AD-A259 707 @
CDRL No. 0002AC-4 RN NG DTIC

ELECTE
JEN12 1993D
Software Design Specification for the
Manufacturing Optimization (MO) System

Linda J. Lapointe
Thomas J. Laliberty
Robert V.E. Bryant

Raytheon Company

1992
DISTRi
[—===2EUTICY,
ADDKC"Q, 1 A g‘:y-—-i
\.E?B‘DL wq JD-«-..: S ez }
DARPA
Defense Advanced Research
Projects Agency
/\
- 93-00641

9 1 11 027 RYTTIT

CDRL No. 0002AC-4

Software Design Specification for the
Manufacturing Optimization (MO) System

Prepared by

Linda J. Lapointe
Thomas J. Laliberty
Robert V.E. Bryant

Raytheon Company
Missile Systems Laboratories
Tewksbury, MA 01876

December 1992

ARPA Order No. 8363/02
Contract MDA972-92-C-0020

Prepared for

DARPA

Defense Advanced Research
Projects Agency

Contracts Management Office
Arlington, VA 22203-1714

L.

Aéo‘;‘iiu For
NTIS oRisd

iy 248

| Unag: nmuui N

} Jurtitieatien

f

|

; P Rt(Q\“ ?\}S\ 5:/3f)
. IR ,/ .*J

Contents

Lo SCOPE...ceiieteertese ettt b ettt sa b s s e a e ea e sa s s eh et 1
L1 IdentifiCation....cccieeceeriereceresiesstteneeeneceeeeatecne e sae s as b s b s s nr e sans e e bn e 1
1.2 System OVETVIEWcccivriiniiinieiitnciint st er s sn st et 1
1.3 Definition 0f Key TErmMSccccvuiveenirirnrinieieerieneneecrieeesissenesesss e sasesseaees 2
1.4 Document OVEIVIEWccueceeveeeenreneereessessesseeseaesesseessessseraessneensaseesessasse 5
2. Referenced DOCUMENLS........cceveiirirneicnrsnierniieeneesteesesseesaesseesstessessassssssssssssasssessseenss 6
3. Preliminary Desigh... ..o imiinnnintiiinniiceericisie s ese et 7
3.1 MO OVETVIEW ..oerecriererneenierertessse e srnessestessaessesaesseesesssssnsessesssensessassnesntsnsans 7
3.1.1 MO AICRItECHUTE.cceiiiirerieceieee ettt st er e st srens 9
3.1.2 System States and Modes..........coceriiviiiiiniennrinniienin s 15
3.2 MO Design DesCriPlON....c.coceceererirreenieinieseneeierenceenresesssaesesbesiesesssnnaens 16
3.2.1 External Interfaces........cccoeeeevrrireiinnnenncinnncinsnsinivsnnnensniecnnaenns 16
3.2.1.1 Project Coordination Board.........ccccccovviiinennnincniiinnnennen. 16
3.2.1.2 Requirements Manager...........ccoeveeviinimninenenennennnncns 18
3.2.1.3 RAPIDS ...t et 19
322 Product (STEP) MOdelS......cocconiiverrcrineiiecrenrinee et 20
323 PrOCESS MOGELS ..cocnnocreeeeeeeeeeeesreesemseesseess e sesssesnssssssessseessonens 21
324 Manufacturing Analyzer..........ccccniencnniiinmninnccnee e 24
3.2.4.1 Process Analyzer......ccccoveinecreeinenncnnecnneininenieneneeens 24
3.242 Yield & Rework Analyzer........cococviiiiiiiinenieiinnnnnnns 25
32,43 Cost ESHMALOT......ccccociieeircreecceneeeeesteeecsas s csnnasaeens 25
3.2.5 Manufacturing AdVISOL.........cccccoivinicinrnniene e 26
3.2.6 Process MOGELEr......ccccocuiiuerierincnenitncriecre et e e 27
4. User INterface DeESiZN....ccevirieriieriencieircitiinie ettt sasssnse e ssbers s eseas 29
4.1 FHle MENU....ocoiceccieecceiece st ceresrere s et et et e e e s sess st e sn s ens b e eene s 29
4.1.1 Product/STEP Data Selection.........ccccccevvervueuiemivnicnsensnruenninnenns 30
4.1.2 Process Model Selectionccccoivenviiicniinniniinniinnenn 31
4.1.3 RAPIDS to STEP Translator Interface.......ccoovvvviiiininnnnnnnnnne, 32
4.1.4 STEP to RAPIDS Translator Interface.........cocccovvvvinncniinnnnnnn. 32
4.2 Analyzer FOMmM. ..ottt e 33
4.3 AdVISOT WINAOW ...vviieiiiiiice ettt st e n e e s ree 34
4.3.1 Select Analysis RUNS...cc...oceiiiiiiiiicccccicce e 35
4.3.2 Process Graph Display......cccocveiiiimniiiniiieene 36

4.3.3 Available Quality Graphs........ccccccrireeniveninieniecenreeesieerenrenee e 40
43.3.1 Yield Graphs......cccoceimeniniinnnenenenesinne e eneseesreseennens 40
4332 Rework Graphs.........cocceciieririrnnnerinncennreennnsese e 43
4.3.3.3 Production Quantity Graphs..........ccccueverererrecerrrrcenene 45
4.3.4 Available Costing Graphs.........ccccouiceviriiincniiinncinennnsenicrsenenns 48
4.3.4.1 Time/Cost Graphsccccoceneenerrenircresieerienreesessnesnenss 49
4.3.42 CostDetail Graphs..........cccoevvirvnvrniineenenvenserreerenneeenne 52
4.3.5 Analysis Reports FOIM......cccooviiiiiriincinniciinneieeneessenenessnesenenes 53
4.4 Modeler WInAOWc.covirviirieenirieniineieentisesrieseesiesneesesesaeseasesseassessassaeanees 55
4.4.1 Process Node DefInitioncccceceevuiieeneirsenrnnteecennenenneesseeseennnes 57
442 Selection Rules Definition.......ccoeeieeiinccvenrnnensecnienecceceeennnen 58
443 Operation DefinitioN.....ccccceiiireieiiieereirine e seceresiee e e evenns 59
4.4.3.1 Scrap Rate Definitioncccoovvvrirrenenccnicncncresienn 61
4.4.3.2 Rework Rate Definition.........ccccocvviivnvinieneniecnenenenes 61
4.4.4 Resource Definition........cccoicenireeerncnniiennnneteneeonie e seesneesee s 62
5. Detailed Object Oriented DeSign.......c.occiiiuicininiinininiiriinenieee e 67
5.1 ProductDesign.......c.cociiiiimninininiineenceneneestne e seee e st eeaa et st eee 68
5.2 ProcessMOdel......ooiciiiiirieerisree et st eae 72
5.2.1 ProcessModel Specificationcccoccivirievimeiiciinienine e 75
5.2.2 Process SPeCHfiCatioN.......ccocivieiueccenrenincennianeeseereesneseesneseesseaseenes 77
5.2.3 Operation SpecifiCationcccceverieerecereeiuenecsrenrcenaeseeseesssesnennes 81
5.2.4 Scrap SPeCHiCation......ccceiveieicnininiereeiie et eanes 84
5.2.5 Rework SpecifiCation..........ccoveeviriiniensennineseiniicinrenenescenineeseneas 85
5.2.6 OpCost SPecifiCation........ccccieceerierrienienirereenecenieetenneesaaesseessennens 87
5.2.7 ResourceUtilization Specification..........cccvuevcrererecienvueecreecrunennns 89
5.2.8 Parameter SPeCifiCationcocceerrineienenenieniineereneseeseseeeeeeene 91
5.2.9 Resource SpPecifiCationc.cccvvereeriereriisireserrestaeiesaesressanseesnens 92
5.2.9.1 Equipment Specification.........cccceeerirveerieesercersiescenienae 94
52.9.2 ConsumableMaterial Specificationc.ceeeevceervenenne 95
5.2.9.3 ResourceConsumable Specification...........cccervcvrennenes 96
5.2.9.4 Labor Specification........c.ccceeeieeirenenneneeninencencsnencncnnens 97
5.2.9.5 Facility Specificationcccccoveecvivennieeniennenrccnrennnanes 98
5.2.10 ComplexRule Specificationccceoceiveiinnienicenciiecieeree 99
5.2.11 Rules SPecification.........c.cocoverrcinenniirnec e st 100
5.2.12 Expression Specificationc.ccoeeienmnieniiniiiiiiene e 101
5.2.13 ComplexExp Specificationccocvvieiererirernnenieseeeecveseennnens 102

5.2.14 SimpleExp Specification..........coeceieiciniiinciecineniincennnes 103
5.2.15 EQUation SPECIfiCAtONvvvvererrerreesreesseesisessenssesssessanssssaessss 104
5.2.16 ComplexEquation Specification.........c.ccccvcveeiveviriienccineinenennes 105
5.2.17 ParenEquation Specification..........cccoeevivvuevinniiciininincinsiiennnnenes 106
5.2.18 Term Specification.........cccocveierivcriniieiiiiiiniiniiesec e 107
5.2.19 Const SPeCifiCatioN.......ccccveerirunieriininniiiie it 108
5.2.20 AND_Op Specificationcccceeverimruevecinnenicenincnrcsnnennensennes 109
5.2.21 Operator Specification.........ccccerireirrinicsinnininieneiinsne e 109
5.2.22 Unary_Op SpecifiCation........ccoeveveiinniniiisninnnrisiessisiessenseseenes 109
5.2.23 Equiv_Op SpecifiCation.........ccccevevuienucininiiininnnnisicnisnessssenans 110
5.2.24 StringValue SpecifiCationccoccvieriereniicrinnnnnininessisneiannannens 110
5.2.25 DataDictStr SpecifiCationcccevevieeeciiieneniicicncniire e 111
5.2.25.1 EntityName Specificationcccccceevievereenvueninnnencnnnn 111
5.2.25.2 EntityAttrName Specificationccccceeveeecinnnninnienens 112
5.3 ADALYZET ..ottt st et e s R e e r e sana 113
5.3.1 - Object DIagramcccecevcervinrmininnenniininiiennnies et 114
5.3.2 State Transition Diagram......cccceceeveviveiiniennincnnniciinneereee e 114
5.3.3 Analyzer SPecifiCation........c.coceeeeueeinminiruinienccseiccnteneeenicinnnrannns 114
5.4 AQVISOT....coeiiiiieiitiiire ettt st e ereetere s esebe s s st st sasnas s snsns et ates 116
5.5 MOGEIET....uoiiiiiirececrre et s e 117
5.5.1 Object Diagram........ccccececeeirnnee cotrmerierinnientisinssseseasesessersenssnnaens 118
5.5.2 State Transistion Diagramcccceceeeeriinireniniencnsenccnssnneinnesnens 118
5.5.3 Modeler Class Specification.........cocoeveivinveninivieccninnecnsieniieenns 118
5.6 RequirementManager API INterfacecoccvvenvimennniiiniiniinniiinieninniienn, 119
6. Schema SpPeCifiCAtONScccvuirrinineiiiiiiniisreri sttt et sae et nas e 120
6.1 Process Model Schema Specification..........ccccvucevenieinincnininicenciieneenen, 120
6.1.1 EXPRESS Schema for Process Model..........ccoovnvvvininiinnnnnnns 121
6.1.1.1 ProcessModel Entityccoceveeriennnciinienrennenncinnn. 121
6.1.1.2 Process Entity.....ccocovvievrnmnninininnniccneinecininienennnens 122
6.1.1.3 Operation Entityc.cccovvvieiiiiniiinniniiiinneesneenene 123
6.1.1.4 Scrap Entity......ccoernieniininnniniiniiiisncnineenenenenn. 124
6.1.1.5 ReWOrk Entity....occoveiirenininiivnninncneiienienccie s 124
6.1.1.6 OpCost Data........cccoivreiriireimneniniinsiiieeie e essssenens 125
6.1.2 EXPRESS-G Schema for Process Model ... 125
6.1.3 EXPRESS Schema for Resource..........cccoveiiviiiicniinineenennne, 126
6.1.3.1 ResourceUtilization Entitycc.ccovcrninvinnieniiiniiinnnns 127
v

6.1.3.2 Resource Entityccccecemviveeeieneniierreeieseceeeeee e 127

6.1.3.3 Parameter Entityccovireviinecieeececceeeeee e, 128

6.1.3.4 Labor Entity....cccocooiiiiioriceie et 128

6.1.3.5 Equipment Enfity......cccooveiiiiiiiriciiicneree e 128

6.1.3.6 Facility Entity «...c.cocoovueniiiiiiciieccentcce e 129

6.1.3.7 ConsumableMaterial Entitycccccovvevreveererceenreaennnn. 129

6.1.4 EXPRESS-G Schema for RESOUrceccoceevuivceneenncniecinveeruenae 130
6.1.5 EXPRESS Schema for Selection Rules........cccocceneennirincennacnenne 131
6.1.5.1 Constants and Types for Rule Construction................. 132

6.1.5.2 DataDictStr Entityc.cocoevriemrirnenntenecreneseeneseecenne 133

6.1.5.3 ComplexRule Entities........ccceccvrivercreeierrnnerececeeeeenen. 134

6.1.5.4 Expression Entities........cccoeieeriieiccicinseniiieee e sseeneeeeens 134

6.1.5.5 Equation Entities.......cccoceeeeerriinreeniiencie s eeeceienns 135

6.1.5.6 TermENtUES ..c..coevevererereeerirenreeeeet v erer s aeaenis 135

6.1.6 EXPRESS-G Schema for Selection Rules........c.cceeereneerenecnnnn. 136
6.2 Product Model Schema Specification...........ccccccceenvicrecnneenrnnneeennesneseennnns 137
6.2.1 Printed Wiring Board Product Data Model.........c..ccoovrverernene.e. 137
6.2.1.1 PWB Design Schema........ccccoevriinrenenencinniniecennnne 138

6.2.1.2 PWB Generic Types and Entities................. i 139

6.2.1.3 Header Data Schema.........ccccooceviniineeniieninsccenennene 141

6.2.1.4 Alias Data Schema.........ccoouevurinieerncneneeieeneeeee 141

6.2.1.5 Annotation Data Schema..........ccccocvveernievercenveerierreeneen. 142

6.2.1.6 CARIData Schema.........ccccceveeerenrecenieneneerneneesenneanns 142

6.2.1.7 Class Data Schema..........ccccceveerierenrecceniccenreceneace e 143

6.2.1.8 Comment Data Schema...........ccocevveerierinicnienenneeennee. 143

6.2.19 Design Rule Data Schema.......c.ccoccovinniieninncninnnnennen. 143
6.2.1.10 Gate Data Schemaccocoviviiinniiincnnncnnennec e 146
6.2.1.11 Net Data Schema..........ccccervireeereeniiecinncenienecnceeenne 147
6.2.1.12 Metal Area Data Schema.......cccceoveiiiecinvennncennncnnne. 149
6.2.1.13 Part Data Schemacc.cccoecevvrniecmnreennneenrenecienecneeas 149
6.2.1.14 Pin Data SChemac.ccocercerenvereenvereeneeeeseereeseseeseneens 152
6.2.1.15 Conductor Routing Data Schema........c....cocovivneninnnncns 153
6.2.1.16 ViaData Schema........ccccccoviiiveiiiinnniicccniiieieeseeseeeieas 153
6.2.1.17 Library Cross Reference Data Schema..........cocceeeneee 154

6.2.2 PWB Design Data EXPRESS-G Model......c.oceiviiiiicniinnne 155
6.2.3 Electronic Component Library Data Model........c.cccccoiininic 155

v

6.2.3.1 Component Model Data Schema..........c.ceceererrennnnne..
6.2.3.2 Pad Stack Data Schema............ccccceeeereerinmvenrrenennnnen.
6.2.3.3 Pad Shape Data Schema...........cccoeeerrrrecrnrinenrnrnrerenennne.
6.2.4 Electronic Component Library Data EXPRESS-G Model...........
7. Requirements TraCeabIlitycccovreierueierreniereineiiriiieseneneeeeseeieseeee e eeeseese e s sneeres
B INOLES ...ttt ettt e et s seeas s e st e st be s sa e s ae e et enbe b e st esaabess et ennts s eseseasenenbenens
8.1 ACTOMYIMIS .ccuiuviiecninenereenteneesaetscentstanteessesesseseesassesessesesensssansensessnsessssnes
vi

Figures and Tables

Figure 1.2-1 Two Level Team CONCePL............covrnueeeeereenrnsensiennisssesssesesenmessnenesessssseneens 2

Figure 3.1-1 MO External INTErfaces..........eeereerrierenmruerereerieisssnssnssesesenseseseesesesssesesnenss 7

