
AD-A259 707

CDRL No. 0002AC-4 illrlll lIil l1111l11l111111JIIJ DTIC
S ELECTE

JAN 1 2199311

Software Design Specification for the C

Manufacturing Optimization (MO) System

Linda J. Lapointe

Thomas J. Laliberty

Robert V.E. Bryant

Maylheom Company

1992

DARPA
Defense Advanced Research

Projects Agency

*1 293-00641•s 1 j7 0 2 '7 ~lll~i1!~~!1

CDRL No. 0002AC-4

Software Design Specification for the

Manufacturing Optimization (MO) System

Prepared by

Linda J. Lapointe
Thomas J. Laliberty
Robert V.E. Bryant

*aythemo Company
Missile Systems Laboratories
Tewksbury, MA 01876

December 1992

ARPA Order No. 8363/02

Contract MDA972-92-C-0020

Prepared for
Acoes~an Fo0

DARPA I-s - ,eat"
Defense Advanced Research ,
Projects Agency '

Contracts Management Office L_:' ,o
Arlington, VA 22203-1714 A'.' ,7 ,

I~ ~ ~~~~~~~~~~~~~~~n ' / or,=. m m m n ml l n • • mI I I

Contents

1. Scope ... 1

1.1 Identification ... 1

1.2 System Overview ... 1

1.3 Definition of Key Term s ... 2. 2

1.4 Docum ent Overview ... 5

2. Referenced Docum ents ... 6

3. Prelim inary D esign ... 7

3.1 M O Overview ... 7

3.1.1 M O Architecture .. 9

3.1.2 System States and M odes .. 15

3.2 M O Design Description .. 16

3.2.1 External Interfaces ... 16

3.2.1.1 Project Coordination Board 16

3.2.1.2 Requirem ents M anager ... 18

3.2.1.3 RA PID S ... 19

3.2.2 Product (STEP) M odels .. 20

3.2.3 Process M odels ... 21

3.2.4 M anufacturing Analyzer .. 24

3.2.4.1 Process Analyzer .. 24

3.2.4.2 Yield & Rework A nalyzer 25

3.2.4.3 Cost Estim ator .. 25

3.2.5 M anufacturing Advisor ... 26

3.2.6 Process M odeler .. 27

4. U ser Interface Design .. 29

4.1 File M enu .. 29

4.1.1 Product/STEP D ata Selection ... 30

4.1.2 Process M odel Selection ... 31

4.1.3 RAPIDS to STEP Translator Interface 32

4.1.4 STEP to RAPIDS Translator Interface 32

4.2 A nalyzer Form .. 33

4.3 A dvisor W indow ... 34

4.3.1 Select A nalysis Runs ... 35

4.3.2 Process G raph D isplay .. 36

ii

4.3.3 Available Quality Graphs .. 40

4.3.3.1 Yield Graphs ... 40

4.3.3.2 Rework Graphs ... 43

4.3.3.3 Production Quantity Graphs 45

4.3.4 Available Costing Graphs ... 48

4.3.4.1 Time/Cost Graphs .. 49

4.3.4.2 Cost Detail Graphs .. 52

4.3.5 Analysis Reports Form ... 53

4.4 M odeler W indow .. 55

4.4.1 Process Node Definition ... 57

4.4.2 Selection Rules Definition ... 58

4.4.3 Operation Definition ... 59

4.4.3.1 Scrap Rate Definition ... 61

4.4.3.2 Rework Rate Definition ... 61

4.4.4 Resource Definition .. 62
5. Detailed Object Oriented Design ... 67

5.1 ProductDesign ... 68

5.2 ProcessM odel .. 72

5.2.1 ProcessM odel Specification .. 75

5.2.2 Process Specification ... 77

5.2.3 Operation Specification ... 81

5.2.4 Scrap Specification ... 84

5.2.5 Rework Specification ... 85

5.2.6 OpCost Specification ... 87

5.2.7 ResourceUtilization Specification ... 89

5.2.8 Parameter Specification ... 91

5.2.9 Resource Specification .. 92
5.2.9.1 Equipment Specification ... 94

5.2.9.2 ConsumableMaterial Specification 95

5.2.9.3 ResourceConsumable Specification 96

5.2.9.4 Labor Specification ... 97

5.2.9.5 Facility Specification ... 98

5.2.10 ComplexRule Specification .. 99

5.2.11 Rules Specification .. 100

5.2.12 Expression Specification ... 101

5.2.13 ComplexExp Specification .. 102

iii

5.2.14 Sim pleExp Specification .. 103

5.2.15 Equation Specification ... 104

5.2.16 Com plexEquation Specification ... 105

5.2.17 ParenEquation Specification .. 106

5.2.18 Term Specification ... 107

5.2.19 Const Specification .. 108

5.2.20 AND _Op Specification ... 109

5.2.21 Operator Specification ... 109

5.2.22 UnaryOp Specification .. 109

5.2.23 EquivOp Specification ... 110

5.2.24 StringV alue Specification .. 110

5.2.25 DataDictStr Specification .. 111

5.2.25.1 EntityNam e Specification ... 111

5.2.25.2 EntityAttrNam e Specification 112

5.3 Analyzer ... 113

5.3.1 Object Diagram ... 114

5.3.2 State Transition D iagram ... 114

5.3.3 A nalyzer Specification ... 114

5.4 Advisor ... 116

5.5 M odeler .. 117

5.5.1 Object Diagram .. 118

5.5.2 State Transistion D iagram ... 118

5.5.3 M odeler Class Specification .. . 18

5.6 Requirem entM anager API Interface ... 119

6. Schem a Specifications ... 120

6.1 Process M odel Schem a Specification ... 120

6.1.1 EXPRESS Schem a for Process M odel .. 121

6.1.1.1 ProcessModel Entity 121

6.1.1.2 Process Entity ... 122

6.1.1.3 Operation Entity ... 123

6.1.1.4 Scrap Entity .. 124

6.1.1.5 Rework Entity ... 124

6.1.1.6 OpCost Data ... 125

6.1.2 EX PRESS-G Schem a for Process M odel 125

6.1.3 EX PRESS Schem a for Resource .. 126

6.1.3.1 ResourceU tilization Entity .. 127

iv

6.1.3.2 Resource Entity .. 127

6.1.3.3 Parameter Entity ... 128

6.1.3.4 Labor Entity .. 128

6.1.3.5 Equipment Entity .. 128

6.1.3.6 Facility Entity ... 129

6.1.3.7 ConsumableM aterial Entity .. 129

6.1.4 EXPRESS-G Schema for Resource .. 130

6.1.5 EXPRESS Schem a for Selection Rules 131

6.1.5.1 Constants and Types for Rule Construction 132

6.1.5.2 DataDictStr Entity .. 133

6.1.5.3 ComplexRule Entities ... 134

6.1.5.4 Expression Entities ... 134

6.1.5.5 Equation Entities ... 135

6.1.5.6 Term Entities .. 135

6.1.6 EXPRESS-G Schema for Selection Rules 136

6.2 Product M odel Schema Specification ... 137

6.2.1 Printed W iring Board Product Data M odel 137

6.2.1.1 PW B Design Schema ... 138

6.2.1.2 PW B Generic Types and Entities 139

6.2.1.3 Header Data Schem a .. 141

6.2.1.4 Alias Data Schema .. 141

6.2.1.5 Annotation Data Schem a .. 142

6.2.1.6 CARI Data Schem a .. 142

6.2.1.7 Class Data Schema ... 143

6.2.1.8 Comm ent Data Schem a .. 143

6.2.1.9 Design Rule Data Schem a .. 143

6.2.1.10 Gate Data Schem a .. 146

6.2.1.11 Net Data Schem a .. 147

6.2.1.12 M etal Area Data Schem a .. 149

6.2.1.13 PartData Schema ... 149

6.2.1.14 Pin Data Schema .. 152

6.2.1.15 Conductor Routing Data Schema 153

6.2.1.16 Via Data Schema .. 153

6.2.1.17 Library Cross Reference Data Schema 154

6.2.2 PW B Design Data EXPRESS-G M odel 155

6.2.3 Electronic Component Library Data M odel 155

V

6.2.3.1 Component Model Data Schema 155

6.2.3.2 Pad Stack D ata Schem a .. 157

6.2.3.3 Pad Shape D ata Schem a ... 158

6.2.4 Electronic Component Library Data EXPRESS-G Model 158

7. Requirem ents Traceability ... 159

8. N otes ... 160

8.1 A cronym s ... 160

I

I

I
II

!

Iv

Figures and Tables

Figure 1.2-1 Two Level Team Concept ... 2
Figure 3.1-1 MO External Interfaces .. 7
Figure 3.1-2 MO System Architecture .. 10

Figure 3.1-3 Process Modeler Block Diagram ..11
Figure 3.1-4 Example subset process model for etching process 12
Figure 3.1-5 Manufacturing Analyzer Block Diagram .. 13
Figure 3.1-6 Manufacturing Advisor Block Diagram ... 14

Figure 3.1-7 MO Data Flow ... 15
Figure 3.2-1 Sample PWB Design Cycle Flow .. 18
Figure 3.2-2 Printed Wiring Board Manufacturing Flow .. 22
Figure 3.2-3 Sample CCA Process Dependency Graph .. 23
Figure 3.2-4 High Level Process Analysis Graph .. 24
Figure 3.2-5 Sample Yield versus Process Display Graph ... 27
Figure 3.2-6 Process Modeler User Interface Window .. 28

Figure 4-1 MO Main Window ... 29
Figure 4.1-1 File Options .. 30
Figure 4.1-2 Product Data Selection/Edit Menu ... 31
Figure 4.1-3 Process Model Selection Menu ... 31

Figure 4.1-4 RAPIDS to STEP Data Flow ... 32
Figure 4.1-5 RAPIDS to STEP Form .. 32
Figure 4.1-6 STEP to RAPIDS Data Flow ... 33

Figure 4.1-7 STEP to RAPIDS Form .. 33
Figure 4.2-1 Manufacturing Analyzer Form .. 34
Figure 4.3-1 Manufacturing Advisor Window ... 35
Figure 4.3-2 Select Analysis Runs Form ... 36

Figure 4.3-3 Process Graph .. 37
Figure 4.3-4 Process Results Viewing Form .. 38
Figure 4.3-5 Process Operation Viewing Form ... 39
Figure 4.3-6 Operation Design Entities Viewing Form ... 39
Figure 4.3-7 Quality Graphs .. 40
Figure 4.3-8 Yield Graphs ... 41
Figure 4.3-9 Yield versus Process Graph .. 41
Figure 4.3-10 Available Processes to Select .. 42

vii

Figure 4.3-11 Yield versus Operations Graph ... 42

Figure 4.3-12 Yield versus Process Comparison Graph 43
Figure 4.3-13 Rework Graphs ... 44
Figure 4.3-14 Rework versus Process Graph .. 44

Figure 4.3-15 Rework versus Operations Graph ... 45
Figure 4.3-16 Production Quantity Graphs ... 46
Figure 4.3-17 Production Quantity versus Process Graph .. 46
Figure 4.3-18 Production Quantity versus Operations Graph 47
Figure 4.3-19 Production Quantity versus Process Comparison Graph 48

Figure 4.3-20 Costing Graphs ... 49

Figure 4.3-21 Labor Time Graphs .. 50
Figure 4.3-22 Cost G raphs .. 50
Figure 4.3-23 Cost per Process Graph ... 51

Figure 4.3-24 Cost Per Operation Graph .. 51
Figure 4.3-25 Cost Details Graph for Product ... 52
Figure 4.3-26 Cost Details Graph for Process ... 53

Figure 4.3-27 Analysis Reports Form ... 54
Figure 4.4-1 Process Modeler Window .. 56

Figure 4.4-2 Process Model Selection Window .. 56
Figure 4.4-3 Process Node Specification Window ... 57

Figure 4.4-4 Selection Rules Window .. 58
Figure 4.4-5 Rule Specification ... 59
Figure 4.4-6 Operations Window ... 60

Figure 4.4-7 Operations Specification Window ... 60
Figure 4.4-8 Scrap Specification Window ... 61
Figure 4.4-9 Rework Specification Window .. 62
Figure 4.4-10 Resource Utilization Window .. 63

Figure 4.4-11 Resource Window .. 63

Figure 4.4-12 Resource Specification Window .. 64
Figure 4.4-13 Resource Parameter Specification Window ... 64

Figure 4.4-14 Facility Resource Specification Window .. 64
Figure 4.4-15 Equipment Resource Specification Window ... 65
Figure 4.4-16 Consumable Material Resource Specification Window 65

Figure 4.4-17 Resource/Consumable Specification Window 66

Figure 4.4-18 Labor Resource Window ... 66
Figure 4.4-19 Labor Rate Resource Specification Window .. 66

viii

Figure 5-1 Top-Level Class (Categories) Diagram ... 68

Figure 5.2-1 Process Model Class Diagram ... 73

Figure 5.2-2 Resource Class Diagram ... 73

Figure 5.2-3 ComplexRule Class Diagram ... 74

Figure 5.2-4 ProcessModel Object Diagram .. 75
Figure 5.2-5 Process Object Diagram .. 77

Figure 5.2-6 Operation Object Diagram ... 81

Figure 5.2-7 Scrap Object Diagram .. 84

Figure 5.2-8 Rework Object Diagram ... 85
Figure 5.2-9 ResourceUtilization Object Diagram .. 89

Figure 5.2-10 Resource Object Diagram ... 92

Figure 5.3-1 Analyzer Object Diagram ... 114

Figure 5.3-2 Analyzer State Transition Diagram ... 114

Figure 5.5-1 Modeler Object Diagram ... 118

Figure 5.5-2 Modeler State Transition Diagram .. 118

Figure 6.1-1 EXPRESS-G Model of Process Model Schema .. 126

Figure 6.1-2 EXPRESS-G Model of Resources Schema ... 130
Figure 6.1-3 EXPRESS-G Model of Selection Rules Schema ... 136

Figure 6.2-1 PWB Schema Level EXPRESS-G Model .. 155
Figure 6.2-2 Component Data EXPRESS-G Schema ... 158

Table 3.1-1 Main Window State Execution ... 15

Table 3.1-2 Advisor Window State Execution .. 16

Table 3.1-3 Modeler Window State Execution .. 16

ix

UNCLASSIFIED

CDRL No. 0002AC-4

IL Scope

1.1 Identification

This is the Software Design Specification for the Manufacturing Optimization (MO)

System. The development activities are being performed under Defense Advanced Research

Projects Agency (DARPA) funding, contract number MDA972-92-C-0020, by the MO

Development Team. The Development Team is comprised of personnel from Computer Aided

Engineering Operations (CAEO) of the Raytheon Missile Systems Laboratories (MSL) with

participation from the MSL Mechanical Engineering Laboratory (MEL) and the Missile

Systems Division (MSD) West Andover Manufacturing facility.

1.2 System Overview

DICE has developed a concurrent engineering model that replicates the human tiger team

concept. The basic tenet of the human tiger team is to have the various specialists contributing to

the project co-located. In today's environment of complex product designs and geographically

dispersed specialists, DICE envisioned a "virtual tiger team" working on a "unified product

model" accessible by computer networks. Such an environment must enable specialists from

each functional area to work on the design concurrently and share development ideas.

Raytheon has proposed a conceptual refinement to the original DICE virtual tiger team. This

refinement is a two level approach with a product virtual team having a global view supported by

information supplied by lower level "specialized" process virtual teams. See Figure 1.2-1. This

refinement is needed because of the growing complexity of our products and supporting

development processes, which make it difficult for one individual to adequately comprehend all

of the complexities required to establish a unified manufacturing position. The "virtual process

team" concept would allow comprehensive representation from each specialized process area

to contribute to the formulation of the final manufacturing recommendations.

, - - • • .. , mm~nimmunmnnn min m I IW~ m in

UNCLASSIFIED
CDRL No. 0002AC-4

GLOBAL PRODUCT VIRTUAL TEAM

Test

Design PQuality

SPECIALIZED PROCESS TEAM

Cable/Harness

Sheet
Metal Process Consolidated

Design Manufacturing
•. Position

Printed Wiring Board Circuit Card
Fabrication Assembly

Figure 1.2-1 Two Level Team Concept

The purpose of the Manufacturing Optimization (MO) system is to enable all

manufacturing specialists to participate in the product/process development activity

concurrently. The system consists of a set of tools to model the manufacturing processes and

centralize the various process tradeoffs. Recommendations can be compared and negotiated

among the individual manufacturing participants. After the manufacturing team has reached a

consolidated position, the results are passed back to the cross functional (top level) team for

their negotiation.

1.3 Definition of Key Terms

Communications Manager (CM) - a collection of modules developed as part of the DICE
program which facilitate distributed computing in a heterogeneous network.

Consolidated Manufacturing Position - recommendations from the manufacturing process
team. The recommendations are in the form of product design changes. The changes
will optimize the manufacturing process of the product for cost and yield.

Dependency Graph - a directed acyclic graph defined such that each node in the graph has a
set of parent nodes that it is dependent on. In MO, the nodes in the graph represent
individual processes. Each node in the graph contains an AND/OR flag. If the flag is

2

UNCLASSIFIED
CDRL No. 0002AC-4

set to AND then the node is dependent on all of its parents. If the flag is set to OR
then the node is dependent on any one of its parents. For a particular process to be
included in the overall manufacturing process for a particular product, the nodes that it
is dependent on must be satisfied.

Manufacturing Advisor - a MO core module which provides the user with various methods
to view the results produced by the Manufacturing Analyzer. Results can be viewed
via graphing functionality or through textual reports.

Manufacturing Analyzer - a MO core module which provides the following three services: 1.
Selection of individual processes from the process model which are used to
manufacture a particular product; 2. Analysis of the processes selected and the
operations attached to each process to estimate scrap and rework rates; 3. Analysis of
the resources needed to perform the operations attached to the selected processes for
cost.

Operation - a unit of work performed on the part. Associated with each operation are scrap
rates, rework rates, and required resources.

Project Coordination Board (PCB) - a DICE tool supported by CERC that provides support
for the coordination of the product development activities in a cooperative
environment. It provides for common visibility into the design task structure, task
assignment capabilities, and change notification capabilities.

Process - an organized group of manufacturing operations sharing characteristics. In MO, the
process is modeled as a collection of operations that have associated scrap and rework
rates and a list of required resources. Attached to each process is a set of selection
rules and a set of parent processes which the process is dependent on. For the process
under consideration to be selected by the Manufacturing Analyzer, the parent
processes that it is dependent on must have been selected and at least one of its
selection rules must evaluate to true.

Process Model - the specification of the total manufacturing process required to produce the
product. The process model consists of a directed acyclic dependency graph of
individual manufacturing processes.

Process Modeler - a MO core module which provides the user with the ability to graphically
model processes, operations, and resources.

Process Team - the lower level specialized team in the two-tiered team concept. Tne process
team is responsible for providing a consolidated position in terms of their
specialization. The users of the MO system would be part of the manufacturing
process team and would be required to provide a consolidated manufacturing position
to the global level product team.

Product Model - a set of STEP entities that define the features and attributes of the product.
The Process Modeler provides a means of defining rules and equations in terms of the
existence, count, or value of particular product model entity instances.

Product Team - the global level team in the two-tiered team concept. The global team is
supported by all of the specialized process teams.

PWB - Printed Wiring Board.

3

UNCLASSIFIED
CDRL No. 0002AC-4

RAPIDS - Raytheon Automated Placement and Interconnect Design System. Raytheon's
conceptual design and analysis workstation for Printed Wiring Boards (PWB).
RAPIDS supports component placement and placement density analysis, as well as a
number of other analysis functions, including automatic component insertion
checking. Interfaces between RAPIDS and the PWB analysis tools for the following
criteria are also provided as part of the RAPIDS tool suite: Manufacturing, Post
Layout Effects, Reliability, and Thermal.

Rapids to Step - a C++ application which utilizes the ROSE database and tools developed by
STEP Tools Inc. The program reads the RAPIDS database using the RAPIDS
Procedural Interface. A persistent STEP object of the appropriate class is generated
for each RAPIDS record read. The object is then stored as a STEP entity in a physical
STEP file.

Resource - any facility, labor, equipment, or consumable material used in the manufacturing
process.

Rework Rate - the percentage of product parts which must be reworked due to an operation.
Rework data is maintained in a list of rework entities. In each entity there is a rework
rule and a corresponding rework rate. If the rework rule is satisfied, then the
corresponding rework rate is computed. There is a list of resources associated with the
rework which is used to calculate the cost of performing the rework operation.

Requirements Manager (RM) - Product Track Requirements Manager (CIMFLEX
Teknowledge) is a software tool designed to manage product requirements and
evaluate the compliance of product design data with requirements.

ROSE - Rensselaer Object System for Engineering is an object-oriented database management
system developed at Rensselaer Polytechnic Institute. It has been developed to support
engineering applications as part of the DICE program. ROSE is currently part of the
STEP Programmer's Toolkit available from STEP Tools, Inc. ROSE is a database
which supports concurrency using a data model that allows the differences between
two design versions to be computed as a delta file. The MO data for the
manufacturing processes and operations, as well as, the various analysis results will be
stored and managed within ROSE.

STEP - STandard for the Exchange of Product model data is the International Standards
Organization standard 10303. The objective of the standard is to provide a mechanism
capable of representing product data throughout the life cycle of a product,
independent of any particular system. STEP data is stored as instances of class
entities.

Step to Rapids - a C++ application which utilizes ROSE and tools developed by STEP Tools
Inc. The program reads a STEP file conforming to the EXPRESS schemas that model
the PWB product data. The ROSE STEP filer is used to read the STEP file into
instances of classes created by the express2c++ compiler. The class instance is then
transformed into the appropriate RAPIDS data record and stored to the RAPIDS
database.

Yield Rate - the percentage of product parts that must be scrapped due to an operation. Scrap
data is maintained in a list of scrap entities. In each entity there is a scrap rule and a
corresponding scrap rate. If the scrap rule is satisfied, then the corresponding scrap
rate is computed.

4

UNCLASSIFIED

CDRL No. 0002AC-4

1.4 Document Overview

The purpose of this report is to provide the software design for the Manufacturing

Optimization (MO) System. It contains the preliminary and detailed object oriented design, the

user interface design, and the schema specifications for MO.

The preliminary design discusses the capabilities and interfaces provided in the MO system.

The detailed object oriented design describes the definition of the classes, objects, and methods

which make up the MO system. The user interface design provides the look and feel of the

system to the user, and the schema specification provides the details of the data behind the class

and objects in the system.

5

UNCLASSIFIED

CDRL No. 0002AC-4

2. Referenced Documents
1. BR-20558-1, 14 June 1991, DARPA Initiative In Concurrent Engineering (DICE)

Manufacturing Optimization - Volume I - Technical.

2. CDRL No. 0002AC-1, March 1992, Operational Concept Document For The

Manufacturing Optimization (MO) System, Contract No. MDA972-92-C-0020.

3. CDRL No. 0002AC-2, March 1992, Description of CE Technology For The

Manufacturing Optimization (MO) System, Contract No. MDA972-92-C-0020.

4. CDRL No. 0002AC-3, May 1992, Functional Requirements and Measure of Performance

For The Manufacturing Optimization (MO) System, Contract No. MDA972-92-C-0020.

5. Object-Oriented Analysis, Second Edition by Peter Coad/Edward Yourdon, Yourdon

Press Computing Series, 1991.

6. Object-Oriented Design by Peter Coad/Edward Yourdon, Yourdon Press Computing

Series, 1991.

7. Object Oriented Design with Applications by Grady Booch, The Benjamin/Cummings

Publishing Company, Inc., 1991.

8. Product Data Representation and Exchange-Part 11: The EXPRESS Language Reference

Manual, ISO DIS 10303-11, National Institute of Standards and Technology, 1992.

9. ProductTrack Requirement Manager User Guide and Reference, Release 1.02 for Sun

SPARC and Oracle RDBMS, Cimflex Teknowledge Corporation, October 1992.

10. RAPIDS Database Data Dictionary, RAYCAD Document #1266021, Raytheon

Company, November 22, 1991.

11. STEP Programmer's Toolkit Reference Manual, STEP Tools Inc., 1992.

12. STEP Programmer's Toolkit Tutorial Manual, STEP Tools Inc., 1992.

13. STEP Utilities Reference Manual, STEP Tools Inc., 1992.

14. User Manual for the Project Coordination Board (PCB) of DICE (DARPA Initiative in

Concurrent Engineering, July 10, 1992.

6

UNCLASSIFIED

CDRL No. O02AC-4

3. Preliminary Design

3.1 MO Overview

The concept of the Manufacturing Optimization (MO) system is to facilitate a two tiered

team approach to the product/process development cycle where the product design is analyzed

by multiple manufacturing engineers and the product/process changes are traded concurrently

in the product and process domains. The system will support Design for Manufacturing and

Assembly (DFMA) with a set of tools to model the manufacturing processes and manage

tradeoffs across multiple processes. The lower level "specialized" team will transfer their

suggested design changes back to the top-level product team as the Manufacturing Team's

consolidated position.

The external software packages which the MO system is comprised of are the ROSE DB,

Requirements Manager, and the Project Coordination Board/Communications Manager. For

demonstration purposes, an interface was developed between Raytheon Automated Placement

and Interconnect Design System (RAPIDS) and the ROSE DB. Figure 3.1-1 illustrates the

external interfaces to the MO system.
Project

Requirements Coordination
Manager Board

(RM) (PCB)S~Communications
Manager (CM)

Manufacturing MMnufacturabilatyg

Manufacturing

EngineerOpiiaon.

Figure 3.1-1 MO External Interfaces

7

I ISystem

UNCLASSIFIED
CDRL No. 0002AC-4

ROSE is an object-oriented database management system that has been developed for

engineering applications and enhanced to support the DICE program. ROSE is currently part of

the STEP Programmer's Toolkit from STEP Tools, Inc. ROSE is a database which supports

concurrency using a data model that allows the differences between two design versions to be

computed as a delta file. The MO data for the manufacturing processes and operations, as well

as, the various analysis results will be stored and managed within ROSE. The manufacturing

process data consists of the process selection knowledge base, process and operation data, yield

and rework data, and resource specifications.

The Requirements Manager (RM) is a software tool designed to manage product

requirements and evaluate the compliance of product design data with requirements. The

purpose of integrating the RM into the MO system is to provide the "top level" product

development team insight into manufacturing requirements. It is common practice for a

manufacturer to document manufacturability, or producibility guidelines which delineate

standard manufacturing practices and acceptable design parameters. The purpose of these

guidelines is to communicate the capabilities of the manufacturing process to the product design

community to ensure that new product designs are specified within manufacturing capabilities.

The guidelines delineate quantitative and qualitative producibility issues. The RM and the MO

software will be tightly coupled through the RM's Application Programming Interface (API) to

provide the user with a manufacturing guidelines analyzer capability.

The Project Coordination Board (PCB) provides support for the coordination of the

product development activities in a cooperative environment. It provides common visibility and

change notifications. The Communications Manager (CM) is a collection of modules that

facilitates distributed computing in a heterogeneous network. The Communication and

Directory Services provided in the CM module are required to utilize the PCB. The PCB/CM

will be used in MO to support the communication of the product/process development activities.

There will be no direct interface between the MO software modules and the PCB/CM

applications. It will be used to manage the product task structure.

RAPIDS is Raytheon's conceptual design and analysis workstation for Printed Wiring

Boards (PWB). RAPIDS supports component placement and placement density analysis, as

well as a number of other analysis functions, including automatic - mponent insertion checking

and thermal analysis.

8

UNCLASSIFIED

CDRL No. 0002AC-4

3.1.1 MO Architecture

MO is a X-Windows based tool. The application software will be written in C++, the user

interface will be developed using OSF/Motif Widgets, and all data will be stored in STEP

physical files.

The decision to use STEP physical files for the underlying data format for the MO system

stems from the fact that STEP is the emerging international standard for data exchange between

automation systems. Access to these STEP files will be provided through the STEP

Programmer's Toolkit from STEP Tools Inc. The Toolkit provides a means of reading and

writing STEP entity instances through a C++ class library.

The MO core system is composed of three software modules, Manufacturing Analyzer,

Manufacturing Advisor, and Process Modeler. The Project Coordination Board (PCB) and

Communications Manager (CM) from Concurrent Engineering Research Center (CERC),

ProductTrack Requirements Manager (RM) from Cimflex Teknowledge, the ROSE database

from STEP Tools Inc., and the two way interface to the Raytheon Automated Placement and

Interconnect Design System (RAPIDS) complete the software suite which constitute the MO

system. Figure 3.1-2 illustrates the MO System Architecture.

9

UNCLASSIFIED
CDRL No. 0002AC-4

RAPIDS W3 RM
DESIG NM1
SYSTEM G e n

DB

CAD ROSE D RAPIDS Product Track- RM product data
Interface RID to ROSE AIexchange

PCB(CMROED

P Prod uct Design Data

0 zD
V

Mfg Process DataMf AnalysisReutT process dependency model *selected p rocess flows
yield & rework data yield & rework res tUts per opno

p time & cost data *time & cost results per opno

R *eOWB suggested m ta

C v
E
S

M Process Modeler Mfg Ana lyzer

U procss dependency mrodel baed on actual part entities
N * easy entry of processanatrbes

I- V/R data entry
C -csting data entry

MfgAdvsor ~ M eki/Rework Ideal

N graphically displaying results per operation

MO CORE SYSTEM

Figure 3.1-2 MO System Architecture

The Process Modeler provides the user with the ability to model processes required to

manufacture a product, Each process is modeled as a set of operations, where an operation is a

unit of work performed on the product part. Resources, yield rates, and rework rates are defined

10

UNCLASSIFIED
CDRL No. 0002AC-4

for each operation. The output of the Process Modeler is a directed acyclic dependency graph

of individual manufacturing processes. Figure 3.1-3 depicts a block diagram of the Process

Modeler.

