged for prompt formal
resolution.

ERL-0637-RE

d. Decreascd development effort because of the reduced likelihood of a course of action
being rejected by the customer.

¢. Higher quality documentation (at least from the customer's point of vicw).
Discussions should establish the form of documentation and the level of detail that
the customer requires,

The risk of poor communication will be higher when there are many contractors developing
software, and where the prime contractor is not a major software developer. In these cases
special consideration needs to be given to enhancing the communication between the customer
and the actual developer of the software.

Mever et al. {MEYR9] state:

The consistent trust and goodwill of the customer towards your design effort will be
the single most important factor in your ability to complete your project on time and
within budget.

3.3 Development methodology

In solftware enginecring, the term "methodology” refers to a combination of life-cycle models
(paradigms). management practices, technical practices, tools and training procedures used 1o
produce software [DEGY0]. There arc many dificrent models, practices, tools and procedurcs 10
choose from, so there are many dilferent development methodologics. cach with certain
strengths and weaknesses.

The methadology sclected for a particular software development project must be suited 1o the
application domain, the implementation language, the magnitude of the development effort and
other characteristics of the project and the development organisation. In addition, if the
development is to be conducted in accordance with DOD-STD-2167A then the development
methodology must map scnsibly into 2167A. With appropriate tailoring, 2167A can be forced
to accommodate almost any methodology, but it is pointless 10 force fit a methodology that
does not support the basic principles of 2167A (orderly development process, visibility, reviews
and audits) or that is not suitable for programming in the large.

The development methodology must be sclected quite early in the project (such as at tender
preparation time, or cquivalent for in-housc projects). The methodology must be writlen down
and it must be approved by the customer before development begins [MEY89]. The
appropriaic place for specifying the methodology (usually by referencing separate documents) is
in the preliminary Software Development Plan (SDP). Where a significant amount of time
clapses between tender and contract award, it may be necessary to redefine the development
mcthodology during the contract negotiation activitics.

Clearly the developer’s staff must be well-versed in the methodology and there should be a
training plan to cnsurc that they arc. It is also very important that the customer’s technical stalf

have an understanding of the methodology, and this may well require training for them also.

This issuc is discussed in further detail in Scction 7.

ERL-0637-RE

4 PRINCIPLES OF TAILORING

4.1 General
‘The main reasons tor tailoring arc as follows:

. To reduce the development cffort required and hence o reduce the cost and time to
complction.

. To modify or add requirements which are needed for a particular project or software
development method.

. To improve the quality of the product and the documentation
. To correct inconsistencies and hence to reduce risk in the contractual process.
In the authors™ opinion, tailoring is essential for all 2167A projects.

Taloring requires a good understanding of the purpose and details of DOD-STD-2167A and
experience in software engincering practices and management. Tailoring for a specific project
requires turther understanding of the application, the project requirements and (for detailed
tailoring) the development method used. A comprehensive understanding of other standards
tparticularly MIL-STD-1521B) is also required if these standards are 1o be used in the project.

Tailoring is difficult, time consuming and requires a meticulous approach. It is cssentially an
ierative process - cach proposed change must be assessed with regard 10 other changes and its
clfect on the management and development process as defined in DOD-STD-2167A and other
relevant standards.

Uncontrolled, simplistic or incxpericnced tailoring is likely to Tead to potentially scrious
probiems as follows:

. Loss of necded visibility to the customer.

. Omission of critical requirements.

. Inconsistencics between requiresnents. including these in other standards.
. Documentation which is inadcquate or of poor quality.

Tailoring should be refined throughout the course of a project [248A, 287]. The Request for
Tender (RFT) should address the high Ievel tailoring of all relevant standards and specifications
based on the standards chosen, the application and the acquisition process. The RFT should
also state the customer’s tailoring policy and solicit recommendations from tenderers with
regard to cost effective tailoring. The detailed tailoring should be agreed during contract
ncgotiations and incfuded in the contract. Further tailoring will often be necessary during the
coursc of the contract. In cases where the need for refinement during the development can be
predicted, plans for modifying the 1ailoring should be included in the SDP.

It is recommendced that, where possible, tailoring is carricd out as a joint effon between the
customer and devcloper [287]. This will ensurc that cach is awarc of the justification and
conscquences of cach individual tailoring, as well as encouraging an atmosphere of
communication and cooperation (scc aiso Scction 3.2).

10

ERL-0637-RE

4.2 Tailoring references and tools

General principles for the tailoring of military standards and specifications are addressed in
DOD-HDBK-248A, which discusscs the advantages, dangers and mechanisms of tailoring.
MIL-HDBK-287 provides a more dctailed approach to tailoring DOD-STD-2167A, and providcs
good advice on the relationship of 2167A to other standards and the handling of the "shell”
requircments. Both of these handbooks are recommended to those responsible for tailoring and
in particular to customers responsible for the approval of tailoring.

Logicon’s TAILOR compulcr bascd toois [LOG90} arc also uscful, especially for the
documentation of the tailoring and the preparation of CDRLs. They have been found to be
particularly useful in collaborative tailoring, where the customer and developer draft the
tailoring together, using the tools as a basis. These tools arc mainly aimced at tailoring for the
full scale development phase of a project and are less uscful for the tailoring of investigatory or
rescarch projects.

4.3 Praject factors influencing tailoring

Each project is different. DOD-STD-2167A provides requirements which are applicable for
many projects, but the requirements should be tailored to meet specific project factors. Faclors

which may influence tailoring include:

. The gencral application arca for the software, cg operational, prototype, fcasibility
demonstration, analysis, tcst or training.

. The type of software being developed - management information systems and rcal-
time combat systems, for cxample, should require different tailorings.

. The development method and CASE tools uscd.

. The use of non-procedural languages or application specific program generation tools
(such as 4GLs).

. The difficulty or complexity of the task.
. The number and complexity of extemal and inter-CSCI interfaces.
. Whether parts of the software are safety critical or sccurity critical.

. The proportion of softwarc which is rcused from a previous project and the amount
of non-developmental and COTS (commcrcial off the shell) software.

. The level of software support that will be required cither by the customer or
developer.

+ The verification and validation (V& V) approach, including whether this function will
be performed internally or by an independent or customer based V&V team.

4.4 Staying consistent with other standards
DOD-STD-2167A, as it stands, is inconsistent with somc U.S. military standards ([287

Appendix B)). Tailoring 2167A and/or the standards in conflict is required to resolve these
inconsistencics. In particular MIL-STD-1521B was writien to correspond 10 DOD-STD-2167

ERL-0637-RE

and has numerous references which are incorrect when this standard is used with
DOD-STD-2167A.

Each change to 2167A or the Data Item Descriptions (DIDs) must be considered not only with
respect to the internal consistency of 2167A, but also with respect to other required standards.

The problem of inconsistency between standards will always be a contractual risk arca
particularly when standards arc relcascd at different times. Where possible, customers should
specifically nominate the version of standards which arc to apply to reduce misunderstandings
in this arca.

An understanding of the value and purposc of cach standard specificd is important in preventing
inconsistencics. Customers should avoid the "shotgun” approach of specifying as many
standards as possible in the hope that this will provide added protection. Not only is this likely
to guarantee inconsisiencics between the standards, but may also lead to additional costs.

MIL-STD-15218 is likely to present the most probiems regarding conflicts. The scquence of
activitics, documentation delivery and reviews of 2167A are tightly intcrwoven with the
requirements of 1521B. Deferning the delivery of a document to a lfater stage of the
development, for example, may mean that it is not available for review as rcquired by 1521B,
and that there are no requirements (0 review it at later reviews. Deleting the requirements for a
particular review may result in some activitics or documeits not being reviewed at all.

4.5 Add, delete or modify?

DOD-STD-2167A (para. 1.3) swates thal "the tailoring process intended for this standard is the
deletion of non-applicable requirements”. MIL-HDBK-287 (para. 4.3.1.a) states that "For DIDs,
requirements may be deleted or panially deleted, but not modified”. Neither of these
restrictions is binding on Australian users of 2167A and it is evident that in many cascs an
adequate tailoring will not be possible without the modification of requirements, including those
for the DIDs [MARSE, MCG90].

‘The authors thercfore recommend that the tailoning of 2167A and its DIDs should be
accomplished by the deletion, addition and maodification of requirements. For consistency
between Defence projects however, it is impartant that the structure and paragraph numbcring
of both the tailorcd requirements and the required documentation be preserved as far as
possible.

4.6 Over-detailed tailoring

It is not necessary to tailor out paragraphs which are obviously inapplicable to individual
software elements (cg particular CSUs) but which may be applicable to others. Multipie or
over-detailed tailorings are difficult for documenters to follow, difficult {or those relining the
tailoring to maintain, and arc pronc to crror. It is preferable that the tailoring concentrates on
the major variations from the requirements of 2167A rather than the recording of petty changes
which will have no effect on the quality of the software and its documentation, or the clifont
required in producing these.

