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ABSTRACT

Progress has been made in both algebraic and elliptic grid generation. (i) The control
point form (CPF) of algebraic grid generation has been improved in two aspects. First,
new blending functions are developed which allow a computer software user to specify the
locations of control surfaces arbitrarily. Second, a new implementation scheme is used in
the CPF to recapture the clustering feature of given grids. (ii) An effective technique of
curvature control in elliptic grid generation has been developed and implemented to control
the grid point distribution along curved boundaries.
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CHAPTER I. INTRODUCTION

The control point form (CPF) of algebraic grid generation for a 2D (or 3D) grid
results from a combination of the multisurface transformation [1,2] and the transfinite
interpolation [3]. The multisurface transformation can be thought of as a new kind of
curve generation technique, like many other kinds of curve generation methods. From the
point of view of a computer software user, the user would like to specify the locations
of control points at his or her choice. This flexibility for a user requires that a set of
blending functions can be constructed for any given set of control points. Previously, the
blending functions used in the multisurface transformations have been developed [1,2].
However, the locations of control points in the physical space are determined after the
blending functions are constructed. As a result, the locations of the control points in
the physical space cannot be chosen arbitrarily. Put the problem into the context of grid
generation within a 2D physical region, certainly we can provide a set of control points for
a user. From the point of view of a computer software user, he or she may still want to
insert or remove one or more control curves. In order to meet the user's needs, we should
develop a new set of blending functions which would allow a user to choose the locations
of control curves arbitrarily. Once we have such a set of blending functions, we can easily
handle the problem of allowing a user to add and delete one or more control curves. In
Chapter II of this report, we present our results on new blending functions-both C1 - and
C 2 -continuity-which allow arbitrary specification of the locations of the control points.

The blending functions we mentioned in the paragraph above are all local interpolation
functions. This locality gives the CPF the capability of changing or modifying a given grid
locally. The general procedure goes like this: A user has a grid which has been generated
in one of other methods. Then, the user wants to improve the quality of his grid locally
using the CPF method. Usually, this requires first regenerating the user's grid using the
CPF method. After regeneration, the user can move one or more control points to change
the grid locally. In previous application of the CPF to regenerating a given grid, it was
found that, for a given grid with clustering along one or more boundary curves, the grid
regenerated using the CPF method often fails to recapture the general clustering feature of
the given grid near concave regions (cf. Figs. 3.1-3.3). To make the application of the CPF
method successful, we need first to find out the reason of the failure and then to correct it.
It turns out that the reason of the failure was in the usual implementation of connecting the
continuous world of mathematics (analytic formula) and the discrete world of numerical
computations (usually encountered in numerical grid generation). For this problem, we
do not need any new blending functions. For any set of blending functions, whether old
or ne;-,, we can use them to recapture the general clustering pattern of any given grid
along one or more boundary curves, since they all satisfy the uniformity condition [1]. In
Chapter III we report our progress made in this area and our new implementation of the
control point form of algebraic grid generation. Also in Chapter III, the grids generated
using both old and new implementation methods of the CPF are presented. From those
illustrations of 2D grids, one can, easily see the dramatic improvements in the concave
regions for a grid with clustering.

Chapter IV of this report deals with improving the quality of grids generated ellipti-
cally. It describes an effective technique for controlling the tendency of elliptic systems to
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pull grid points away from concave regions of the grid. This tendency is responsible for
the poor grid resolution near concave regions, exhibited by elliptic grids. The discussion in
Chapter IV takes a close and detailed look at the discrete form of the governing equations
and isolates the terms which pull the points in various directions. In other words, Chapter

IV describes a technique for improving grid quality by controlling the effects of curvature
of the boundaries. The term used to designate this technique in this report is "curvature
control." Results from a program which implements the above technique are presented
and show improvements in grid quality over grids generated without the help of curvature
control.
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CHAPTER II. MULTISURFACE TRANSFORMATION

In this chapter, we report our new blending functions developed in the Phase II work.
This chapter is organized in the following way. In Section 2.1, we give the general properties
of the multisurface transformation. In Section 2.2 we review previous results on C'-
continuity blending function. In Section 2.3 we construct new the Cl-continuity blending
functions. In Section 2.4 we present old results on C 2 -continuity blending functions. In
Section 2.5 we develop new C 2 -continuity blending functions.

2.1. General Formalism

To state the results mathematically some notation is needed. For this purpose, let P 1,
P 2 , .... PN be the given sequence of points in a 2D space; let r be the curve parametrization;
let P(r) be the position at r along the desired curve; let ri, r 2 , ... rN-1 be the successive
parametric locations to interpolate the directions of (P 2 - P 1 ), (P 3 - P 2 ), ..., (PN -

PN-1); and let V,(r), '02(r), ... , 4N-,(r) be the corresponding interpolation functions
which successively separate each direction by assuming a non-zero value at the associated
location while vanishing at the remaining locations for interpolation. In two dimensions
Pk = (zk,yk) and P(r) = (x(r),y(r)). With this notation the curve is given by

N-1 Gk(r)

P(r) = P, Gk(rN) - Pk),
k=1l~ 

NI P~

where

r

Gk(r)= ýk(x)dx, k=1,2,...,N-1. (2.1.2)

To witness the basic specifications mentioned above, it is easy to check the end conditions
P(r,) = P, and P(rN_1) = PN and the interpolatory condition that dP(rk)/dr is in the
direction of (Pk+I - Pk) for each k from 1 to N- 1. In the context of coordinate generation
for two- or three-dimensional regions, the endpoints become boundary surfaces and the
interior points becomes control surfaces. For this reason the transformation generated by
curves of the above form has been called a multisurface transformation.

Corresponding to the N points P 1, P 2 , ... , PN, we label their parametric values as
b,. b2 , ..., bN, which are in an increasing sequence

b, < b2 < ... < bN. (2.1.3)

The values of bl, b2 , ... , bN can be specified or determined by, say, bk = Pk T T (we will
discuss how to choose these b's values in Chapter III). Because of relation (2.1.3), the N - 1
parametric values for N - 1 derivative directions are also in an increasing sequence,

ri < r2 < ... < rN-l. (2.1.4)

The two sets of parametric values are coincide at two ends of the curve,

b= , rrN-, (2.1.5)
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The interpolation function V)k(r) in Eq. (2.1.2) satisfies a cardinality condition,

lkk(rj) = bjk, j,k = 1,2,...,N - 1. (2.1.6)

An important condition for the curve (2.1.1) is a uniformity condition, which states
that, when projected on to a vector 7r, the curve becomes a simple linear curve in the
parametric space, P(r) -Tr = r. Let

Ck = bk+l - bk, k = 1,2, ... ,N - 1, (2.1.7)

the uniformity condition is expressed mathematically as

= +z Gkr Ck. (2.1.8)N-1 
Gk(r)r = : r i + E G k(rN -1) •

k=1

Taking derivative with respect to r on both sides of Eq. (2.1.8), we obtain
N-1
N-i t k(r) Ck. (2.1.9)

k=1 Gk(rN-1)

The cardinality condition (2.1.6) makes the summation collapse to only one term, yielding

Ck = Gk(rN-1), k = 1,2,...,N - 1. (2.1.10)

Substituting Eq. (2.1.10) back into Eqs. (2.1.8) and (2.1.9), we simplify the uniformity
condition to

N-1

r = r, + G(r),(2.1.11)
k=1

N-1

1: 0k(r) = 1. (2.1.12)
k=1

The actual values of the parameters rk and bk are related in some way. If one first chooses
rk's, then bk's are determined by Eqs. (2.1.7) and (2.1.10). On the other hand, if one first
is given bk's, then one has to decide rk's by using Eq. (2.1.10) and other choices. We will
discuss these "other choices" in Sections 2.3 and 2.5. In any case, since the two sets of
parametric locations are coincide in two ends [see Eq. (2.1.5)], the sum of all intervals in
terms of one set of parametric locations must be equal to that in terms of the other set of
parametric locations. In other words, if we define

h: = rk+1 - r, k = 1, 2,..., N - 2, (2.1.13)

then we have a restriction for the two sets of intervals,
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In the rest of this chapter, we report C' and C1 interpolants 1I'k, i.e., C1 and C2

blending functions Gk. We first consider C' continuity for blending functions Gk(r)'s in
Sections 2.2 and 2.3: The interpolation functions 4bk(r)'s are piecewise continuous them-
selves, whereas the blending functions Gk(r)'s are continuous up through first derivatives.
Then, we consider C' blending functions in Sections 2.4 and 2.5. The interpolation func-
tions Vk(r)'s are continuous up through first derivatives, whereas the blending functions
Gk(r)'s are continuous up through second derivatives.