Process
Modeler

FI
Process & Resource
Operation Modeler
Modeler

j Figure 3.1-3 Process Modeler Block Diagram

Figure 3.1-4 illustrates a simplified subset of a process model. The example models the

processes required to etch conductive material from a printed wiring board substrate.

The process modeler provides the ability to establish dependencies between processes. In

the example, the "Etch Material" process is dependent on the "Etch FLEX" process OR the

"Etch Substrate" process. Note that if the AND/OR flag of the "Etch Material" process were

set to AND, then the "Etch Material" process would be dependent on both of its parents

processes. Attached to the "Etch Material" process is a list of selection rules which provide the

reason(s) why this process would be relevant, and a list of operations which must be performed

to complete the etch material process. Defined with each operation are scrap rates, rework rates,

setup time, run time, and a list of resources required to complete the operation.

11

UNCLASSIFRED
CDRL No. 0002AC-4

'4.*'4 /

Process Name: "Etch FLEX" Process Name: "Etch Substrate"
Rules: Technology = FLEX Rules: Technology = PWB
AND/OR: OR AND/OR: AND

/ '4
/ '4

/ '4,
Process Name: "Etch Material"
Rules: Routes <exist>

Pads <exist>
Vias <exist>
MetalAreas <exist>

AND/OR: OR

Scrap Rate: 0.02 Resource Name: Technician 2
Rework Rate: 0.00 Resource Type: Labor
Setup Time: 5 units Cost Per Time Unit : 1.23•Run 7Time: 12 unitss

S~~('Op Name "expose" '

Scrap Rate: 0.01 Resource Name: Mask Aline
Rework Rate: 0.00 Resource Type: Equipment
Setup Time: 1 units Cost Per Time Unit : 0.87
Run Time: 7 units

("Op Name: "etch copper"• Resource Name: ACID SOL5

Scwrap Rate: 0.01 Resource Type: Consumable

Rewok R te: .00Cost Per Unit : 6.23

SSetup Time: 21 units |Units Per Time Unit :0.29

•Run Time: 17 units ,,

Figure 3.1-4 Example subset process model for etching process

The Manufacturing Analyzer provides the following three services: 1. Select the individual

processes from the process model that are used to manufacture a particular product. 2. Analyze

the processes selected and the operations attached to each process to estimate scrap and rework

rates. 3. Analyze the resources needed to perform the operations attached to the selected

processes for cost. The analyzer results are composed of design feature entities from the

product design database (STEP file) along with the selected manufacturing processes from the

12

UNCLASSIFIED

CDRL No. 0002AC-4

user specified process model. Figure 3.1-5 depicts a functional block diagram of the

Manufacturing Analyzer.

Manufacturing
Analyzer

1F
Process Yield & Rework Cost
Aaye Analyzer Estimator

SAAnalyzer

Figure 3.1-5 Manufacturing Analyzer Block Diagram

To illustrate all the Analyzer functionality (i.e. analysis of manufacturing process, yield,

rework, and cost), lets utilize the example process model for the etch process defined in Figure

3.1-4. Lets walk through the steps that the process analyzer, yield/rework analyzer, and cost

estimator will go through for determining selection of the "Etch Material" process. Consider

that the product design data under analysis contains the following: an entity called Technology

with a value of "PWB" and several Route, Pad, and Via entities.

To determine if the "Etch Material" process should be selected, the Process Analyzer will

first determine if either of its parent nodes were previously selected as applicable processes.

Since the product data contains a Technology entity set to PWB, the selection rules of the

"Etch Substrate" process would have been satisfied; therefore, the process would have been

previously selected. Since the AND/OR flag of the "Etch Material" process is set to OR only

one of its parents must be selected before the Process Analyzer will evaluate its process

selection rules. Since the product data set contains several routes, pads, and vias, the selection

rules evaluate to true, thereby, satisfying all the process selection criteria. At that point, the

process analyzer would add the "Etch Material" process to the resulting analysis flow along

with the associated design feature entities from the product design.

Once the "Etch Material" process is selected, the Yield/Rework Analyzer will evaluate each

operation attached to it to estimate scrap and rework rates associated with this particular

product. Finally, the cost estimator will calculate the cost associated with the resources attached

to each of the operations.

13

UNCLASSIFIED

CDRL No. 0002AC-4

The Manufacturing Advisor provides the user with various methods to view the results

produced from the analyzer. The results can be viewed graphically (i.e. line, bar, stacked bar and

pie charts) or textually. The reporting capability allows the user to customize a detailed report

which can be printed to the screen or to an ASCII file. MO allows the user to view one or more

sets of analysis results at a time. By selecting multiple analysis runs to graphically display, the

user can visually compare the analyses. Figure 3.1-6 shows a functional block diagram of the

Manufacturing Advisor.

Manufacturing
Advisor

Graph/Charts Report/Text

Process Yield & Rework Time/Cost

Flow Results Results

Figure 3.1-6 Manufacturing Advisor Block Diagram

The interaction between the user, manufacturing analyzer, process modeler, manufacturing

advisor, RM, PCB/CM, RAPIDS, and ROSE DB is pictured in Figure 3.1-7.

14

UNCLASSIFIED
CDRL No. 0002AC-4

Prjc Coordination Board

•J Process Modeler

Mfg Analyzer
SProcess Cost Estimator

Analyzer Id
User Time/Cost Pout

DesignrSyste

3Yield/Rework andMd
Analyzer |Actual]

---- 4p Time/CostI

I1 Mfg Advisor

S~Requirements
Manager

I RAPIDS -
I Design System

Figure 3.1-7 MO Data Flow

3.1.2 System States and Modes I

At any time, MO will be in one of three modes: startup, active, or ready. Table 3.M1O- shows

which buttons on the MO main window (refer to figure 4-4-) are available for execution in each
I mode. Table 3.1-2 shows which buttons on the MO Advisor window (refer to figure 4.3- 1) are

available for execution in each mode. Table 3.1-3 shows which buttons on the MO Modeler
Swindow (refer to figure 4.4- 1) are available for execution in each mode.

Table 3.1.1 Main Window State Execution
Mode State File Analyzer Advisor [Modeler

Startup First enter yes no no yesMO

Active Product/Process yes yes no yes
Models selected

Ready Analyzer has yes yes yes yes
___been run

115

UNCLASSIFIED
CDRL No. 0002AC-4

Table 3.1-2 Advisor Window State Execution
Mode IState Select Process IQaiy I oting IAnalysis Exi t

Graphs I Graphs Graphs Report Main

All Modes I Entry 1 yes yes yes yes yes Yes

Table 3.1-3 Modeler Window State Execution

Mode State Models Resources Add Delete Exit to
,__Main

Startup First enter yes yes no no yes

Modeler
Active Process Model yes yes yes no yes

selected
Ready Process has yes yes yes yes yes

been added

The user will initially enter MO in the startup mode of the main window. The product and

process models have not yet been selected; therefore, the analyzer and advisor are disabled.

Once the user selects the applicable models, the analyzer becomes active. The user then executes

the analyzer module. After the analyzer is complete, the advisor becomes active.

The user can then choose to view the analysis results by selecting the advisor button. The

user will be put into the advisor window where all functionality is active.

At any time after starting up the MO system, the user can choose to enter the modeler

startup window. Since no process model has been selected, add and delete are disabled. Once

the user selects to create a new or modify an old process model, the add button becomes active.

Once there are processes available for deletion, the delete button becomes active. At any time,

the user can choose to return to the main MO window.

3.2 MO Design Description

3.2.1 External Interfaces

3.2.1.1 Project Coordination Board

The Project Coordination Board (PCB) is a system developed to provide support for the

coordination of the product development activities in a cooperative environment. The PCB

provides common visibility and change notification through the common workspace, planning

and scheduling of activities through the task structure, monitoring progress of product

development through the product structure (i.e. constraints), and computer support for team

16

3 UNCLASSIFIED

CDRL No. 0002AC-4

structure through messages. The Communications Manager (CM) is a collection of modules

that facilitates distributed computing in a heterogeneous network. It promotes the notion of a

3- virtual network of resources which the project team members can exploit without any prior

knowledge of the underlying physical network. The Communication and Directory Services

3• provided in the CM module are required to utilize the PCB.

MO introduces the concept of a two tiered virtual tiger team. The two tiered approach

3 consists of a cross functional product team linked to teams within each of the functions, in this

case a manufacturing process team. To implement this approach there must be communication

3 among the members of each team, and between the product and process team. The PCB/CM is

being used to support the following capabilities which are required for this type of

3 communication:

"" Product - to - Process Team Communication

* Notification of design task completed.

* Notification and issuance of database available for analysis.3 * Notification of alternative designs or trade-off decisions under consideration.

"* Process - to - Product Team Communication1 Notification and issuance of analysis results.

• Notification and issuance of modified database with recommended changes.U * Notification of changes to the process, guidelines, cost or yield models.

We are using the product task structure within the PCB/CM to model the product to

process development team communication. Included in this task structure are major design

steps, such as concept d,-elopment, design capture, design verification, component placemenit,

routing, transition to production, and several design reviews. The design reviews included

representatives from design, test, reliability, manufacturing, and thermal. Figure 3.2-1 is a high

level view which represents the design cycle steps which model a typical PWB product design

* cycle.

1
I

17

UNCLASSIFIED
CDRL No. 0002AC-4

hV•[Design Design

. Capture Analysis/

DesigneviewVerification

Packaging Designer

Design •Test
•Rel~iability
•Thermal

Review Mfg
Parts List Auto Insertability

Design Review
Component * Designer Documentation/
Placement* g Interconnect Final Board Transition To

P mTest Routing Review Manufacturing
* Reliability

Figure 3.2-1 Sample PWB Design Cycle Flow

The Project Lead (user with special privileges) initializes the product task structure. The

Project Lead can then view any task or work order that appears in the network, add a task to the

existing network, acknowledge receiving a task, and indicate completion of a task. The other

team members can acknowledge receiving a task and indicate completion of that task. The PCB

automatically dispatches tasks as previous tasks are completed, as well as, the Project Lead can

dispatch a task. Refer to Section 2 reference 14 for details on the PCB.

3.2.1.2 Requirements Manager

The Requirements Manager (RM) is a software tool designed to manage product

requirements and evaluate the compliance of product design data with requirements. The tool

allows the user to model requirements or guidelines, model the product design data structure,

populate the product design data structure with product data, and evaluate to what extent the

product design data meets the specified requirements. As a result of the evaluation process, the

tool will provide the user with a status (Pass, Fail, Uncertain, or Untested) of the compliance of

the product data with the requirements. The MO manufacturing guideline functionality is being

incorporated into the RM to provide the "top level" product development team insight into

manufacturing requirements apart from the MO analyses.

18

UNCLASSIFED

CDRL No. 0002AC-4

It is common practice for a manufacturer to document manufacturability, or producibility

guidelines that delineate standard manufacturing practices and acceptable design parameters.

The purpose of these guidelines is to communicate the capabilities of the manufacturing process

to the product design community to ensure that new product designs are specified within

manufacturing capabilities. The guidelines delineate quantitative and qualitative producibility

issues.

The MO system is supporting evaluation of these manufacturing guidelines. For each

guideline entry there is a related recommendation. Unlike the process selection constraints,

manufacturability guideline violations may not cause alternative selection. The result could be an

operation cost increase, for instance, the need for non-standard tooling, a yield loss, or a less

tangible impact. These guidelines will be entered into the Requirements Manager so that they

are available to the product design team along with the other requirements placed on the design.

Some examples of these guidelines include: "The maximum board dimension must be less than

14 inches", "Switches must be hermetically sealed", or "If the number of leads is less than or

equal to 24 the span should be 0.3 inches". See reference 9 in section 2 for details on the RM.

3.2.1.3 RAPIDS

RAPIDS is Raytheon's conceptual design and analysis workstation for Printed Wiring

Boards (PWB). RAPIDS supports component placement and placement density analysis, as

well as a number of other analysis functions, including automatic component insertion

checking. Interfaces between RAPIDS and the PWB analysis tools for the following criteria

are also provided as part of the RAPIDS tool suite:

* Manufacturing

* Post Layout Effects

• Reliability

* Thermal

At Raytheon, RAPIDS is used for conceptual design and analysis of PWB's. RAPIDS

serves in the same capacity at Raytheon that many commercial CAD systems (e.g. Mentor

Board Station, Racal-Redac Visula, Cadence, etc.) are used in at other companies. RAPIDS

provides an Application Programmatic Interface (API) with its database. This enables RAPIDS

to be easily interfaced with other systems and standards. Using RAPIDS in the MO system is

inline with Raytheon methodologies, but does not exclude interfacing MO with commercially

19

UNCLASSIFIED
CDRL No. 0002AC-4

available CAD systems in the future. The key to interfacing MO with a large base of CAD

systems is the utilization of the STEP standard by the commercial CAD industry. See reference

10 in section 2 for details on the RAPIDS Data Dictionary.

3.2.2 Product (STEP) Models

All data required for the MO system will be stored in STEP physical files. The reason

behind the use of STEP physical files is that STEP is an emerging international standard which

is getting wide spread attention as the means of exchanging data between automation systems.

Access to the STEP files will be provided through the STEP Toolkit (STEP Tools Inc.). The

Toolkit provides a means of reading and writing STEP entity instances through a C++ class

library. This class library is currently being updated to adhere to the ISO Part 22 SDAI

(Standard Data Access Interface) specification.

At Raytheon, PWB product data is stored in the RAPIDS (Raytheon's Automated

Placement and Interconnect Design System) database. Two interfaces were developed to

support the transition of PWB product data to and from STEP physical files.

Generating the STEP physical file is facilitated by the RAPIDS to STEP interface which

maps RAPIDS data items into instantiated STEP entities. An information model using the

EXPRESS information modeling language was created based on the RAPIDS database. The

EXPRESS information model was compiled using the STEP Tools express2c+ + compiler,

which generated a STEP schema and a C++ class library. The class library consists of methods

for creating and referencing persistent instances of the STEP entities which are stored in a

ROSE database. The STEP schema is used by the STEP Tools STEP filer for reading and

writing the STEP physical file.

The MO system uses the STEP data directly, as well as, for information exchange between

the members of the product design team. For demonstration purposes, we will have the top level

team using RAPIDS. This is not a requirement for using the MO system. The only requirement

is that the top level team and the lower level teams be capable of creating, exchanging and using

the STEP physical file.

The Manufacturing Team passes back a consolidated manufacturing position to the product

design team. To aid in the generation of a consolidated position, conflict resolution and design

merging must be supported. This is done using the STEP Toolkit from STEP Tools Inc. The

20

UNCLASSIFIED

CDRL No. 0002AC-4

diff tool reads two versions of a design and creates a delta file. The difference report generator

reads the difference file and the original design, and presents each STEP entity and its attributes

with the original values and its change state clearly marked with an asterisks.

Once the conflicts of the Manufacturing team members have been resolved, design versions

are merged using the STEP Tools sed tool. The sed tool reads the delta file created by the diff

tool and updates the original design version. This updated version of the design will be

transferred back to the top-level product team as the Manufacturing Team's consolidated

position.

3.2.3 Process Models

The key to performing manufacturability analysis is to characterize the fabrication and

assembly processes. In MO, this characterization is implemented as a manufacturing process

representation and selection algorithm. Basing manufacturing cost analysis on a detailed

description of the process provides visibility into the relationship between the design attributes

and the manufacturing process. This allows the engineer to focus on manufacturing cost

drivers and their causes. By characterizing the process in this manner, the manufacturing

engineer will be able to review the process which will be used to produce the product and be

readily able to consider alternative manufacturing processes and their consequences.

Following this logic, it makes sense to capture the expert's process planning knowledge

into a process selection model so that the relationship between the product entities and the

process selected to fabricate the product is explicitly defined. This does not mean that there is a

one to one relationship between the design entities and the process steps. In some areas, such as

PWB, the design may be implemented using different technologies, each of which implies a

certain process, such as surface mount versus through-hole technology. In other cases, there are

multiple processes that can be used to produce the same entity. This is most prevalent in the

metal fabrication (machining) area where often a number of processes (investment casting,

milling) are capable of producing the part.

There are two development challenges: building a data schema to represent the

manufacturing process such that it can be used for selection and costing, and building a

selection logic algorithm that adequately represents the planning logic employed by expert

process planning.

21

UNCLASSIFIED

CDRL No. 0002AC-4

Normally in a manufacturing plant, the overall process for a given discipline is known and

recorded in the form of a flowchart. This flowchart is a block diagram listing of each and every

process within that discipline. The order of those operations is structured so that it is the default

ordering of how products flow. If a process gets repeated, it generally shows up in each

repeated point in the flow chart. These flowcharts usually employ a rudimentary decision logic

scheme. As such it represents the available processes in a pick list fashion. Pictured in figure

3.2-2 is a typical manufacturing process flow for printed wiring boards.

CreateImage and Etch Automatic
Manufacturing Inner Layers Inner Layer
Data Package Inspection

• Laminate Plate[ImageR
and Drill Plate & Etch Rout

Outer Layers

Bare Board Mark Board Pick and Place
Test Pc n lc

Assembly Reflow • Assembly

In-Circuit Functional Conformal

Test Test Coat

Figure 3.2-2 Printed Wiring Board Manufacturing Flow

The logic representation method that Raytheon is developing for this task is based on prior

work in process selection. The model is a hybrid and/or dependency graph and rule based

processing system. The and/or dependency graph representation was selected because it allows

the system to display the basic sequential and concurrent flow of the process in a presentation

22

UNCLASSIFIED

CDRL No. 0002AC-4

format where the manufacturing engineer can visually see other process(es) that a selected

process is dependent on. The dependencies inform the user of the basic flow of the overall

process while letting the user plan at various levels of abstraction. These levels include the

process, an organized group of manufacturing operations sharing characteristics, the operation,

a common unit of work that is performed on the part, and the resource, which is the mechanism

required to perform the operation. By defining the levels as we have, a hierarchical planning

strategy is enabled. Using this schema, we can reason about alternative processes, plan the

operation flow within the selected process, and then detail the individual resources of that

operation, such as set-up and run time standards.

The reasoning process is guided by the representation of the dependency graph which sets

the initial search evaluation order, and the rule processing mechanisms. The rules are attached to

individual process nodes in the graph. These rules are used to evaluate the node. The purpose of

the evaluation is to cause selection of the node. First, any parent processes that the process

under evaluation is dependent on must be satisfied. If satisfied, the rules attached to the process

are evaluated to see if it is applicable to manufacturing the product part. Operations are stored to

form the overall manufacturing process sequence. Each operation in the process sequence is

evaluated for its requirement of resources in order to estimate the manufacturing process cost.

The system will also have the ability to store alternative models of a particular process. This

capability will allow the process engineer the ability to explore alternative process approaches

and plan process improvements. Figure 3.2-3 illustrates a sample assembly dependency graph

for through-hole circuit cards.

Components Components

Figure 3.2-3 Sample CCA Process Dependency Graph

23

UNCLASSIFIED

CDRL No. 0002AC-4

3.2.4 Manufacturing Analyzer

There are three capabilities provided in the Manufacturing Analyzer module: process

analyzer, yield and rework analyzer, and cost estimator. The sub-sections to follow describe

each capability.

3.2.4.1 Process Analyzer

The Process Analyzer provides the capability to select or determine the process sequence

required to manufacture the product design based on a particular process model. The

manufacturing process is represented by three levels of abstractions: process, operation and

resource. The process is an organized group of manufacturing operations, the operation is a

common unit of work that is performed on the part, and the resource is the mechanism required

to perform the operation. The process model for the MO system is designed as an "and/or

dependency graph" made up of selectable manufacturing processes. Each process node in the

graph can be connected to process(es) at a higher level and/or lower level in the graph. A list of

applicable operations and resources can be attached to the process in the dependency graph.

Each operation has applicable yield and rework rates attached. Refer to Section 6.1 for the

details of the process model schema.

The Analyzer will select the applicable process(es) on a level by level basis using the

selected process model. First, the and/or prerequisite of the parent(s) of the process must be

satisfied. If satisfied, the rules attached to the process are evaluated to see if it is an applicable

process. The selected process and corresponding product design entities will be added to a

dependency analysis graph. Figure 3.2-4 illustrates a resulting high level process analysis graph

for a circuit card.

S24

lrcuf~-D S B3 MBCC

S B4

Figure 3.2-4 High Level Process Analysis Graph

!2

UNCLASSIFIED

CDRL No. 0002AC-4

3.2.4.2 Yield & Rework Analyzer

The yield and rework analyzer provides the capability to calculate yield and rework rates for

the selected processes associated with a product design. This part of the analysis calculates the

yield and/or rework rate on an operation level within the process. The rate will be calculated

based on the design entities influence on the operation. The yield and/or rework rate for each

design entity/entities associated with an operation is calculated through the evaluation of a rule,

which has a corresponding equation attached. If the rule evaluates to true, then the equation will

be calculated to provide the yield or rework rate. The rate equations may include references to

the existence, value, or quantity of product design entities. An example yield rule and

corresponding rate attached to an operation is as follows:

YieldDalta:
Design Features Rule Scrap Rate

aspect ratio < 5.0 & aspect ratio > 4.0 0.05000
aspect ratio <= 4.0 & aspect ratio > 2.0 0.02000

The total yield rate for an operation is calculated using the statistical probability of each

design entity scrap rate to each other by calculating the independent events. The total rework

rate for an operation is calculated by summing up the results of each rework occurrence.

3.2.4.3 Cost Estimator

The cost estimator calculates the recurring manufacturing cost for each operation in the

process sequence. The following calculations are performed:

" Labor standards for each resource attached to an operation are calculated for setup and

run time utilization. The value for each is calculated through the evaluation of an equation

which may include reference to the existence, value, or quantity of design entities in the

product data. Each resource has an associated cost in terms of an appropriate measure.

For example, a labor resource will have an associated cost in terms of dollars per time

unit.

"* Estimated ideal cost for each operation is calculated from labor standard values multiplied

by the wage rate of the labor grade or bid code of the resource(s) performing the

operation, and the production efficiency value for that operation.

25

UNCLASSIFIED

CDRL No. 0002AC-4

"* Rework operations are calculated based on the rework rate determined by the yield and

rework analyzer multiplied by labor standards of the resources for the rework condition.

The labor grade wage rates and production efficiencies would then be applied.

"* For each operation, the estimated actual cost is calculated by multiplying the estimated

ideal cost by the number of units processed, including both good and scrapped units. The

number of units processed by each operation are calculated from the value of the required

good units at the subsequent operation divided by the yield at the operation under

evaluation. For example, if the desired production quantity is 100 boards and operation 1

has a scrap rate of 5%, then the quantity of required units to being operation 1 with is 105.

"* The total estimated ideal cost and total estimated actual cost for each sequence of

processes are calculated by summing the individual operation cost of each process. The

estimated actual cost for a good unit is calculated by dividing the total estimated actual

cost for the process by the number of good units produced.

3.2.5 Manufacturing Advisor

The manufacturing advisor provides the capability to view the results produced by each

process participating in an analysis. The advisor includes the following capabilities:

- A mechanism for selecting one or more manufacturing analyzer runs for comparing

and/or displaying the results.

* Graphical capabilities (i.e. line, bar, stacked bar and pie charts) for comparing and

displaying the process, yield, rework, or cost versus a processes or operations for one or

more manufacturing analyzer runs.

* A reporting capability which prints analyzer results to the screen or file for one or more

runs including process sequence, yield and rework, and cost.

• The capability to summarize design entities causing manufacturing guideline violations

(interface to the RM) across multiple processes. Report recommendations on these

guideline violations.

* A final manufacturing summary report, identifying cost drivers, for each process

contributing to a multi-process analysis for a given design database after completion of

the manufacturing optimization process.

26

UNCLASSIFIED
CDRL No. 0002AC-4

Provided below in figure 3.2-5 is a sample of the type of graphical display the user would

see for yield versus process.

:N w # aiaises c Print C1os

Yield vs. Process
lXOO

* 100
98
96
94
92
90

-o 88
86

!7 84
82
80
78
76
74
72

OC MLB SB1 SB.S SB3 SB4 SB5 SB6 SB7 SB8 X
3 %-........,,..-...

Figure 3.2-5 Sample Yield versus Process Display Graph

3.2.6 Process Modeler

The process modeler provides the capability to model the selection logic of the

manufacturing process. The process model is decomposed into a graph of process nodes. Each

process node consists of the following:

"* Selection rules - If these rules are satisfied and this nodes dependencies are satisfied, then

the process node is included in the total process analysis model.

" Dependencies (parent process nodes) - For the node under consideration to be selected,

all of the process nodes that it is dependent on must be satisfied. An AND/OR flag is

stored as each node in the graph. If the flag is set to AND then, the node is dependent on

all of its parents. If the flag is set to OR, then the node is depending on only one of its

parents to be satisfied.

" Operations - At each process node there is a list of operations that are performed. Each

operation is annotated with an associated yield rate, rework rate, and its usage of

resources.

27

UNCLASSIFIED
CDRL No. 0002AC-4

Resources - At each process and operation node there is a list of resources attached. A

resource is any facility, person, equipment, or consumable material used in the

manufacturing process.

The MO system will allow the manufacturing specialists to capture and maintain multiple

copies of process data models through a set of utilities. The utilities will provide the model

developer with the tools necessary to graphically build and view the process logic dependency

graph, selection rules, yield/rework, labor standards, and resources. Through the use of these

utilities, the process team will have the ability to modify the process model data, to explore

alternative process approaches and plan process improvements, and then analyze the effects of

these changes on the product cost. The user interface will consist of pull down menus and pop

up forms to allow adding, copying, moving, deleting, editing, and printing of the processes in the

dependency graph. Pictured below in figure 3.2-6 is the main user interface window for the

Process Modeler with a sample process model displayed.

MAN FA T RIN PTIMIZATI N Version 1.0

PROCESS MODELER. CURRENT MODEL: PW8 FAB \

Modls 1WR Pt"T NIA HELP

.I
N

.......

'

SPreform Insert
I -1 ComponentsJ•• JComponens

Figure 3.2-6 Process Modeler User Interface Window

28

UNCLASSIFIED

CDRL No. OOO2AC-4

4. User Interface Design
The main user interface window for MO provides access to the various modules within the

system, including the product and process STEP files, the manufacturing analyzer, the

manufacturing advisor, the process modeler, an& system help. Figure 4-1 depicts the MO main

window.

.. Jdafta MANUF Mode: ______

* D~el~ Jdal MANUFCTURING O1liMIZATION V1.O oel M

W ME TO THE MANUFACTURING OPTIMIZATION SYSTE

Figure 4-1 MO Main Window

4.1 File Menu

The File menu provides a means to select and edit the product and process data and

provides access to two translators. Rapids2Step translates PWB design data from a Raytheon

propriety format to STEP. Step2Rapids translated a PWB design from STEP to a Raytheon

propriety format. Figure 4.1-1 illustrates the MO main window with the File menu pulled down.

29

UNCLASSIFIED

CDRL No. 0002AC-4

Des..ign:...ta MANUFACTURING OPTIMIZATION V1.0 Mode: PM1

WELCOME TO THE MANUFACTURING OPTIMIZATION SYSTEReAnaly-z• Avx•e

SSTEP Data

Procss Model

SRAPIDS to STEP

STEP to RAPIDS

Figure 4.1x1 File Options

4.1.1 Product/STEP Data Selection

MO allows the user to select a product/step data file for analysis, or to edit a step file in the

Step Toolkit Editor. When the Step Data button is selected, figure 4.1-2 is displayed. A user

performs a selection for choosing a design database to analyze or a process model for use

during analysis. When the Edit button is selected the STEP Editor from STEP Tools Inc. is

invoked with the selected STEP file loaded. The STEP Editor enables the user to add, delete,

and modify STEP entity instances.

30

UNCLASSIFIED
CDRL No. 0002AC-4

SELECT STEP FILE

i ,,•&2SepDala. !iii

Ciii....

...• -. .. ; . .• ,

Figure 4.1-2 Pr oduct Data S elec t ion/Ed it Menu

i4.1.2 Process Model Selection

Ile MO system allows the manufacturing engineer to capture and maintain multiple copies
i of process data models through a set of utilities. Through the use of these utilities, the process

team has the ability to modify the process model data, to explore alternative process approaches

and plan process improvements, and then analyze the effects of these changes on the product

manufacturing cost. Figure 4.1-3 shows the user interface provided for process model selection.

PROCESS MODEl

Process Model1I
Process Model?.
Process Model3

Process Model4

Process Model5
Process Model6
Process Model7/

Process ModelI/
Process Model8

IIM

:• t.'• .:..................... .• .: < • :•. ,... :

1Figure 4.1-3 Process Model Selection Menu

1 31

The. - MO system alow the m anufactuingegne ocpueadmiti utpecpe

UNCLASSIFIED
CDRL No. 0002AC-4

4.1.3 RAPIDS to STEP Translator Interface

Rapids2step is a C++ application that utilizes the ROSE database and tools developed by

STEP Tools Inc. The program reads the RAPIDS Structured and Library Databases

(RSD/RLD) using the RAPIDS Procedural Interface. For each RSD and RLD file type, a

function of the form rsd_read_xyz_record0 is called where xyz is the type of record requested.

The function returns a pointer to a structure containing the data of the next unread record from

that particular RAPIDS database file. A persistent STEP object of the appropriate class is

generated using the ROSE pnew instruction. The attributes of the object are populated from the

appropriate data in the structure returned by the rsd-read_.xyzrecord call and the object is

added to a persistent list of objects of that type. Once all of the records have been read from the

RSD and RLD databases and the corresponding STEP object lists k-,ve been created, the STEP

file is created and the STEP objects are written to it by the ROSE STEP filer. See figure 4.1-4

for an illustration of rapids2step process.