4.7 The cost of tailoring

The authors belicve that there is no cheap solution to the tailoring problem. Projects have
widely differing requirements with regard to both the development process used and the

ERL-0637-RE

documentation deliverables. These differences must be accommodated by tailoring to reduce
the cost. schedule and risk and to improve the quality of the product, including documentation.

The tailoring of 2167A and its DIDs requires high quality staff with specialised knowledge and
cxperience, staff whose services are normally in strong demand. The task of tailoring is
normally time-consuming and may require weeks rather than days over the life of the project.

In the authors® opinion, however, the benefits of an optimal tailoring arc likely to far outweigh
the costs for all but the smalicst projects.

S THE REQUIREMENTS OF 2167A

This scction discusses the use and tailoring of the requirements of 2167A, cxcluding thosc for
documentation (DIDs).

5.1 lIs it all needed?

The full requirements of 2167A can be very costly to implement., not only in the development
cffort but also through the monitoring task of the customer. Many activities such as product
cvaluations require additional cffort both in their exccution and in their recording and auditing.

In addition to the general guidelines for tailoring {287, 248A]. the authors suggest that where
the developer considers that a reguirement is not cost cffective and where the customer (or his
representative) does not have the means or ability to verify that the requirement is met,
consideration should be given (o the deletion of that requirement. In the authors’ experience,
developers are (understandably) reluctant to mect requirements that they consider not to be cost
cffective and the subsequent implementation is often inadequate. Il the customer is not
prepared or able to monitor and enforee the fulfitment of the requirement, there is no advantage
1o the customer or developer in specilying it. and there is littie point in the customer paying the
additional costs involved.

5.2 Reviews and audits

Revicews and audits as specificd in MIL-STD-1521B are the milestones and oftien the crisis
poinis of 2167A projects. The authors® survey and workshops [GAB91] did not cover the issuc
of reviews and audits in any detail (an oversight), but revealed concem regarding the overlap
and inconsistencies between 2167A and 1521B. Many of the problems that both customers and
developers had experienced with 2167A culminated in difficultics with customer approval at
reviews, typically Preliminary and Critical Design Reviews (PDRs and CDRs).

It is evident that in many projects reviews are the main occasions when technical discussion
about software takes place between the customer and developer. This factor is likely 1o be
responsible, at Icast in part, for what appears to be a rclatively low rate of outright approval on
first presentation in design reviews. The developer prepares for such a review with little
knowledge of what the customer is likcly to approve. The customer, on the other hand, is often
presented with information for the first time (formally or informally). The outcome is almost
incvitablc:

. The customer’s technical representatives are overwhelmed by the new information
and time is wasted during the actual review mecting in explanation and cducation.
The fact that the developer has in many cascs provided more information {oftcn
irrclevant to the review) than is nceded aggravates rather than assists in this situation.

13

ERL-0637-RE

Because the design is new and is being seen for the first time, faults in the design are
found.

Different pereeptions of project requirements and the use of 2167A result in
protracted discussions with regard to interpretation of requircments.

Important arcas are completely ignored due to lack of time.

The review results in disapproval or reluctant contingent approval (in the words of
1521B).

Such reviews cannot be regarded as productive. Apart from the fact that much of the
discussion is at a lower icvel than is warranted by the number and status of attendecs, the
developer has wasted cffort in preparing for the review and the schedule is likely to be affected
as a result.. Morcover, many of the real issues have not been tackled, possibly reducing the
overall quality of the product. A lasting side cffect is likely to be an increased distrust between
the two parties.

The wllowing recommendations arc made with regard to reviews and audits.

d.

The number of surpriscs at these events should be minimised. This can only be
achicved through greater informal communication between the customer’s and
developer’s technical staff (Section 3.2).

Customers should cnsure that their technical team is adequate in number, cducation
and cxperience to laise effectively with the developer’s team and review delivered
documentation

The reviews should concentrale on higher level issucs - interpretation of requirements
should have been resolved prior to the review,

For large projects, the use of incremental reviews should be considered, reviewing
components of the product as they are produced, and summansing the results of these
at a {latcr) formal review meeting.

The reviews and audits should be planned and their requircments tailored in
accordance with the particular characteristics of the project, including the application,
the project size and complexity, and the development method used. The planning
should include thc number, timing and nature of reviews.

Reviews should avoid protracted presentations ("dog and pony shows™) of
information that is fully documented and concentrate on issucs such as the inherent
design of the software, work done, progress made and arcas of potential risk.

The demonstration of user interfacc mockups and other prototypes, and the
capabilitics of incremental builds should feature prominently in the appropriate
revicws,

In many smaller projects in Australia the complete sct of reviews cannot be justified and is not
required by the contract. Tailoring 1521B and 2167A to remove the requirements for these
reviews is relatively straightforward but gives risc to a common tailoring problem: dclcting a
review may result in the removal of review requirements that are needed. For examplc,
removal of the Software Specification Review (SSR) removes the requirement to review

ERL-0637-RE

qualification and quality factor requircments of CSCIs, which are not subscquently reviewed in
the PDR. When reviews are tailored out their requirements should be analysed and thosc that
arc required should be added to a subsequent review.

5.3 Testing

DOD-STD-2167A requires testing above the CSU level to be conducted by a team independent
of the development team. This requircment entails additional cost and is oftcn not met,
particularly in small softwarc dcvelopment organisations. In the authors’ opinion this
requircment is imporant to the quality of testing and its removal can only be justificd in
exceptional circumstances. 1t is therefore important that customers (and their V&V agents) pay
particular attention to ensuring that the indcpendence of testing is planned and implemented.

The authors have noticed a tendency for some developers (0 aticmpt to postponc the definition
of formal qualification testing to a later stage than that requircd by 2167A (in some cascs well
after CDR). Presumably this is motivated both by a desire to decrease the number of tasks
during preliminary and detailed design, and to defer test definition until the performance of the
system is known. Whatcver the reason, it is neither in the customer’s or developer's interests to
defer test definition.

Springman [SPR90] indicates onc developer’s view towards test definition with
recommendations including:

. Defining the standards and procedures for testing very carly in the contract.
. Involving the customer in developing the test program.
. Getting the customer to commit to a cost effcctive test program at an carly stage.

The bencfits to the developer are obvious - the definition (and limiting) of testing at an carly
stage mcans that the objectives of the development become clearer and more bounded. From
the customer’s point of view the test details indicate that the developer understands the
requirement and they also should provide a clear indication of the projected performance.

If the developer cannot define adequate formal qualification tests prior to the CDR, it may be
an indication of an unstablc or insufficicntly detailed design.

The authors strongly recommend the definition of formal testing at an carly stage in the contract
and no later than that specified in 2167A.

5.4 Software product evaluations

There is an cvident lack of understanding of the requirements for software product cvaluations
in current 2167A projects [GAB91], particularly those where these requirements have not been
tailored out. This indicates that in many cases product cvaluations arc not being performed or
audited. Product evaluations arc conducted by the developer on deliverable software and
documentation, prior to their delivery to the customer, to increase the quality of the
deliverables. The cvaluations must be performed by a team independent of the development
tcam and records must be maintained of the evaluation and the subscquent corrective actions.

There is a tcmptation for customers 1o require product cvaluations as a form of compensation
for the lack of the appropriate skills in their project tcams. The authors recommend against this
for two rcasons. Firstly, the current approach to product cvaluations by some developers would

ERL-0637-RE

resull in no tangible increase in quality. Sccovudly, a customer not posscssing the appropriate
skills would not be able to audit the product cvaluation process adequately

Product cvaluations, if they meet the requiremerts of 2167A, require a large amount of effon
on the developer’s part, and an additional auditing cffort from the customer. 1t is likely that
expenienced developers will perform some form of evaluation in any case as part of their V&V
or QA process - it is more cost effective and cfficient to detect faults in sofiware and
documentation prior to delivery rather than have the deliverables rejected by the customer.

It is therefore recommended that product evaluations be required only on projects (and
products) where there are obvious benefits, and where the customer is willing and able to audit
the product evaluation process. These should include projects with safety or sccurity critical
software, and larger projects where the customer’s technical staff cannot monitor all of the
development in detail.

3.5 Configuration management

DOD-STD-2167A provides its own requirements for configuration management (although
several DIDs refer indirectly to MIL-STD-483). Customers should ensure that the configuration
management requirements, including those for post-development maintenance, are compatible
with those of 2167A (tailored as necded) and that any specific requirements are also addressed.

Many developers are concerned about the adequacy of their configuration management systems
and procedures, particularly with regard to their ability to control more than onc version ol the
soltware satisfactorily at the same time. Customers should be aware of this problem,
particulasty for large or complex systems, and be preparcd to ensure that the developer's
contiguration management procedures are both adequate and adhered to.

