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1 Introduction

The second law of thermodynamics has been a subject of debate ever since it
was formulat',d. It says that the entropy of a closed macroscopic system can
only increase with time, and thus macroscopic phenomena are irreversible. In
other words a macroscopic system left on its own can only evolve in one direc-
tion - towards equilibrium. This is in contrast to time-reversible dynamics

S and raises the question of how reversible dynamics can lead to macroscopi-
~ £| cally irreversible phenomena. An explanation can be given using probabilistic

argumefits in statistical mechanics, but the arguments are difficult to trans-
late into a rigorous proof without postulating a new axiom about nature,
the stosszahlansatz or assumption of molecular chaos [1, 2], which is at odds
with'dynamic reversibility. Thus, the origin of the second law of thermody-

* namnics remains elusive and. provides, a source of interesting discussions on
the foundations of physics.

A popular way of challenging the second law is the idea of "perpetual
motion of the second kind", to extract useful work in a closed cycle from
the perpetual thermal motion of gas molecules. The second law prohibits
this type of energy conversion because if it were possible to convert thermal
energy into useful work, then the entropy of a closed isolated system could
decrease, and this would violate the second law. On the other hand, it is not
clear from first principles why a molecular size engine can not take advantage
of spontaneous variations in density between microdomains of gas, to bring
the system from a state of maximum disorder (equilibrium) into an ordered
state, and eventually to convert thermal energy into useful work.

The history of microengines that convert thermal energy into useful work
started when J.C. Maxwell introduced a microscopic engine at the end of
his book Theory of Heat [4], which he named a "demon". Ever since the
name demon has become a standard. Maxwell's demon works by opening
and closing a tiny door between two gas chambers, based on the information
that the demon has about individual molecules. The method used to obtain
information is not specified. The demon allows only fast molecules to pass
from left to right, and only slow ones to go from right to left. This results in
a temperature difference between the two gas chambers, which can be used
to extract useful work. However it has been argued that Maxwell's demon
can not violate the second law [6, 7, 8, 9] because the information needed
to operate the demon's door does not come without a price. As Bennett
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explains in [6] following an idea that goes back to [7] and [10], the demon
must dissipate energy into a heat bath in order to erase the information that
it obtains by examining molecules. The heat bath may be the molecules
that the demon examines, or it may be another system that is colder than
the demon and the gas molecules. The energy dissipated in the heat bath is
always greater than or equal to the energy that can be extracted after the
demon has finished its operations. Hence the second law of thermodynamics
is not violated [11, 12].

An alternative approach to designing microengines that convert thermal
energy into mechanical work is to focus on purely mechanical devices, and
to avoid the issues of measurement and information that have haunted the
original Maxwell's demon. Purely mechanical demons are called automated
Maxwell's demons, and they are described simply using a physical framework
like newtonian mechanics. In particular, there is no measurement mechanism
outside the mechanical model. An example of an automated Maxwell's de-
mon is the trapdoor mechanism discussed by Smoluchowski in [13, 14], and
also the ratchet and pawl mechanism discussed extensively in the Feynman
Lectures on Physics [151.

We have performed numerical simulations to test whether the second law
applies to the operation of a trapdoor mechanism inspired by Smoluchowski's
ideas. Our experiments confirm Smoluchowski's insight that though the trap-
door can act as a rectifier when large density differences are imposed by ex-
ternal means, it can not extract useful work from the thermal motion of the
molecules. Our paper is organized as follows. First we describe our trap-
door system and the simulation program. Then we present results that show
how the trapdoor succeeds at rectifying large density differences that are im-
posed by external means. Finally we discuss whether our trapdoor system
can violate the second law of thermodynamics when left to operate on its
own.