SProcedural toSTEP SE
,'P Interface STEP Filer fl

Figure 4.1-4 RAPIDS to STEP Data Flow

The MO system provides the user with an interface to the rapids2step translator. The

interface is shown in figure 4.1-5.

::- :::::::::::::: •.'::::::$:: - . •.......

M: 'A .. : •:::: •::;:.........::.

Figure 4.1-5 RAPIDS to STEP Form

4.1.4 STEP to RAPIDS Translator Interface

Step2rapids is also a C++ application that utilizes ROSE and tools developed by STEP

Tools Inc. The program reads a STEP file conforming to the EXPRESS schemas developed as

part of this project. The ROSE STEP filer is used to read the STEP file into instances of classes

32

UNCLASSIFIED
CDRL No. 0002AC-4

created by the express2c++ compiler. Since these STEP objects were stored in persistent lists,

these lists are still available in the STEP file. The file structures for the RAPIDS RSD and RLD

are created. Each of the STEP object lists is traversed and for each object in the list an

appropriate C structure corresponding to the RAPIDS procedural interface is created and its

fields are populated with the values of the corresponding attributes of the STEP object. A call is

then made to the appropriate rsd write-.xyzrecord of the RAPIDS procedural interface where

xyz is the type of RSD record to be written. See figure 4.1-6 for an illustration of the

step2rapids process.

SROSE STEP RAPIDS RS

STEP _b to Procedural
Y- FUiler RAP:ID S Interface

Figure 4.1-6 STEP to RAPIDS Data Flow

The MO system provides the user with an interface to the step2rapids translator. The

interface is shown in figure 4.1-7.

.....: ...::.: . .:.:.?: : :.:.:....

............

:::•,ii ::::::::::::::::::::::: •!iiii!}•i:ii~i~iiiii iii:i:i

Figure 4.1-7 STEP to RAPIDS Form

4.2 Analyzer Form

The MO system provides the user with the ability to perform a manufacturability analysis

based on a selected manufacturing process model versus a particular product design database

through the analyzer button on the main window. 'I he analyzer has five options to choose from:

process flow, yield, rework, labor time, and cost. Process flow selects the appropriate processes

required to build the product based on the selected process model. Yield and rework calculate

the overall yield and rework rates of a process on an operation by operation based on the

selected process flow. Labor time calculates the ideal time to perform the processes on an

33

UNCLASSIFIED

CDRL No. 0002AC-4

operation by operation basis. The yield rates are incorporated to project the estimated actual

times. Cost utilizes the ideal and estimated actual labor times by multiplying them with the

resource(s) labor rate(s) to obtain the ideal and estimated actual cost of each process and

operation, as well as, the cost of the entire part. When a user selects the analyzer button, he/she

must at least select the process flow option since this is the input to all other analysis options.

Figure 4.2-1 depicts the form which is displayed when the analyzer button is selected off the

Main Window. The user can then select the type(s) of analysis to be performed.

....... .•. !:..:: i. : .

i S Deesn: .Jdat MANUFACTURING OPTiMIZATION V1.0 Md: PMI

WECME TO THE MANUFACTURING OPTIMIZATION SYSTE

ANALYZER

oao
03 Rs•

L abor Th"n

all Cost

•~~~~~~~ ~~~•! • •! .. t:•:•:i

Figure 4.2-1 Manufacturing Analyzer Form

4.3 Advisor Window

The Manufacturing Advisor module provides the capability of viewing the analyzer results.

The user can select analysis runs to view. The user can display process, quality, or costing

results as graphs, and can also view complete analysis data to the screen or to file in report

format. Figure 4.3-1 illustrates the Manufacturing Advisor window which is displayed when the

user hits the Advisor button on the Main Window.

34

I UNCLASSIFI'ED
CDRL No. 0002AC-4

3ein ../data MANUFACTURING OPTIMIZATION Mo 0 del: PM1 ...
WECME TO THE MANUFACTURING OPTIMIZATION ADVISO

froom oBwy Csting An-BTO
X- a~smRr Grph, Gai Gntphs Reports Mr

33

I Figure 4.3-1 Manufacturing Advisor Window

34.3.1 Select Analysis Runs

The MO system supports viewing of one or more analysis runs so that the user can visually5 see the results, as well as visually compare analyses. Figure 4.3-2 illustrates the form that is

displlayed when the user hits the Select Analysis Runs button on the Manufacturing Advisor3 Window. The user can select the run(s) which he/she wants to view. The default selection is the

analysis results which corresponds to the last analyzer run performed.

I3

UNCLASSIFIED
CDRL No. 0002AC-4

Design: .Jdala MANUFACTURING OPTIMIZATION V1.0 Model: PM1

WECME TO THE MANUFACTURING OPTIMIZATION ADVISOI

F2Runs ec A

m SELECT ANALYSIS RUNS

•Rum

4.alroes RuG D

WheteFPo s gurap b n iScsel Analyes Runs a iru

i graphically displayed. The graph can be expanded or compressed by the user to different levels

of abstraction by selecting the diamond shapes on the drawing. Each process is displayed as a
S~square button with the name of the process shown inside. Figure 4.3-3 illustrates the resulting

process flow graph for one set of analysis results.

436

UNCLASSIFIED
CDRL No. 0002AC-4

MANUFACTURING OPTIMIZATION Version 1.0

WLOE TO THE MANUFACTURING OPTIMIZATION SYSTE il

Aay Rum Graphs Grapft Rsponts MAI'

SB4

SB5

Figure 4.3-3 Process Graph

The user can then chose to select a process button on the graph in order to see the analysis

details for that process including: process name, yield and rework percentage, production

quantity, rework cost, ideal FAIT (fabrication, assembly, inspection, and test cost), and the

estimated actual FAIT. If that process has a set of operations attached to it, the user can also

request to view them graphically. Figure 4.3-4 illustrates the form that is displayed when a

particular process is selected.

37

UNCLASSIFIED
CDRL No. 0002AC-4

.MANUFACTURING OTMIZATION V1.0

WE CME TO THE MANUFACTURING OPTIMIZATION ADVISO

S..- • .'. ;

FiArm"*4 RuPs Graph Gr oces Grels VewOing F

Card
Yhied (%): Prod. OTY: 15

P~workRe mok (S): (1ZZZI0
FAMl. Actual FAMl$): 122.07 I

-------------to s b
..-. __ ___ ____~. - ::..::. *.

Figure 4.3-4 Process Results Viewing Form

If the user chooses to view the available list of process operations, they will be displayed in

a separate window. Each operation is displayed as a circle button with the name of the operation

shown inside. The window identifies the process that the operations belong to, and allows the

user to print and close that window. The user can then decide to select an operation button on

the graph to see the analysis details for a particular operation. The details include operation

name, setup and run time, efficiency rate, yield and rework percentage, production quantity,

rework cost, ideal FAIT (fabrication, assembly, inspection, and test cost), and the estimated

actual FAIT. If that operation has a set of design entities (features) contributing to the quality of

the board, the user can request to look at the details. Figures 4.3-5 and 4.3-6 illustrate the

process operations viewing window, operation details form, and the design entity form for

displaying the quality issues.

38

UNCLASSIFIED

CDRL No. 0002AC-4

........ .8

.........n

S......: R u...

Src. 82 Pnri ~

Y~~Id~ .: .~Z .rd ..Y [...

Operation;s:::: Pdt a cn n 109 Efcpper Raft 3.1

mewor Flw*
Figure 4.3- Opertio Desig EniteVewnFr

i i i i 39

UNCLASSIFIED

CDRL No. 0002AC-4

4.3.3 Available Quality Graphs

The MO system provides for graphically displaying the quality results associated with

analysis runs including graphs for yield, rework, and production quantity. Figure 4.3-7

illustrates the Advisor Window with the Quality Graphs menu pulled down.

* ~.: ..• r MANUFACTURING OPTIMIZATION V1.0 Model: "Ma

WELCOME TO THE MANUFACTURING OPTIMIZATION ADVISO

S~Prod. QTY¢

1/

.

I................

Figure 4.3-7 Quality Graphs

4.3.3.1 Yield Graphs

The type of yield quality graphs available are yield rates versus processes and yield rates

versus operations associated with a particular user selected process. Figure 4.3-8 illustrates the

pull out menu for the quality yield graphs. The graphs are displayed in a separate window

where the user can select to display the data as a bar, stacked bar, line, or pie chart. The yield

defaulting display will be a line chart. A sample line graph of yield versus process is depicted in

Figure 4.3-9.

40

UNCLASSIFIED

CDRL No. 0002AC-4

WECME TO THE MANUFACTURING OPTIMIZATION ADVISOI

AnalsisRun P~a Figure 43 Yiel Graphns

Yield Vs. Proces
100m

98dv po.
96~

10- 84

78
76
74
72

.88__ __.

841

UNCLASSIFIED
CDRL No. 0002AC-4

If the user wants to view yield versus process operations figure 4.3-10 is displayed so that

they can select from the available processes to identify the set of process operations. Figure

4.3-11 illustrates the resulting yield versus operations line chart for the selected process.

AVAILAB3LE PROCESSES

...-..

ES .~...

K..

Pri,!cA

MLB Yield VesusOerto Nme
K.: se

98 yi. irr1~. irn ,--rri~a-r 1,.i-yiiS -r

84L0L LM L J.C lJ LLLA J.LL 1JJ.L l J. MLL

FiurL.31 Yield Versus Operations Graphr

Ifteue10t0ocmaete il ae esspoesfr w us esewudslc
the ~ ~ ~ ~ ~ ~ ~ ~ .. anlyi rusfo.h.or.ne.h eec nlssRn btoadte slc ils

42rrT n-

UNCLASSIFIED

CDRL No. 0002AC-4

Process under the Quality Yield buttons. Figure 4.3-12 illustrates a sample yield versus process

line graphs for two selected analysis runs.

Yield versus Process
00 • ...

e ~ ~ ~" ,. , ,. . ,. . ., . .

I I I I I I I I

YiRuldYveldu Processild

.0. ...**. *.*.*.*.. . .*.L ~ .* *,*

I I I I I I

70 ...5 , ,

"•I0 '- 04 0 Mt LO (... r1,- 00
0. _i CO r CO COl: CO e O ,") UI)

i mti"Run= Yield ""- Run3 Yield

Figure 4.3-12 Yield versus Process Comparison Graph

4.3.3.2 Rework Graphs

The type of rework quality graphs available are rework rates versus processes and rework

rates versus operations associated with a particular user selected process. Figure 4.3-13

illustrates the pull out menu for the quality rework graphs. The graphs are also displayed in a

separate window, like the yield graphs, where the user can select to display the data as a bar,

stacked bar, line, or pie chart. The rework defaulting display will be a bar chart. A sample bar

graph of rework versus process is depicted in Figure 4.3-14.

43

U UNCLASSIFIED
CDRL No. 0002AC-4

* Design. ..Jdala MANUFACTURING OPTIMIZATION V1 .0 Model: PM1

WECME TO THE MANUFACTURING OPTIMIZATION ADVISO %1

Graay Rns 0ph Graphs Graphs Report WAN'

U%

V S. processI ~ ~~prod. OTY Rrv p

X.

... . . -. ~ .~X..

I Figure 4.3-13 Rework Graphs

. .s . .. ' . .4....

*~ *~s~.#Pnnt be

3 Rework Cost Per Process
25

22.5I20 -...... ..
........R17.5 X
e

1i2 .5 -
10

r17.5
k

2.5

U r~d1..BS~SB2 SB3 SB4SB B

£

Figure 4.3-14 Rework versus Process Graph

3 44

1 UNCLASSIFIED

CDRL No. 0002AC-4

I Just like with the Yield versus Process Operations graphing capabilities, the user must select

the associated process before a Rework versus Operations graph will be displayed. Figure 4.3-

1 15 illustrates a sample bar chart of rework versus operations.