Figure 3.1-2 MO System ArChiteCtUIE........ecvrutrirrerreiererneneieesestereee e e sre s 10
Figure 3.1-3 Process Modeler Block Diagramccccecueveceinnns oieveeeeeeiecieeceseevceeees 11
Figure 3.1-4 Example subset process model for etching process...........coeeeveivieneeveveneneen. 12
Figure 3.1-5 Manufacturing Analyzer Block Diagram..............ccoeeeeevrevererenrerneevensnsnennens. 13
Figure 3.1-6 Manufacturing Advisor Block Diagramcccceeevvvennvnnncniicreeecenne, 14
Figure 3.1-7 MO Data FIOW........cccoiiviinerieeencnennriieieesentstncanie e sessssesn s essesesessesessssonas 15
Figure 3.2-1 Sample PWB Design Cycle FIoW........cc.ooovuieeeueieeeeeeereeeceeeeeneeeeeeeeeaeesennees 18
Figure 3.2-2 Printed Wiring Board Manufacturing FIOWc...c..cccoivenniiriiccieccen, 22
Figure 3.2-3 Sample CCA Process Dependency Graphc..cocouvveeieneiveriicrie e 23
Figure 3.2-4 High Level Process Analysis Graph..........cccoceeerivieriienencnnienicereee e 24
Figure 3.2-5 Sample Yield versus Process Display Graph............ccocveeveevceievinieicininenene. 27
Figure 3.2-6 Process Modeler User Interface Windowcccoccevvveeeveecenneecreeeereeeeeennns 28
Figure 4-1 MO Main WINAOWc.ccceiivenieiiinirenriein ettt sreses e 29
Figure 4.1-1 File OPHONScocoiviiiiiiiiineerrentee et evssse e e es s esna 30
Figure 4.1-2 Product Data Selection/Edit MeNnUcccoceemieniniiinecrnienennernireeee e 31
Figure 4.1-3 Process Model Selection Men...........c..ccoeueveceieeerieeeereeenecceeee e 31
Figure 4.1-4 RAPIDS t0 STEP Data FIOWc..cocevevirrreereereeieeeeeeeriereee e s ecenne 32
Figure 4.1-5 RAPIDS t0 STEP FOIM.......cocoienmniiieneneniereceeetee e esseenesesseseseeseseseansenas 32
Figure 4.1-6 STEP to RAPIDS Data FIOW.......cc.ccouiviueirncnniire et evereseneaenne 33
Figure 4.1-7 STEP t0 RAPIDS FOIM.....coceoiiiiicreeeenirereeeee et 33
Figure 4.2-1 Manufacturing Analyzer FOrm......c..cccovinriieiiriniienceeeeecetce e 34
Figure 4.3-1 Manufacturing Advisor Window........c.ccoeemeeniieeeeerensiereeree s 35
Figure 4.3-2 Select Analysis Runs FOMM......c.ccoovcciiivieninninrneeieseeeeneer et 36
Figure 4.3-3 Process Craph ... 37
Figure 4.3-4 Process Results Viewing FOMMc.ccoocovvirrcnicenecenceneeecee v 38
Figure 4.3-5 Process Operation Viewing FOIMcccevrvevmneiieeeeeeeeeeec e, 39
Figure 4.3-6 Operation Design Entities Viewing FOrM.......c..ccoovoeeveieeernvcnneseercerenenan. 39
Figure 4.3-7 Quality Graphs.......c.ccoovnnriineninrienee et ere st e 40
Figure 4.3-8 Yield Graphsccccocviivioiininienneteeetein et e 41
Figure 4.3-9 Yield versus Process Graph........ccooooeoeeinericreiieiee e 4]
Figure 4.3-10 Available Processes 10 SEleCt.........uoviiivieiceiiecveeee et eve s 42

vii

Figure 4.3-11 Yield versus Operations Graph.............ccccecevuvivnresienecnieeeiereeeec e 42
Figure 4.3-12 Yield versus Process Comparison Graphccccceceeveeniecieennnnn.ns teereeeens 43
Figure 4.3-13 RewWOrk Graphs..........cccouiiiincriiincnieeniniceentece e sestseesctssssseseses s 44
Figure 4.3-14 Rework versus Process Graphco.ccvoeeeeinieisieneeveneceerece e 44
Figure 4.3-15 Rework versus Operations Graphcccevevenveveeveeceneesieeeereceeessnns 45
Figure 4.3-16 Production Quantity Graphsccccoeveveeriicreereeieireeneieeiseesreeeesiesneesveeneens 46
Figure 4.3-17 Production Quantity versus Process Graph..........cceceeceruevervenrenrineeinenene. 46
Figure 4.3-18 Production Quantity versus Operations Graph..........cccceceevrevericrerinenene. 47
Figure 4.3-19 Production Quantity versus Process Comparison Graph........................... 48
Figure 4.3-20 CoSting Graphs......cccccoericeerenrnrnnieinerssennesesnsesssssessessssssssssessenssssssssssases 49
Figure 4.3-21 Labor Time Graphs.......ccccceiererinieninincrenieirteiesenreserasesesesssteseesssesesnssesesens 50
Figure 4.3-22 CoSt Graphs.........ccceeenieiericiiriniinne et seesssae e etasa e st se s easons 50
Figure 4.3-23 Cost per Process Graphoccocenuiiieieieieceieceeeeeeeree et ereee s svene e 51
Figure 4.3-24 Cost Per Operation Graph........ccoocivievccieieninrennninienseeeeree oo enons 51
Figure 4.3-25 Cost Details Graph for Product.............ccoccevieeeinieieeeieceeeceeevee e 52
Figure 4.3-26 Cost Details Graph for Process........c.cceccivieeriieeiivenecrieeesere e 53
Figure 4.3-27 Analysis Reports FOIMccooveviiniiiniecineee ettt 54
Figure 4.4-1 Process Modeler WindoW.......c.occeviviiiiereciineceeecieecre et 56
Figure 4.4-2 Process Model Selection Windowcccccieeiieoenieiiecnieneeiceceseeeeeeens 56
Figure 4.4-3 Process Node Specification Windowcccocevenevevennicieneriicceeeeen e 57
Figure 4.4-4 Selection Rules WindoW.........ccociiirecniniinnnentciieseneese s ere e 58
Figure 4.4-5 Rule SpecifiCationcceeeueeninniierecineiiere st e e et ere s 59
Figure 4.4-6 Operations Windowcccceieermnirisrenieecireseeecreeeeseesse st sves e snenees 60
Figure 4.4-7 Operations Specification Window..........c..ccccvcvevvireenrnrnesnnrenrencceeeceseenens 60
Figure 4.4-8 Scrap Specification Windowc.ccevieiieienenieneiniieee et ceeeecsseneenens 61
Figure 4.4-9 Rework Specification Window...........ccceecerieivirinriceeersecneccnseeree e nesenens 62
Figure 4.4-10 Resource Utilization Windowccccocevevienenecenecceneciece e 63
Figure 4.4-11 Resource Window..........cocveiiiniieneiiereieieceeessssensessessssesesseessvassssssossesnens 63
Figure 4.4-12 Resource Specification Windowccceveeeeemveeceninennienrerescennnneeneereseene s 64
Figure 4.4-13 Resource Parameter Specification Window...........ccceveeverenennnnnriienrevennnne 64
Figure 4.4-14 Facility Resource Specification Window..........ccccccvereiernecnnnecirieeeiennens 64
Figure 4.4-15 Equipment Resource Specification Windowccoceveeveevinnrinirinecrecnenene. 65
Figure 4.4-16 Consumable Material Resource Specification Window.........ccc.ocoucreeenncne. 65
Figure 4.4-17 Resource/Consumable Specification Window.........ccccecvcvneereivecienecvennne. 66
Figure 4.4-18 Labor Resource Windowcccociviviiiniiiiccineniice s 66
Figure 4.4-19 Labor Rate Resource Specification Window........ccoceevviievieiiniiennienenen. 66

Figure 5-1 Top-Level Class (Categories) DIagramm .oo..oooo.ovoorocevssoerresreerresseerseesenes 68
Figure 5.2-1 Process Model Class Diagram..........ccooovmueciiiminiiinnninicie e 73
Figure 5.2-2 Resource Class Diagram........cococovvvuvmniiinriiniciimicicirenncccnece s 73
Figure 5.2-3 ComplexRule Class Diagram..........ccocceviivmiiinieimenrincniinniceseeene s 74
Figure 5.2-4 ProcessModel Object Diagramc.ccoeeeiniiveienniinncenincnieeecsneinnesecneene 75
Figure 5.2-5 Process Object Diagram.........ccocciviiiininiiineniiieiiiiceece et 77
Figure 5.2-6 Operation Object DIiagramccoeviviivincniininnniiniic e 81
Figure 5.2-7 Scrap Object Diagram........ccocoveeviniiriininnniniiiciissecscse e ssencanes 84
Figure 5.2-8 Rework Object Diagram........cc.eccerveinnernninniineeciniee et ennee e sveeeeee 85
Figure 5.2-9 ResourceUtilization Object Diagram..........cocooveviienicimeciniinccininececnenee. 89
Figure 5.2-10 Resource Object DIagramcccoeviiiiveniiicninieinrine e caesreieseesieneennenes 92
Figure 5.3-1 Analyzer Object Diagram.........coveveeeiiieiiniinirnnneentenicne e ceeeeree e e e 114
Figure 5.3-2 Analyzer State Transition Diagram........cccccoeevvnenninenecnneneneeninene e 114
Figure 5.5-1 Modeler Object DIiagram............cccceueeererereerinreesessnsnieseresesssseesseeesesenenseeneens 1 18
Figure 5.5-2 Modeler State Transition Diagramcccccevievicinccnininencninenncnencnen 118
Figure 6.1-1 EXPRESS-G Model of Process Model Schema........c.coevevinincncnnncncnnne. 126
Figure 6.1-2 EXPRESS-G Model of Resources Schemacoccoevvereniiiccnnieninnccenenes 130
Figure 6.1-3 EXPRESS-G Model of Selection Rules Schema.........cccceccevinvninncinnccnnnnne. 136
Figure 6.2-1 PWB Schema Level EXPRESS-G Model.......ccoovvivniiiiniiiieniccninenen 155
Figure 6.2-2 Component Data EXPRESS-G Schema..........cccoovrveeininnnninnninccene 158
Table 3.1-1 Main Window State EXECUONcoceviiiiniiiiiniiiieiiecieeerte et 15
Table 3.1-2 Advisor Window State EXECUtONcoceeiriniiiiiivinincircnincniniiene s 16
Table 3.1-3 Modeler Window State EXECUtioncccovvviiciiciiiieniiiecciecsieeceee e 16

UNCLASSIFIED
CDRL No. 0002AC-4

1. Scope

1.1 Identification

This is the Software Design Specification for the Manufacturing Optimization (MO)
System. The development activities are being performed under Defense Advanced Research
Projects Agency (DARPA) funding, contract number MDA972-92-C-0020, by the MO
Development Team. The Development Team is comprised of personnel from Computer Aided
Engineering Operations (CAEO) of the Raytheon Missile Systems Laboratories (MSL) with
participation from the MSL Mechanical Engineering Laboratory (MEL) and the Missile
Systems Division (MSD) West Andover Manufacturing facility.

1.2 System Overview

DICE has developed a concurrent engineering model that replicates the human tiger team
concept. The basic tenet of the human tiger team is to have the various specialists contributing to
the project co-located. In today’s environment of complex product designs and geographically
dispersed specialists, DICE envisioned a “virtual tiger team” working on a “unified product
model” accessible by computer networks. Such an environment must enable specialists from

each functional area to work on the design concurrently and share development ideas.

Raytheon has proposed a conceptual refinement to the original DICE virtual tiger team. This
refinement is a two level approach with a product virtual team having a global visw supported by
information supplied by lower level “specialized” process virtual teams. See Figure 1.2-1. This
refinement is needed because of the growing complexity of our products and supporting
development processes, which make it difficult for one individual to adequately comprehend all
of the complexities required to establish a unified manufacturing position. The “virtual process
team” concept would allow comprehensive representation from each specialized process area

to contribute to the formulation of the final manufacturing recommendations.

UNCLASSIFIED
CDRL No. 0002AC-4

GLOBAL PRODUCT VIRTUAL TEAM
Test
Design Product Qualty
Design /
IALIZED PROCESS TEAM
Cable/Hamess
MFG Support

Sheet
Metal Process Consolidated
_ Design Manufacturing
Position

Printed Wiring Board Circuit Card
- Fabrication Assembly

Figure 1.2-1 Two Level Team Concept

The purpose of the Manufacturing Optimization (MO) system is to enable all
manufacturing specialists to participate in the product/process development activity
concurrently. The system consists of a set of tools to model the manufacturing processes and
centralize the various process tradeoffs. Recommendations can be compared and negotiated
among the individual manufacturing participants. After the manufacturing team has reached a
consolidated position, the results are passed back to the cross functional (top level) team for

their negotiation.

1.3 Definition of Key Terms

Communications Manager (CM) - a collection of modules developed as part of the DICE
program which facilitate distributed computing in a heterogeneous network.

Consolidated Manufacturing Position - recommendations from the manufacturing process
team. The recommendations are in the form of product design changes. The changes
will optimize the manufacturing process of the product for cost and yield.

Dependency Graph - a directed acyclic graph defined such that each node in the graph has a
set of parent nodes that it is dependent on. In MO, the nodes in the graph represent
individual processes. Each node in the graph contains an AND/OR flag. If the flag is

2

UNCLASSIFIED
CDRL No. 0002AC-4

set to AND then the node is dependent on all of its parents. If the flag is set to OR
then the node is dependent on any one of its parents. For a particular process to be
included in the overall manufacturing process for a particular product, the nodes that it
is dependent on must be satisfied.

Manufacturing Advisor - a MO core module which provides the user with various methods
to view the results produced by the Manufacturing Analyzer. Results can be viewed
via graphing functionality or through textual reports.

Manufacturing Analyzer - a MO core module which provides the following three services: 1.
Selection of individual processes from the process model which are used to
manufacture a particular product; 2. Analysis of the processes selected and the
operations attached to each process to estimate scrap and rework rates; 3. Analysis of
the resources needed to perform the operations attached to the selected processes for
cost.

Operation - a unit of work performed on the part. Associated with each operation are scrap
rates, rework rates, and required resources.

Project Coordination Board (PCB) - a DICE tool supported by CERC that provides support
for the coordination of the product development activities in a cooperative
environment. It provides for common visibility into the design task structure, task
assignment capabilities, and change notification capabilities.

Process - an organized group of manufacturing operations sharing characteristics. In MO, the
process is modeled as a collection of operations that have associated scrap and rework
rates and a list of required resources. Attached to each process is a set of selection
rules and a set of parent processes which the process is dependent on. For the process
under consideration to be selected by the Manufacturing Analyzer, the parent
processes that it is dependent on must have been selected and at least one of its
selection rules must evaluate to true.

Process Model - the specification of the total manufacturing process required to produce the
product. The process model consists of a directed acyclic dependency graph of
individual manufacturing processes.

Process Modeler - a MO core module which provides the user with the ability to graphically
model processes, operations, and resources.

Process Team - the lower level specialized team in the two-tiered team concept. The process
team is responsible for providing a consolidated position in terms of their
specialization. The users of the MO system would be part of the manufacturing
process team and would be required to provide a consolidated manufacturing position
to the global level product team.

Product Model - a set of STEP entities that define the features and attributes of the product.
The Process Modeler provides a means of defining rules and equations in terms of the
existence, count, or value of particular product model entity instances.

Product Team - the global level team in the two-tiered team concept. The global team is
supported by all of the specialized process teamns.

PWB - Printed Wiring Board.

UNCLASSIFIED
CDRL No. 0002AC-4

RAPIDS - Raytheon Automated Placement and Interconnect Design System. Raytheon’s
conceptual design and analysis workstation for Printed Wiring Boards (PWB).
RAPIDS supports component placement and placement density analysis, as well as a
number of other analysis functions, including automatic component insertion
checking. Interfaces between RAPIDS and the PWB analysis tools for the following
criteria are also provided as part of the RAPIDS tool suite: Manufacturing, Post
Layout Effects, Reliability, and Thermal.

Rapids to Step - a C++ application which utilizes the ROSE database and tools-developed by
STEP Tools Inc. The program reads the RAPIDS database using the RAPIDS
Procedural Interface. A persistent STEP object of the appropriate class is generated
gor each RAPIDS record read. The object is then stored as a STEP entity in a physical

TEP file.

Resource - any facility, labor, equipment, or consumable material used in the manufacturing
process.

Rework Rate - the percentage of product parts which must be reworked due to an operation.
Rework data is maintained in a list of rework entities. In each entity there is a rework
rule and a corresponding rework rate. If the rework rule is satisfied, then the
corresponding rework rate is computed. There is a list of resources associated with the
rework which is used to calculate the cost of performing the rework operation.

Requirements Manager (RM) - Product Track Requirements Manager (CIMFLEX
Teknowledge) is a software tool designed to manage product requirements and
evaluate the compliance of product design data with requirements.

ROSE - Rensselaer Object System for Engineering is an object-oriented database management
system developed at Rensselaer Polytechnic Institute. It has been developed to support
engineering applications as part of the DICE program. ROSE is currently part of the
STEP Programmer’s Toolkit available from STEP Tools, Inc. ROSE is a database
which supports concurrency using a data model that allows the differences between
two design versions to be computed as a delta file. The MO data for the
manufacturing processes and operations, as well as, the various analysis results will be
stored and managed within ROSE.

STEP - STandard for the Exchange of Product model data is the International Standards
Organization standard 10303. The objective of the standard is to provide a mechanism
capable of representing product data throughout the life cycle of a product,
independent of any particular system. STEP data is stored as instances of class
entities.

Step to Rapids - a C++ application which utilizes ROSE and tools developed by STEP Tools
Inc. The program reads a STEP file conforming to the EXPRESS schemas that model
the PWB product data. The ROSE STEDP filer is used to read the STEP file into
instances of classes created by the express2c++ compiler. The class instance is then
transformed into the appropriate RAPIDS data record and stored to the RAPIDS
database.

Yield Rate - the percentage of product parts that must be scrapped due to an operation. Scrap
data is maintained in a list of scrap entities. In each entity there is a scrap rule and a
corresponding scrap rate. If the scrap rule is satisfied, then the corresponding scrap
rate is computed.

UNCLASSIFIED
CDRL No. 0002AC-4

1.4 Document Overview

The purpose of this report is to provide the software design for the Manufacturing
Optimization (MO) System. It contains the preliminary and detailed object oriented design, the

user interface design, and the schema specifications for MO.

The preliminary design discusses the capabilities and interfaces provided in the MO system.
The detailed object oriented design describes the definition of the classes, objects, and methods
which make up the MO system. The user interface design provides the look and feel of the
system to the user, and the schema specification provides the details of the data behind the class

and objects in the system.

2,

10.

11.
12.
13.

14.

UNCLASSIFIED
CDRL No. 0002AC-4

Referenced Documents

BR-20558-1, 14 June 1991, DARPA Initiative In Concurrent Engineering (DICE)
f; i imization - Volume I - Techni

CDRL No. 0002AC-1, March 1992, Operational Concept Document For The
Manufacturing Optimization (MO) System, Contract No. MDA972-92-C-0020.

CDRL No. 0002AC-2, March 1992, Description of CE Technology For The
Manufacturing Optimization (MQ) System, Contract No. MDA972-92-C-0020.

CDRL No. 0002AC-3, May 1992, Functional Requirements and Measure of Performance
For The Manufacturing Optimization (MQ) System, Contract No. MDA972-92-C-0020.

Object-Oriented Analysis. Second Edition by Peter Coad/Edward Yourdon, Yourdon
Press Computing Series, 1991.

Object-Oriented Design by Peter Coad/Edward Yourdon, Yourdon Press Computing
Series, 1991.

Object Oriented Design with Applications by Grady Booch, The Benjamin/Cummings
Publishing Company, Inc., 1991.

Product Data Representation and Exchange—Part 11: The EXPRESS Language Reference
Manual, ISO DIS 10303-11, National Institute of Standards and Technology, 1992.

ProductTrack Requirement Manager User Guide and Reference, Release 1.02 for Sun
SPARC and Oracle RDBMS, Cimflex Teknowledge Corporation, October 1992.

RAPIDS Database Data Dictionary, RAYCAD Document #1266021, Raytheon
Company, November 22, 1991.

STEP Programmer’s Toolkit Reference Manual, STEP Tools Inc., 1992.
STEP Programmer’s Toolkit Tutorial Manual, STEP Tools Inc., 1992.
STEP Utilities Reference Manual, STEP Tools Inc., 1992.

User Manual for the Project Coordination Board (PCB) of DICE (DARPA Initiative in
Concurrent Engingering, July 10, 1992.

UNCLASSIFIED
CDRL No. 0002AC-4

3. Preliminary Design
3.1 MO Overview

The concept of the Manufacturing Optimization (MO) system is to facilitate a two tiered
team approach to the product/process development cycle where the product design is analyzed
by multiple manufacturing engineers and the product/process changes are traded concurrently
in the product and process domains. The system will support Design for Manufacturing and
Assembly (DFMA) with a set of tools to model the manufacturing processes and manage
tradeoffs across multiple processes. The lower level “specialized” team will transfer their
suggested design changes back to the top-level product team as the Manufacturing Team’s

consolidated position.

The external software packages which the MO system is comprised of are the ROSE DB,
Requirements Manager, and the Project Coordination Board/Communications Manager. For
demonstration pufposes, an interface was developed between Raytheon Automated Placement
and Interconnect Design System (RAPIDS) and the ROSE DB. Figure 3.1-1 illustrates the

external interfaces to the MO system.