2 Description of the Model

The system we have simulated is shown in figure 1. It consists of two gas Ac. .:,1A -7,- :.

chambers of equal area, connected via an opening that is covered by a trap- NTIS i M-

door. The simulation is two-dimensional and the gas molecules are billiard WC)4 VA.
balls moving on the plane and colliding with each other elastically. All the '~tZCZ•.#,,s
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collisions conserve energy and momentum, except for particle-wall collisions
that reflect a particle's momentum like light rays reflect off mirrors. The
collision forces are derived from infinite hard core potentials, and angular
momentum (spin of the billiard balls) is not included in the model. All
collision forces act radially through the center of the colliding balls.

The trapdoor moves between two door stops, one of which is located at the
middle wall, and the other is located inside the left chamber. The location
of the door stops allows the trapdoor to open to the left but not to the right.
The trapdoor is a line segment of zero width, impenetrable by the molecules,
which moves horizontally at constant speed, and reflects its direction when it
comes in contact with the door stops. During its motion, the trapdoor Alides
along ideal rails and thus remains vertical at all times. Collisions between the
trapdoor and the molecules conserve energy and linear momentum, except
for collisions at the two.edges of the trapdoor which do not conserve the
y-component of momentum as we will see below.

To evolve the system of molecules and trapdoor we use the following
algorithm: Given the system at time to, we find all the collisions that are
about to occur. We select the shortest collision time At, and move all the
particles and the door freely during the interval At. At time to + At we
perform the collision that occurs a's this time, and then repeat the cycle
looking for the next shortest collision time. The algorithm works because
collisions in our system are instantaneous. The types of collisions that can
occur are of four types: particle against particle, particle against wall, particle
against door, and door against door stop.

The above algorithm can be implemented efficiently on a computer if we
are careful to avoid unnecessary computations. First we do not need to ex-
amine all pairs of particles at every time step. If we see that two particles
are far from each other, then we do not need to examine them again until
a number of time steps have elapsed. Only then, these two particles have
another chance of being near each other and being able to collide. Secondly
if we compute the collision time for a pair of particles that are near each
other, and another pair of particles collides before them, we need not discard
the first collision time. We simply decrement the first collision time by the
time interval we evolve. These tricks can save a lot of computing time, but
one should be careful in implementing them. For example the process of

. ..... decrementing collision times should not be repeated more than a few times
because the roundoff error in subtracting small time intervals becomes signif-
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icant quickly. Also, any collision involving some particle P must invalidate
all pre-computed collision times involving particle P.

Our simulation algorithm utilizes two kinds of mathematical formulas,
collision equations giving the new velocities in terms of the old velocities,
and timing equations giving the time interval until an upcoming collision.
The timing equations are the simplest of the two, and they are derived from
geometrical constraints and the fact that the particles and the door move at
constant velocity between collisions. For example to compute the time until
a collision between two particles, we draw straight lines from the current po-
sition of each particle to the point where the two particle disks are tangential
to each other. By relating the lengths of the line segments to the velocities of
the particles, we get a quadratic equation for the time elapsed. The solutions
of the quadratic equation are examined to determine if the collision occurs
physically, and to select the- smallest solution if two solutions are possible.
The timing equations for all the other types of collisions in our system can
be derived in a similar manner.

The collision equations are a little more complicated than the timing
equations. As usual the collision equations are derived from conservation
of kinetic energy, conservation of linear momentum, and the condition that
forces act radially. The last condition means that the force vector must pass
through the center of the particle disk that is colliding, and hence momentum
is exchanged along this direction. For most problems the radial action con-
dition is satisfied automatically in setting up the geometry of the problem.
However there is one type of collision in our system that requires explicit
use of the radial action condition. This occurs when a particle disk collides
with the edges of the moving trapdoor. Since it is not discussed in most
textbooks, we review briefly the equations.