2.2. Previous Results on Cl-Continuity Blending Functions

The simplest local interpolants belong to the class C' of continuous functions. The
interpolation functions Obk consists of two pieces for k = 2,3,...,N - 2. Each of the
interpolants 01 and 4'N-1 for the two end points is made up of only one piece. An
illustration of cogtinuous piecewise linear interpolation functions is plotted in Fig. 2.1.

, / I
I ,,

r r 2  rk -1 rk rk+ 1 rN -2 rNI

Figure 2.1. Continuous piecewise linear interpolation functions.

In the region rj: < r < rk+1, only two blending functions are non-zero, and the
uniformity condition (2.1.12) reduces to

Oc(r) + iik+j(r) = 1, ri < r < rA:+ I k _:=1,2,...,N - 2. (2.2.1)

For arbitrary positions of ri, the interpolation functions must be of the following form,

f,(xj), forr r_<r 2 ,
b(r) = j0, for r2 < r ! TrN-1, (2.2.2a)

0, for r, < r < rk-1,

lk,(r) = fk-(zxk-,), for r.- 1 < r < rk, (2.2.2b)
1 -- fk(zk), for ri :5 r < rk+1,

10, for rk+l : r < rN-1,

for k 2,3, N - 2,

( 0, for r, < r < rN-2, (2.2.2c)
fN-2(XN-2), for rN-2 < r <T rN.l,
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where

r - rk r - rk
Xk -- -- , k = 1,2,...,N - 2. (2.2.3)rk+l -- rk hk

In Ref. [1]. simple piecewise linear interpolation functions were used (see Fig. 2.1),

fk(Z) = X. (2.2.4)

Substituting Eqs. (2.2.2) and (2.2.4) into Eq. (2.1.2) and completing the integrals, we
obtain the blending functions

G fh 1 (z1 - I), for r, < r < r2, (2.2.5a)
Ir = hi, for r 2  ? r < rN-1,

0, for r, _ r < rk-1,
'hk lz 2,for <k-1 • r <Gkk-r)a2(- k-1 I-X,2- (2.2.5b)
hk- + hk(xk - k), for rk < r < rA+1,

I(hk-1 + ha), for rk+l • r <• rN-l,

for k =2, 3, ... ,N - 2, and

GN-(r) = - 0, for r, _ r <_ rN-2, (2.2.5c)jhN_2 N_2, for rN-2 < r < rN-1.

A graphical illustration of the blending functions Gk(r) is drawn in Fig. 2.2. Each function
increases monotonically from 0 to its maximum value Gk(rN-1.). According to Eq. (2.1.10),
these maximum values give the intervals of the control points Pk in the parametric space,

C 1 = 1hi, (2.2.6a)
2

Ck= (hk-1 + hk), k = 2,3,...,N - 2, (2.2.6b)

CN-1 1hN-2 (2.2.6c)

Since the coefficients represented by Eqs. (2.2.5) are known functions, the curve of equation
(2.1.1) depends only upon the sequence of points P 1 , P 2 , ... , PN-

The values of rk's can be chosen arbitrarily. The simplest choice is to choose a unit
spacing in the interpolation points, rk = k. This causes both the interpolation functions
and their integrals Gk to be translations of a function about the origin. The overall
consequence is a simply stated curve definition. In an analytical form the origin-centered
interpolation function is given by

O1-141 for -y<x<l,(2.7
1( =0, otherwise ,

9



rr2 (a)

Gk

GI~rN-I) ,I)

r 1 r

(b)

N- (r N )

rr r
.. r,- 2  rN-1

(C)

Figure 2.2. Integrals of the C0 interpolation functions from Fig. 2.1.
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and its integral is given by

0, for x < -1,
1-(x-1) 2 , for0< x < 1,

1 j(X + 1)2, for -1 <x <0 (2.2.8)1, for x >_1.

In this simple case, the coefficients in Eq. (2.1.1) are given by

GI(r) = 2Ql(r- 1)- 1, (2.2.9a)

Gk(,r)Gk(rN-) = Q(r - k), k = 2,3,...,N-2, (2.2.9b)

GN-1(r)
GN1(r)= 20(r - N + 1). (2.2.9c)GN-l(rN-1)

Also, the intervals Ck are of the form of "half one one ... one half,"

C1 = CN-. 2 = 1 (2.2.10a)
21

Ck = 1, k = 2,3,..., N - 2. (2.2.10b)

Besides piecewise linear interpolation function (2.2.4) or (2.2.7), it is certainly true that
one can construct various other C' continuity interpolation functions. For example, one
can have the following piecewise trigonometric interpolation function,

{ cos 2( rx), for -1 < z < 1,

) = 0, otherwise ,

which is continuous up through first derivatives. Thus, the corresponding blending func-
tions Gk(r) are continuous up through second derivatives.

The scheme discussed in this sectioh determines the two sets of parametric locations
(rk, hk) and (bk, Ck) in the following order;

(rk,hk)-OA(k(r), Gk(r))--(bk, Ck). (2.2.12)

From the viewpoint of application, this kind of scheme has a disadvantage: If a computer
software user wants to specify the parametric locations bk at his or her choice, then it does
not tell us how to determine rl and Ck. Besides, it is not possible to find a corresponding
set of ri,'s in certain situations. For example, since hk > 0 for all k, we see from Eqs.
(2.2.6) that C, < C2 always. Thus, this scheme is not capable of handling the case in
which C1 > C2. More flexible scheme is needed. We will present a new sc' .me in the next
section.

11



2.3. New Results on C'-Continuity Blending Functions

For any given set of bk's, the question is how to determine rk's. Our way of choosing
rk's is

h1 = C, + C2, (2.3.1a)

1
hk = -(Ck + Ck+l), k = 2,3,...,N - 3, (2.3.1b)

2

1
hN-2 = -CN- 2 + CN-1. (2.3.1c)

2

To consol date Eqs. (2.3.1) into a single equation, we introduce

- 1C
C•k= Ck, k = 2,3,...,N- 2, (2.3.2a)

2

Ck = Ck, k = 1,N - 1, (2.3.2b)

and thus have a simple form for Eqs. (2.3.1),

hk = "k +C (ýk+l, k =1,2,..., N - 2. (2.3.3)

The piecewise linear function described in Section 2.2 does not work here, since
Gk(rN-1) = I(hk-l + hk) in Eq. (2.2.3b) does not satisfy Eq. (2.1.10) in general. More
general and flexible interpolation functions are needed. Starting from the first interval
r, < r < r 2 for the interpolation functions, according to Eqs. (2.1.2) and (2.1.10), we have
to require that the area under the interpolation function 01 (r) is

"2 ¢l(r)dr = Gl(r2) = GI(rN-1) = C1 = C1 . (2.3.4)

Because of Eqs. (2.3.4) and (2.3.1a), this makes the area under the interpolation function
0 2(r) within the first interval is

fr2 1

G 2 (r 2 ) 42 (r)dr = [1 - il(r)]dr = h, - C1 = 2-C2 = C 2. (2.3.5)

Then, we examine the second interval r 2 < r < r 3 . In order to satisfy Eq. (2.1.10), we
have to require that the area under the interpolation function 0 2 (r) within the second
interval is

4r2(r)dr = G1(r3) - G 2(r2) = G2(rNl) -C 2  1 C2 =
r2 2 2(236

12



Proceeding in this way, we find that, for the kth (k = 1,2, ... , N - 2) interval, the require-
ments are

Gk(rk+1) - Gk(rk) = j k /Ok(r)dr = C'k, (2.3.7a)

r~k+t

Gk+l(rk+l) = 0÷l+(r)dr = Ck+÷. (2.3.7b)
rTk

Equation (2.3.7b) can be rewritten as

Gk(rk) = Ck, k = 2,3,...,N - 1. (2.3.8)

However, Gj(rj) = 0 is an exception.

