
UNCLASSI FI)ED (1

AR-006-979

N- DST0O
I

O ELECTRONICS RESEARCH LABORATORY

Information Technology
Division

_DTI
REPORT AJAM27, IM•

ERL- 0637-RE

RECOMMENDATIONS FOR THE
USE AND TAILORING OF DOD-STD-2167A

by

Andrew P. Gabb, Peter C. Pollard
Stefan F. l.andherr, Rudi J. Vernik

SUMMARY

This report is the culmination of a study into the use of DOD-STD-2167A in Australian
software development projects. It makes recommendations for the use and tailoring of the
standard.

© COMMONWEALThI OF AUSTRALIA 1992

SEP92

APPROVED FOR PUBLIC RELEASE

i CrAL..'=,rfSS: Director, Flectronics Rvsearrh laboratory, PO Box 1500, Salisbury, South Australia, 5108. E1L41637-RE

UNCLASSIFIED

Ix - P R

mmu nanunluIu nuIm UQIn

ERL-0637-RE UNCLASSIFIED

This work is Copyright. Apart from any fair dealing for the purpose of study, research,

criticism or review, as permitted under the Copyright Act 1968, no part may be

reproduced by any process without written permission. Copyright is the responsibility

of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the

Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,

Canberra ACT 2601.

UNCLASSIFIED

ERL-0637-RE

('()NTENiS
FIec \•

ABBRI'VIATIONS.

-XF('I rlIV E S M N1ARY

INTRODUCVION.............................

1.1 P urpo se I

1.2 Scope... I

1. 3 Nomenclatre..... ... 1
1.4 ()rganisation of this rcport 2

1 . A ck n o v,,l ed m s. I

2 DO)D-STI)-21 67A - Ttt[EORY AND) PRACT'ICE

2. I The reasons for uqmn I)(i-STD-21 67A

2.2 Relationship to (other standards

21 ..\udi ci c•' r (tof cu c tnl itation d liverables 4

2.4 A tlitUd •'e to 2!16 7A, .. 4

"2 .5 (ise in p ractice . 4

2.6 O m issions in 2 1 17A 5

2 .6.1 S y ste m d 'sig n .

2.6;.2 Documentation over,,riew and glossary

2.6.3 :ser inlerlace design 6

2.6.4 Customer interaction in requirements relinement and design choices 6

2.0.5 Soft ware r-pre.sernaion and generation 7

2.6.6 Traceahilit v re'quirements 1 7

3 BA SIS FO R U SIN(; 2167A . .. 7
3.1 Education and Irainin .. 7

3.2 Commnicaioln aIn(COO(•)atlioln 8

3 .3 l)evlopment melhbodotlov.. Q

4 PRINCIPLES O1F TAILORING. 10

4 .1 GIene ra l 10

4.2 Tailoring rclcrcnncs and tool I1

4.1 Project Iactors intluencin. toiloring 11

4.4 Staying consistent with other slandards 1

4.5 A dd. delete or m odilv?... 12

4.6 O ver-detailed tailoring 12

4.7 T he cost of tailorilg. ... 12

5 TIlE RF.IIRIMII-NTS OF 2167A 13
C 1- ;1 -ll Fir," Il. .I... I 13

5.2 Reviews and audits I 13

iii

ERL-0637-RE

5.3 Testing 15
5.4 Software product evaluations 15
5.5 Configuration m anagement 16

6 PARTITIONING THE SYSTEM INTO SOFTWARE ELEMENTS 16
6.1 Selecting CSCIs 16
6.2 Selecting CSCs and CSUs 17

7 DEVELOPMENT ISSUES 19
7.1 Thc Development Process ... 19
7.2 Development M ethods 20

8 DOCUMENTATION ISSUES .. 22

8.1 General recom mendations 22
8.2 Documentation on electronic media 23
8.3 Tailoring the DIDs 24

8.3.1 G eneral 24

8.3.2 A daptive tailoring 25
8.3.3 Using alternate formats in DIDs 25

8.4 Software development Files 26

1) THE DATA ITEM DESCRIPTIONS (DIDS) ?6
9.1 Software Development Plan 26
9.2 System/Segment Design Document 27
9.3 Interface documents (IRS and IDD) 27
9.4 Software Requirements Specification 28
9.5 Software Design Document .. 2
9.6 Software Product Specification and Version Description Document 30
9.7 Test documents ... 3(

9.8 Computer Resources Integrated Support Document 30
Q.9 Manuals (CSOM, SUM, SPM and FSM) 31

p

It) FURTHER WORK .. 31
10.1 Assessment of developers and customers 31
10.2 Preparation o! RFTs and tenders 31
10.3 Electronic documentation and communication 32
104 Tailoring for internal Defence projects 32

10.5 DOD-STD-2167A resom rces 32
10.6 Guidance for different applications and developmcnt melhods 32
1(0.7 Guidance for the use of V&V in 2167A projects ,2

10.8 Follow-up studies 33
10.9 Update for DOD-;TD-1167R .

I 1 CONCLUSIONS 33

ERL-0637-RE

ABBREVIATI()NS

4GL Fourth generation language
CALS Computcr-aided Acquisition and Logistics Support
CASE Computer aided software engineering
CDR Critical Design Rcview
CDRL Contract Data Rcquiremcnts List
CIDS Critical Item Dcvelopmcnt Specification
COTS Commercial off the shelf (ic non-developmental)
CR1SD Computer Resources Integrated Support Document
CSC Computer Software Component
CSCI Computer Software Conliguration Item
CSOM Computer System Operator's Manual
CSU Computer Software Unit
DID Data Item Description
DSTO Defence Science and Technology Organisation
FSM Firmware Support ManuJ
HWCI Hardware Configuration Item
IDD Interface Design Document
IRS Interface Requirements Specitication
PDR Preliminary Design Review
PIDS Prime Item Development Specification
RFT Request for Tender
QA Quality Assurance
SDD Software Design Document
SDF Software development files
SDP Software Development Plan
SOW Statement of Work
SPM Software Programmer's Manual
SPS Software Product Specification
SRS Software Requirements Specification
SSDD System/Segment Design Document
SSR Software specification review
SSS System/Segment Specification
STD Software Test Description
STP * Software Test Plan
STR Software Test Report
SUM Software User's Manual
UI User interface
V&V Verification and validation Aceession For

VDD Version Description Document NTIS GRARI
DTIC TAB
Unazwore ed 0
JuSt A rI t, I zL -

BY-

Avallabllty t Cude

v

ERL-0637-RE

ERL-O63-1-RE

EXECUTIVE SUMMARY

DOD-STD-2167A is a U.S. militar' standard establishing requirements for software
development. Much of the operational software currently being developed for the Australian
Department of Defence is being developed in accordance with this standard, its use is likely to
be mandatory in almost all future operational systems.

The transition to this new standard has not been straightforward. There have been numerous
criticisms about DOD-STD-2167A particularly with regard to the amount of documentation
required "nd 'hfforo needed to produce it. Doubts have also been raised as to the actual
value of such documentation to the customer or developer. These problems are not unique to
2167A, however. Similar problems were experienced with earlier standards, but 2167A is
affecting more projects and developers and thus is perceived as a larger problem.

This report is the culninalion of a study into the use of 2 167A in Australian software
dcvzlopment projects. A prior report addressed the problems experienced in tile use of the
st:mndard in this country.

The study was planned to be as open as possible. In addition to a comprehensive survey of
2167A policy and usage in the early stages, dralts of both reports were widely distributed to ill
interested parties and workshops were held in Canberra and Adelaide to discuss the findings.

DOD-STD-2 167A is used in projects because it is the prescribed standard for most Delencc
software developments in Australia. In some cases customers outside Defence specify it
because it is the only well known comprehensive standard available.

It is not simple to use - developers with less structured development environments Find it
particularly difficult to undersland. It also leans heavily on other military standards which must
also be understood if it is to be used effectively. In some cases there are conflicts between
different standards which make the lask more difficult.

DOD-STD-2 167A is neither perfect nor complete. It contains contraddictions and omissions
which must be rectified by tailoring the standard. Successful use of this standard is critically
dependent on the quality of the tailoring. Tailoring must he applied for all projects, and
whenever possible, tailoring should be carried out as a joint effort between customer and
developer.

Most problems with 2167A stem from tihe following:

* The slandard is poorly understood by either the customer or developer or both.

* The standard is often inadequately tailored to meet the needs of the project.

* The developer does not have a sytematic development process.

• There is insufficient meaningful cormmunication between the customer and developer.

Not surprisingly. the following principles for using 2167A are recommended:

* Provide appropriate education and training for all stall involved in the use of 2167A.

* DOD-STD-2167A must be tailored.

vii

ERL-0637-RE

Special consideration need,; to be given to enhancing the communicatlion and
cooperation between customer and developer,.

The development methodology selccted for the project must match tile rcquiremcnis
of 2167A (appropriately tailored) and must be adhered to.

There is no "silver bullet" for tailoring. Tools and guidelines are available but they are no
substitute for knowledge and experience. They merely assist in the proc,.ss of tailoring, but not
in making the hard decisions which will arise. Tailoring must also consider the family of
standards to be used, not DOD-STD-2167A in isolation. Guidelines in 2167A and its tailoring
handbook also restrict the scope of tailoring to less than what is necessary in most
circumstances, reducing the advantages that tailoring can achieve. There are numerous
occasions when the tailoring should exceed that suggested by the guidelines.

It appears to be popular to criticisc 2167A for its dependence on the "waterfall" model of
software development - to claim that it is outdated and inappropriate for "modem" development
methodologies. The authors suggest that many such criticisms are based on an inadequate
understanding of 2167A, often coupled with an unwillingness to impose sysiematic control on
the development process. An inability or unwillingness to apply appropriate tailoring is also a
barrier to adapting 2167A to different models.

Specitic recommendations are made fr reducing the amount of documentation, streamlining
icvitews and audits and identifying the relationship of the standard to testing and configuration
manuagement.

Ihc study has also identifed areas tor further research in the development and acquisition of
I'cnce software in Australia. These include the assessment of the capability ot developers and
cuslomers to participate in 2167A projects, problems in tile preparation of RFTs and lenders for
soltware intensive projects, the use of electronic documentation, the establishment of 2167A
resource repositories and the application of verification and validation (V&V) to Defence
projects.

This report offers advice and recommendations which enhance the understanding and use of
I)()I-STD-2167A, and which are already helping to improve the development of softwvare ror
ID'cince projects. The most important rccommendation, however, is that both customers and
dc\dlopers must dedicate more ellorl to the education of their staff - DOD-STD-2 167A is a
\tandard vwhich does not forgive ignorance or amnaleurism.

('Copies ?f this document on Magnetic imedia are available from the authlors on request.

viii

ERL-O63W-RE

I INTRODUCTION

1.1 Purpose

I)OD-STD-2 167A is a U.S. military standard establishing requirements for soltware
development. Much of the operational software currently being developed for the Australian
I)epartnment of Defence is being developed in accordance with this standard: its use is liketl to
be mandatory in almost all future operational systems.

The transition to this new standard has not been straightforward. There have been numerous
criticisms about DOD-STD-2167A (and its precursor DOD-STI)-2167), particularly with regard
to the amount of documentation required and the efort needed to produce it. Doubts have also
been raised as to the actual value of such documentation to the customer or developer.

This report is the culmination of a studv into the use of DOD-STD-21 7A in Australian
softwarc development projects. It makes recoinimendations for the use and tailoring of11 the
standard.

As the initial phase of this stud v the authors conducted a survey of 21 67A pxolicy alnI .,csa~e ill
software development proivcts (ABOl I. Although the study was primarily aimed at delfilce
projects. ttere arc several non-delence applications of the standard in Australia. be•th in internal

development., :.w, in commercial applications. These were also considered in the survey.

A drall of this report was circulated to interested partes for conment and was the subjccl of
workshops held in Canberra and Adelaide in April/May 1I)Q2. ihis fial report includes
feedback fromn these activities

The opinions expressed in this palvtr are those of the authors and do not represent the policy or
official standpoint of DSTO or tIe l)c D t rlierr of Defence.

1.2 Scope

This report provides discussion about and recommendations fbr the use anld taihilonrt in
DOD-STt)-217A projects. Much of [tle material is based on the assumplion that the reader is
generally conversant with the requirenrenits of 2167A, and that the software development occurs
as the result of a cntracrt bet woee alln organtisationally distinct customer and developer.