.,X -M 00

MLB Rework versus Operation Number

40

R
30e 25

W
20

015
r 10
k

~~~i i i i i I II H I HI I H

0) W in C in V V t 0D (D 00 a 0-
N" CV C) 0 Cy (0o O0 Co 0CD (D CO (n
I-4 CO 03 0v M Ln CD (D

Operation Number

Figure 4.3-15 Rework versus Operations Graph

4.3.3.3 Production Quantity Graphs

The type of production quantity graphs available are quantity rates versus processes and

quantity rates versus operations associated with a particular user selected process. Figure 4.3-16

illustrates the pull out menu for the production quantity graphs. The graphs are also displayed

in a separate window, like the yield and rework graphs, where the user can select to display the

data as a bar, stacked bar, line, or pie chart. The rework defaulting display will be a line chart. A

sample line graph of quantity versus process is depicted in Figure 4.3-17.

45



UNCLASSIFID
CDRL No. 0002AC-4

.1 . ............. . 1.. .

....... ..... '

Figure........... .. 31 Production..Quantity.Graphs

ProductionQuantiyes. Rporoces MAN.
155w

150T ro.T s.Pos

145.OY s On

Fiur 1406PoucinQatiyGah

.... 135.

110

105
U C ML140B S3S4S5SB B B

a.**::~' 135...

. . . . .. 0*..

t. . ..125.. IX-... .

120. '~

Fiur 4.17PoutonQatt1esu5rcs rp

1146



UNCLASSIFIED

CDRL No. 0002AC-4

Just like with the Yield and Rework graphing capabilities, .he user must select the associated

process before a Production Quantity versus Operations graph will be displayed. Figure 4.3-18

illustrates a sample line chart of quantity versus operations.

. ~ ~ ~ ..... .. ..

............. . . . .

Production Quantity vs. MLB Operations

140

130
Q
T 120
y

110 N
100 - 0l 1

0 0 0 C> LO. 0 CD ' 0 Cn LO 0 W - 0
C> IV I M~ N 10 10 MDC - ' ' CD 0 o

Opno

Figure 4.3-18 Production Quantity versus Operations Graph

If the user wants to compare the production quantity rates versus process for three runs,

he/she would select the analysis runs from the form under the Select Analysis Runs button, and

then select Prod. QTY vs. Process under the Quality Prod. QTY buttons. Figure 4.3-19

illustrates a sample quantity versus process line graphs for three selected analysis runs.

47



UNCLASSIFIED
CDRL No. 0002AC-4

*~' Production QTY versus Process

160 ------..- ---- r--.-- -

a 140~ --------
, 1 

I

15-------- I----- I------------------- ..............

12-'-------------

100 --- -- ------

CCA MLB SB1 SB2 SB3 SB4 SB5 SB6 SB7 SBB

~* Runi Qty ini Run2QOty Run3QOty

Figure 4.3-19 Production Quantity versus Process Comparison Graph

4.3.4 Available Costing Graphs

The MO system provides for graphically displaying the costing results associated with

analysis runs including graphs for time, cost, and cost details. Figure 4.3-20 illustrates the

Advisor Window with the Costing Graphs menu pulled down.

48



UNCLASSIRIED
CDRL No. 0002AC-4

08819~n: ..,Jdaa MANUFACTURING OPTIMIZATION V1.0 Mo :PM

'.:.*.. *., ,:i. •:.:.

Figure 4.3-20 Costing Graphs

4.3.4.1 Time/Cost Graphs

The type of time/cost quality graphs available are time or cost versus processes and time or

cost rates versus operations associated with a particular user selected process. Figure 4.3-21

and figure 4.3-22 illustrate the pull out menu for the quality time and cost graphs, respectively.

The graphs are displayed in a separate window where the user can select to display the data as a

bar, stacked bar, line, or pie chart. The time default display will be a line chart, and the cost

default display will be a bar chart. A sample bar graph of ideal/actual cost versus process is

depicted in Figure 4.3-23.

Just like with the Quality graphing capabilities, the user must select the associated process

before a Time or Cost versus Operations graph can be displayed. Figure 4.3-24 illustrates a

sample bar chart of ideal/actual cost versus operations.

49



UNCLASSIFIED
CDRL No. 0002AC-4

FD-sgn: /'do MANUFACTURING OP11MIZATION V1.0 M~odel: PMi ý ...

~ WELCME TO THE MANUFACTURING OPTIMIZATION ADVISO~

* Analysis Pura Graph Graphs Graphs Rtpfs W Fa

Tirns vs. op4s.

Figure 4.3-21 Labor Time Graphs

* M1n -Jdala MANUFACTURING OPTIMIZAflON VI.0 Model: PMi

FGureph Grap2hCstGah

Ti0t



UNCLASSIFIED
CDRL No. 0002AC-4

Ideal/Actual Cost Per Process
S 400

300 ______

UIdeal FAIT
200

*Actual FAIT ~ ~:

100

50

CCA PWB Total

Figure 4.3-23 Cost per Process Graph

g ms-V5

.. ih .. ....... w ... h ..~ ...... ... C...s..------

MLB Ideal/Actual Cost Per Operation

30"

20-

10-
5,

0- Ople qp

- w IVI c fýr .N G

- Ideal Cost VdActual Cost V .SV '

* ......... . ..... . ......I:...,. I I I
. . .. . ~....... ... .................

. ................. . . ...... ....... . V .....

Figure 4.3-24 Cost Per Operation Graph

51



UNCLASSIFIED

CDRL No. 0002AC-4

4.3.4.2 Cost Detail Graphs

The type of cost detail graphs available are product breakdown and process breakdown

associated with a particular user selected process(es). The graphs are displayed in a separate

window where the user can select to display the data as a bar, stacked bar, line, or pie chart. The

cost details default display will be a pie chart. A sample pie chart of a product breakdown is

shown in figure 4.3-25, and a sample pie chart of a product process breakdown is shown in

figure 4.3-26.

Board Cost Breakdown

I PWB FAIT

SResource ,.......
i~

CCA FAIT
Scrap Rework

Figure 4.3-25 Cost Details Graph for Product

52

S. . • -• I I . . ..~ll l l Ii l



UNCLASSIFIED
CDRL No. 0002AC-4

CCA Cost Breakdown I FAIT

U Labor

* Ecpi pm ent

..". FadiIity

Sonsum a WeMater i a

* Rework

Scrap

Figure 4.3-26 Cost Details Graph for Process

4.3.5 Analysis Reports Form

The Analysis Report button provides the means to generate reports for the results produced

by each process participating in an analysis. This includes the ability to view process flows,

yield and rework, cost, and requirements. A final summary report, identifying cost drivers, for

each process contributing to a multi-process analysis for a given design database can also be

generated. Figure 4.3-27 is displayed when a user selects the analysis report button. The user

can then select the type of data that he/she wants in the output report.

53



UNCLASSIFIED
CDRL No. 0002AC-4

[-*asign* .Idwa MANUFACTURING OPMiMIZATION V1. XXoel M

. . . . .c .......
Figuret 4.3-2 Anlyi ReportsFor

Providd belo is a ample REPORTSgnrtdfo h auatngAvsrbsdo h
proces flw an corrsponing ieldresuls fo a P...abca....prcess

Fabriction rocessSelecion/Cot Estmato Reoo

MLB -layer 1, 1 OVERLL YILD is94 prcen

Ovno Description Ideal(S Actual(s) Rwor()YedRwrq nt
10~~~~~~~~~eu *mrprn .13 01 .0 0 .0 3

30~~~~~ o.dtra .1 1.1 0.0 10 0.0 .137.
40 bae paels 0444 .44 000 10 0.00 13

50 ly u 3.23 312 .00 100 .00 13
60 lainate0.600 0.80 .00. 94.0000.13

160es electr crrsondessyel 0.66lt 1o 0.6 0.00 100iato 0p000e117

Fabrication Prield SnalectionCsstmto Renortt

MLB - layers 1, 14 OVERALL YIELD is 94 percent

On2no Dsg etr Description Value Scran Per Feature O(no Yield Rwr nt

60 14layer and 8 .2 subtrte N/A 0 60.000 947

130 annulatooing 8.2 02 .00 10 8.00 0 928

180 aspect rastio 4.1 07 .00 2.00 .00 987

Fabrcatin Yild nalyis Rp54



UNCLASSIFIED

CDRL No. 0002AC-4

4.4 Modeler Window

The Process Modeler will provide manufacturing engineers with the ability to model the

manufacturing process of their products. The process model consists of a directed dependency

graph. At each vertex of the graph is a process node. Each process node consists of the

following:

"• Selection rules - If a node's rules are satisfied and its dependencies are satisfied, then the

process node is included in the total process analysis model.

"* Dependencies (parent process nodes) - For a node to be selected, all of its dependencies

must be selected based on the and/or flag.

"* Operations - At each process node there is a list of operations that are performed. Each

operation is annotated with an associated yield rate, rework rate, and its usage of

resources.

"* Resources - At each process and operation node there is a list of resources attached. A

resource is any facility, person, equipment, or consumable material used in the

manufacturing process.

The Process Modeler provides functionality to create new process nodes and edit, copy, and

delete existing nodes. Included in this functionality, is a means to specify selection rules for

process nodes, define operations that are carried out for a process node, and identify the

dependencies among process nodes. Associated with each operation are scrap and rework rates,

as well as, resources required to carryout the operation. The Process Modeler window is shown

on Figure 4.4-1. A sample process model is displayed.

55



UNCLASSIRED
CDRL No. 0002AC-4

... .................. ........

*MANUFACTURING OPTIMIZATION Version 1.0

PO SS MODELER. CURRENT MODEL: PWB FAB

&Nuw mu &A. 2fat MI P.uW HELP

~ ~ CCAPreformCCA ~Components Cmoet ý

,.... \.. . . .. . . . ....... . ... *...:...*.... . ....... ,

Figure 4.4-1 Process Modeler Window

The user is provided the ability to create new process models and select, delete, and copy

existing process models. These operations are done through the Process Model Selection

window shown in figure 4.4-2 which is accessed by selecting the Models icon from the Process

Model menu bar shown in figure 4.4- 1.

SELECT PR~OCESS MODEL

.. ~ ~ .. M......

Model 4
- Model 5
-. Model 6

Model7

Now S.a N W"W___ Copy

Figure 4.4-2 Process Model Selection Window

56



UNCLASSIFIED

CDRL No. 0002AC-4

4.4.1 Process Node Definition

Defining a new process node will consist of selecting the Add icon from the Process

Modeler Window menu bar and specifying the name of the node to the Process Node

Specification window shown in figure 4.4-3. The interface will then support the definition of

dependencies to other nodes and defining selection rules and operations. It will be possible for

process nodes to be copied from a template library or stored to the template library.

Editing existing nodes will be accomplished by graphical selection of the desired node from

the process modeler window (see figure 4.4-1) via the mouse. Once the process has been

selected, the Process Specification window will be displayed with the data for the selected

process node loaded. Existing nodes are deleted by selecting the Delete icon and then the

process node to be deleted.

Process Specificstion

.:.:.. ........::..:.:...

A Rules Operatl ea

Processi

Process3 Process4
Process4 Process5 %
Process5 Process7
Process6 D*109
Process7

. . ........

.......... ...• .... .... '• :f.."; . , .,..... . .:

.... i: .. .. .. . . .... ... .::::::::::

Process1

Prooess2
Process3 U i
Process4

Proces5

Process6

Process7
"Use Template Save As Templae

Figure 4.4-3 Process Node Specification Window

57



UNCLASSIFIED

4.4.2 Selection Rules Definition DLN.0 2A-

The window in figure 4.4-4 will support the creation, modification, and deletion of selection

rules for a process node. There will be an implicit OR between each of the rules in the list for a

process node, iLe., if one of the rules in the list is satisfied, then the node will be selected.

Rules

Enti .Attl cexlstsx, &&EJntI.Att2 ="pH" &&
Ent2.AM = TRUE && EMS6 -coxists3

EntS.Att4 -cuxists && Ent7Att3.Att4 := 100
Ent7AtS TRUE Ed

........ .....

-------.-.-.-.- ...... .....

Figure 4.4-4 Selection Rules Window

When either a new rule is to be defined or an existing one modified, the Rule Specification

window shown in figure 4.4-5 will be presented. This window will also be utilized to specify

scrap and rework rate rules and operation setup and operation run time rules.

58



I ~UNCLASSIFIED
CDRL No. 0002AC-4

....... J..I ~ ~.......:* ... ~ ~

I.......E...

....... ..

. . . . . . ..... ... . . . . .... ''.' .

Figue 44-5Rule Specification:

4.43. Opraio De....nition.
.I...The.... window inl.t fiur 4. t4-6wil suppor Ethet cration, moi7aioaddee4no

opraios ora ro essnode.AtlTU

Ix
U11,V1,1
IX

' 591N



UNCLASSIFIED
CDRL No. 0002AC-4

Operati aons

Operatioril

Figue 44.6OpeainsWno

Operatins willbe creaed and OdeaifidtruhteOeaoosSeiiainwno

shown in figure 4.4-7. ~ Operations a estrdiancoedfmalbayofxsig
operatins. Atached o eachoperaton waib itofrsucstataeuiie t efr h

Operation.Aso attached cetod on oiidthoghperations wilbSpito crpadrwr aecfato rules.

op ratonSecfcain -

Isr~ .. PR..our

scrperaM.

Operalion7 .....

Figure 4.4-7Operations pcfctinWno

60rtin Udt



UNCLASSIFIED

CDRL No. 0002AC-4

4.4.3.1 Scrap Rate Definition

Attached to every operation is a list of scrap rates. A scrap rate can be associated for a given

entity attribute or a set of entity attributes. This will be specified through an ordered list of rules

and scrap rates. The scrap rate will be established using the scrap rate equation attached to the

first scrap rule in the ordered list that is satisfied. A user interface supporting this functionality

is shown in figure 4.4-8. The scrap rules and the scrap rates will be specified through the Rule

Specification Window shown in figure 4.4-5.

Scrap Spefication

MI.MP.• --.-----. ON......... ..

Entltyl.Att2 ="PTH" & Entity5AMt 0.30

Edi

Entityl.Att2M Entlty2.AttS/ Entty3.Att

I| . . .. . .. . . .,. . ........ . ......... ... . . , , .. ... . " .. ....... • •. ,, ••....... .. ...... - . - .. .. ..

......................:.,...... ...... ....... •..•.... • i........ .•..,..., ........ •. ,,. ........... .,,, .,... •

Figure 4.4-8 Scrap Specification Window

4.4.3.2 Rework Rate Definition

Attached Ito every operation is a list of rework rates. A rework rate can be associated for a

given entity attribute or a set of entity attributes. This will be specified through an ordered list

of rules and rework rates. The rework rate will be established using the rework rate equation

attached to the first rework rule in the ordered list that is satisfied. A user interface supporting

this functionality is shown in figure 4.4-9. The rework rules and the rework rates will be

specified through the Rule Specification Window shown in figure 4.4-5. Also attached to each

rework rule rate pair is a list of resources that is required to complete the rework activities. The

resources used along with their associated setup and run time equations will specified using the

Resource Utilization interface shown in figure 4.4-10.

61



UNCLASSIFIED
CDRL No. 0002AC-4

KIM Rework Speclflcetlon
..... .............. .....................

EntM AttM "PmH" & Enti 5.Att6 G 0.30No

R M. a ........... E jd j

Entltyl.AttM Entlty2.Att5 Entlty3.AMt

. . .. ~~~~~~~~~~.......... .x~ .4. 44ok ' ............I

.S... .go ...... S

S. . .x...................-..o..... . .. S..>.:.:..:..C..........:...

..:.:. ..::;s..:.:.:............ . .

Figure 4.4-9 Rework Specification Window

4.4.4 Resource Definition

For each operation performed, a list of needed resources must be specified. When resources

are utilized the amount of setup time and run time that is required for the resource must also be

provided so that proper costing can be calculated. Figure 4.4-10 shows the Resource Utilization

interface that will allow the process modeler to construct the list of resources utilized by an

operation. The setup and run time equations are specified using the Rule Specification interface

shown in figure 4.4-5.

62



UNCLASSIFIED
CDRL No. 0002AC-4

Resource UtIlIzation Specification

Resource I Resource I
Resource 2

gure 4 Resource U iation W d7

Reseurce N Resource N1

Entityl.At12 "Enty3.Anl

Etty1J1 AM Entlty2JAtt5 /Entlty3.Anl

• •.-V.,,'"::"•' ','• ... o. ...... . . "- ,.

i:?:.• .<•:.• .i•:•'":..•..0 ....... : ... ...... .. ... .....: . . '. .....

.... . . .. ... .: ........- ---

Figure 4.4-10 Resource Utilization Window

Figure 4.4-11 show the Resources interface which lists all of the Resources that are
currently stored in the process model. The interface supports creating new resources, and

editing and deleting existing resources. To access the Resources interface the user would select

the Resources icon from the menu bar shown in figure 4.4-1.

Resourcees

... Resource 1
Resouroe 23*

Resource 3No

Fg ouroe N.-1RsureWmo

The esouce peciicaiongntrae 4.-1 Rshourc inWignedo-2w hi nefaei ue

specifying new resources and modifying existing ones. Attached to each resource is a list of

63



UNCLASSIFIED

CDRL No. 0002AC-4

user definable parameters or attributes. Each resource falls into one of the following four

categories: labor, facility, equipment, or consumable resource.

Resource Specification

............ . .. . .... "...

"M " .u.actursr "ACME ..-.

Figure 4.4-12 Resource Specification Window

Figure 4.4-13 shows the interface for specifying user definable parameters for resources.

Parameter Specification

....... . . . . .....~......

: . . ........ . ...... . ...

Figure 4.4-13 Resource Parameter Specification Window

Figure 4.4-14 shows the interface for specifying a facility resource.

Facility Specification

O K

Figure 4.4-14 Facility Resource Specification Window

Figure 4.4-15 shows the interface for specifying an equipment resource.

64



UNCLASSIFIED
CDRL No. 0002AC-4

Equipment Specification

.. .< .....

Figure 4.4-15 Equipment Resource Specification Window

Figure 4.4-16 shows the interface for specifying a consumable material resource. Materials

are consumed at different rates by different resources therefore a list of resources with the rate

at which the material is consumed is provided.

Consumable U@Maeil Specification

....... .............. eure 1 0.87
.. .... Resource 2 1.23

Figure 4.4-16 Consumable Material Resource Specification Window

An individual resource, consumable material pair is specified in the Resource/Consumable

Specification Window shown in figure 4.4-17.

65



UNCLASSIFIED
CDRL No. 0002AC-4

Resource/Consumasbl.Speciflcation

Figure 4.4.17 Resourc/osmbe SpcfctinWno

~~Figure 4.4-11Lbo Resource/Cnual pcfcto Window

Figure 4.4-19 shows the interface for specifyinga labor rt resource..

..........

Figure~ 4.-9Lbo .aeReoreSpcfctinWno

2 8.4 66



UNCLASSIFIED
CDRL No. O002AC-4

5. Detailed Object Oriented Design
This section provides an object oriented specification of the MO system. It contains the

detail design of the underlying classes and objects which make up the system, excluding the

user interface. The detailed design of the user interface can be found in section 4, where we have

prototyped the look and feel of the system. The Object Oriented Design (OOD) methodology

used is defined in Object Oriented Design with Applications by Grady Booch, (See reference 7

in section 2). The Booch OOD methodology provides a means of graphically illustrating class

and object hierarchies and relationships, definition of system state diagrams, and the

specification of class methods in the form of C++ code directly.

The class specifications defined in this section were developed as follows: the EXPRESS

information modeling language was used to model both the product data and the MO process

data (Section 6 provides a complete EXPRESS schema specification of the product and process

models). Using the express2c++ compiler which is part of the STEP Programmers Toolkit

(STEP Tools Inc.), the EXPRESS entities were translated into C++ classes. The generated

classes are structured such that all of the class attributes are declared as private. Public access

and update methods were generated for each private attribute. Additional calculation and

monitoring methods required for each class were then added to the class manually.

Figure 5-1 illustrates the top-level class categories for the MO system. The sections to

follow will provide the details of each of these categories, including the applicable class and

object diagrams, state transition diagrams, and class specifications.

67



UNCLASSIFIED
CDRL No. 0002AC-4

i Modeler

ProductDesign ProcessModel""- l
Analyzer

RequirementTask Advisor User Interface
global

Figure 5-1 Top-Level Class (Categories) Diagram

5.1 ProductDesign

An EXPRESS product model was developed to model PWB data and electronic component

library data (See section 6.2 for this specification). The model consists of approximately twenty

interrelated EXPRESS schemas consisting of more than one hundred and fifty entities. C++

source code was produced by the express2c++ compiler as described above. The following

specification is for the "routerec" C++ class which corresponds to the "routerec"

£ EXPRESS entity defined in section 6.2.1.15.

/* Class Declaration */L ROSEDECLARE (route rec) : virtual public RoseStructure {
private:STR PERSISTENT-signal;

STR PERSISTENTroute_type;
STR PERSISTENT_status;
pin.namerec * PERSISTENT_target_.name;
pin namerec * PERSISTENT objectjname;
pin.rec * PERSISTENT-target-pin;
pin-rec * PERSISTENT-object-pin;
pointrec * PERSISTENT_target_loc;£ pointrec * PERSISTENT'objectJoc;

* 68



UNCLASSIFIED
CDRL No. 0002AC-4

BOOL PERSISTENT-protect;
int PERSISTENT t.arget layer,
int PERSISTEN-fhobject- ayer,
ListOfsegmentjrec * PERSISTENT..path;
int PERSISTENT-shieldjd;
int PERSISTENT-pin-.pair-index;
pin-pairý-rec * PERSJSTENT-pin-pair,
ww-route-data~rec * PERSISTENT-ww-data; STR PERSISTENT-comment;

public:
ROSE_-DECLARE_-MEMBERS (routej-ec);

I* Access and Update Methods *
1* signal Access Methods *
STh signal()
I return ROSEGETPRIM (STR,PERSISTENT-signal);

void signal (STR asignal)
I ROSEPUTPRIM (STR,PERSISTENT-signaI,asignal);)

1* route-type Access Methods *
STR route_type()
I return ROSE_GET_PRIM (STR,PERSISTENT-route-type);

void route-type (5Th aroute-type)

IROSEPUTPRIM (STRPERSISTENT-route..sype,aroute..sype);

/* status Access Methods *
STR statuso
I return ROSE_GET_PRIM (SThPERSISTENT-status);

void status (STR astatus)
.1 ROSEPUTPRIM (STR,PERSISTENT-status,astatus); J

/* target-name Access Methods *
pin name_rec * target naie()

(return ROSEGETOBJ (pin-narnejrec,PERSISTENýtjarget~name);

void target...name (pin..narne_re * atarget-nare)
{ROSEPUTOBJ (pinjiame-recPERSISTENT-targeC-name,atarget-name); I

/* object....name Access Methods *
pin-name -rec * object name()

return ROSEGJETOBJ (pinname-recPERSISTENT objecname);

void object~name (pin-name_rec * aobject~name)
ROSEPUT_-OBJ (pin-name-recPERSISTENT obje name,aobject name);}

/* target-pin Access Methods *
pin-rec * target-pin()

69



UNCLASSIFIED
CDRL No. 0002AC-4

{return ROSEGETOBJ (pin-jec,PERSISTENT..target-pin);

void target-pin (pinjrec * atarget-pin)
(ROSEPUTOBJ (pin-rec,PERSISTENT taget-pin,atarget-pin);

/* object-..pin Access Methods *
pin ..rec * object-..pin()

(return ROSEGET_-OBJ (pin-recPERSISTENIýobject-pin);
I

void object-..pin (pin rec * aobject...pin)
I ROSEPUTOBJ (pinjemc,PERSISTENT-object...pin,aobject-pin);J

/* targetioc Access Methods *
point~rec * targetjoc()
f return ROSEGETOBJ (pointjrecPERSISTENT-target-loc);
I
void target loc (point-rec: * atargetiloc)

IROSE_PUTOBJ (pointjrecPERSISTENT targetjloc,atargetjloc);

/* object-loc Access Methods *
point~rec * object-loc()
I return ROSEGET_OBJ (pointjrecPERSISTENT-object-loc);
I
void object loc (pointjrec * aobject joc)

I ROS-EPUT_-OBJ (point-rec-,PERSISTENT -objectjloc,aobjectjloc);}

I* protect Access Methods *
BOOL protect()

{return ROSEGET_PRIM (BOOLPERSISTENT _protect);
I
void protect (BOOL aprotect)

I ROSEPUTPRIM (BOOL,PERSISTENT-protect,aprotect);}

/* target-layer Access Methods *
int targetjlayer()

{return ROSEGETPRIM (intPERSISTENTj-arget-layer);

void targetjayer (int atarget-layer)
ROSE_PUTPRIM (intPERSISTENT..saget layer,atargetjayer);

1* object-layer Access Methods *
int objectjlayer()

return ROSEGETPRIM (intPERSISTENT-object-layer);

void object ayer (int aobjecrjayer)
ROSEPUTPRIM (int,PERSISTENT object-layer,aobject-layer> }

70



UNCLAS SIFIED
CDRL No. 0002AC-4

/* path Access Methods *
ListOfsegrnent-rec * patho;
void path (ListOfsegment-rec * apath)
I ROSE_PUTOBJ (ListOfsegment-rec,PERSISTENT path,apath);

ListOfsegment~rec * route-rec:: path()
if( !PERSISTENT-path)

if( this->isPersistentO)
path (pnewln (designo) ListOfsegment-rec);

else path (new ListOfsegment-rec);
return ROSE_GET_-OBJ (ListOfsegment-recPERSISTENT-path);

/* shield-id Access Methods *
int shield-idO
I return ROSE_GET_PRIM (intPERSISTENT-shield~id);

void shieldjid (int ashielc~id)
{ROSE_PUTý_PRIM (intPERSISTENT-shieldid~ashieldid);}

1* pin..pair - ndex Access Methods *mnt pin...pirjndex()
I return ROSEGETPRIM (intPERSISTENT-pin...pairjindex);

void pin-pairindex (int apin-..pairjindex)
I ROSE_PUTPRIM (int,PERSISTENT pin-pair-index,apin-pairjindex);)

/* pin-pair Access Methods *
pin-pair....ec * pin-pair()

{return ROSEGETOBJ (pin-pairj-ec,PERSISTENT -pin-pair);

void pin-..pair (pin-pairjec * apin-pair)
I ROSEPUTOBJ (pin-pairjrec,PERSISTENT-pirupair,apin-pair);

1* ww-data Access Methods */
ww -route -data-rec * ww-data()
f return ROSE_GET_-OBJ (ww-youte-data~rec,PERSISTENT-ww.Aata);

void ww data (wwjyoute-data-rec * aww_data)

IROSE_PUTý_OBJ (wwjrouteý_data~recPERSISTENT_ wwdata,aww~data);

/* comment Access Methods *
STR comment()

return ROSEGETPRIM (STR,PERSISTENT-comment);

void comment (STR acomment)

I ROSEPUTPRIM (STR,PERSISTENT_comiment,acomment);)

71



UNCLASSIFIED
CDRL No. 0002AC-4

/* Constructors */
route-rec 0;
routejrec (

STR asignal,
STR aroute-type,
STR astatus,
pinname_rec * atarget_name,
pin.namerec * aobject name,
pin-rec * atargeLpin,
pinjrec *- aobject.pin,
pointrec * atargetiloc,
point_rec * aobjectloc,
BOOL aprotect,
int atargetlayer,
int aobject-layer,
ListOfsegmenLrec * apath,
int ashield-id,
int apin-pairindex,
pin_pair_rec * apin-pair,
wwroute_data_rec * aww data,
STR acomment);

5.2 ProcessModel

The ProcessModel class is used to manage the manufacturing process models. Each

ProcessModel object contains a reference to the top node in the process dependency graph.

Each also containsthe name of the model, the dates of its creation and last modification, and the

name of the author of the model. The ProcessModel objects will be created by the Modeler

managing object. The Analyzer will traverse the ProcessModel in order to select the appropriate

analysis plan for the ProductDesign under analysis, and calculate the corresponding yield,

rework, and cost of each selected process and operation. The analysis plan is a subset of the

original ProcessModel object. The Advisor managing object will provide viewing of the

resulting Analyzer process plan. The Class Diagrams for the Process Model, Resources, and

ComplexRules are illustrates in Figures 5.1-1, 5.1-2, and 5-1.3. The sub-sections that follow

detail each of the ProcessModel, Resource, and ComplexRule classes/objects and their

corresponding methods.

72



UNCLASSIFIED
CDRL No. 0002AC-4

% Resource \
I EntityAttrName ' Utiization-!

u..n I
.,On

.. .O..n j v- -

~~**O.. 
RewoOpraiok~

Process 1 p , i Operation~~~~. 1 ! -•- - - .,.
Equat'ono..• ,,, ocos. ,.n: ... ,i•

-0. ,"n.,

'LAo ,oxo;,Scrap

ComplexRule,
% I

Figure 5.2-1 Process Model Class Diagram

Equationesource
I u1 Utilization. ,

Paamte 111 ResourceP�' I

ParaMeteria,--o R.--- On.

CoI onsu mIal .'

Figure 5.2-2 Resource Class Diagram

73



UNCLASSIFIED
CDRL No. 0002AC-4

1ComnplexRulee Rules , ,ADO

I

Tef Pae/ utoj UnaryOp

FCmigue 5.2-3tiompe~eCas iga

Opeato ~Expesionh- Stin~a7e4



UNCLAS SIFIED
CDRL No. 0002AC-4

5.2.1 ProcessModel Specification

a ProcessM ode I

edit ne4 delete select

EaProcess

Figure 5.2-4 ProcessModel Object Diagram

/* Class Declaration */
ROSEDECLARE (ProcessModel) : virtual public RoseS tructure t
private:

STR PERSISTENT -name;
Date * PERSISTENTý_creationl~ate;
Date * PERSISTENT-modifyDate;
STh PERSISTENT-author,
Process * PERSISTENTjtopProcess;

public:
ROSEDECLAREMEMiBERS(ProcessModel);

/* Access and Update Methods ~
1* name Access Methods *
STR name()

return ROSEGETPRIM (STRPERSISTENT-name);

void name (STR anamne)
I ROSEPUT PRIM (STR,PERSISTENT-name aflame); I

/* creationDate, Access tvkznods ~
Date * creationDate()

{ return ROSE_ýGETOBJ (DatePERSISTENTý-creationDate);

void creatioriDate (Date * acreationDate)
( ROSEPUT-OBJ (Date,PERSISTENTý-creationDate,acreationDate);)

1* modifyDate Access Methods *
Date * modifyDate()

return ROSEGETOBJ (DatePERSISTENT--modifyDate);

void modifyDate (biate * amudifyDate)
f ROSEPUT OT3J (Date,PERSISTENT-modifyDate,amodifyDate);

/* author Access Methods *

75



UNCLASSIFIED
CDRL No. 0002AC-4

STR author()
( ~return ROSEGETPRIM (STRPERSISTENT-author);

void author (STR aauthor)
I ROSEPUTJ'PRIM (STR,PERSISTENT-author,aauthor);

/* topProcess Access Methods *
Process * topProcess()

{ ~return ROSEGETOBJ (ProcessPERSISTENT topProcess);

void topProcess (Process * atopProcess)
I ROSEPUL-OBJ (Process,PERSISTENT-topProcess,atopProcess);

1* Constructors *
ProcessModel 0