We have mentioned above that the piecewise linear interpolation function will not
satisfy Eqs. (2.3.7) in general. In order to satisfy Eqs. (2.3.7), one more parameter
(freedom) should be allowed in the form of the interpolation function. One choice is to use
a quadratic interpolation function,

fk(z) = z + Atcz(x - 1). (2.3.9)

Equation (2.3.9) has been set in a convenient form which satisfies the two requirements
Ok(rk) = 1 - fk(0) = I and ?kk(rk+l) = 1 - fk(1) = 0. Substituting Eqs. (2.2.2) and
(2.3.9) into Eqs. (2.3.7), it is straight forward to find that

Ak = 3(Ck - Ck+1)/hk, k = 1,2,..., N - 2. (2.3.10)

The sign of Ak depends on whether Ck > Ck+1 or Ck < Ck+l. When Ck = Ck+1, the
coefficient Ak vanishes, Ak = 0. The quadratic interpolation function fk(x) is not positive
definite within the range 0 < z < 1. For example, when Ak > 1, i.e., when Ck > 2Ck+1,
the function fi, = -(Ak - 1)2 /4Ak is negative at z = (Ak - 1)/2Ak < .. To ensure the
interpolation functions to be positive definite, we can choose another form

fk(X) = X"', (2.3.11)

which has the same end values fk(0) = 0 and fk(l) = 1 as the fk(x) given in Eq. (2.3.9).
Substituting Eqs. (2.2.2) and (2.3.11) into Eqs. (2.3.7), we obtain

Ck _rnC= - k = 1,2,...,N - 2. (2.3.12)
Ck+1

Integrating the interpolation functions Ojk(r), we obtain the blending functions

G-HI(x), for 1 <r <r2,
G1 (r) = Hi1, ), for r 2 <• N- , (2.3.13a)

13



0, for rl _ r <_ rk-1,

Ck(r) Hk-l(x.k-l), for rk-1 < r < rk, (2.3.13b)Gr)= CA: + hkxk -- HA;(xk), for rk <5 r < rk+l,

2C4c, for rk+l • r < rN-1,

GN (r) 0, for r, r < rN-2, (2.3.13c)
HN_2(XN_2), for rN_2 <5 r < rN-1,

where

k(= hk fk(x)dx. (2.3.14)

For the quadratic interpolktion function (2.3.9), we get

Hk(x) = (2.2Ck+1 - C•k)z 2 + (O, - Ck4 +.l)Z 3 , k = 1,2,...,N - 2; (2.3.15)

whereas for the positive-definite interpolant (2.3.11), we have

Hk(Z) = Ck+1zkk/C,+1, k = 1,2,N -2. (2.3.16)

With "half one one ... one half' intervals for Ck's,

2C 1 = C 2 = C3 = ... = CN-2 = 2CN-1, (2.3.17)

we find that, all C'k's and hk's are equal
- 1h 1C

Ck4 = = 1 C 2 , k=1,2,...,N-1. (2.3.18)
2 2

In this special case, for the quadratic interpolant (2.3.9), we have Ak = 1, whereas for the
positive definite interpolaiit (2.3.11), we get mk = 1. Thus, for both of them, we obtain

HA(x) -" OC:+_X 2  1 lhkx 2  (2.3.19)2

and recover the interpolation and blending functions reviewed in Section 2.2. In this special
case, Eqs. (2.2.6) and (2.3.1) give the same relation between Ck's and hk's. In general,
Eqs. (2.3.1) are different from Eqs. (2.2.6). In Fig. 2.3, we present an example of relation
between hk's and C&'s using Eqs. (2.2.6) and (2.3.1).

To summary the result of this section, we stress that the scheme used here proceeds
in the following order:

(Ck, bk)--*(rk, hk)--*(Ok(r), Gk(r)). (2.3.20)

14



2.4. Previous Results on C 2 -Continuity Blending Function

For blending functions Gk(r) with C 2 continuity, the corresponding interpolation func-
tions 4'k(r) are of C' continuity. It has been shown in Ref. [21 that, in order to admit
the possibility of uniformity and to avoid any unspecified flat spots, a local interpolation
function which is not close to either boundary point must be non-zero over a minimum of
4 intervals. In other words, the interpolation function 1,k(r) is non-zero in the region of
rk- 2 < r < rk+2 (k = 3,4,...,N - 3). In Fig. 2.4 the general form of the interpolation
functions 01, are displayed. As a result, in the region rk < r < rk+1, only (up to) four
blending functions are non-zero, and the uniformity condition (2.1.12) reduces to

h, h2 h3 h4 h5 h6

(2.2.6)

cCl1  02 c3 C4  c5 c6 C7

b- b 8

"(2.3.1)

h 1 h2 h h3 h 4 h5 h6

r 1 r 7

Figure 2.3. Relations between hk's and Ck's for a case of N = 8.

4/'&-I(r) + ±4k(r) + Ok+l(r) + Ok+2(r) = 1, rk < r < rk+1, k = 2,3,...,N - 3, (2.4.1a)

ij(r) + 02(r) + 03(r) =1, r, < r < r2, (2.4.1b)

V'N-3(r) + 'kN-2(r) + ?PN-i(r) = 1, rN-2 < r < r7N-,. (2.4.1c)

It is easier to construct the interpolation functions starting from their first-order deriva-
tive, since piecewise continuous functions can be used. As mentioned in Section 2.1, the
interpolation functions must satisfy Eq. (2.1.12). Consequently, the first-order derivative
of all interpolation functions adds up to zero exactly in the whole region,
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*1 
•

r r r r ii rr1 r2 r3 r4 r 1 r2 r4r 3

(a) (b)

*k

o- r
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Figure 2.4. Schematic form of the simplest C' interpolation functions for the partition

r, < r2 < ... < rN-1.
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N-1

Z V(r) = 0. (2.4.2)

In Ref. [2] V'(rk) = 0 for k = 2,3,...,N - 2 have been used. Upon the evaluation at the
partition points, the uniformity condition was found to become

0'(rl) + )4-(rl) = 0, (2.4.3a)

-ON_2 (rN_1) + 4V'_-I(rN_1) = 0, (2.4.3b)

for end points and

4_(rk) + 7P+l(rk) = 0, (2.4.3c)

for k = 2,3,..., N - 3.

In Ref. [2], the same scheme as described in Section 2.1 was used, i.e., the scheme
(2.2.12) was used to first construct the local interpolation and blending functions and then
find the parametric intervals CA: and locations bk. Specializing to the simple case of equal
intervals rk = k (i.e., hA; = 1) and ak = bk I i the blending functions in2 , ck, = dk = 4,tebedngfntosi

Ref. [2] should reduce to

f1(r - k)/24, for k = 2,3,...,N - 2,

Gk(r f(r -k)/25, for k = N - 2,
G ) [(r - k) + 1]/25, for k = 2, (2.4.4)

Gk(rN-1) [1(r - k) + I(r - N)]/11, for k = N - 1,

[Q(r - k) + Q(r) - 37]/11, for k = 1,

where

0, for x < -2,
-2(x + 2 )3, for -2 < z <

216((z+1) 3 +6(z+1) 2 _-1, for -- <x <--1,
10(X + 1)3 + 6(x + 1)2 - 1, for -1 < x < - ,1

Qt(x) = -14z + 24x + 12, for -• < x <2..5
10(X _1)3 -6(x -1)2 +25, for 1_

6(z-1)3 -6(x-1) 2 +25, for <Xz<-3

-2(z- 2) 3 +24, for _ < 2
24, for x > 2.

