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I. Introduction.

A nonlinear partial differential based approach to some of the basic problems of

image processing was initiated. Problems of noise removal, enhancement, and ap-

proximation of restored noisy, blurry images were attacked using this new approach.

We have overcome many of the difficulties experienced by standard techniques such
as spurious oscillations (ringing) and/or excessive blurring of edges. Here, we used

essentially nonoscillatory (ENO) least squares approximation, (see e.g. [3]), to-
gether with feature detectors, shock filters [4] and total variation [5, 6, 21] based
deconvolution to produce a state-of-the-art enhancement technique. Moreover the
ENO preprocessing was used together with a flame filter based on Hamilton-Jacobi
type ideas. This was generalized to the unique class of morphological requirements

[19] satisfying operators using numerical techniques similar to those originating in

[2]. Additionally, an anisotropic diffusion process originated by Malik and Perona
[20] was turned into an anisotropic shock/rarefaction filter. The resulting evolution

equation both enhances and denoises.

A major breakthrough came in our total variation based restoration of noisy,
blurred images. The total variation of the image is minimized subject to constraints
involving the point spread function of the blurring process and the statistics of the
noise. The solution is obtained using Euler-Lagrange equation with artificial time
evolution, and Lagrange multipliers enforce the constraints. This amounts to solving
an interesting time dependent partial differential equation on a manifold determined
by the constraints. As t increases the image is restored. The numerical algorithm

is simple to implement and appears to be nonoscillatory (minimal ringing) and
noninvasive (recovers sharp edges).

II. Restoration Algorithms.

Our first restoration algorithm involved additive noise:

We solve the following problem. Let

(2.1) uo(x, y) = (Au)(x, y) + ji(x, y)

where A is a linear integral operator and ii is additive noise. Also uo(x, y) is the

observed intensity function while u(x, y) is the image to be restored. Both are

defined on a region fQ in R 2 . AcsG*3Lox For

A may be a convolution type integral operator in which case we write:-!NA S ....

(2.2) (Au)(x,y) = (k * u)(x,y). ju.., itt,

Examples we shall experiment with include 11ý t rl pt

A; i.Lity Codes
, ',)T " TyT ' TNSPEMTED3 , A n, /or
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Motion blur:

1 a a
k(x,y)=- if -- <x<-

(2.3a) a 2 2
k(x, y) = 0 elsewhere.

Diffraction limited blur:

(2.3b) k(x,y) = a sinc ax

where sinc x = 'in ,._ and a is related to the aperture size and bandwidth limitation
of the transmission system.

Defocus blur:

J, (a wL 2+ WV)
(2.3c) = a Lro 2z + LWO2

where ^ denotes the Fourier transform JI(x) is the Bessel function: and a > 0

measures the degree of blurring (a = 0 is just the identity map).

Gaussian blur:

(2.3d) k(x,y) = (47ra)- 1 exp 4a

which arises e.g., in atmospheric turbulence.

All these kernels result in severely blurred images whose restoration is an ill-posed
problem. Inverting the equation

(2.4) k * u = u0

leads to the formula
U = F-'(k)-1Yuo

where Y is the Fourier transform, Y` its inverse and k is the transform of the
kernel. The ill-posedness comes from the zeros of k(ý, t7) for ý, q in bounded regions
of R2 and for (I + r1 -- oo. Even in the absence of noise, quantization error leads
to severe ringing in this process.
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The ill-posedness of this procedure has long been well known. Conventional
variational approaches to this problem involve a least squares L' fit because this
leads to linear equations. The first attempt along these lines was made by Phillips
[11] and later refined by Twomey [12,13] in the one dimensional case. In our two
dimensional continuous framework their constrained minimization problem becomes

(2.5a) Minimize (uzZ + u ,) 2 dxdy

subject to constraints involving the mean

(2.5b) [ udxdy = j uodxdy

and standard deviation

(2.5c) i (Au _ Uo)2 dxdy -aU2 .

The resulting linear system is easy to solve using modern numerical linear algebra.
However, the results are rather disappointing, see section VI below.

We instead minimize the variation of the image, which is a direct measure of how
oscillatory it is. The space of functions of bounded variation (BV) is appropriate
for discontinuous functions. This is well known in the field of shock calculations,
e.g., [31, and references therein.