Initially it was assumed that the major cause of di ficulties in the use of 2167A in Australia was
in the complexity of the taiIoring aclivily and it was therefore intended that this study would
concentrate mainlyv on the tailoring of 2167A. The survey indicated that tailoring was only part
of the problem and the scope el the study was broadened to encompass the more general issues
of 2167A use. ('onsequentlv less effort has been directed tow,'ards providing detailed guidelines
for tailoring.

Similarly, this report does not address other aspects of sofltware development projects which
some readers may regard as critical. One example is the relationship of 21 7A (o quality
standards such as DOD-STD-2 I68, AS 3563 and AS 3901.

1.3 Nomenclalhire

The terms "customer" and "developer" are used in this paper to indicate those responsible for
software system procurement and development respectively. In some cases the tenns are used

ERL-0637-RE

to .n1dlLcte indiv iduals in the Customecr dflG 'Aevloprenet team,; raither than the or~iaýini.ition 111MI
Ow , represent. The fenns 'users, and "maintaineirs' are used to indicate thos;e A~ho \,ill U',L' OW
ý,oltwAarc (the operators for example) and those who will maintain it in the cuInitomr'
ol ream sati on.

1.4 Organisation of' this report

Seenon 2 examinecs the purpose f-or 21 67A, some of its deficiencies and experiences %k ith its tiic
iii Australia.

Seccion 3 recommends a basýis for thc usec of' the standard - advice to customners, and developers,

InI preparing to use the standard.

Secton 4 discusses the general principles of' tailoring 2167A and related standards.

Sc,,tion,, 5 andl 6 address the gecnral requirements of 21 67A and the allocation and pxiritioruniiii
of eicbasic software elements, Computer Software Configuration Items ((SCls). componenits

J (and utnits I CSVS').

Skcetion 7 addresses the deveclopmeint process and development methods. their relationshiip wXith
71 n7A. and poozsibl changes to tile process. mlethoso h tndr html h ee.av

Scct ions S and () exam in fiiete documentation issues, firstly in a general sense, then (or
11f vithiial documents.

I llxSccetions, 101 and I1I discuss the neccessitv of further work and the cowl usýi on of the

L;5 Ackno~fIedgments

lI ho aut hors, thank all those in industry, academ ic institutions; and the Department of Wic)e enc
Mi o have gi vent their time and assistance in contributing to (his stud v. We wish to
:ick tossedge the assýistance of' the following organisations:

Ansciset Technologies
Australian Defence Industries Ltd
Australian Submarine Corporation Ply Ltd
'\WA Defence Industries Pty Ltd
BlIP Information Technology Ltd
British Aerospace Australia Ltd
CAA Systems Support Group
Compucat Research Pty Ltd
Computer Sciences of Australia Pty Ltd
F~erranti Computer Systems (Australia) Pty Ltd
IHawker DL Havilland Victoria Ltd
Kinhill Engineers Pty Ld
Lasotell Pty Ltd
Logica Ply Ltd
RADE Systems Pty Ltd
Rockwell Ship SNystems Australia
State Rail Authority of NSW
Technology Australia Ply Ltd
Telstar Systems Ply Ltd

E RL -0637- RE

Tiripl S~ stems [I,, lidi
TR W Systemus Integratiion G;roup
\%~ornildl~ Adv accd Svswcms Hngineecring

2) 1)01-S I'1-2167A - THEORY AND) PRAC TIC'E

2.1 [rhe reajsotns for using I)OI-STD-21167A

DO(D SIt -21lh7A is usually used inl pro~jects not by choice but b~caiuse it is the prescribedi
si andadi for soft ~ are development. The developeNr uses it because it is speci lied in the contract,
(the cuIstomier specifies it either because it is the customer's prescribed po~licy- to do so. or
because there arc no other reasonablec alterniatives. -!here are of'COttrsc many' standardIs whkiich
ad~drc,,s the issues 01 softwarjre dlevelopment, but nonic which covers the ..ame breaidth with the
,same levels ot p-rescription ais thi~s standardi.

()ie ad'. aritge oft using 21 67A is that it is part ol a (very large) standards 1amily which shotjfd

cýuairantele if\ consisltency A..ith other standards. It mneets hisi objective reasonably well, atlthough
not ki tliout somc p)roblemn, (Sec scct i 11 4.4 t. Requirements not dlel med in 21067A are ,enemall\

p~ro'.(inlofr1m(mia. imi~s redulcinl'tilte lilkelihloodl of omlissionls and](conflicts

It aIlso plrovidks al consisitent bak isor ntaraigement of a softvW- are)IN)C dc[eotiet rjecC b1- OW~
customecr As, %Ill. IIDrBIK -IS- describes.

It establishes standard terminology, provides a standard set of deliverables, reviews
and audits to choose from,7 and defmnes a standard set of software management
practices that May be? 11nfosed

\visibitit of the(development is assured not only by thie revliews. and aiudits, butl also bx' theL
dectailedl requtrements for the fotrittt and thle content of the decliveredl documettltation., '[the
Nsicite oif rev ic'.ks ailso pIov ides itinereasi ug visibility as thle desi gni becomles more det ai~le~.
allouing the custOomer to) assessý both tOe effct of ifesign choices onl the oprat-ional requ~liremeitil
and(i, t 1c devloper's abilit\ to comleteICI the de~vecmlcrmet successfully.

Hinally. it imrposes stanrfards lot the dIcvclopntenrt process tha.t are ;irguabl v higher than those
Ohtm a lilny contractors might emptlo\ if not obliged other''.ise. Inl this Aa\ thle cttstotlor tries, to
i'uavantee a reaoonahte level of quaf itv for the produict.

I'he se re asomts are impf-ort titin it tide rstat d in fl o w 2 107 A sh iul IdVb ttsed andJ how, or if. it

shouldI be changedI ltailoredi for ai particular project.

2.2 Relationshtip tn oilier standards

IX)I)ST)- 21 67A has bxeet(icdsi gtod to be, part of a large lImmIv of integraited military
standairds. atid if &ssminis that several of these s-tandLtrs wxill also be speci lied(whenCI usitng
21167A, provid~ing an integratedI frme"..ork bor software decvelopmientl. If one or more of these
standairds are not specified. 216(7A must be- mlahrel bOt to remove thle references to them and(
to compensate for the fact that their requirements are no longer included. The relevant
stand,,lars arcý

THIS

PAGE
IS

MISSING

IN

ORIGINAL
DOCUMENT

ERL-0637-RE

effect of the tailoring on the remainder of the standard, resulting iti conflicts with other parts of
2167A and with other standards.

Perhaps more serious is the authors' experience that, whether 2167A is tailored or not,
contractors rarely meet their full obligations with regard to the standard. In these cases the
shortfalls are often overlooked by the customer's monitoring team or not enforced when
detected.

There is also evidence that both customers and developers concentrate their attention on the
documentation deliverables at the expense of the dcvelopment requirements.

Developers' criticisms of the "inappropriateness" of 2167A documentation requirements often
s:cm from the lack of a systematic approach to development. DOD-STD-2167A requires a
'ystematic development m-'thod and its documentation requirements reflect this. Problems arise
when developers attempt to document a poorly structured existing design using the 2167A
formats !MCGC9I. More generally, 2167A specifies activities and provides a strict framework
for their documentation. If the activities are not performed, or arc not carried out in the
required manner or order, the documentation process is difficult and the resulting documentation
i;ý likcfv, to beC of lOw value.

It is interesting, to note that "while developers are concerned about the amount of documentation
rcquired. man, cus•tomners believe that developers tend to provide too much data in requirements
:'Ind design documents, while omitting critical information. It appears that some developers
aTlticipdtC that a customer is less likely to reject a thick document, perhaps based on previous
exericnecs. The aulhors, have obscrved some evidence of truth in this belief.

MNan projects have seemingly been burdened by a lack of understanding and experience with
2167A on the part of the developer, the customer, or both. Developer inexperience has resulted
in difficultics in developing software and its associated documentation to the required standard.
Custlomer inexperience has resulted in inadequate anti inconsistent tailoring, and an inability to
adcquateln monitor the development and review delivered documentation. The inevitable result
of inexperience is that either or both of the parnics are unable to identify limitations in the
develop•nctn process or areas of potential risk.

One of the side effects of developer and customer inexperience is that some developers do not
assess the full costs of using 2167A in tenders for software projects, either through lack of
understanding of the standard, or on the assumption that the customer will not enforce what are
in fact contractually binding requirements. Not only is this unfair to developers who include
the full cost of 2167A development in their tenders, but it also adds risk to the pmject - either
in the quality of the product if the lull requirements are not met, or in the developer being
obliged to meet requirements for which hc has not hudgeted.

2.6 Omissions in 2167A

This section addresses perceived omissions in 2167A and is mainly concerned with the
documentation of commonly needed information. These omissions should normally be rectified
by either tailoring existing requirements or by the specification of additional requirements in the
SOW (Statement of Work) or CDRi. (Contract Data Requirements List).

2.6.1 System design

A notable omission from 2167A is the lack of a requirement for an overview of the software

system design, mapping the requirements to the design and illustrating how the functions of the

ERL-0637-RE

system are met in terms of execution and data flow (at a relatively high level) IMARXX.
S.PR891. Such information is extrcmely ,,-ýful in understanding how a complex system works
and for tracing the source of defects during maintenance. To some extent this inorlmation is
included in the Software Design Document (SDD) in paragraph 3.1 witi regard to "states and
modes" but it is inadequate in its level of detail and description.

For a system of several intcracting CSCIs there is no obvious place for such a description, apart

from the System/Segment Design Document (SSDD) which is at too high a level and is

delivered too early in the project In this case one or more additional documents are needed,
possibly called "System Architecture and Design Description", coordinating the design of the
CSCIs- The authors sce such a document being developed incrementally in a manner similar to
SDDs. with preliminary infonnation being provided at the Preliminary Design Review (P)R).

2.6.2 Documentation overview and glossary

lIn larger projects, an overview of the interaction between the diflerent specifications and other

documents is required, to allow specialists and casual project staff to find specific information.
A project-wide glossary of abbreviations and definitions is also often essential, both to assist
new'comers and to maintain a consistent nomenc':ture throughout the project.

2.6.3 User interface design

()e difficulty that several developers have faced with 2167A is its lack of guidance with
respect to the documentation of the design of the system's user interfaces (Uls) IMEY891. The

most obvious place for this information is in the Interface Design Document (IDD) which does
not, however, provide appropriate formats for its definition. The Software User's Manual
iSUNI is intended eventually as a manual for the system and will be deri'ved fromn the t[t
design. However it is developed far too late in the process, and in most projects would not
contain all the dezign information needed.

itf design should occur early in the development process and be reviewed at PDR 115211BI.
Where there is a complex Ut its design should be specified in a separate document (the "User
Inlcrface Design Document" is an apt name): if the Ut is simple it may be included in a
tailored IDD. MIL-STD-7935A's requirements for its "Users Manual" and "End Uscr Manual"
ma' offer assistance in determining the contents of such a specification 17935AI.

2.6.4 Customer interaction in requirements refinement and design choices

In many projects the refinement of requirements and detailed design can lead to
implementations that the customer regards as unsatisfactory. This is particularly likely in areas
such as the definition of the user interface and in the specification of detailed performance

s,;uch as response times). More importantly, although the implementation may be unacceptable,
it is often either compliant with the higher level requirements or the judgement of compliance is
a subjcctive issue. While it might be claimed that such a situation is a result of poorly
specified requirements, this will frequently not be (lie case. Customers are encouraged to avoid

detail in requirements that might inhibit the design (see also Section 9.2). The penalty for lack

of detail is a development resulting in an unacceptable design.

It is obvious that, regardless of whether the design is compliant or not. the cost of rectification

will be minimised if the deficiency is detected early. The review process required by 2167A

and 1521B is insufficiently responsive to solve this problem, and is likely to result in either

additional costs horne by the customer or developer or both. or the deficiencies not being

rectified.

ERL-0637-RE

In most projects the likelihood of such a situation arising can be predicted and catered for in the
development process, particularly if it is identified as a risk area (which it is).
DOD-STD-2167A addresses this problem only broadly, requiring that the developer identify
arcas ot "potential technical, cost or schedule risks" 12167A 4.1.41. The SOW should include
The requirement for the developer to additionally identify areas of potential disagreement or
subjective interpretation and to propose procedures to resolve these as early in the development
process as possible. These might include for example user interface prototyping or the use of
an incremental development process.