These blending functions are illustrated in Fig. 2.5. In order to satisfy Eq. (2.1.14), it is
straightforward to check that the intervals must be

C3 = C4 -- = CN-3 = 1, (2.4.6a)
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Figure 2.5. Integrals of the C' interpolation functions.
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11 25
C 1 = CN-1 C 24 C 2 = CN-2 = 2-4' (2.4.6b)

which are not exactly of the "half one one ... one half" spacing given in Section 2.2 for C1

blending function.

2.5. New Results on C 2-Continuity Blending Functions

Similar to the situation in Section 2.3, questions here are: For an arbitrarily given
set of parametric locations bk, how to determine (or choose) the values of hk, and how to
construct the interpolation functions. It is obvious that there are many ways to accomplish
these things. But we want to them having certain properties. As in Section 2.3, we want
to have Gk(rk) = ! Ck for blending functions not close to end points. We also want to the
ratios of 4 areas under the interpolation function Ok(r) to be independent of the index k
and to be 7 : 1 : 1 : 77. As will be evident in the following [cf. Eq. (2.5.16)], the value of 77
must be within -1 < 7 < 0. [For blending functions (2.4.5), 77 = -1/13.1 Based on these
considerations, for a given set of Ck, we first introduce

C k3, 4, ... ,N-3, (2.5.1a)
2(1 + 77)'

CA- C2: k =2,N -2, (2.5.1b)

Ck Ck k =1,N - 1, (2.5.1c)O -- 1 + 217

Io = C1, CN = CN-1. (2.5.1d)

Then, we choose

hk = Ck + Ck+1 + ?7(Ck--1 + "k+ 2 ), k = 1, 2,..., N - 2. (2.5.2)

The choice of 7 should lead to all hi, positive, which requires that, for all k, 177 < ((5k +
Ck+,)/(Ck_ 1 + Ck+ 2), i.e.,

171 < Min{(C, + (%,+1)/(,k-1 + Ck+2 )}. (2.5.3)

In order to write down the area requirements in terms of a unified form, we let

-O•t(r) = ýr), k = 2,3,...,N - 2 (2.5.4a)

i, (r) = ýj(r) + io(r), ON-1(r) = wN-I(r) + 4N(r). (2.5.4b)

After this, we can rewrite Eqs. (2.4.1)

k-,j(r) +±4'.(r) + ',+ 1 (r) +±',+ 2(r) = 1, rk < r < rk+,, k = 1,2,...,N- 2. (2.5.5a)

19



Figure 2.6 shows the situation in the interval rk < r < rk+i. We also let ýo(r 1 )
ObN(rN-1) =0 so that Eq. (2.1.6) also holds for ?kk, i.e., b&(ri) = '51 . Furthermore, we
let

= '(r(r.j) 0, (2.5.6)

as 0k',(rk) =0 for k = 2,3,..., N - 2 used in Section 2.4. In this way, we obtain from Eqs.
(2.4.3)

ý:I (rk) + 4ý.t+ 1(rk) =0, ,,..N-1 (2.5.7)

1Pk+1

0~ r

V'k+ 2

Figure 2.6. Illustration for 4 non-zero interpolants in the interval r,, < r < rk+l, k
1, 2,..., N -2.

Corresponding to our choice (2.5.2), we require, within the interval rk < r < rt, the 4
areas under the 4 nonzero interpolants t~o be determined by

]k Ok&~(r)dr 7 iCk-1, (2.5.8a)

ik=rdr C: (2.5.8b)
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rk+jrk+ lk+l(r)dr = Ck+1, (2.5.8c)

jrk 'k+ 2 (r)dr = 77Ck+2 (2.5.8d)

for k 1, 2, ... , N - 2. It is easy to see that, by summing over both sides of Eqs. (2.5.8)
and using Eqs. (2.5.2) and (2.4.1), we get an identity ri+, - rk = hk, which is just Eq.
(2.1.13). We emphasize that the introduction of all tilted quantities is to eliminate the
special situation associated with the two end points r, and rN-1 [see Eqs. (2.4.3)] and the
two end intervals r, < r < r 2 and rN-2 < r < rN-1 [see Eqs. (2.4.1)]. It is easy to see
that 7 = 0 is a special case, in which the C2 -continuity blending functions reduce to the
Cl-continuity blending functions discussed in Section 2.3.

The piecewise linear and continuous 0'(r) used in Ref. [2] cannot be used here, since
there would be 5 parameters one can choose but there are 6 conditions [three from Eqs.
(2.5.12) and the other three will be mentioned below]. In our construction, we eliminate
the intermediate point wl, and thus reduce the number of regions to be considered. We
use piecewise cubic polynomials for the first order derivative of the interpolation functions

ik1(r) = Akzk + Bk4, (2.5.9a)

ik_1(r) = -Zk + A•z•k + Bj-x2 + (Zk - A- - Bj-)Xz, (2.5.9b)

4k+,(r) = Zk + A+zk + B+ 2k - (Zk + A+ + B )zk, (2.5.9c)

for k = 1, 2, ... , N - 2. The fourth one Ok+2(r) is determined by Eq. (2.4.2) and satisfies

4,+ 2 (rk) = 0. There are 6 unknowns for a given interval: three A's and three B's. In Eqs.
(2.5.9), using Eq. (2.4.3c), we have defined

Zk =-- 1 (k~a() = -ik•_.(rk), k = 1,2,...,N- 1, (2.5.10)

which are positive, Zk > 0. Carrying out integration once and using Eqs. (2.1.6), we
obtain

1bk(r) = 1 + hk( AkxAk + -Bkxk3), (2.5.11a)
2 3

1 1 +4
ý)k..(r) =hk[-ZkXk + 1 -A 2 + 1 -x (-A + B - Z)X4 (2.5.11b)

kk+&(r) =hk[ Zkxk + I A+Z2 + k B+X - (A+ + B+ + Zk)4], (2.5.X1c)
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CHAPTER III. CONTROL POINT FORM OF ALGEBRAIC GRID GEN-
ERATION WITH CLUSTERING

The multisurface transformation reported in Chapter II can be used to generate grids
algebraically, which is called the control point form (CPF) of algebraic grid generation
[3]. In this chapter, we report our progress made in this area. This chapter is organized
as follows. In Section 3.1, we identify the problem with an implementation of the control
point form of algebraic grid generation. In Section 3.2, we discuss how to generate a linear-
increment straight line when all control points P k are given on a straight line. In Section 3.3
we discuss, when applying the multisurface transformation to a 2D grid generation within
a parallelogram, how to make the 2D transformation bilinear. In steady of a parallelogram,
in Section 3.4 we discuss how to get a bilinear transformation within a quadrilateral. In
Section 3.5 we discuss how to deal with general case of 2D grid with clusterings.

3.1. Control Point Form of Algebraic Grid Generation

Grid generation in a two-dimensional space can be stated as finding the relation P(ý, 71)

between the coordinates P = (z, y) in the 2D physical space and the corresponding para-
metric values (ý, 77) in a rectangle ýmin 5 ý •5 max, 77min -- 77 !5 77mmax.