6 PARTITIONING THE SYSTEM INTO SOFTWARE ELEMENTS

Mistakes made in the partitioning of systems into CSCls, and the subscquent partitioning of
'SCls into CSCs and CSUs, have been the cause of numcrous difficultics in 2167A projects
[BLIL.88, MARKR, MCG90. MEY89]. The partitioning problem is not simply one of providing
the most elegant or managcable modularisation bascd on analysis and design factors.
Developers must also consider the cffect of panitioning on how they will meet the requirements
of 2167A, particularly with regard to review. test and documentation. Delining 100 many
CSCls will result in too many revicws, formal tests and documents: if the software is
insulficiently partitioned it is likely 10 be difficuit to manage and provide insufficient visibility
for the customer.

There can be no specific rules for the selection of CSCls, CSCs and CSUs - cach project must
make its own judgements in this matter. The following suggestions may be helpful.

6.1 Selecting CSCIs

A CSCl is first and forcmost a configuration item. MIL-STD-483A provides sound guidance
(or the selection of CSCls and states:

The selection of hardware/software to be managed as configuration items should be
determined by the need to control a configuration item’s inherent characteristics or to
control that configuration item's interface with other configuration items. The selection
is @ management decision normally accomplished through the system engineering

1A

ERL-0637-RE

process in conjunction with configuration management and with the participation of
logistics. Selecting configuration items should be with a full view of the life cycle cost
and management impacts associated with such a agesignation. Choosing too many
configuration items increases the cost of control; choosing too few or the wrong
elements as configuration items runs the risk of too little control through lack of
management visibility.

In other words CSCls need to be selected on the basis of the capability 10 manage and control
thera. Consideration needs to be given to the following features:

. Size and complexity - whether the CSCH is too large or the development 0o complex
to be effectively managed.

. Inierfaces - CSCIs should be chosen to minimise the interfaces 1o other CSCls and
HWCIs (Hardware Configuration ftems). This is particularly stressed by Buley ct al.

[BULRK].
. Functionality - functional boundanes. including operational, training and suppon.
. Coticality - special management may be required for selected clements on the basis

of security, salety and other critical factors

. Contractual or geographic issues - it may be unwise for a single CSCI to contain
software developed by more than one contractor, at separate locations, or at different
stages of a project.

. Post devetopment use and maintenance - whether software is to be used or
maintained by separate agencies alter development.

. Software environment - whether dilferent elements of the software will run on
ditferent processors, for example.

. The likelthood of reuse - if software s likely 10 be reused in subsequent projects it
may be usetul to define it in separate CSCls or CSCs.

Somce partitions suggest themselves. A program running on a single processor with reasonably
common functions is a natural candidate for a CSCIL. I it is very large or there are major
divisions in its functionality, consideration needs to given 1o splitting it into two or more
CSClIs. This docs not mean. however, that a CSCT should only contain one program

Colicction of a group of smaller programs with a common function into a CSCI. test and
diagnostic programs for example, is sensible practice. It also does not preclude soltwire in
different processors, or different processor types, or software written in different languages, or a
mixture of new and cexisting software from being aggregated in a single CSCI undcer the
appropriate circumstances. In this latter casce the iloring for different CSCs in the SDD will
need to be considered (see Scction 8 3.2y

Both developers and customers should be aiming to minimise the number of CSCIs within the
constraints of manageability and visibility.

6.2 Selecting CSCs and CSUs

Sclecting the CSCs and CSUs is also a cntical activity. If the level at which CSUs are defined
is 100 low, the size and content of the CSCE's Software Design Document (SDD) can be oo

17

ERL-0637-RE

Latge by an order of magnitude. 1t the Jevel is too high, the customer will be depied the
visthility needed to review and approve the design.

v CSC should be regarded as a logical rather than a physical entity - its physical realisation is
the set of CSUs which provide its capability (and which may be grouped in sub-level CSCs).
While the selection o CSCs will often be a natura’ outcome of the design method used,
consideration of the documentation, integration and testing requirements of the CSCs s
important. DOD-STD-2167A requires that cach CSC be described in terms of ils execution
control and data flow (among other things) and that integration and testing within a CSCT be
petformed on the basis of CSCs. Incorrect sclection of CSCs may make these activitics quile
detficelt and timie-consuming, as well as leading to poor documceniation.

Phe only guidance that 2167A provides with respect to the sclection of CSUs is the definition
ot CSU as bemg “separately testable”; additional clucs might also be inferred from the
inlormation required in the SDD. This has caused some conlusion among developers ad
customers because of different interpretations. Many have interpreted this (o mean (at least
motiallyo that a CSU s a subprogram or its cquivalent, giving rise 1o an cnormous amount of
olten unnecessary documentation. This interpretation is in conllict however with the
requirements for configuration management after coding and unit testing [2167A 5.5.5):

The contractor shall place the source cooe for each successfully tested and evaluated
CSU under configuration control.

miplyving that o CSU encompasses one or more source code entitics which, at least in modem
software devetopment, will often comprise more than one subprogram. There is also 4 valid
atvument that a single program in a source file containing other subprograms cannot be
schuinely “separately testable”.

fhis s certainty an arca ol confusion but it is not one which will be satisfactorily resolved by
scarching standards for references as above. The important issuc is that the design is
documented to a satisfactory level and that both developer and customer (and the maintainer in

sofe cases) agree as o the meaning of "satisfactory™.

The authors belicve that a CSU should map to one or more source fifes containing one or more
subprograms or similar entities which are closely related Examples that mecet this criterion are:

. An Ada package (normaily two or more source files).

. A small library of loosely related functions (such as a mathematical package).

. A group ol data or type definitions

. A database of limited complexity.

. Onc or more object class delinitions,
Using this approach it is still likety that disagreements will occur as to the fevel ol complexity
Allowed within a CSU. The developer's written sofiware development method should address

s issue. with additional writicn agreements with the customer as necessary.

Meyer et al. [MEYS9], Ville ¢t al. [VIL90] and McGann {MCGY0] provide case studics of CSC
and CSU sefection for Ada projects,

ERL-0637-RE

7 DEVELOPMENT ISSUES

During the authors® survey of 2167A usage, both customers and developers highlighted a
number of issues relating to the relationship between software development practices and
2I67A. The issues can be categorised into two main areas: those associated with the overall
developmental process and those associated with methods used during the process such as
specific analysis and design methods.

7.1 The Develapment Process

A development process is the overait framework in which softwarc is developed. This
framework encompasses the various activities required during software development, such as
anatysis, design and testing. Scveral models have been proposed to help define this framework,
the watertall model being perhaps the inost widely discussed (and criticised) of these.

Terminolopy tenas o be a major stumbling block when discussing issues relating to software
process modcts, Maost discussions focus on the high-fevel or architectural models where people
talk in terms of waterlall, spiral [BOE®S], incremental, cvolutionary and cven whirlpool models
TDEGHOL The situation becomes cven more confusing if the many variations of the hasic
models are considered. For example, there are several variations of the waterfall model ranging
from a stnct interpretation (where the next phase cannot start until the previous phasc is
completer, to approaches where software is developed in a number of build increments (often
termed incremental development). Statements such as "2167A is incompatible with
evolutionary devetopment” become meaningless because individuals, organisations and authors
have different preconceived ideas as to what the term means. An incremental approach might
right!s be termed evolutionary, yet others sce evolutionary development as an approach where a
prototype is evolved into a fingl product. Confusion abounds when this terminology is also
used 1o describe acquisition processes. For example, how does cvolutionary acquisition differ
from cvolutionary development? Clearly, the software world has once again fallen prey to
overuse and misuse of terminology. Prior to any discussion of issucs relating 1o software
processes and 2167A, the terminology must be clearly defined. Discussions should procecd
hased on a consistent understanding of specific models, rather than ill-defined software jargon,

Applying a simple label such as "we are using incremental development” is insufficient to
deseribe the overall process of soltware development. Published models may provide some
general idea as o what is intended: however, they rarely fit well with a "real world”
development. Programmers often remark that "the waterfall approach has been specified for our
project, but it's not really the way wo go about developing software”. 11 this is the case, then
what is the actual process or approach being used? How docs it differ from the standard
waterfail model? Has it been documented? How is the process being managed? Indeced. cach
project has specific charactenstics and it would be inconceeivable that a standard model could
define the process for all projects. For example, an important characteristic that needs to be
considered is risk. If a project requires the development of a complex user interface, then
delining the requirements for the interface could be considered 1o be a high risk activity. In
this case. uscr interface prototyping might be considered as an inclusion into the development
process to assist in controlling the risk. Software development is a very complex endeavour. It
is characterised by many features including ool usage, type of project, available resources, and
possible risks. Reference to a simple high-level modcl is insufficient to describe the many
complex interactions and dependencics that ultimately define the development process.