ProcessModel(

STh anamne,
Date * acreationDate,
Date * arnodifyDate,
STR aauthor,
Process * atopProcess)

ProcessModel::newModel Q
ProcessModel: :selectModel();
ProcessModel: :deleteModel 0
ProcessModel::saveModel ();
ProcessModel: :selectModel();

/* Methods Implementation *
ProcessModel::ProcessModel ()f

PERSISTENT -name = NULL;
PERSISTENT-creationDate = NULL; PERSISTENT-nodifyDate=
NULL;
PERSISTENT_author = NULL;
PERSISTENTjtopProcess = NULL;
ROSECTOREXTENSIONS;

ProcessModel:: ProcessModel(
STR aflame,
Date * acreationDate,
Date * amodifyDate,
STR aauthor,
Process * atopProcess)

name (aname);
creationDate (acreationDate);
modifyDate (amodifyDate);
author (aauthor);
topProcess (atopProcess);
ROSECTOREXTENS IONS;

76



UNCLAS SIFIED
CDRL No. 0002AC-4

1* Additional Methods *I ~ProcessModel::newModel {
ProcessModel::selectModel(){
ProcessModel::deleteModel (){
ProcessModel::saveModel () {
ProcessModel::selectModei ){

15.2.2 Process Specification

aComnplexRule

I ~delete 43edit t ney evaluate

I aProcess

#*ed /et \ remove

anOperation aResourceg Utilization

Figure 5.2-5 Process Object Diagram

U /* Class Declaration */
ROSEDECLARE (Process) : virtual public RoseStructure I
private:I STR PERSISTENT-name;

BOOL PERSISTENT -andParents;
ListOfComplexRule * PERSISTENT-rules;
ListOfComplexRule * PERSISTENT-elimrules;
ListOfResource * PERSISTENT-resources;
ListOfRoseObject *PERSISTENT-Parents;

ListOfRoseObject *PERSISTENT-children;I RoseObject * PERSISTENTý_isibling;
RoseObject * PERSISTENTý_rsibling;
ListOfOperation * PERSISTENT-operList;3 ListOfEntityAttrName * PERSISTENT-designFeatures;

public:
ROSEDECLAREMEMBERS (Process);

/* Access and Update Methods */

1 77



UNCLASSIFIED
CDRL No. 0002AC-4

/* name Access Methods *
STR name()

I return ROSEý_GETPRIM (STR,PERSISTENThname);

void name (STR aname)
I ROSEPUTPRIM (STRPERSISTENT-name,aname);

/* andParents Access Methods *
BOOL andParents()

I return ROSE_-GETPRIM (BOOLPERSISTENT-andParents);

void andParents (BOOL aandParents)
I ROSE_PUT_-PRIM (BOOLPERSISTENT_andParents,aandParents);

/* rules Access Methods */
ListOfComplexRule * ruleso;
void rules (ListOfComplexRule * arules)
t ROSEPUTOBJ (ListOfComplexRule,PERSISTENTjrules,arules);

/* elimrules Access Methods */
ListOfComplexRule * eliniruleso;
void elimrules (ListOfComplexRule * aelimrules)

I ROSEPUTOBJ (ListOfComplexRulePERSISTENT-elimrules,aelimrules);I

/* resources Access Methods *
ListOfResource * resourceso;
void resources (ListOfResource * aresources)
I ROSE_PUTOBJ (ListOfResource,PERSJSTENT-resources,aresources);)

/* parents Access Methods */
ListOfRoseObject * parentso;
void parents (ListOfRoseObject * aparents)

{ROSEPUTOBJ (ListOfRoseObjectPERSISTEN'Thparents,aparents);

/* children Access Methods */
ListOfRoseObject * childreno;
void children (ListOfRoseObject * achildren)

ROSEPUTOBJ (ListOfRoseObject,PERSISTENT_ chilclren,achildren);

/* Isibling Access Methods *
RoseObject * lsibling()

Ireturn ROSE_-GEL -OBJ (RoseObjectPERSISTENT isibling);
void Isibling (RoseObject * alsibling)

{ROSEPUTOBJ(RoseObjectPERSISTENT-isibhing,alsibling);

/* rsibling Access Methods *
RoseObject * rsiblingo

( return ROSEGEL-OBJ (RoseObject,PERSISTENT rsibling);
void rsibling (RoseObject * arsibling)

I ROSEPUTOBJ(RoseObject,PERSISTENTjrsibling,arsibling);

/* operList Access Methods */
ListOfOperation * operListo;
void operList (ListOfOperation * aoperList)

78



UNCLAS SIFIED

CDRL No. 0002AC-4

{ ROSEPUT_-OBJ (ListOfOperationPERSISTEN7ýoperList,aoperList);

1* designFeatures Access Methods */
ListOfEntityAttrName * designFeatureso;
void designpeatures (ListOfEntityAttrName * adesignFeatures)

{ ROSEPUTOBJ
(ListOfEntityAttrName,PERSISTENT-designFeatures,adesignFeatures);

/* Constructors *
Process 0;
Process (

STR anarne,
BOOL aandParents,
List~fComplexRule * rls
List~fComplexRule * aelinirules,
ListOfResource * aresources,
ListOfRoseObject * aparents,
ListOfRoseObject * achildren,
RoseObject * alsibling,
RoseObject * arsibling,
ListOfOperation * aoperList,
ListOfEntityAttrName * adesignFeatures)

/* CLASS DECLARATION EXTENSIONS *
void newo;
void edito;
void delete(;
int selecto;

/* Methods Implementation *
Process:: Process 0()

PERSISTENT-name = NULL;
PERSISTENT_andParents = FALSE;
PERSISTENT_rules =NULL;
PERSISTENT-elimrules = NULL;
PERSISTENT-resources = NULL;
PERSISTENT-parents = NULL;
PERSISTENT-children =NULL;

PERSISTENT isibling =NULL;

PERSISTENTCrsibling =NULL;

PERSISTENT-operList =NULL;

PERSISTENT-designFeatures = NULL;
ROSECTOREXTENSIONS;

Process:: Process(
STR aflame,
BOOL aandParents,
ListOfComplexRule * arules,
ListOfComplexRule * aelimrules,
ListOfResource * aresources,
ListOfRoseObject * aparents,
ListOfRoseObject * achildren,
RoseObject * alsibling,

79



UNCLASSIFIED
CDRL No. 0002AC-4

RoseObject * arsibling,
ListOfOperation * aoperList,
ListOfEntityAttrName * adesignFeatures)

name (aname);
andParents (aandParents);
rules (arules);
elimnrules (aeliniules);
resources (aresources),
parents (aparents);
children (achildren);
Isibling (alsibling);
rsibling (arsibling);
operList (aoperList);
designFeatures (adesignFeatures);
ROSECITOREXTENSIONS;

ListOfComplexRule * Process :: rules()
if( !PERSISTENT-rules)
if( this->isPersistento)

rules (pnewln (designo) ListOfComplexRule);
else rules (new ListOfComplexRule);
return ROSE_GQETOBJ (ListOfComplexRule,PERSISTENT-rules);

ListOfComplexRule * Process :: elimruleso
if( !PERSISTENTý_elimrules)
if( this->isPersistento)

elirnrules (pnewln (designo) ListOfComplexRule);
else elirnrules (new ListOfComplexRule);
return ROSEGELýOBJ (ListOfComplexRulePERSISTENT_elinirules);

List OfResource * Process:-: resources()
( if( !PERSISTENT-resources)

if( this->isPersistento)
resources (pnewln (designo) ListOfResource);

else resources (new ListOfResource);
return ROSE_ýGET OBJ (ListOfResourcePERSISTENT-resources);

ListOfRoseObject * Process :: parents()
if( !PERSISTENT-parents)
if( this->isPersistento)

parents (pnewln (designo) ListOfRoseObject);
else parents (new ListOfRoseObject);
return ROSE,_GET OBJ (ListOfRoseObjectPERSISTENT parents);

ListOfRoseObject * Process :: childreno
Mf !PERSISTENT-children)
if( this->isPersistento)

children (pnewln (designo) ListOfRoseObject);

80



UNCLASSIFIED

CDRL No. 0002AC-4

else children (new List~fRose~bject);

I return ROSE_ýGETOBJ (ListOfRoseObjectPERSISTENT-children);

ListOfOperation * Process :: operListo
I if( !PERSISTENT-operList)

if( this->isPersistento)
operList (pnewln (designo) ListOfOperation);

else operList (new List~f~peration);
return ROSEGET_-OBJ (ListOfOperation,PERSISTENT-OperList);

ListOfEntityAttrName * Process :: designFeatures()
I if( !PERSISTENT-designFeatres)

if( this->isPersistento)
designFeatures (pnewln (designo) ListOfEntityAttrName);

else designFeatures (new ListOfEntityAttrName);
return ROSE_GETOBJ (ListOfEntityAttrNarne,PERSISTENT designFeatures);

1* Additional Methods *
void Process::new( ){
void Process::edit(){
void Process:: delete( ){
int Process::select() (I

5.2.3 Operation Specification

aScrap

anOperation

; ediPý le " Sremiove
neflw,/ add

f delet

4aRework aResource
Utilization

Figure 5.2-6 Operation Object Diagram

81



UNCLASSIFIEDCDRL, No. 0002AC-4

/* Class Declaration *
ROSE_-DECLARE (Operation): virtual public RoseStructure
private:

STR PERSISTENT-name;
STR PERSISTENT-desc;
ListOfResourceUtilization * PERSISTENT-resources;
ListOfScrap * PERSISTENT...scrapjrate;
ListOfRework * PERSISTENT-rework rate;
OpCost * PERSISTENT-cost; /* OPTIONAL *

public:
ROSEDECLAREMEMBERS(Operation);

/* Access and Update Methods *
1* name Access Methods *
STh name()

{return ROSE_GET_PRIM (STR,PERSISTENT-name);

void name (STR aname)
I ROSEPUTPRIM (STR,PERSISTENT-name,aname);

/* desc Access Methods *
STR desc()

freturn ROSE_GET_PRIM (STRPERSISTENT-desc);

void desc (STR adesc)
{ROSEPUT_-PRIM (STR,PERSISTENT-desc,adesc);

/* resources Access Methods *
ListOfResourceUtilization * resourcesO;
void resources (ListOfResourceUtilization * aresources)
I ROSEPUT_OBI (ListOfResourceUtilization,PERSISTENT-resources,aresources);

/* scraprate Access Methods *
ListOfScrap * scrap-sateo;
void scrap Sate (ListOfScrap * ascrapjate)

I ROSEPUTOBJ (ListOfScrap,PERSISTENThscrapsare,ascrap-rate);I

/* rework-ýrate Access Methods ~
ListOfRework * rework..rateo;
void rework~rate (ListOfRework * arework - ate)

{ROSEPUTOBJ (ListOfReworkPERSISTENT-reworkrjate,arework-jate);

/* cost Access Methods *
OpCost * cost()

return ROSE...GET OBJ (OpCostPERSISTENTsCost);

void cost (OpCost * acost)
f ROSEPUTOBJ (OpCost,PERSISTE-NT-cost,acost);

/* Constructors *
Operation 0
Operation(

STR aname,

82



UNCLAS SIFIED
CDRL No. 0002AC-4

STR adesc,
List~fResourceUtilization * rsuc,
List~fScrap * ascrp rate,
List fRework * arework-rate,
OpCost * acost );

/* CLASS DECLARATION EXTENSIONS *
void new();
void edito;
void delete();

1* Methods Implementation *
Operation:: Operation 0)

PERSISTENT-namne = NULL;
PERSISTENTjdesc = NULL;
PERSISTENT-resources =NULL;

PERSISTENT-scrapsrate =NULL;

PERSISTENT_reworký_rate = NULL;
PERSISTENTcost = NULL;
ROSECTOREXTENSIONS;

Operation:: Operation(
STR aflame,
STR adesc,
ListOfResourceUtilization * aresources,
ListOfScrap * ascrap rate,
ListOfRework * arew-ork-rate,
OpCost * acost)

name (anarne);
desc (adesc);
resources (aresources),
scrap sate (ascrapsrate);
reworkjrate (arework rate);
cost (acost);
ROSECTOREXTENSIONS;

ListOfResourceUtilization * Operation ::resources()
{if( !PERSISTENT-resources)

if( this->isPersistentQ)
resources (pnewln (designo) ListOfResourceUtilization);

else resources (new ListOfResourceUtilization);
return ROSEGET_OBJ (ListOfResourceUtilization,PERSISTENT_resources);

ListOfScrap * Operation :: scrap rate0
if( !PERSISTENT-scrap-rate)
if( this->isPersistento)

scrapsyate (pnewln (designo) ListOfScrap);
else scrap-rjate (new ListOfScrap);

83



UNCLAS SIFIED
CDRL No. 0002AC-4

return ROSE_.GET_OBJ (List~fScrap,PERSISTENT scrap-rate);

ListOfRework * Operation :: rework rateo
Iif( PERSISTENT-reworkjrate)

if( this->isPersistento)
rework_rate (pnewln (designo) ListOfRework);

else rework_rate (new ListOfRework);
return ROSEGETOBJ (ListOfRework,PERSISTEiNT-rework-rate);

void Operation::new( ){
void Operation::edit( ){
void Operation:: delete( ){

5.2.4 Scrap Specification

CaScrap

; \ed, fit
~new /

~delete

EaComplexRule 
anEquation

Figure 5.2-7 Scrap Object Diagram

/* Class Declaration *
ROSEDECLARE (Scrap): virtual public RoseStructure I
private:

ComnplexExp * PERSISTENT-scrapRule;
Equation * PERSISTENT-scrapRate;

public:
ROSEDECLAREMEMBERS (Scrap);

/*' Access and Update Methods *
1* scrapRule Access Methods *
ComnplexExp * scrapRule()

( return ROSEGETOBJ (ComplexExp,PERSISTENT scrapRule);

void scrapRule (ComplexExp * ascrapRule)
ROSEPUTOBJ (ComplexExp,PERSISTENT-scrapRule,ascrapRule);

/* scrapRate Access Methods *
Equation * scrapRate()

Ireturn ROSEGET-.OBJ (Equation,PERSISTENT-scrapRate);

84



UNCLASSIFIED
CDRL No. 0002AC-4

void scrapRate (Equation * ascrapRate)
I ROSEPUT_-OBJ(Equation,PERSISTENT scrapRate,ascrapRate);

/* Constructors *
Scrap 0
S crap

ComplexExp * ascrapRule,
Equation * ascrapRate );

/* CLASS DECLARATION EXTENSIONS *

void new();
void edito;
void delete();
I1;

1* Methods Implementation *
Scrap::Scrap 0)

PERSISTENT-scrapRule = NULL;
PERSISTENT-scrapRate = NULL;
ROSECTOREXTENSIONS;

Scrap::Scrap(
ComplexExp, * ascrapRule,
Equation * ascrapRate)

{ ca~l aca~l)
scrapRule (ascrapRule);

ROSECTOREXTENSIONS;

void Scrap::new( ){
void Scrap::edit()
void Scrap::delete( ){

5.2.5 Rework Specification

aRework remove

edi /ad\, aResource
new edit Utilization

~delete

aComplex ul anEquation

Figure 5.2-8 Rework Object Diagram

85



UNCLASSIFIED
CDRL No. 0002AC-4

/* Class De, aration *I
ROSE_DEC-ARE (Rework): virtual public RoseStructure
private:

ComnplexExp * PERSISTENT reworkRule;
Equation * PERSISTENT-rew-orkRate;,
ListOfResource * PERSISTENT-resources;

public:
ROSEDECLAREMEMBERS(Rework);

/* Access and Update Methods *
/* reworkRule Access Methods *
ComplexExp * reworkRule()

{return ROSEGETý_OBJ (ComplexExp,PERSISTENT-reworkRule);

void reworkRule (ComplexExp * arworkRule)
I ROSREPUTOBJ (ComplexExpPERSISTENT-reworkRule,areworkRule);4

1* reworkRate Access Methods *
Equation * reworkRate()

I(return ROSE,_GELýOBJ (Equation,PERSISTENT_reworkRate); I
void reworkRate (Equation * areworkRate)

{ ROSE_PUT_OBJ(EquationPERSISTENT-reworkRate,areworkRate);

1* resources Access Methods */
ListOfResource * resourceso;
void resources (ListOfResource * aresources)

{ROSEPUTOBJ (ListOfResource,PERSISTENT-resources,aresources);

/* Constructors *
Rework 0;
Rework (

ComnplexExp * areworkRule,
Equation * arwork~ate,
ListOfResource * aresources)

void new();
void edito;
void delete();
I1;

/* Methods Implementation *
Rework::Rework () {

PERSISTENTý_reworkRule =NULL;
PERSISTENT-reworkRate = NULL;
PERSISTENT -resources = NULL;
ROSECTOREXTENSIONS;

Rework::Rework(
ComplexExp * areworkRule,
Equation * areworkRate,
ListOfResource * aresources)

86



UNCLASSIFIED
CDRL No. 0002AC-4

reworkRule (areworkRule);
reworkRate (areworkRate);
resources (aresources);
ROSECTOREXTENSIONS;

ListOfResource * Rework :: resources()
I f( !PERSISTENT-resources)

if( this->isPersistento)
resources (pnewln (designo) ListOfResource);

else resources (new ListOfResource);
} return ROSE_GETý_OBJ (ListOfResource,PERSISTENTý_resources);

I ~void Rework::new( )
void Rework::edit( ) {
void Rework::delete(){

5.2.6 OpCost Specification

I 1* Class Declaration */
ROSEDECLARE (OpCost) :virtual public RoseStructure{
private:

float PERSISTEN'IisetupTirne;
float PERSISTENT-runTime;
float PERSlSTENIýscrapPercentage;
float PERSISTENT-reworkPercentage;
float PERSISTENT-reworkCost;mnt PERSISTENT-prodQty;
float PERSISTENT-idealFAlT;

float PERSISTENT-actualFAlT;

public:
ROSEDECLAREMEMIBERS(OpCost);

I* Access and Update Methods *
/* setupTime Access Methods *
float setupTime()

return ROSEGETPRIM (floatPERSISTENT-setupTime);

I void setupTime (float asetupTime)
f ROSEPUT_-PRLIv (floatPERSISTENT _setupTime,asetupTime);

/* runTirne Access Methods *I ~float runTime()
return ROSEGETPRIM (floatPERSISTENT-runTime);

void runTime (float arunTime)
ROSE_PUT_PRIM (floatPERSISTENT-runTime,arunTime);)I

I 1~* scrapPercentage Access Methods *
float scrapPercentage()
I return ROSEGETPRIM (float,PERSISThNThscrapPercentage);

I 87



UNCLASSIFIED
CDRL No. 0002AC-4

void scrapPercentage (float ascrapPercentage)
{ROSEPUTPRIM (float1PERSISTEN'IiscrapPercentage,ascrapPercentage); I

/* reworkPercentage Access Methods *
float reworkPercentage()
I return ROSE_-GETPRIM (floatPERSISTENT_reworkPercentage);

void reworkPercentage (float areworkPercentage)
I ROSEý_PUTý_PRIM (floatPERSISTENT reworkPercentage,areworkPercentage);

1* reworkCost Access Methods *
float reworkCost()

{return ROSE_GQET_PRIM (floatPERSISTENT-reworkCost);

void reworkCost (float areworkCost)
I ROSEPUTý_PRIM (float,PERSISTENT-reworkCost,areworkCost); I

1* prodQty Access Methods *
int prodQty()

I return ROSEý_GETPRIM (int,PERSISTENT-prodQty);

void prodQty (int aprodQty)
I ROSEPUTPRIM (intPERSISTENTýprodQty,aprodQty);

1* idealFAIT Access Methods *
float ideaIFAlT()
I return ROSEGQETPRIM (floatPERSISTENT-idealFAIT);

void idealFAlT (float aidealFAIT)
{ ROSE_PUT_PRIM (floatPERSISTENT-idealFAlT,aidealFAm;I

/* actualFAlT Access Methods *
float actualFAlT()

{return ROSEGETPRIM (floatPERSISTENT-actualFAIT);

void actualFAlT (float aactualFAlT)
I ROSEPUTPRIM (float,PERSISTENT-actualFAIT,aactualFAlT);

/* Constructors *
OpCost 0
OpCost(

float asetupTime,
float arunTirne,
float ascrapPercentage,
float areworkPercentage,
float areworkCost,
int aprodQty,
float aidealFAlT,
float aactualFAlT)

I* Methods Implementation *

88



UNCLASSIFIED
CDRL No. 0002AC-4

OpCost::OpCost0{
PERSISTENT-setupTime = 0;
PERSISTENT-runTime = 0;
PERSISTENT-scrapPercentage = 0;
PERSISTENT-reworkPercentage =0;
PERSISTENT_reworkCost = 0;
PERSISTENT-prodQty = 0;
PERSISTENT~idealFAIT = 0;
PERSISTENTý_actualFAlT = 0;
ROSECTOR_EXTENSIONS;

OpCost::OpCost(
float asetupTime,I float arunTime,
float ascrapPercentage,
float areworkPercentage,I float areworkCost,
int aprodQty,
float aidealFAIT,
float aactualFAIT)

setupTime (asetupTime);
runTime (arunTime);
scrapPercentage (ascrapPercentage);
reworkPercentage (areworkPercentage);
reworkCost (areworkCost);
prodQty (aprodQty);
idealFAIT (aidealFAM;
actualFAlT (aactualFAMT;
ROSECTOREXTENSIONS;

5.2.7 ResourceUtilization Specification

aResource
Utilization

edt remnove\ý,ý

editSetupTimne
anEquation aesue

Figure 5.2-9 ResourceUtilization Object Diagram

/* Class Declaration */
ROSEDECLARE (ResourceUtilization) :virtual public RoseStructure
private:

Resource * PERSISTENT-resource;

89



UNCLASSIFIED
CDRL No. 0002AC-4

RoseObject * PERSISTENT-setupTimne;
RoseObject * PERSISTENT-runTime;
float PERSISTENT--effRate; /* OPTIONAL */

public:
ROSE_-DECLAREMEMBERS(ResourceUtilization);

/* Access and Update Methods ~
I* resource Access Methods *
Resource * resource()

{ return ROSE_-GETOBJ (ResourcePERSISTENT-resource);

void resource (Resource * aresource)
{ ROSEPUTOBJ (Resource,PERSISTENTý-resource,aresource);

/* setupTime Access Methods *
RoseObject * setupTime()

freturn ROSE_GET OBJ (RoseObjectPERSISTENThsetupTime);
void setupTime (RoseObject * asetupTime)
I ROSE_-PUTOBJ(RoseObjectPERSISTENT-serupTime,asetupTime); I

1* runTirne Access Methods *
RoseObject * runTime()

( return ROSEGEL-OBJ (RoseObjectPERSISTENT runTime);
void runTime (RoseObject * arunTime)
I ROSEPUTOBJ(RoseObject,PERSISTENT -runTime,arunTime);)

1* effRate Access Methods *
float effRate()
I return ROSEGETPRIM (fioat,PERSISTENT-effRate);

void effRate (float aeffRate)
I ROSEPUTPRIM. (floatPERSISTENT-effRate,aeffRate);

1* Constructors *1
ResourceUtilization 0;
ResourceUtilization (

Resource * aresource,
RoseObject * asetupTime,
RoseObject * arunTime,
float aeffRate );

/* CLASS DECLARATION EXTENSIONS *
void addo;
void remnoveo;

/* Methods Implementation *
ResourceUtilIization:: ResourceUtili zat ion0

PERSISTENT-resource = NULL;
PERSISTENT-setupTime = NULL;
PERSISTENT-runTime = NULL;
PERSISTENT-effR ate = 0;
ROSECTOREXTENS IONS;

90



I UNCLASSIFIED
CDRL No. 0002AC-4

ResourceUtilization: :ResourceUtilization(
Resource * aresource,I RoseObject * asetupTime,
RoseObject * arunTime,
float aeffRate )

resource (aresource);
setupTime (asetupTime);
runTime (arunTime);
effRate (aeffRate);
ROSE_CTOREXTENSIONS;

voi Reoretlzto:ad
void ResourceUtilization::addemove(

5.2.8 Parameter Specification

/* Class Declaration *I
ROSE,_DECLARE (Parameter): virtual public RoseStructure{

prvt:STR PERSISTENI-p~name;

STh PERSISTENIýp..yalue;

pbi:ROSEDECLAREMEMBERS (Parameter);

1* Access and Update Methods ~
1* p-name Access Methods *

return ROSE_GET_PRIM (STR~PERSISTENT-p-name);

I void p~name (STR apnarne)
{ROSEPUTPRIM (STR,PERSISTENT-p..name,ap-name);)

I ~/* p-value Access Methods *
STh p..value()

{ return ROSEGETPRIM (STRYERSISTENT-p-yalue);I void p~value (STR apvyalue)
I ROSEPUTPRIM (STRPERSISTEN-p-value,apvyalue);)

I 1~* Constructors *
Parameter 0;
Parameter (

STR ap~name,
STh ap-yalue)

/* Methods Implementation *
Parameter:: Parameter0f

91



UNCLASSIFIED
CDRL No. 0002AC-4

PERSISTENT_pname = NULL;
PERSISTENT.p-yalue = NULL;
ROSE_CTOREXTENSIONS;

Parameter::Parameter (
STR apname,
STR apvalue)

p-name (apjname);
p-yalue (ap.value);
ROSECTOREXTENSIONS;

5.2.9 Resource Specification

I new
aParameter

dit edit

delete aResource edit
~ aFalifty

e•dit edit

Consumable
Material

anEquipment

Figure 5.2-10 Resource Object Diagram

/* Class Declaration */
ROSEDECLARE (Resource): virtual public RoseStructure {
private:

STR PERSISTENTresourcename;
STR PERSISTENTresource_code;
ListOfParameter * PERSISTENTparameters;

public:
ROSEDECLAREMEMBERS(Resource);

/* Access and Update Methods */
/* resourcename Access Methods */
STR resourcename0
I return ROSEGETPRIM (STR,PERSISTENTresource-name);
}

92



UNCLASSIFIED
CDRL No. 0002AC-4

void resourcejiame (STh aresource-..name)
(ROSEPUTPRIM (STRIPERSISTENT-resource~name,aresource-name); I

/* resource_code Access Methods *
STR resource-code()

{return ROSE_GET_PRIM (STRPERSISTENT-resourcescode);

void resource-code (STR aresource-code)
I ROSEPUTPRIM (STRPERSISTENT_resource_code,aresourcescode);

/* parameters Access Methods */I ~ListOfParaxneter * parametersO;
void parameters (ListOfParameter * aparameters)
f. ROSE_PUT_OBJ (ListOfParameterPERSISTENlý-parameters,apararneters);

1* Constructors *
Resource 0
Resource(

STR aresource-name,
STR aresource-code,5' ~ListOfParameter * aparameters)

/* CLASS DECLARATION EXTENSIONS *
void new()
void edit( )
void delete()

/* Methods Implementation *
Resource:: Resource 0) (

PERSISTENT-resource-name = NULL;
PERSISTENT-resource-code = NULL;
PERSISTENT-parameters = NULL;
ROSECIOREXTENSIONS;

Resource:: Resource(
STR aresource name,
STR aresource code,
ListOfParamete'r * aparameters)

reorenm aeorenm)
resource-name (aresourcenamde);
parameters (aparameters);

) ROSECTOREXTENS IONS;

ListOfParameter * Resource:: parameterso(
if( !PERSlSTENThparameters)
if( this->isPersistento)

parameters (pnewln (designo) ListOfParameter);Ielse parameters (new ListOfParameter);
return ROSEGETOBJ (ListOfParameter,PERSISTENT parameters);

93



UNCLASSifIED
CDRL No. 0002AC-4

void Resource::new( ){
void Resource::edit()
void Resource:: delete( ){

5.2.9.1 Equipment Specification

/* Class Declaration */
ROSE_-DECLARE (Equipment): virtual public Resource
private:

STR PERSISTEN'1Lequipment-category;
float PERSISTENTý-costper....time -unit;

public:
ROSEDECLAREMEMBERS (Equipment);

/* Access and Update Methods */
/* equipment--category Access Methods *
STR equipment-category()

{return ROSE_GETý_PRIM (STR,PERSISTENT-equipmentcategory);

void equipment-category (STh aequipment-category)
(ROSEPUT_-PRIMv (STRPERSISTENl-equipmentcategory,aequipment-categoiy);

/* cost;,erjtime-unit Access Methods ~
float cost..per time-unit()

{return ROSEGET_PRIM (floatPERSISTENIýcost-per _time_unit);

void cost..per time_unit (float acost-perjime...unit)
(ROSEý_PUT_PRIM (floatPERSISTENT-costper-time-unit~acost-per...time~unit);}

/* Constructors *
Equipment 0
Equipment(

STR aresource-name,
STh aresource-code,
ListOfParameter * aparameters,
STR aequipmentscategory,
float acost...pers-ime-unit)

/* Methods Implementation *
Equipment::Equipment 0) f

PERSISTENTý-equipmentscategory =NULL;

PERSISTENTý_cost..per...time_unit = 0;
ROSE_* TOREXTENSIONS;

Equipment:: Equipment(
STR aresource-name,
STR aresource code,
ListOfParamete-r * aparameters,

94



UNCLASSIFIED
CDRL No. 0002AC-4

STR aequipment category,
float acostper time unit)

_p_(e
resource-name (aresource...name);
resource....ode (aresource-sode);
parameters (aparameters);
equipment category (aequipmentscategory);
cost~pet..time...unit (acosLperimne~unit);
ROSECTOREXTENSIONS;

5.2.9.2 ConsumableMaterial Specification

1* Class Declaration */
ROSE_-DECLARE (ConsumableMaterial) :virtual public Resource 1
private:

float PERSISTENT-cost...per-unit;
ListOfResourceConsumable * PERSISTENT-resourceRates;

public:
ROSEDECLAREMEMBERS(ConsumableMaterial);

I* Access and Update Methods *
/* cost...per-unit Access Methods *
float cost...pet..unit()

{return ROSE_GQET_PRIM (float,PERSISTENTscost..per-unit);

void cost..perjunit (float acost-per...unit)
I ROSE_PUT_-PRIM (floatPERSISTENT-cost-per-unit,acost-.per-unit);

/* resourceRates Access Methods */
ListOfResourceConsumable, * resourceRatesO;
void resourceRates (ListOfResourceConsuniable * aresourceRates)

ROSEPUTOBJ
(ListOfResourceConsumable,PERSISTENT resourceRates,aresourceRates);

1* Constructors */
ConsumnableMaterial 0
ConsumnableMaterial(

STh aresource-name,
STh aresource_ýcode,
ListOfParameter * aparameters,
float acost..per-unit,
ListOfResourceConsumable * aresourceRates)

/* Methods Implementation *
ConsumableMaterial: :ConsumableMaterial ()0

PERSISTENT_cost-per~unit =0;
PERSISTENT_resourceRates =NULL;

ROSECTOREXTENSIONS;

95



UNCLASSIEFIED
CDRL No. 0002AC-4

ConsumableMaterial: :ConsumableMaterialI STR aresource name,
STR aresource code,
List~faramdetr * aparameters,I . float acost per unit,
ListOfResourceConsumable * aresourceRates)

{ eorenre(aeorenm)
resource-name (aresourcenamde);
parameters (aparameters);
cost-per...unit (acost-per...unit);
resourceRates (aresourceRates);
ROSECTOREXTENSIONS;

ListOfResourceConsumable * ConsumableMaterial ::resourceRates()
( if( 'PERSISTENT_resourceRates)

if( this->isPersistento)
resourceRates (pnewln (designo) ListOfResourceConsumable);

else resourceRates (new ListOfResourceConsumable);
return ROSE_GQETOBJ (ListOfResourceConsumable,PERSISTENT-resourceRates);

5.2.9.3 ResourceConsumable Specification

/* Class Declaration ~
ROSEDECLARE (ResourceConsumable) :virtual public RoseStructure

prvt:Resource * PERSISTENT_jaresource;
float PERSISTENTý-units,.exhauste&Lperjtime-.unit;

public:
ROSE__DECLARENMEMBERS(ResourceConsumable);

I* Access and Update Methods *
/* aresource Access Methods *
Resource * aresource()
I return ROSEGETOBJ (Resource,PERSISTENT-aresource);

void aresource (1Lesource * aaresource)
I ROSEPUTOBJ (Resource,PERSISTENT-aresource,aaresource);}

/* units-exhausted-per-time-unit Access Methods *
float units_.exhausted~perýtime~unit()

return ROSEGETPRIM (floatPERSISTENTý_units_exhausted_perjime~unit);

void unitsý-exhausted-perztme-unit (float aunits-exhaustec~per -time-unit)
I ROSEPUTPRIM
(float,PERSISTENT units_exhausted~perjtme unit,aunits-exhaustec-per time-unit), I

/* Constructors */
ResourceConsumnable 0
ResourceConsumnable(

96



UNCLASSIFIED
CDRL No. 0002AC-4

Re source * aaresource,
float aunits.-exhaustec-per -timeý-unit)

/* Methods Implementation *
ResourceConsumable: :ResourceConsumable ()f

PERSISTENT-aresource = NULL;
PERSISTENTý-units,-exhausted-perý-time_unit =0;
ROSE_CTOREXTENSIONS;

ResourceConsumable:: ResourceConsumable(
Resource * aaresource,
float aunits exhausted_per time unit)

aresource (aaresource);
units exhausted.perjime~unit (aunits exhausted-perýtime-unit);
ROS-ECTOREXT7ENS IONS;

5.2.9.4 Labor Specification

/* Class Declaration */
ROSEý_DECLARE (Labor) :virtual public Resource
private:

STh PERSISTENT...jobsode;
float PERSISTENTjrate;

public:
ROSEDECLAREMEMBERS (Labor);

I* Access and Update Methods *
/* job-code Access Methods *
STh job-code()

{ return ROSEGETPRIM (STRPERSISTENT..jobscode);

void jobscode (STh ajobscode)
I ROSEPUTý_PRIM (STR,PERSISTENT-job-code,ajobscode);

/* rate Access Methods *
float rate()

{ return ROSE_-GET_-PRIM (floatPERSISTENT..yate);

void rate (float arate)
I ROSE,_PUTý_PRIM (float,PERSISTENT_rate,arate);

1* Constructors *
Labor 0
Labor(

STh aresource-name,
STh aresource_code,
List~fParamneter * aparameters,
STR ajobscode,

97



UNCLASSIFIED
CDRL No. 0002AC-4

float arate)

/* Methods Implementation *
Labor::Labor 0

PERSISTENT..iob-code =NULL;

PERSISTENT rate = 0;
ROSEOTOREXTENSIONS;

Labor::Labor(
STR aresource name,
STR aresource code,
ListOfParamete-r * aparameters,
STR ajob code,
float arate)

f eorenm aeorenm)
resource-name (aresourcenamde);

parameters (aparameters);
jobs-ode (ajob-code);
rate (arate);
ROSECTOREXTENSIONS;

5.2.9.5 Facility Specification

1* Class Declaration *I
ROSE_DECLARE (facility) : virtual public Resource
private:

float PERSISTENT-square-feet-allocated;
float PERSISTENT-costperý-sq-ftper-timeunit;

pbi:ROSEDECLAREMEMBERS(faciliry);

/* Access and Update Methods *I
/* squarejfeet-allocated Access Methods *
float squarejeet allocated()

return ROSEGETPRIM (floatPERSISTENT-square-feet-allocated);

void squarejfeet-allocated (float asquare~jeet allocated)
I ROSEPUTPRIM
(float,PERSISTENT-squ are-feet-allocated,asquare-feet allocated);)

1* cost per-sqft-per...rime-unit Access Methods *
float cost-per-sqft-per-time-unit()

{return ROSEGETPRIM (float,PERSISTENT-cost-per-sq-ft-.per.3time-unit);

void costper-sqjt-per -time -unit (float acost-per-sqft-per..jime.unit)
I ROSE_PUTPRIM
(float,PERSISTENT cost-per-sq-ftperj-me-unit,acost-per-sqft-per time-unit);

98



IUNCLASSIFE
5/* Constructors */LNo 

00A-

facility 0
facility(

STR aresource-name,
STR aresource - ode,
ListOfParameter * aparanieters,
float asquarejeet_allocated,
float acostper-sqjt-per-time-unit)

I ~/* Methods Implementation *
facility::facility 0(

PERSISTENIý-squareý-eet-allocated =0;
PERSISTENThcost-..per-sqjft..per-time-unit =0;
ROSECrOREXTENSIONS;

I facility:: facility
STR aresource name,
STR aresource -code,I. ListOfParamete-r * aparameters,
float asquare feet allocated,
float acost-per-sq~ft per-time-unit)

resource-name (aresource...name);
resource--code (aresource...code);
parameters (aparameters);
square-feet allocated (asquarejfeet-allocated);