2.6.5 Software representation and generation

The design of each CSCI will often result in specific decisions being made with regard to the
representation of the software (such as source file partitioning and naming) and the environment
in which the software is to be generated, including the use of standard libraries, compiler
directives and options for the use of the compiler and linker. Where these decisions are made
as part of the detailed design process, and are therefore relevant to the coding, integration and
testing activities, they should be documented as part of the design.

This information should be documented in the SDD for each CSCI, CSC or CSU as applicable.

2.6.6 Traceability requirements

DOD-STD-2167A specifies that requirements are to be traceable from the high level
specification (eg SSS) to CSCIs, CSCs and CSUs, and from the CSUs to the SRS and IRS.
The DIDs, however, require this information in a different form, providing traceability:

• From the SSDD to the SSS (in the SSDD)
* From the SRS to the SSS. CIDS or PIDS (in the SRS)
* From the SSS, CIDS or PIDS to the SRS (in the SRS)
* From CSUs to the SRS and IRS (in the SDD).

This provides traceability from CSUs to the high level specification in an indirect form (through
the SRS). To ensure that the high level requirements are met, it is more useful to have a
traceability matrix from the high level specification directly to the CSCIs, CSCs and CSUs (and
to the IDD if necessary). For larger projects this would require a separate document used solely
for showing traccabi ity. Where automated traceability tools are used this should entail little
extra effort.

3 BASIS FOR USING 2167A

This section provides observations and recommendations for using DOD-STD-2167A.

The prime recommendation (which might appear to be obvious) is that both customer and
developer must have a detailed understanding of, and preferably experience in, the requirements
and purpose of DOD-STD-2167A and, when specified, the related military standards.

3.1 Education and training

To achieve a thorough understanding of the purpose and requirements of DOD-STD-2167A and
related military specifications is not an easy task and requires considerable education and
training. Tertiary computing qualifications are desirable but by themselves are not enough,
since graduates are not adequately prepaied in these areas. Experience in real software

7

ERL-0637-RE

engineering is critical, especially exposure to working with standards. For a successful project
both customers and developers must have the appropriate levels of knowlcdge and experience
IMCG90. MEY89, SPR901.

Ideally, all development staff should have several yearts experience in software engineering
(preferably in the same application domain as the project), should have experience in the
programming language, development method and development environment to be used, should
have been trained in using 2167A and should have used the standard in a previous development
task. This happy state is rarely achievable. The technical software manager and the senior
designers should have this level of expertise, however, before the project starts. Other members
of the development team must have appropriate computing qualifications, and must be given
appropriate training in the language, methods and environment, and in the use of relevant
standards including 2167A.

Thf- customer's technical team for a large software project should have at least one person with
the level indicated above for the developer's senior designers. It may be adequate in small to
medium software projects for the project office to rely on external expert advisers, but at least
one person in the day to day management of the project must have experience and
understanding of the use of the relevant standards and software engineering management and
methods.

In some cases, the developeir may need to educate the customer, particularly in the development
method and CASE tools used. This may involve additional cost to the project. in both time and
MIOWcN.

Ihe authors recognise that the pool of experienced software engineers in Australia is limited by
the relatively small size of the defcnce/acrospace software market and that low mobility
exacerbates the problem. Nevertheless, developers and customers must place a high priority on
thc recruitment and retention of appropriately skilled staff.

3.2 Communication and cimperafion

There are many reasons supporting a close working relationship between developer and
customer ISPR901. but the authors are aware of few projects where such a relationship exists.
In some cases the customer's team does not have the experience to support such a relationship
and the developer is understandably reluctant to provide the needed education IMEY891.
Developers are also wary of the visibility that informal communication might bring, and the
potential for subsequent criticism of their development process.

The benefits of increased communication and cooperation between developer and cusionier are
seen to be:

a. Better mutual understanding of each others' problems and a subsequent increase in
mutual trust. The benefits of this will also be shown by more meaningful and m.,re
successful negotiations and reviews IFIS871.

h. Improved risk management. Risk areas can be highlighted earlier and may be
assessed by both customer and developer before a solution is proposed.

c. Fewer misunderstandings and misinterpretations. Problems are identified earlier and.
when they cannot be resolved informally, may be flagged for prompt formal
resolution.

ERL-0637-RE

d. l)ecreased development effort because of the reduced likelihood of a course of action
being rejected by the customer.

C. Higher quality documentation (at least from the customer's point of view).
Discussions should establish the form of documentation and the level of detail that
the customer requires.

The risk of poor communication will be higher when there are many contractors developing
software, and where the prime contractor is not a major software developer. In these cases
special consideration needs to be given to enhancing the communication between the customer
and the actual developer of the software.

Meyer et al. IMEY891 state:

The consistent trust and goodwill of the customer towards your design effort will be
the single most important factor in your ability to complete your project on time and
within budget.

3.3 Development methodology

In software engineering, the ierm "methodology" refers to a combination of life-cycle models
(paradigms). management practices, technical practices, tools and training procedures used to
produce softlkarc [DEG9OI. There are many different models, practices, tools and procedures to
choose from. so there are many different development methodologies, each with certain
strenlths and weaknesses.

The methodology selected fbr a particular software development project must be suited to the
application domain, the implementation language, the magnitude of the development effort and
other characteristics of the project and the development organisation. In addition, if the
development is to be conducted in accordance with DOD-STD-2167A then the development
methodology must map sensibly into 2167A. With appropriate tailoring, 2167A can be forced
to accommodate almost any methodology, but it is pointless to force Fit a methodology that
does not support the basic principles of 2167A (orderly development process, visibility, reviews
and audits) or that is not suitable for programming in the large.

The development methodology must be selected quite early in the project (such as at tender
preparation time. or equivalent for in-house projects). The methodology must be written down
and it must be approved by the customer before development begins IMEY89I. The
appropriate place for specifying the methodology (usually by referencing separate documents) is
in the preliminary Software Development Plan (SDP). Where a signilicant amount of time
clapses between tender and contract award, it may be necessary to redefine die development
methodology during the contract negotiation activities.

Clearly the developer's staff must be well-versed in the methodology and there should be a
training plan to ensure that they are. It is also very important that the customer's technical staff
have an understanding of the methodology, and this may well require training for them also.

This issue is discussed in further detail in Section 7.

• I

ERL-0637-RE

4 PRINCIPLES OF TAILORING(

4.1 General

The main reasons for tailoring are as follows:

To reduce the development effort required and hence to reduce the cost and time to
completion.

To modify or add requirements which are needed for a particular project or software
development method.

* To improve the quality of tie product and the documentation

* To correct inconsistencies and hence to reduce risk in the contractual process.

In th•e authors* opinion, tailoring is essential for all 2167A projects.

Tailoring requires a good understanding of the purpose and details of DOD-STD-2167A and
cxlprience in software engineering practices and management. Tailoring for a specific project
requires further understanding of the application, the project requirements and (for detailed
tailoring) the development method used. A comprehensive understanding of other standards
particularly MIL-STD-1521B) is also required if these standards are to be used in the project.

Tailoring is difficult, time consuming and requires a meticulous approach. It is essentially an
iterative process - each proposed change must be assessed with regard to other changes and its
ellect on the management and development process as defined in DOD-STD-2167A and other
relevant standards.

Uncontrolled, simplistic or inexperienced tailoring is likely to lead to potentially serious
problems as follows:

* Loss of needed visibility to the customer.

* Omission of critical requirements.

* Inconsistencies between requirements. including those in other standards.

* Documentation which is inadequate or of poor quality.

Tailoring should be refined throughout the course of a project 1248A, 2871, The Request for
Tender (RFT) should address the high level tailoring of all relevant standards and specifications
based on the standards chosen, the application and the acquisition process. The RFT should
also state the customer's tailoring policy and solicit recommendations from tenderers with
iegard to cost effective tailoring. The detailed tailoring should be agreed during contract
negotiations and included in the contract. Further tailoring will often be necessary during the
course of the contract. In cases where the need for refinement during the development can be
predicted, plans for modifying the tailoring should be included in the SDP.

It is recommended that, where possible, tailoring is carried out as a joint effort between the
customer and developer 12871. This will ensure that each is aware of the justification and
consequences of each individual tailoring, as well as encouraging an atmosphere of
communication and cooperation (see also Section 3.2).

(ft -- ItII I - I I

ERL-0637-RE

4.2 Tailoring references and tools

General principles for the tailoring of military standards and specifications are addressed in
DOD-HDBK-248A, which discusses the advantages, dangers and mechanisms of tailoring.
MNIL-HDBK-287 provides a more detailed approach to tailoring DOD-STD-2167A, and provides
good advice on the relationship of 2167A to other standards and the handling of the "shell"
requirements. Both of these handbooks are recommended to those responsible for tailoring and
in particular to customers responsible for the approval of tailoring.

Logicon's TAILOR computer based tools [LOG901 are also useful, especially for the
documentation of the tailoring and the preparation of CDRLs. They have been found to be
particularly useful in collaborative tailoring, where the customer and developer draft the
tailoring together, using the tools as a basis. These tools are mainly aimed at tailoring for the
full scale development phase of a project and are less useful for the tailoring of investigatory or
research projects.

4.3 Pr'jiect factors influencing tailoring

Edch project is different. DOD-STD-2167A provides requirements which are applicable for
many projects, but the requirements should be tailored to meet specific project factors. Factors
which may influence tailoring include:

The general application area for the software, eg operational, prototype, feasibility
demonstration, analysis, test or training.

The type of software being developed - management information systems and real-
time combat systems, for example, should require different tailorings.

* The development method and CASE tools used.

The use of non-procedural languages or application specific program generation tools
(such as 4GLs).

* The difficulty or complexity of the task.

* The number and complexity of external and inter-CSCI interfaces.

* Whether parts of the software are safety critical or security critical.

The proportion of software which is reused from a previous project and the amount
of non-developmental and COTS (commercial off the shelf) software.

The level of software support that will be required either by the customer or
developer.

The verification and validation (V&V) approach, including whether this function will
be performed internally or by an independent or customer based V&V team.

4.4 Staying consistent with other standards

DOD-STD-2167A, as it stands, is inconsistent with some U.S. military standards (1287
Appendix BI). Tailoring 2167A and/or the standards in conflict is required to resolve these
inconsistencies. In particular MIL-STD-1521B was written to correspond to DOD-STD-2167

II

ERL-0637-RE

and has numerous references which arc incorrect when this standard is used with
DOD-STD-2167A.

Each change to 2167A or the Data Item Descriptions (DIDs) must be considered not only with
respect to the internal consistency of 2167A, but also with respect to other required standards.

The problem of inconsistency between standards will always be a contractual risk area
particularly when standards are released at different times. Where possible, customers should
specifically nominate the version of standards which are to apply to reduce misunderstandings
in this area.

An understanding of the value and purpose of each standard specified is important in preventing
inconsistencies. Customers should avoid the "shotgun" approach of specifying as many
standards as possible in the hope that this will provide added protection. Not only is this likely
lo guarantee inconsistencies between the standards, but may also lead to additional costs.

MIL-STD-1521B is likely to present the most problems regarding conflicLs. The sequence of
activities, documentation delivery and reviews of 2167A are tightly interwoven with the
requirements of 1521B. Deferring the delivery of a document to a later stage of the
development, for example, may mean that it is not available for review as required by 1521B.
and that there are no requirements to review it at later reviews. Deleting the requirements for a
particular review may result in some activities or documents not being reviewed at all.

4.5 Add, delete or modify?

DOD-STrD-2167A (para. 1.3) states that "the tailoring process intended for this standard is the
deletion of non-applicable requirements". MIL-tiDBK-287 (para. 4.3.1.a) states that "For DIDs.
requirements may be deleted or partially deleted, but not modified". Neither of these
restrictions is binding on Australian users of 2167A and it is evident that in many cases an
adequate tailoring will not be possible without the modification of requirements, including those
for the DIDs IMARS8, MCG901.

lhe aulhors therefore recommend that the tailoring of 2167A and its DIDs should tb
accomplished by the deletion, addition and modification of requirements. For consistency
bct1xecn Defence projects however, it is important that the structure and paragraph numbering
of both the tailored requirements and the required documentation be preserved as far as
possible.

4.6 Over-detailed tailoring

It is not necessary to tailor out paragraphs which are obviously inapplicable to individual
software elements (eg particular CSUs) but which may be applicable to others. Multiple or
over-detailed lailorings are difficult for documenters to follow, difficult for those refining the
tailoring to maintain, and are prone to error, it is preferable that the tailoring concentrates on
the major variations from the requirements of 2167A rather than the recording of petty changes
which will have no effect on the quality of the software and its documentation, or the effort
required in producing these.