When the multisurface transformation is used for algebraic grid generation in a 2D
physical space, an array of control points Pk is replaced by a net of control points Qij
(i = 1,2,...,I and j = 1,2,...,J). Let the blending functions in Eq. (2.1.15) be ai(ý)
(i = 1,2,...,I) for the . direction and /36j() (j = 1,2,...,J) for the 77 direction (in a
parametric space). Let the boundary specification be given by

P(,Y7) = u'(0), P(ý,77J- 1 ) = u'(0)

P(ý1,71) = v(07), P(I-1 ,17 ) = v2 (77)- (3.1.1)

Starting from the transfinite interpolation (also called Coons patches or the Boolean sum),
it has been found that the control point form [3] of algebraic grid generation can produce
a 2D grid in the following equivalent way: First, we construct a tensor product,

I J

T(, 77) = Z Coi(()I3j(77)Qij. (3.1.2)
i=1 3=l

Then, we add edge adjustments for all four boundary curves,

)= T(, 77) + al(ý)[v1(77) - T(ý1, 77)] + a()[v(77)- T(, )]

+/,8(77)[ul(C) - T(, 771)] +/dj(71)[u2(ý) - T(, 771j-1)]. (3.1.3)

The way of assigning the coordinates of grid points in the parametric space (com-
putational domain) is very import for regenerating a given grid using the CPF method.
In particular, in the presence of clustering, care must be taken. Since a grid point car-
ries index (i,j), it is uaually assume that the coordinate in the parmetric space is simply
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(ý,71) cx (i,j). In other words, the mesh in the parametric space is a mesh with equal
spacing. (Sometimes, the computational domain is normalized to a unit square so that
the spacing in the i (or ý) direction is different from that in the j (or 77) direction. Fig-
ures 3.1-3.3 show three examples of regenerating 2D grids, including given grids, the mesh
distributions in the computational domain, and the regenerated grids using Eq. (3.1.3).
We see that even in the simple case of a quadrilateral (Fig. 3.1), the given grid is not
reproduced. In the following sections, we show how to overcome this problem.

3.2. Generation of a Linear-Increment Straight Line

As a preparation for later sections of this chapter, we study in this section how to
generate a straight line P(r) that increases linearly with the parameter r. In other words,
we want to know how to choose the control points Pk and the blending functions Gk(r) so
that the curve P(r) in Eq. (2.1.1) behaves like a straight line and is also a linear function
of the parameter r,

P(r) = P 1 + (r - rl)n, (3.2.1)

where n denotes the direction of the straight line. It is easy to see that all control points
must be on the same straight line,

Pk =P +(Pk,-pl)n, k =2,3,...,N. (3.2.2)

If the values of Pk's are not given, we can, say, (i) use "half one one ... one half' spacing
rule in physical space to determine pk's and also in parametric space to determine (Ck, bk)
and (ii) use "hI = h2 = ... = hN-2" to determine C'1 blending functions Gk(r) reported in
Sections 2.2 and 2.3. If, on the other hand, we are given the values of P•, then the question
becomes how to choose bk. We find that, if we choose

bk = Pk, k = 1,2, ... , N. (3.2.3)

then, using Eqs. (2.1.1), (2.1.7) and (2.1.8), we obtain the linear relation (3.2.1).

Using the linear-increment straight line (3.2.1), for any given set of (curve) points

ci = P 1 + cin, i = 1,2,3,... (3.2.4)

(not control points), we can reproduce these points ci exactly by letting their parametric
values to be ci + rl. If we use a set of control points specified by Eq. (3.2.2) in the physical
space and by Eq. (3.2.3) in the parametric space, we can also regenerate (curve) points ci
exactly using the multisurface transformation (2.1.1). The advantage of using Eq. (2.1.1)
is that, by reproducing ci initially, we can subsequently move one or more control points

P1 and thus modify the positions of (curve) points ci, i = 1,2,3,....

3.3. Bilinear Transformation for Grid Generation in a Parallelogram

In this section, we consider the case in which the physical region where a 2D grid is to
be built is a parallelogram, i.e., the physical region is a four-sided 2D area whose opposite
sides are parallel and equal. In such a case, the net of control points can be specified easily
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(a) (b)

A ,,

(c)

Figure 3.2. (a) An initial grid with clustering along one edge. (b) The uniform distribution

of grid points in the computational domain used in the CPF. (c) The grid regenerated

using the CPF xnethod anld the uniform grid distribution inl the computational doma~in
shown in (b). The sparse and thick net is the control net, and its distribution inl the

parametric space is of the "half one one .. one half type given in Eq. (2.3.17).
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Figure 3.3. (a) A sheet of space shuttle grid (near the tail of the space shuttle, only half
grid is shown), which has clustering along the body of the space shuttle.
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Figure 3.3. (b) The uniform distribution of grid points in the parametric space used in
the CPF.
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Figure 3.3. (c) The control net attached to the 2D grid given in (a). Its distribution in
the parametric space is of the "half one one ... one half type given in Eq. (2.3.17).
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Figure 3.3. (d) The space shuttle grid regenerated using the CPF method and the uniform
grid distribution in the parametric space shown in (b).
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Qij = P(ý 1 ,7 1 ) + (ýi - ýi)ei + (i7 - 17)e 2 , (3.3.1)

where el and e 2 give the two (non-parallel in general) directions (non-orthogonal in gen-

eral) of the parallelogram, and (ýi,') is the coordinate of the control point Qij in the
parametric space. Now, similar to the linear relation given in Eq. (3.2.1), we want the 2D

transformation P(ý,77) to be bilinear in ý and 77,

P(ý,77) = P(41,771) +( ( -1 4)el + (7-l•l)e 2 • (3.3.2)

Let us see how we can get Eq. (3.3.2). First, we notice from Eq. (2.1.17) that, as a general

rule of surface generation, we have

I J

ai()=1, E 3) = 1- (3.3.3)
i=l j=1

Then, from the uniformity condition (2.1.18), we have

J

Zai(4)bi = 4, E/3j(1i)b• = 7 (3.3.4)
i=1 j=l

in the 2D case. Substituting Eq. (3.3.1) into Eq. (3.1.2) and using Eqs. (3.3.3) , we obtain

I J

T(, 77) = P( 1 ,i 7)-+ E Zai(4)4ieI - 41 e + EZ/3,j(7/)je2 - 7 1 e 2 . (3.3.5)
i=1 j=l

With the choice bi = •j and V.= for constructing the blending functions and using Eq.
(3.3.4), we simplify Eq. (3.3.5) to

T(ý, 77) = P(41,i/)-(• -+ 1)ei + (77 - rl)e 2 . (3.3.6)

The bilinear relation (3.3.2) can be obtained either by letting P(ý, 7) = T(ý, 77) directly
[i.e., without edge boundary adjustment terms in (3.1.3)] or by parametizing the four
boundary lines according to the linear increment rule:

u'(4) = P(41,771) + (ý - ýI)el, u 2(ý) =P(ý,I,77-1) + (4 - 41)el,

V'(i7) = P(41,771) + (77 -%T)e2, V 2 (?) -- P(ý,- 1, 71,) +t (77 - ql1)e2. (3.3.7)

With the CPF constructed in this way, we have a bilinear CPF transformation within

a parallelogram. Consequently, for any given grid within a parallelogram, we can regen-

erate the given grid exactly provided that we determine the coordinate (C,77) of each grid
(control) point in the parametric space using Eq. (3.3.2) [Eq. (3.3.1)]. Afterwards, we can
move one or more control points Qij to manipulate the 2D grid.
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3.4. Bilinear Transformation for Grid Generation in a Quadrilateral
In this section, we consider 2D grid generation within a quadrilateral, i.e., the physical

region is a four-sided 2D area whose boundaries are 4 straight lines. In such a case, we first
have to normalize the 2D parametric space to a unit square, 0 = ý1 < : < •.i- = 1 and
0 = 711 <5 7/< i/j- 1 = 1. The net of control points should be established now according to

Qij = (1 - W,)(1 - 70)P(6i, T) + ýi(1 - 77j)P(ýII, 770
+4 (1 -- W%/P(6l, 77J-1 ) +t ý07Yj(ýI-1, '7j-1), (3.4.1)

where (ý/, 7j) is the coordinate of the control point Qjj within the unit square. Now,
instead of the bilinear relation in Eq. (3.3.2), we want the 2D transformation P(ý, 77) to
be in a different bilinear form,