The 2167A standard is often crilicised as being based on a waterfall approach. Although the
watcrfall approach is used as @ model to help convey the requirements of the standard, it would

19

|

ERL-0637-RE

he foolish to believe that software development could proceed based solely on the model
deseribed in 2167A. In fact, the standard specifically states in para 4.1.1 that

The contractor shall implement a process for managing the development of the
deliverable software. The contractor’'s software development process shall be
compatible with the contract schedule for formal reviews and audits.

It then goes on to list the major activitics which can be applied “iteratively or recursively.”
Notice also that the standard states that the process is to be compatible with "the contract
schedule”. Tt does not specify when reviews, audits or deliverables are to be (or cven have to
he) provided. Indecd, these milestones need to be defined through close cooperation between
the customer and developer. They will invariably be heavily dependent upon the process
defined by the developer and agreed tailorings.

't is possible that the usc of MIL-STD-1521B is morc responsible than 2167A for forcing a
project into a waterfall approach. There are also indications that some less disciplined software
developers regard almost any controlled process as a watcerfall approach because of the
necessity for restrictions imposed by the control mechanisms (eg the need 1o undertake design
activities before coding, and the need to document the design).

A major failing of many projects is that the development process is at best poorly defined. Tt is
too casy to blame the "waterfall approach imposed by the standard” as the reason for faiture: in
most cases it is really due to a lack of planning and a lack of cooperation between the customer
and developer. Without a clear direction as 1o how development will proceed, the project will
become plagued with customer/developer disputes and uncxpected surprises generally arising at
the most crucial stages ol development. Customers should cnsure that the process o be used is
well delined, understood. and documented. Intcraction and dependencies between the various
development activities should be provided and the model (as specified in the SDP) should be
thoroughly reviewed and analysed.

The development process must be built around the fundamental requirements of 2167A, with
particular regard to those requirements providing visibility 1o the customer and progress
reporting. To propose a model without a thorough understanding of the requircments and
implications of 2167A will almost certainly result in conflicts. There have been many
arguments indicating that 2167A does not fit with the way the developer likes to develop
software (generally based on some high level model). The authors contend that a process
maodel needs to be claborated for cach project so that specific project characteristics can be
accommadated. Onc of these is the tailored set of 2167A requirements. Humphrey [HUMRY]
proposcs an approach based on process cells which would support claboration of comprehensive
project related process models. Indeed, his discussion of various aspects of process modelling
is recommendced reading. Regardless of the approach taken, those involved in developing a
process model for a 2167A project must have a good understanding of the various approaches
to software development, a solid background in process modelling, a knowledge of the project
and product characteristics, and an cxpert knowledge of 2167A.

7.2 Development Methods

A requirement of 2167A (para 4.2.1) states that "the contractor shall usc systematic and well
documented software development methods 1o perform requirements analysis, design, coding,
intcgration and testing of the dcliverable software”. No specific methods are defined, yet somce
methods have been found to be more casily documented using ihe DID format than others.
Questions that arise include:

20

ERL-0637-RE

. Which methods should be used for a centain class of project?
. What constitutes a “"well documented method™?
. What level of tailoring is required of 2167A DIDs for specific methods?

‘There are numerous published development methods - they range from academic approaches
which lack rigour or scalability. to more rigorous and well documented methods developed by
large organisations. In addition, there are several variations on a basic theme. For example, the
words "object oriented” arc used to describe a vast range of diffcrent methods. A
characterisation of all the available methods (and their 1ailoring implications) is well beyond the
scope of this report: the following guidclines may be of some assistance, howcever.

A common qucstion is "which methods would most suit our project”? This begs the question
"what arc you building?" Prior to asscssing the applicability of methods, the project must be
characterised: is it real-time, hard rcal-time, data oricnted?; how large and complex is it?;
what are the major perecived risks? Other aspects to consider include process characteristics
(eg "docs the organisation intend using automated tool suppon?”), interrclationships with other
methods (eg "will Structurcd Analysis fit well with an object oriented design?”). In addition to
understanding project and process characteristics, the soltware engincers responsible for defining
and sciccting the methods must have a sound knowledge of available techniques and their
application. In some cases, none of the available methods will ideally suit the project and
clements of more than one method may need to be applied.

Regardiess of the approach taken, the method must be well documented. Documecntation should
include:

. A desceription ol the general philosophy and approach.

. A desenption of the graphical notations used.

. The basic sieps 10 be taken.

. The method of recursion.

. Essential DID iailoring.

. Examples showing the products resulting from the application of the method.

Development methods must be defined carly in the process. The methods to be used need to be
thoroughly reviewed and assessed prior (o software development. Some aspects that need 10 be
considered include compatibility with other methods. compatibility with the overall development
process, understandability, completeness. consistency and the cffect on DID tailonng.

Analysis and design techniques cannot be icft to the discretion of individual programmers;
analysis and design activities should be conducted according to well defined and documented
mcthods. These methods should be specificd in the SDP at an carly stage of the project, as
required by 2167A, 2168 and AS-3563,

Clear separation of the analysis and design activitics is critical (but is often difficult to achicve
with incxperienced stalh. In particular, the Software Requirements Specification (SRS) should
contain requirements only, and avoid any software design information |[SPR90, MCG90}. (This
crror occurs far too frequently and causes a protracted SSR. unduly volatile SRSs and increased
documentation costs.)

Tailoring of the DIDs may be required 1o support specific methods. The degree of tailoring
will depend on the method used and the project. For example, the SRS is arranged in terms of
capabilitics and scparatc data clement requirements. Capability descriptions arc functionally
based and required details of inputs and outputs. If a Structurcd Analysis approach is used,
little tailoring of the SRS would be required since the DID contents and format correspond to

ERL-0637-RE

this type of approach. The usc of an object oricnted analysis technique, however, may require
significant tailoring. Here the aim is to document the analysis in tcrms of objects, where an
object may encapsulate both data and operations. This approach has been used very
successfully for a range of projects and should not be dismissed simply because it does not fit
well with the DID structure. If significant DID tailoring is required, the customer and
developer must work together for the best solution. The developer must have a well defined
mcthod, educatc the customer in the method and proposed tailoring, and show how the
approach best suits the particular development. On the other hand, the customer must be
receplive to new thinking and realise that there is a likclihood that the DIDs will require
tailoring for specific methods. The most important thing is that the customer and contractor
must collaborate in reaching an agreced taiforing.

8 DOCUMENTATION ISSUES

8.1 General recommendations

The documentation required by the 2167A DID: is designed to be an integral part of 2167A
developments. Not only does cach documient complement the others, but cach has its place in
the development process. Ignorance of the relationships between the documents and cach
document’s role in the process can lead to serious increases in documentation costs as well as
other problems in the development process. Lack of understanding and agreement between the
customer ang developer as to what is required in the documentation will also Icad to
unneccssary work and delays (see also Scction 5.2).

One simple example of the need to consider cach document's contents in the framework of the
documentation family is the definition of the software test environment in the Software Test
Plan (STP). In most projects the test environment is a subset of the software engineering
cnvironment described in the SDP and is best explained in that context. It therefore makes
sense in these cases to describe the test environment in the SDP at the level of detail required
by the STP and to refer to it in that document to prevent duplication.

DOD-STD-2167A requires that a systematic development method be used and the DIDs reflect
this. More importantly, the DIDs assumc, rightly or wrongly, a structured analysis and design
process based on functional decomposition. If the actual method uscd docs not follow this
broad model the mapping of the analysis and design to the DIDs will be at best difficult and al
worst impossible, causing probiems both in wie preparation of documents and in their
acceplance by the customer. In particular, if the analysis step is not performed (usually an
indication of the developer not following a systematic method) the SRS and IRS (Software and
Interface Requirements Specifications) will be difficult 1o write and will be almost valucless.

General guidelines for the preparation of 2167A documentation arc as follows:

a. Always consider cach document’s role in the documentation family and the
development proccss.

b. Consider the potential audience of cach document.
c. Consider the costs involved in changing basclincd documents when writing them.

d. Provide no morc information in cach documcnt than is nccessary. 1 additional
information could he usclul, include it as "information only” in an appendix or as a

ERL-0637-RE

scparate document. Avoid the temptation of dumping all the information currently
available into a requircments or design document.

Avoid duplication which may lcad to inconsistencics when changes are made. In
many cases this can be achicved by cross-referencing.

Avoid the documeniation of design dctails in requircments documents.

Ensurc that the development method and CASE tools used are compatibic withi the
requircments of 2167A and the development of 2167A documentation.