Project
Requirements Cocrdination
Manager Board
(RM) (PCB)
Communications
Manager (CM)

Consolidated
Manufacturing
Pasition
Manufacturing Manufacturability /
Engineer Optimization
(MO) .
System
Database
: =1 Plant Level :
/ : l Database I S
Manufacturing - / RAPIDS
Engineer

Figure 3.1-1 MO External Interfaces

.

T G S O T S S T aE Eh EE ER Wy oE e s =

UNCLASSIFIED
CDRL No. 0002AC-4

ROSE is an object-oriented database management system that has been developed for
engineering applications and enhanced to support the DICE program. ROSE is currently part of
the STEP Programmer’s Toolkit from STEP Tools, Inc. ROSE is a database which supports
concurrency using a data model that allows the differences between two design versions to be
computed as a delta file. The MO data for the manufacturing processes and operations, as well
as, the various analysis results will be stored and managed within ROSE. The manufacturing
process data consists of the process selection knowledge base, process and operation data, yield

and rework data, and resource specifications.

The Requirements Manager (RM) is a software tool designed to manage product
requirements and evaluate the compliance of product design data with requirements. The
purpose of integrating the RM into the MO system is to provide the “top level” product
development team insight into manufacturing requirements. It is common practice for a
manufacturer to document manufacturability, or producibility guidelines which delineate
standard manufacturing practices and acceptable design parameters. The purpose of these
guidelines is to communicate the capabilities of the manufacturing process to the product design
community to ensure that new product designs are specified Withjn manufacturing capabilities.
The guidelines delineate quantitative and qualitative producibility issues. The RM and the MO
software will be tightly coupled through the RM’s Application Programming Interface (API) to
pmﬁde the user with a manufacturing guidelines analyzer capability.

The Project Coordination Board (PCB) provides support for the coordination of the
product development activities in a cooperative environment. It provides common visibility and
change notifications. The Communications Manager (CM) is a collection of modules that
facilitates distributed computing in a heterogeneous network. The Communication and
Directory Services provided in the CM module are required to utilize the PCB. The PCB/CM
will be used in MO to support the communication of the product/process development activities.
There will be no direct interface between the MO software modules and the PCB/CM
applications. It will be used to manage the product task structure.

RAPIDS is Raytheon’s conceptual design and analysis workstation for Printed Wiring
Boards (PWB). RAPIDS supports component placement and placement density analysis, as
well as a number of other analysis functions, including automatic ~ mponent insertion checking

and thermal analysis.

e

UNCLASSIFIED
CDRL No. 0002AC-4

3.1.1 MO Architeqture

MO is a X-Windows based tool. The application software will be written in C++, the user
interface will be developed using OSF/Motif Widgets, and all data will be stored in STEP
physical files.

The decision to use STEP physical files for the underlying data format for the MO system
stems from the fact that STEP is the emerging international standard for data exchange between
automation systems. Access to these STEP files will be provided through the STEP
Programmer’s Toolkit from STEP Tools Inc. The Toolkit provides a means of reading and
writing STEP entity instances through a C++ class library.

The MO core system is composed of three software modules, Manufacturing Analyzer,
Manufacturing Advisor, and Process Modeler. The Project Coordination Board (PCB) and
Communications Manager (CM) from Concurrent Engineering Research Center (CERC),
ProductTrack Requirements Manager (RM) from Cimflex Teknowledge, the ROSE database
from STEP Tools Inc., and the two way interface to the Raytheon Automated Placement and
Interconnect Design System (RAPIDS) complete the software suite which constitute the MO
system. Figure 3.1-2 illustrates the MO System Architecture.

' UNCLASSIFIED
CDRL No. 0002AC-4
RM
l DESIGN Mg
SYSTEM Gui deline
l DB Analy zer
' CAD (ROSE o) RAPIDS Product Track- RM | product data
interface|\ RAPIDS / \ 1o ROSE AP| exchange
. PCB/CM [J ROSE DB
| P Product Design Data
R STEP Forma t
o . v1 v
D — — - |
U | y5!
.? Mig Process Data Mfg Analysis Resuits
* process dependency model . sglected process flows
/ +yield & rework data » yield & rework res ults per opno
P - time & costdata « time & cost results per opno
R « resources + suggested mfg chan
O vi
2
C v
E N 7 V
S
S
C ¥
I\OA Process Modeler Mfg Analyzer
M Support: Process Analyzer
U * graphical building of Selects a proce ss sequence
N) g'a:'e:: :%?n;enw model based on actual part entities
| selection knowledge 00 purbutes
c * Y/R data entry
* cos ting data ent ‘
A = it Cost Estimator
T Caiculate
{ Mig Advisor ¥ eld/Rewor Ideal
0 Analyzer ‘
Support:
N + graphically displaying resuits :ﬁgﬁ;gﬁ,ﬁ
« graphically comparisons Calculae
* report generation Actual
« final Mig posiion report Time/Cost
MO CORE SYSTEM

Figure 3.1-2 MO System Architecture

The Process Modeler provides the user with the ability to model processes required to
manufacture a product. Each process is modeled as a set of operations, where an operation is a

unit of work performed on the product part. Resources, yield rates, and rework rates are defined

10

UNCLASSIFIED
CDRL No. 0002AC-4

for each operation. The output of the Process Modeler is a directed acyclic dependency graph

of individual manufacturing processes. Figure 3.1-3 depicts a block diagram of the Process
Modeler. ‘

Process
Modeler

Process & Resource

Operation
Modeler Modeler

Figure 3.1-3 Process Modeler Block Diagram

Figure 3.1-4 illustrates a simplified subset of a process model. The example models the

processes required to etch conductive material from a printed wiring board substrate.

The process modeler provides the ability to establish dependencies between processes. In
the example, the “Etch Material” process is dependent on the “Etch FLEX” process OR the
“Etch Substrate” process. Note that if the AND/OR flag of the “Etch Material” process were
set to AND, then the “Etch Material” process would be dependent on both of its parents
processes. Attached to the “Etch Material” process is a list of selection rules which provide the
reason(s) why this process would be relevant, and a list of operations which must be performed
to complete the etch material process. Defined with each operation are scrap rates, rework rates,

setup time, run time, and a list of resources required to complete the operation.

11

T W T W T U U W T I I T ST O W WeE ey e s

N
\
\

LN

(4

/
/

/

Process Name: "Etch FLEX"
Rules: Technology = FLEX

Process Name: "Etch Substrate”
Rules: Technology = PWB

AND/OR: OR AND/OR: AND
/ \
/ \
\
/ L)

Process Name: "Etch Material”

Rules: Routes <exist>
Pads <exist>
Vias <exist>

AND/OR:

MetalAreas <exist>

(Op Name: "apply resist” '\
Scrap Rate: 0.02
Rework Rate: 0.00

UNCLASSIFIED
CDRL No. 0002AC-4

Resource Name: Technician
Resource Type: Labor
Cost Per Time Unit : 1.23

2

Setup Time: S units
/" Op Name: "expose”
I
Op Name: "etch copper”

|

r

|

Rework Rate: 0.00
Setup Time: 21 units
Run Time: 17 units

Resource Name: Mask Aline
Resource Type: Equipment
Cost Per Time Unit : 0.87

Resource Name: ACID SOLS
Resource Type: Consumable
Cost Per Unit: 6.23

Units Per Time Unit : 0.29

Figure 3.1-4 Example subset process model for etching process

The Manufacturing Analyzer provides the following three services: 1. Select the individual

processes from the process model that are used to manufacture a particular product. 2. Analyze

the processes selected and the operations attached to each process to estimate scrap and rework

rates. 3. Analyze the resources needed to perform the operations attached to the selected

processes for cost. The analyzer results are composed of design feature entities from the

product design database (STEP file) along with the selected manufacturing processes from the

l \Run Time: 12 units W,
Scrap Rate: 0.01
Rework Rate: 0.00
Setup Time: 1 units
kﬁun Time: 7 units
S
|
Scrap Rate: 0.01

12

YT T Wy T W ey " P L L4 A

UNCLASSIFIED
CDRL No. 0002AC-4

user speciﬁed process model. Figure 3.1-5 depicts a functional block diagram of the
Manufacturing Analyzer.

Manufacturing
Analyzer
Process Yield & Rework Cost
Analyzer Analyzer Estimator

Figure 3.1-5 Manufacturing Analyzer Block Diagram

To illustrate all the Analyzer functionality (i.e. analysis of manufacturing process, yield,
rework, and cost), lets utilize the example process model for the etch process defined in Figure
3.1-4. Lets walk through the steps that the process analyzer, yield/rework analyzer, and cost
estimator will go through for determining selection of the “Etch Material” process. Consider
that the product design data under analysis contains the following: an entity called Technology
with a value of “PWB” and several Route, Pad, and Via entities.

To determine if the “Etch Material” process should be selected, the Process Analyzer will
first determine if either of its parent nodes were previously selected as applicable processes.
Since the product data contains a Technology entity set to PWB, the selection rules of the
“Etch Substrate” process would have been satisfied; therefore, the process would have been
previously selected. Since the AND/OR flag of the “Etch Material” process is set to OR only
one of its parents must be selected before the Process Analyzer will evaluate its process

selection rules. Since the product data set contains several routes, pads, and vias, the selection

rules evaluate to true, thereby, satisfying all the process selection criteria. At that point, the

process analyzer would add the “Etch Material” process to the resulting analysis flow along
with the associated design feature entities from the product design.

Once the “Etch Material” process is selected, the Yield/Rework Analyzer will evaluate each
operation attached to it to estimate scrap and rework rates associated with this particular
product. Finally, the cost estimator will calculate the cost associated with the resources attached

to each of the operations.

13

UNCLASSIFIED
CDRL No. 0002AC-4

The Manufacturing Advisor provides the user with various methods to view the results
produced from the analyzer. The results can be viewed graphically (i.e. line, bar, stacked bar and
pie charts) or textually. The reporting capability allows the user to customize a detailed report
which can be printed to the screen or to an ASCII file. MO allows the user to view one or more
sets of analysis results at a time. By selecting multiple analysis runs to graphically display, the

user can visually compare the analyses. Figure 3.1-6 shows a functional block diagram of the

Manufacturing Advisor.
. Manufacturing
Advisor
Graph/Charts Report/Text
Process Yield & Rework Time/Cost
Flow Results Results

~ Figure 3.1-6 Manufacturing Advisor Block Diagram

The interaction between the user, manufacturing analyzer, process modeler, manufacturing
advisor, RM, PCB/CM, RAPIDS, and ROSE DB is pictured in Figure 3.1-7.

14

UNCLASSIFIED
CDRL No. 0002AC-4 -

Project Coordination Board

Process Modeler

Mfg Analyzer
Process Cost Estimator
Analyzer
Ideal
Time/Cost
[Yield/Rework '
Analyzer Actual
Time/Cost
Mtg Advisor

Requirements
Manager

RAPIDS -
Design System

Figure 3.1-7 MO Data Flow

3.1.2 System States and Modes

At any time, MO will be in one of three modes: startup, active, or ready. Table 3.1-1 shows
which buttons on the MO main window (refer to figure 4-1) are available for execution in each
mode. Table 3.1-2 shows which buttons on the MO Advisor window (refer to figure 4.3-1) are
available for execution in each mode. Table 3.1-3 shows which buttons on the MO Modeler

window (refer to figure 4.4-1) are available for execution in each mode.

Table 3.1-1 Main Window State Execution

Mode State File Analyzer | Advisor Modeler
tartup Fu‘st enter yes no . no yes
Active Product/Process u yes no yes
Models selected
Ready Analyzer has yes yes yes yes
been run

15

UNCLASSIFIED
CDRL No. 0002AC-4

Table 3.1-2 Advisor Window State Execution

[Mode State | Select | Process | Quality | Costing | Analysis | Exit to
Graphs | Graphs | Graphs | Report | Main

All Modes | Entry es €s yes yes es yes

Table 3.1-3 Modeler Window State Execution

Mode State Models | Resources Add Delete Exit to
Main

Startup First enter yes yes no no yes
Modeler

Active | Process Model yes yes yes no yes
selected _

Ready Process has yes yes yes yes yes

been added

The user will initially enter MO in the startup mode of the main window. The product and
process models have not yet been selected; therefore, the analyzer and advisor are disabled.
Once the user selects the applicable models, the analyzer becomes active. The user then executes

the analyzer module. After the analyzer is complete, the advisor becomes active.

The user can then choose to view the analysis results by selecting the advisor button. The

user will be put into the advisor window where all functionality is active.

At any time after starting up the MO system, the user can choose to enter the modeler
startup window. Since no process model has been selected, add and delete are disabled. Once
the user selects to create a new or modify an old process model, the add button becomes active.
Once there are processes available for deletion, the delete button becomes active. At any time,

the user can choose to return to the main MO window.

3.2 MO Design Description

321 External Interfaces
3.2.1.1 Project Coordination Board

The Project Coordination Board (PCB) is a system developed to provide support for the
coordination of the product development activities in a cooperative environment. The PCB
provides common visibility and change notification through the common workspace, planning
and scheduling of activities through the task structure, monitoring progress of product

development through the product structure (i.e. constraints), and computer support for team

16

pr——

UNCLASSIFIED
CDRL No. 0002AC-4

structure through messages. The Communications Manager (CM) is a collection of modules
that facilitates distributed computing in a heterogeneous network. It promotes the notion of a
virtual network of resources which the project team members can exploit without any prior
knowledge of the underlying physical network. The Communication and Directory Services

provided in the CM module are required to utilize the PCB.

MO introduces the concept of a two tiered virtual tiger team. The twe tiered approach

consists of a cross functional product team linked to teams within each of the functons, in this

case a manufacturing process team. To implement this approach there must be communication

among the members of each team, and between the product and process team. The PCB/CM is
being used to support the following capabilities which are required for this type of

communication:

* Product - to - Process Team Communication
* Notification of design task completed.
* Notification and issuance of database available for analysis. .
* Notification of alternative designs or trade-off Cecisions under consideration.

* Process - to - Product Team Communication
+ Notification and issuance of analysis results.
» Notification and issuance of modified database with recommended changes.
* Notification of changes to the process, guidelines, cost or yield models.

We are using the product task structure within the PCB/CM to model the product to
process development team communication. Included in this task structure are major design
steps, such as concept dvvelopment, design capture, design verification, component placement,
routing, transition to production, and several design reviews. The design reviews included
representatives from design, test, reliability, manufacturing, and thermal. Figure 3.2-1 is a high
level view which represents the design cycle steps which model a typical PWB product design

cycle.

17

UNCLASSIFIED
CDRL No. 0002AC-4

Desi Design
. Capufrr; — anaysiy
—— Verification
Design Review
Packaging * Designer
go;ngept r—' ',lrv,:fslt
sign « Reliability
¢ _Thermal
) Review Mfg
Parts List > Auto Insertability
Design Review
* Designer . Documentatio:
. Component » . Mfggn —p| Interconnect | g Final Board F_’ Transition 'll'c:l/
Placement * Test Routing Review Manufacturing
¢ Reliability
+ Thermal

Figure 3.2-1 Sample PWB Design Cycle Flow

The Project Lead (user with special privileges) initializes the product task structure. The
Project Lead can then view any task or work order that appears in the network, add a task to the
existing network, acknowledge receiving a task, and indicate completion of a task. The other
team members can acknowledge receiving a task and indicate completion of that task. The PCB
automatically dispatches tasks as previous tasks are completed, as well as, the Project Lead can

dispatch a task. Refer to Section 2 reference 14 for details on the PCB.

3.2.1.2 Requirements Manager

The Requirements Manager (RM) is a software tool designed to manage product
requirements and evaluate the compliance of product design data with requirements. The tool
allows the user to model requirements or guidelines, model the product design data structure,
populate the product design data structure with product data, and evaluate to what extent the
product design data meets the specified requirements. As a result of the evaluation process, the
tool will provide the user with a status (Pass, Fail, Uncertain, or Untested) of the compliance of
the product data with the requirements. The MO manufacturing guideline functionality is being
incorporated into the RM to provide the “top level” product development team insight into

manufacturing requirements apart from the MO analyses.

18

UNCLASSIFIED
CDRL No. 0002AC-4

It is common practice for a manufacturer to document manufacturability, or producibility
guidelines that delineate standard manufacturing practices and acceptable design parameters.
The purpose of these guidelines is to communicate the capabilities of the manufacturing process
to the product design community to ensure that new product designs are specified within
manufacturing capabilities. The guidelines delineate quantitative and qualitative producibility

issues.

The MO system is supporting evaluation of these manufacturing guidelines. For each
guideline entry there is a related recommendation. Unlike the process selection constraints,
manufacturability guideline violations may not cause alternative selection. The result could be an
" operation cost increase, for instance, the need for non-standard tooling, a yield loss, or a less
tangible impact. These guidelines will be entered into the Requirements Manager so that they
are available to the product design team along with the other requirements placed on the design.
Some examples of these guidelines include: “The maximum board dimension must be less than
14 inches”, “Switches must be hermetically sealed”, or “If the number of leads is less than or

equal to 24 the span should be 0.3 inches”. See reference 9 in section 2 for details on the RM.
3.2.1.3 RAPIDS

RAPIDS is Raytheon’s conceptual design and analysis workstation for Printed Wiring
Boards (PWB). RAPIDS supports component placement and placement density analysis, as
well as a number of other analysis functions, including automatic component insertion
checking. Interfaces between RAPIDS and the PWB analysis tools for the following criteria
are also provided as part of the RAPIDS tool suite:

"+ Manufacturing
* Post Layout Effects
* Reliability
* Thermal

At Raytheon, RAPIDS is used for conceptual design and analysis of PWB’s. RAPIDS
serves in the same capacity at Raytheon that many commercial CAD systems (e.g. Mentor
Board Station, Racal-Redac Visula, Cadence, etc.) are used in at other companies. RAPIDS
provides an Application Programmatic Interface (API) with its database. This enables RAPIDS
to be easily interfaced with other systems and standards. Using RAPIDS in the MO system is

inline with Raytheon methodologies, but does not exclude interfacing MO with commercially

19

UNCLASSIFIED
CDRL No. 0002AC-4

available CAD systems in the future. The key to interfacing MO with a large base of CAD
systems is the utilization of the STEP standard by the commercial CAD industry. See reference
10 in section 2 for details on the RAPIDS Data Dictionary.

3.2.2 Product (STEP) Models

All data required for the MO system will be stored in STEP physical files. The reason
behind the use of STEP physical files is that STEP is an emerging international standard which
is getting wide spread attention as the means of exchanging data between automation systems.
Access to the STEP files will be provided through the STEP Toolkit (STEP Tools Inc.). The
Toolkit provides a means of reading and writing STEP entity instances through a C++ class
library. This class library is currently being updated to adhere to the ISO Part 22 SDAI
(Standard Data Access Interface) specification.

At Raytheon, PWB product data is stored in the RAPIDS (Raytheon's Automated
Placement and Interconnect Design System) database. Two interfaces were developed to
support the transition of PWB product data to and from STEP physical files.

Generating the STEP physical file is facilitated by the RAPIDS 1o STEP interface which
maps RAPIDS data items into instantiated STEP entities. An information model using the
EXPRESS information modeling language was created based on the RAPIDS database. The
EXPRESS information model was compiled using the STEP Tools express2c++ compiler,
which generated a STEP schema and a C++ class library. The class library consists of methods
for creating and referencing persistent instances of the STEP entities which are stored in a
ROSE database. The STEP schema is used by the STEP Tools STEP filer for reading and
writing the STEP physical file.