Thus, our constrained minimization problem is

(2.6a) Minimize f u• + udxdy

subject to constraints involving uO.

In our work so far we have taken the same two constraints (2.5b) and (2.5c).

Again (2.5b) indicates that the white noise hi(X, y) in (2.1) is of zero mean, and
(2.5c) uses a priori information that the standard deviation of the noise fi(x, y) is
or.

In this case we arrive at the Euler-Lagrange equations

(2.7a) u 2

\A(A*Au - A*u) in Q
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"with

(2.7b) 0u = 0 on

Here A* is just the adjoint integral operator.

The constant A is a Lagrange multiplier chosen so that the constraint (2.5b) is
satisfied. The first constraint (2.5a) will be shown in Remark 4 below to be satisfied
if:

(2.8) Au fu and f A*u u

for each u. This is true up to normalization for A a convolution. Thus we assume
(2.8) for simplicity only.

We shall use the gradient-projection method of Rosen [15] which, in this case,
becomes the interesting "constrained" partial differential equation

ut- + Y
(2.9a)TX V +U 'a

- AA*(Au - uo)

fort>0, (x,y) Q

(2.9b) Tu- on
8n

and u(x,y,0) given so that (2.5b,c) are satisfied. If (2.5b) is satisfied initially, e.g.
u(x,y,O) = uo(x,y), then, by the conservation form of (2.9a,b) and by (2.8), it is
always satisfied. Satisfying (2.5c) can be done through a process described in the
next section.

The projection step in the gradient-projection method just amounts to updating
A(t) so that (2.5c) remains true in time. One merely differentiates (2.5c) with
respect to time, replaces ut by the right side of (2.9) and then chooses A(t) so
that this is set to be zero. This amounts to multiplying the right side of (2.9) by
A*(Au - uo), integrating over Ql, setting the result equal to zero, and solving for
A(t).
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We have

)U (2 -) .A*(Au -uo)dxdy
(2.10) A(t) = fQ(A*(Au - Uo)) 2 dxdy

We thus have a dynamical procedure for restoring the image. As t --+ 0 the
steady state solution is the desired restoration.

Remark (1.1). Equation (2.9a) can be written as

(2.11) ut = C(u) - AA*(Au - uo)

where K(u) is the curvature of the level set u = constant at each point. This part
of the operator can be viewed as moving each level set normal to itself with velocity
equal to its curvature, divided by the magnitude of the gradient. The constraint
term just acts to project the motion back so that (2.5c) is satisfied.

Remark (1.2). The method is quite general as regards nature and number of
constraints. Generally one has many Lagrange multipliers and one must invert a
Gram type of matrix to update their values. In particular, one may localize the
constraints over space.

Remark (1.3). The method is also general as regards the nature of the noise. We
have recently experimented successfully with both multiplicative and speckle noise.
Again, we demonstrate the former in section VI and discuss the algorithm in section
IV.

III. Numerical Approximations.

The easiest way to construct an efficient numerical approximation to (2.7) is to
approximate the variational problem (2.6) with constraints (2.5b,c) directly.

We do this as follows: Let xi = iax, yj = jAx, i,j = 0, 1,... , N, with NAx = 1,
and also uj • u(iAx,jAx). Our discrete variational problem is

N-1

(3.1a) Minimize E V(A+ujj)2 + (A,-uij)2 + E
i,j=O

subject to the constraints:

N N

i~J=o i,j=o
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N

(3.1c) IIAu - uo01 2 = I j(Au)i, - (Uo), 1
2 (Ax) = a2.

i,j=O

Here AA uij = ±(ui±l,j - uij), similarly for A" uij; and e > 0, of the order of
round-off error, is used to avoid division by zero.

The discrete Euler-Lagrange equations come just by differentiating (3.1) with
respect to uij and using a Lagrange multiplier. We arrive at:

0= A'_ A+u,,
(L\ uij)2 +(AYu~ 2 ±e

(3.2a)+ _ ( AY +)

AXUj2+ (Agui,)2 +f

- A [(A*Au)i, - (A*u)ij]

with boundary conditions

(3.2h) A.uoj 0 AUN-1,j, j = 0,1,... ,N

(3.2c) AYuio 0 A- AUi,N-,, i = 0, 1,... , N

We approximate this by the gradient-projection method:

! = u7-) +

(3.3) A P

+A U )2 + (A+ Ui,) 2 + )

- [(A*Au)!' - (A*uo)ij].