8.2 Documentation on electronic media

The DIDs are not prescriptive about the form in which the documents arc to be delivered. Each
DID states:

7.2 The Contract Data Requirements List should specify whether this document is to
be prepared and delivered on bound 8 1/2 by 11 inch bond paper or electronic media.
It electronic media is selected. the precise format must be specified.

While the authors are not aware of projects in Australia where the documentation is being
delivered only in the form of clectronic media, it is sometimes provided in addition to the
printed form.

There are advantages in using clectronic media for documentation including:

Changes may be quickly madce to the documentation.
The documentation may be transmitted by clectronic means. This is an advantage
not only in the initial delivery but also for distribution among gecographically separate

members of the custome: s tcam.

Different versions of the same documents may be compared casily (o highlight
changes.

Document users may use software 1ools to scan documents for key words,
Storage of documentation, particularly multiple versions, is more efficient.
Costs and response time in the gencration and distribution of documentation,
particularly where a large number of copics might be normally required, may be

seduced.

customer may morc cffectively maintain the documentation throughout the life
of the system.

There are also disadvantages:

The configuration control of documentation needs special attention if its most
common form is clectronic.

Electronic documentation may result in additional direct costs 1o the customer, both
in the procurement of compatible documentation cquipment and in the training of

23

ERL-0637-RE

stalf (although this may be reduced or climinated by the specification of a
documentation sysiem already in use in the customer organisation).

The authors recommend that customers require the delivery of documents in clectronic form
cven it printed copies are also required. Requirements for printed copics should take into
consideration the availability of clectronic copics and be reduced accordingly.

In determining the acceptability or otherwise of the format of documentation on clectronic
media. the following should be taken into consideration:

. What facilitics will be required 10 usc the documentation and 10 make printed copics.
Consideration should include other customer agencics which may need 1o usc the
documentation.

. Whether the format will allow the customer to make changes to the documentation
such as inserting comments, or updating documents during software maintenance.

. Whether the format and tools support comparison of document versions.
. Whether the tormat supports documentation in graphic form.
. The physical medium, it any. for delivery.

For Detence projects, the customer should also ensure that documentation on clectronic media
conformes with the CALS requirements (Computer-aided Acquisition and Logistics Suppont).

8.3 Tailoring the DIDs

In tloring the requirements for documentation, the aim should be to produce the minimum
consistent set of documents which mects the needs of the project.

8.3.1 General

The delfetion of individua! DIDs from the documentation requircments for a project is often
desirable but consideration needs 10 be given to the full conscquences of its delction.

11 the customer intends to rely on the developer o provide suppon for the sottware. for
cxample. there may be no need for a Computer Resources Integrated Support Document
(CRISD), Computer System Operator’s Manual (CSOM) or Software Programmer’s Manual
{SPM) to be produced. Customers should be aware, however, that there are several levels of
support which may be required. Modem software is often configurable and the reconfiguration
may be quite complex. By deleting the requirements for the CRISD and SPM the normal
vehicle for the supply of this information is removed (sec Section 9.83.

Deletion of a high level DID, such as the SSDD, will also require the tailering of scveral other
DIDs. The table below shows the relationship between the various DIDs and standards,
mdicating references from one document to another. Although not all ol the references are
significant (in some cascs they arc mainly for information purposes) the table shows that care
must be taken in defeting DIDs

Onc misapprehension that the authors have noticed in several projects is the view that 2167A is
all-encompassing and that no additional documentation requirements are necessary. While this
may be true in some cascs, many projects require additional documentation which should be

21

ERL-0637-RE

identificd in the CDRL, cither as the tailoring of specific DIDs or as scparate documents (scc
also scction 2.6). Furthermore, good software engincering practice always requires the
gencration of diagrams or other information not explicitly specificd in any DID. Examples
include user interface layouts, concurrency diagrams and timing analyses. These should all be
provided somewhere in the delivered documentation.

8.3.2 Adaptive tailoring

In many projects a single tailoring for all SRSs and SDDs (say) will not be adequate. Different
requircments for the software development will result in the necd for differcnt tailorings in
some cascs. It will also be necessary in some circumstances to apply different tailorings for
differcnt CSCs or CSUs, for cxamplc when there is a combination of new and existing software
in a CSCI.

8.3.3 Using alternate formats in DIDs

The DIDs arc deliberately prescriptive with regard to the structure (including paragraph
numbering) and content of documentation. This approach is intcnded to guarantee the

Documents referenced

ooww
b3
X7

o
oow
TH®
O -0
D
non
Do<
TOMWO
SCw

m
CKw—TO

| WO—T
VO -0
O W
w ™
TOoOw

SDP

L K NG RON]

SSDD

IRS

SRS LA AR

IDD

LR R K
LK B K

SDD

STP +

LK R K K
L 4
+
+

STD

STR +

SPS + |+ + +

vDD +

CSOM

SUM +

SPM 4

FSM

CRISD

Cross-referencing hetween DIDs and standards

25

ERL-0637-RE

completeness of the documents and to assist reviewers in finding specific information. Any
consideration of tailoring or altemative formats must take this into account.

While the DIDs control the content and layout of documcntation they encourage the
presentation of information in formats appropriale to the content, and the usc of cross-
referencing rather than duplication. Statements such as the following [SDD 10.1.6.2.2} are
relatively common:

This information may be provided by automated tools or other techniques, such as a
program design language, flowcharts, or other design representations.

The authors also recommend the use of appendices or separatec documents wherce this will
improve the presentation and use of information. This can be done in many cascs without the
need for tailoring as long as the basic structurc of the document remains intact and coherent,
the extracted wformation is at a relatively low level (eg paragraph 4.X.Y.2 in the SDD which
addresses the design of an individual CSU), and the subsequent references are direct and
unambiguous. Such a practice is panticularly uscful for bulky matcrial, supporting information
and the documentation of information which is orthogonal to the basic structure of the
document.

The more general ¢xiension of this practice. ic the use of DIDs as shell documents with (often
broady references 10 documents writtent to the developer's internal standards, should be avoided.

8.4 Software development files

Developers are required to "document and implement procedures for establishing and
maintaining SDFs” [2167A 4.2.9]. The authors view SDFs (soltware development files) as very
tmportant for the documentation of additional development information including justification of
design choices and alternative considerations, CSU test procedures, and other information,
sometimes of an informal nature, that may assist in soltware maintenance. In addition, il the
SDD is tailored to the extent suggested in Scction 9.5, the SDFs are critical for the
documentation of lower level CSUs and the support of SDD documentation during CDRs. This
approach follows that of Springman |SPRR9).

The SDFs should be placed under configuration control following the successlul testing of their
associated soltware element (normally CSU or CSC) and be delivered to the customer if the
transitioning of software suppont is required.

DOD-STD-2167A should he tailored to include these requirements. The customer shoutd also
ensure that the developer has adequate procedures for the use and maintenance of SDFs, and

that the CDRL includes their delivery. B omay be necessary in some circumstances (o negotiate
the protection of intellectual property contained in delivered SDFs.

9 THE DATA ITEM DESCRIPTIONS (DIDS)

9.1 Software Development Plan

ihe SDP describes the organisation, management and planning of the software development for
a project.

The effort required in preparation of this very important document can normally be reduced by
referencing the developer’s own software development standards wherever possible. Where Lhis

\(‘ '

ERL-0637-RE

occurs those standards must be provided to the customer for the review of the SDP, and must
be available to the development tcam before development starts. It may be preferable (for both
customer and developer) to describe the high level reauirements being met in the SDP and to
usc references to show how those requirements are met.

Onc arca of definition in the SDP which will vary greatly between different projects is Risk
managemcnt (SDP section 3.3). Consideration should always be given 1o tailoring this section
for the specific application and project.

9.2 System/Segment Design Document

The SSDD describes the system (or segment), the allocation of CSCls and HWClIs and the
processing resources. Its definition assumes that its requircments are derived from a
System/Segment Specification (SSS) as defined under MIL-STD-490A and it should be tailored
if the system specification is a Prime Item Development Specification (PIDS), Critical ltem
Development Specification (CIDS) or other specification.

Where there is only one CSCI and the operational requirements are well defined, the SSDD
may not be necessary in its entirety. In this case it may be tailored out, and any of the SSDD
requirements that are considered relevant may be added 1o the SRS.

When preparing sysicm specifications, it is important that customers aim o avoid restricting the
design of the system. Over-specification of requirements can make the analysis and design task
more difticult. as well as forcing design details into requirements specifications such as the
SRS.

9.3 Interface documents (IRS and IDD)

The authors’ survey revealed a level of dissatisfaction with duplication between the IRS and
IDD and the uscfulness of both documents. In the authors’ experience these documents are
often misunderstood and subsequently misused. The wording of the DIDs does not assist in
this regard.