The MO system uses the STEP data directly, as well as, for information exchange between
the members of the product design team. For demonstration purposes, we will have the top level
team using RAPIDS. This is not a requirement for using the MO system. The only requirement
is that the top level team and the lower level teams be capable of creating, exchanging and using
the STEP physical file.

The Manufacturing Team passes back a consolidated manufacturing position to the product
design team. To aid in the generation of a consolidated position, conflict resolution and design

merging must be supported. This is done using the STEP Toolkit from STEP Tools Inc. The

20

UNCLASSIFIED
CDRL No. 0002AC-4

diff tool reads two versions of a design and creates a delta file. The difference report generator
reads the difference file and the original design, and presents each STEP entity and its attributes

with the original values and its change state clearly marked with an asterisks.

Once the conflicts of the Manufacturing team members have been resolved, design versions
are merged using the STEP Tools sed tool. The sed tool reads the delta file created by the diff
tool and updates the original design version. This updated version of the design will be
transferred back to the top-level product team as the Manufacturing Team’s consolidated

position.
3.23 Process Models

The key to performing manufacturability analysis is to characterize the fabrication and
assembly processes. In MO, this characterization is implemented as a manufacturing process
representation and selection algorithm. Basing manufacturing cost analysis on a detailed
description of the process provides visibility into the relationship between the design attributes
and the manufacturing process. This allows the engineer to focus on manufacturing cost
drivers and their causes. By characterizing the process in this manner, the manufacturing
engineer will be able to review the process which will be used to produce the product and be

readily able to consider alternative manufacturing processes and their consequences.

Following this logic, it makes sense to capture the expert’s process planning knowledge
into a process selection model so that the relationship between the product entities and the
process selected to fabricate the product is explicitly defined. This does not mean that there is a
one to one relatdonship between the design entities and the process steps. In some areas, such as
PWB, the design may be implemented using different technologies, each of which implies a
certain process, such as surface mount versus through-hole technology. In other cases, there are
multiple processes that can be used to produce the same entity. This is most prevalent in the
metal fabrication (machining) area where often a number of processes (investment casting,

milling) are capable of producing the part.

There are two development challenges: building a data schema to represent the
manufacturing process such that it can be used for selection and costing, and building a
selection logic algorithm that adequately represents the planning logic employed by expert

process planning.

21

UNCLASSIFIED
CDRL No. 0002AC-4

Normally in a manufacturing plant, the overall process for a given discipline is known and
recorded in the form of a flowchart. This flowchart is a block diagram listing of each and every
process within that discipline. The order of those operations is structured so that it is the default
ordering of how products flow. If a process gets repeated, it generally shows up in each
repeated point in the flow chart. These flowcharts usually employ a rudimentary decision logic
scheme. As such it represents the available processes in a pick list fashion. Pictured in figure

3.2-2 is a typical manufacturing process flow for printed wiring boards.

Create Automatic
Manufacturing | — g Imlﬁggra{): I::'Csh l—} Inner Layer
Data Package Y Inspection

Laminate Plate/Image/
andDril |—® Plate& Etch — Rout
Quter Layers

Bare Board Auto Insert
Test —~ MarkBoard Bl o d Place

Manual Flow SOlder/ Manual

Assembly Rgg:x‘;" Assembly

T I T B S O

In-Circuit Functional > Conformal
Test Test Coat

Figure 3.2-2 Printed Wiring Board Manufacturing Flow

The logic representation method that Raytheon is developing for this task is based on prior
work in process selection. The model is a hybrid and/or dependency graph and rule based
processing system. The and/or dependency graph representation was selected because it allows

the system to display the basic sequential and concurrent flow of the process in a presentation

22

UNCLASSIFIED
CDRL No. 0002AC-4

format where the manufacturing engineer can visually see other process(es) that a selected
process is dependent on. The dependencies inform the user of the basic flow of the overall
process while letting the user plan at various levels of abstraction. These levels include the
process, an organized group of manufacturing operations sharing characteristics, the operation,
a common unit of work that is performed on the part, and the resource, which is the mechanism
required to perform the operation. By defining the levels as we have, a hierarchical planning
strategy is enabled. Using this schema, we can reason about alternative processes, plan the
operation flow within the selected process, and then detail the individual resources of that

operation, such as set-up and run time standards.

The reasoning process is guided by the representation of the dependency graph which sets
the initial search evaluation order, and the rule processing mechanisms. The rules are attached to
individual process nodes in the graph. These rules are used to evaluate the node. The purpose of
the evaluation is to cause selection of the node. First, any parent processes that the process
under evaluation is dependent on must be satisfied. If satisfied, the rules attached to the process
are evaluated to see if it is applicable to manufacturing the product part. Operations are stored to
form the overall manufacturing process sequence. Each operation in the process sequence is

evaluated for its requirement of resources in order to estimate the manufacturing process cost.

The system will also have the ability to store alternative models of a particular process. This
capability will allow the process engineer the ability to explore alternative process approaches
and plan process improvements. Figure 3.2-3 illustrates a sample assembly dependency graph

for through-hole circuit cards.

Radial

insent Flow
Components O Solder ~O-# inspect

o p{ Preform | g,
CCA Components

Figure 3.2-3 Sample CCA Process Dependency Graph

23

UNCLASSIFIED
CDRL No. 0002AC-4

324 Manufacturing Analyzer

There are three capabilities provided in the Manufacturing Analyzer module: process
analyzer, yield and rework analyzer, and cost estimator. The sub-sections to follow describe
each capability.

3.24.1 Process Analyzer

The Process Analyzer provides the capability to select or determine the process sequence
required to manufacture the product design based on a particular process model. The
manufacturing process is represented by three levels of abstractions: process, operation and
resource. The process is an organized group of manufacturing operations, the operation is a
common unit of work that is performed on the part, and the resource is the mechanism required
to perform the operation. The process model for the MO system is designed as an “and/or
dependency graph” made up of selectable manufacturing processes. Each process node in the
graph can be connected to process(es) at a higher level and/or lower level in the graph. A list of
applicable operations and resources can be attached to the process in the dependency graph.
Each operation has applicable yield and rework rates attached. Refer to Section 6.1 for the

details of the process model schema.

The Analyzer will select the applicable process(es) on a level by level basis using the
selected process model. First, the and/or prerequisite of the parent(s) of the process must be
satisfied. If satisfied, the rules attached to the process are evaluated to see if it is an applicable
process. The selected process and corresponding product design entities will be added to a
dependency analysis graph. Figure 3.2-4 illustrates a resulting high level process analysis graph
for a circuit card.

SB1

S B2 \
Eé-:;a Lo-b» PWB $B3 mLe -O--{cca

SsSB4

$Bs

Figure 3.2-4 High Level Process Analysis Graph

24

UNCLASSIFIED
CDRL No. 0002AC-4

3.24.2 Yield & Rework Analyzer

The yield and rework analyzer provides the capability to calculate yield and rework rates for
the selected processes associated with a product design. This part of the analysis calculates the
yield and/or rework rate on an operation level within the process. The rate will be calculated
based on the design entities influence on the operation. The yield and/or rework rate for each
design entity/entities associated with an operation is calculated through the evaluation of a rule,
which has a corresponding equation attached. If the rule evaluates to true, then the equation will
be calculated to provide the yield or rework rate. The rate 2quations may include references to
the existence, value, or quantity of product design entities. An example yield rule and

corresponding rate attached to an operation is as follows:

Xield Data:
Design Features Rule Scrap Rate
aspect ratio < 5.0 & aspect ratio > 4.0 0.05000
aspect ratio <= 4.0 & aspect ratio > 2.0 0.02000

The total yield rate for an operation is calculated using the statistical probability of each
design entity scrap rate to each other by calculating the independent events. The total rework

rate for an operation is calculated by summing up the results of each rework occurrence.
3.24.3 Cost Estimator

The cost estimator calculates the recurring manufacturing cost for each operation in the

process sequence. The following calculations are performed:

« Labor standards for each resource attached to an operation are calculated for setup and
run time utilization. The value for each is calculated through the evaluation of an equation
which may include reference to the existence, value, or quantity of design entities in the
product data. Each resource has an associated cost in terms of an appropriate measure.
For example, a labor resource will have an associated cost in terms of dollars per time

unit.

« Estimated ideal cost for each operation is calculated from labor standard values multiplied
by the wage rate of the labor grade or bid code of the resource(s) performing the

operation, and the production efficiency value for that operation.

25

UNCLASSIFIED
CDRL No. 0002AC-4

» Rework operations are calculated based on the rework rate determined by the yield and
rework analyzer multiplied by labor standards of the resources for the rework condition.

The labor grade wage rates and production efficiencies would then be applied.

* For each operation, the estimated actual cost is calculated by multiplying the estimated
ideal cost by the number of units processed, including both good and scrapped units. The
number of units processed by each operation are calculated from the value of the required
good units at the subsequent operation divided by the yield at the operation under
evaluation. For example, if the desired production quantity is 100 boards and operation 1

has a scrap rate of 5%, then the quantity of required units to being operation 1 with is 105.

* The total estimated ideal cost and total estimated actual cost for each sequence of
processes are calculated by summing the individual operation cost of each process. The
estimated actual cost for a good unit is calculated by dividing the total estimated actual

cost for the process by the number of good units produced.
3.2.5 Manufacturing Advisor

The manufacturing advisor provides the capability to view the results produced by each

process participating in an analysis. The advisor includes the following capabilities:

* A mechanism for selecting one or more manufacturing analyzer runs for comparing

and/or displaying the results.

* Graphical capabilities (i.e. line, bar, stacked bar and pie charts) for comparing and
displaying the process, yield, rework, or cost versus a processes or operations for one or

more manufacturing analyzer runs.

* A reporting capability which prints analyzer results to the screen or file for one or more

runs including process sequence, yield and rework, and cost.

* The capability to summarize design entities causing manufacturing guideline violations
(interface to the RM) across multiple processes. Report recommendations on these

guideline violations.

* A final manufacturing summary report, identifying cost drivers, for each process
contributing to a multi-process analysis for a given design database after completion of

the manufacturing optimization process.

26

UNCLASSIFIED
CDRL No. 0002AC-4

Provided below in figure 3.2-5 is a sample of the type of graphical display the user would

Yield vs. Process

) - L 4 1 1 1 1 L]
¥ ¥ L ¥ ¥ ¥ L} L}

OCA MLB SBY SB. SB3 SB4 SB5 SB6 SB7 SB8

Figure 3.2-5 Sample Yield versus Process Display Graph
3.2.6 Process Modeler

The process modeler provides the capability to model the selection logic of the
manufacturing process. The process model is decomposed into a graph of process nodes. Each

process node consists of the following:

» Selection rules - If these rules are satisfied and this nodes dependencies are satisfied, then

the process node is included in the total process analysis model.

* Dependencies (parent process nodes) - For the node under consideration to be selected,
all of the process nodes that it is dependent on must be satisfied. An AND/OR flag is
stored as each node in the graph. If the flag is set to AND then, the node is dependent on
all of its parents. If the flag is set to OR, then the node is depending on only one of its
parents to be satisfied.

* Operations - At each process node there is a list of operations that are performed. Each
operation is annotated with an associated yield rate, rework rate, and its usage of

resources.

27

UNCLASSIFIED
CDRL No. 0002AC-4

* Resources - At each process and operation node there is a list of resources attached. A
resource is any facility, person, equipment, or consumable material used in the

manufacturing process.

The MO system will allow the manufacturing specialists to capture and maintain multiple
copies of process data models through a set of utilities. The utilities will provide the model
developer with the tools necessary to graphically build and view the process logic dependency
graph, selection rules, yield/rework, labor standards, and resources. Through the use of these
utilities, the process team will have the ability to modify the process model data, to explore
alternative process approaches and plan process improvements, and then analyze the effects of
these changes on the product cost. The user interface will consist of pull down menus and pop
up forms to allow adding, copying, moving, deleting, editing, and printing of the processes in the
dependency graph. Pictured below in figure 3.2-6 is the main user interface window for the

Process Modeler with a sample process model displayed.

MANUFACTURING QPTIMIZATION Version 1.0 |

Preform insen
Components Components

Figure 3.2-6 Process Modeler User Interface Window

28

UNCLASSIFIED
CDRL No. 0002AC-4

4. User Interface Design

The main user interface window for MO provides access to the various modules within the
system, including the product and process STEP files, the manufacturing analyzer, the
manufacturing advisor, the process modeler, ana system help. Figure 4-1 depicts the MO main

window.

oo T 2o,

MANUFACTURING

WELCOME TO TE MANUFACTURING OPTIMIZATION SYSTE

Figure 4-1 MO Main Window

4.1 File Menu

The File menu provides a means to select and edit the product and process data and
provides access to two translators. Rapids2Step translates PWB design data from a Raytheon
propriety format to STEP. Step2Rapids translated a PWB design from STEP to a Raytheon
proﬁriety format. Figure 4.1-1 illustrates the MO main window with the File menu pulled down.

29

UNCLASSIFIED
CDRL No. 0002AC-4

Q Design: ../data MANUFACTURING OPTIMIZATION V1.0

WELCOME TO THE MANUFACTURING OPTIMIZATION SYSTE
Fe Analyzer Advisor Modeler Help

STEP Data
Process Model

RAPIDS to STEP

STEP to RAPIDS

Figure 4.1-1 File Options
4.1.1 Product/STEP Data Selection

MO allows the user to select a product/step data file for analysis, or to edit a step file in the
Step Toolkit Editor. When the Step Data button is selected, figure 4.1-2 is displayed. A user
performs a selection for choosing a design database to analyze or a process model for use
during analysis. When the Edit button is selected the STEP Editor from STEP Tools Inc. is
invoked with the selected STEP file loaded. The STEP Editor enables the user to add, delete,
and modify STEP entity instances.

30

- e W N .

UNCLASSIFIED
CDRL No. 0002AC-4

i o
SELECT STEP FILE i

dir2/Step Da!a/

Figure 4.1-2 Product Data Selection/Edit Menu

41.2 Process Model Selection

The MO system allows the manufacturing engineer to capture and maintain multiple copies
of process data models through a set of utilities. Through the use of these utilities, the process
team has the ability to modify the process model data, to explore alternative process approaches
and plan process improvements, and then analyze the effects of these changes on the product

manufacturing cost. Figure 4.1-3 shows the user interface provided for process model selection.

PROCESS MODE!

Figure 4.1-3 Process Model Selection Menu

31

UNCLASSIFIED
CDRL No. 0002AC-4

4.1.3 RAPIDS to STEP Translator Interface

Rapids2step is a C++ application that utilizes the ROSE database and tools developed by
STEP Tools Inc. The program reads the RAPIDS Structured and Library Databases
(RSD/RLD) using the RAPIDS Procedural Interface. For each RSD and RLD file type, a
function of the form rsd_read_xyz_record() is called where xyz is the type of record requested.
The function returns a pointer to a structure containing the data of the next unread record from
that particular RAPIDS database file. A persistent STEP object of the appropriate class is
generated using the ROSE pnew instruction. The attributes of the object are populated from the
appropriate data in the structure returned by the rsd_read_xyz_record call and the object is
added to a persistent list of objects of that type. Once all of the records have been read from the
RSD and RLD databases and the corresponding STEP object lists b~ve been created, the STEP
file is created and the STEP objects are written to it by the ROSE STEP filer. See figure 4.1-4

for an illustration of rapids2step process.

[RAPIDS
Procedural
Interface

Figure 4.1-4 RAPIDS to STEP Data Flow

The MO system provides the user with an interface to the rapids2step translator. The

interface is shown in figure 4.1-5.

Figure 4.1-5 RAPIDS to STEP Form

4.1.4 STEP to RAPIDS Translator Interface

Step2rapids is also a C++ application that utilizes ROSE and tools developed by STEP
Tools Inc. The program reads a STEP file conforming to the EXPRESS schemas developed as
part of this project. The ROSE STEP filer is used to read the STEP file into instances of classes

32

UNCLASSIFIED
CDRL No. 0002AC-4

created by the express2c++ compiler. Since these STEP objects were stored in persistent lists,
these lists are still available in the STEP file. The file structures for the RAPIDS RSD and RLD
are created. Each of the STEP object lists is traversed and for each object in the list an
appropriate C structure corresponding to the RAPIDS procedural interface is created and its
fields are populated with the values of the corresponding attributes of the STEP object. A call is
then made to the appropriate rsd_write_xyz_record of the RAPIDS procedural interface where
xyz 1is the type of RSD record to be written. See figure 4.1-6 for an illustration of the
step2rapids process.

RAPIDS

Procedural
Interface

Figure 4.1-6 STEP to RAPIDS Data Flow

The MO system provides the user with an interface to the step2rapids translator. The

interface is shown in figure 4.1-7.

Figure 4.1-7 STEP to RAPIDS Form

4.2 Analyzer Form

The MO system provides the user with the ability to perform a manufacturability analysis
based on a selected manufacturing process model versus a particular product design database
through the analyzer button on the main window. The analyzer has five options to choose from:
process flow, yield, rework, labor time, and cost. Process flow selects the appropriate processes
required to build the product based on the selected process model. Yield and rework calculate
the overall yield and rework rates of a process on an operétion by operation based on the

selected process flow. Labor time calculates the ideal time to perform the processes on an

33

UNCLASSIFIED
CDRL No. 0002AC-4

operation by operation basis. The yield rates are incorporated to project the estimated actual
times. Cost utilizes the ideal and estimated actual labor times by multiplying them with the
resource(s) labor rate(s) to obtain the ideal and estimated actual cost of each process and
operation, as well as, the cost of the entire part. When a user selects the analyzer button, he/she
must at least select the process flow option since this is the input to all other analysis options.
Figure 4.2-1 depicts the form which is displayed when the analyzer button is selected off the
Main Window. The user can then select the type(s) of analysis to be performed.

Figure 4.2-1 Manufacturing Analyzer Form

4.3 Advisor Window

The Manufacturing Advisor module provides the capability of viewing the analyzer results.
The user can select analysis runs to view. The user can display process, quality, or costing
results as graphs, and can also view complete analysis data to the screen or to file in report
format. Figure 4.3-1 illustrates the Manufacturing Advisor window which is displayed when the

user hits the Advisor button on the Main Window.

34

) G G G G TP G OB D G EE B U 0 T Ay W ex =

UNCLASSIFIED
CDRL No. 0002AC-4

Figure 4.3-1 Manufacturing Advisor Window

4.3.1 Select Analysis Runs

The MO system supports viewing of one or more analysis runs so that the user can visually
see the results, as well as visually compare analyses. Figure 4.3-2 illustrates the form that is
displayed when the user hits the Select Analysis Runs button on the Manufacturing Advisor
Window. The user can select the run(s) which he/she wants to view. The default selection is the

analysis results which corresponds to the last analyzer run performed.

35

UNCLASSIFIED
CDRL No. 0002AC-4

MANUFACTURING OPTIMIZATION V1.0

WELCOME TO THE MANUFACTURING OPTIMIZATION ADVISOI

] rurs §
SELECT ANALYSIS RUNS 2

Figure 4.3-2 Select Analysis Runs Form
4.3.2 Process Graph Display

When the Process Graph button is chosen, the selected analysis run(s) process flow is
graphically displayed. The graph can be expanded or compressed by the user to different levels
of abstraction by selecting the diamond shapes on the drawing. Each process is displayed as a
square button with the name of the process shown inside. Figure 4.3-3 illustrates the resulting

process flow graph for one set of analysis results.