Typical values of c - range from .3 to 3.

Remark (1.4). We also used a more isotropic approximation of the discrete vari-
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ation; i.e. minimize

(3.1c) E V>z +uij)2 + (AY ui 1 )2 + f
2 J1

I n-1
+~ >j 4Ui) + (AllU,,)2 + f

I,2

where
(3.1e)A _ ui+l,j+l - uij

(3.1f) A .uij - ui+J-1 - Uij

yielding simple expressions corresponding to (3.2a) and (3.3). The results aie
slightly more pleasing.

Rather than use a discrete version of (2.10) we impose (3.1c) directly on u'+' in
(3.3). This amounts to solving a quadrat:c equation for An as follows

(3.4a) JJAu"+ 1 
- u0oJ 2 =- a2.

This means, among other things, that the constraint (3.1c) need not be satisfied
by the initial guess {uP°}. In our experiments we usually took uP. = (uo)ij. Also
the resulting quadratic equation for A derived below has (in general) two complex
roots:

(3.5). A± = c, ± (sign cl)v/

If c2 : 0, we just set A = c,. If c2 > 0 we take A = A-. We have found in
our experiments that this procedure eventually drives us to the manifold (3.1c) for
a > 0. Constraint (3.1b) is automatically satisfied by the procedure (3.3) when the
initial data satisfies the constraint.

To simplify the solution procedure we rewrite (3.3) as

(3.6) ui+ = pnj- A qn

and define {pn)} = p", {q7,} = q

7



Then (3.4a) becomes

(7Au-+' _ uo01 2 = a2 = IIAp' - -,Aqn _ uoI12

(3.7) = A2 1Aq"n112  2A(Aqn,Apn - uo) + JJAp' - uo01 2

(dropping the superscript n).

(3.8) = (JAq I)- 2 sign(Aq, Ap - uo) II(Aq, Ap- uo)l

±sign(Aq, Ap - uo)V 1 (Aq, Ap - uo) 2 - JJAqfl2 (JJAp - Uo0l 2 -a2)]

The definition of A. above approaches that obtained by the gradient-projection
method in (2.10). Precisely we may write

1 (IIAp - u 011 - O2 )
(3.9) 2 (Aq, Ap.- uo)

+ (I IAqI2(IAP _ uo01 2  _ a -2)2
+ O t, 1 p-uoql -).

Using (3.6), (3.3), and Taylor's theorem we have (in smooth regions)
(3.10)

(Ap - uo)ij = (Au)ij - (Uo)ij + At A [+ ( '- ) + I' v/U u l
L VI I +V Yij

+ O(ALx)].

So if (3.10) is satisfied at time level n we have

JJAp - uo1 2 _ - a2 = 2At(Au' - uo, A[-z + - uy ])

(3.11) Y + u+

+ o((At) 2 + (AX)2)

Also

(3.12) (Aq)ii = (AA* . (Au - uo))ij.
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So

(Aq, Ap - uo) = (A*(Au" - uo),A*(Au' - uo))(3.13) +O~~)+ o(At).

Finally, from (2.10), (3.11), (3.13) and (3.9) we have

(3.14) Yt = A(nAt) + O(At + Ax)

which is the desired result.

IV. Multiplicative Noise.

This time we shall solve the following problem. Let

(4.1) uo(x,y) = iýAu.

where A is as in (2.1) here ii has mean one and standard deviation a2

We shall use the same class of convolution kernels as in the additive noise case.
We shall again minimize the variation of the image, as in (2.6c), this time subject
to constraints of the following type:

(4.2a)

S dxdy () dxdy (involving the mean)

and

(4.2b)

1 "(u ) dxdy -f ( -5 1 dxdy (involving the standard deviation)

The resulting gradient-projection algorithm involves two Lagrange multipliers.

Z +Y
(4.3) t U 2

+ AA (Au- uO) +A* (1).
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We follow the gradient-projection technique, solving for both parameters with

very successful results, as we shall see in section VI below.

5. Theoretical just'.ication.

This work is joint with Professor Pierre-Louis Lions We begin with analysis of

the mininazation problem (2.6a) subject to linear constraints.