The radial action condition requires that the change in y-momentum di-
vided by the change in x-momentum equals the tangent of the angle 0 formed
by the center of the colliding disk, the point of contact, and the x-axis. The
point of contact is the edge of the moving trapdoor. If v., v. are the old
velocities and v', v' are the new velocities of the colliding disk, we get the
equation

V.) Cos 0 V"(v- )(1)

To find the velocities following a collision in terms of the velocities before the
collision, we use equation 1 together with kinetic energy and x-momentum

0
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conservation. The y-momentum is not conserved because the trapdoor moves
on ideal rails, and its y-velocity is always zero. After some algebra we get
the following equations for the new velocities,

-2csv + 2c2 V + (s2 -6C2 )v,
= (-C2 + 2) (2)

, -2csv, + 2csV + (7yc 2 - s2)vv
if= ('yc 2 + q2) (3)

v = v + 2 .- V) (4)

where

C = COS 0
, = sin0
Y = (1 + m/M)
6 = (I - m/M)

and M, V are the mass and x-velocity of the trapdoor; m, v., v1 are the mass
and velocities of the particle; and 0 is the angle formed by the center of the
particle, the colliding edge of the trapdoor, and the x-axis. The collision
equations for all other types of collisions in our system can be found in
standard textbooks [16].

The numbers we used in our simulations were chosen to correspond to
a standard gas like nitrogen. We experimented with different values for the
size of the gas chambers, molecular speeds, and other quantities, and the
qualitative behavior of the gas was the same for all choices. For completeness
we summarize some of the numbers. We looked at systems containing a
number of molecules ranging from 20 to 500; these numbers being dictated
by the computational power of our computers. We chose the radius of the
molecules to be 3 x 10-scm, mass 4.7 x 10-3gm, and velocities of the order
104crn/sec. We chose the size of the gas chambers to give a mean free path
between collisions of the order of the size of the chambers. Specifically in
the case of 500 molecules, the width of the each chamber was 13.5 x 10- 6 cm
and the height was 18 x 10-6 cm. The mean free path at equilibrium in each
chamber is estimated by the ratio,

Area
n2R
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which gives A = (13.5 x 18 x 10-12)/(250 x 2 x 3 x 10") - 16.2 x 10-6M.
We experimented with different masses for the trapdoor, and in the results
reported below the mass of the trapdoor is of the order of three to four times
the mass of one particle.

3 The Trapdoor as a Rectifier

We now discuss the behavior of the trapdoor when large density differences
between the two chambers are imposed by external means. We have found
that under these circumstances the trapdoor acts as a diode, and prolongs
the duration of states of higher density in the left chamber. There are a
number of ways we can observe the rectifying behavior, and we look at three
different methods.

The first method is to measure the equilibration time or transient response
to an initial density difference, for example when all molecules start in the
left chamber. To be precise we place all molecules along the outermost wall
of one chamber with the trapdoor set motionless in the closed position, and
we measure the density in each chamber until the populations in the two
chambers become approximately equal. Figure 2 shows the absolute value of
the difference in the number of molecules between the two chambers plotted
against time. The difference in the number of molecules is normalized by
the total number of molecules, which is 500 in this experiment. Two curves
are shown, one for the case when all molecules start in the left chamber, and
one for the case when all molecules start in the right chamber. We see that
in the latter case the populations equalize immediately. In other words the
density difference vanishes much more quickly when the molecules start in
the right chamber than when the molecules start in the left chamber.

The second way of observing the rectifying behavior of the trapdoor is
shown in figure 3. The data comes from the same kind of equilibration
experiment above, where all the particles are positioned initially along the
outermost wall of one chamber. The idea is to measure the time interval it
takes for 25 molecules to pass from one chamber to the other as a function of
the density difference. If T is this time interval, then the ratio 25/T gives the
current of particles that pass through the middle wall opening in response
to the density difference at that time. Figure 3 plots the particle current
for a system of 500 particles against the density difference between the two
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chambers. We see that the curve in figure 3 resembles very much the voltage-
current characteristic of an electrical diode, indicating that the trapdoor acts
as a rectifier when large density differences are imposed by external means.