P(V,07) = (1-ý)(1- 77)P(ý 1 , 7 i1)+±(1-i,)P(I-l,77ih)+(1-ý)n7P(ýl,7nJ-I )+--P(I-.l, nj-l);
(3.4.2)

i.e., a bilinear relation based on 4 corner points. Let us see how we can get Eq. (3.4.2).
Substituting Eq. (3.4.1) into Eq. (3.1.2), we obtain

+ P(i-,71l) [ ai()ý)( 1 - ] Zfl'( -j)j=1

"+ P(•l 771 ) oE q(0)( -E) j(77)(1- 1j
i=1 j= l

j=l

"+ P(&ýI,1ýj~j) EzaiV~)i] Y f3An7)7n. (3.4.3)

With the choice bi = ýj and b1 = 77j for constructing the blending functions and using Eqs.
(3.3.3) and (3.3.4), we arrive at

T(ý,,/= (1- )(1-7 7)P(ý1 , 71 )+(1-,7)P(ý_-,,771)+(1-ý),7P(1, ,J- ) +ý,P(l-I,,•J-1).
(3.4.4)

Similar to the situation in Section 3.3, the bilinear relation (3.4.2) can be obtained either
by letting P(ý, 77) = T(ý, 77) directly or by parametizing the four boundary lines as

ul(O = (1 - O)P(6, 77 ) + MP(,-1,7,7), U2 (ý) = (1 - 1)P(1 ,,jJ-.) + 4P(i-I,, -7j),

v1(71) = (1 - 7)P(ýI,1n) + "-P(ý 1 ,j- 1 ), v 2 (77 ) - (1 - 7)P(I_1 '77 1 ) + 77P(ýI_l,7ji7_).

(3.4.5)
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Having a 2D CPF relation built in this scheme, we get a bilinear CPF transformation
within a quadrilateral. Thus, for any given 2D grid within a quadrilateral, we can regener-
ate the given grid exactly provided that we solve the coordinate (•, lj) of each grid (control)
point in the parametric space using Eq. (3.4.2) [Eq. (3.4.1)]. The grid manipulation can
be achieved by moving one or more control points Qii at a user's discretion. Note that
the results in this section can be regard as a generalization of the results in Section 3.3,
since a parallelogram is in fact a special quadrilateral.

For a 2D grid with clustering either within a parallelogram or within a quadrilateral,
it is easy to see from either Eq. (3.3.2) or Eq. (3.4.2) that the image of the grid in the
parametric space (Cr/) is also a grid with clustering. This result shows that, for a grid
with clustering, its image in the parametric space (ý, 7) should not be with equal spacings;
i.e., the mesh in the parametric space should not be like those displayed in Figs. 3.1(b),
3.2(b), and 3.3(b). In other words, we should use three spaces in the control point form
of algebraic grid generation. In stead of the usual two spaces [physical space (x,y) and
curvilinear space (ý,rq) cx (i,j)], we should use the following three spaces: the physical
region (x, y) (arbitrary shape), a parametric space (ý, 17) (a rectangle), and an index space
(i,j) (also a rectangle). In the index space (i,j), the grid points are always uniformly
distributed and the grid lines are always straight lines. In the parametric space (ý,77),
depending on the situation in the physical region, the grid points can be either uniformly
or non-uniformly distributed and the grid lines may or may not be straight lines. In Fig.
3.4 we show how to regenerate exactly the grid given in Fig. 3.1(a), which is within a
quadrilateral.

3.5. General 2D Physical Regions
The conclusion reached at the end of Section 3.4 is valid not only when the physical

region is a quadrilateral (it contains the parallelogram as a special case) but also for a
physical region of any shape; Namely, we need three spaces for the CPF to regenerate a
given grid.

For a given 2D grid built within a general 2D region, we cannot have a bilinear
transformation like those in Eqs. (3.3.2) and (3.4.2). In order to regenerate the given grid
using the control point form of algebraic grid generation, we should first reproduce the
clustering patterns of the given grid in the parametric space (ý,r7) using, say, arc length
measurements. In general, such an arc-length method will not reproduce a given grid
exactly. It will, however, capture the general clustering tendency of the given grid. Figure
3.5 shows how to regenerate the grid given in Fig. 3.2(a). In the region of 90-degree turn,
the CPF grid does not match the given grid exactly; Otherwise, the CPF grid matches
the given grid exactly. Figure 3.6 shows how to regenerate the grid given in Fig. 3.3(a) (a
sheet of grid for the space shuttle). Comparing Fig. 3.6(b) with Fig. 3.3(d), we see the
improvements near the convex regions along the edge with clustering (i.e., 7 = 7

1min edge).
To reproduce an arbitrarily given grid exactly, we have to subsequently search and adjust
the parametric coordinate (ý, TI) of each grid point so that the gird lines in the parametric
space are not straight lines in general.
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(a)

(b)

Figure 3.4. Regenerating the grid of Fig. 3.1(a) using an improved implementation of
the CPF method. (a) The non-uniform grid distribution in the parametric space (C,r7)
determined from Eq. (3.4.2). (b) The grid regenerated using the control point form of
algebraic grid generation and the non-uniform grid distribution in the parametric space
shown in (a). The sparse and thick net is the control net, and its distribution in the
parametric space is of the "half one one ... one half" type given in Eq. (2.3.17).
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(a)

(b)

Figure 3.5. Regenerating the grid of Fig. 3.2(a) using an improved implementation of
the CPF method. (a) The non-uniform grid distribution in the parametric space (ý,r7)
determined according to the grid spacing in the physical space. (b) The CPF grid
generated using the non-uniform grid distribution in the parametric space shown in
(a). The sparse and thick net is the control net, and its distribution in the parametric
space is of the "half one one ... one half" type given in Eq. (2.3.17).
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Figure 3.6. Regenerating the grid of Fig. 3 .3(a) using an improved implementation of
the CPF method. (a) The non-uniform grid distribution in the parametric space (ý, 7)
obtained through an arc-length measurement of the space shuttle grid in the physical
space.
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Figure 3.6. (b) The space shuttle grid regenerated using the CPF method and the non-
uniform grid distribution in the parametric space shown in (a). The sparse and thick
net is the control net, and its distribution in the parametric space is of the "half one
one ... one half" type given in Eq. (2.3.17).
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CHAPTER IV CURVATURE CORRECTION

4.1 Basic Concepts of Elliptic Grid Generation

The underlying idea behind all grid generation methods is to express the physical

coordinates of a point in space, in terms of a set of variables in the computational domain. For

each set of physical coordinates (x,y,z), there is a corresponding set of points (j,TI,ý) in the

transformed or computational domain. The mathematical expression of the above statement is:

x = X (4,71,0) c:* ý = 4 (x,y,z)

y = y (ý,rl,0) 4:* 11 = 7 (x,y,z)

z = z (4,11,0) <-* ý = C (x,y,z)

Among the many techniques available for numerical grid generation, elliptic techniques are

perhaps the most widely used. We restrict the discussion here to two dimensions. We start by

writing a set of elliptic equations for the transformed variables (4,j1). The simplest elliptic equation

is Laplace's equation:

x+ 0 (4. .1)

Tlxx + Tlyy 0 (4.1.2)

These equations state that given values of the transformed variables ý and i1 or their derivatives on

the boundary of an arbitrary physical domain, we can compute values of 4 and T1 inside the

domain. However, our goal is to express x and y inside the physical domain in terms of 4 and 71.

Let us assume the computational or transformed domain is rectangular and 4 and 71 are distributed

uniformly over this domain. Let the increments Aý = 4i+lj - 4i-lj and Ai = Tlij+l - Tlij-1 be

equal to 2 for convenience. The computational or transformed domain is thus a rectangular region

with a rectangular mesh covering it. Our goal is to find values for x and y at each point on the

computational domain, given values of x and y or their derivatives on the boundaries.