We first need to formulate the problem in BV(Q) - we assume that Q is smooth

enough so that extensions to BV(R2 ) are possible, a fact that is true as long as Q

is smooth or if Q is a rectangle.... We denote by fil IDul the seminorm on BV

that coincides with f 2 u• + udxdy when u is smooth (or W"'...). Then, we

consider the following minimization problem:

(5.1) Inf { IDuI/u e BV(Q), jAu - uo02 = a, f (u - uo) =O}.

Proposition 5.1: The minimization problem (5.1) admits at least one solution if
A is. compact from L 2 (f2) into L2 (92).

Proof. We first assume that because of (2.8) Al = 1 and thus by standard functional
analysis arguments, fi IDul + IIAuIIL2hý) is a norm on BV(Q) which is equivalent

to the usual norm.

Then, this implies that minimizing sequences of (5.1) are bounded in BV(Q)

and thus in L 2 (Sl) by Sobolev imbedding. Therefore, if {u,, denotes an arbitrary

minimizing sequence of (5.1), we may asume without loss of generality that {uJ

converges weakly to some u in BV(Q) (weak-* convergence) and in L ' (Q). There-

fore, we recover at the limit (2.5b) and (2 5c) follows from the assumption that A

is compact so that Au,, converges to Au in L2 (Q?). We conclude then easily that u

is a minimum since we have by weak convergence

jIDul < lim jIDu'nI.

Remark 5.1: Notice that the assumption made in Proposition (5.1) on A excludes

the obviously interesting case when A is the identity operator, in which case (5.1)

turns out to be a highly non-trivial minimization problem related to isoperimetric

inequalities and geometrical problems. Any discussion of this would be too technical

for the main purpose of this report.
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We next study equations of the form (2.9a) namely

28

(5.2a) ut = f -{a.(Vu)} - AA*(Au - uo) for x E Q, t > 0
'=1

where A = A(t) is a Lagrange multiplier associated to the constraint (2.5c), A

is a bounded linear operator from L 2 (p) into L 2((Q) and A* denotes its adjoint.

Finally, ah(p) = -TLa(p) (i = 1,2) where a is smooth (say, C 2 (R12) with bounded
derivatives up to o:der 2), a is spherically symmetric (rotational invariance). Of
course, the model introduced in this work corresponds to a(p) = 1pl. However,

this choice induces such singularities that a mathematical analysis does not seem
to be possible. This is why we shall study some model cases involving slightly
regularized variants of this choice. III fact, numerically, scaling (2.9a) also induces

some regularizations of a quite similar to the ones we make below - and, thus, our
analysis covers situations that are quite realistic from the numerical viewpoint.

WXc shall therefore assume that there exists v e (0, 1) such that

(5.3) (v6 <,) a a(p) ( 6 ) for all p E R2

in the sense of symmetric matrices.

If we go back to our real choice of a, namely a(p) = jpj, we see that (5.3) does
not hold for p near zero and for IpI --+ oc. The singularity at p = 0 induces

mathematical and numerical difficulties. In practice we truncate -• near p = 0.
The assumption for p large can be relaxed by proving some upper bounds with a
rather technical argument (contained in the proof below). We prefer to skip this

technical argument in order to avoid confusing the main issue which concern the

imposition of contraints.

Finally, we observe that enforcing (2.5c) while scaling (5.2a) amounts to requiring

that

(5.2b) A = A(u] A*(Au - uo)dx) IIA*(Au - uo)i,-2 .), JjAu - uoIIL,(R) = O.

where A[u] E_= -,(aj(Vu)).

We also prescribe an initial cond;tion

(5.2c) ult=o = u0 in Q

11



and boundary condition

(5.2d) 9 _=0o Q
On 0 on I9Q.

Of course, we need to assume that u° satisfies

(5.4) IIAu0 - U0IL2(0) = 0.

Remark 5.2: The existence of some uo satisfying (5.4) is not obvious and de-
pends very much on the properties of A. This existence is certainly ensured by the
following assumption

(3.5) R(A)(range of A) is dense in L 2(f2).

Indeed, this condition implies that there exist u1, U2 E L2 (Q) (or as smooth as we
wish by density and continuity of A) satisfying

(5.6) IIAu' - UOIL2(fl) < a, JJAu 2  u01IL2(f)) > a.