36

UNCLASSIFIED
CDRL No. 0002AC-4

=

. Quit] MANUFACTURING OPTIMIZATION

WELCOME TO THE MANUFACTURING OPTIMIZATION SYSTE
Selec Process f Qual osting E Anayss § EXIT TO
Graph E Grphs Graphs f Repots JF MAN

$B1

$B2

$B3 |

SB4

Figure 4.3-3 Process Graph

The user can then chose to select a process button on the graph in order to see the analysis
details for that process including: process name, yield and rework percentage, production
quantity, rework cost, ideal FAIT (fabrication, assembly, inspection, and test cost), and the
estimated actual FAIT. If that process has a set of operations attached to it, the user can also
request to view them graphically. Figure 4.3-4 illustrates the form that is displayed when a
particular process is selected.

37

UNCLASSIFIED
CDRL No. 0002AC-4

: Design: .. daia MANUFACTURING OPTIMIZATION V1.0

WELCOME TO THE MANUFACTURING OPTIMIZATION ADVISO

ng Analyss
Analysis Rurs Graph Graphs Graphs Reports

[rocaus: [aaz i
B e e |
| oo G NS C—

[Viow Operators

Figure 4.3-4 Process Results Viewing Form

If the user chooses to view the available list of process operations, they will be displayed in
a separate window. Each operation is displayed as a circle button with the name of the operation
shown inside. The window identifies the process that the operations belong to, and allows the
user to print and close that window. The user can then decide to select an operation button on
the graph to see the analysis details for a particular operation. The details include operation
name, setup and run time, efficiency rate, yield and rework percentage, production quantity,
rework cost, ideal FAIT (fabrication, assembly, inspection, and test cost), and the estimated
actual FAIT. If that operation has a set of design entities (features) contributing to the quality of
the board, the user can request to look at the details. Figures 4.3-5 and 4.3-6 illustrate the
process operations viewing window, operation details form, and the design entity form for

displaying the quality issues.

38

UNCLASSIFIED
. CDRL No. 0002AC-4

Figure 4.3-5 Process Operation Viewing Form

B ——

eosesvorrersssasnususerssaeranes,

1.1
1

0.042

Operation: f1ie0
Description: § Etch Copper

Change in Line Width and 1.0 copper 3.0 X
Pad to Pad Spacing and 1.0 copper 8.0 3.0
Pad to Line Spacing and 1.0 copper 8.0 .0

Figure 4.3-6 Operation Design Entities Viewing Form

39

UNCLASSIFIED
CDRL No. 0002AC-4

433 Available Quality Graphs

The MO system provides for graphically displaying the quality results associated with
analysis runs including graphs for yield, rework, and production quantity. Figure 4.3-7
illustrates the Advisor Window with the Quality Graphs menu pulled down.

e

MANUFACTURING OPTIMIZATION V1.0

WELCOME TO THE MANUFACTURING OPTIMIZATION ADVISOI

roCess sting
Analysis Runs Graph Graphs Graphs Reports

Yiold

Rework

Figure 4.3-7 Quality Graphs
-4.3.3.1 Yield Graphs

The type of yield quality graphs available are yield rates versus processes and yield rates
versus operations associated with a particular user selected process. Figure 4.3-8 illustrates the
pull out menu for the quality yield graphs. The graphs are displayed in a separate window
where the user can select to display the data as a bar, stacked bar, line, or pie chart. The yield
defaulting display will be a line chart. A sample line graph of yield versus process is depicted in
Figure 4.3-9.

40

UNCLASSIFIED
CDRL No. 0002AC-4

Design: ../data

WELCOME TO THE MANUFACTURING OPTIMIZATION ADVISO!

Sole g Process B CQual E Cosung

Yield vs. Process

L 'l] Il o 'l L 4
L] T] L L] | L] L]

CCA MLB SBI SB2 SB3 SB4 SBS SB6 SB7 SBS

SES R RS
S ———

Figure 4.3-9 Yleld versus Process Graph

41

UNCLASSIFIED
CDRL No. 0002AC-4

If the user wants to view yield versus process operations figure 4.3-10 is displayed so that

they can select from the available processes to identify the set of process operations. Figure

4.3-11 illustrates the resulting yield versus operations line chart for the selected process.

»
w
]
0
w
Q
&
a
w
M
<
>
<

ilable Processes to Select

Figure 4.3-10 Ava

on Number

]
©
e
@
Q.

o
v
=3
L
)
Q

>

k.

2

MLB Y

camem e mE ey ey e m g am .y

L R L L T I T e

embeocdrecdecadeaclcacnbacrkhede -

cabedendecdecdocbabado .
L] 1] [] 1

] 1 § 1]]
e e L R TR R
DT R L R T
Cepen e s e e e e p - g
R N e P R L L T
mebrcalecdendacdanbark e de -
!I...llllLll.-llhllFll"llhll

1)
llﬁll—llJllJlldll—-ll-u 4=
- - - ll.-ll-llq.. -
P o= == - -
e e v madach oo e
enbeacdasdecdacdacbact ocdas
llfllll..-ll.-llbll—.ll.l I T

S TP R R g

T Ll Bt el ety sl Tk

D L LR T R TR

e N T I R T s

embenlendecdecacdacbechadaas

embecduadecdacdlacbacbada.
[} 13] [}

|lllJll.—ll.~l|-.l|
e esre e qeepeaprameye-
I L T
cmebeaadendacdeaclecctbeanhede =
eebedeedecdanlaabaablada.

||l|L||Ll|h|lPllf Lll

q-l!-llJll.—lldll-.llnllJll
E N L Lk Bl il k] o L
R R . L L L B L T
webheddeacadeacdeccdlesctbewvkheda -
wehewWeawndeecdacdecrbheabh cda-

.ull.lll.ll.—llhll_.llf Lll

-lll-llJllJlldl..-.|D\- Jll
P R L LR el T il L
R R T T T .
mebheacdecdavdacdacbasakhade -

O W T N O 0 O
09999988
1

ions Graph

Id versus Operat

1€

11 Yi

3

4

Figure

If the user wants to compare the yield rates versus process for two runs, he/she would select

the analysis runs from the form under the Select Analysis Runs button, and then select Yield vs.

42

UNCLASSIFIED
CDRL No. 0002AC-4

Process under the Quality Yield buttons. Figure 4.3-12 illuétratcs a sample yield versus process

line graphs for two selected analysis runs.

-ememuemercemerecceqecccneccencan~

]

[] [}] 1
evcacoebonanstbacccdavacdacnas

(]

] 1] §]] i

moevdecsvcoenisecnsnkhocnsosbonassdocnsdencncssicacanal

1
:
N
m
7

m—— un: Yield

Figure 4.3-12 Yield versus Process Comparison Graph

4.3.3.2 Rework Graphs

The type of rework quality graphs available are rework rates versus processes and rework
rates versus operations associated with a particular user selected process. Figure 4.3-13
illustrates the pull out menu for the quality rework graphs. The graphs are also displayed in a
separate window, like the yield graphs, where the user can select to display the data as a bar,
stacked bar, line, or pie chart. The rework defaulting display will be a bar chart. A sample bar
graph of rework versus process is depicted in Figure 4.3-14.

43

UNCLASSIFIED
CDRL No. 0002AC-4

Rework Cost Per Process

', L
¥

1
L L LS L |

SB2 SB3 SB4 SBS SB6 SB7 SB8

s

Figure 4.3-14 Rework versus Process Graph

UNCLASSIFIED
CDRL No. 0002AC-4

Just like with the Yield versus Process Operatons graphing capabilities, the user must select
the associated process before a Rework versus Operations graph will be displayed. Figure 4.3-

15 illustrates a sample bar chart of rework versus operations.

e arereesd St

n <« < W O
MmN © © O M
M M M M wn

Operation Number

Figure 4.3-15 Rework versus Operations Graph
4.3.3.3 Production Quantity Graphs

The type of production quantity graphs available are quantity rates versus processes and
quantity rates versus operations associated with a particular user selected process. Figure 4.3-16
illustrates the pull out menu for the production quantity graphs. The graphs are also displayed
in a separate window, like the yield and rework graphs, where the user can select to display the
data as a bar, stacked bar, line, or pie chart. The rework defaulting display will be a line chart. A
sample line graph of quantity versus process is depicted in Figure 4.3-17.

45

UNCLASSIFIED
CDRL No. 0002AC-4

MANUFACTURING OPTIMIZATION V1.0

WELCOME TO THE MANUFACTURING OPTIMIZATION ADVISOi

OCO6S Costing Aralyss
Analysis Runs Graph Graphs Graphs Reporns

Yiekd

Rework

Prod.QTY vs. Proaul

Prod. QTY vs. Opno

Production Quantity vs. Process

155
150
145
140
135
130
125
120
115
110
105
100 —t t

<+~ —=38nCQO

L
T

s
———

Figure 4.3-17 Production Quantity versus Process Graph

46

UNCLASSIFIED
CDRL No. 0002AC-4

Just like with the Yield and Rework graphing capabilities, the user must select the associated
process before a Production Quantity versus Operations grapk will be displayed. Figure 4.3-18

illustrates a sample line chart of quantity versus operations.

g_:é
B
i
]

SRR,

T T SRR T
Figure 4.3-18 Production Quantity versus Operations Graph

If the user wants to compare the production quantity rates versus process for three runs,
he/she would select the analysis runs from the form under the Select Analysis Runs button, and
then select Prod. QTY vs. Process under the Quality Prod. QTY buttons. Figure 4.3-19

illustrates a sample quantity versus process line graphs for three selected analysis runs.

47

UNCLASSIFIED
CDRL No. 0002AC-4

Production QTY versus Process

btk Shaaiiaiiaiiy hulbuibaliiy wiiatiadindig lbafiiiedl Siadieiiaials Shafbaiiiils Iaiediediai i |
IR TN e whin suustn. st sty

)

; ': v r r T 1 ' "
A . g (A iy SR (S (U R, -
7 A Y

¥

Figure 4.3-19 Production Quantity versus Process Comparison Graph

434 Available Costing Graphs

The MO system provides for graphically displaying the costing results associated with
analysis runs including graphs for time, cost, and cost details. Figure 4.3-20 illustrates the
Advisor Window with the Costing Graphs menu pulled down.

48

UNCLASSIFIED
CDRL No. 0002AC-4

Deeign: . jdaia MANUFACTURING OPTIMIZATION V1.0

WELCOME TO THE MANUFACTURING OPTIMIZATION ADVISO

osting Analyss
Analysis Runs Graph Graphs Graphs Reports

Time

Cost

Cost Details

o g SN SHN

Figure 4.3-20 Costing Graphs

4.34.1 Time/Cost Graphs

The type of time/cost quality graphs available are time or cost versus processes and time or
cost rates versus operations associated with a particular user selected process. Figure 4.3-21
and figure 4.3-22 illustrate the pull out menu for the quality time and cost graphs, respectively.
The graphs are displayed in a separate window where the user can select to display the data as a
bar, stacked bar, line, or pie chart. The time default display will be a line chart, and the cost
default display will be a bar chart. A sample bar graph of ideal/actual cost versus process is
depicted in Figure 4.3-23.

Just like with the Quality graphing capabilities, the user must select the associated process
before a Time or Cost versus Operations graph can be displayed. Figure 4.3-24 illustrates a
sample bar chart of ideal/actual cost versus operations.

49

L

UNCLASSIFIED
CDRL No. 0002AC-4

‘ WELCOME TO THE UFACTURlNG OPTIMIZATION ADVISO!

WELCOME TO THE MANUFACTURING
: Process : Q :

Analysis Rune ; Graphs

50

UNCLASSIFIED
CDRL No. 0002AC-4

Ideal/Actual Cost Pér Process
400 T

350 “
300
250
200
150
100

W eaFaT

Actual FAIT

(=
o
~

= {deal Cost Actual Cost

—

Figure 4.3-24 Cost Per Operation Graph

UNCLASSIFIED
CDRL No. 0002AC-4

4.34.2 Cost Detail Graphs

The type of cost detail graphs available are product breakdown and process breakdown
associated with a particular user selected process(es). The graphs are displayed in a separate
window where the user can select to display the data as a bar, stacked bar, line, or pie chart. The
cost details default display will be a pie chart. A sample pie chart of a product breakdown is
shown in figure 4.3-25, and a sample pie chart of a product process breakdown is shown in
figure 4.3-26.

Board Cost Breakdown

PWB FAIT

Resourced

Figure 4.3-25 Cost Details Graph for Product

52

UNCLASSIFIED
CDRL No. 0002AC-4

Ideal FAIT

.Labor

B Equi pm ent

D Faiity

H Consum abl eMateria

Rewor k

ESaa:

o

Figure 4.3-26 Cost Details Graph for Process

4.3.5 Analysis Reports Form

The Analysis Report button provides the means to generate reports for the results produced
by each process participating in an analysis. This includes the ability to view process flows,
yield and rework, cost, and requirements. A final summary report, identifying cost drivers, for
each process contributing to a multi-process analysis for a given design database can also be
generated. Figure 4.3-27 is displayed when a user selects the analysis report button. The user
can then select the type of data that he/she wants in the output report.

53

UNCLASSIFIED
CDRL No. 0002AC-4

¢ Quit | MANUFACTURING OPTIMIZATION V1.0

WELCOME TO THE MANUFACTURING OPTIMIZATION ADVISO!

TOCHGS|

rication Pr lection imation R
MLB - layers 1,14 OVERALL YIELD is 94 percent

54

Figure 4.3-27 Analysis Reports Form

process flow and corresponding yield results for a PWB Fabrication process.

Provided below is a sample report generated from the Manufacturing Advisor based on the

Opno Description Ideal($) Actual($) Rework(3) Yield Rework # Units
10 . mark part no 0.123 0.12 0.00 100 0.000 137
30 oxide treat 1.111 1.11 0.00 100 0.000 137
40 bake panels 0.444 0.44 0.00 100 0.000 137
50 layup 3.123 3.12 0.00 100 0.000 137
60 laminate 0.600 0.80 0.00 94 0.000 137
80 route excess 0.715 0.92 0.00 100 0.000 128
90 oxide strip 0.250 0.32 0.00 100 0.000 128

110 drill tooling 0.220 0.28 0.00 100 0.000 128

130 drill 12.123 15.12 1.23 92 0.005 128

160 electroless 0.661 0.66 0.00 100 0.000 117

170 copper panel 0.555 0.55 0.00 100 0.000 117

180 electrostrike 0.512 0.70 0.00 98 0.000 117

Fabrication Yield Analvsis R I

MLB - layers 1,14 OVERALL YIELD IS 94 percent

r r r
60 14 layers and 8 substrates N/A 6.000 94
130 annular ring 8.00 8.000 92
180 aspect ratio 4.00 2.000 98

UNCLASSIFIED
CDRL No. 0002AC-4

4.4 Modeler Window

The Process Modeler will provide manufacturing engineers with the ability to model the
manufacturing process of their products. The process model consists of a directed dependency
graph. At each vertex of the graph is a process node. Each process node consists of the

following:

« Selection rules - If a node’s rules are satisfied and its dependencies are satisfied, then the

process node is included in the total process analysis model.

« Dependencies (parent process nodes) - For a node to be selected, all of its dependencies

must be selected based on the and/or flag.

» Operations - At each process node there is a list of operations that are performed. Each
operation is annotated with an associated yield rate, rework rate, and its usage of

resources.

» Resources - At each process and operation node there is a list of resources attached. A
resource is any facility, person, equipment, or consumable material used in the

manufacturing process.

The Process Modeler provides functionality to create new process nodes and edit, copy, and
delete existing nodes. Included in this functionality, is a means to specify selection rules for
process nodes, define operations that are carried out for a process node, and identify the
dependencies among process nodes. Associated with each operation are scrap and rework rates,
as well as, resources required to carryout the operation. The Process Modeler window is shown

on Figure 4.4-1. A sample process model is displayed.

55

UNCLASSIFIED
CDRL No. 0002AC-4

Version 1.0

Preform ‘ Insert
Components Components

Flgure 4 4- l Process Modeler Wmdow

The user is provided the ability to create new process models and select, delete, and copy
existing process models. These operations are done through the Process Model Selection
window shown in figure 4.4-2 which is accessed by selecting the Models icon from the Process
Model menu bar shown in figure 4.4-1.

FABlmodels

Figure 4.4-2 Process Model Selection Window

56

UNCLASSIFIED
CDRL No. 0002AC-4

4.4.1 Process Node Definition

Defining a new process node will consist of selecting the Add icon from the Process
Modeler Window menu bar and specifying the name of the node to the Process Node
Specification window shown in figure 4.4-3. The interface will then support the definition of
dependencies to other nodes and defining selection rules and operations. It will be possible for
process nodes to be copied from a template library or stored to the template library.

Editing existing nodes will be accomplished by graphical selection of the desired node from
the process modeler window (see figure 4.4-1) via the mouse. Once the process has been
selected, the Process Specification window will be displayed with the data for the selected
process node loaded. Existing nodes are deleted by selecting the Delete icon and then the
process node to be deleted.

L

Proces

.-,

Figure 4.4-3 Process Node Specification Window

57

UNCLASSIFIED
CDRL No. 0002A.C-4

4.4.2 Selection Rules Definition

The window in figure 4.4-4 will support the creation, modification, and deletion of selection
rules for a process node. There will be an implicit OR between each of the rules in the list for a

process node, i.e., if one of the rules in the list is satisfied, then the node will be selected.

Ent1.Att1 <oxists> &&Ent1. A2 == "PTH" &&
Ent2.AttS == TRUE && Ent6 <exists>

EntS.An4 <oxists> && Ent7.At3.Att4 »>= 100
Ent7.Att5 == TRUE

Figure 4.4-4 Selection Rules Window

When either a new rule is to be defined or an existing one modified, the Rule Specification
window shown in figure 4.4-5 will be presented. This window will also be utilized to specify

scrap and rework rate rules and operation setup and operation run time rules. .

58

UNCLASSIFIED
: CDRL No. 0002AC-4

2t

(Ent1.Att3 - Ent4.Att1.Att2) * Ent6.Att3 < ent2.Att1 &
Ent8.Att4 = TRUE

Att3 : List Of integer
Att4 : String

Figure 4.4-5 Rule Specification
443 Operation Definition

The window in figure 4.4-6 will support the creation, modification, and deletion of

operations for a process node.

59

UNCLASSIFIED
CDRL No. 0002AC-4

Operati ons

Operation1
Operation2
Operation3
COperationd
Operation5
Operation6

Figure 4.4-6 Operations Window

Operations will be created and modified through the Operations Specification window
shown in figure 4.4-7. Operations can be stored in and copied from a library of existing
operations. Attached to each operation will be a list of resources that are utilized to perform the
operation. Also attached to operations will be a list of scrap and rework rate rules.