cost~perýsqj t-per-time..unit (acost-perý-sqjft..per..sime-.unit);5 ROSECTOREXTENSIONS;

55.2.10 ComplexRule Specification

/* Class Declaration */
ROSEDECLARE (ComplexRule) : virtual public RoseStructure{

prvt:ListOfRules * PERSISTENT-irule;

pbi:ROSE_-DECLAREMEMBERS(ComplexRule);

I* Access and Update Methods *I ~/* irule Access Methods *
ListOfRules * Irule0;
void Irule (ListOfRules * airule)5 I ROSEPUTOBJ (ListOfRules,PERSISTE-NT-Irule,alrule);

/* Constructors *
ComplexRule 0Ii ~ComplexRule(

ListOfRules * airule)

.1 99



UNCLASSIFIED
CDRL No. 0002AC-4

/* CLASS DECLARATION EXTENSIONS *
int evaluateO;

/* Methods Implementation *
ComplexRule::ComplexRule (

PERSISTENTIrule = NULL;
ROSECTOREXTENSIONS;

ComplexRule: :ComplexRule
List~fRules * airule)

Irule (airule);
ROSECTOR_-EXTENSIONS;

I ListOfRules * ComplexRule :: lruleO
if( !PERSISTENT - rule)
if( this->isPersistento)IL Irule (pnewln (designo) ListOfRules);
else irule (new ListOfRules);
return ROSE_.GETOBJ (ListOfRules,PERSISTENTIrule);

int ComplexRule:: evaluate() {1

5.2.11 Rules Specification

/* Class Declaration */
ROSEDECLARE (Rules): virtual public RoseStructure I
private:

Expression * PERSISTEM'Texpl;
AN&-Op PERSISTENTAndi;

public:
ROSEDECLAREMEMBERS (Rules);

/* Access and Update Methods *
/* expl Access Methods *
Expression * expl()

( return ROSE_-GETLOBJ (Expression,PERSISTENT...exp 1);
void exp I (Expression *aexpI)

I ROSEPUTOBJ(ExpressionPERSISTENT...expl,aexpl);

/* Andi Acipess Methods *
AND..Op AndlI(

I return ROSE,_GETPRITM (AND-Op,PERSISTENT Andi);

void And I (AND Op aAnd 1)
I ROSEPUTPRIM (AND-Op,PERSISTENT-And1,aAndl);

/* Constructors *

100



UNCLASSIFIED
CDRL No. 0002AC-4

Rules 0
Rules(

Expression * aexp 1,
ANDOp aAndl)

/* Methods Implementation *
Rules::Rules 0 1

PERSISTENTý-expi = NULL,
PERSISTENTý_Andi = (ANDOp) NULLENUM;
ROSECTO7REXTENSIONS;

Rules::Rules(
Expression * aexpi,
ANDOp, aAndl)

expI (aexpI);
Andi (aAndl);
ROSECTOREXTENSIONS;

5.2.12 Expression Specification

/* Class Declaration */
ROSEDECLARE (Expression): public RoseUnion{

public:

ROSEDECLAREMEMBERS(Expression);

I* Access and Update Methods *
BOOL isEquation()

I return (getAttribute() == getAttribute('iEquation"));

Equation * _Equation()
I return ROSEGE IO0BJ (EquationPERSISTENT data.value.aPtr);)

void -Equation (Equation * a-EYquation)
this->putAttribute("iEquation");
if (!ROSE.erroro)

ROSEPUT_-OBJ(Equation,PERSISTENT data.value.aPtr,a-Fquation); I

BOOL is_-ComplexExp()
return (getAttribute() = getAttribute("-ComnplexExp"));

ComnplexExp * ...ComplexExp()
I return ROSEGEL-OBJ (ComplexExp,PERSISTENT-data.value.aPtr); I

void -..ComplexExp (ComplexExp * aComplexExp)
I this->putAttribute('iComplexExp");

if (!ROSE.erroro)

ROSEPUT_OBJ(ComplexExp,PERSISTENT _data.value.aPtr,aComplexExp);)

101



UNCLASSIFE

CDRL No. 0002AC-4

BOOL isSimpleExp()
return (getAttribute() == getAttribute('iSimpleExp'D);I ISimnpleExp * -SimpleExp()

I return ROSE,_GEL -OBJ (SimpleExp,PERSISTENT-datavalue.aPtr); I

void -SimpleExp (SimpleExp * a &SimnpleExp)
I this->putAtti-ibute("...SimpleExp");

if (!ROSE.er-ror)

ROSE_PUTOBJ(SimpleExp,PERSISTENT data.value.aPtr,a-SimpleExp);I

BOOL is_StringValue()
I return (getAttribute() = getAttribute(IiStringValues));

I retgVaue ROStrnGETluOB (StringValue,PERSISTENT-data.value.aPtr);I

void -St-ing Value (String Value * a...Sti-ingValue)
this->putAttribute("_StringValue");
if (!ROSE.erroro)

ROSE_PULýOBJ(StringValue,PERSISTENT ýdata.value.aPtr,a..Sti-ingValue);

/* Constructor *
Expression 0

/* Methods Implementation *
Expression: :Expression () (

ROSE_CTOREXTENSIONS;

5.2.13 ComplexExp Specification

/* Class Declaration */
ROSEDECLARE (CompiexExp): virtual public RoseStructure
private:

Equation * PERSISTENL-Equl;
Equiv...Op PERSISTENT-EquivOp 1;
Expression * PERSISTENIL.Expl;

public:
ROSEDECLAREMEMBERS(ComplexExp);

/* Access and Update Methods ~
/* Equ I Access Methods *
Equation * Equ 10)

( return ROSE_-GET -OBJ (Equation,PERSISTENT-Equ 1);
void EqulI (Equati on * aflqul1)
I ROSEPUTOBJ(Equation,PERSISTENT _Equl,aEqul);

1* EquivOpI Access Methods */

102



UNCLASSIFIED
CDRL No; 0002AC-4

Equiv -Op EquivOp 10)
{ return ROSEGETPRIM (Equiv-0Ip,PERSISTENT Equiv~pi);

void EquivOp 1 (Equiv-Op aEquivOp 1)
I ROSEPUTPRIM (Equiv-0p,PERSISTENL-Equiv~plbaEquiv~pl);)

/* Expi. Access Methods ~
Expression * Expl ()

{ return ROSE,_GELOB01J (ExpressionPERSISTENTLExp 1);)
void Expi1 (Expression * aExpi)

(ROSEPUTOBJ(ExpressionPERSISTENT...Expl,aExpl);)

/* Constructors *
ComplexExp 0;
ComnplexExp (

Equation *aEqul,

Equiv.-Op aiEquivOplI,
Expression * aExpi )

/* Methods Implementation *
ComplexExp: :ComplexExp0

PERSISTENT-Equl = NULL;
PERSISTENT-EquivOpl. = (Equiv-0p) NULL_.,ENUM;
PERSISTENT -.Exp I = NULL;
ROSEOTOREXTENSIONS;

ComplexExp: :ComplexExp(
Equation * aEqul,
Equiv Op aEquiv~pi,
Expreission * aExpi)

{ ql(~q )
Equipl (aEqul); l)

Exp I (aExp I);
ROSECTOREXTENSIONS;

5.2.14 SimpleExp Specification

/* Class Declaration */
ROSEDECLARE (SimpleExp) :virtual public RoseStructure(
private:

Unary-Op PERSISTENT-Not1;
DataDictStr * PERSISTENTDataDictVar;

public:
ROSEDECLAREMEMBERS(SimpleExp);

/* Access and Update Methods ~
/* Noti Access Methods *
Unary...Op NotlI(

103



UNCLASSIFIED
CDRL No. 0002AC-4

{ return ROSEGETPRIM (Unary-Op,PERSISTENT Noti);

void Noti1 (Unary-Op aNoti1)
I ROSEPUTPRIM (Unary-Op,PERSISTENTLNot1,aNotl);

1* DataDictVar Access Methods *
DataDictStr * DataDictVar()

f return ROSE_-GETý_OBJ (DataDictStrPERSISTENTDataDictVar);

void DataDictVar (DataDictStr * )a~ataictVar)
I ROSE_PUT_OBJ (DataDictStrPERSISTENTDataDictVar,aDataDictVar);

/* Constructors *
SimnpleExp 0
SimpleExp(

Unary-.Op aNot 1,
DataDictStr * aDataDictVar);

I ;

/* Methods Implementation *
SimpleExp::SimpleExp 0)

PERSISTENT_-Noti = (Unary-Op) NULL.,ENUM;
PERSISTENT_-DataDictVar = NULL;
ROSEOTOREXTENSIONS;

SimpleExp::SimpleExp(
Unary Op aNoti,
Data~ictStr * aDataDictVar)

Noti (aNoti);
DataDictVar (aDataDictVar);
ROSECTOREXTENSIONS;

5.2.15 Equation Specification

/* Class Declaration */
ROSEDECLARE (Equation) : public RoseUnion J

public:

ROSEDECLAREMEMBERS(Equation);

I* Access and Update Methods *
BOOL isTerm()

I return (getAttribute() =- getAttribute("_Term"));

Term * _Term()
return ROSEGETOBJ (Term,PERSISTENTý-data-value.aPtr);

void_-Term (Term * a-Tenn)
I this->putAttribute("i:erm");

if (!ROSE.erroro)

104



UNCLASSIFIED
CDRL No. 0002AC-4

ROSEý_PUTý_OBJ(Term,PERSISTENT-data.value.aPtr,ajTerm);

BOOL isComplexEquation()
return (getAttribute() == getAttribute(fiComplexEquation"));

ComnplexEquation * _ComplexEquation()
i return ROSEGETOBJ (ComplexEquation,PERSISTENT-data.value.aPtr);}

void ...ComnplexEquation (ComplexEquation * a_-ComplexEquation)
this->putAttribute('lComplexEquation");
if (!ROSE.errorO)

ROSE_-PUT_-OBJ(ComplexEquation,PERSIS TENT-data~value.aPtr,a..ComplexEquation);}

/* Constructor *
Equation ();

/* CLASS DECLARATION EXTENSIONS *
float evaluate()
I ;

/* Methods Implementation *
Equation:: Equation ()0

ROSE_-CTOREXTENSIONS;

float Equation:: evaluateo {

5.2.16 ComplexEquation Specification

/* Class Declaration */
ROSE_DECLARE (ComplexEquation) :virtual public RoseStructure{
private:

Term * PERSISTENT_Varl;
Operator PERSISTENTOpenl;
Equation * PERSISTENT-Value;

public:
ROSEDECLAREMEMBERS(ComplexEquation);

1* Access and Update Methods *
/* Varl Access Methods *
Term * VariC)

f return ROSEGETLOBJ (TermPERSISTENTVarl);
void Vanl (Term * aVarl)
I ROSEPUT_OBJ(Term,PERSISTENTVarl,aVarl);)I

/* Operl Access Methods *
Operator Oper 10)
I return ROSEGETPRIM (Operator,PERSISTENT-Oper1);

void Open (Operator aOperl1)
I ROSEPUTPRIM (OperatorPERSISTENT-Oper1,aOperl);)

105



UNCLASSIFIED
CDRL No. 0002AC-4

/* Value Access Methods *
Equation * Value()

( return ROSE_-GET_-OBJ (Equation,PERSISTEN7_Value);
void Value (Equation * aValue)

(ROSEPUTOBJ(Equazion,PERSISTENTValue,aValue);)

/* Constructors */
ComplexEquation 0
ComplexEquation(

Term* aVari,
Operator aOperl,
Equation * aValue)

/* Methods Implementation *
ComplexEquation::ComplexEquation0

PERSISTENTVarl = NULL;
PERSISTENTOpen = (Operator) NULL,_ENUM;
PERSISTENT_Value =NULL;

ROSECTOREXTENSIONS;

ComplexEquation: :ComplexEquation(
Term * aVari,
Operator aOperl,
Equation * aValue)

Vanl (aran);
Openl (aOperl);
Value (aValue);
ROSECTOREXTENSIONS;

5.2.17 ParenEquation Specification

1* Class Declaration *
ROSE_-DECLARE (ParenEquation) :virtual public RoseStructure
private:

LParen PERS ISTENT..Lparenthesis;
Equation * PERSISTENT-Equ;
RParen PERSISTENTRparenthesis;

public:
ROSEDECLAREMEMBERS(ParenEquation);

/* Access and Update Methods *
1* Lparenthesis Access Methods *
L-Paren Lparenthesis()

I return ROSEGETPRIM (LParen,PERSISTENT-Lparenthesis);

void Lparenthesis (LParen aLparenthesis)
I ROSEPUTPRIM (LParenPERSISTENTLparenthesis,abparenthesis);)

106



UNCLAS SIFIED
CDRL No. 0002AC-4

/* Equ Access Methods *
Equation * Equ()

[ return ROSEGETLIOBJ (Equation,PERSISTENTEqu);)
void Equ (Equation * aEqu)

{ROSEPUTOBJ(EquationPERSISTENT-Equ,aEqu);)

/* Rparenthesis Access Methods *
RParen Rparenthesis()
I return ROSEGETPRIM (RParenPERSISTENTLRparenthesis);

void Rparenthesis (RParen aRparenthesis)
(ROSE._PUT_PRIM (RParenPERSISTENTRparenthesis,aRparenthesis);)

/* Constructors *
ParenEquation 0
ParenEquation(

L-Paren aLparenthesis,
Equation * aEqu,
RParen aRparenthesis)

1* Methods Implementation *
ParenEquation::ParenEquation0

PERSISTENT_Lparenthesis = (LParen) NULLENUM;
PERSISTENTEqu = NULL;
PERSISTENTRparenthesis = (RParen) NULL_ENUM;
ROSECTOREXTENSIONS;

ParenEquation: :ParenEquation(
LParen aLparenthesis,
Equation * aEqu,
RParen aRparenthesis)

Lparenthesis (aLparenthesis);
Equ (aEqu);
Rparenthesis (aRparenthesis);
ROSECTOREXTENSIONS;

5.2.18 Term Specification

1/' Class Declaration */
ROSEDECLARE (Term) : public RoseUnion(
public:

ROSEDECLAREMEMBERS(Termn);

I* Access and Update Methods *
BOOL is_Consto

return (getAttribute()o getAttribute("_Const"));

107



UNCLASSIFIED
CDRL No. 0002AC-4

Const * _Consto
I return ROSEGETLOBJ (Const,PERS ISTENT-data. value. aPtr);)

void -Const (Const * a -Const)
{ this->putAttribute(l-Const");

if (!ROSE.erroro)
ROSEPUL-OBJ(Const,PERSISTENT-data.value.aPtr,a-Const);

BOOL isDataDictStr()
I return (getAttribute() == getAttribute("...DataDictStr"));

DataDictStr * _DataDictStr()
I return ROSEGETOBJ (DataDictStrPERSISTENT-data.value.aPtr);}

void _ DataDictStr (DataDictStr * a_-DataDictStr)
this->putAttribute("iDataDictStr");
if (!ROSE.erroro)

ROSEPUT_OBJ(DataDictStr,PERSISTENTý_data.value.aPtr,a-DataDictStr);

BOOL is.YarenEquation()
( return (getAttribute() == getAttribute('iParenEquation"));

ParenEquation * _ParenEquation()
I return ROSEGELOBJ (ParenEquationPERSISTENTý_data.value.aPtr);}

void _ParenEquation (ParenEquation * aParenEquation)
I this->putAttribute("iParenEquation");

if (!ROSE.erroro)

ROSEPUTý_OBJ(ParenEquation,PERSISTENT -data.value.aPtr,a-ParenEquation);)

/* Constructor *
Term 0

/* Methods Implementation *
Term::Term 0[

ROSECTOREXTENSIONS;

5.2.19 Const Specification

/* Class Declaration */
ROSEDECLARE (Const): public RoseUnion{

public:

ROSEDECLAREMEMBERS(Const);

/* Access and Update Methods *
BOOL is-floato

I return (getAttribute() == getAttribute('1.float"));

108



UNCLASSIFIED
CDRL No. 0002AC-4

float _float()
I return (float) ROSEGETPRIM (float,PERSISTENT-data.value.aFloat);

void _float (float a float)
this->putAttribute("-float");
if (!ROSE.erroro)

ROSEý_PUT_PRIM(float,PERSISTENT-data.value.aFloat,a-float);

BOOL is,_nt()
I return (getAtti-ibute() = getAttribute("Jint"));

int _ into
{ return (int) ROSEGETPRIM (intPERSISTENT-data.value.anlnt); I

void Aint (int aint)
this->putAttribute(" - nt");
if (!ROSE.erroro)

ROSEPUTPRIM(int,PERSISTENT-data.value.anlnt,ajint);

/* Constructor ~
Const ;

1* Methods Implementation *
Const::Const 0[

ROSECTFOREXTENSIONS;

5.2.20 AND Op Specification

/* Enumerated Type *
enumn ANDOp

ANDOp-NULL = NULL_-ENUM,
ANDOp-Commua = 0

5.2.21 Operator Specification

/* Enumerated Type *
enurn Operator (

Operator_-NULL = NULL-ENUM,
Operator -Multiply = 0,
Operator_-Divide,
Operator...Add,
Operator_-Subtract

5.2.22 UnaryOp Specification

/* Enumerated Type *
enurn UnaryOp(

Unary-Op-NlLL = NULLENUM,

109



UNCLASSIFIED
CDRL No. 0002AC-4

UnaryOp-UOp, = 0

5.2.23 EquivOp Specification

/* Enumerated Type ~
enum Equiv...Op, I

EquivIOp-NULL = NULLENUM,
Equiv-Op-Less = 0,
Equiv-Op-LessEqual,
EquivOp-reater,
Equiv-Op2Greaterfiqual,
Equiv-Op-Equal,
Equiv pNotEqual

5.2.24 StringValue Specification

/* Class Declaration */
ROSEDECLARE (String Value) : v *rtua1 public RoseStructure I
private:

DQuote PERSISTENT-quote 1;
STh PERSISTENT valuel;
DQuote PERSISTEN-Tquote2;

public:
ROSE_-DECLAREMEMBERS(StringValue);

I* Access and Update Methods ~
1* quote 1 Access Methods *
DQuote quote 10)

Ireturn ROSE_-GETPRIM (D)Quote,PERSISTENT...quote 1);

void quote 1 (DQuote aquotel1)
I ROSEPUTPRIM (DQuote,PERSISTENT -quotel,aquotel); I

/* value 1 Access Methods *
STR value 10(

{ return ROSEGETPRIM (STR,PERSISTENT-valuel);

void value 1 (STh avaluel)
I ROSEPUTPRIM (STR,PERSISTENT-value 1,avaluel);

/* quote2 Access Methods *
DQuote, quote20)

{return ROSEGETPRIM (DQuote,PERSISTENT-quote2);

void quote2 (DQuote aquote2)
IROSEPUTPRIM (DQuote,PERSISTENT-quote2,aquote2);

/* Constructors *
StringValue 0
String Value(

110



UNCLAS'SIFIED
CDRL No. 0002AC-4

DQuote autl
STR avaluel,p ~DQuote aquote2)

/* Methods Implementation *
StringValue::StringValue 0)

PERSISTENT-quote 1I (DQuote) NULLENUM;
PERSISTENT-value 1 NULL;
PERSISTENT-quote2 =(DQuote) NULLENUM;
ROSE_CTOREXTENSIONS;

StringValue::StringValue(
DQuote aquotel,
STR avaluel,
DQuote aquote2)

quotel (aquotel);
valuel (avaluel);
quote2 (aquote2);
ROSECTOREXTENSIONS;

5.2.25 DataDictStr Specification

1* Abstract Base Class Declaration *1
ROSE_DECLARE (DataDictStr) :virtual public RoseStructure{
private:

public:
ROSEDECLAREMEMBERS(DataDictStr);

/* Access and Update Methods ~
./* Constructors *
DataDictStr 0

/* Methods Implementation *
DataDictStr::DataDictStr 0)

ROSE_-ITOREXTENSIONS;

5.2.25.1 EntityName Specification

/* Class Declaration *I
ROSE_DECLARE (EntityName) : virtual public DataDictStr{
private:

STR PERSISTENT-namne;

public:
ROSE_-DECLAREMEMBERS(EntityName);



UNCLASSIFIED

I* Access and Update Methods *1LNo 
00A-

/* name Access Methods *
STR nane()

{return ROSEGETPRIM (STR,PERSISTENT name);

void name (STh anamne)
I ROSEPUTPRIM (STR,PERSISTENT-name,aname);

1* Constructors *
EntityNamne 0;
EntityNarne(

STR anamne);
I ;

1* Methods Implementation *
EntityName::EntityName 0()

PERSISTENT name = N`ULL;
ROSECTOREXTENSIONS;

EntityName: :EntityName(
STR aname)

name (anamne);
ROSECTOREXTENSIONS;

5.2.25.2 EntityAttrName Specification

/* Class Declaration *I
ROSEDECLARE (EntityAttrName) :virtual public DataDictStr{
private:

ListOfString * PERSISTENT-entityNamne;
STR PERSISTENT-attrNamne;

public:
ROSEDECLARE_MEMBERS(EntityAttrName);

/* Access and Update Methods ~
/* entityNamne Access Methods *
ListOfString * entityName0;
void entityNamne (ListOfString * aentityName)
I ROSE_PUT_OBJ (ListOfString,PERSISTENThentityName,aentityName);)

/* attrNamne Access Methods *
STR attrNane()

return ROSEGETPRIM (STR,PERSISTENT-attrName);

void attrNamne (STR aattrNamne)
I ROSEPUTPRIM (STR,PERSISTENT-attrName,aattrName);I

/* Constructors *
EntityAttrNane 0

112



II 'NCLASSII ILD

I EntityAt trNan me 
C I3R . 00 2AC '

ListOfString * aentityName.
STR aattrName);

/* Methods Implementation */
EntityAttrName::EntityAttrName

PERSISTENT entityName = NULL;
PERSISTENTattrName = NULL:
ROSEICTOR-EXTENS IONS;

EntityAttrName::EntityAttrName (
ListOfString * aentityName,
STR aattrName)

entityName (aentityName);
attrName (aattrName);
ROSECTOREXTENS IONS;

ListOfString * EntityAttrName :: entityName0
if( !PERSISTENTentityName)
Sif(this->isPersistentO)

entityName (pnewln (design()) ListOfString);
else entityName (new ListOfString);

Ireturn ROSE_GET_OBJ (ListOfString,PERSISTENT..entityName);

1 5.3 Analyzer

The manufacturing Analyzer is a subsystem of MO which is responsible for performing the

manufacturability analysis based on what the user has selected from the user interface form.

The Analyzer provides the user with the ability to perform a process selection, calculate yield

and rework, and calculate time and cost. The Advisor uses the output of the Analyzer runs

which it then displays to the user. Following are the object diagram, state transition diagram, and

corresponding specification and methods for the Analyzer class/object.

II

I
1 113



UNCLASSIFIED
CDRL No. 0002AC-4

5.3.1 Object Diagram

Select~o(1) Prc ss Run Process

(3)a culateeltuaIwost

Fenigyaure 5.-2Analyzer StcateTrasito Dagrnamy

5.323 Analyzers Specifcatio

ROSEDECA~RE AayzrditulpbicRscrutr
SmPRlTNhrdDesign~ae

Fiur 53- Aalze Oje114ara



UNCLASSIFIED
CDRL No. 0002AC-4

ProcessModel * PERSISTENT-pMode1;
STh PERSISTENT-dateTimne;
Process * PERSISTENTýplan;

public:
ROSEDECLAREMEMBERS (Analyzer);

/* Access and Update Methods */
/* productDesignNamne Access Methods *
STh productDesignNarne(

(return ROSE_GETPRIM (STRPERSISTENTproductDesignNarne);

void productDesignName (STR aproductDesignName)
{ROSEPUTPRIM (STR,PERSISTENIýproductDesignName,aproductDesignName);

/* pModel Access Methods *
ProcessModel * pModel()

{return ROSEGETOBJ (ProcessModelPERSISTENTýpModeI);

void pModel (ProcessModel * apModel)
{ROSEPUTý_OBJ (ProcessModel,PERSISTENTh-pModel,apModel);

1* dateTime Access Methods *
STR dateTime()

{return ROSEGETPRIM (STR,PERSISTENT-dateTime);

void dateTimne (STh adateTime)
I ROSEPUTPRIM (STRPERSISTENTý-dateTime,adateTime);)

/* plan Access Methods *
Process * piano
f return ROSEGETOBJ (Process,PERSISTENT....plan);

void plan (Process * aplan)
I ROSEPUTOBJ (Process,PERSISTENlýplan,aplan);)

/* Constructors *
Analyzer 0
Analyzer(

STh aproductDesignNarne,
ProcessModel * apModel,
STh adateTime,
Process * aplan)

/* CLASS DECLARATION EXTENSIONS *
Process* PerformAnalysiso;
1;

/* Methods Implementation *
Analyzer:: Analyzer () [

PERSISTENT-product.DesignNamne = NULL;
PERSISTENT-pModel = NULL;
PERSISTENT-dateTimne = NULL;

115



UNCLASSIFIED
CDRL No. 0002AC-4

PERSISTENTplan = NULL;
ROSECTOREXTENSIONS;

Analyzer: :Analyzer (
STR aproductDesignName,
ProcessModel * apModel,
STR adateTime,
Process * aplan){
productDesignName (aproductDesignName);
pModel (apModel);
dateT'me (adateTime);
plan (aplan);
ROSECTOREXTENSIONS;I

Process* Analyzer:: PerformAnalysis0 {}

5.4 Advisor

The Advisor is the subsystem of MO that is responsible for displaying the results produced

by each process selected during an Analyzer run. The user can select analysis runs to view. The

user can display process, yield, rework, or costing results as graphs, and can also view complete

analysis data to the screen or to file in report format.

The Advisor graphs will be implemented using XRT/Graph for Motif widget which displays

data graphically in a window. The graph widget has resources which determine how the graph

will look and behave. We will be writing methods attached to the Advisor managing object that

will take the output results from the Analyzer subsystem, and display them as pictured in

section 4.3 of the Advisor user interface design section.

The graph widget has resources which allow programmatic control of the following items:
* graph type (bar, stacked bar, line, and pie).

* header and footer positioning, border style, text, font, and color.

* data styles: line colors and patterns, fill color and patterns, line thickness, point style,

size and color.

* legend positioning, orientation, border style, anchor, font and color.

* graph positioning, border style, color, width, height, and 3D effect.

* point and set labels.

* axis maximum and minimum, numbering increment, tick increment, grid increment,

font, origin, and precision.

116



UNCLASSIFIED

CDRL No. 0002AC-4

" window background and foreground color.
" text areas.

" double buffering.

axis inversion.
" data transposition.

" marker positioning.

XRT/graph also provides several procedures and methods which allocate and load data

structures containing the numbers to be graphed, output a representation of the graph in

Postscript format, assist the developer in dealing with user-events, and assist the developer with

setting and getting indexed resources.

5.5 Modeler

The process Modeler is the subsystem of MO that is responsible for capturing and

modifying manufacturing process models. The Modeler provides a graphical user interface

where the user can capture process dependencies to other processes, selection rules, operations,

and resources. The output of the Modeler is a ProcessModel object which is comprised of a

dependency graph of process nodes. The ProcessModel object is used by the Analyzer and the

Advisor to select the manufacturing processes that are used in the cost, yield, and rework

calculations. Following are the object diagram, state transition diagram, and corresponding

specification and methods for the Modeler class/object.

117



I UNCLASSIFIED
CDRL No. 0002AC-4

I 5.5.1 Object Diagram
newMode•

/ |deletiM°d•lel•M°ae'

Figure 5.5-1 Modeler Object Diagram

I 5.5.2 State Transistion Diagram

DefineI •o•• • •'•,.
•{ {r••perati•°n•rnn•,• Depende ncl.•es EProcess"

SSelection Rules

Figure 5.5-2 Modeler State Transition Diagram

Di 5.5.3 Modeler Class Specification

/* Class Specification */
ROSEDECLARE (Modeler) • virtual public RoseStructure {
private:I

i 118



UNCLASSIFIED
CDRL No. 0002AC-4

ProcessModel * PERSISTENTcurrent_model;
public:

ROSEDECLAREMEMBERS(Modeler);

/* Access and Update Methods */
/* currentmodel Access Methods */
ProcessModel * current-model()
{ return ROSEGETOBJ (ProcessModel,PERSISTENTcurrent_model);
j
void current_model (ProcessModel * acurrentmodel)

ROSEPUTOBJ (ProcessModelPERSISTENTcurrent-model,acurrentmodel); }
/* Constructors */
Modeler 0;
Modeler (

ProcessModel * acurrentmodel);
/* CLASS DECLARATION EXTENSIONS */
ProcessModel *readModel0;
void writeModel0;
I;

/* Methods Implementation */
ProcessModel* Modeler::readModel0 (I
void Modeler::writeModelO (}

5.6 RequirementManager API Interface

The Product Track Requirements Manager (RM) is a system designed to manage product

requirements, specifications and corporate policies to support concurrent engineering. Within

the MO program, Raytheon will be using the RM to manage manufacturability and

producibility guidelines and evaluate product design data for compliance with those guidelines.

Cimflex has informed Raytheon that they plan to release an Application Programming

Interface (API) to the RM in the first quarter of 1993. The API will consist of a library of C

programming language functions. These functions will provide the ability to populate the

product and requirement structures of the SQL database which the RM is using. Functions will

also be provided to evaluate and interrogate requirement satisfaction values.

A task management object called RequirementManager will be developed for interaction

with RM. The RequirementManager attributes and methods will be established once CIMFLEX

releases its API specification. At a minimum, an interface between the MO database (ROSE)

and the RM database (SQL) will be created in order to keep product data consistent between the

two systems.

119



UNCLASSIFIED

CDRL No. 0002AC-4

6. Schema Specifications
This section defines the schemas of data to be used by MO. Schemas are defined for

process model data, resource data, selection rule and equation data, and PWB product data. The

schemas are defined in the modeling languages EXPRESS and EXPRESS-G.

EXPRESS is a draft International Standards Organization (ISO) language for the

specification of information models. It was originally developed to enable a formal specification

of the forthcoming ISO 10303 standard, familiarly known as STEP. The language is also

increasingly being used in many other contexts, for example in the mechanical, electronic and

petro-chemical industries, as well as in other national and international standards efforts.

EXPRESS-G is a graphical subset of the EXPRESS language. The graphical nature of

EXPRESS-G make it a valuable tool for understanding and analyzing information models.

6.1 Process Model Schema Specification

The Process Model provides the selection logic for the MO Manufacturing Analyzer when

generating the set of process nodes to be included in the cost and yield analysis. The process

model is decomposed into a graph of process nodes. Each process node consists of selection

rules, dependencies, and operations. Selection rules define criteria that must be satisfied for the

process node to be considered in the specific overall manufacturing process. Each process node

is dependent on one or more parent nodes. For each process node, an AND/OR flag is kept that

specifies if the node is dependent on any one parent node being satisfied, or all parent nodes

being satisfied. For a process node to be selected for inclusion in a specific instantiation of a

manufacturing process, the following two criteria must be met:

1. At least one of the nodes selection rules is satisfied.

2. All of the nodes parent processes are satisfied or the node AND/OR flag is set to OR and

at least one parent node is satisfied.

At each process node there is a list of operations that are performed. Each operation is

annotated with an associated yield rate, rework rate, and its usage of resources. From the list of

operations the Manufacturing Analyzer will determine the aggregate cost, yield, and rework for

this process node.

120



UNCLASSIFIED

CDRL No. 0002AC-4

The EXPRESS model specified in this section was created for process model

representation. Figure 6.1-1 is an EXPRESS-G representation of the same model.

6.1.1 EXPRESS Schema for Process Model

This EXPRESS schema listing defines the process model. The process model schema

includes two auxiliary schemas, the selection-rules schema and the resourceschema. The

specification of these two schemas will follow.

EXPRESS Specification:

INCLUDE'rules.exp';
INCLUDE 'resource.exp';

SCHEMA processmodel;

REFERENCE FROM selection rules;
REFERENCE FROM resourceschema;

6.1.1.1 ProcessModel Entity

A ProcessModel entity is the specification of a manufacturing process model that contains a

dependency graph of Process entities. Additional data about the model is also stored including

its name, author, creation date, and last modification date.

EXPRESS Specification:

ENTITY ProcessModel;
name: STRING; -- Process Model name
creationDate : Date; -- Model creation date
modifyDate : Date; -- Model last modify date
author: STRING; -- Model author
topProcess : Process; -- Top process in

ENDENTITY; -- dependency graph

Attribute definitions:

name: Name of the manufacturing process model.

creationDate: The date that the model was created.

modifyDate: The date that the model was last modified.

author: The author of the model.

topProcess: The root or top most process in the process model dependency graph.

121



UNCLASSIFIEDm CDRL No. 0002AC-4

6.1.1.2 Process Entity

A Process entity is the specification of a manufacturing process that contains selection rules,

operations, and resources. Rules and dependencies of the manufacturing process are modeled in

the process nodes. If the rules and dependencies are satisfied, then the process node is included

in the overall process analysis. Processes are organized as a directed dependency graph. The

dependency graph takes the form of a tree where each node can have one or more parents and

one or more children. Each Process will also have a reference to its immediate siblings (i.e. its

neighboring nodes at the same level in the tree).

EXPRESS Specification:

ENTITY Process;
name: STRING; -- Process Name
andParents: BOOLEAN - AND/OR dependency flag
rules: LIST [0:?] OF ComplexRule; -- List of Selection Rules
elimrules: LIST [0:?] OF ComplexRule; -- List of Selection Rules
resources: LIST [0:?] OF Resource; -- List Of Resources
parents: LIST (0:?] OF Process; -- List of Parents (Ancestors)
children : LIST [0:?] OF Process; -- List of Children (Descendants)
lsibling: OPTIONAL Process; -- Left Sibling
rsibling : OPTIONAL Process; -- Right Sibling
OperList : LIST [0:?] OF Operation; -- List of Process Operations

ENDENTITY;

Attribute definitions:

name: Name of the manufacturing process.

andParents: AND/OR dependency flag. If set to TRUE, the parent nodes to which this node
must be satisfied for this node to be considered for selection. If set to FALSE, a
minimum of one of the parent nodes must be satisfied for this node to be considered
for selection.