And it is enough to take u0 = Ou1 + (1 - O)u2 for some convenient 0 E (0, 1). 0

In order to illustrate clearly the mathematical difficulties and results associated
with the system (5.2a-d) we begin with the model case where a(p) = I Ipl2 so that
ai(Vu) = Vu and A[u] reduces to the classical linear operator A[u] = Au (the
Laplace operator). In that case, we can prove the

Theorem 5.1: Let A satisfy (5.5), let u° E H'(Q) satisfy (5.4), let uo E L 2( () and
let a(p) = .1 J on R2 . Then, there ezists a unique solution u of (5.2a-d) satisfying:
u C([O, oo);H ' (Ql)) nOL 2(0,T;H 2 (Sl)), ut E L 2(0,T;L 2(fl)), A E L'(O,T) for all
T E (0,oo).

Remark 5.3: If A is a convolution operator i.e. Au = k * u then (5.5) holds if and
only if the Fourier transform k of k satisfies

(5.7) meas {• E R2 /k(ý) =0} = 0.

Remark 5.4: If A and A* map boundedly LP(Q2) into LP(Q) for 2 < p < 0c then
the proof below alsc show that u E C([0, no); W",P(Q)) n LP(0, T; W 2 .P(pl)), ut E
LP(O, T; LP(Q?)), A E LP(0, T) for all T E (0, 0o) if u° E Wi'P(•l), uo E LP(Q).

12



Remark 5.5: The proof also applies to different type of constraints that can even
be nonquadratic constraints. Let us only mention a few possibilities for which the
same result as the one above holds. In the case of multiplicative noise as in the
previous section, we can replace (5.2b) by

(5.8) f dx= 2 >0

assuming for instance that 7 E Lcc(Q). Also, we might want to enforce local
constraints on a finite partition (or subpartition) of Q2, that in practice can be
obtained by a segmentation algorithm. In that case, we consider w1,... ,wm(m > 1)
measurable sets in Q such that meas[wi n wiJ = 0 for all 1 < i : j < m and we
replace (5.2b)

(5.9) JAu - uol 2dx = a? > 0.

Then, Theorem (5.1) still holds for the corresponding condition equation that in-
volves now m different Lagrange multipliers \j f•, A[ul A*(Au - uo)dx. El

Proof of Theorem 5.1:

Step 1: General a priori estimates.

Here, we list some general consquences of the fact that the evolution equation we
are considering is a gradient flow (of a constrained functional). Indeed, multiplying
(5.2a) by ut and using (5.2b), we deduce

(5.10) j u 122dx + -d a(Vu)dx = 0 for t > 0.

Hence, ut is bounded in L2 (0, oo;;L 2(Q)) and Vu is bounded in L' (0, 00;
In particular, u = ft utds + u0 is bounded in LO(0, T; L 2 (Q)) for all T E (0, oo)
and thus u is bounded in C([0, T]; H1 (Q)) for all T E (0, o).

Step 2: A lower bound

We want to show that IIA*(Au - uo)jjL2(Q) is bounded from below uniformly on
[0, T] (for all T e (0, oo)) and that the lower bound depends only on T and on the
H' norm of u'. Indeed, if this were not the case, in view of the estimates shown in
Step 1 and in view of (5.2b), this would yield the existence of a sequence {uj}jŽl
such that uj is bounded in H 1 (Q) and

(5.11) 11Auj - U01IL2(g) = 0, I1A*(Auj - uO)llL2(p) -+ 0.

13



Without loss of generality, we may assume, extracting a subsequence if necessary,
that uj converges weakly in H3 (Q) to some u and thus by the Rellich-Kondrakov
theorem, uj converges strongly in L 2 (R) to some u. Since A and A* are bounded
from L2 (Rl) into L 2( Q), (5.11) then implies

(5.12) IIAu - UoIL2(n) = a, A*(Au - uo) = 0.

In other words, Au - uo belongs to the kernel of A*. But (5.5) implies that this
kernel is trivial (reduces to {0}) therefore Au = u0 and we reach a contradiction
with the first statement in (5.12).

Step 3: L (H2) estimates.

We multiply (5.2a) by -Au and we find
(5.13)
d 1 1 .V1 2 ld+f 2(_Au)2dx = ((Au)[A,(Au-uo)ldxl2(A*(Au-uolL2())_.