Operation Specification

Figure 4.4-7 Operations Specification Window

60

UNCLASSIFIED
CDRL No. 0002AC-4

4.4.3.1 Scrap Rate Definition

Attached to every operation is a list of scrap rates. A scrap rate can be associated for a given
entity attribute or a set of entity attributes. This will be specified through an ordered list of rules
and scrap rates. The scrap rate will be established using the scrap rate equation attached to the
first scrap rule in the ordered list that is satisfied. A user interface supporting this functionality
is shown in figure 4.4-8. The scrap rules and the scrap rates will be specified through the Rule
Specification Window shown in figure 4.4-5.

Entity1.Att2 = "PTH" & EntityS

mnnxnorng

Entity1.An2 * Entity2.AttS / Entity3.Att1

Figure 4.4-8 Scrap Specification Window
4.4.3.2 Rework Rate Definition

Attached io every operation is a list of rework rates. A rework rate can be associated for a
given entity attribute or a set of entity attributes. This vl be specified through an ordered list
of rules and rework rates. The rework rate will be established using the rework rate equation
attached to the first rework rule in the ordered list that is satisfied. A user interface supporting
this functionality is shown in figure 4.4-9. The rework rules and the rework rates will be
specified through the Rule Specification Window shown in figure 4.4-5. Also attached to each
rework rule rate pair is a list of resources that is required to complete the rework activities. The
resources used along with their associated setup and run time equations will specified using the

Resource Utilization interface shown in figure 4.4-10.

61

UNCLASSIFIED
CDRL No. 0002AC-4 -

A2 =

Figure 4.4-9 Rework Specification Window

4.4.4 Resource Definition

For each operation performed, a list of needed resources must be specified. When resources
are utilized the amount of setup time and run time that is required for the resource must also be
provided so that proper costing can be calculated. Figure 4.4-10 shows the Resource Utilization
interface that will allow the process modeler to construct the list of resources utilized by an
operation. The setup and run time equations are specified using the Rule Specification interface

shown in figure 4.4-5.

62

| UNCLASSIFIED
: CDRL No. 0002AC-4

Resource 1
Resource 2

R SRR,

% Entity1.At2 * Entity3.Att1

Figure 4.4-10 Resource Utilization Window

Figure 4.4-11 show the Resources interface which lists all of the Resources that are
currently stored in the process model. The interface supports creating new resources, and
editing and deleting existing resources. To access the Resources interface the user would select

the Resources icon from the menu bar shown in figure 4.4-1.

Resource 1
Resource 2
Resource 3

Figure 4.4-11 Resource Window

The Resource Specification interface is shown in figure 4.4-12. This interface is used for

specifying new resources and modifying existing ones. Attached to each resource is a list of

63

UNCLASSIFIED
CDRL No. 0002AC-4

user definable parameters or attributes. Each resource falls into one of the following four

categories: labor, facility, equipment, or consumable resource.

Resource Specification

Figure 4.4-12 Resource Specification Window

Figure 4.4-13 shows the interface for specifying user definable parameters for resources.

Figure 4.4-13 Resource Parameter Specification Window

Figure 4.4-14 shows the interface for specifying a facility resource.

Figure 4.4-14 Facility Resource Specification Window

Figure 4.4-15 shows the interface for specifying an equipment resource.

UNCLASSIFIED
CDRL No. 0002AC-4

Equipment Specification

Figure 4.4-15 Equipment Resource Specification Window

Figure 4.4-16 shows the interface for specifying a consumable material resource. Materials
are consumed at different rates by different resources therefore a list of resources with the rate

at which the material is consumed is provided.

PRSRRATRR

o S ;
o Consumsbie Material Specification :

R Snesnaari e, ARREREE

Figure 4.4-16 Consumable Material Resource Specification Window

An individual resource, consumable material pair is specified in the Resource/Consumable

Specification Window shown in figure 4.4-17.

65

UNCLASSIFIED
CDRL No. 0002AC-4

Figure 4.4-17 Resource/Consumable Specification Window

Figure 4.4-18 shows the interface for specifying labor resources.

Figure 4.4-19 Labor Rate Resource Specification Window

‘ 66

UNCLASSIFIED
CDRL No. 0002AC-4

S. Detailed Object Oriented Design

This section provides an object oriented specification of the MO system. It contains the
detail design of the underlying classes and objects which make up the system, excluding the
user interface. The detailed design of the user interface can be found in section 4, where we have
prototyped the look and feel of the system. The Object Oriented Design (OOD) methodology
used is defined in Object Qriented Design with Applications by Grady Booch, (See reference 7
in section 2). The Booch OOD methodology provides a means of graphically illustrating class
and object hierarchies and relationships, definition of system state diagrams, and the

specification of class methods in the form of C++ code directly.

The class specifications defined in this section were developed as follows: the EXPRESS
information modeling language was used to model both the product data and the MO process
data (Section 6 provides a complete EXPRESS schema specification of the product and process
models). Using the express2c++ compiler which is part of the STEP Programmers Toolkit
(STEP Tools Inc.), the EXPRESS entities were translated into C++ classes. The generated
classes are structured such that all of the class attributes are declared as private. Public access
and update methods were generated for each private attribute. Additional calculation and

monitoring methods required for each class were then added to the class manually.

Figure 5-1 illustrates the top-level class categories for the MO system. The sections to
follow will provide the details of each of these categories, including the applicable class and

object diagrams, state transition diagrams, and class specifications.

67

UNCLASSIFIED
CDRL No. 0002AC-4

Modeler
1
ProductDesign ProcessModel
\ /
Analyzer
:
RequirementTask {———= Advisor Ul:te);lnterface

Figure 5-1 Top-Level Class (Categories) Diagram

5.1 ProductDesign

An EXPRESS product model was developed to model PWB data and electronic component
library data (See section 6.2 for this specification). The model consists of approximately twenty
interrelated EXPRESS schemas consisting of more than one hundred and fifty entities. C++
source code was produced by the express2c++ compiler as described above. The following
specification is for the “route_rec” C++ class which corresponds to the “route_rec”
EXPRESS entity defined in section 6.2.1.15.

/* Class Declaration */
ROSE_DECLARE (route_rec) : virtual public RoseStructure {
private:
STR PERSISTENT _signal;
STR PERSISTENT _route_type;
STR PERSISTENT _status;
pin_name_rec * PERSISTENT _target_name;
pin_name_rec * PERSISTENT_object_name;
pin_rec * PERSISTENT _target_pin;
pin_rec * PERSISTENT _object_pin;
point_rec * PERSISTENT _target_loc;
point_rec * PERSISTENT _object_loc;

68

—

UNCLASSIFIED
CDRL No. 0002AC-4

BOOL PERSISTENT _protect;

int PERSISTENT _target_layer;

int PERSISTENT _object_layer;

ListOfsegment_rec * PERSISTENT _path;

int PERSISTENT_shield_id;

int PERSISTENT _pin_pair_index;

pin_pair_rec * PERSISTENT_pin_pair;

ww_route_data_rec *¥* PERSISTENT_ww_data; STR PERSISTENT_comment;
public:

ROSE_DECLARE_MEMBERS(route_rec);

/* Access and Update Methods */

/* signal Access Methods */

STR signal()

{ retumm ROSE_GET_PRIM (STR,PERSISTENT_signal);
}

void signal (STR asignal)
{ ROSE_PUT_PRIM (STR,PERSISTENT _signal,asignal); }

/* route_type Access Methods */

STR route_type()

{ return ROSE_GET_PRIM (STR,PERSISTENT _route_type);
}

void route_type (STR aroute_type)
{ ROSE_PUT_PRIM (STR,PERSISTENT _route_type,aroute_type); }

/* status Access Methods */

STR status()

{ return ROSE_GET_PRIM (STR,PERSISTENT _status);
}

void status (STR astatus)
{ ROSE_PUT_PRIM (STR,PERSISTENT _status,astatus); }

/* target_name Access Methods */

pin_name_rec * target_name()

{ return ROSE_GET_OB]J (pin_name_rec,PERSISTENT _target_name);
}

void target_name (pin_name_rec * atarget_name)
{ ROSE_PUT_OBJ (pin_name_rec,PERSISTENT _target_name,atarget_name); }

/* object_name Access Methods */

pin_name_rec * object_name()

{ return ROSE_GET_OBJ (pin_name_rec, PERSISTENT_object_name);
}

void object_name (pin_name_rec * aobject_name)
{ ROSE_PUT_OBJ (pin_name_rec, PERSISTENT_object_name,aobject_name); }

/* target_pin Access Methods */
pin_rec * target_pin()

69

UNCLASSIFIED
CDRL No. 0002AC-4

{ return ROSE_GET_OBJ (pin_rec,PERSISTENT _target_pin);
}

void target_pin (pin_rec * atarget_pin)
{ ROSE_PUT_OBJ (pin_rec,PERSISTENT _target_pin,atarget_pin); }

/* object_pin Access Methods */

pin_rec * object_pin()

{ return ROSE_GET_OB]J (pin_rec,PERSISTENT_object_pin);
}

void object_pin (pin_rec * aobject_pin)
{ ROSE_PUT_OBJ (pin_rec,PERSISTENT _object_pin,aobject_pin); }

/* target_loc Access Methods */

point_rec * target_loc()

{ return ROSE_GET_OBJ (point_rec, PERSISTENT _target_loc);
}

void target_loc (point_rec * atarget_loc)
{ ROSE_PUT_OBIJ (point_rec,PERSISTENT_target_loc,atarget_loc); }

/* object_loc Access Methods */

point_rec * object_loc()

{ return ROSE_GET_OBJ (point_rec, PERSISTENT_object_loc);
}

void object_loc (point_rec * aobject_loc)
{ ROSE_PUT_OBIJ (point_rec, PERSISTENT_object_loc,aobject_loc); }

/* protect Access Methods */

BOOL protect()

{ return ROSE_GET_PRIM (BOOL,PERSISTENT _protect);
}

void protect (BOOL aprotect)
{ ROSE_PUT_PRIM (BOOL,PERSISTENT _protect,aprotect); }

/* target_layer Access Methods */

int target_layer()

{ return ROSE_GET_PRIM (int,PERSISTENT _target_layer);
)

void target_layer (int atarget_layer)
{ ROSE_PUT_PRIM (int, PERSISTENT _target_layer,atarget_layer); }

/* object_layer Access Methods */

int object_layer()

{ return ROSE_GET_PRIM (int,PERSISTENT _object_layer);
}

void object_layer (int aobject_layer)
{ ROSE_PUT_PRIM (int,PERSISTENT _object_layer,aobject_layer’, }

70

R

UNCLASSIFIED
CDRL No. 0002AC-4

/* path Access Methods */

ListOfsegment_rec * path();

void path (ListOfsegment_rec * apath)

{ ROSE_PUT_OBJ (ListOfsegment_rec, PERSISTENT _path,apath); }

ListOfsegment_rec * route_rec :: path()
{ if(\PERSISTENT _path)
if(this->isPersistent())
path (pnewlIn (design()) ListOfsegment_rec);
else path (new ListOfsegment_rec);
return ROSE_GET_OBJ (ListOfsegment_rec, PERSISTENT _path);

/* shield_id Access Methods */

int shield_id()

{ return ROSE_GET_PRIM (int, PERSISTENT _shield_id);
)

void shield_id (int ashield_id)
{ ROSE_PUT_PRIM (int,PERSISTENT _shield_id,ashield_id); }

/* pin_pair_index Access Methods */

int pin_pair_index()

{ return ROSE_GET_PRIM (int,PERSISTENT _pin_pair_index);
}

void pin_pair_index (int apin_pair_index)
{ ROSE_PUT_PRIM (int,PERSISTENT_pin_pair_index,apin_pair_index); }

/* pin_pair Access Methods */

pin_pair_rec * pin_pair()

{ return ROSE_GET_OBIJ (pin_pair_rec,PERSISTENT _pin_pair);
}

void pin_pair (pin_pair_rec * apin_pair)
{ ROSE_PUT_OBJ (pin_pair_rec, PERSISTENT _pin_pair,apin_pair); }

/* ww_data Access Methods */
ww_route_data_rec * ww_data()
§ return ROSE_GET_OBJ (ww_route_data_rec,PERSISTENT_ww_data);

void ww_data (ww_route_data_rec * aww_data)
{ ROSE_PUT_OBJ (ww_route_data rec,PERSISTENT ww_data,aww_data); }

/* comment Access Methods */
STR comment()
{ return ROSE_GET_PRIM (STR,PERSISTENT_comment);

}

void comment (STR acomment)
{ ROSE_PUT_PRIM (STR,PERSISTENT_comment,acomment); }

71

UNCLASSIFIED
CDRL No. 0002AC-4

/* Constructors */

route_rec ();

route_rec (
STR asignal,
STR aroute_type,
STR astatus,
pin_name_rec * atarget_name,
pin_name_rec * aobject_name,
pin_rec ¥ atarget_pin,
pin_rec *- aobject_pin,
point_rec * atarget_loc,
point_rec * aobject_loc,
BOOL aprotect,
int atarget_layer,
int aobject_layer,
ListOfsegment_rec * apath,
int ashield_id,
int apin_pair_index,
pin_pair_rec * apin_pair,
ww_route_data_rec * aww_data,
STR acomment);

)
5.2 ProcessModel

The ProcessModel class is used to manage the manufacturing process models. Each
ProcessModel object contains a reference to the top node in the process dependency graph.
Each also contains the name of the model, the dates of its creation and last modification, and the
name of the author of the model. The ProcessModel objects will be created by the Modeler
managing object. The Analyzer will traverse the ProcessModel in order to select the appropriate
analysis plan for the ProductDesign under analysis, and calculate the corresponding yield,
rework, and cost of each selected process and operation. The analysis plan is a subset of the
original ProcessModel object. The Advisor managing object will provide viewing of the
resulting Analyzer process plan. The Class Diagrams for the Process Model, Resources, and
ComplexRules are illustrates in Figures 5.1-1, 5.1-2, and 5-1.3. The sub-sections that follow
detail each of the ProcessModel, Resource, and ComplexRule classes/objects and their

corresponding methods.

72

UNCLASSIFIED
CDRL No. 0002AC-4

LN ’ *
, ~_l \~. ’—\r \.“‘
Vo N : ' Resource
i EntityAttrName ! oun] Utilization_./

' ==* P -———. ‘l 0.n 1 I,"\

0.nf|™"

1

L4 ~\

1 ComplexRule;
!

-

| S)
.

Figure 5.2-1 Process Model Class Diagram

-, Vi
l’\—/ “\ 1"“' Nee
.) 1 Resaurce %
! Equation 1g Uilization..!
S ,‘——:—.~1 .-~ '
~ 1@~
1
-\ "“\\ ‘,' \~
~\
, Parame ter ,.=‘ Resouroe i

=+ 0.n

(L \, (Co abl .] (H '
| Fadlity |) Lensumabie | | Employee | Equipment |
) ~ ' Matenal e ' -~ '
Se rme ' Ne=ao N oy ' S

-~ 1 ~‘I ~ o/ \‘.I

-

’ \..
; Resource ™
| Consu mab]e-

-
- ’
(¥

Figure 5.2-2 Resource Class Diagram

73

UNCLASSIFIED

CDRL No. 0002AC-4
'I— ‘\‘ " \\‘
DA ke \\\ ;‘" p

t \ N
! ComplexRuIe:.—T-——r;, Rules ®=—— AND_Op |
] -wd .. 'av - -n’
__‘~ ,‘ \,-.~] '\.,..~ I'

.‘\O’ E"' “ Nd’

Pl N ,'- ~ SN N
;\'I ‘\\. 'o\l \.~~ ,"_' \\~~ '\—’ \~~~
\ N) L\ \ ™
1 Operator :=‘QComplexEquatlgn ; Expression ,‘—-l StringValue

o~] - o~ P
Ne -] - " l\ - N -~ I
~\ - h ~ " \\ Q"
_ AN 'l"\‘
1“ S~ \“
! -
! Equatron .=q ComplexExp’. , SlmpIeEXD k
\.. ‘ - T
n\\ o’ S l'
X I
, . 'o\— \~~~ , .
o’ \ R S ’ .
/ 1 Equiv_Op / .
1 Tem ‘——;ParenEquatlon oo ; ; Unary_Op }
L R -~ S s ' o~
.- ' \— ~- ' b Voo 1
“wo “ e’ '— = . d
Y4 ’ __ e
. .\
, DataD:ctStr)
P ‘\‘
'0\‘ ! \“h
\ N
! Const U
| Pl I /
N e ~ !) . \| \ .
oS ! EntutyName 01 EntltyAttrName,
) 0 o~
Seand i Sema, !
Tl Tt

Figure 5.2-3 ComplexRule Class Diagram

74

UNCLASSIFIED
CDRL No. 0002AC-4

5.2.1 ProcessModel Specification

edit| new delete | select

aProcess

Figure 5.2-4 ProcessModel Object Diagram

/* Class Declaration */
ROSE_DECLARE (ProcessModel) : virtual public RoseStructure {

private:
STR PERSISTENT _name;
Date * PERSISTENT _creationDate;
Date * PERSISTENT_modifyDate;
STR PERSISTENT _author;
Process * PERSISTENT_topProcess;
public:

ROSE_DECLARE_MEMBERS (ProcessModel);

/* Access and Update Methods */
/* name Access Methods */

STR name()
{ return ROSE_GET_PRIM (STR,PERSISTENT _name);

void name (STR aname)
{ ROSE_PUT_PRIM (STR,PERSISTENT _name,aname); }

/* creationDate Access Mc.inods */
Date * creationDate()
{ return ROSE_GET_OBJ (Date,PERSISTENT _creationDate);

void creationDate (Date * acreationDate)
{ ROSE_PUT_OBJ (Date PERSISTENT _creationDate,acreationDate);)

/* modifyDate Access Methods */
Date * modifyDate()
{ return ROSE_GET_OBJ (Date, PERSISTENT _modifyDate);

}
void modifyDate (Late * amodifyDate)
{ ROSE_PUT_OBJ (Date, PERSISTENT_modifyDate,amodifyDate); }

/* author Access Methods */

75

UNCLASSIFIED
CDRL No. 0002AC-4

STR author()
{ - return ROSE_GET_PRIM (STR,PERSISTENT _author);

}
void author (STR aauthor)
{ ROSE_PUT_PRIM (STR,PERSISTENT _author,aauthor); }

/* topProcess Access Methods */
Process * topProcess()
{ return ROSE_GET_OBJ (Process,PERSISTENT _topProcess);

}
void topProcess (Process * atopProcess)
{ ROSE_PUT_OBJ (Process,PERSISTENT _topProcess,atopProcess); }

/* Constructors */
ProcessModel ();
ProcessModel (
STR aname,
Date * acreationDate,
Date * amodifyDate,
STR aauthor,
} Process * atopProcess);
ProcessModel::newModel ();
ProcessModel::selectModel();
ProcessModel::deleteModel ();
ProcessModel::saveModel ();
ProcessModel::selectModel();

/* Methods Implementation */

ProcessModel::ProcessModel () {
PERSISTENT _name = NULL;
PERSISTENT _creationDate = NULL; PERSISTENT _modifyDate =
NULL;
PERSISTENT _author = NULL;
PERSISTENT _topProcess = NULL;
ROSE_CTOR_EXTENSIONS;

}

ProcessModel::ProcessModel (
STR aname,
Date * acreationDate,
Date * amodifyDate,
STR aauthor,
Process * atopProcess)

name (aname);

creationDate (acreationDate);
modifyDate (amodifyDate);
author (aauthor);

topProcess (atopProcess);
ROSE_CTOR_EXTENSIONS;