4.7 The cost of tailoring

Thc authors believe that there is no cheap solution to the tailoring problem. Projects have
widely differing requirements with regard to both the development process used and the

12

ERL-0637-RE

documentation deliverables. These differences must be accommodated by tailoring to reduce
the cost, schedule and risk and to improve the quality of the product, including documentation.

The tailoring of 2167A and its DIDs requires high quality staff with specialised knowledge and
experience, staff whose services are normally in strong demand. The task of tailoring is
normally time-consuming and may require weeks rather than days over the life of the project.

In the authors" opinion, however, the benefits of an optimal tailoring are likely to far outweigh
the costs for all but the smallest projects.

5 THE REQUIREMENTS OF 2167A

This section discusses the use and tailoring of the requirements of 2167A, excluding those for
documentation (DIDs).

5.1 Is it all needed?

The full requirements of 2167A can be very costly to implement, not only in the development
effort but also through the monitoring task of the customer. Many activities such as product
evaluations require additional elfort both in their execution and in their recording and audiing.

In addition to the general guidelines for tailoring [287, 248A). the authors suggest that where
the developer considers that a requirement is not cost effective and where the customer (or his
representa!ivc) does not have the means or ability to verify that the requirement is met,
consideralion should be given to the deletion of that requirement. In the authors' experience.
developers are (understandably) reluctant to meet requirements that they consider not to be cost
effective and the subsequent implementation is often inadequate. If the customer is not
prepared or able to monitor and enforce the fulfilment of the requirement, there is no advantage
to the customer or developer in specifying it, and there is little point in the customer paying the
additional costs involved.

5.2 Reviewvs and audits

Reviews and audits as specified in MIL-STD-1521B are the milestones and often the crisis
points of 2167A projects. The authors' survey and workshops IGAB91] did not cover the issue
of reviews and audits in any detail (an oversight), but revealed concern regarding the overlap
and inconsistencies between 2167A and 1521B. Many of the problems that both customers and
developers had experienced with 2167A culminated in difficulties with customer approval at
reviews, typically Preliminary and Critical Design Reviews (PDRs and CDRs).

It is evident that in many projects reviews are the main occasions when technical discussion
about software takes place between the customer and developer. This factor is likely to be
responsible. at least in part. for what appears to be a relatively low rate of outright approval on
first presentation in design reviews. The developer prepares for such a review with little
knowledge of what the customer is likely to approve. The customer, on the other hand, is often
presented with information for the first time (formally or informally). The outcome is almost
inevitable:

The customer's technical representatives are overwhelmed by the new information
and time is wasted during the actual review meeting in explanation and education.
The fact that the developer has in many cases provided more information (often
irrelevant to the review) than is needed aggravates rather than assists in this situation.

13

ERL-0637-RE

Because the design is new and is being seen for the first time, faults in the design mre

found.

Different perceptions of project requirements and the use of 2167A result in
protracted discussions with regard to interpretation of requirements.

* Important areas are completely ignored due to lack of time.

The review results in disapproval or reluctant contingent approval (in the words of
1521 B).

Such reviews cannot be regarded as productive. Apart from the fact that much of the

discussion is at a lower level than is warranted by the number and status of attendees, the
developer has wasted effort in preparing for the review and the schedule is likely to be affected
js a result. Moreover, many of the real issues have not been tackled, possibly reducing the
orerall lquality of the product. A lasting side effect is likely to be an increased distrust between

the two parties.

l'hc iollowing recommendations are made with regard to reviews and audits.

a. The number of surprises at these events should be minimised. This can only be
achicved through greater infonnal communication between the customer's and
developer's technical staff (Section 3.2).

h. Customers should ensure that their technical team is adequate in number, education
and experience to liaise effectively with the developer's team and review delivered
documentation

c. The reviews should concentrate on higher level issues - interpretation of requirements
should have been resolved prior to the review.

d. For large projects. the use of incremental reviews should be considered, reviewing
components of the product as they are produced, and summarising the resul•s of these
at a (later) formal review meeting.

c. The reviews and audits should be planned and their requirements tailored in
accordance with the particular characteristics of the project. including the application.
the project size and complexity, and the development method used. The planning
should include the number, timing and nature of reviews.

F. Reviews should avoid protracted presentations ("dog and pony shows") of
information that is fully documented and concentrate on issues such as the inherent
design of the software, work done, progress made and areas of potential risk.

g. The demonstration of user interface mockups and other prototypes, and the

capabilities of incremental builds should feature prominently in the appropriate
reviews.

In many smaller projects in Australia the complete set of reviews cannot be justified and is not

required by the contract. Tailoring 1521B and 2167A to remove the requirements for these
reviews is relatively straightforward but gives rise to a common tailoring problem: deleting a
review may result in the removal of review requirements that are needed. For example,
removal of the Software Specification Review (SSR) removes the requirement to review

I4

ERL-0637-RE

qualification and quality factor requirements of CSCIs, which are not subsequently reviewed in
the PDR. When reviews arc tailored out their requirements should he analysed and those that
are required should be added to a subsequent review.

5.3 Testing

DOD-STD-2167A requires testing above the CSU level to be conducted by a team independent
of the development team. This requirement entails additional cost and is often not met,
particularly in small software development organisations. In the authors' opinion this
requirement is important to the quality of testing and its removal can only be justified in
exceptional circumstances. It is therefore important that customers (and their V&V agents) pay
particular attention to ensuring that the independence of testing is planned and implemented.

The authors have noticed a tendency for some developers to attempt to postpone the definition
of formal qualification testing to a later stage than that required by 2167A (in some cases well
after CDR). Presumably this is motivated both by a desire to decrease the number of tasks
(luring preliminary and detailed design, and to defer test definition until (he performance of the
system is known. Whatever the reason, it is neither in the customer's or developer's interests to
defer test definition.

Springman ISPR90I indicates one developer's view towards test definition with
recommendations including:

* Defining the standards and procedures [or testing very early in the contract.

* Involving the customer in developing the test program.

* Gettin, the customer to commit to a cost effective test program at an early stage.

The benefits to the developer arc obvious - the definition (and limiting) of testing at an early
stage means that the objectives of the development become clearer and more bounded. From
the customer's point of view the test details indicate that the developer understands the
requirement and they also should provide a clear indication of the projected performance.

If the developer cannot define adequate formal qualification tests prior to the CDR, it may be
an indication of an unstable or insufficiently detailed design.

The authors strongly recommend the definition of formal testing at an early stage in the contract
and no later than that specified in 2167A.

5.4 Software product evaluations

There is an evident lack of understanding of the requirements for software product evaluations
in current 2167A projects JGAB91 1, particularly those where these requirements have not been
tailored out. This indicates that in many cases product evaluations are not being performed or
audited. Product evaluations are conducted by the developer on deliverable software and
documentation, prior to their delivery to the customer, to increase the quality of the
deliverables. The evaluations must be performed by a team independent of the development
team and records must be maintained of the evaluation and the subsequent corrective actions.

There is a temptation for customers to require product cvaluations as a form of compensation
for the lack of the appropriate skills in their project teams. The authors recommend against this
for two reasons. Firstly, the current approach to product evaluations by some developers would

15S

ERL-0637-RE

result in no tangible increase in quality. Secoidly, a customer not possessing the appropriale
,skills would not be able to audit the product evaluation process adequately

Product evaluations, if they meet the requirements of 2167A, require a large amount of elfort
otn dhe developer's part, and an additional auditing effort from the customer. It is likely that
c-,penetnced developers will perform some form of evaluation in any case as pan of their V&V

or QA process - it is more cost effective and efficient to detect faults in software and
documentation prior to delivery rather than have the deliverables rejected by the customer.

It is therefore recommended that product evaluations be required only on projects (and
products) where there are obvious benefits, and where the customer is willing and able to audit
the product evaluation process. These should include projects with safety or security critical
soflware, and larger projects where the customer's technical staff cannot monitor all of the

development in detail.

5.5 ('onfrluration management

ID)I)i-STD-2167A provides its own requirements [or contiguration management (although

several DIDs refer indirectly to MIL-STD-483). Customers should ensure that the configuration

management requirem,,n'nts. including those for post-development maintenance, are compatible

%ith ihosc of 2167A (tailored as needed) and that any specific requirements arc also addrescd.

\lanv (lcvelopcrs are concerned about the adequacy of their configuration management systems

and procedures, particularly with regard to their ability to control more than one version ot the
,oftware salisfactorily at the same time. Customers should be aware of this problem.

patiicularly for large or complex systems, and be prepared to ensure that the developer's
conliguration management procedures are both adequate and adhered to.

6 PARTITIONING THE SYSTEM INTO SOFTWARE EILEMENTS

\lislakes made in the partitioning of systems into CSCIs, and the subsequent partitioning of
CSCIs into CSCs and CSUs, have been the cause of numerous difficulties in 2167A projects

I BI 1,,8, MARXX, MCG90. MEYX9J. The partitioning problem is not simply one of providing

the most elegant or manageable modularisation based on analysis and design tactors.
l)e~clopers must also consider the effect of partitioning on how they will meet the requirements

of 2 167A, particularly with regard to review, test and documentation. Defining too many
('SCIs will result in too many reviews, formal tests and documents. if the software is
insufficiently partitioned it is likely to be difficult to manage and provide insufficient visibility

for the customer.

Ihcre can be no specific nrles for the selection of CSCIs. CSCs and ('SIts - each project must
make its own judgements in this matter. The following suggestions may be helpful.

6.1 Selecting CSCIs

A ('SCI is first and foremost a configuration item. MIL-STD-483A provides sound guidance
bor the selection of CSCIs and states:

The selection of hardware/software to be managed as configuration items should be
determined by the need to control a configuration item's inherent characteristics or to
control that configuration items interface with other configuration items. The selection
is a management decision normally accomplished through the system engineering

I1

ERL-0637-RE

process in conjunction with configuration management and with the participation of
logistics. Selecting configuration items should be with a full view of the life cycle cost
and management impacts associated with such a caesignation. Choosing too many
configuration items increases the cost of control; choosing too few or the wrong
elements as configuration items runs the risk of too little control through lack of
management visibility.

In other words CSCIs need to be slected on the basis of the capability to manage and control
them. Consideration needs to be given to the following features:

Siue and complexity - whether the CSCI is too large or the development too complex

to be effectively managed.

Interfaces - CSCIs should be chosen to minimise the interfaces to other CSCIs and
ttWCIs (Hardware Configuration Items). This is particularly stressed by Bulcy ct al.

F Fulctiollalit, - urtional boundaries, including operalional. training and support.

C(rilticalitv speciJ, management may be required for selected elements on the ha,sis
ol ,ccultil, salct\ ind other critical factors

C(olnliclual or geographic issues - it may be unwise Ifor a single CSCI to Contain
soft ware dCve'lope-d h\ mole than one contractor, at separate locations, or at different
\tages of a project.

* fo'ýf dcvelopment usle and ml;aintenance - whether softvare is to be used or
matimaincd b\ scparatc agencies allcr development.

Soft\%arc enrvironmntnew \ whlehcr dillIf-rent elements of the sott ware will run on
dillcrenl processors. for example.

The likelihood of reuse - if soflwarc is likely to be reused in subsequent projects it
may be uselul Io dcline it in separate ('SC'Is or C'SCs.

Some paritions suggest themelves. A program running on a ,ingle processor with reasonably
common lunctions is a natural candidate for a ('SCI. If it is very large or there arc major
divisions in its functionality, consideration needs to given to splitting it into two or more
CS('CIs. This does not mean. however, that at ('SCI should only contain one program
Collection of a group of smaller programs with a common function into ai CS(i. test and
diagnotic programs for example, is sensible practice. It also does not preclude sollware in
different processors. or diflcrent processor types, or software written in ditferent languages, or a
mixture of lew -and existing soltware from being aggregated in a single CSCI under the
appropriate circumstances. In this latter case the tailoring for diff'rent ('S('s in the SDI) w,%ill
need to he cons;idered (see Sectlion 8 .2),

Both developer% and customers should be aiming to minimise the number of CSCIs within the
constraints of manageability and visibility.

6.2 Selecting (CSCi and CSirs

Selecting fhe CS's and ('SUs is also a critical activity. If the level at which CSUs are defined
is, too low. the sie and content of the CSCI's Software Design Document (S)D) can be too

17

ERL-0637-RE

!ii ~e b\ an order 0 ofi ,Ig~iitudc. It tile level is too high. the customer will be decnicd thle
rNIlltv needed to review and approve thc design.