We then fix T E (0, oo), use elliptic regularity and Steps 1 and 2 to deduce

(.14) IIUI(OTH2(n)) 2 Co(1 + j I (-Au){A*(Au - uo)}dx12 dt)

where Co depends only on T and on H1 bounds of u°.

Next, we observe that since {u(t)/t E [0, T]} is bounded in H'Y(t), by Rellich-
Kondrakov theorem, {u(t)/t e [0, T]} is relatively compact in L 2 ( Q) and thus since
A and A* are bounded from L2( l) into L 2( 2), {A*(Au(t) - uo)/t E [0,T]l is
relatively compact in L 2( (). This implies that we can decompose A*(Au(t) - uo)
as follows for all e > 0

(5.15a) A*(Au(t) - uo) = f(t) + g(t) Vt E [0, TI

(5.15b) IIf(t)1lL2(n) _< , JIg(t)llH1(a) - C(-), Vt E [0, TI

for some C(e) that depends only on e, T and H1 bounds of u'.

Therefore, we have for all t E [0, TI

I j(-Au){A'(Au - uo)}dxl <5 CjUjjH2(p) + I f(-Au)g(t)dxl

-< CIlulH2(n) + I Vu Vg(t)dxl.
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Since u satisfies (5.2d), and thus finally

(-Au){A*(Au - uo)}dxI < eIUIIH2(n) + C(0)I[UjIH1(n).

Hence, if we input this bound in (5.14) and use the bound shown in Step 1, we
deduce

JIUlIL2(O,T;H2(0)) < C'(-) + 2Coe11U1L2(O,T;H2(n))

and we conclude by choosing e = 0

Step 4: Uniqueness.

We consider two solutions u, v of (5.2a-d) and denote by A,1f the corresponding
Lagrange multipliers. Obviously, we have, for u - v = w

wt - Aw = A A*Aw = (A - tt)A*(Av - uo).

Multiplying this equation by w and -Aw, integrating by parts and summing up,
we find easily for all To(O, oo)
(5.16)

IIw(t)II1,Hý) + IIwIIL2(O,t;H2(fl)) < C1 If A(s)ds j (A*Aw)(-Aw + w)dxl+

+ JA - tildsl [A' (Au - uo)}(--Aw + w)dxi} for all t E [O, T)

for some positive constant C1 depending only on T.

Using the same argument as in Step 3, we deduce the following bounds for all
•>0

(5.17a) I o(A*Aw)(-Aw + w)dxl < CelWIH2(n.)IIWIlH1(,1) + C(E)IIwlI•,•f)

(5.17b) I j {A*(Av - uo))(-Aw + w)dxl <J JwllJH2(n) + C()JWJJHl(D)

where C(e) denotes various positive constants depending only on - and T. Inserting
these bounds in (5.16) we find

tI

IIw(t)Il(n + IIW12L2(0,t;H2(nl)) < C1 ] IAI{ellwjIH2(U)1wIIH,( + C(e)I H (0),1(}ds+

+ C] IJA - 111{6I1wIIH2(Q) + C(C)IlwIIH1(n)1ds.
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Using the Cauchy-Schwarz inequality, we deduce easily
(5.18)

l~~tIIIln)+ IW12 (Oj;H2(fl)) • IwIL2(o,t;H2(Q)) +± 1 C(o aHsIi(s)trl)ds±

+C1 jo JA - /II{~iIWIIH2(jl) + CQE)IjwIIHl(O)}ds

where a > 0, a E L 1(0, T) (for all T E (0,o00)).-

(5.19) Wt-IwL~2(f) + HWý~(fl) < C(1 + AIi)Ilw L~2(0)

Next, we estimate A - pi. In view of Step 2, we have

-A -Iy• C2[jjW1IL2(sj)j in(-ZAu){ A*Au - uo)ldxI + I in(-Au)A"*Awdxl+

+ If j(-Aw){A*Av - uo)}dxl

for some C2 >0 which depends only on T. But this yields immediately

JA - yj 5 bllWllL2(0) + C3I1WIIH2(n), for some b E L 2 (0, T).

Going back to (5.18), we obtain for all t e [0, T1.