An IRS is used to specify the requirements for once or more CSCI's extemal interfaces, the
details of which arc necessary for the preliminary and detailed design of the system. Interfaces
may be 10 other CSCls, HWCls or exiernal 10 the system. After SSR the IRS becomes pan of
the aliocated bascline. The Ievel of information provided in the IRS should reflect the
interface’s criticality in the design of CSCls. Detailed interface information should only be
specificd for interfaces which are external to the system, whose definition is critical 1o the
design of CSCls, or which arc defined and are unlikely 1o change (such as the interface 10 an
cxisting HWCI). Other interfaces should be identified and specified in terms of their
requircments. it should contiain no design information.

To some cxtent this is a trade-off. Information that is likely to change during design should not
be in an IRS - as it is pant of the allocated baseline changes can be costly. On the other hand
the design of a CSCI requires the definition of cxtemnal interfaces, and instability in its cxtemal
interface definitions is a source of risk. The customer and developer must thercfore agree on
which interfaces must be defined in the IRS and which must be "designed” and cxpanded in the
IDD.

The IRS and IDD can therclore be regarded as containing the appropriate level of interface
definitions at PDR and CDR respectively. The IDD, being a derivative of the RS, must
incvitably duplicatc some of the information comtained therein, but this problem will be reduced

27

ERL-0637-RE

1 the IRS conains the correct level ol information and there are no major instabilitics in the
overall system design. 1t can be funther reduced by referencing the IRS from the DD, where
the IRS contains detailed information, although it may be preferable 1o include all the interface
information in onc document, which should be the IDD.

In many smaller projects a single interface document will suffice. This will either be the IRS
or 1DD depending on the relevant stability of interfaces external to the system and those
hetween CSCls. In these cases tailoring must be used to delete the requirements for the
discarded document, and also 1o compensate for its absence. The configuration management
requirements must atso be tailored accordingly.

There are also situations where neither an IRS nor IDD is nceded. Where a project consists of
a singie CSCI rupning as a program in a single computer, where there are no specific interfaces
between the CSCI and the computer (the only HWCI), and where there are no cxternal
inlerfaces or i xerfaces to other conliguration items, there is almost certainly no need for an IRS
or IDD. There are also projects where some or all of these requirements are not met and the
required interface informationt can be provided satisfactorily in the SSDD or an SRS. provided
that these documents are tailored to provide an adequate level of detail.

9.4 Software Requirements Specification

The SRS is usually the key contractual specification for software development, particularly
when the software 1 being developed by a subcontractor.

In the authors™ experience the two most common problems in SRS preparation are the absence
ol a genuine analysis of the requirements and the inclusion of design information which should
instead be in the SDD. Often these problems oceur together when incxpericnced development
stalf confuse the analysis task with that of preliminary design.

An SRS should only contain requirements information which stems from a higher level
statement of requirement (SSDD, SSS or other specification) and which is refined as a result of
the developer's requirements analysis. Information that is likely to change as a result of
detailed design should cither be relegated to the SDD or included separately on an “information
only™ basis.

‘The authors have noticed a reluctance by some developers o derive additional requirements
from those specificd, resulting in an SRS which is little more than a reficction of the higher
level specifications. This practice is to the disadvantage of both the customer and the developer
|BULBR} and should lcad 1o rejection of the SRS. The customer should be secking an
mndication from the SRS of the developer’s understanding of the requirements. Approval of the
SRS mecans that the derived requirements are then included in the allocated bascline and the
developer can proceed to design with an approved set of consistent and detailed requirements.

Another potential problem is the attempt to map the results of an inappropriate analysis method
onto the structure of an uniailored SRS. As discussed in Scction 3.3, it is important that a
developer’s analysis and design methods are consistent with the development lramework
described by 2167A. If the requirements of the SRS and SDD documents are ignored it is
fikely that the documentation task will be difficult and the result will be of little value.
Developers should be wary of the advice given by Coad and Yourdon {COA90]: "You can
follow good principles of analysis and design, and then figure out how to fit your results into
the 2167A framework.” They would be better adviscd to plan how their methods will fit the
formats of the DIDs and to tailor their mcthods and the DIDs accordingly.

V-

ERL-0637-RE

The main tailoring for an SRS is likely to be to accommodate different analysis methods. This
is discussed in Section 7.

9.5 Software Design Document

The SDD is used o document the design of a CSCI and its partitioning into CSCs (including
sub-level CSCys if required) and CSUs, which relate directly to the actual source code. Tt is
unfortunate that the SDD is often viewed (at least in the short term) only as a milestone o be
passed at CDR. Any tailoring of this document should consider its usc during the development
and maintenance of the system.

It can be inferred from the requirements of 2167A and the SDD that a CSU is a singie and
separate source code clement (sce also Section 6.2), containing a single cntry point and no data
definitions whose scope extends outside the unit; and that all data accessed from more than onc
CSU is global to the CSCL No information is required on the scope or visibility of code or
data cliements.

The authors believe that this interpretation of a CSU and the SDD’s treatment of data is
incompatible with many cxisting design methods and modem programming languages. For
cxample, it will not accommodate the adequate documentation of the following:

. The definition of related data and subprograms in an Ada package.

. The definition of object classes or data types as separate program clements.

. Elements such as Ada tasks and generic packages.
In addition, the level of description required [SDD 4.X.Y .21, if applicd to all subprograms, is
more than is normally needed for development, maintenance or visibility of the design by the
customer,
In_the authors’ opinion, the SDD in its untailored form is unsuitable for almost any project. It

is theretore strongly recommended that the SDD be tailored for ail projects depending on the
application. the design method and the language used (among other factors).

The most difficult issuc facing the customer and developer in the tailoring of the SDD is not
scen as the definition of the structure of the document (or documents), or requirements for the
documentation of specific software clements, but in the coherence of the design description and
the level of detail supplicd. While the level of detail required in the Design paragraph may be
excessive for many units, it will be necessary to define some or all of this information in
certain circumstances. Determining firm generic criteria acceptabic to both customer and
developer for the different design detail required for different CSUs is almost impossible. (Tt s
probably this fact that is responsible for the current rigid and comprehensive - some would say
draconian - requircments of the SDD.)

It is therefore suggested that the tailoring should include the form and content of the
documentation rcquired for different types and Icvels of CSUs, where comprehensive guidelines
arc provided for the sclection of the level and hence the detail required in their definition. It is
important that this tailoring be agreed prior to contract signing. Approval or otherwisc of the
choice of level would ultimately rest with the customer, as pant of the design approval. The
risk that the customer will not approve the levels chosen should be reduced by informal
discussions between the customer and developer prior to the commencement of the

29

ERL-0637-RE

documentation of detailed design. These may include writien agreements with regard 1o the
content of the SDD.

The above approach will only work successlully if the customer has the capability (0 understand
the design and the risks and advantages in the different levels of documentation. Such a
capability requires appropriate skills and experience, coupled with regular discussions with the
developer throughout the design process (Scction 3.2).

9.6 Software Product Specification and Version Description Document

The Soltware Product Specification (SPS) in its untailored form provides four items of
information: a reference o the relevant SDD, the source listings or a reference to them,
compiler/assembler identification and the mcasured resource utilisation. It forms part of the
product basceline.

The authors see little value in the provision of source listings for modem soltware projects il
the ~ource software is provided in clectronic form. Without source listings, the SPS is
relatively insubstantial and, unless there are reasons for providing additional information in the
SPS by tailoring). it may be tailored out. The rematning requirements, il appropriate, may be
added to the Version Description Document (VDD). It is important, however, that the updated
version of the SDD be included as part of the product deliverables (in lieu of its inclusion in
the SPS)and additional tailoring will be necessary o ensure this.

9.7 Test documents

It tormal qualification testing is required. the Software Test Plan (STPy. Descriptions (STDs)
and Reports (STRs) will be required.

While the content and format of these documents is adequate in many cascs, the test
descriptions can often be described more effectively and efficiently using a format which is
specifically developed for the application being tested or the test method (eg in automated
testing)y In these cases, however, the principles of the untailored DID should be followed in
tormulating test descriptions that are unambiguous. repeatable and traceable to the requirements
that they test. Care should also be taken to avoid excessive duplication which may Icad to
crrors when changes are made.

Test results will come in various forms dependent on the application and test wools. It is
important that these be accepted in their output form (cg printouts, test logs). rather than
transcribing them into an unsuitabie lormat in an STR. The STR requirements will need to be
tailored to accommodate these changes.

9.8 Computer Resources Integrated Support Document

I'he CRISD requirements will generally be found to be too broad to provide adequate
documentation of the transitioning requirements. This DID should be tailored 1o suit specific
projects and their objectives for software suppon.

Customers may find DOD-STD-1467(AR). Software Suppont Environment, uscful in tailoring
the CRISD. Although poor in terms of readability, this standard provides additional
requircments covering:

+ the usc of and compatibility with cxisting suppont flacilitics,
. software rights

——— e —

ERL-0637-RE

. catering tor different categorics of software (such as COTS)
. the minimum requirements for support facilitics, and
. advice with regard to qualification testing of the suppont facilities.