Exchanging the role of the dependent and independent variables in Equations (4.1.1) and

(4.1.2) transforms this set of equations to:

xtx - 2p3xkr + yx... 0 (4.1.3)
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ayr - 213yk- + fyy,7l = 0 (4.1.4)

where the terms:

a = xrn2 + yrl2 (4.1.5)

13 = xkxrl + YkYT1  (4.1.6)

I=x4 2+y2 (4.1.7)

are responsible for the coupling between the two equations.

It should be immediately apparent that the transformed equations do indeed represent equations for

x and y in terms of 4 and T1.

Equations (4.1.3) and (4.1.4) are discretized and solved simultaneously for x and y. The

discrete form of the equations is simple, because the spacing in the computational domain is

uniform and the increments are equal to 1. For example, the discretized form of (4.1.3), based on

central differences is:

a =4 (x - x ij-1))2 + (I (Yij+l _ Yij--))2

i, (X + - X x+ - xij1 (Yi+l.j - Yi-l,j)(Yij+l Yij-

4~ i+.j i ~ jl i-
11

i-j =( (x i+l~j - Xi-l,j))2 + (I (Yi+ x=j 0 Yi -l,j))2

a i~j (Xi+l1j - 2Xi.j + Xi-l1, ) + 7i41 (Xi~j+l - 2Xi~j + Xi'j-1)

2 Aij (Xi+1,j+l- Xi-l.j+l- Xi+1.j-1 + i-lj-1) = 0

Similarly for (4.1.4):

a ij (yi+l,j - 2yi.j + Yi- 1,3 ) + ^fj (y,.j+l - 2yi,j + Yij-1

-2i3j (yi+l.j+l- yi-l.j+l- yi+l,j-1 + yi- 1 j-) = 0 (4.1.8a)

4.2 Properties of the Elliptic System

Elliptic systems exhibit the desirable tendency to smooth out the grid insioe a domain, even

if the boundary is not smooth. They also guarantee that the grid lines do not cross. These

properties lead to their popularity.
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The behavior of elliptic systems near curved boundaries will be the focus of our

discussion. Elliptic grids behave differently near concave and convex boundaries. In general, they

behave well if the boundary is convex when viewed from the interior of the domain and behave

poorly if the boundary is concave. This is because the grid lines tend to cluster near convex

regions at the expense of concave regions. This behavior manifests itself in two ways: If the

points on the boundaries are fixed, the normal spacing next to concave boundaries can becomes

orders of magnitude larger than the spacing next to convex boundaries. If the points are allowed to

float along the boundary, in addition to the previous phenomena, the points tend to migrate away

from concave comers along the boundary, resulting in poor resolution of the boundary curve.

4.3 Curvature Control

The deterioration of grid quality resulting from the behavior of elliptic systems at curved

boundaries is severe enough to warrant corrective measures. The most intuitive approach is to deal

with the elliptic system on a discrete level and try to find the terms responsible for this behavior.

Once the guilty terms have been identified, they can be eliminated or damped, keeping in mind that

eliminating the ill effects of these terms near concave comers, also diminishes their favorable effect

along convex comers. Our primary goal will be to moderate the effect of curvature on the grid, not

to eliminate it.

Obtaining a numerical solution to the pair of elliptic equations (4.1.8a) and (4.1.8b) begins

by starting with an initial grid whose point distribution does not satisfy those equations. The

points of the initial grid must move to a new position, until they satisfy equations (4.1.8a) and

(4.1.8b) and their boundary conditions. We will try to understand the exact nature of the forces

that cause the points which do not satisfy the elliptic equations, to move until the grid does satisfy

the elliptic equations. We will confine our discussion to grids with orthogonal boundaries, and

restrict the regions where we wish to exercise curvature control to the vicinity of the boundaries.

For regions of the grid which are orthogonal:

P= X•xrl + YkYrl = 0 (4.3.1)

Notice that although an orthogonal grid satisfies equation (4.3.1), simply dropping P in equations

(4.1.8a) and (4.1.8b) does not force equation (4.3.1) to be satisfied and therefore will not

guarantee an orthogonal grid. Assuming that we have, by some means, forced the grid to be
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orthogonal in a region, we can then set 3 =0 in that region. This simplifies equations (4.1.8a) and

(4.1.8b) considerably:

aij (xi+lj - 2xij + xi- Ij ) + yij (xij+l - 2xij + xij-) = 0 (4.3.2a)

aij (yi+l,j - 2yi,j + yi.,j ) + yf',j (yi,j+l - 2yi,j + Yi,) = 0 (4.3.2b)

Solving equation (4.3.2) for xij and dropping the ij subscript from a,,j and Yi,s:

Xi~j - 2  + (xi+l'j ++ x (xil +xi1 -1 ) (4.3.3a)

a+. +l, ya +

A similar expression can be written for yj..:

I aC (4.3.3b)+
1Y 2 (Yi+l .j + Yi-,j ) + 2 a + , (yi j+l ) (4.3.3b)

For regions of the grid which are orthogonal, the point at (ij) depends only on its four neighbors

at (i+lj), (i-lj), (ij+1) and (ij-1). As was mentioned earlier, this discrete form of the elliptic

equation forms the basis of our attempt to isolate the terms responsible for the undesirable behavior

of the elliptic system at concave boundaries.

Typically, for all the points in the field which are in orthogonal regions of the grid, the

point at (ij) is forced to move to a new location, as to satisfy equations (4.3.3a) and (4.3.3b). The

tendency of the points to move away from concave comers, is part of this motion. In order to

moderate this tendency, we must understand the exact nature of this movement and try to isolate its

different components. Denote the position vector at the point at (ij) by Pij:

Pi~j = xiW I + Yi j J

It is evident that in order for this point to be in an equilibrium positions relative to its neighbors in
an orthogonal region of the grid, xij and Yjj must be given respectively by equations (4.3.3a) and

(4.3.3b). The relative motion vector Ri., is defined as the difference in the position of a point

before and after it satisfies equations (4.3.3a) and (4.3.3b). In symbolic form:

4=(P. -0

R .j = ew(P jPj) old
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For a fully converged grid R.. tends to zero every where in the domain. To distinguish between

orthogonal and non orthogonal regions, we use the subscript I and 2. RI satisfies the elliptic

equations everywhere, whereas R 2ij is restricted to orthogonal regions. We have thus identified

the vector which describes the direction and magnitude of the motion of a point. We must now

find its different components.

Some manipulation of equations (4.3.3a) and (4.3.3b) shows that R2i, can be expressed

as the sum of two vectors which depend only on the difference in the current position of the center

point and its four neighboring points. If we let the vector V1 contain the contributions from i + 1

and i - 1 and the vector V2 contain the contribution from j + 1 and j - 1, the following holds true:

R2ij = VI + V2  (4.3.4)

Figure 4.1 is a graphical representation of the elliptic equations, showing the contribution of the

neighboring points to the final location of the center point.

i-].j vý*V2

ij-I

Figure 4.1

To derive equation (4.3.4) formally, it is convenient to define two new scalar quantities a

and b, such that:

a- a b-

+744
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using these definitions in (4.3.3a) and (4.3.3b), and subtracting (xi.,)old and (Yj)oa from both

sides of these equations respectively, the Cartesian components of the vectors V, and V2 can be

expressed as:

V, = a (A+- Ax a (Ayi - Ay-.) j(4.3.5a)

"* 1 J . 1 (A + A - A

V2 =b(Ax -Ax. )I+b(Ay b -Ay)j (4.3.5b)

Where the following shorthand notation is used:

Ax+ Xi+lj ij Ayi = Yi+j-Yij

Axi = xi-j - xi.j Ay. = yi-lj - Yi.j

Ax =X..ij -x.. i +yj = Yij+. - Yi~j

Ax i = Xij_1 - xij Ay = Yij - Yij-1

Notice that in the above definitions, the subscript 'old' has been dropped from the points at ij to

make the equations easier to read. Also keep in mind that in Figure 4.1 the effect of the quantities a
and b on V1 and V2 have not been taken into consideration.