Iiwt)I~I~n +jILj2(0,t;H2(fn)) < L( 1 C3fWI2(O,t;H2(Sj))+

C(E)j a(S)ls)IIWi(fl)12 ds + C, C3 C(e) jIwIIf)1w12f)s
+ Cle jo b(s)IjwIIL2cn)IjWIIH2(0)ds + CIC(e) jo b(s)I1WIIL2(nj)I1WIIl(fn)ds.

Using the Gauchy-Schwarz inequality, this yields:

IfHtIIl(f) + IIL~.2(o,t;H2(fl)) •ec~(2 + C13IIIL2(Ot;H2(fl)+

where c >Ž0, c c L'(0, T).



We then choose e = (2 + C1 C3 )-1 and we conclude using Gronwall's inequality.

Conclusion: We conclude the proof of Theorem 5.1 here since only the existence
part has not been completed. But this part is a straightforward consequence of
solving approximate problems, proving the same a priori bounds uniformly for the
approximate solution and passing to the limit using these bounds. We do not want
to give all the details of such a tedious argument. Let us only mention a few possible
approximations like a penalty method (penalizing the constraint), implicit time
discretization (solving each stationary problem, for each iteration, by a minimization
problem similar to the ones solved in Proposition 5.1), or splitting methods similar
to the numerical method presented in the following section (where we solve first the
equation without constraints on a time interval of length At and we then project
back to the obtained solution on the constraints manifold by a simple affine rule).
For all these approximation methods, one can adapt the a priori estimates shown
above. But we certainly do not want to do so here in order to avoid confusing the

main issues in this paper. El

We now turn to a nonlinear equation (5.2a) where a(p) satisfies the conditions

mentioned in the beginning of this section and (5.3) in particular.

Theorem 5.2. Let a(p) satisfy (5.3), let u0 E H'(Q1) satisfy (5.4), let uo E L2(Q)
and let A satisfy (5.5). Then,

i) there exists a solution u of(5.2a-d) satisfying: u E C([O, co); H'(Q2))AL 2 (O, T; H 2( Q)),

ut E L 2 (O,T;L 2 (Q)), A E L 2(O,T) for all T E (0,o0).

ii) If uo E H'(Q) and A,A* are bounded from H1 (Q) into H1 (i), then the

solution is unique and A E L'(O, T) for all T E (0, co).

Remark 5.6. The analogues of Remarks 5.4 and (5.5) hold here. In particular,
using this extra regularity, one can show the uniqueness of solutions by an argument
quite similar to the one given in the proof of Theorem 3.1 and which does not use
a regularity assumption on u0 like in part ii) of Theorem 3.2 above. However, this
argument relies upon a regularity result which is too technical to be detailed here.

Remark 5.7. If 11 = R2 and A is a convolution operator then A, A* are bounded
operators from H1 (Q) into Hi(Q) since they are bounded from L 2 (Q) into L2 (Q)
and they commute with differentiation.

Proof of Theorem 5.2. We only explain the modifications that have to be made
in the proof of Theorem 5.1. In particular, Steps 1 and 2 are identical. However,
Step 3 has to be modified substantially. The final result being the same, these facts

and the uniqueness argument shown below allow us to complete the proof of part
i).

The L2(H 2) bound follows from multiplying (5.2a) by -Au and making some
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observations. First of all, A[u] = _ ' where a 0", = , (Vu) and
thus •A[ull < CID 2uI. Next, we recall an adaptation of a famous inequality due to
H.O. Cordes [16] (see also A.I. Koselev [17]) shown in P.L. Lions [18] in the case
of Neumann boundary conditions. There exist a > 0, C > 0 such that for all
u E H 2 (fj) satisfying (3.1d)

(5.19) j Afu] Audx > ,allU12p) 2 CIIUI12in H 0)- IL2(n).

This inequality allows us to adapt easily the rest of the proof made in Step 3.

We conclude with the proof of the uniqueness statement (part ii) above. Let u, v
be two solutions of (5.2a-d) and let A, p be the corresponding Lagrange multipliers.
We denote by w = u - v and multiply by w the equation satisfied by w. We then
find in view of (5.3)

(5.20) 1 j w 2 dx + vj IVW12 dx < C{IAdj w2 dx + JA - pI(j w2dx)'2

Next, we observe that A can be written as

~O.~a)_A= 2 a1-(5.2) A -1Zai(Vu)y{A*(Au -uo)ldx}IIA*(Au uo)IIL)iaxl

and a similar expression holds for p with u replaced by v.