9.9 Manuals (CSOM, SUM, SPM and FSM)

The Computer System Opcerator’s Manual (CSOM), Software User’s Manual (SUM), Software
Programmer’s Manual (SPM) and Firmware Support Manual (FSM) provide gencral
requirements which, in the authors’ opinion, are unlikely to lcad 1o satisfactory uscable
manuals. The format and content of manuals will usually be strongly dependent on the
application and its environment. Each of these DIDs, if required, should be specifically tailored
for its intended usc.

Defence customers will often require their own standards for manuals, which will override the
format requirements for these DIDs. This should not necessarily result in the DIDs being
discarded. however. They may stll serve a purpose by specifying the structure, content and
tevel of description of the required information,

It should be noted that the Software Programmer’s Manual, despite its attractive title, is rarcly
neeessary in modern software development projects. It is, in essence, an assembly language
manual for the computer/s used.

10 FURTHER WORK

The authors recognise the fact that this study has examined only somc of the aspects relevant to
software development using DOD-STD-2167A, and has concentrated on what, in their opinion,
are the most pressing problems. Exposure 1o these problems has, however, identified several
other arcas where further cffort is likely to assist in the management of 2167A projects, the
communication between customers and developers and the maintainabitity of software <o
produced.

10.1 Assessment of developers and customers

It has become evident to the authors that some developers in Australia may not have the
knowledge, expericnce or standards 10 develop sofiware in accordance with 2167A. Similar
deficicncics in customer’s project teams indicate that their ability to manage soltware
development projects is in question. Guidelines need to be prepared 1o enable customers 1o
assess the capability of potential developers and their own project staff (o participate in a
2167A project.

10.2 Preparation of RFTs and tenders

The authors’ survey and workshop revealed that developers often have difficulty in the
preparation of tenders, in their understanding of what is really wanted and how the tenders will
be interpreted by the customer. Some are reluctant to suggest significant tailorings of 2167A,
for example, cven when the RFT encourages tailoring, for fear that their tender will be rejected
on that basis. Rcscarch is required into the contents of RFTs and tenders, to recommend
procedurcs that will improve the cost and quality of the software product,

Rl

ﬁ-

ERL-0637-RE

10.3 FElectronic documentation and communication

It i~ inevitable that there will be an increasing reliance on clectronic documentation and
communication in Defence projects. Without standardisation this will result in major costs and
disarray. with the possibitity o reduced communication between developers and customers in
the short term. The Defence policy o standardise on CALS should assist in this regard, but
rescarch is needed 1o imvestipate the best use of CALS in software developments and 10 make
appropriate recommendations

10.4 Tailoring for internal Defence projects

Software devetoped within Defence includes maintenance of existing systems, development of
new svstems ars' prototypes, and a arge range of different types of software development
within DSTO. In many cases software is required to be developed in accordance with 2167A.

Intemal development ditiers trom development by contract mainly in the level of trust placed in
the developer In some cases, particalarly in system support centees (or existing software, the
developer may also be responsibie for the generation of sysiem evel specifications and lor
overseeing fomal qualibication testing. I others, such as when DSTO s responsible for the
development of operatonal soltware, the customer may have a more pronounced role, but is
unfikely 1o require the Tevel of visihility regarded as necessary for an external development.

Because of the ditierent requirements Tor visibility ot the design and review ol progress, the
tiloning tor such projecis will be ditterent from those for extemal developments. Guidelines
necd to be developed tor the tailoning of 2167A in these circumstances.

10.5 DOD-STD-2167A resources

Fhe authors see a need lor g collecton of resources in Australia assisting customers and
developers in the education and use of 2167A° These should include:

. A comprehiensive library and bibhography ol relevant information relating to 2167A

PFOJECEN

. Detinitions and interpretations of 2167A and DID requirements.
. Sample tailorigs tor ditferent project types.
. Word processor templites for 2167A documentation.

10.6 Guidance for different applications and development methods

Furtier work is required o determine detailed tailoring guidelines for different application types
and declopment methods. Applications should include real-time embedded systems,
distributed systems, information svstems and safety or sccurity critical systems. Development
mcthods should include incremental and phased developments, object orented analys<is and
design techniques, and the use of mathematically based ("formal™) methods.

10.7 Guidance for the use of V&V in 2167A projects
Our survey indicated uncertainty in the use of Verification and Validation in Defence projects,

both in the application of V&Y in the development process (internal or independent) and in the
monitoring of the V&V activitics by the customer. Further work is required to investigate

1

L

ERL-0637-RE

V&V standards, the value of independent V&V, and suitable frameworks for interfaces between
the various V&V staff and the development tcam.

10.8 Follow-up studies

Although DOD-STD-2167A is a development standard, it will have effects on the support of
software for many ycars after development. As yet these cffects cannot be confidently assessed.
The results and recommendations of this study should be revicwed in two to three years time in
the light of further expericnces, particularly with regard 1o the support of software developed to
the requirements of 2167A.

10.9 Update for DOD-STD-2167B

The US DoD software standards community is developing the next version of DOD-STD-2167
under the working title of MIL-STD-SDD (for Soliwarc Development and Documentation). It
is expected that this standard will combine (harmonise) the requirements of DOD-STD-2167A
and DOD-STD-7935. Apan {rom any contributions which may be made to this cndeavour,
such as the results of this study, there is likely to be a need to analyse the new standard for usc
in Australian software developments.

11 CONCLUSIONS

The course of DOD-STD-2167A software development projects in Australia has not gencrally
been smooth, but neither was the course of such projects prior 1o the introduction of the
standard. There are, however, specific probiems which have been highlighted by the use of
216T7A.

The prime problem, which is a major contributor 1o most of the other difficultics, is the Tack of
cxpericnee and understanding of customers and developers both in the use of 2167A and in
software development management. This deficiency has led to many other problems including
inadequate and inappropriate tailoring of the standard, poor or even unusable documentation,
cost and schedule overruns, and soltware products of low quality. Another serious problem is
the lack of communication between customers and developers in development projects.

It is hoped that the recommendations and advice in this paper will help to improve this
situation, in making customers and developers aware of the difficultics they face, and providing
some guidance in their avoidance or resolution.

The most important recommendation, however, is that both customers and devclopers must
dedicate more effort to the cducation of their staff, so that they arc more able to cope with the
development of complex software systems to a standard which doces not forgive ignorance or
amateurism.

i3

ERL-0637-RE

REFERENCES

U.S. MILITARY STANDARDS

[248A]

[287)

{480B]

[481B|

[490A]

[483A]

[499A]

11521B]

[1467A]
[2167A]

[7935A]

DOD-HDBK-248A, "Guide for Application and Tailoring of Requircments for
Dcfense Material Acquisitions”, October 1979.

MIL-HDBK-287, "A Tailoring Guidc for DOD-STD-2167A, Defcnse Systcm
Software Devclopment”, August 1989.

MIL-STD-480, "Configuration Control - Engincering Changes, Deviations, and
Waivers”, July 1988.

MIL-STD-481, "Configuration Control - Enginccring Changcs, Deviations, and
Waivers (Short Form)”, July 1988.

MIL-STD-490A, "Specification Practices”, June 1985.

MIL-STD-483A, "Configuration Management (CM) Practices for Systems,
Munitions, and Computer Software”, Junc 1985,

MIL-STD-499A, "Enginccring Management”, May 1974,

MIL-STD-1521B, "Technical Reviews and Audits for Systems, Equipments, and
Computer Software”, Junc 1985.

DOD-STD-1467(AR), "Softwarc Support Environment”, January 198S.
DOD-STD-2167A, "Dcfense System Software Development”, February 1988.

DOD-STD-7935A, "DOD Automated Information Systems (AIS)
Documcentations Standards”, October 1988.

DOD-STD-2167A DATA ITEM DESCRIPTIONS (DIDS)

DI-MCCR-80030A
DI-CMAN-80534

DI-MCCR-80026A
DI-MCCR-80025A
DI-MCCR-80027A
DI-MCCR-80012A
DI-MCCR-80014A
DI-MCCR-R0015A
DI-MCCR-80017A
DI-MCCR-80029A
DI-MCCR-80013A
DI-MCCR-80018A
DI-MCCR-80019A
DI-MCCR-80021A
DI-MCCR-80022A
DI-MCCR-80024A

Software Development Plan
System/Scgment Design Document
Interface Requirements Specification
Soltware Requirements Specification
Interface Design Document

Software Design Document

Softwarc Test Plan

Software Test Description

Soltware Tcst Report

Software Product Specification
Version Description Document
Computer System Opcerator’s Manual
Software User's Manual

Softwarc Programmcr's Manual
Firmwarc Suppont Manual

Computer Resources Integrated Support Document

14

ERL-0637-RE

AUSTRALIAN STANDARDS

[3563]

13901}

AS 3563-1988, "Software Quality Managcment System”, August 1988.