Specifically figure 3 shows the values 1/(T2 - TI) against the average
density difference (D2 + D1)/2 during the time interval (T2 - T1). DI is the
density difference at the starting time T1, and D2 is the density difference
at the finishing time T2 when 25 molecules have moved from the source
chamber (high density) to the sink chamber (low density). The y-axis is in
units of 25 x l0'particles/sec. The x-axis is in normalized number of particles
difference, so that an interval of size 0.1 corresponds to 25 particles moving
from one chamber to the other (0.1 x 500 x 1 = 25). We have not included in
our plot the intervals (-1, -0.9) and (0.9,1.0) because the times immediately
after releasing the system from our initial conditions do not correspond to
smooth flow from one-chamber to the other.

The third and last method of observing the rectifying behavior of the
trapdoor is to measure the time average flow of particles through the mid-
dle wall opening when a large density difference is maintained artificially.
In contrast to the equilibration studies above, this study characterizes the
steady state behavior of the trapdoor. The experiments are set up as follows.
We reverse bias the system by constantly removing all particles that hit the
rightmost wall of the right chamber and re-inserting them in the left side of
the left chamber. This results in a density difference that tends to close the
trapdoor. Conversely we forward bias the system by re-inserting molecules
from the leftmost wall into the right chamber.

N = 500 N = 100
Reverse Bias -4.26 x 101 -1.05 x 101
Forward Bias 9.31 x 1010 1.81 x 1010

ratio 1:22 1 :17

Table 1: The flow of molecules through the middle wall opening in forward
and reverse bias conditions, for systems of 100 and 500 molecules. The
molecules crossing from left to right are counted negative, and those crossing
from right to left are counted positive.

Table I lists the flow of molecules (number of particles per second) passing



I

9

through the middle wall opening under reverse and forward bias conditions.
Molecules passing left to right are counted negative and molecules passing
right to left are counted positive. We list the results for two different systems,
a system of 500 particles and a system of 100 particles. The time interval
over which we averaged was about 10 5 sec for the 100 particle system and
10-sec for the 500 particle system, which are both large enough to guarantee
that the average values will not change over longer time intervals. We have
checked this by plotting the time averages against time, and seeing that the
curves approach a horizontal slope and a constant value. The values in table 1
show that the flow allowed by the trapdoor in the forward bias condition is
22 times as large as the flow allowed in the reverse bias condition for 500
particles, and 17 times as large in the case of 100 particles. Therefore the
trapdoor acts as a rectifier.

It is worth pointing out that the rectifying behavior of the trapdoor de-
pends greatly on the geometry of the system. For some geometries the rec-
tifying behavior may almost vanish. Experimentally we have found that our
trapdoor system becomes a better rectifier the longer the trapdoor is, and
the more molecules there are near the trapdoor. A possible explanation is the
following: If many collisions take place exclusively on one side of the trap-
door in the time interval that the door needs to move from one door stop
to the other, then the trapdoor will be kept exclusively near one door stop,
and the probability of moving significantly away from that door stop will be
very small. For example if many collisions take place exclusively on the left
side of the trapdoor, then the trapdoor will be kept near the middle wall
bouncing between the door stop there and the large number of particles on
the left. We have also found that the trapdoor performance can be improved
by placing one door stop slightly inside the right chamber. This centers the
jittering of the door exactly on the middle wall and decreases the chance of
a molecule leaking from the left chamber into the right chamber. For similar
reasons we expect that making the trapdoor have finite width, that is using
a two dimensional trapdoor in the shape of a rectangle will result in even
better rectifying behavior for large density differences.
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4 Verification of the Second Law