From these expressions we deduce using the assumptions made about a, A, A*
and uo

(5.22) 1A - PI1 < CIjWIlHlcn)

(recall that u , v are bounded in L'(O, T, H1 (0)) for all T E (0, oo)).

Inserting this bound in (5.20) we finally deduce

12 d IW11 2  + VlIIWI121(0) < C{IAIIlwll• 2 ) + IlwIIHImfllwllL2().

Hence, we have for all t E [0, T], by the Cauchy-Schwarz inequality

(5.23) dtIIWI122(n) + VIIWI2I(,,) < C(1 + I)llw 2
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and the uniqueness follows from Gronwall's inequality.

Let us finally observe that the fadt that A E LOO(O, T) (for all T E (0, 0o))
is straightforward in view of (5.21) since u is bounded in H1 (Q) and IIA*(Au -
uo)1IL2(nj is bounded from below (Step 2). LI

6. Results.

Page P1 shows an extremely noisy image (Picture 2) with various standard meth-
ods which we compare with our TV based method. Page P2 shows the result of
edge detection applied to the images on P1. Notice picture P12 - the TV denoised
image admits excellent edge detection.

Pages P3 and P4 show restoration when the noise is multiplicative as described in
section 4. The only information we use concerns the mean and standard deviation
of the noise. No other method can handle these situations.

Page P5 shows the "tank" restoration and pages P6-7 show the "chemical plant"
restoration.

On page P8, we begin our deblurring/denoising demonstration. We use various
types of blur with various amounts of additive white noise. Our restorations are
shown on the right. On page P9 we show the results of other methods applied to
the motion blurred image, on page P10 we do it for the Gaussian blur, and on page
P11 we do it for the out of focus blur.

We believe that our restoration technique, supported by this contract, represents
a break through in the area.
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Pict. 1 Pict. 2

Original image Noisy image with
SNR 1:4

Pict. 3 Pict. 4
Image denoised by Wiener Image denoised by Wiener

filter with true power filter with estimated power
spectrum spectrum

Pict. 5 Pict. 6

Image denoised by Image denoised by
circular median Cognitech's T.V based

filter methods
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Pict. 7 Pict. 8

Edge detection of original Edge detection of
clean image noisy image

Pict. 9 Pict. 10
Edge detection of image denoised Edge detection of image denoised

by Wiener filter with true power by Wiener filter with estimated
spectrum power spectrum

Pict. 11 Pict. 12

Edge detection of image denoised Edge detection of image denoised
by circular median filter by Cognitech's T.V based

methods
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a) Original

b) Multiplicative noise c) Resoration of "b"
with a = 0.3

AF,

d) Multiplicative noise e) Restoration of "d"
with a = 0.4

P3



0 410

a) Original

b) Multiplicative noise c) Resoration of "b"
with cy 0.1

d) Multiplicative noise e) Restoration of "d"
with a = 0.25

P4



a) Original

b) Multiplicative noise c) Restoration of "b"
with a= 0.2

d) Multiplicative noise e) Restoration of "d"
with•a= 0.25
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a) Original

•.•..... . .. .......... ..

b) Multiplicative noise with c) Restoration of "b"
a= 0.2
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a) Original

,. .: ...• .. .. ...

b) Multiplicative noise with c) Restoration of "b"
ca = 0.25
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a) Original

b) Motion blur by 11 pixels c) Restoration of "b"
plus noise with a = 5.

(SNR = 4.2)

d) Gaussian blur with gaussian e) Restoration of "d"
variance 7.3 plus noise with

S7. (SNR 2.9)

f) Defocus blur with variance g) Restoration of "fu
3.5 plus noise with a = 5.

.(SNR = 4.1) P8



Motion deblurring plus denoising

a) Constrained least b) Geometrical mean
- square filter filter

c) Psajdo - inverse d) Wiener filter
"ilter

P9



Gaussian deblurring plus denoising

!U

a) Constraned least - b) Geometrical mean
square filter filter

c) Pseudo - inverse d) Wiener filter
filter

PlO



Defocus deblurring plus denoising

a) Constrained least - b) Geometrical mean
square filter filter

c) Pseudo -inverse d) Wiener filter
filter

P11