AS 3901-1987 (ISO 9001!-1997), "Qualily Systems tor Design/Devclopment,
Production, Installation and Servicing”, December 1987.

OTHER REFERENCES

|BOESS|

[BULBS]

{COA90)]

{DEG90]

[FISR7}

[GAB91]

[HUMRO]

[LOGY0]

[MAR&S|

IMCG90]

IMEYR9|

[OVE9Y)

|SPR89|

Bochm B.W., "A Spiral Modcl of Software Development and Enhancement”,
IEEE Compulter, pp. 61-72, 1988.

Bulcy E.R., Moore, L.J. and Owens, M.F., "BS (SRS/IRS) Specification
Guidelines”, ESD-TR-88-337, USAF Elcctronics Systems Division, Hanscom
Air Force Basc. MA, December 1988,

Coad P. and Yourdon E., "Object-oricnicd Analysis”, Prentice Hall, 1990.

DeGrace P. and Stahl L.H., "Wicked Problems, Rightcous Solutions: A
Cataloguc of Modem Sofltware Engincering Paradigms”, Prentice-Hall, 1990,

Fisher R. and Ury W., "Getling to YES - Ncgotiating Agrecment Without
Giving In". Arrow Books, 1987. '

Gabb AP, Pollard P.C., Landherr S.F., Vemik R.J., "Tailoring
DOD-STD-2167A - A Survey of Current Usage”, WSRL-TN-57/91, December
1991,

Humphrey W., "Managing the Software Process”, Addison-Wesley, New York,
1989.

Logicon, Inc., TAILOR/2167A Version 2.2, TAILOR/DIDs-2167A Version 1.0,
INSIGHT/2167A Version 1.0, CDRL-GEN Version 2.0, 1990.

"Using Ada with DOD-STD-2167A". Martin Marictta Information and
Communication Systcms, December 1988,

McGann R.J.. “The Application of US DOD-STD-2167 to Real Time Ada
Projects: Some Lessons Leamt”, Proceedings, The Fifth Australian Software
Engincering Conference, May 1990.

Mcyer C.A., Lindholm S.C. and Jenson J.L., "Expericnces in Preparing a DoD-
STD-2167A Software Design Document for an Ada Project”, Proceedings, TRI-
Ada '89, October 1989.

Overmyer S.P., "The Impact of DoD-STD-2167A on licrative Design
Mecthodologics: Help or Hinder?”, ACM SIGSOFT, Software Engincering
Notcs, vol 15 no 5, October 1190,

Springman M.C., “Softwarc Design Documentation Approach for a
DOD-STD-2167A Ada Project”. Proceedings, TRI-Ada "89, October 1989.

s

ERL-0637-RE

{ SPROO]

[VILYO]

Springman M.C., "Incremental Software Test Approach for DOD-STD-2167A
Ada Projects”, Proceedings, TRI-Ada "89, October 1989.

Ville C. and Bratel A., "A Real Time Ada Design Mcthod Based on
DOD-STD-2167A", Proccedings, TRI-Ada *90. December 1990).

16

ERL-0637-RE

DISTRIBUTION

Copy No.
Defence Science and Technology Organisation

Chief Defence Scientist)
Central Office Executive) 1 shared copy
Counsellor, Defence Science, London Copy of Doc Cont Data Sht
Counsellor, Defence Science, Washington Copy of Doc Cont Data Sht
Scientific Adviser, Defence Central
Scientific Adviser, Defence Intelligence Organisation
Navy Scientific Adviser
Air Force Scientific Adviser
Scientific Adviser, Army 1
DSR - Bangkok Doc Cont Data Sht
SA to DRC - Kuala Lumpur Doc Cont Data Sht
Director, Aeronautical Research Laboratory 1
Chief, Aircraft Structures and Materials Division
Chief, Aircraft Systems Division
Chief, Guided Weapons Division
Director, Surveillance Research Laboratory
Chief, Microwave Radar Division
Chief, High Frequency Radar Division
Director, Materials Rescarch Laboratory
Chief, Maritime Operations Division
Chief, Explosives Ordnance Division

b e e wed

-t med e e ek ek e e

Electronics Research Laboratory
Director
Chicf, Information Technology Division
Chief, Communications Division
Chief, Electronic Warfare Division
Head, C3I Systems Engineering Group
Head, Command Support Systems Group
Head, Trusted Computer Systems Group
Head, Information Acquisition and Processing Group
Mr A.P. Gabb, C3I Systems Engineering Group (Author)
Mr P.C. Pollard, C31 Systems Engineering Group (Author)
Head, Software Engineering Group (S.F. Landherr (Author))
Mr RJ. Vernik, Software Engineering Group (Author)
Publications & Publicity Officer, Information Technology Division
Media Services

) wmi oo d ek ek e ke

~3
<

— e B N

Department of Defence
Assistant Chief of the Defence Force (Development) 1
Assistant Chief of the Defence Force for Logistics 1

37

ERL-0637-RE

Assistant Chief of the General Staff - Logistics

Assistant Chief of the General Staff - Materiel

Assistant Chief of the Air Staff - Materiel

Assistant Chief of Naval Staff - Materiel

Deputy Secretary, Acquisition and Logistics

First Assistant Secretary, Capital Equipment Programs
Assistant Secretary, Communications Planning Branch, PDC
Director General, Communications and Information Systems

N UT e wd 1 N e

s

Director General, Logistics Policy

Air Force Office
Director, Efectronics Engineering, Air Force 5

Army Office
Director, Command and Control Procurement, Army
Acting Superintendent, Software Systems Engineering Division, EDE 4
Superintendent, Communications Division, EDE 1

Navy Office
Director, Navy Combat System Engineering 5

Libraries and Information Services

Australian Government Publishing Service

Defence Central Library, Technical Reports Centre

Manager, Document Exchange Centre, (for retention)
National Technical Information Service, United States
Defence Research Information Centre, United Kingdom
Director Scientific fnformation Services, Canada
Ministry of Defence, New Zealand
National Library of Australia

Defence Science and Technology Organisation Salisbury, Rescarch Library

Library Defence Signals Directorate, Melbourne

Australian Defence Force Academy Library

— e ek N e o e N NS e ek e

British Library Document Supply Centre
Spares
Defence Science and Technology Organisation Salisbury, Main Library 10

Total number of copies 183 copies

38

DOCUMENT CONTROL DATA SHEET Privacy Marking/Caveat

Department of Defence

Page Classification
UNCLASSIFIED

(of document)

RECOMMENDATIONS FOR THE USE
AND TAILORING OF DOD-STD-2167A

UNCLASSIFIED
1a. AR Number 1b. Establishment Number 2. Document Date 3. Task Number
AR-008979 ERL-0637-RE SEP 92 DST 89/218
4. Title 5. Security Classification 6. No. of Pages 38

|U I 7. No. of Refs. 29

Document Title Abstract

S (Secret) C (Confi) R (Rest) U (Unclass)

* For UNCLASSIFIED docs with a secondary distribution
LIMITATION, use (L) in document box.

8. Author(s)

A.P.Gabb, P.C. Pollard, S.F. Landherr,
R.J. Vemik

9. Downgrading/Delimiting Instructions

N/A

10a. Corporate Author and Address

Electronics Research Laboratory
PO Box 1500
SALISRURY SA 5108

11. Officer/Position responsible for

Downgrading

10b. Task Sponsor
DSTO

Approval for Release DERL

12. Secondary Distribution of this Document

APPROVED FOR PUBLIC RELEASE

Any enquiries outside stated limitations should be relerred through DSTIC, Delence Information Services,
Department of Defence, Anzac Park West, Canberra, ACT 2600.

13a. Deliberate Announcement

No Limitation

13b. Casual Announcement (for citation in other documents) No Limitation

[:I Ref. by Author , Doc No. and date only.

14. DEFTEST Descriptors
Standards, Software engineering

15. DISCAT Subject Codes
1205

16. Abstract

This repont is the culmination of a study into the use of DOD-STD-2167A in Australian software development
projects. it makes recommendations for the use and tailoring of the standard.

Doc.Sect WF 11

Page Classification

UNCLASSIFIED

16. Abstract (CONT.)

17. limprint

Electronics Research Laboratory
PO Box 1500
SALISBURY SA 5108

18. Document Series and Number 19. Cost Code

ERL-0637-RE 329/796917

20. Type of Report and Period Covered

REPORT

21 Computer Programs Used

N/A

22, Establishment File Reference(s)

N/A

23. Additional information (if required)

Doc.Sect WET4