C S(should he regyarded as a logical rather than a physical entity - its physical realisation is
Htc wet of ('Sts which provide its capability (and which may be grouped in sulb-level ('SCS).
\\ title thle selection of CSCs will often be a natural outcome of the design method used,
(olnidcration of the documnentation. integration and testing requiremcnts of' the CS('s Is
;nIN~riant. DOD-STD-2167A require-, that each CSC be described in terms of its execution
control and data flow (amocng other things) and that integration and testing within a CSCI be
pcilornned on the basis of' CSCs. Incorrect selection of CSCs may make these activities quite
Wilticult ain(l time-consuming, as well as leading to poor documentation.

I tic oII\ guidaince that 2 1 7A provides with respect to the selection of CSIJs is the definition
,!a ('SU as being -separately testable"; additional clues might also be inferred from the

Iiilomi it ion required in the SDD. This has caused some confusion amrong developers and
l ~tjionicrs becaUse of di lierent interpretations. Many have interpreted this to mean (at least

Ix~l that a ('SI is a subprogram or its eqluivalent, giving rise to anl enormous amounL]It (1t
oi e tit nncessarv documentation. This interpreation is in conflict however with thle

lel)IiirCImCIntS for conliguraiion managementl after coding and unit testing 1216f7A 5.5.5 I:

[he contracWo shall place the source coce for each successfully tested and evaluated
CSU under configuration control.

11111)ii g that a 'SI' encompasses one or more source code entities which. at least in modern
t\ rede ye topinentl wilt oltenl comprise more than one subprogram. There is aliso) a valid

-imiciiet that a ;ingle programn in a source tile containing other subhprograms cannot bet
eel nwnety v separately testable'

I hi. , certainly' anl area of contusion but it is not one which will be satis-factorily resolved byý
"CWa retngy standards for references as above. The important issue is that thle design is
doc umntced to a satisfactory level and(that both developer and customer (and thle maintainer in

"MRi.1 case algree as to the meaninrg of "sat isfactory"

l tic aulthors bet 'eve that at ('SI. should matp to one or more Source files cointairninit one or rnore
\,uhpioptamis or similar entities wh~ich arc closely related Examples that meet this criterion are:

* An Ada package t normally two or more source files).

* A sm atl l ibrary of toosel y retlated junet ions (such as a ninathemnatic-l package).

* A group oh daita or type (cleinit ons.

* A databhase oft limited complexiiN.

* One or more object class deli nitionsý.

I il!this approach it is still likely that disagreements will occur ats to the level of complexity
.1I10%\cd wAithin at CS11. 'The developert's written sol'tware development method should address
t~in i"'one. with additional written agreements with the customer as necessary

\livcr ct al. I MEY891, Ville el al I Vll,901 and McGanni I MCG901 provide case studies of' CSC
AMd C('r selection for Ada projects.

'5

ERL-0637-RE

7 i)EVELOPMENT ISSUES

During the authors' survey ol 2167A usage, both customers and developers highlighted a
tiumber of issues relating to the relationship between software dcvclopmcnt practices and
2167A. The issues can be categorised into two main areas: !hose associated with the overall
developmental process and those associated with methods used during the process such as
specific analysis and design methods

7.1 The Development Process

A deýelopmeiut process is the overall framework in which software is developed. This
Iramework encompasses the various activities required during software development, such as
anuaisis, design and testing. Several models have been proposed to help define this framework,
the ýkaicrlall modcl being pcrhaps the most widely discussed (and criticised) of these.

Tlermtit og\ lencs to be a major stumbling block when discussing issues relating to software
proceNs,, ,,,, Mlost discussions focus on the high-level or architectural models where people
talk in terms, of ,ateriall. spiral I ROFF81, incremental, evolutionary and even whirlpool models
1)F(t)I 1hc stluationl becomes even more confusing if the many variations of the basic
models arc Fo)n,,dcred. [or cxample, there are several variations of the waterfall model ranging
from a striwt irt-crprciation {where the next phase cannot start until the previous phase is
-omplele . to aIpproachcs where software is developed in a number of build increments (often
trmncd inciremental development). Statements such as "2167A is incompatible with
cvofuttionar, dccvlopment" becom'e meaningless because individuals, organisations and authors
htave diflerent preconceived ideas as to what the term means. An incremental approach might
riwht!' be termed evolutionary, yet others see evolutionary development as an approach where a
pro•ot\pe is evolved into a tinal product. Confusion abounds when this terminology is also
wsed to descnbe acquisition processes. For example. how does evolutionary acquisition differ
from evolutionatwr development'? Clearly, the soflware world has once again fallen prey to
overuse and ntisuse of tcrrninology. Prior to any discussion of issues relating to software
processes and 2167A, the terminology must be clearly defined. Discussions should proceed
baed on a consistent understanding of specific models, rather than ill-defined software jargon.

Applying a simple label such as "we are using incremental development" is insufficient to
describe the overall process of software development. Published models may provide some
gen•eral idea as to what is inlended: however, they rarely lit well with a "real world"
development. Programmers often remark that "the waterfall approach has been specified for our
project, but it's not really thc wA;,- go about developing software". If this is the case, then
what is the actual process or approach being used? How does it differ from thie standard
waterfall model" IHas it been documented? flow is the process being managed'? Indeed, each
project has specific characteristics and it would be inconceivable that a standard model could
define the process for all projects. For example, an important characteristic that needs to be
considered is risk. If a project requires the development of a complex user interface, then
delining the requirements lor the interface could be considered to be a high risk activity. In
this case. user interface prooloyping might be considered as an inclusion into the development
process to assist in controlling the risk. Software development is a very complex endeavour, It
is characlerised by many features including tool usage. type of project, available resources, and
possible risks. Reference to a simple high-level model is insufficient to describe the many
complex interactions and dependencies that ultimately define the development process.

The 2167A standard is often criticised as being based on a waterfall approach. Although the
waterfall approach is used as; a model to help convey the requirements of the standard, it would

1 9)

ERL-0637-RE

hc foolish to believe that software development could proceed based solely on the model
described in 21167A. In fact, the standard specifically states in para 4.1.1 that

The contractor shall implement a process for managing the development of the
deliverable software. The contractor's software development process shall be
compatible with the contract schedule for formal reviews and audits.

It then goes on to list the major activities which can be applied "iteratively or recursively."
Notice also that the standard states that the process is to be compatible with "the contract
schedule". It does not specify when reviews, audits or deliverables are to be (or even have to
be) provided. Indeed, these milestones need to be defined through close cooperation between
the customer and developer. They will invariably be heavily dependent upon the process
defined by the developer and agreed tailorings.

It is possible that the use of MIL-STD-1521B is more responsible than 2167A for forcing a
project into a waterfall approach. There are also indications that some less disciplined software
(lcvclolpers regard almost any controlled process as a waterfall approach because of the
necessity for restrictions imposed by the control mechanisms (eg the need to undertake design
activities before coding, and the need to document the design).

A major failing of many projects is that the development process is at best poorly defined. It is
too easy to blame the "waterfall approach imposed by the standard" as the reason For failure: in
most cases it is really due to a lack of planning and a lack of cooperation between the customer
and developer. Without a clear direction as to how development will proceed, the project will
become plagued with customer/developer disputes and unexpected surprises generally arising at
the most crucial stages of development. Customers should ensure that the process to be used is
well defined, understood. and documented. Interaction and dependencies between the various
development activities should be provided and the model (as specified in the SDP) should be
thoroughly reviewed and analysed.

The development process must be built around the fundamental requirements of 2167A. with
particular regard to those requirements providing visibility to the customer and progress
reporting. To propose a model without a thorough understanding of the requirements and
implications of 2167A will almost certainly result in conflicts. There have been many
arguments indicating that 2167A does not fit with the way the developer likes to develop
,owtwarc (generally based on some high level model). The authors contend that a process
model needs to be elaborated for each project so that specific project characteristics can be
accommodated. One of these is the tailored set of 2167A requiremnents. Humphrey IItLIM891
proposes an approach based on process cells which would support elaboration of comprehensive
project related process models. Indeed. his discussion of various aspects of process modelling
is rccommended reading. Regardless of the approach taken, those involved in developing a
process model for a 2167A projcct must have a good understanding of the various approaches
to software development, a solid background in process modelling, a knowledge of the project
and product characteristics, and an expert knowledge of 2167A.

7.2 Development Methods

A requirement of 2167A (para 4.2.1) states that "the contractor shall use systematic and well
documented software development methods to perform requirements analysis, design, coding.
integration and testing of the deliverable software". No specific methods are defined, yet some
methods have been found to be more easily documented using the DID lormat than others.
Questions that arise include:

N)

ERL-0637-RE

W 'hich methods should be used for a ccrtain class of project'?
* What constitutes a "well documented method"?
* What level of tailoring is required of 2167A DIDs for specific methods?

There are numerous published development methods - they range from academic approaches
which lack rigour or scalability. to more rigorous and well documented methods developed by
large organisations. In addition, there are several variations on a basic theme. For example, the
words "object oriented" are used to describe a vast range of different methods. A
characterisation of all the available methods (and their tailoring implications) is well beyond the
scope of this report; the following guidelines may be of some assistance, however.

A common question is "which methods would most suit our project"? This begs the question
"what are you building'?" Prior to assessing the applicability of methods, the project must be
characterised: is it real-time, hard real-time, data oriented?; how large and complex is it?;
wxhat are the major perceived risks'? Other aspects to consider include process characteristics
(eg "does the organisation intend using automated tool support?"), interrelationships with other
methods (eg "will Structured Analysis fit well with an object oriented design?"). In addition to
understanding project and process characteristics, the software engineers responsible for defining
and selecting thc methods must have a sound knowledge of available techniques and their
application. In some cases, none of the available methods will ideally suit the project and
elements of more than one method may need to be applied.

Regardless of the approach taken, the method must be well documented. Documentation should
include:

* A description of the general philosophy and approach.
* A description of the graphical notations used.
* The basic steps to be taken.
* The method of recursion.
* Essential DID tailoring.
* Examples shoring the products resulting from the application of the method.

Development methods must be defined early in the process. The methods to be used need to be
thoroughly reviewed and assessed prior to software development. Some aspects that need to be
considered include compalibilily with other methods, compatibility with the overall development
process. understandability, completeness. consistency and the effect on DID tailoring.

Analysis and design techniques cannot be left to the discretion of individual programmers;
analysis and design activities should be conducted according to well defined and documented
methods. These methods should be specified in the SDP at an early stage of the project, as
required by 2167A, 2169 and AS-3563.

Clear sep:tration of the analysis and design activities is critical (but is often difficult to achieve
with inexperienced stafF). In particular, the Software Requirements Specification (SRS) should
contain requirements only, and avoid any software design information ISPRg0. MCG90I. (This
error occurs far too frequenilly and causes a protracted SSR. unduly volatile SRSs and increased
documentation costs.)

Tailoring of the DIDs may be required to support specific methods. The degree of tailoring
will depend on the me(hod used and the project. For example, the SRS is arranged in terms of
capabilities and separate data clement requirements. Capability descriptions arc functionally
based and required details of inputs and outputs. If a Structured Analysis approach is used,
little tailoring of the SRS would be required since the DID contents and format correspond to

21

ERL-0637-RE

this type of approach. The use of an object oriented analysis technique, however, may require
significant tailoring. Here the aim is to document the analysis in terms of objects, where an
object may encapsulate both data and operations. This approach has been used very
successfully for a range of projects and should not be dismissed simply because it does not fit
well with the DID structure. If significant DID tailoring is required, the customer and
developer must work together for the best solution. The developer must have a well defined
method, educate the customer in the method and proposed tailoring, and show how the
approach best suits the particular development. On the other hand, the customer must be
receptive to new thinking and realise that there is a likelihood that the DIDs will require
tailoring for specific methods. The most important thing is that the customer and contractor
must collaborate in reaching an agreed tailoring.

8 DOCUMENTATION ISSUES

8.1 General recommendations

The documentation required by the 2167A DID:, is designed to be an integral part of 2167A
developments. Not only does each document complement the others, but each has its place in
the development process. Ignorance of the relationships between the documents and each
document's role in the process can lead to serious increases in documentation costs as well as
othcfi problems in 6, development process. Lack of understanding and agreement between the
customer and developer as to what is required in the documentation will also lead to
unnecessary work and delays (see also Section 5.2).

One simple example of the need to consider each document's contents in the framework of the
documentation family is the definition of the software test environment in the Software Test
Plan (STP). In most projects the test environment is a subset of the software engineering
environment described in the SDP and is best explained in that context. it therefore makes
sense in these cases to describe the test environment in the SDP at the level of detail required
hy the STP and to refer to it in that document to prevent duplication.