The question we discuss now is whether our trapdoor mechanism can violate
the second law of thermodynamics. The trapdoor can open to the left but
not to the right, and this intends to hinder the passage of molecules from
left to right, while providing an easy access from right to left. The goal
of the trapdoor is to exploit the naturally occurring variations in density
between the two chambers, and to make states of higher density in the left
chamber last longer than the corresponding states of higher density in the
right chamber. Section 3 showed that the trapdoor indeed acts as a rectifier
when large density differences are imposed by external means. One might
expect that the rectifying behavior will also work when the trapdoor is left to
operate on its own inside an isolated system of molecules. In other words one
might expect that a trapdoor that opens to the left will create a higher density
in the left chamber than the right chamber on the average. Our simulations
however have shown the opposite. When the trapdoor and molecules are
left to evolve on their own, the time average number of molecules in the left
chamber is actually smaller than the time average number of molecules in
the right chamber. Further it turns out the excess of particles in the right
chamber is not a true density difference between the two chambers. We have
checked this by opening an additional hole to the middle wall that separates
the two chambers, in addition to the hole covered by the trapdoor. If the
trapdoor acted as a pump of molecules from one chamber to the other, then
a flow from one chamber to the other should be observed on the average. In
our simulations we did not observe any flow.

The reason for having a lower number of particles in the left chamber on
the average is that the presence of the trapdoor in the left chamber takes up
volume. From the point of view of the molecules, the available area in the
left chamber is slightly smaller than the available area in the right chamber.
To measure the effect of the excluded area by the trapdoor, we performed an
experiment of 20 particles where each chamber measured 13.5 x 10-icm in
length and 18 x 10-i-m in height. The particle radius was R = 6 x 10-scm
giving a mean free path in the order of 20 x 10-lcm. The length of the
trapdoor (vertical direction) was 10 x 10-'On. Given these numbers one can
calculate the average number of particles in the left chamber by assuming
uniform density (equilibrium) in a time average sense. If NL is the time
average number of particles in the left chamber and AL the available area in

0
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the left chamber, we have

NL NR 1-NL
AL AR AR

which gives NL = AL/(AL + AR). To estimate the available area in each
chamber we must consider the motion of the center of the particles. For the
right chamber we have [(13.5 x 18) - (13.5 + 13.5 + 18) x 0.06] x 10- 14 cm.
For the left chamber we must subtract from the above the area taken up
by the trapdoor [(10 x 0.06) + 7r(0.06) 2 ] x 10- 14cm 2 . Putting it all together
we find NL = 0.484. In our simulations we found the time average number
of particles in the left chamber to be 0.486 in good agreement with the
theoretical estimate. We note that there is an additional small correction
to the available area in each chamber because the presence of one particle
in some location excludes other particles from that location. However this
correction is small in our system, less than 10;r(0.06) 2 x 10- 14cmr2, and does
not change the first three decimal places of the theoretical estimate.

We see that the operation of our trapdoor is consistent with the second
law of thermodynamics in the sense that the particles are distributed uni-
formly in the available area on the average, and the entropy of the system
is maximized. In addition we have found in our simulations that the time
average of the temperature (kinetic energy averaged over particles and di-
vided by the number of degrees of freedom, two for particles and one for the
trapdoor) is identical in each chamber and equal to the temperature of the
trapdoor. Finally the time average velocity distributions in each chamber
are Gaussian distributions in v. and v, identical to each other and identical
between the two chambers, consistent with the Maxwell-Boltzmann distri-
bution and equipartition of energy. We conclude that our trapdoor system
can not rectify the naturally occurring differences in density between the two
chambers, and does not violate the second law.

An intuitive explanation of why our trapdoor fails to work when operating
in an isolated system of gas molecules, is that the trapdoor gets thermalized
- its temperature equals the temperature of the particles - and its thermal
motion prevents the rectifying behavior [13, 151. By contrast, a macroscopic
trapdoor works successfully as a rectifier because it can get rid of excess
energy through dissipation. Following this analogy further we expect that
our trapdoor would work successfully if a reservoir of lower temperature than
the particles in our system were used to cool the trapdoor. In that case our
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trapdoor would act as a heat engine, pumping molecules from one chamber
to the other. We have performed simulations to test this idea, and we report
our results in the next section.