Adding equations (4.3.5a) and (4.3.5b) gives the Cartesian components of R2 i.j:

R2i~j =Rx i + Ry-. j

where

Rx =a (Ax+ - Ax- ) + 1b (Ax. - Ax ) (4.3.6a)

Ry =la(Ayi-Ay.)+Ib(Ay+ - Ayj) (4.3.6b)

Although equations (4.3.6a) and (4.3.6b) give the components of point movement in Cartesian

coordinates, in this form it is not easy to determine which of these components pulls the point in a

particular direction of the physical domain. As a particular example consider a solid boundary

located along the • = constant direction. Since the 4 direction runs along a constant value of the j
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index, it becomes obvious which components of the R2ij vector pull the points away from the

surface if the components of the vector are in the ý and Tj or i and j directions. (The i and j indices

do not point in the i and j directions.) An alternative expression for R2ij as a sum of two vectors

in the ý and T" directions is therefore highly desirable. Figure 4.2 suggests clearly that the two
A A

vectors we are seeking are cc and yi.j which do indeed point along the i" and t directions
A A

respectively. A formal definition of the two unit vectors a Uj and Yij is:
A 1 A A

Aij 1 T1 i + YT J)i~ j (4.3.7a)

A A A

Yij (x i + Y4 j)i.j (4.3.7b)

i.J-I

Figure 4.2

The quantities cYLj and y. are formally defined as:

a..=(P 11P )..k
cI.J = 1 'PI a1i.

i.. -(P P)ij

We can thus write:

-. A A A A

R2ij = Rx i + Ryj = (VI-+ V2y)Ti.i+ (Via,+ V2)aoi.j (4.3.9)
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A
The quantities VI.,I V 2,y,Vil and V2a are the components of the vectors VI and V2 in the and a

A A Aand y directions. For arbitrary unit vectors a and y which make an angle 0 between them, we

can write by consulting Figure 4.2:

VI-y= VI "A-Vi acos(0
-4 A

Via = V1 " - Vl.yCOS 0

similarly:

A
V2 .-=V 2 •-V2acos0

V2a = V 2 a - V2.,cos 0

The above set of equations can be solved for the four unknowns VIy, V2 y ,Via and V2a.

However, we mentioned that our grid is orthogonal in the regions in which we are interested. This

means the angle 0 is 900. As a result, the above set of equations reduce to taking the dot product
- 4A A

of V and V2 with a.i and yi.. Using equations (4.3.5a) and (4.3.5b) along with (4.3.7a) and

(4.3.7b), we get:

cc -a (Ax+ Ax7 L +, ! (Ay,-Ay, a (4.3.10)
Via'Vl " •2a - "-i j 2 a(~ Y •~

v1.,V, y a • 1(Ax+- Ax)- +x• 'a (Ayi -Ay) (4.3.11)i 7 i 2 4 fi j)A• (A+ - a yi--L (4.3.12)
•a•i.j l,j

V2a V2 a" -b (Ax. - Ax1 +lb (Ax+- Ax

A= b (Ax+ - Ax- ) + 1b (Ax-Ax) (4.3.13)

A 1Y V2 Y 2-N J 2 j j

In Figure 4.2, if curvature at the point (ij) where to have no pulling effect on the grid point
A

at (ij), the pair of points at (i+l j) and (i-l j) should pull the central point along the ai, direction
A

only and similarly the pair of points at (ij+l) and (ij-1) should pull it along the yj direction only.
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In other words by setting Via and V2. equal to zero the pulling effect of curvature will be

completely eliminated.

Remember however that we are going to be prudent and try to retain as much of the

curvature effect as possible. Also, in certain regions we might want to diminish the effect of

curvature selectively. In terms of our equations, the above observation amounts to rewriting

equation (4.3.9) in the following form:

-0 A A A A

=Rx + Ry j = (V 1y + PV21 )-Yii+ (QVlIa + V2t)aij (4.3.14)

In this form, adjusting the values of P and Q allows us to adjust the pulling effect of curvature in

each direction independently. But we are not finished! We have so far worked under the

assumption that the grid is orthogonal in the regions we are interested in. What happens in other

regions? Obviously as the grid deviates from orthogonality, the accuracy of equations (4.3.3a) and

(4.3.3b), which formed the basis of our derivation and led to (4.3.14), diminishes. We need a

way to compensate for this and provide a smooth transition between the regions which are

guaranteed to be orthogonal and those which are not.

Let the relative motion vector R.. be composed of two components, one which satisfies

the full elliptic equations; that is equations (4.1.8a) and (4.1.8b) and is donated Rlij and another

which satisfies equation (4.3.10) and is donated 2i, consistent with our previous definitions of

these two vectors. Let a scalar cD be defined such that it varies smoothly between o and 1. We can

write:

Rij = ( Rli.j + (I -D) R2ij (4.3.11)

Equation (4.3.11) states that unless (D is equal to 0, the solution will not be without the influence

of the full elliptic equations, and that if (D is equal to 1, the solution depends entirely on R1 ij

4.4 The GridPro'm /pc2000 Computer Program

The above technique of curvature control has been successfully implemented in the

GridProT/pc2000 elliptic grid generation computer program. This program forces the grid to be

orthogonal at the boundaries of the domain. In the interior regions of the grid, the orthogonality
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condition is not enforced, allowing deviation from orthogonality. In most practical cases the grid

stays very close to orthogonal even in the interior of the domain.

Equation (4.3.11) is implemented in GridPror'/pc2000 by letting 0 vary exponentially

between a minimum value at the walls and I in the interior regions. The minimum value depends

on the topology. For 0 grids the minimum value is 0.25. The scalars P and Q are also adjusted

according to the topology. Again we consider the 0 grid as an example. Here the direction along

the body is the , and the direction normal to the body the i1 direction. When an elliptic grid with an

O topology is constructed about a body such as an ellipse, the region near the tip shows an intense

clustering of points, as seen in Figure 4.3a. This clustering is desirable in the ý direction, but the

grid can be improved by reducing the clustering in the 1 direction. When this is done, the result is

the grid in Figure 4.3b. Notice the normal spacing is now much more uniform along the ellipse.

The grid in Figure 4.3a shows a significant change in normal spacing between the top part and tip

section of the ellipse. The grid in Figure 4.3b was produced using GridProm /pc2000 by setting Q

equal to 0. Figure 3a was produced with all the settings the same except with Q equal to 1. For

both cases P was equal to 1.

Figure 4.3a Figure 4.3b
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CHAPTER V. SUMMARY

During our Phase II work, (i) we have made the control point form (CPF) of algebraic
grid generation more applicable in the real world of grid generation, and (ii) we have
devtloped an effective method to control the grid point distribution of elliptic grids along
curved boundaries.

(i) Progress made in the CPF of algebraic grid generation was reported in Chapters
II and III. In Chapter II, we reviewed the old blending functions and described how to
construct new and more flexible blending functions as well as the results, both for C1-
and C2-continuity blending functions. The new blending functions can allow a computer
software user to choose the locations of control points arbitrarily. In Chapter III, we
discussed how to make the 2D transformation relation given by the CPF to be a bilinear
transformation within a quadrilateral (which includes a parallelogram as a special case).
This helps us to recapture the general clustering feature of a given grid of arbitrary shape
when we use the CPF to regenerate the given grid. These two improvements have been
included in one of our grid generation programs called GridPro/sb, which can be used to
improve the quality of a single-block 3D volumetric grid. In our software GridPro/sb3010
and GridPro/sb3015, a user can insert or remove a control surface (or a control line in a
boundary surface) one at a time. In software GridPro/sb3000-GridPro/sb3015, a user
has the choice of preserving the clustering of an initial grid.

(ii) Progress made in elliptic grid generation was reported in Chapters IV. Our method
of controling the grid point distribution near curved boundaries has been implemented in
our grid generation code GridPro/pc2000. This code produces more uniform grid point
spacing along curved boundaries in both the tangential and normal directions.
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