rules: List of selection rules. The rules are comprised of design feature entity and attributes
being present or of specific values.

elimrules: List of exception rules. These rules are identical to the selection rules in their
syntax. If an exception rule is satisfied then this process will not be considered for
selection.

resources: List of resources used by the process node as an entity. This list of resources are

associated with the process node. A separate list of resources is kept with each
operation. Therefore, this list should not contain any resources that have been attached
to an operation.

parents: List of processes that this node is dependent on. The nodes in this list are the
immediate ancestor to this node. For this node to be selected, depending on the
andParents flag, all or one of the nodes in this list must be satisfied.

I
122I



UNCLASSIFIED
CDRL No. 0002AC-4

children: List of processes that are dependent on this node. The nodes in this are direct
descendants of this node.

rsibling: The process to the immediate right of this node on the same level of the dependency
graph.

isibling: The process to the immediate left of this node on the same level of the dependency
graph.

OperList: List of operations attached to this process. If this node is selected, then the
operations in this list will be evaluated for cost, yield and rework.

6.1.1.3 Operation Entity

Attached to each process is a list of operations. When a process is selected and included in

the overall manufacturing process, its list of operations is evaluated for cost, rework and yield

analysis. Each operation is comprised of the following: A list of resources that are required to

perform the operation, the time required to setup for and actually run the operation, an efficiency

rate is kept with each operation this provides a factor that when applied to the labor standard for

the operation, will calculate the actual time for the operation. Data for computing scrap and

rework rates can be stored in a set of lookup tables or specified by a set of rules.

EXPRESS Specification:

ENTITY Operation;
name: STRING; - Operation Name
desc: STRING; -- Description
resources: LIST [0:?] OF ResourceUtilization; --List Of Resources
scrap_rate : LIST [0:?] OF Scrap; - Scrap rates
rework_rate : LIST [0:?] OF Rework; -- Rework rates
cost: OPTIONAL OpCost; -- Operation Cost (for Analyzer)

ENtENTITY;

Attribute definitions:

name: Alpha-numeric name of the operation.

desc: Textual description of the operation.

resources: List of resources required to perform the operation.

scraprate: A list of a list table entries providing an indexed lookup of scrap rates based on
values of entities and their attributes or an equation that when evaluated will provide
the scrap rate for the operation.

rework rate: A list of a list table entries providing an indexed lookup of rework rates based on
values of entities and their attributes or an equation that when evaluated will provide
the rework rate for the operation.

123



UNCLASSIFIED

CDRL No. 0002AC-4

6.1.1.4 Scrap Entity

The scrap entity is used to represent scrap rate data. Scrap being the percentage of product

parts that must be scrapped due to this operation. Scrap data is maintained in a list of scrap

entities. In each entity there is a scrap rule and a corresponding scrap rate. If the scrap rule is

satisfied, then the corresponding scrap rate is computed.

EXPRESS Specification:

ENTITY Scrap;
scrapRule: ComplexExp; -- Rule to be evaluated
scrapRate: Equation; -- Scrap that applies if rule is satisfied

ENDENTITY;

Attribute definitions:

scrapRule: The scrap rule to be evaluated.

scrapRate: The scrap rate equation to apply if the scrapRule is satisfied.

6.1.1.5 Rework Entity

The rework entity is used to represent rework rate data. Rework being the percentage of

product parts that must be reworked due to this operation. Rework data is maintained in a list of

rework entities. In each entity there is a rework rule and a corresponding rework rate. If the

rework rule is satisfied, then the corresponding rework rate is computed. There is a list of

resources associated with the rework which is used to calculate the cost of performing the

rework operation.

EXPRESS Specification:

ENTITY Rework;
reworkRule: ComplexExp; -- Rule to be evaluated
reworkRate : Equation; -- Rework that applies if rule is satisfied
resources: LIST [0:?] OF ResourceUtilization; -- Rework resources

END _ENTITY;

Attribute definitions:

reworkRule: The rework rule to be evaluated.

reworkRate: The rework rate equation to apply if the reworkRule is satisfied.

124



UNCLASSIFIED
CDRL No. 0002AC-4

resources: The resources associated with the rework.

6.1.1.6 OpCost Data

The OpCost data types and entities are used to represent calculated analyzer data associated

with an operation.

EXPRESS Specification:

ENTITY OpCost;
setupTime: REAL; -- Operation Setup Time
runTime: REAL; Operation Run Time
scrapPercentage: REAL; -- Actual Calculated Operation Scrap
reworkPercentage: REAL; -- Calculated Operation Rework
reworkCost: REAL; Calculated Rework Cost
prodQty: INTEGER; -- Actual Prod. QTY Required
IdealFait: REAL; -- Calculate Ideal FAIT
ActualFait: REAL; -- Calculate Actual Estimated FAIT

END-ENTITY;

Attribute definitions:

setupTime: Operation calculated setup time.

runTime: Operation calculated run time.

scrapPercentage: Operation calculated scrap percentage.

reworkPercentage: Operation calculated rework percentage.

reworkCost: Operation calculated rework cost.

prodQty: Required operation production quantity.

IdealFait: Ideal Operation Fabrication, Assembly, Inspection, and Test Cost

ActualFait: Actual Estimated Operation Fabrication, Assembly, Inspection, and Test Cost

6.1.2 EXPRESS-G Schema for Process Model

The following EXPRESS-G model (figure 6.1-1) represents the Process Model schema:

125



UNCLASSIFIED
CDRL No. 0002AC-4

rules LtO:? - - - - -

selection-rules.Complex e

FIge 6- EXPrESS Model of desigF.lt_ Schema

paens [:? Ichlre e0:

6r1e3 EXPRESS Schea forResources

Q - - -' --

The rsourc sche ardefnes a[:? cldrn[:slection o niista r ueused toseify tresuresm

namýs opera L[0resourcei l eork L[0:e] l u i t man

is no conidere raw maera Ofptepratodut As efindite schema.aresource tis atgenei

i subty resou ired

I'-:? --- --I

e e n o sua le m teria rles. u ato

e- 126
613 EPESScreapfo Rewokrsource s[:?

equpmetandcosumalecmteiajles.Euto

rt
L - -- - - - 1-6



UNCLASSIFIED
CDRL No. 0002AC-4

I EXPRESS Sp�ecification•

SCHEMA resource_schema;

£ 6.1.3.1 ResourceUtilization Entity

The ResourceUtilization Entity is used to store which resource(s) are utilized by a process

3- or operation.

EXPRESS Specification:
ENTITY ResourceUtilization;

resource: Resource; -- Resource utilized
setupTime: Equation; -- Setup Equation
runTime: Equation; -- RunTime Equation
effRate : OPTIONAL REAL; -- Efficiency RateENIDENTrTY;

Attribute definitions:

resource: The resource being utilized.

setupTime: The amount of setup time required for the resource.

runTime: The amount of time that the resource is being used while running the operation.

effRate: This optional attribute provides an efficiency rate factor that when applied to a labor
standard associated with an operation will provide the actual time for the operation.

3 6.1.3.2 Resource Entity

This is the generic resource entity. Each resource is named and can be coded of a certain

lJ type. A list of generic attributes can be attached to each resource using the parameter entity.

EXPRESS Specification:

ENTITY Resource;
resource_name: STRING; - Resource Name
resource_code: STRING; -- Resource Code
parameters : LIST [0:?] of parameter; - Resource Parameters

END_ENTITY;5(,
Attribute definitions:

resource-name: The name string associated with the resource.

I resourcecode: A string used to assign a code to the resource.

127



UNCLASSIFIED

CDRL No. 0002AC-4

parameters: A list of generic attributes that can be attached to this resource.

6.1.3.3 Parameter Entity

The parameter entity is used to define a generic attribute.

EXPRESS Specification:

ENTITY Parameter,
p__name: STRING; - Parameter Name
p_value: STRING; - Parameter Value

ENDENTITY;

Attribute definitions:

p_name: The name of the parameter.

p_value: The value of the parameter.

6.1.3.4 Labor Entity

The entities in this section define the labor resource. The labor entity is a subtype of the

generic resource entity.

EXPRESS Specification:

ENTITY Labor SUBTYPE OF (Resource);
jobcode : STRING; -- Labor Job Code
rate : REAL; -- Labor Rate

ENDENTITY;

Attribute definitions,

job-code : A unique identifier associated with the labor.

rate : The labor rate.

6.1.3.5 Equipment Entity

The equipment entity is a subtype of the generic resource entity. It is used to specify the

cost of operating the equipment resource during an operation or process.

EXPRESS Specification:

ENTITY Equipment SUBTYPE OF (Resource);
equipmentLcategory: STRING; -- Equipment Category

128



UNCLASSIFIED

cost~per-timeunit: REAL; 
-- Cost Per Time UnitCDRL No. 0002AC-4

ENDENTITY;

Attribute definitions:

equipment category: The equipment code or category.

cost_pertime.unit: The cost of operating the equipment resource per unit of time.

6.1.3.6 Facility Entity

The facility entity is a subtype of the generic resource entity. It is used to specify the cost of

using the facility resource during an operation or process.

EXPRESS Specification:

ENTITY facility SUBTYPE OF (Resource);
square-feet-allocated : REAL; -- Square Feet Allocated
cost.per._sqt..f.perjtime_unit: REAL; -- Cost Per Sq Foot Per Time Unit

ENDLENTITY;

Attribute definitions:

square feet allocated: The square feet allocated to this particular operation or process.

cost..per.sq..ftpertime unit: The cost per square foot per time unit.

6.1.3.7 ConsumableMaterial Entity

The consumable material entity is a subtype of the generic resource entity. Consumable

materials are those materiais used to aid in the manufacturing of a product that are consumed by

the process. These materials are not considered as part of the raw materials used in the

manufacture of the product. They only aid in the production process and are consumed at some

measurable rate during the process.

EXPRESS Specification:

ENTITY ConsumableMaterial SUBTYPE OF (Resource);
cost_peraunit : REAL; -- Cost Per Unit
resourceRates: LIST [0:?] OF ResourceConsumable; list of resource rates

ENDENTITY;

ENTITY ResourceConsumable;
aresource : Resource; -- Associated Resource
units exhausted perjtimeunit : REAL; -- Units Exhausted Per Hour

ENDENTITY;

129



UNCLASSIFIED
CDRL No. 0002AC-4

Attribute definitions:

cost~per unit: The cost of one unit of the consumable material.

resourceRates: The list of resource rates.

aResource: The associated Consumable Resource.

units-exhausted per time unit: Units consumed per unit of time during or by the operation
or process.

6.1.4 EXPRESS-G Schema for Resource

The following EXPRESS-G schema (figure 6.1-2) represents the Resource schema:

eesorcenam

I eor e suc.nm
Parameter paramters L[O:?] ReoreSRN

rate costper sq ft square feet
..per -time-unit _allocated

4,eostm unit

Fgr6.2EPREAL- Model G of Reore Schemarsorc

130



UNCLASSIFIED

CDRL No. 0002AC-4

6.1.5 EXPRESS Schema for Selection Rules

This schema defines a grammar format which rules for selection and equations for

evaluation can be specified. Rules are tied to process nodes and equations are tied to such

entities as scrap and rework formulas. Provided below is the complete BNF (Backus-Naur

Form) grammar format for the selection rules and equations which the EXPRESS schema is

based on.

Complex Rule Grammar Format

<complexRule>:= <rules> [<complexRule>]

<rules> <expression> I <expression>, <rules>

<expression>:= <equation> I <equation> <equiv-op> <expression> I <unary-op> <var> I "string"

<equation>:= <term> I <term> <op> <equation>

<term>:= <const> I <var> I ( <equation>)

<var> := <data dictionary strings>

<data dictionary strings> := <alpha> [<alpha> I <digit> I <underscore>]

<const> := real numbers I integers

<op> : * multiplications

/ division
+ addition
- subtraction

<unary_op>:=
not

<equiv..op>:=
< less than
<= less than equal to
> greater than
>= greater than equal to
= equal to
!= not equal to

Operator Precedence (ordered by most --> least priority)
1 logical negation

2 * multiplications
/ division (left to right)

3 + addition
subtraction (left to right)

131



UNCLASSIFIED
CDRL No. 0002AC-4

4 < less than
<= less than equal to
> greater than (left to right)
>= greater than equal to

5 = equal to

1= not equal to (left to right)

6 , AND

6.1.5.1 Constants and Types for Rule Construction

The following is a listing of the EXPRESS source that defines symbolic constants and

aggregate types that are necessary for the specification of the rules BNF:

EXPRESS Specification:

SCHEMA selection-rules;

CONSTANT
Multiply STRING :'*"
Divide : STRING:= 7;
Add : STRING:='+,
Subtract STRING :=-
U_Op STRING :=T,
Less STRING:='<,
LessEqual : STRING := <=;
Greater STRING:='>,
GreaterEqual : STRING
Equal : STRING :="
NotEqual : STRING := '.;
LP : STRING:= 'C;
RP: STRING :=')';
Comma : STRING :=';
DQ STRING--'."

ENDCONSTANT;

TYPE DQuote = ENUMERATION OF (DQ);
ENDTYPE;

TYPE AND-Op = ENUMERATION OF (Comma);
ENDTYPE;

TYPE LParen = ENUMERATION OF (LP);
ENDTYPE;

TYPE RParen = ENUMERATION OF (RP);
ENDTYPE;

TYPE UnaryOp = ENUMERATION OF (UOp);
ENDTYPE;

TYPE Strings = STRING;
ENDTYPE;

TYPE Realnumbers = REAL;
ENDITYPE;

132



UNCLASSIFIED
CDRL No. 0002AC-4

TYPE Integers = INTEGER;
END-TYPE;

TYPE
TokenReturnValue = SELECT (Real.numbers, Integers, Strings);

ENDTYPE;

TYPE
Const = SELECT (Real numbers, Integers);

ENDTYPE;

TYPE Operator = ENUMERATION OF
(Multiply, Divide, Add, Subtract);

ENDTYPE;

TYPE EquivOp = ENUMERATION OF
(Less, LessEqual, Greater, GreaterEqual, Equal, NotEqual);

ENDTYPE;

6.1.5.2 DataDictStr Entity

The DataDictStr entity is an abstract base class from which two subclass have been created.

The first is the EntityName class which holds the name of an entity name. The other is the

EntityAttrName which is used to support the following entity attribute specification:

entity .attr .attr[... attr]]1

An example of an instance of this might be:

line.pointl .x

EXPRESS Specification:

ENTITY DataDictStr; -- abstract base class
ENDENTITY;

ENTITY EntityName
SUBTYPE OF (DataDictStr);

name : STRING;
END-ENTITY;

Attribute definitions:

name: The name of the entity as it appears in the product data EXPRESS model.

EXPRESS Specification:

ENTITY EntityAttrName

133



UNCLASSIFIED
CDRL No. 0002AC-4

SUBTYPE OF (DataDictStr);
entityName: STRING;
attrName :LIST (1:?] OF STRING;

ENDENTITY;

Attribute definitions:

entityName: The name of the entity as it appears in the product data EXPRESS model.

attrName: List of attribute names that correspond to the structure: .attr[.attr[... attr]). These
attribute name should be specified as they appear in the product data EXPRESS
model.

6.1.5.3 ComplexRule Entities

A complex rule is composed of a list of rules. A rule is an Expressions anded together. The

following BNF segment defines the grammar of the EXPRESS entities:

<Rules> := <Expression> <ANDOP> I <Expression> <AND_OP> <Rules>

EXPRESS Specification:

ENTITY Rules;
expl : Expression;
Andl : And_Op;

ENDENTITY;

ENTITY ComplexRule;
lrule: LIST [0:?] OF Rules;

ENDENTITY;

6.1.5.4 Expression Entities

The Expression syntax is represented by the following BNF segment:

<Expression> := <Equation> I <ComplexExp> I <SimpleExp> I <StringValue>

EXPRESS Specification:

TYPE
Expression = SELECT (Equation, ComplexExp, SimpleExp, StringValue);

ENDTYPE;

ENTITY StringValue;
quotel : DQuote;
valuel : STRING;
quote2: DQuote;

END ENTITY;

134



UNCLASSIFIED
CDRL No. 0002AC-4

ENTITY ComplexExp;
Equl : Equation;
EquivOpl : Equiv-Op;
Expl : Expression;

END ENTrrY;

ENTITY SimpleExp;
NotI : UnaryOp;
DataDictVar: DataDictStr;

ENDENTrrY;

6.1.5.5 Equation Entities

The Equation syntax is represented by the following BNF segment:

<Equation> <Term> I <ComplexEquation>

EXPRESS Specification:

TYPE
Equation = SELECT (Term, ComplexEquation);

ENDTYPE;

ENTITY ComplexEquation;
Varl :Term;
Operl Operator,
Value : Equation;

ENDENTITY;

ENTITY ParenEquation;
Lparenthesis : LParen;
Equ Equation;
Rparenthesis : RParen;

ENDENTITY;

6.1.5.6 Term Entities

The Term syntax is represented by the following BNF segment:

<Term> := <Const> I <DataDictStr> I <Equation>

EXPRESS Specification:

TYPE
Term = SELECT (Const, DataDictStr, Equation);

ENDTYPE;

END_SCHEMA;

135



UNCLASSIFIED
CDRL No. 0002AC-4

6.1.6 EXPRESS-G Schema for Selection Rules

I NTGERREA

F 1r
Integers Real numbers

L JL - I

Canst

IT - Il~l f

Lprn arnuinComplexEquation en FP-ý Operator j STRING

Lpren RParen' i1
Equa~tion

;l IP RP -L
Constant Cntn

STRING STRING ql Euvp

rulesx~x L(O:?JO STRINGL[:?

,~el.Prol

Fiur 6.a XRES Mdl oSecTRIoNGRlsShm

E~presionStrin ~ 136



UNCLASSIFIED

CDRL No. 0002AC-4

6.2 Product Model Schema Specification

Product data interpretable by the MO system must be modeled in the EXPRESS language

and stored as STEP objects in a repository that is interfaced to the STEP Data Access Interface

(SDAI). Currently the SDAI only supports a STEP physical file. In the following sections an

EXPRESS schema for a PWB product is presented. This schema was created to demonstrate

the functionality of the MO system. The schema defines lists of entities that model features of a

PWB.

6.2.1 Printed Wiring Board Product Data Model

At Raytheon, PWB product data is stored in the RAPIDS (Raytheon's Automated

Placement and Interconnect Design System) database. Two interfaces were developed to

support .he transition of PWB product data to and from STEP physical files.

Generating the STEP physical file is facilitated by the interface RAPIDS to STEP which

maps RAPIDS data items into instantiated STEP entities. We created an information model

using the EXPRESS information modeling language. The model was based on the RAPIDS

database. The EXPRESS information model was compiled using the STEP Tools express2c++

compiler which generated a STEP schema and a C++ class library. The class library consists of

methods for creating and referencing persistent instances of the STEP entities which are stored

in a ROSE database. The STEP schema is used by the STEP Tools STEPfiler for reading and

writing the STEP physical file.

The MO system will use the STEP data directly, as well as for information exchange

between the various members of the design team. At Raytheon, the top level team would most

likely be using RAPIDS. This is not a requirement for using the core of the MO system. The

only requirement is that the top level team and the lower level teams are capable of creating,

exchanging and using the STEP physical file.

The Manufacturing Team passes back a consolidated design position to the top level. To aid

in the generation of a consolidated position, conflict resolution and design merging must be

supported. This is done using the STEP Toolkit from STEP Tools Inc. The diff tool reads two

versions of a design and creates a delta file. The difference report generator reads the

difference file and the original design, and presents each STEP entity and its attributes with the

original values and its change state clearly marked with an asterisks.

137



UNCLASSIFIED
CDRL No. 0002AC-4

Once the conflicts of the Manufacturing team members have been resolved, design versions

are merged using the STEP Tools sed tool. The sed tool read the delta file created by the diff

tool and updates the original design version. This updated version of the design will be

transferred back to the top-level product team as the Manufacturing Team's consolidated

position.

6.2.1.1 PWB Design Schema

This is the top level schema for the Raytheon PWB EXPRESS model. The model is

primarily derived from the Raytheon's Automated Placement and Interconnect Design System

(RAPIDS) data dictionary. RAPIDS is a concurrent engineering design station for Printed

Wiring Boards. Its database was designed to capture data from many diverse CAE, CAD, CAM,

CAT systems as well as analysis systems for thermal, reliability, critical signal analysis, and

manufacturability. Emphasis was placed on making the model extremely modular and flexible.

EXPRESS Specification:

INCLUDE 'rpdtypes .exp';
INCLUDE 'rpd_header.exp';
INCLUDE 'alias.exp';
INCLUDE 'annotation.exp';
INCLUDE 'cari.exp';
INCLUDE 'class.exp';
INCLUDE 'comment.exp';
INCLUDE 'dr block.exp';
INCLUDE 'gate.exp';
INCLUDE 'net.exp';
INCLUDE 'metalarea.exp';
INCLUDE 'part.exp';
INCLUDE 'pin.exp';
INCLUDE 'route. exp';
INCLUDE 'via.exp';
INCLUDE 'xref.exp';
INCLUDE 'shape.exp';
INCLUDE 'stackup.exp';
INCLUDE 'model .exp';

SCHEMA rpddesign;

REFERENCE FROM rpdtypesschema;
REFERENCE FROM rpd_headerschema;
REFERENCE FROM alias-schema;
REFERENCE FROM annotation-schema;
REFERENCE FROM cari schema;
REFERENCE FROM class-schema;
REFERENCE FROM comment-schema;
REFERENCE FROM dr block schema;
REFERENCE FROM gate_schema;
REFERENCE FROM net schema;
REFERENCE FROM metal area schema;
REFERENCE FROM part-schema;
REFERENCE FROM pinschema;

138



UNCLASSIFIED
CDRL No. 0002AC-4

REFERENCE FROM route-schema;
REFERENCE FROM via-schema;
REFERENCE FROM xref schema;
REFERENCE FROM model-schema;
REFERENCE FROM shapeschema;
REFERENCE FROM stackupschema;

ENTITY rpddesign rec;
alias header : header rec;
aliases : LIST [0:?] of alias rec; -- list of aliases
annotation header : header rec;
annotations : LIST [0:?] of annotationrec; -- list of annctations
cari header header rec;
cari rules LIST (0:?] of cari rule rec; -- list of cari rules
class header : header rec;
classes : LIST [0:?] of classrec; -- list of classes
comment header : header rec;
comments : LIST [0:?] of commentrec; -- list of design comments
dr block header : header rec;
dr-_blocks : LIST [0:?] of drblockrec; -- list of design rule blocks
gate_header : headerrec;
gates : LIST [0:?] of gaterec; -- list of gates
net header : header rec;
nets : LIST [0:?] of netrec; -- list of nets
partheader : headerrec;
parts : LIST [0:?] of part rec; -- list of parts
pins_header header rec;
pins : LIST [0:?] of pinrec; -- list of pins
route-header : header rec;
routes : LIST [0:?] of routerec; -- list of routes
vias header : header rec;
vias : LIST [0:?] of via rec; -- list of vias
xref header : header rec;
xrefs : LIST [0:?] of xrefrec; -- list of xrefs
shapes header : headerrec;
shapes : LIST [0:?] of pad shaperec; -- list of pad shapes
stackups_header : headerrec;
stackups : LIST [0:?] of stackuprec; -- list of pad stackups
models : LIST [0:?] of modelrec; -- list of part mechanical

models
ENDENTITY;

ENDSCHEMA;

6.2.1.2 PWB Generic Types and Entities

This schema defines types and entities that are used throughout the entire PWB model.

these types and entities are generic and low level and are used as resources by higher level

entities.

EXPRESS Specification:

SCHEMA rpdtypes_schema;

TYPE token = STRING; ENDTYPE;

TYPE name_type = STRING; ENDTYPE;

TYPE layertype = STRING; ENDTYPE;

139



P UNCLASSIFIED
CDRL No. 0002AC-4

TYPE keyword = STRING; END-TYPE;

TYPE dimension = INTEGER; ENDTYPE;

TYPE shapetype = STRING; ENDTYPE;

TYPE loadingtype = REAL; ENDTYPE;

TYPE blockingtype = STRING; ENDTYPE;

-- BINARY data type is not currently supported by the EXPRESS compiler
-- Assumming 8 bit characters (256 layers, 1 bit per layer)

TYPE bitmask = ARRAY [0:31] of STRING(l); ENDTYPE;

ENTITY time rec;
high INTEGER;
low INTEGER;

ENDENTITY;

ENTITY rrange_rec;
minimum REAL;
maximum REAL;

ENDENTITY;

ENTITY i_range_rec;
minimum INTEGER;
maximum INTEGER;

ENDENTITY;

ENTITY r_spanrec;
minimum : REAL;
maximum : REAL;
span : REAL;

ENDENTITY;

ENTITY i_spanrec;
minimum INTEGER;
maximum INTEGER;
span : INTEGER;

ENDENTITY;

ENTITY pinname_rec;
device : name_type;
gate : name_type;
pin : name_type;

ENDENTITY;

ENTITY vertex rec;
x dimension;
y dimension;
radius : dimension;

ENDENTITY;

ENTITY point_rec;
x dimension;
y dimension;

ENDENTITY;

ENTITY loading_rec;
rated : REAL;
derated REAL;
actual REAL;

ENDENTITY;

140



UNCLASSIFIED
CDRL No. 0002AC-4

ENTITY attribute rec;
key : keyword;
value : STRING;

ENDENTITY;
ENDSCHEMA;

6.2.1.3 Header Data Schema

This schema defines entities for the unit and scale of other entity instances and the creation,

access, and modification time entities.

EXPRESS Specification:

SCHEMA rpd_headerschema;

REFERENCE FROM rpdtypes_schema;

ENTITY version rec;
name : NAMETYPE;
revision : NAMETYPE;

ENDENTITY;

ENTITY headerrec;
file-name : NAME TYPE;
version NAME TYPE;
creation TIME REC;
access : TIMEREC;
modification : TIMEREC;
unit NAMETYPE;
scale REAL;
tool NAME TYPE;
tool ver INTEGER;
tool rev INTEGER;
assembly versionrec;
drawing version rec;
codeid NAMETYPE; -- Wire Wrap code id
comment STRING;
attribute : LIST OF ATTRIBUTEREC;

ENDENTITY;

ENDSCHEMA;

6.2.1.4 Alias Data Schema

This is the EXPRESS schema for storing data aliases required by limitations of some CAx

system (e.g. NET names in one system are restricted to a particular length that has been

violated by a system that is upstream in the design process)

EXPRESS Specification:

SCHEMA alias-schema;

141



UNCLASSIFIED
CDRL No. 0002AC-4

REFERENCE FROM rpdtypes schema;

ENTITY alias-list rec;
rapids name NAME TYPE;
alias-name NAME TYPE;
object•name NAMETYPE;

ENDENTITY;

ENTITY alias rec;
object : NAME TYPE; -- type of object
property : NAME TYPE; -- object property
system : NAME TYPE; -- system requiring an alias
alias list : LIST [0:?] of alias list rec; -- list of aliases
commeent : NAMETYPE;

ENDENTITY;

ENDSCHEMA;

6.2.1.5 Annotation Data Schema

This is the EXPRESS model for annotation data. Currently, annotation is limited to text.

EXPRESS Specification:

SCHEMA annotation-schema;

REFERENCE FROM rpdtypes schema;

ENTITY annotationrec;
text : STRING; -- label
text-height : DIMENSION; -- text size
text width DIMENSION; -- text size
line-width DIMENSION; -- width of text line
layer : NAME TYPE; -- text layer
location : POINT REC; -- text location
rotation : INTEGER; -- text rotation
justification : NAMETYPE; -- text justification

ENDENTITY;

ENDSCHEMA;

6.2.1.6 CARl Data Schema

This Express model is in place for Raytheon legacy data for its proprietary Computer Aided

Routing of !nterconnect (CAR!) system. As a generic model this should be eliminated.
EXPRESS Specification:

SCHEMA car _schema;

REFERENCE FROM rpdtypesschema;

ENTITY cari rule rec;
carn id : NAME TYPE; -- keyword for CARI record
record : NAME TYPE; -- CARI record card image
comment : NAMETYPE; -- pointer to comment string

ENDENTITY;

142



UNCLASSIFIED
CDRL No. 0002AC-4

ENDSCHEMA;

6.2.1.7 Class Data Schema

This EXPRESS model defines data entities for classifying signal nets into groups for

particular design rules.

EXPRESS Specification:

SCHEMA classschema;

REFERENCE FROM rpdtypes_schema;

ENTITY classrec;
group-name : NAME TYPE; -- class identifier
designrules NAMETYPE; -- design rules block
signal-list LIST [0:?] of NAMETYPE; -- signals in the class
attribute LIST [0:?] of ATTRIBUTEREC; -- user defined attribute
comments LIST [0:?] of STRING; -- text description

ENDENTITY;

ENDSCHEMA;

6.2.1.8 Comment Data Schema

This schema defines a single entity for a comment a list of comments is kept with each

PWB design.

EXPRESS Specification:

SCHEMA commentschema;

REFERENCE FROM rpdtypesschema;

ENTITY commentrec;
comment : NAMETYPE;

ENDENTITY;

ENDSCHEMA;

6.2.1.9 Design Rule Data Schema

This EXPRESS schema defines entities for design rules. Design rules are stored in named

blocks. Each block except for the GLOBAL block has a Parent name which it inherits from.

EXPRESS Specification:

SCHEMA dr block schema;

REFERENCE FROM rpdtypesschema;

143



UNCLASSIFIED
CDRL No. 0002AC-4

p ENTITY substrate block rec;
name : NAMETYPE; -- substrate name
technology : NAME-TYPE; -- technology code
mode : INTEGER; -- code for mode
layers : INTEGER; -- number of layers
pad stackfile : NAMETYPE; -- RLD file containing pad

stackups
layer model : LIST [0:?] of LAYER TYPE; -- layer model names
separation LIST [0:?) of INTEGER; -- spacing between layers
prepregmat : NAME TYPE; -- prepreg material
substrate mat : NAME TYPE; -- substrate material
solder mat NAME TYPE; -- solder mask material
attribute LIST TO:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENTITY via_specrec;
via-shape STRING; -- default via shape
vialength DIMENSION; -- default via length
via height DIMENSION; -- default via height

END_ENTITY;

ENTITY viastep_rec;
via_spacing : DIMENSION; -- minimum via separation