[)OD-STD-2167A requires that a systematic development method be used and the DIDs reflect
this. More importantly, the DIDs assume, rightly or wrongly, a structured analysis and design
process based on functional decomposition. If the actual method used does not follow this
broad model the mapping of the analysis and design to the DIDs will be at best difficult and at
worst impossible, causing problems both in tile preparation of documents and in their
acceptance by the customer. In particular, if the analysis step is not performed (usually an
indication of the developer not following a systematic method) the SRS and IRS (Software and
Interface Requirements Specifications) will be difficult to write and will be almost valueless.

(cneral guidelines for the preparation of 2167A documentation are as follows:

a. Always consider each document's role in the documentation family and the
development process.

b. Consider the potential audience of each document.

c. Consider the costs involved in changing basclined documents when writing them.

d. Provide no more information in each document than is necessary. If additional
information could be useful, include it as "information only" in an appendix or as a

22

ERL-0637-RE

separate document. Avoid the temptation of dumping all the inlormation currently
available into a requirements or design document.

e. Avoid duplication which may lead to inconsistencies when changes are made. In

many cases this can be achieved by cross-referencing.

f. Avoid the documentation of design details in requirements documents.

g. Ensure that the development method and CASE tools used arc compatible with :h1
requirements of 2167A and the development of 2167A documentation.

8.2 Documentation on electronic media

The DIDs are not prescriptive about the form in which the documents are to be delivered. Each
DID states:

7.2 The Contract Data Requirements List should specify whether this document is to
be prepared and delivered on bound 8 1/2 by 11 inch bond paper or electronic media.
If electronic media is selected, the precise format must be specified.

While the authors are not aware of projects in Australia where the documentation is being
delivered only in the form of electronic media, it is sometimes provided in addition to the
printed form.

There are advantages in using clectronic media for documentalion including:

* Changes may be quickly made to the documentation.

The documentation may be transmitted by electronic means. This is an advantage
not only in the initial delivery but also For distribution among geographically separatc
members of the custome, , team.

Different versions of the same documents may be compared easily to highlight
changes.

* Document users may use software tools to scan documents for key words.

* Storage of documentation, particularly multiple versions, is more efficient.

Costs and response time in the generation and distribution of documentation,
particularly where a large number of copies might be normally required, may be
,educed.

* customer may more effectively maintain the documentation throughout the life
of the system.

There are also disadvantages:

The configuration control of documentation needs special attention if its most
common form is electronic.

Electronic documcntation may result in additional direct costs to the customer, both
in ihc procurement of compatible documentation equipment and in the training of

23

ERL-0637-RE

staff (although this may be reduced or eliminated by the specification of a
documentation sysiem already in use in the customer organisation).

ThW authors recommend that customers require the delivery of documents in electronic form
cvn it printed copies are also required. Requirements for printed copies should take into
,o0Nilderation the availability of electronic copies and be reduced accordingly.

In d(ctennfining the acceptability or otherwise of thc format of documentation on electronic
,ledia. fie following should hx. taken into consideration:

What facilities will be required to use the documentation and to make printed copies.
Consideration should include other customer agencies which may need to use the
documentation.

Whether the format will allow the customer to make changes to the documentation
such as inserting comments, or updating documents during software maintenance.

* Whether the fornat and tools support comparison of document versions.

Whether Pic Iorm-mat supports documentation in graphic Fbrm.

The physical medium. if any, for delivery.

Ior o)fDence projcts. tihe cuslomer should also ensure that documentation on electronic media

,' m, ,.ith 'lie CALS requirements Computer-aided Acquisition and Logistics Support).

8.3 Tailoring the l)II)s

If jailoring the requirements for documentation, the aim should be to produce the imininimum
,,wsvtcnt set of(documents which meets the needs olf the project.

8.3.1 (;eneral

the d(eletion of individual DIDs from the documentation requirements for a project is olIen
dc',iraihle hut consideration needs to be given to the lull consequences of its deletion.

I1 the customcr intends to rely on the developer to provide support for the software. for
example, there may be no need for a Computer Resources Integrated Support Document
IWRISD, Computer System Operator's Manual (CSOM) or Software Programmer's Manual
(SIPM) to be produced. Customers should be aware, however, that there are several levels of
\,upport which may be required. Modern software is often configurable and the recontiguration
may he quite complex. By deleting the requirements for the CRISD and SPM the normal
vehicle for the supply of this information is removed (see Section 9.8).

Delction of a high level DID, such as the SSDD. will also require the tailoring of several other
DIDs. The table below shows the relalionship between the various DIDs and standards,
indicaling references from one document to another. Although not all of the references are
signilicant (in some cases they are mainly for infonnation purposes) the table shows thal care
must be taken in deleting DIDs

One misapprehension that the authors have noticed in several projects is the view that 2167A is
all-encompassing and that no additional documentation requirements are necessary. While this
may be true in some cases, many projects require additional documenlation which should be

2-1

ERL-0637-RE

identified in the CDRL, either as the tailoring of specific DIDs or as scparatc documents (sec
also section 2.6). Furthermore, good software enginecring practice always requires the
generation of diagrams or other information not explicitly specified in any DID. Examples
include user interface layouts, concurrency diagrams and timing analyses. Thcse should all be
provided somewhere in the delivered documentation.

8.3.2 Adaptive tailoring

In many projects a single tailoring for all SRSs and SDDs (say) will not be adequate. Different
requirements for the software development will result in the need for different tailorings in
some cases. It will also be necessary in some circumstances to apply different tailorings for
different CSCs or CSUs, for example when there is a combination of new and existing software
in a CSCI.

8.3.3 Using alternate formats in DIDs

The DIDs are deliberately prescriptive with regard to the structure (including paragraph
numbering) and content of documentation. This approach is intended to guarantee the

Documents referenced

C
P C S C R

SI I 4 4 S S I S I S S S S S V S S S F I
S D D 9 8 D D R R D D T T T P D O U P S S
S S S 0 3 P D S S D D P D R S D M M M M D

SDP + + +

SSDD +

IRS + + +

SRS 4.4 .4 4. . +

IDD + + + +

SDD + + 4.4.. +

STP 4 4+ 4.

STD 4+4+ +

STR 4I

SPS 4+4. 4+ 4+

VDD 4+

CSOM

SUM 4+

SPM 4+

FSM

CRISD

Cross-referencing between DIDs and standards

25

ERL-0637-RE

completeness of the documents and to assist reviewers in finding specific information. Any
consideration of tailoring or alternative Formats must take this into account.

While the DIDs control the content and layout of documentation they encourage the
piescitation of information in formats appropriate to the content, and the use of cross-
rekrencing rather than duplication. Statements such as the following ISDD 10.1 .t.2.21 are
rClalively common:

This information may be provided by automated tools or other techniques, such as a
program design language, flowcharts, or other design representations.

The authors also recommend the use of appendices or separate documents where this will
improve the presentation and use of information. This can be done in many cases without the
need tor tailoring as long as the basic structure of the document remains intact and coherent,
the extracted informiation is at a relatively low level (eg paragraph 4.X.Y.2 in the SDD which
addresses the design of an individual CSt I), and file subsequent references arc direct and
ulunabiguous. Such a practice is particularly useful for bulky material, supporting inftrnation
and the documentation of information which is orthogonal to the basic structure of the
document.

I lie more general cxtension of this practice. ie the use of DIDs as shell documents with (often
road) rclerences to documents written to the developer's in!.rnal standards, should be avoided.

8.4 Sof'ltare development files

D)cvctotprs arc required to "document and implement procedures for establishing and
maintaining SDFs" 12167A 4.2.91. The authors view SDFs (software development files) as very
important for the documentation of additional development information including justification of
design choices and alternative considerations. CSU test procedures, and other information,
sometimes of an informal nature, that may assist in software maintenance. In addition, if the
SI)D is tailored to the extent suggested in Section 9.5, the SDFs are critical for the
documentation of lower level CSUs and the support of SDD documentation during CI)Rs. This
Jpproach follows that of Springman ISPRXQ .

Thc SIDFs should be placed under configuration control following the successful lesling of their

h'ý,ociatcd software element (normally CSU or CSC) and be delivered to the customer if the
tin,,itioning of software support is required.

I)OD-STI)-2 167A should 'e tailored to include these requirements. The cuslomcr should also
ensure that tile developer has adequate procedures for the use and maintenance of SI)Fs, and
that the ('DRI, includes their delivery. It may he necessary in some circumstances 1o negotiate
titc protection of inlellectual property contained in delivered SL)Fs.

9 THE DATA ITEM I)ESCRIPTIONS (i)IDS)

9.1 Software Developnment Plan

I he SDIP describes the organisation. management and planning of the software development for
a project.

Ihc elfort required in preparation of this very important document can normally be reduced by
referencing the developer's own software development standards wherever possible. Where this

ERL-0637-RE

occurs those standards must be provided to the customer for the review of the SDP, and must
be available to the development team before development starts. It may be preferable (for both
customer and developer) to describe the high level requirements being met in the SDP and to
use references to show how those requirements are met.

One area of definition in the SDP which will vary greatly between different projects is Risk
managemnt ti (SDP section 3.3). Consideration should always be given to tailoring this section
for the specific application and project.

9.2 System/Segment Design Document

The SSDD describes the system (or segment), the allocation of CSCIs and HWCls and the
processing resources. Its definition assumes that its requirements are derived from a
System/Segment Specification (SSS) as defined under MIL-STD-490A and it should be tailored
if the system specification is a Prime Item Development Specification (PIDS), Critical Item
Development Specification (CIDS) or other specification.

Where there is only one CSCI and the operational requirements are well defined, the SSDD
may not be necessary in its entirety. In this case it may be tailored out, and any of the SSDD
requirements that are considered relevant may be added to the SRS.

When preparing system specifications, it is important that customers aim to avoid restricting the
design of the system. Over-specification of requirements can make the analysis and design task
more difficult. as well as forcing design details into requirements specifications such as the
SRS.

9.3 Interface documents (IRS and IDD)

The authors' survey revealed a level of dissatisfaction with duplication between the IRS and
IDD and the usefulness of both documents. In the authors' experience these documents are
often misunderstood and subsequently misused. The wording of the DIDs does not assist in
this regard.

An IRS is used to specify the requirements for one or more CSCI's external interfaces, the
details of which are necessary for the preliminary and detailed design of the system. Interfaces
may be to other CSCIs, VWCls or external to the system. After SSR the IRS becomes part of
the allocated baseline. The level of information provided in the IRS should reflect the
interface's criticality in the design of CSCIs. Detailed interface information should only be
specified for interfaces which are external to the system, whose definition is critical to the
design of CSCIs, or which are defined and are unlikely to change (such as the interface to an
existing HWCIi. Other interfaces should be identified and specified in terms of their
requirements. It should contain no design information.

To some extent this is a trade-off. Information that is likely to change during design should not
be in an IRS - as it is part of the allocated baseline changes can be costly. On the other hand
the design of a CSCI requires the definition of external interfaces, and instability in its external
interface definitions is a source of risk. The customer and developer must therefore agree on
which interfaces must be defined in the IRS and which must be "designed" and expanded in the
IDD.

The IRS and IDD can therefore be regarded as containing the appropriate level of interface
definitions at PDR and CDR respectively. The IDD, being a derivative of the IRS. must
inevitably duplicate some of the informalion contained therein, but this problem will be reduced

27

ERL-0637-RE

it [hc IRS contains the correct level of information and thcre are no major instabilities in tihe
overall system design. It can be further reduced by referencing the IRS from the 1DD, where
ihe IRS contains detailed information, although it may be preferable to include all the interface
information in one document, which should be the IDD.

In many smaller projects a single interlface document will suffice. This will either be the IRS
or 1DD depending on the relevant stability of interfaces external to the system and those
betwcen CSCIs. In these cases tailoring must be used to delete thc requirements for the
discarded document, and also to compensate for its absence. The configuration management
requirements must also be tailored accordingly.

Ihere are also situations where neither an IRS nor IDD is needed. Where a project consists of
a single CSCI running as a program in a single computer, where there are no specific interfaces
hctmeen the CSCI and the computer (the only HWCI), and where there are no external
intcrfaces or i ,terltaces to other configuration items, there is almost certainly no need for an IRS
or IDD. There are also projects where some or all of these requirements are not met and the
required interface informariori can be provided satishactorily in the SSDD or an SRS. provided
that these documents are tailored to provide an adequate level of detail.