76

/* Additional Methods */
ProcessModel::newModel () {}
ProcessModel::selectModel() {}
ProcessModel::deleteModel () {}
ProcessModel::saveModel () {}
ProcessModel::selectModel () {}

5.2.2 Process Specification

aComplexRule

»f evaluate

3

edit

/

delete

aProcess

?/ remove
new,
delete add

anOperation aResource
Utilization

Figure 5.2-5 Process Object Diagram

/* Class Declaration */

ROSE_DECLARE (Process) : virtual public RoseStructure {
private: :
STR PERSISTENT _name;

BOOL PERSISTENT _andParents;

ListOfComplexRule * PERSISTENT _rules;
ListOfComplexRule * PERSISTENT _elimrules;
ListOfResource * PERSISTENT _resources;
ListOfRoseObject * PERSISTENT _parents;
ListOfRoseObject * PERSISTENT _children;
RoseObject * PERSISTENT _Isibling;

RoseObject * PERSISTENT _rsibling;

ListOfOperation * PERSISTENT _operList;
ListOfEntityAttrName * PERSISTENT_designFeatures;

public:
ROSE_DECLARE_MEMBERS(Process);

/* Access and Update Methods */

77

UNCLASSIFIED
CDRL No. 0002AC-4

UNCLASSIFIED
CDRL No. 0002AC-4

/* name Access Methods */
STR name()
{ return ROSE_GET_PRIM (STR,PERSISTENT _name);

void name (STR aname)
{ ROSE_PUT_PRIM (STR,PERSISTENT _name,aname); }

/* andParents Access Methods */
BOOL andParents()
{ return ROSE_GET_PRIM (BOOL,PERSISTENT _andParents);

void andParents (BOOL aandParents)
{ ROSE_PUT_PRIM (BOOL,PERSISTENT_ andParcnts ,aandParents); }

/* rules Access Methods */

ListOfComplexRule * rules();

void rules (ListOfComplexRule * arules)

{ ROSE_PUT_OBJ (ListOfComplexRule, PERSISTENT _rules,arules); }

/* elimrules Access Methods */-

ListOfComplexRule * elimrules();

void elimrules (ListOf ComplexRule * aelimrules)

{ ROSE_PUT_OBIJ (ListOfComplexRule PERSISTENT _elimrules,aelimrules); }

/* resources Access Methods */

ListOfResource * resources();

void resources (ListOfResource * aresources)

{ ROSE_PUT_OBJ (ListOfResource, PERSISTENT _resources,aresources);)

/* parents Access Methods */

ListOfRoseObject * parents();

void parents (ListOfRoseObject * aparents)

{ ROSE_PUT_OBIJ (ListOfRoseObject, PERSISTENT_parents,aparents); }

/* children Access Methods */

ListOfRoseObject * children();

void children (ListOfRoseObject * achildren)

{ ROSE_PUT_OBJ (ListOfRoseObject, PERSISTENT _children,achildren); }

/* Isibling Access Methods */
RoseObject * Isibling()
{ return ROSE_GET_OBJ (RoseObject, PERSISTENT _lsibling); }
void Isibling (RoseObject * alsibling)
{ ROSE_PUT_OBJ(RoseObject, PERSISTENT _Isibling,alsibling); }

/* rsibling Access Methods */
RoseObject * rsibling()
{ return ROSE_GET_OBJ (RoseObject, PERSISTENT _rsibling); }
void rsibling (RoseObject * arsibling)
{ ROSE_PUT_OBJ(RoseObject, PERSISTENT _rsibling,arsibling);)

/* operList Access Methods */

ListOfOperation * operList();
void operList (ListOfOperation * aoperList)

78

UNCLASSIFIED
CDRL No. 0002AC-4

{ ROSE_PUT_OBJ (ListOfOperation, PERSISTENT _operList,aoperList); }

/* designFeatures Access Methods */

ListOfEntityAttrName * designFeatures();

void designFeatures (ListOfEntityAttrName * adesignFeatures)

{ ROSE_PUT_OBJ
(ListOfEntityAtrName, PERSISTENT _designFeatures,adesignFeatures); }

/* Constructors */

Process ();

Process (
STR aname,
BOOQOL aandParents,
ListOfComplexRule * arules,
ListOfComplexRule * aelimrules,
ListOfResource * aresources,
ListOfRoseObject * aparents,
ListOfRoseObject * achildren,
RoseObject * alsibling,
RoseObject * arsibling,
ListOfOperation * aoperList,
ListOfEntityAttrName * adesignFeatures);

/* CLASS DECLARATION EXTENSIONS */
void new();

void edit();

void delete();

int select();

/* Methods Implementation */

Process::Process () {
PERSISTENT _name = NULL;
PERSISTENT _andParents = FALSE;
PERSISTENT _rules = NULL,;
PERSISTENT _elimrules = NULL,;
PERSISTENT _resources = NULL,;
PERSISTENT _parents = NULL,;
PERSISTENT_children = NULL,;
PERSISTENT _Isibling = NULL;
PERSISTENT _rsibling = NULL,;
PERSISTENT _operList = NULL,;
PERSISTENT _designFeatures = NULL;
ROSE_CTOR_EXTENSIONS;

}

Process::Process (
STR aname,
BOOL aandParents,
ListOfComplexRule * arules,
ListOfComplexRule * aelimrules,
ListOfResource * aresources,
ListOfRoseObject * aparents,
ListOfRoseObject * achildren,
RoseObject * alsibling,

79

UNCLASSIFIED
CDRL No. 0002AC-4

RoseObject * arsibling,
ListOfOperation * aoperList,
ListOfEntityAttrName * adesignFeatures)

name (aname);

andParents (aandParents);

rules (arules);

elimrules (aelimrules);

resources (aresources);

parents (aparents);

children (achildren);

Isibling (alsibling);

rsibling (arsibling);

operList (aoperList);

designFeatures (adesignFeatures);
} ROSE_CTOR_EXTENSIONS;

ListOfComplexRule * Process :: rules()
{ if(IPERSISTENT _rules)
if(this->isPersistent())
rules (pnewln (design()) ListOfComplexRule);
else rules (new ListOfComplexRule);
return ROSE_GET_OBJ (ListOfComplexRule, PERSISTENT _rules);
}

ListOfComplexRule * Process :: elimrules()
{ if('PERSISTENT _elimrules)
if(this->isPersistent())
elimrules (pnewIn (design()) ListOfComplexRule);
else elimrules (new ListOfComplexRule);
} return ROSE_GET_OB]J (ListOfComplexRule, PERSISTENT _elimrules);

ListOfResource * Process :: resources()
{ if('PERSISTENT _resources)
if(this->isPersistent())
resources (pnewln (design()) ListOfResource);
else resources (new ListOfResource);
return ROSE_GET_OBJ (ListOfResource, PERSISTENT _resources);

}

ListOfRoseObject * Process :: parents()
{ if('PERSISTENT _parents)
if(this->isPersistent())
parents (pnewln (design()) ListOfRoseObject);
else parents (new ListOfRoseObject);
return ROSE_GET_OBJ (ListOfRoseObject, PERSISTENT_parents);

}

ListOfRoseObject * Process :: children()
{ if('PERSISTENT _children)
if(this->isPersistent())
children (pnewln (design()) ListOfRoseObject);

80

UNCLASSIFIED
CDRL No. 0002AC-4

else children (new ListOfRoseObject);
return ROSE_GET_OBJ (ListOfRoseObject, PERSISTENT _children);

}

ListOfOperation * Process :: operList()
{ if('/PERSISTENT _operList)
if(this->isPersistent())
operList (pnewIn (design()) ListOfOperation);
else operList (new ListOfOperation);
return ROSE_GET_OBJ (ListOfOperation, PERSISTENT_operList);

}

ListOfEntityAttrName * Process :: designFeatures()
{ if('PERSISTENT_designFeatures)
if(this->isPersistent())
designFeatures (pnewln (design()) ListOfEntityAttrName);
else designFeatures (new ListOfEntityAttrName);
return ROSE_GET_OBJ (ListOfEntityAttrName, PERSISTENT _designFeatures);

)

/* Additional Methods */
void Process::new() {}
void Process::edit() {}
void Process::delete() {}
int Process::select() {}

5.23 Operation Specification

anQOperation

delete \

Figure 5.2-6 Operation Object Diagram

aResource
Utilization

aRework

UNCLASSIFIED
CDRL No. 0002AC-4

/* Class Declaration */
ROSE_DECLARE (Operation) : virtual public RoseStructure {
private:
STR PERSISTENT _name;
STR PERSISTENT_desc;
ListOfResourceUtilization * PERSISTENT _resources;
ListOfScrap * PERSISTENT _scrap_rate;
ListOfRework * PERSISTENT _rework_rate;
OpCost * PERSISTENT _cost; /¥ OPTIONAL */

public:
ROSE_DECLARE_MEMBERS(Operation);

/* Access and Update Methods */

/* name Access Methods */

STR name()

{ return ROSE_GET_PRIM (STR,PERSISTENT _name);

void name (STR aname)
{ ROSE_PUT_PRIM (STR,PERSISTENT _name,aname); }

J* desc Access Methods */
STR desc()
{ return ROSE_GET_PRIM (STR,PERSISTENT _desc);

}
void desc (STR adesc) ~
{ ROSE_PUT_PRIM (STR,PERSISTENT _desc,adesc); }

/* resources Access Methods */
ListOfResourceUtilization * resources();
void resources (ListOfResourceUtilization * aresources)
{ ROSE_PUT_OBJ (ListOfResourceUtilization, PERSISTENT _resources,aresources); }

/* scrap_rate Access Methods */

ListOfScrap * scrap_rate();

void scrap_rate (ListOfScrap * ascrap_rate)

{ ROSE_PUT_OBIJ (ListOfScrap,PERSISTENT _scrap_rate,ascrap_rate); }

/* rework_rate Access Methods */

ListOfRework * rework_rate();

void rework_rate (ListOfRework * arework_rate)

{ ROSE_PUT_OBJ (ListOfRework PERSISTENT _rework_rate,arework_rate); }

/* cost Access Methods */
OpCost * cost()
{ return ROSE_GET_OBJ (OpCost,PERSISTENT_cost);

void cost (OpCost * acost)
{ ROSE_PUT_OBJ (OpCost, PERSISTENT_cost,acost); }

/* Constructors */

Operation ();
Operation (
STR aname,

82

UNCLASSIFIED
CDRL No. 0002AC-4

STR adesc,

ListOfResourceUtilization * aresources,
ListOfScrap * ascrap_rate,
ListOfRework * arework_rate,

OpCost * acost);

/* CLASS DECLARATION EXTENSIONS */
void new();

void edit();

void delete();

b

/* Methods Implementation */

Operation::Operation () {
PERSISTENT _name = NULL,;
PERSISTENT _desc = NULL,;
PERSISTENT _resources = NULL,;
PERSISTENT _scrap_rate = NULL,;
PERSISTENT _rework_rate = NULL,;
PERSISTENT _cost = NULL;

} ROSE_CTOR_EXTENSIONS;

Operation::Operation (
STR aname,
STR adesc,
ListOfResourceUtilization * aresources,
ListOfScrap * ascrap_rate,
ListOfRework * arework_rate,
OpCost * acost)

name (aname);

desc (adesc);

resources (aresources);

scrap_rate (ascrap_rate),

rework_rate (arework_rate);

cost (acost);

ROSE_CTOR_EXTENSIONS;
}

ListOfResourceUtilization * Operation :: resources()
{ if('PERSISTENT _resources)
if(this->isPersistent())
resources (pnewln (design()) ListOfResourceUtilization);
else resources (new ListOfResourceUtilization);
return ROSE_GET_OBIJ (ListOfResourceUtilization, PERSISTENT _resources);
}

ListOfScrap * Operation :: scrap_rate()
{ if('PERSISTENT _scrap_rate)
if(this->isPersistent())
scrap_rate (pnewln (design()) ListOfScrap);
else scrap_rate (new ListOfScrap);

83

—

UNCLASSIFIED
CDRL No. 0002AC-4

return ROSE_GET_OBJ (ListOfScrap, PERSISTENT _scrap_rate);
}

ListOfRework * Operation :: rework_rate()
{ if('\PERSISTENT _rework_rate)
if(this->isPersistent())
rework_rate (pnewIn (design()) ListOfRework);
else rework_rate (new ListOfRework);
return ROSE_GET_OBJ (ListOfRework, PERSISTENT _rework_rate);

}

void Operation::new() {}
void Operation::edit() {}
void Operation::delete() {}

524 Scrap Specification

edit
delete

anEquation

aComplexRule

Figure 5.2-7 Scrap Object Diagram

/* Class Declaration */
ROSE_DECLARE (Scrap) : virtual public RoseStructure {
private:
ComplexExp * PERSISTENT _scrapRule;
Equation * PERSISTENT _scrapRate;

public:
ROSE_DECLARE_MEMBERS(Scrap);

/* Access and Update Methods */

/* scrapRule Access Methods */

ComplexExp * scrapRule()

{ return ROSE_GET_OBJ (ComplexExp,PERSISTENT _scrapRule);

}
void scrapRule (ComplexExp * ascrapRule)
{ ROSE_PUT_OBJ (ComplexExp,PERSISTENT _scrapRule,ascrapRule); }

/* scrapRate Access Methods */

Equation * scrapRate()
{ return ROSE_GET_OBJ (Equation,PERSISTENT _scrapRate); }

84

void scrapRate (Equation * ascrapRate)
{ ROSE_PUT_OBIJ(Equation,PERSISTENT _scrapRate,ascrapRate); }

/* Constructors */

Scrap ();

Scrap |
ComplexExp * ascrapRule,
Equation * ascrapRate);

/* CLASS DECLARATION EXTENSIONS */

void new();
void edit();
void delete();

b4

/* Methods Implementation */

Scrap::Scrap () {
PERSISTENT _scrapRule = NULL,;
PERSISTENT _scrapRate = NULL,;
ROSE_CTOR_EXTENSIONS;

}

Scrap::Scrap (
ComplexExp * ascrapRule,
Equation * ascrapRate)

scrapRule (ascrapRule);

scrapRate (ascrapRate);

ROSE_CTOR_EXTENSIONS;
}

void Scrap::new() {}
void Scrap::edit() {}
void Scrap::delete() {}

5.2.5 Rework Specification

aResource

few Utilization

delete

aComplexRule @

Figure 5.2-8 Rework Object Diagram

UNCLASSIFIED

CDRL No. 0002AC-4

UNCLASSIFIED
CDRL No. 0002AC-4

/* Class De' aration */

ROSE_DEC_ARE (Rework) : virtual public RoseStructure {

private:
ComplexExp * PERSISTENT _reworkRule;
Equation * PERSISTENT_reworkRate;
ListOfResource * PERSISTENT _resources;

public:
ROSE_DECLARE_MEMBERS(Rework);

/* Access and Update Methods */

/* reworkRule Access Methods */

ComplexExp * reworkRule()

{ return ROSE_GET_OBJ (ComplexExp,PERSISTENT _reworkRule); -

void reworkRule (ComplexExp * areworkRule)
{ ROSE_PUT_OBJ (ComplexExp,PERSISTENT _reworkRule,areworkRule); }

/* reworkRate Access Methods */
Equation * reworkRate()
{ return ROSE_GET_OBJ (Equation,PERSISTENT _reworkRate); }
void reworkRate (Equation * areworkRate)
{ ROSE_PUT_OBIJ(Equation,PERSISTENT _reworkRate,areworkRate); }

/* resources Access Methods */

ListOfResource * resources();

void resources (ListOfResource * aresources)

{ ROSE_PUT_OBJ (ListOfResource, PERSISTENT _resources,aresources); }

/* Constructors */

Rework ();

Rework (
ComplexExp * areworkRule,
Equation * areworkRate,
ListOfResource * aresources);

void new();
void edit();
void delete();

b4

/* Methods Implementation */

Rework::Rework () {
PERSISTENT _reworkRule = NULL;
PERSISTENT _reworkRate = NULL,
PERSISTENT resources = NULL;
ROSE_CTOR_EXTENSIONS;

}

Rework::Rework (
ComplexExp * areworkRule,
Equation * areworkRate,
ListOfResource * aresources)

86

UNCLASSIFIED
CDRL No. 0002AC-4

reworkRule (areworkRule);
reworkRate (areworkRate);
resources (aresources);
ROSE_CTOR_EXTENSIONS;

}

ListOfResource * Rework :: resources()
{ if('/PERSISTENT _resources)
if(this->isPersistent())
resources (pnewln (design()) ListOfResource);
else resources (new ListOfResource);
return ROSE_GET_OBJ (ListOfResource, PERSISTENT _resources);

}

void Rework::new() {}
void Rework::edit() {}
void Rework::delete() {}

5.2.6 OpCost Specification

/* Class Declaration */
ROSE_DECLARE (OpCost) : virtual public RoseStructure {
private:
float PERSISTENT _setupTime;
float PERSISTENT _runTime;
float PERSISTENT _scrapPercentage;
float PERSISTENT _reworkPercentage;
float PERSISTENT _reworkCost;
int PERSISTENT_prodQty;
float PERSISTENT _idealFAIT;
float PERSISTENT _actualFAIT;

public:
ROSE_DECLARE_MEMBERS(OpCost);

/* Access and Update Methods */

/* setupTime Access Methods */

float setupTime()

{ return ROSE_GET_PRIM (float, PERSISTENT_setupTime);

void setupTime (float asetupTime)
{ ROSE_PUT_PRIM (float, PERSISTENT _setupTime,asetupTime); }

/* runTime Access Methods */
float runTime()
{ return ROSE_GET_PRIM (float, PERSISTENT _runTime);

void runTime (float arunTime)
{ ROSE_PUT_PRIM (float,PERSISTENT _runTime,arunTime); }

/* scrapPercentage Access Methods */

float scrapPercentage()
{ return ROSE_GET_PRIM (float,PERSISTENT _scrapPercentage);

87

UNCLASSIFIED
CDRL No. 0002AC-4

}

void scrapPercentage (float ascrapPercentage)
{ ROSE_PUT_PRIM (float,PERSISTENT _scrapPercentage,ascrapPercentage); }

/* reworkPercentage Access Methods */

float reworkPercentage()

{ return ROSE_GET_PRIM (float, PERSISTENT _reworkPercentage);
}

void reworkPercentage (float areworkPercentage)
{ ROSE_PUT_PRIM (float, PERSISTENT _reworkPercentage,areworkPercentage); }

/* reworkCost Access Methods */
float reworkCost()
{ return ROSE_GET_PRIM (float, PERSISTENT _reworkCost);

void reworkCost (float areworkCost)
{ ROSE_PUT_PRIM (float, PERSISTENT _reworkCost,areworkCost); }

/* prodQty Access Methods */
int prodQty()
{ return ROSE_GET_PRIM (mt PERSISTENT _prodQty);

)
void prodQty (int aprodQty)
{ ROSE_PUT_PRIM (int,PERSISTENT _prodQty,aprodQty); }

/* idealFAIT Access Methods */
float idealFAIT()
{ return ROSE_GET_PRIM (float, PERSISTENT _idealFAIT),

}
void idealFAIT (float aidealFAIT)
{ ROSE_PUT_PRIM (float, PERSISTENT _idealFAIT aidealFAIT); }