via depth : INTEGER; -- maximum via depth
first_layer : INTEGER; -- first stepping layer
pattern : NAME TYPE; -- stepping pattern
direction : REAL; -- direction for first step

ENDENTITY;

ENTITY min_space_rec;
line to line : INTEGER; -- line-to-line spacing
line to pad INTEGER; -- line-to-pad spacing
pad toypad : INTEGER; -- pad-to-pad spacing
linetoyprofile : INTEGER; -- line-to-profile spacing
pad toprofile : INTEGER; -- pad-to-profile spacing

END_ENTITY;

ENTITY designblock rec;
boundary : LIST [0:?] of vertex rec; -- design rules boundary
layer t : LAYERTYPE; -- design rules layer
layer-polarity : NAME TYPE; -- layer polarity codes
x-grid : LIST [0:?] of REAL; -- board routing x grid size
y grid : LIST [0:?] of REAL; -- board routing y grid size
grid offset : POINTREC; -- routing grid offset
x_viagrid : LIST [0:?] of REAL; -- board via x grid size
y_viagrid : LIST [0:?] of REAL; -- board via y grid size
via-gridoffset : POINTREC; -- via grid offset
spacing min_spacerec; -- feature spacing rules
viaspec : via_specrec; -- pointer to default via
viastepping : via_steprec; -- via stepping data
acid trap : INTEGER; -- acid trap angle
attribute : LIST [0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENTITY miter rec;
angle : DIMENSION; -- mitering angle
length : I_RANGEREC; -- length of miter

ENDENTITY;

ENTITY termination rec;
term type : TOKEN; -- type of termination (INPUT I

OUTPUT I DUAL)
value : REAL; -- resistor value in ohms

144



UNCLASSIFIED
CDRL No. 0002AC-4

unterm : DIMENSION; -- max unterminated length
ENDENTITY;

ENTITY necking rec;
line width : DIMENSION; -- minimum necked width
length I RANGE REC; -- length of neck
spacing : DIMENSION; -- unnecked spacing between 2

necks
ENDENTITY;

ENTITY parallelism rec;
parallel type : NAMETYPE; -- total or individual
plane : NAMETYPE; -- coplanar or biplanar
separation :-DIMENSION; -- separation threshold between

traces
limit : DIMENSION; -- parallel traces length

threshold
ENDENTITY;

ENTITY shield rec;
shield-type-: NAMETYPE; -- shielding type: microstrip,

stripline,
-- grounded, guarded, shielded

signal : NAMETYPE; -- signal shield connected
cover width :-DIMENSION; -- cover width for shield
strip width : DIMENSION; -- stripline width
isolation : DIMENSION; -- isolation dist
postspacing : DIMENSION; -- via post space distance
poststackup: NAMETYPE; -- stackup for vias for posts

ENDENTITY;

ENTITY signal block rec;
layers : bitmask;- -- eligible routing layers
layer-t : LIST [0:?) of LAYERTYPE; -- list of layer types
signaltype : NAME-TYPE; -- signal type: power, ground,

ecl, etc.
line width : DIMENSION; -- default wire line width
line shape : NAMETYPE; -- line aperture shape
maxlength : DIMENSION; -- max signal conductor length
min length : DIMENSION; -- min signal conductor length
stub : DIMENSION; -- max stub length
net order : NAME TYPE; -- stringing algorithm: MST,

DAISY, STAR, WIREWRAP
route bias : REAL; -- routing priority
clearance : DIMENSION; -- net isolation distance
place bias : REAL; -- placement priority
via type : NAME TYPE; -- pad stack for via
transmission : DIMENSION; -- max transmission length
span : DIMENSION; -- driver span
via count : INTEGER; -- maximum # of vias
tolerance : DIMENSION; -- matched length tolerance
miter : miter rec; -- corner mitering rules
termination : termination rec; -- terminatin rules
necking : necking rec; -- necking rules
parallelism : LIST [0:?] of parallelismrec; -- parallelism rules
delayrule : rspan rec; -- propagation delay rules
shield data : shield rec; -- shielding rules
attribute : LIST [0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENTITY layerblockrec;
layerIt : LAYER TYPE; -- design rules layer
cuweight : REAL; -- copper weight
thickness : REAL; -- thickness of metal

145



UNCLASSIFIED
CDRL No. O002AC-4

impedance : INTEGER; -- layer impedence
purpose : NAME TYPE; -- user define purpose
attribute : LIST [0:?] of ATTRIBUTE REC; -- user defined attributes

ENDENTITY;

ENTITY device block rec;
xgrid LIST (0:?) of REAL; -- placement grid size
y grid LIST [0:?] of REAL; -- placement grid size
grid offset POINT REC; -- placement grid offset
layer name LAYER TYPE; -- component placement layer
via flag : BOOLEAN; -- via inhibit flag
location set : NAME TYPE; -- placement location set
auto insert : NAME TYPE; -- auto insertion code
technology : NAME TYPE; -- device technology
device bias ::REAL; -- device affinitity
thermal bias : REAL; -- thermal affinitity
space_rule : LIST [0:?] OF NAMETYPE; -- placement spaceing rule
decoupling : DIMENSION; -- decoupling distance
overlap : LIST [0:?] OF NAMETYPE; -- placement overlap rule
wire bond I RANGE REC; -- wire bonding device rules
aspect : R_RANGEREC; -- aspect ratio for resist
heat sink : NAME TYPE; -- heat sink id
attribute LIST--0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENTITY metal area block rec;
pin _clearance :-DIMENSION; -- metal to pin clearance
via clearance : DIMENSION; -- metal to via clearance
wire_clearance : DIMENSION; -- metal to wire clearance
connrnumber : INTEGER; -- connections to each pin
conn width : DIMENSION; -- width of pin connections
cutout_flag : BOOLEAN; -- flag to generate cutouts
suppressflag BOOLEAN; -- unused pad suppression
show connect BOOLEAN; -- show pad connections
default drill DIMENSION; -- default drill size
attribute :.LIST [0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENTITY dr block rec;
block name NAME TYPE; -- name of design rule block
parent__name NAbMETYPE; -- name of parent design rule

block
substrate block : substrateblock rec; -- substrate rules
design block design block rec; -- design rules
signal block : signal block rec; -- signal rules
layer block layer block rec; -- level rules
device block device block rec; -- signal rules
metal area block : metalareablock rec; -- metal area rules

ENDENTITY;

END_SCHEMA;

6.2.1.10 Gate Data Schema

This schema defines entities for device gates.

EXPRESS Specification:

SCHEMA gateschema;

REFERENCE FROM rpdtypesschema;

146



UNCLASSIFIED
CDRL No. O002AC-4

ENTITY gate_package_rec;
component : NAMETYPE; -- symbolic component name
gateno : NAME-TYPE; -- element number

ENDENTITY;

ENTITY sheetrec;
num: NAME TYPE; -- sheet number
x location REAL; -- location on sheet
y~location REAL; -- location on sheet

ENDENTITY;

ENTITY gatenetrec;
logic-pin : NAMETYPE; -- logical pin name
signal : NAMETYPE; -- default net name

ENDENTITY;

ENTITY gate_rec;
instance NAME TYPE; -- gate name (handle)
package gatepackagerec; -- package reference
old package : gate_packagerec; -- original package ref
gate_swapcode : NAME TYPE; -- swap group name
swap_inhibit : INTEGER; -- gate/pin swapability
gate count : INTEGER; -- identical gate/device
sheet : sheet rec; -- schematic location
comment : NAME TYPE; -- pointer to comment string
signalmap : LIST [0:?] of gatenet rec; -- list of pins and nets
old signal-map : LIST [0:?) of gatenetrec; -- list of pins and nets
attribute : LIST [0:?] of attribute rec; -- user defined attribute

ENDENTITY;

ENDSCHEMA;

6.2.1.11 Net Data Schema

This schema defines entities for net signals.

EXPRESS Specification:

SCHEMA net-schema;

REFERENCE FROM rpdtypes schema;
REFERENCE-FROM pin-schema;
REFERENCE FROM via-schema;
REFERENCE FROM route schema;
REFERENCE FROM metal-area schema;
REFERENCE FROM dr-block schema;

ENTITY wwpin data rec;
method : NAME TYPE; -- installation method
code : NAME TYPE; -- wire type code
sequence : INTEGER; -- wrap sequence
group NAMETYPE; -- wire group
length DIMENSION; -- xs wire length
findno NAMETYPE; --
instpath : STRING; -- installation path

ENDENTITY;

ENTITY ww data rec;
run-number :-INTEGER; -- wire wrap run number
func : NAME TYPE; -- net function

147



UNCLASSIFIED

CDRL No. O002AC-4

ENDENTITY;

ENTITY ww-pinrpairrec;
method : NAME TYPE; -- installation method
code : NAMETYPE; -- wire type code
sequence : INTEGER; -- wrap sequence
group : NAMETYPE; -- wire group
length INTEGER; -- xs wire length
findno : NAMETYPE;
instpath : NAME-TYPE; -- installation path

END ENTITY;

ENTITY pinpair rec;
t_pin name : pinname_rec; -- to pin name
f_pin name : pinnamerec; -- from pin name
t_pin : pin rec; -- to pin object
f_pin : pin rec; -- from pin object
pp index : INTEGER; -- index to route object
pp : routerec; -- pointer to route object
wwpins : ww_pinpairrec; -- wire wrap pin pair data

ENDENTITY;

ENTITY net rec;
name : NAMETYPE; -- name of net
designrules NAME TYPE; -- design rules block
signal type : NAME TYPE; -- signal type
pinpairs LIST 0:?) OF pinpair-rec; -- list of pin pairs
ww data : ww datarec; -- wire wrap data
layer : BITMASK; -- eligible routing layers
layer t : LIST [0:?] OF NAMETYPE; -- list of layer types
line Width : DIMENSION; -- line width for routing
line Ishape : NAMETYPE; -- line aperture_shape
max length : DIMENSION; -- minimum total wire

length
min length : DIMENSION; -- maximum total wire

.length
stub : DIMENSION; -- maximum stub length
net order : NAME TYPE; -- stringing algorithm
clearance : DIMENSION; -- net isolation distance
route bias : REAL; -- routing priority
place bias : REAL; -- placement priority
via type : NAME TYPE; -- absolute pin(via) type

.transmission : DIMENSION; -- transmission length
span : DIMENSION; -- driver span
via count : INTEGER; -- maximum # of vias
miter : miter rec; -- corner mitering rules
termination : termination rec; -- terminatin rules
necking : necking rec; -- necking rules
parallelism : LIST [0:?) of parallelism-rec; -- parallelism rules
shield : shield rec; -- shielding rules
pin names : LIST [0:?] of pinname rec; -- pin names in the net
pins : LIST [0:?] OF pinrec; -- pin records in the net
routes : LIST [0:?] of routerec; -- list of net routes
vias : LIST [0:?] of viarec; -- list of net vias
metal areas : LIST [0:?] of metalarearec; -- list of net metal areas
delay rule : r spanrec; -- propagation delay rules
comment : NAME-TYPE; -- comment string
attribute : LIST [0:?] OF ATTRIBUTEREC; -- user defined attribute

ENDENTITY;

ENDSCHEMA;

148



UNCLASSIFIED

CDRL No. 0002AC-4

6.2.1.12 Metal Area Data Schema

This schema defines entities for metal areas (areas of a PWB flooded or meshed with

conductor material).

EXPRESS Specification:

SCHEMA metalarea-schema;

REFERENCE FROM rpdtypes schema;
REFERENCE FROM dr blockschema;

ENTITY cutout rec;
cutouttype : NAME TYPE; -- type of cutout
points : LIST [0:?] of POINTREC; -- cutout description

ENDENTITY;

ENTITY metal area rec;
signal : NAMETYPE;
metal area type : NAMETYPE; -- type of metal area
style : NAME_TYPE; -- style of metal area
design_rules : dr blockrec; -- name of design rule block
aperture DIMENSION; -- apperature for photoplot
spacing : DIMENSION; -- line spacing in photoplot
layer : INTEGER; -- layer for metal area
cutout_shape : NAMETYPE; -- shape for pin cutouts
origin : POINT REC; -- boundary origin
boundary : LIST [0:?] of POINT REC; -- boundary description
user cutouts : LIST [0:?) of c7tout rec; -- defined cutouts
autocutouts : LIST [0:?] of cutout-rec; -- generated cutouts
comment : NAME TYPE; -- comment string
attribute : LIST [0:?] of ATTRIBUTE REC; -- user defined attribute

ENDENTITY;

ENDSCHEMA;

6.2.1.13 Part Data Schema

This schema defines the electrical characteristics of the PWB components.

EXPRESS Specification:

SCHEMA part_schema;

REFERENCE FROM rpdtypesschema;

ENTITY pin map rec;
logic pin : NAME TYPE; -- logical pin name
componentpin : NAME TYPE; -- component pin name
pinswap_code : NAME-TYPE; -- pin swap group

ENDENTITY;

ENTITY element rec;
elem no : NAME TYPE; -- element number
elem_-swap : NAMETYPE; -- element Swap Code
pin map : LIST [0:?] OF pin-map-rec; -- element to device pin map

END_ENTITY;

149



UNCLASSIFIED
CDRL No. 0002AC-4

ENTITY geodata rec;
rev : NAME TYPE; -- pin data rev
modn : NAME TYPE; -- pin data mod
clear z DIMENSION; -- component CLEARZ
heigh-t DIMENSION; -- component HEIGHT
length DIMENSION; -- component LENGTH
width DIMENSION; -- clib component WIDTH
hsx : DIMENSION; -- clib HSX pin spacing
hsy : DIMENSION; -- clib HSY pin spacing
mass : REAL; -- component MASS
pin-offset : point rec; -- pin offset

ENDENTITY;

ENTITY op-data_rec;
rev NAME TYPE; -- pin data rev
modn NAME TYPE; -- pin data mod
power dissip : REAL; -- power dissipation
maxpowerdissip : REAL; -- max power dissipation
peakpower REAL; -- peak power
minpower REAL; -- min power

ENDENTITY;

ENTITY therm data rec;
rev NAME-TYPE; -- pin data rev
modn NAME TYPE; -- pin data mod
emit REAL;
rsbtm REAL;
rsjb REAL;
rsjc REAL;
rstop REAL;
spht REAL;
jtm REAL;
thermaltypecode : INTEGER;
thermaltype : NAME-TYPE;

ENDENTITY;

ENTITY pin timerec;
min : REAL;
typical : REAL;
max : REAL;

ENDENTITY;

ENTITY input_currentrec;
iil REAL; -- low current
iih REAL; -- high current

ENDENTITY;

ENTITY inputvoltagerec;
vil: REAL; -- low voltage
vih : REAL; -- high voltage

ENDENTITY;

ENTITY output_currentrec;
iol REAL;
ioh REAL;
iozl REAL;
iozh REAL;

ENDENTITY;

ENTITY output voltage_rec;
vol REAL; -- low voltage
voh REAL; -- high voltage
vol-min : REAL; -- min voltage

150



UNCLASSIFIED
CDRL No. 0002AC-4

voh max : REAL; -- max voltageENDENTITY;

ENTITY bi pin rec;
input current input current rec;
input-voltage input-voltage-rec;
output-current output_current_rec;
output voltage outputvoltage_rec;

ENDENTITY;

ENTITY inypin rec;
input current : input current rec;
input-voltage : input voltage rec;

ENDENTITY;

ENTITY oupin rec;
ouconfig_code : INTEGER;
ouconfig : NAMETYPE;
output current : outputcurrent rec;
output_-voltage : outputvoltage-rec;

ENDENTITY;

ENTITY pin data rec;
rev NAME TYPE; -- pin data rev
modn NAME TYPE; -- pin data mod
pinnumber - NAMETYPE; -- component pin number
pin-name : NAMETYPE; -- component pin name
pin swap_code : NAMETYPE; -- pin swap group name
pin offset : POINTREC; -- center of the pin relative to

the origin of the device
capacitance : REAL;
fall-time pin time rec; -- rise time
rise-time pin-time-rec; -- fall time
pin•type NAME-TYPE; -- B, I, 0
bipin bipin rec; -- bi-directional pin data
inpin inpin--rec; -- input pin data
oupin oupin-rec; -- output pin data

ENDENTITY;

ENTITY prop delay rec;
rev NAME TYPE; -- pin data rev
modn NAME TYPE; -- pin data mod
pin_name start : NAMETYPE;
pinnameend : NAME-TYPE;
pin_numstart : NAMETYPE;
pinnumend : NAMETYPE;
phl: REAL;
plh : REAL;
unateness : NAME TYPE;

ENDENTITY;

ENTITY part rec;
part : NAMETYPE; -- part name
technology : NAMETYPE; -- device technology
spicemodel : NAMETYPE; -- spice model for the device
heatflag : BOOLEAN; -- heat sensitivity flag
statflag : BOOLEAN; -- static sensitivity flag
polar_flag : BOOLEAN; -- polar component flag
part_type : NAMETYPE; -- component type
partclass : NAME_TYPE; -- component class
description : STRING; -- component description
mil spec : NAME TYPE; -- component mil spec name
findno : NAME TYPE; -- component find number
tolerance : NAME TYPE; -- component tolerance

151



UNCLASSIFIED
CDRL No. 0002AC-4

value : NAME TYPE; -- component value
mech name : NAME TYPE; -- mechanical name
manufacturer : NAME TYPE; -- part manufacturer
elements LIST [0:?5] OF elementrec; -- list of elements in part
geodata geo_datarec; -- geometry data
op_data op_datarec;
therm data : therm data rec; -- thermal data
pin data : LIST [0:?] OF pin data rec; -- pin data
delay_data : LIST (0:?] OF propdelayrec; -- delay data
comment : NAMETYPE; -- comment string
attribute : LIST [0:?] OF ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENDSCHEMA;

6.2.1.14 Pin Data Schema

This schema defines entities for component pins instantiated on the PWB.

EXPRESS Specification:

SCHEMA pinschema;

REFERENCE FROM rpdtypesschema;

TYPE function type .= STRING(l) FIXED; ENDTYPE;
-- I for input or source
-- 0 output or sink
-- B bidirectional
-- T pin on a terminating resistor

ENTITY load data rec;
power : LOADING TYPE; -- power loading data
voltage : LOADING_TYPE; -- voltage loading data
current : LOADING TYPE; -- current loading data
temperature : LOADINGTYPE; -- temperature loading data

ENDENTITY;

ENTITY pin_rec;
pin : NAME TYPE; - pin name
signal : NAME TYPE; -- signal name
offset POINT REC; -- pin offset from origin
location : POINT REC; -- pin location on board
rotation : REAL; -- pin rotation in degrees
range : BITMASK; -- pin depth
suppression : BITMASK; -- pad suppression mask
func : FUNCTION TYPE; -- pin function code
stepping : REAL; -- first stepping direction
pintype : NAME TYPE; -- absolute pin type
swapinhibit : INTEGER; -- gate/pin swapability
load data : load datarec; -- pin loading data

.comment : NAME TYPE; -- comment string
attribute : LIST [0:?] of ATTRIBUTEREC;-- user defined attributes

ENDENTITY;

ENDSCHEMA;

152



UNCLASSIFIED

CDRL Nc. 0002AC-4

6.2.1.15 Conductor Routing Data Schema

This schema defines entities for conductor routes of net signals.

EXPRESS Specification:
*)

SCHEMA routeschema;

REFERENCE FROM rpdtypesschema;
REFERENCE FROM netschema;
REFEPENCE FROM pinschema;

ENTITY segmentrec;
x : DIMENSION; -- x coord of point on the path
y : DIMENSION; -- y coord of point on the path
radius : INTEGER; -- for circular segment
segment width : DIMENSION; -- the width of the segment

ENDENTITY;

ENTITY ww route data rec;
revision NAME TYPE; -- wire revision
sequence INTEGER; -- wire wrap sequence
bends : LIST [0:?] of POINTREC; -- wire wrap bend points

ENDENTITY;

ENTITY route rec;
signal : NAMETYPE; -- associated signal name
route type : NAMETYPE; -- type of connection
status : NAMETYPE; -- path status
targetname : pin_namerec; -- assigned target pin name
object_name : pin_namerec; -- assigned object pin name
targetpin : pin rec; -- assigned target pin
objectpin : pin rec; -- assigned object pin
targetloc : POINT REC; -- coordinates of the target
objectloc : POINTREC; -- coordinates of the object
protect : BOOLEAN; -- path protection flag
target_layer : INTEGER; -- assigned starting layer
object_layer : INTEGER; -- assigned ending layer
path : LIST [0:?] OF segment rec; -- list of path segments
shield id : INTEGER; -- code for linking shielding
pinpairindex : INTEGER; -- link to pin-pair data
pinpair : pinpairrec; -- link to pin-pair data
ww data ww route data rec; -- wire wrapping data
comment NAMETYPE;

ENDENTITY;

ENDSCHEMA;

6.2.1.16 Via Data Schema

This schema defines entities for signal net vias.

EXPRESS Specification:

SCHEMA via-schema;

REFERENCE FROM rpdtypesschema;
REFERENCE FROM drblockschema;

153



UNCLASSIFIED

CDRL No. 0002AC-4

REFERENCE FROM net-schema;

ENTITY via rec;
signal : NAME TYPE; -- name of signal net
location : POINT REC; -- board coordinates
rotation : REAL; -- via rotation in degrees
range : BITMASK; -- pin depth
suppression : BITMASK; -- pad suppression mask
via type : NAME TYPE; -- absolute via type
via-use NAME T--YPE; special via use
shield id : INTEGER;-- code for linking shielding
shield-: shieldrec; --
comment : NAME_TYPE; -- comment string
attribute : LIST [0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENDSCHEMA;

6.2.1.17 Library Cross Reference Data Schema

This schema defines entities for the device cross references.

EXPRESS Specification:

SCHEMA xrefschema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM pinschema;

ENTITY xrefrec;
symbolic : NAME TYPE; -- symbolic name
old symbolic : NAMETYPE; -- old symbolic name
model : NAME TYPE; -- mechanical model name
location : POINT REC; -- board location
mirror : INTEGER; -- mirror flag
rotation : REAL; -- rotation flag
symbolic_flag : BOOLEAN; -- symbolic pin names used flag
external : BOOLEAN; -- connector flag
usa device : NAMETYPE; -- USA device names
physical : NAME TYPE; -- CLIB device name
raytheon : NAME TYPE; -- raytheon part number
designrules : NAMETYPE; -- design rules block
layer : NAME TYPE; -- component placement layer
via flag : B-OLEAN; -- inhibit via under device
location set : NAME TYPE; -- placement location set
auto-insert : NAMETYPE; -- auto insertion code
swap inhibit : INTEGER; -- gate/pin bwapability code
fix : BOOLEAN; -- fixed placement flag
device bias REAL; -- device affinitity
thermal bias : REAL; -- thermal affinity
coupling : LIST [0:?] of NAMETYPE; -- placement coupled devices
decoupling : INTEGER; -- decoupling distance
space rule : LIST [0:?] of NAME TYPE; -- placement spaceing rule
overlap : LIST [0:?] of NAMETYPE; -- placement overlap rule
heat sink : NAMETYPE; -- heat sink name
load-data loaddatarec; -- loading data
comment : NAMETYPE; -- comment string
attribute : LIST [0:?] of attribute_rec; -- user defined attributes

ENDENTITY;

ENDSCHEMA;

154



UNCLASSIFIED
CDRL No. 0002AC-4

6.2.2 PWB Design Data EXPRESS-G Model

etalkareausche• aliasmscha-na

F -classschema ---- E net_hscheml

6. Enotation ic hem a pn tia Dparttschema

Spirl~sch~na •----- [rpd_ design__ rueshm .

623 modelscema ponen MdcariDscaemaac

Th s tackupschem a defines entitie ocommcntnstche m

EXPR shape-schema .:drblockschema

SCHEM•dheaderschema;

Rrp dtypesF sche

Figure 6.2-1 PWB Schema Level EXPRESS-G Model

6.2.3 Electronic Component Library Data Model

6.2.3.1 Component Model Data Schema

This schema defines entities for modeling PWB components.

EXPRESS Specification :

SCHEMA model-schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM rpd,_header schema;
REFERENCE FROM stackupschema;

ENTITY rev data rec;
issue date : NAME TYPE; -- date of issue
revision : NAME TYPE; -- revision number
eco : NAMETYPE; -- latest eco number
eco date : NAMETYPE; -- date of latest eco

ENDENTITY;

ENTITY dev originrec;
origintype : NAME TYPE; -- origin types
center : POINTREC; -- device center
offset : POINTREC; -- placement offset

155



UNCLASSIFIED
CDRL No. O002AC-4

mirror : INTEGER; -- reflection code
ENDENTITY;

ENTITY label rec;
text : STRING; -- label text
height DIMENSION; -- text size
width DIMENSION; -- text size
location POINT REC; -- text location
rotation INTEGER; -- text rotation
line width : DIMENSION; -- width of text line
justify : NAMETYPE; -- text justification

ENDENTITY;

ENTITY boundary_rec;
boundary_type : NAMETYPE; -- type of boundary
shape : NAME TYPE; -- boundary outline shape
outline LIST [0:?J of VERTEX REC; -- boundary outline vertices
layers LIST [0:?] of NAMETYPE; -- boundary layers

ENDENTITY;

ENTITY obstruction rec;
obstructiontype-: NAMETYPE; -- type of obstruction
shape : SHAPE TYPE; -- outline shape
outline LIST [0:?] of VERTEX REC; -- pad outline
layers LIST [0:?) of LAYER TYPE; -- pad layers
blocking : LIST [0:?] of BLOCKINGTYPE; -- blocking codes

ENDENTITY;

ENTITY device rec;
symbolic NAMETYPE; -- symbolic name
physical NAME TYPE; -- physical name
model : NAME TYPE; -- mechanical model name
location : POINT REC; --. location on board
rotation : REAL; -- rotation in degrees
mirror : INTEGER; -- mirror flag

ENDENTITY;

ENTITY devpin rec;
physical : STRING; -- physical pin name (must be

string of integers)
symbolic : NAME TYPE; -- symbolic pin name
location POINT REC; -- pin location
drill : DIMENSION; -- default drill size
stackup_name : NAME TYPE; -- pad stackup name
stackup : STACKUP_REC; -- pad stackup record
rotation REAL; -- stackup rotation
offset : POINT REC; -- stackup offset
stepping : INTEGER; -- first stepping direction

ENDENTITY;

ENTITY thermalrec;
thermal_type : NAMETYPE; -- type of thermal relief
width : DIMENSION; -- line width
spacing : DIMENSION; -- line spacing
stackup_name : NAME TYPE; -- stackup name
stackup : STACKUPREC; -- stackup record

ENDENTITY;

ENTITY package_rec;
package_type : NAME TYPE; -- package type
category : NAME TYPE; -- package category
orientation : NAME TYPE; -- package orientation
distance : DIMENSION; -- pin row separation
depth : DIMENSION; -- package depLn

156



UNCLASSIFIED
CDRL No. O002AC-4

height : DIMENSION; -- package height
width : DIMENSION; -- package width
lead DIMENSION; -- package lead diameter
fix BOOLEAN; -- fixed device flag
bodydiameter : DIMENSION; -- package body diameter
span : DIMENSION; -- package pin span
insert : NAME TYPE; -- package insertion code
mechanical : BOOLEAN; -- mechanical device flag
auto ww offset : POINTREC; -- automatic wirewrap offset
auto wwtrp : INTEGER; -- automatic wirewrap initial trp
semi ww offset : POINTREC; -- semiautomatic wirewrap offset
semi ww trp : INTEGER; -- semiautomatic wirewrap initial

trp
ENDENTITY;

ENTITY model rec;
header : header-rec; -- pointer to header record
mmname NAMETYPE; -- mechanical model name
rev-data rev data rec; -- revision data
origin : dev_origin rec; -- origin data
package package_rec; -- packafing data
labels : LIST [0:?] of label rec; -- list of labels
boundaries : LIST [0:?) of boundary rec; -- list of boundaries
obstructions : LIST [0:?) of obstruction rec; -- list of obstructions
devices : LIST [0:?] of device rec; -- list of devices
pins : LIST [0:?] of devpinrec; -- list of pins
thermals : LIST [0:?) of thermal rec; -- list of thermal reliefs
comments : LIST (0:?] of STRING; -- list of comments
attribute : LIST [0:?] of attributerec; -- list of user defined

attributes
ENDENTITY;

ENDSCHEMA;

6.2.3.2 Pad Stack Data Schema

This schema defines entities for pin and via pad stackups. Various pad shapes for each layer

are combined. The layer assignments are then combined to form the padstack.

EXPRESS Specification:

SCHEMA stackupschema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM shapebuhema;

ENTITY padrec;
pad-name : NAMETYPE; -- shape name
pad shape : PAD SHAPEREC; -- pad shapes
func : NAMETYPE; -- pad function

ENDENTITY;

ENTITY pad stack rec;
model : NAME TYPE; -- layer model
offset : POINT REC; -- pad offset
pad list : LIST [0:?) of pad-rec; -- pad-names

END_ENTITY;

ENTITY stackuprec;
stackname : NAME-TYPE; -- name of stackup

157



UNCLASSIFIED
CDRL No. O002AC-4

pad stack : LIST [0:?] of pad stack rec; -- pad stackups

drill : INTEGER; -- default drill size
comments : LIST [0:?] of STRING; -- list of comments

ENDENTITY;

ENDSCHEMA;

6.2.3.3 Pad Shape Data Schema

This schema defines entities for pin and via pad shapes.

EXPRESS Specification:

SCHEMA shapeschema;

REFERENCE FROM rpdtypesschema;

ENTITY shape rec;
shape : NAME TYPE; -- shape type
width DIMENSION; -- aperature width
outline : LIST [0:?] of VERTEXREC; -- shape description

ENDENTITY;

ENTITY pad shape rec;
name NAME TYPE; -- shape name
pads : LIST-[0:?J of shaperec; -- pad shapes

ENDENTITY;

ENDSCHEMA;

6.2.4 Electronic Component Library Data EXPRESS-G Model

Fmodel-schema [ part~schema,

saclpschema apeschema gate-schema

pin~schema via_schema:

Figure 6.2-2 Component Data EXPRESS-G Schema

158



UNCLASSIFIED
[ CDRL No. 0002AC-4

7. Requirements Traceability

Provided below is a table which maps the applicable Software Design Specification section

numbers to the corresponding Functional Requirements and Measure of Performance

document section numbers (refer to reference 4).

Design Spec. Sections Functional Spec. Sections
3.2.1.1 3.1.1
3.2.1.2, 5.6 3.2.2
3.2.2,4.1.1,5.1 3.1.2
3.2.3, 4.1.2, 5.2 •4.3
3.2.4.1, 5.3 3.2.1
3.2.4.2, 5.3 3.2.3
3.2.4.3, 5.3 3.2.4
3.2.5, 5.4 3.2.5
"4. 3.3
6. 3.5

159



UNCLASSIFIED

CDRL No. 0002AC-4

8. Notes

8.1 Acronyms
CAEO Computer Aided Engineering Operations

CDRL Contract Data Requirements List

CERC Concurrent Engineering Research Center

CM Communications Manager

DARPA Defense Advanced Research Projects Agency

DBMS Database Management System

DFMA Design for Manufacturing and Assembly

DICE DARPA Initiative In Concurrent Engineering

ISO International Standards Organization

MEL Mechanical Engineering Laboratory

MO Manufacturing Optimization

MSD Missile Systems Division

MSL Missile Systems Laboratories

OOD Object Oriented Design

OSF Open Software Foundation

PCB Project Coordination Board

PWA Printed Wiring Assembly

PWB Printed Wiring Board

PWF Printed Wiring Fabrication

RAPIDS Raytheon Automated Placement and Interconnect Design System

RM Requirements Manager

ROSE Rensselaer Object System For Engineering

SDAI STEP Data Access Interface

STEP Standard for Exchange of Product Model Data

160



I

Distribution List
DPRO-Raytheon

C/O Raytheon Company
Spencer Lab., Wayside Ave.
(one copy of each report)

Defense Advanced Research Projects Agency
ATTN: Defense Sciences Office; Dr. H. Lee Buchanan
Virginia Square Plaza
3701 N. Fairfax Drive
Arlington, VA. 22203-1714
(one copy of each report)

Defense Advanced Research Projects Agency
ATTN: Electronic Systems Technology Office; Capt. Nicholas J. Naclerio, USAF
Virginia Square Plaza
3701 N. Fairfax Drive
Arlington, VA. 22203-1714
(one copy of each report)

Defense Advanced Research Projects Agency
ATT'N: Contracts Management Office; Mr. Donald C. Sharkus
Virginia Square Plaza
3701 N. Fairfax Drive
Arlington, VA. 22203-1714
(one copy of each report)

Defense Technical Information Center
Building 5, Cameron Station
ATTrN: Selections
Alexandria, VA 22304
(two copies of each report)