9.4 Software Requirements Specification

The SRS is usually the key contractual specification For software development, particularly
wvhen the software is being developed by a subcontractor.

In the authors' experience the two most common problems in SRS preparation are the absence
of a genuine analysis of the requirements and the inclusion of design information which should
instcad be in the SDD. Often these problems occur together when inexperienced development
,tafl confuse the analysis task with that of preliminary design.

Ail SRS should only contain requirements information which stems from a higher level
,tatement of requirement (SSDD. SSS or other specification) and which is refined as a result of
ithc ieveloper's requirements analysis. Information that is likely to change as a result of
detilded design h1ould either be relegated to the SDD or included separately on an "information
mnlv basis.

I hc authors have noticed a reluctance by some developers to derive additional requirements
Iron those specified, resulting in an SRS which is little more than a reflection of the higher
level specifications. This practice is to the disadvantage of both the customer and the developer
I lit1,8] and should lead to rejection of the SRS. The customer should be seeking an
indication from the SRS of the developer's understanding of the requirements. Approval of tile
SRS means that the derived requirements are then included in the allocated baseline and the
dCvehoper can proceed to design with an approved set of consistent and detailed requirements.

Another potential problem is the attempt to map the results of an inappropriate analysis method
(onto tile structure of an unlailored SRS. As discussed in Section 3.3, it is important that a
developer's analysis and design methods are consistent with the development framework
described by 2167A If the requirements of the SRS and SDD documents are ignored it is
likely that the documentation task will be difficult and the result will be of little value.
Developers should be wary of the advice given by Coad and Yourdon ICOA901: "You can
follow good principles of analysis and design, and then figure out how to fit your results into
the 2167A framework." They would be belter advised to plan how their methods will fit the
tormats of the DIDs and to tailor their methods and the DIDs accordingly.

. X

ERL-0637-RE

The main tailoring for an SRS is likely to he to accommodate different analysis methods. This
is discussed in Section 7.

9.5 Software Design Document

The S)1) is used to document the design of a CSCI and its partitioning into CSCs (including
sub-level CSCs if required) and CSUs, which relate directly to the actual source code. It is
unfortunate that tile SDD is often viewed (at least in the short term) only as a milestone to be
passed at CDR. Any tailoring of this document should consider its use during the development
and maintenance of the system.

It can he inferred from the requirements of 2167A and the SDD that a CSU is a single and
separate source code element (see also Section 6.2), containing a single entry point and no data
definitions whose scope extends outside the unit- and that all data accessed from more than one
(,St is global to the CSCi. No information is required on the scope or visibility of code or
data elements.

The authors bclieve that this interpretation of a CSU and the SDD's treatment of data is
incompatible with many existing design methods and modern programming languages. For
example, it \\ ill not accommodate the adequate documentation of the following:

* The definition of related dala and subprograms in an Ada package.

The definition of object classes or data types as separate program elements.

• Elements such as Ada tasks and generic packages.

In addiion, the level of description required ISDD 4.X.Y.21, if applied to all subprograms, is
more than is normally needed for development, maintenance or visibility of the design by the
customer,

In the authors' opinion, the SDD in its untailored form is unsuitable for almost any proiect. It
is therefore strongly recommended that the SDD be tailored for all projects depending on the
application, the design method and the language used (among other factors).

The most difficult issue facing the customer and developer in the tailoring of the SDD is not
seen as the definition of the structure of the document (or documents), or requirements for tihe
documentation of specific software elements, but in the coherence of the design description and
the level of detail supplied. While the level of detail required in tile Design paragraph may be
excessive for many units, it will he necessary to define some or all of this information in
certain circumstances. Determining firm generic criteria acceptable to both customer and
developer for the different design detail required for different C(SUs is almost impossible. (It is
probably this fact that is responsible for the current rigid and comprehensive - some would say
draconian - requirements of the SDD.)

It is therefore suggested that the tailoring should include the form and content of the
documentation required for different types anid levels of CSUs, where comprehensive guidelines
are provided for the selection of the level and hence the detail required in their definition. It is
important that this tailoring be agreed prior to contract signing. Approval or otherwise of the
choice of level would ultimately rest with the customer, as part of the design approval. The
risk that the customer will not approve the levels chosen should be reduced by informal
discussions between the customer and developer prior to the commencement of the

24)

ERL-0637-RE

documentation of detailed design. These may include written agreements with regard to the
content of the SDD.

the above approach will only work successfully if the customer has Ihe capability to understand
the design and the risks and advantages in the different levels of documentation. Such a
capabilily requires appropriate skills and experience, coupled with regular discussions with the
developer throughout the design process (Section 3.2).

9.6 Software Product Specification and Version Description Document

The Software Product Specification (SPS) in its untailored form provides four items of
infonnation: a reference to the relevant SDD, the source listings or a reference to them.
cLmpilcr/assembler identification and the measured resource utilisation. It forms part of the
product baseline.

I lhc authors see little value in the provision of source listings for modem software projects if
i he ,ource software is provided in electronic form. Without source listings, the SPS is
rclaii,\cly insubstantial and, unless there are reasons for providing additional inlfrrmation in the
SI'S (by tailoring), it may be tailored out. The remaining requirements, if appropriate, may be
added to the Version Description Document (VDD). It is important, however, that the updated
cr,sion of the SDI) be included as part of the product deliverables (in lieu of its inclusion in

tic S'S). and additional tailoring will he necessary to ensure this.

It h10nr a! qualification testing is required. the Software Test Plan (STP). Descriptions (STDs)

'and Reports (STRs) will be required.

While tihe content and fomial of these documents is adequate in many cases, the lest
descriptions can often be described more effectively and eflicienlly using a tonnat which is
slecifically developed For ile applicalion being tested or the test method (cg in automated
ic,,ring) In these case,, however. the principles of the untailored DID should be followed in
Iormulating test descriptions that are unambiguous, repealable and traceable to the requirements
that they test. ('are should also be taken to avoid excessive duplication which may lead to
crrors when changes are made.

l ct results will come in various forms dependent on the application and test tools. It is
important that these be accepted in their output form (eg printouts, test logs), rather than
transcribing them into an unsuitabie format in an STR. The STR requirements will need to be
tailored to accommodate these changes.

9.8 Computer Resources Integrated Support Document

[he CRISD requirements will generally be found to be too broad to provide adequate
documentation of the transitioning requirements. This DID should be lailored to suit specific

projects and their objectives for software suppor)l.

('Oitoiners may find DOD-STD-1467(AR). Software Support Environment. useful in tailoring
the CRISD. Although Ipor in terms of readability, this standard provides addilional
requirements covering

* the use of and compatibility with existing support facilities,

* software rights

kt)

ERL-0637-RE

* catering for different categories of sofltwarc (sucth as COTS)
* the minimum requirements for support facilities, and
• advice with regard to qualification testing of the support facilities.

9.9 Manuals (CSOM, SUM, SPM and FSM)

The Computer System Operator's Manual (CSOM). Software User's Manual (SUM), Software
Programmer's Manual (SPM) and Firmware Support Manual (FSM) provide general
requirements which, in the authors' opinion, are unlikely to lead to satisfactory useable
manuals. The fonnat and content of manuals will usually be strongly dependent on the
application and its environment. Each of these DIDs, if required, should be specifically tailored
for its intended use.

Defence customers will often require their own standards for manuals, which will override the
forrmat requirements (or these DIDs. This should not necessarily result in the l)lDs being
discarded, however. They may still serve a purpose by specifying the structure, content and
level of description of the required information.

It should be noted that the Software Programmer's Manual, d(espite its attractive title, is rarely
necessarv in miodern software development projects. It is, in essence, an assembly language
manu:l foIr the computer/s used.

10 FURTHER WORK

The authors rccognisc the fact that this study has examined only some of the aspects relevant to
software development using DOD-STD-2167A, and has concentrated on what, in their opinion.
are the most pressing problems. Exposure to these problems has, however, identified several
other areas where further effort is likely to assist in the maingement of 2167A projects, the
communication between customers and developers and the maintainability of software so
produced.

10.1 Assessment of developers and customers

It has become evident to the authors that some developers in Australia may not have the
knowledge, experience or standards to develop software in accordance with 2 167A. Similar
deficiencies in customer's projecl Icarns indicate that their ability to manage soltware
development projects is in question. Guidelines need to be prepared to enable customers to
assess the capability of potential developers and their own project staffT o participate in a
2 167A projecl.

10.2 Preparation of RFTs and tenders

The authors' survey and workshop revealed that developers often have difficulty in the
preparation of tenders, in their understanding of what is really wanted and how the tenders will
he interpreted by lhe cuslomer. Some are reluctant to suggest significant tailorings of 2167A.
for example, even when the RFT encourages tailoring, for fear that their tender will be rejected
on that basis. Research is required into the contents of RFTs arid tenders, to recommend
procedures thal will improve fhe cost and quality of the software product.

ERL-0637-RE

10.3 1-lectronic docinwntation aind coilllltnicalionl

It iý kc\ ilable thai there " ill be anl increasing reliance onl electronic documentation andI
comm urlnicat ion inl 1)cfncc projects. Without standardi sat ion this will result in major costs and
disarraxý . with [tic possibilit\ o1 reduccd communication bctwcen developers and customers in
111 he'Tort te nii. 'Illne Decilcrc policy to sIil(lnardise onl CAL S should assist in this regard. hut
research is needed to iMC stigate thle best use ol ('AIS in software developments and to make
aIp~proprate recommin ierat ionis

1 0.4 Tailoring for internal Defecnce projects

Soft ~ are developed NA ithiln Defence includes mnainltenlance of e xisting systems, development of

nc, s\liifl, ar'- protot\ pcs, and a :arge rainge of' dil ftcrent I x'pes of software dlevelopmient
""ihi DS'1T. Ill 11a111 case; 'oh ware is required to be developcO in accordance wxit-h 21 67A.

Intenial development di tiers I 001 developnient by contract mainly~ in the level of' trust placed] in
Ilie dex eloper Ill sonic L:aii'\. pja nit uir!% ill systemi support cciiirces (or existing software. the
developer miax also beý repowribicleor lire , oeneration of sNs:Ceni leveCl speci fications and for

sreitgfom afl qualm I ilion0 Ik sll ii. lii 0 tiers, Such as ,\ henr l)S'H is respo~nsible for thle
dcx lopiniInlt of opermtoral ,olI ý;ire. 01ie clIwrso Imelna\ have a more Pronounced role. but is
mtflikelx to require ilic i(,\ dI of ixmiihI\ imdarciI as necesýsary for aln external development.

RcanseC o)I the kiIlrrrrqiriiillICsI or1 %1 11i11 lil ol te deCSign arid reviewA of progress. thle
t[iiloririi2 fur ,m h looleerN \kll xI be iti -CI rrt I rolrn tluoseý f ,or extenlal developments. Guidelinies
iced to be dcxdoped tt lie tuiloriLr of 'P) 'A ill thewe citrCUnstatces.

10.5 I)()I-SUIt-2 167A resiulrces

thIe arulirurS \ee I r1C01 hr J coIlednt u (,f rc,,ources inl Australia assistiing custoinirs and
i(\lexClopes inl theC ednJcJiH MRn ad se of 216/uA. 1lrC'. Should inludeRI:

A .\ hrrrfciuox~c libini\ anid blliraprof relevant ituloroatioti relatiirg to 21I67A

*)eliritiiolrs aridI irlercprelj~i~ioris ot 210-17A arnd [DID requireimeints.

* Sartple Iailoriiy\, lor ulillerirtm projecItx it'~s.

* Wort pirocessor temipl ates for 21I67A\ docuinentat iii.

10.6 (; idalR'e for different applications and nle~elopinelrt methods.

F urticir x" irk is required to i letrin inc ilelai led tailIonring guidelines for dIifferent application types-

ainil deý clopnienit methrods. Applications shoulit incl ude real -time embedlded systems,

dlistibhuted systemns. information sx stemIs anld sltorecity critical systems. De-velopment
niet (ods should include inci-renretal andt phased dleve lopments. object oriented analy'qis and
decsign techniques. and thle use of nmath~ematically based ("Formal") methods.

10.7 G;uidance for the use oif VAN' in 2167A pro~jecis

Our survey indicated uncertainty in ltire use of- Verificatiotn and Validation in Dcfcricc projects.
both in the application of 'V&V\ in thre development process (internal or iiidependewi) and~ in tile
mnonitoring of tlie V& V activities bN tile customer. Further work is required1 to investigate

ERL-0637-RE

V&V standards, the value of independent V&V, and suitable frameworks For interfaces between
the various V&V staff and the development team.