5 The Trapdoor as a Heat Engine

To convert our trapdoor system into a heat engine, we remove energy from
the trapdoor in small increments, scaling the trapdoor's velocity by 0.5 ev-
ery At time interval where At is chosen sufficiently small. The lost energy
is reinserted in equal amounts to all the particles by scaling their velocities,
conserving the total energy of the system. The slowing down of the trapdoor
is performed only when the trapdoor is near the closed position, which makes
the trapdoor tend to remain dosed. We note that the mass of the trapdoor
in relation to the mass of each particle is crucial for efficient operation of
this heat engine. If the trapdoor mass is much smaller than the mass of one
particle, then the action of a single particle coming from the right chamber
can open the trapdoor and let the particle through, even though some energy
is lost by interacting with the trapdoor. On the other hand if the trapdoor
mass is much larger than the mass of one particle, then many particles from
the right chamber must collide with the trapdoor in a short amount of time,
in order to open the trapdoor. Clearly the latter situation occurs much less
frequently than the former, and makes the trapdoor less efficient. Our simu-
lations show that a very light trapdoor with dissipation can act effectively as
a one-way door, opening to particles from the right, and remaining closed to
particles from the left. A heavier trapdoor with dissipation works also, but
not as well.

In figure 4 we report results for a trapdoor system with dissipation, where
the mass of the trapdoor is 4.7 x 10- 24gM, or one tenth of the mass of one
particle. The time interval At which controls the rate of energy dissipation
is 2.5 x 10 13 sec, while the mean free path and mean collision time in the
left chamber are of the order of 20 x 10-"crn and 5 x 10-1 sec. The length
of the trapdoor is 6 x 10-rcm and each chamber measures 13.5 x 10-'cm
by 18 x 10-7cm. In this experiment we have also included a second hole in
the middle wall, of size 1 x 10-crM, in addition to the hole covered by the
trapdoor. The purpose of the additional hole is to verify that the trapdoor
can act as a pump of molecules from right to left, by exhibiting the return

. ..... ..
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flux of molecules. The graph in figure 4(a) shows how the normalized density
in the left chamber builds up as soon as the system is released starting from
uniform density. The time average of the density in the left chamber over
long periods of time (10- 5 sec) is around 0.76. The graph in figure 4(b) shows
the accumulated flux of particles through the trapdoor hole (negative slope)
and the accumulated flux of particles through the second hole that allows
free passage. The slope of the accumulated flux (measured over 10-5 sec) is
approximately 2 x 109particles/sec. The time average temperature of the
trapdoor is 11 degrees Kelvin, compared to 270 degrees Kelvin averaged over
all particles. These results show that the trapdoor can operate successfully as
a rectifier when a reservoir of lower temperature is available, but as discussed
previously it can not operate successfully when run at the same temperature
as the gas particles, in accordance with the second law of thermodynamics.
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Figure 1: The automated Maxwell's demon we simulated numerically was
inspired by Smoluchowski's trapdoor. The dashed lines show the region
where the trapdoor can move.

Figure 2: The absolute value of the relative density difference between the
two chambers is plotted against time, as the system approaches equilibrium.
Two curves are shown, one for the case when the particles start in the left
chamber, and one for the case when the particles start in the right chamber.

Figure 3: The flux of particles from one chamber to the other is plotted
against the density difference. NI is the number of particles in the left
chamber, N2 the right chamber, and N the total number of particles. The
y-axis is in units of 25 x 109particles/sec.
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Figure 4: The trapdoor as a heat engine includes a mechanism for cooling
the trapdoor. The graph on the top (a) shows how the normalized density in
the left chamber builds up after the system is released from uniform density.
The graph on the bottom (b) shows the accumulated flux of particles through
the trapdoor opening (negative slope) and the accumulated flux through an
additional opening that allows free passage (positive slope).
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