10.8 Follow-up studies

Although DOD-STD-2167A is a development standard, it will have effects on the support of
software for many years after development. As yet these effects cannot be confidently assessed.
The results and recommendations of this study should be reviewed in two to three years time in
the light of further experiences, particularly with regard to the support of software developed to
the requirements of 2167A.

10.9 Update for DOD-STD-2167B

The tIS DoD software standards community is developing the next version of DOD-STD-2167
under the working title of MIL-STD-SDD (for Software Development and Documentation). It
is expected that this standard will combine (harmonise) the requirements of DOD-STD-2167A
and DOD-STD-7935. Apart from any contributions which may be made to this endeavour,
such as the results of this study, there is likely to be a need to analyse the new standard for use
in Australian software developments.

11 CONCLUSIONS

The course of DOD-STD-2167A software development projects in Australia has not generally
been scmooth, hut neither was the course of such projects prior to the introduction of the
s•tandard. There are, however, specific problems which have been highlighted by the use of
2167A.

"The prime problem, which is a major contributor to most of the other difficulties, is the lack of
experience and understanding of customers and developers both in the use of 2167A and in
software development management. This deficiency has led to many other problems including
inadequalc and inappropriate tailoring of the standard, poor or even unusable documentation,

cost and .lchidule overruns, and software products of low quality. Another serious problem is
the lack of communication between customers and developers in development projects.

It is hoped that the recommendations and advice in this paper will help to improve this
situation, in making customers and developers aware of the difficulties they face, and providing
some guidance in their avoidance or resolution.

The most important recommendation, however, is that both customers and developers must
dedicate more effort to the education of their staff, so that they are more able to cope with the
development of complex software systems to a standard which does not forgive ignorance or
amateurism.

33

ERL-0637-RE

REFERENCES

U.S. MILITARY STANDARDS

1248AI DOD-HDBK-248A, "Guide for Application and Tailoring of Requirements for
Defense Material Acquisitions", October 1979.

12871 MIL-HDBK-287, "A Tailoring Guide for DOD-STD-2167A, Defense System
Software Development", August 1989.

1480BI MIL-STD-480, "Configuration Control - Engineering Changes, Deviations, and
Waivers", July 1988.

1481BI MIL-STD-481, "Configuration Control - Engineering Changes, Deviations, and
Waivers (Short Form)", July 1988.

1490A] MIL-STD-490A, "Specification Practices", June 1985.

1483A1 MIL-STD-483A, "Configuration Management (CM) Practices for Systems,
Munitions, and Computer Software", June 1985.

1499A I MIL-STD-499A, "Engineering Management", May 1974.

11521B1 MIL-STD-1521B, "Technical Reviews and Audits for Systems, Equipments, and
Computer Software", June 1985.

1 1467A1 DOD-STD-1467(AR), "Software Support Environment", January 1985.

12167AI DOD-STD-2167A, "Defense System Software Development", February 1988.

17935AI DOD-STD-7935A, "DOD Automaled Information Systems (AIS)
Documentations Standards". October 1988.

I)OD-STD-2167A DATA ITEM DESCRIPTIONS (DIDS)

DI-MCCR-8(X)30A Software Development Plan
DI-CMAN-80534 System/Segment Design Document
DI-MCCR-8(X)26A Interface Requirements Specification
DI-MCCR-8(X)25A Software Requirements Specification
DI-MCCR-8(X)27A Interface Design Document
DI-MCCR-80012A Software Design Document
DI-MCCR-8(0014A Software Test Plan
DI-MCCR-8(X)15A Software Test Description
DI-MCCR-80017A Software Test Report
DI-MCCR-80029A Software Product Specification
DI-MCCR-80013A Version Description Document
DI-MCCR-80018A Computer System Operator's Manual
DI-MCCR-8(XI19A Software User's Manual
DI-MCCR-80021A Software Programmer's Manual
DI-MCCR-8(022A Firmware Support Manual
DI-MCCR-8(X24A Computer Resources Integrated Support Document

14

ERL-0637-RE

AUSTRALIAN STANDARDS

135631 AS 3563-1988, "Software Quality Management System", August 1988.

139011 AS 3901-1987 (ISO 9(X)!-19?7), "Quality Systems for Design/Development,

Production, Installation and Servicing", December 1987.

OTHER REFERENCES

1BOE881 Boehm B.W., "A Spiral Model of Software Development and Enhancement",
IEEE Computer, pp. 61-72, 1988.

IBUL891 Buley E.R., Moore, L.J. and Owens, M.F., "B5 (SRS/IRS) Specification
Guidelines", ESD-TR-88-337, USAF Electronics Systems Division, Hanscom
Air Force Base. MA, December 1988.

1COA901 Coad P. and Yourdon E., "Object-oriented Analysis", Prentice Hall, 19%0.

IDEG90] DeGrace P. and Stahl L.H., "Wicked Problems, Righteous Solutions: A
Catalogue of Modem Software Engineering Paradigms", Prentice-Hall, 1990.

1FIS871 Fisher R. and Ury W., "Getting to YES - Negotiating Agreement Without
Giving In". Arrow Books, 1987.

[GAB1911 Gabb A.P., Pollard P.C., Landherr S.F., Vernik R.J., "Tailoring
DOD-STD-2167A - A Survey of Current Usage", WSRL-TN-57/91, December
1991.

[HUMX9] Humphrey W., "Managing the Software Process", Addison-Wesley, New York,
1989.

I LOG9OI Logicon, Inc., TAILOR/2167A Version 2.2, TAILOR/DIDs-2167A Version 1.0.
INSIGHT/2167A Version 1.0, CDRL-GEN Version 2.0, 1990.

1MAR881 "Using Ada with DOD-STD-2167A". Marlin Marietta Information and
Communication Systems. December 1988.

IMCG90I McGann R.J., "The Applicalion of US DOD-STD-2167 to Real Time Ada
Projects: Some Lessons Learnt", Proceedings, The Fifth Australian Software

Engineering Conference, May 1990.

IMEY991 Meyer C.A., Lindholm S.C. and Jenson J.L., "Experiences in Preparing a DoD-
STD-2167A Software Design Document for an Ada Project", Proceedings, TRI-
Ada '89, October 1989.

IOVE9OI Overmyer S.P., "The Impact of DoD-STD-2167A on Iterative Design
Methodologies: Help or Hinder?", ACM SIGSOFT, Software Engineering
Notes, vol 15 no 5, October 1 190.

ISPR891 Springman M.C.. "Software Design Documentation Approach for a
DOD-STD-2167A Ada Project" Proceedings, TRI-Ada '89, October 1989.

35

ERL-0637-RE

ISPR90I Springman M.C.. "Incremental Soflware Test Approach for DOD-STD-2167A

Ada Projects", Proceedings, TRI-Ada '89, October 1989.

iVIl9OI) Ville C. and Bratel A., "A Real Time Ada Design Method Based on

DOD-STD-2167A", Proceedings, TRI-Ada '90. December 1990.

36

ERL-0637-RE

DISTRIBUTION

Copy No.
Defence Science and Technology Organisation

Chief Defence Scientist
Central Office Executive) 1 shared copy

Counsellor, Defence Science, London Copy of Doc Cont Data Sht
Counsellor, Defence Science, Washington Copy of Doc Cont Data Shit

Scientific Adviser, Defence Central 1
Scientific Adviser, Defence Intelligence Organisation 1
Navy Scientific Adviser 1
Air Force Scientific Adviser 1

Scientific Adviser, Army I
DSR - Bangkok Doc Cont Data Sht
SA to DRC - Kuala Lumpur Doc Cont Data Sht

Director, Aeronautical Research Laboratory 1

Chief, Aircraft Structures and Materials Division I
Chief, Aircraft Systems Division 1

Chief, Guided Weapons Division I
Director, Surveillance Research Laboratory I
Chief, Microwave Radar Division I
Chief, High Frequency Radar Division 1
Director, Materials Research Laboratory I
Chief, Maritime Operations Division I
Chief, Explosives Ordnance Division I

Electronics Research Laboratory

Director 1
Chief, Information Technology Division 1

Chief, Communications Division 1

Chief, Electronic Warfare Division I
Head, C31 Systems Engineering Group 1

Head, Command Support Systems Group I

Head, Trusted Computer Systems Group I
Head, Information Acquisition and Processing Group 1

Mr AlP. Gabb, C31 Systems Engineering Group (Author) 5
Mr P.C. Pollard, C31 Systems Engineering Group (Author) 70

Head, Software Engineering Group (S.F. Landherr (Author)) 6

Mr R.J. Vernik, Software Engineering Group (Author) 4
Publications & Publicity Officer, Information Technology Division 1

Media Services I

Department of Defence

Assistant Chief of the Defence Force (Development) I
Assistant Chief of the Defence Force for Logistics 1

37

ERL-0637-RE

Assistant Chief of the General Staff - Logistics I
Assistant Chief of the General Staff - Materiel 5
Assistant Chief of the Air Staff - Materiel 5
Assistant Chief of Naval Staff - Materiel 5
Deputy Secretary, Acquisition and Logistics 1

First Assistant Secretary, Capital Equipment Programs I
Assistant Secretary, Communications Planning Branch, PDC 5
Director General, Communications and Information Systems 5
Director General, Logistics Policy i

Air Force Office

Director, Electronics Engineering, Air Force 5

Army Office

Director, Command and Control Procurement, Army 1

Acting Superintendent, Software Systems Engineering Division, EDE 4
Superintendent, Communications Division, EDE I

Navy Office

Director, Navy Combat System Engineering 5

Libraries and Information Services
Australian Government Publishing Service 1
Defence Central Library, Technical Reports Centre 1
Manager, Document Exchange Centre, (for retention) 1

National Technical Information Service, United States 2
Defence Research Information Centre, United Kingdom 2

Director Scientific Information Services, Canada I

Ministry of Defence, New Zealand I

National Library of Australia 1
Defence Science and Technology Organisation Salisbury, Research Library 2
Library Defence Signals Directorate, Melbourne 1

Australian Defence Force Academy Library 1

British Library Document Supply Centre 1

Spares
Defence Science and Technology Organisation Salisbury, Main Library 10

Total number of copies 183 copies

38

Page Classification
Department of Delence ClassifiED

UNCLASSIFIED

DOCUMENT CONTROL DATA SHEET Privacy Marking/Caveat
(of document)

UNCLASSIFIED

la. AR Number lb. Establishment Number 2. Document Date 3. Task Number

AR-006-979 ERL-0637-RE SEP 92 DST 89/218

4. Title 5. Security Classification 6. No. of Pages 38

RECOMMENDATIONS FOR THE USE r-1 F-61 F-1 of Refs. 29
AND TAILORING OF DOD-STD-2167A 7.Nouo.R.s 2

-ocument Title Abstract

S (Secret) C (Confi) R (Rest) U (Unclass)

* For UNCLASSIFIED docs with a secondary distribution
LIMITATION, use (L) In document box.

8. Author(s) 9. Downgrading/Delimiting Instructions

A.P. Gabb, P.C. Pollard, S.F. Landherr, N/A
R.J. Vernik

1 Oa. Corporate Author and Address 11. Officer/Position responsible 1or

Electronics Research Laboratory Security ...
PO Box 1500
SALISBURY SA 5108 Downgrading ...

1Ob. Task Sponsor Approval for Release DE ..R.L...............
DSTO

12. Secondary Distribution of this Document

APPROVED FOR PUBLIC RELEASE

Any enquiries outside stated limitations should be referred through DSTIC, Defence Information Services,

Department of Defence, Anzac Park West, Canberra, ACT 2600.

13a. Deliberate Announcement

No Limitation

13b. Casual Announcement (for citation In other documents) F]No Limitation

W-- Ref. by Author, Doc No. and date only.

14. DEFTEST Descriptors 15. DISCAT Subject Codes

Standards, Software engineering 1205

16. Abstract

This report Is the culmination of a study Into the use of DOD-STD-2167A in Australian software development
projects. It makes recommendations for the use and tailoring of the standard.

=Sed WF'f

Page Classification

UNCLASSIFIED

16. Abstract (CONT.)

17. Imprint

Electronics Research Laboratory
PO Box 1500
SALISBURY SA 5108

18. Document Series and Number 19. Cost Code 20. Type of Report and Period Covered

ERL-0637-RE 329/796917 REPORT

12 Computer Programs Used

N/A

?2. Establishment File Reference(s)

N/A

23. Additional information (if required)

00iH,