[* actualFAIT Access Methods */
float actualFAIT()
{ retun ROSE_GET_PRIM (float, PERSISTENT _actualFAIT);

}
void actualFAIT (float aactualFAIT)
{ ROSE_PUT_PRIM (float, PERSISTENT actualFAIT,aactualFAIT); }

/* Constructors */
OpCost ();
OpCost (

float asetupTime,

float arunTime,

float ascrapPercentage,
float areworkPercentage,
float areworkCost,

int aprodQty,

float aidealFAIT,

float aactualFAIT);

)

/* Methods Implementation */

88

T Ul W W O G B B U B B T I T WS S S e s e

UNCLASSIFIED

CDRL No. 0002AC-4

OpCost::OpCost () {
PERSISTENT _setupTime = 0,
PERSISTENT _runTime = (;
PERSISTENT _scrapPercentage = 0;
PERSISTENT _reworkPercentage = 0;
PERSISTENT _reworkCost = 0;
PERSISTENT _prodQty = 0;
PERSISTENT _idealFAIT = 0;
PERSISTENT _actualFAIT = 0;
ROSE_CTOR_EXTENSIONS;

}

OpCost::OpCost (
float asetupTime,
float arunTime,
float ascrapPercentage,
float areworkPercentage,
float areworkCost,
int aprodQty,
float aidealFAIT,
float aactualFAIT)

setupTime (asetupTime);

runTime (arunTime);

scrapPercentage (ascrapPercentage);
reworkPercentage (areworkPercentage),
reworkCost (areworkCost);

prodQty (aprodQty);

idealFAIT (aidealFAIT);

actualFAIT (aactualFAIT);
ROSE_CTOR_EXTENSIONS;

}

5.2.7 ResourceUtilization Specification

aResource
Utilization

editRunTi add
/ remove
editSetupTime
anEquation aResource

Figure 5.2-9 ResourceUtilization Object Diagram

/* Class Declaration */
ROSE_DECLARE (ResourceUtilization) : virtual public RoseStructure {
private:

Resource * PERSISTENT _resource;

89

UNCLASSIFIED
CDRL No. 0002AC-4

RoseObject * PERSISTENT _setupTime;
RoseObject * PERSISTENT _runTime;
float PERSISTENT _effRate; /* OPTIONAL */

public:
ROSE_DECLARE_MEMBERS (ResourceUtilization);

/* Access and Update Methods */

/* resource Access Methods */

Resource * resource()

{ return ROSE_GET_OBJ (Resource,PERSISTENT _resource);

void resource (Resource * aresource)
{ ROSE_PUT_OBJ (Resource, PERSISTENT _resource,aresource); }

/* setupTime Access Methods */
RoseObject * setupTime()
{ return ROSE_GET_OBJ (RoseObject, PERSISTENT_setupTime); }
void setupTime (RoseObject * asetupTime)
{ ROSE_PUT_OBIJ(RoseObject, PERSISTENT_setupTime,asetupTime); }

/* runTime Access Methods */
RoseObject * runTime()
{ return ROSE_GET_OBJ (RoseObject, PERSISTENT_runTime); }
void runTime (RoseObject * arunTime)
{ ROSE_PUT_OBJ(RoseObject, PERSISTENT _runTime,arunTime); }

/* effRate Access Methods */
float effRate()
{ return ROSE_GET _PRIM (float, PERSISTENT _effRate),

}
void effRate (float aeffRate)
{ ROSE_PUT_PRIM (float, PERSISTENT _effRate,aeffRate); }

/* Constructors */
ResourceUtilization ();
ResourceUtilization (
Resource * aresource,
RoseObject * asetupTime,
RoseObject * arunTime,
float aeffRate);

/* CLASS DECLARATION EXTENSIONS */
void add();
void remove();

?

/* Methods Implementation */

ResourceUtilization::ResourceUtilization () {
PERSISTENT _resource = NULL,;
PERSISTENT _setupTime = NULL;
PERSISTENT _runTime = NULL;
PERSISTENT effRate = 0;
ROSE_CTOR_EXTENSIONS;

90

r—‘-g-u - W U T T e e [- -— I TE e O wmes e

}

ResourceUtilization::ResourceUtilization (
Resource * aresource,
RoseObject * asetupTime,
RoseObject * arunTime,
float aeffRate)

resource (aresource);

setupTime (asetupTime);
runTime (arunTime);

effRate (aeffRate);
ROSE_CTOR_EXTENSIONS;

}

void ResourceUtilization::add() {}
void ResourceUtilization::remove() {}

5.28 Parameter Specification

/* Class Declaration */
ROSE_DECLARE (Parameter) : virtual public RoseStructure {
private:

STR PERSISTENT _p_name;

STR PERSISTENT_p_value;

public:
ROSE_DECLARE_MEMBERS (Parameter);

/* Access and Update Methods */

/* p_name Access Methods */

STR p_name()

% return ROSE_GET_PRIM (STR,PERSISTENT_p_name);

void p_name (STR ap_name)
{ ROSE_PUT_PRIM (STR,PERSISTENT_p_name,ap_name); }

/* p_value Access Methods */
STR p_value()
{ return ROSE_GET_PRIM (STR,PERSISTENT_p_value);

}
void p_value (STR ap_value)
{ ROSE_PUT_PRIM (STR,PERSISTENT _p_value,ap_value); }

/* Constructors */
Parameter ();
Parameter (
STR ap_name,
STR ap_value);
K

/* Methods Implementation */
Parameter::Parameter () {

91

UNCLASSIFIED
CDRL No. 0002AC-4

TN T TS T . — | ——— |} —_—— ——_—— ———— —-—— —— ———

UNCLASSIFIED
CDRL No. 0002AC-4

PERSISTENT_p_name = NULL;
PERSISTENT _p_value = NULL;
ROSE_CTOR_EXTENSIONS;

}

Parameter::Parameter (
STR ap_name,
STR ap_value)

p_name (ap_name);

p_value (ap_value);

ROSE_CTOR_EXTENSIONS;
}

529 Resource Specification

alabor
aParameter

new
Kx edit
‘m aResource

edit
Te—
‘edi/t \ edit
aConsumable
Material
anEquipment

Figure 5.2-10 Resource Object Diagram

/* Class Declaration */
ROSE_DECLARE (Resource) : virtual public RoseStructure {
private:

STR PERSISTENT _resource_name;

STR PERSISTENT _resource_code;

ListOfParameter * PERSISTENT _parameters;

public:
ROSE_DECLARE_MEMBERS(Resource);

/* Access and Update Methods */

/* resource_name Access Methods */

STR resource_name()

{ return ROSE_GET_PRIM (STR,PERSISTENT _resource_name);

)

92

UNCLASSIFIED
CDRL No. 0002AC-4

void resource_name (STR aresource_name)
{ ROSE_PUT_PRIM (STR,PERSISTENT _resource_name,aresource_name); }

/* resource_code Access Methods */

STR resource_code()

{ return ROSE_GET_PRIM (STR,PERSISTENT _resource_code);

}

void resource_code (STR aresource_code)

{ ROSE_PUT_PRIM (STR,PERSISTENT _resource_code,aresource_code); }

/* parameters Access Methods */

ListOfParameter * parameters();

void parameters (ListOfParameter * aparameters)

{ ROSE_PUT _OBJ (ListOfParameter PERSISTENT _parameters,aparameters); }

/* Constructors */

Resource ();

Resource (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters);

/* CLASS DECLARATION EXTENSIONS */
void new()

void edit()

void delete()

/* Methods Implementation */
Resource::Resource () {
PERSISTENT _resource_name = NULL,;
PERSISTENT _resource_code = NULL,;
PERSISTENT_parameters = NULL;
ROSE_CTOR_EXTENSIONS;

}

Resource::Resource (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters)

{

l resource_name (aresource_name);
resource_code (aresource_code);

‘ parameters (aparameters);

' ROSE_CTOR_EXTENSIONS;

}

ListOfParameter * Resource :: parameters()
' { if(\PERSISTENT_parameters)
if(this->isPersistent())
I' parameters (pnewln (design()) ListOfParameter);
else parameters (new ListOfParameter);
return ROSE_GET_OBJ (ListOfParameter, PERSISTENT _parameters);

93

UNCLASSIFIED
CDRL No. 0002AC-4

void Resource::new() {}
void Resource::edit() {}
void Resource::delete() {}

5.29.1 Equipment Specification

/* Class Declaration */
ROSE_DECLARE (Equipment) : virtual public Resource {
private:

STR PERSISTENT _equipment_category;

float PERSISTENT _cost_per_time_unit;

public:
ROSE_DECLARE_MEMBERS(Equipment);

/* Access and Update Methods */

/* equipment_category Access Methods */

STR equipment_category()

§ return ROSE_GET_PRIM (STR,PERSISTENT _equipment_category);

void equipment_category (STR aequipment_category)

% ROSE_PUT_PRIM (STR,PERSISTENT_equipment_category,aequipment_category);

/* cost_j.er_time_unit Access Methods */

float cost_per_time_unit()

{ return ROSE_GET_PRIM (float, PERSISTENT _cost_per_time_unit);

}

void cost_per_time_unit (float acost_per_time_unit)

{ ROSE_PUT_PRIM (float,PERSISTENT _cost_per_time_unit,acost_per_time_unit);)

/* Constructors */

Equipment ();

Equipment (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
STR aequipment_category,
float acost_per_time_unit);

}s

/* Methods Implementation */

Equipment::Equipment () {
PERSISTENT _equipment_category = NULL;
PERSISTENT _cost_per_time_unit = 0;
ROSE_CTOR_EXTENSIONS;

}

Equipment::Equipment (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,

94

UNCLASSIFIED
CDRL No. 0002AC-4

STR aequipment_category,
float acost_per_time_unit)

resource_name (aresource_name);
resource_code (aresource_code);
parameters (aparameters);
equipment_category (aequipment_category);
cost_per_time_unit (acost_per_time_unit);

} ROSE_CTOR_EXTENSIONS;

5.29.2 ConsumableMaterial Specification

/* Class Declaration */
ROSE_DECLARE (ConsumableMaterial) : virtual public Resource {
private:
float PERSISTENT _cost_per_unit;
ListOfResourceConsumable * PERSISTENT _resourceRates;

public:
ROSE_DECLARE_MEMBERS(ConsumableMaterial);

/* Access and Update Methods */

/* cost_per_unit Access Methods */

float cost_per_unit()

{ return ROSE_GET_PRIM (float,PERSISTENT _cost_per_unit);

)

void cost_per_unit (float acost_per_unit)

{ ROSE_PUT_PRIM (float,PERSISTENT _cost_per_unit,acost_per_unit); }

/* resourceRates Access Methods */

ListOfResourceConsumable * resourceRates();

void resourceRates (ListOfResourceConsumable * aresourceRates)

{ ROSE_PUT_OBJ
(ListOfResourceConsumable, PERSISTENT _resourceRates,aresourceRates); }

/* Constructors */
ConsumableMaterial ();
ConsumableMaterial (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
float acost_per_unit,
ListOfResourceConsumable * aresourceRates);

}s

/* Methods Implementation */

ConsumableMaterial::ConsumableMaterial () {
PERSISTENT _cost_per_unit = 0;
PERSISTENT_resourceRates = NULL;
ROSE_CTOR_EXTENSIONS;

95

UNCLASSIFIED
CDRL No. 0002AC-4

ConsumableMaterial::ConsumableMaterial (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
float acost_per_unit,
ListOfResourceConsumable * aresourceRates)

resource_name (aresource_name);
resource_code (aresource_code);
parameters (aparameters);
cost_per_unit (acost_per_unit);
resourceRates (aresourceRates);
ROSE_CTOR_EXTENSIONS;

}

ListOfResourceConsumable * ConsumableMaterial :: resourceRates()
{ if('PERSISTENT _resourceRates)
if(this->isPersistent())
: resourceRates (pnewln (design()) ListOfResourceConsumable);
else resourceRates (new ListOfResourceConsumable);
return ROSE_GET_OB]J (ListOfResourceConsumable, PERSISTENT _resourceRates);

}

5.29.3 ResourceConsumable Specification

/* Class Declaration */
ROSE_DECLARE (ResourceConsumable) : virtual public RoseStructure {
private:

Resource * PERSISTENT _aresource;

float PERSISTENT _units_exhausted_per_time_unit;

public:
ROSE_DECLARE_MEMBERS(ResourceConsumable);

/* Access and Update Methods */

/* aresource Access Methods */

Resource * aresource()

{ return ROSE_GET_OBJ (Resource, PERSISTENT _aresource);

}

void aresource (1.zsource * aaresource)

{ ROSE_PUT_OBJ (Resource, PERSISTENT _aresource,aaresource); }

/* units_exhausted_per_time_unit Access Methods */
float units_exhausted_per_time_unit()
{ return ROSE_GET_PRIM (float, PERSISTENT _units_exhausted_per_time_unit);

void units_exhausted_per_time_unit (float aunits_exhausted_per_time_unit)
{ ROSE_PUT_PRIM
(float, PERSISTENT _units_exhausted_per_time_unit,aunits_exhausted_per_time_unit); }

/* Constructors */

ResourceConsumabile ();
ResourceConsumable (

96

UNCLASSIFIED
CDRL No. 0002AC-4

Resource * aaresource,
float aunits_exhausted_per_time_unit);

b

/* Methods Implementation */
ResourceConsumable::ResourceConsumable () {
PERSISTENT _aresource = NULL,;
PERSISTENT _units_exhausted_per_time_unit = 0;
} ROSE_CTOR_EXTENSIONS;

ResourceConsumable::ResourceConsumable (
Resource * aaresource,
float aunits_exhausted_per_time_unit)

aresource (aaresource);
units_exhausted_per_time_unit (aunits_exhausted_per_time_unit);
RGSE_CTOR_EXTENSIONS;

}

5.29.4 Labor Specification

/* Class Declaration */
ROSE_DECLARE (Labor) : virtual public Resource {
private:

STR PERSISTENT_job_code;

float PERSISTENT _rate;

public:
ROSE_DECLARE_MEMBERS(Labor);

/* Access and Update Methods */

/* job_code Access Methods */

STR job_code()

{ return ROSE_GET_PRIM (STR,PERSISTENT_job_code);

}
void job_code (STR ajob_code)
{ ROSE_PUT_PRIM (STR,PERSISTENT_job_code,ajob_code); }

/* rate Access Methods */

float rate()

{ return ROSE_GET_PRIM (float, PERSISTENT _rate);
}

void rate (float arate)

{ ROSE_PUT_PRIM (float, PERSISTENT _rate,arate); }

/* Constructors */

Labor ();

Labor (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
STR ajob_code,

97

UNCLASSIFIED
CDRL No. 0002AC-4

float arate);

IR

/* Methods Implementation */
Labor::Labor () {

PERSISTENT _job_code = NULL;
PERSISTENT _rate = 0;
ROSE_CTOR_EXTENSIONS;

} .

Labor::Labor {
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
STR ajob_code,
float arate)

resource_name (aresource_name);
resource_code (aresource_code);
parameters (aparameters);
job_code (ajob_code);
rate (arate);
ROSE_CTOR_EXTENSIONS;

}

5.29.5 Facility Specification

/* Class Declaration */
ROSE_DECLARE (facility) : virtua! public Resource {
private:

float PERSISTENT_square_feet_allocated;

float PERSISTENT _cost_per_sq_ft_per_time_unit;

public:
ROSE_DECLARE_MEMBERS (facility);

/* Access and Update Methods */

/* square_feet_allocated Access Methods */

float square_feet_allocated()

{ return ROSE_GET_PRIM (float, PERSISTENT _square_feet_allocated);
}

void square_feet_allocated (float asquare_feet_allocated)
ROSE_PUT_PRIM
(float, PERSISTENT _square_feet_allocated,asquare_feet_allocated);)

/* cost_per_sq_ft_per_time_unit Access Methods */

float cost_per_sq_ft_per_time_unit()

{ return ROSE_GET_PRIM (float, PERSISTENT _cost_per_sq_ft_per_time_unit);

)

void cost_per_sq_ft_per_time_unit (float acost_per_sq_ft_per_time_unit)
ROSE_PUT_PRIM

(float, PERSISTENT _cost_per_sq_ft_per_time_unit,acost_per_sq_ft_per_time_unit); }

98

- s —na

-

UNCLASSIFIED
CDRL No. 0002AC-4

/* Constructors */
facility (;
facility (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
float asquare_feet_allocated,
float acost_per_sq_ft_per_time_unit);

Js

/* Methods Implementation */

facility::facility () {
PERSISTENT _square_feet_allocated = 0;
PERSISTENT _cost_per_sq_ft_per_time_unit = 0;
ROSE_CTOR_EXTENSIONS;

}

facility::facility (
STR aresource_name,
STR aresource_code,
ListOfParameter ¥ aparameters,
float asquare_feet_allocated,
float acost_per_sq_ft_per_time_unit)

resource_name (aresource_name);
resource_code (aresource_code);
parameters (aparameters);
square_feet_allocated (asquare_feet_allocated);
cost_per_sq_ft_per_time_unit (acost_per_sq_ft_per_time_unit);
ROSE_CTOR_EXTENSIONS;

}

5.2.10 ComplexRule Specification

/* Class Declaration */
ROSE_DECLARE (ComplexRule) : virtual public RoseStructure {
private:

ListOfRules * PERSISTENT _lrule;

public:
ROSE_DECLARE_MEMBERS(ComplexRule);

/* Access and Update Methods */

/* lrule Access Methods */

ListOfRules * lrule();

void Irule (ListOfRules * alrule)

{ ROSE_PUT_OB]J (ListOfRules,PERSISTENT _lrule,alrule); }

/* Constructors */
ComplexRule ();
ComplexRule (

ListOfRules * alrule);

99

|—

—~——

/* CLASS DECLARATION EXTENSIONS ¥/
int evaluate();

5

/* Methods Implementation */

ComplexRule::ComplexRule () {
PERSISTENT _Irule = NULL;
ROSE_CTOR_EXTENSIONS;

}

ComplexRule::ComplexRule (
ListOfRules * alrule)

Irule (alrule);
ROSE_CTOR_EXTENSIONS;
}

ListOfRules * ComplexRule :: Irule()
{ if('"PERSISTENT _lrule)
if(this->isPersistent())
lrule (pnewlIn (design()) ListOfRules);
else lrule (new ListOfRules);
return ROSE_GET_OBJ (ListOfRules,PERSISTENT _lirule);

}

int ComplexRule::evaluate() {}

5.2.11 Rules Specification

/* Class Declaration */
ROSE_DECLARE (Rules) : virtual public RoseStructure {
private:

Expression * PERSISTENT _expl;

AND_Op PERSISTENT_Andl;

public:
ROSE_DECLARE_MEMBERS(Rules);

/* Access and Update Methods */
/* expl Access Methods */
Expression * exp1()
{ return ROSE_GET_OBJ (Expression, PERSISTENT _exp1); }
void expl (Expression * aexpl)
{ ROSE_PUT_OBIJ(Expression, PERSISTENT_expl,aexpl); }

/* And1 Access Methods */
AND_Op And1()
{ return ROSE_GET_PRIM (AND_Op,PERSISTENT_And1);

}
void And1 (AND_Op aAnd1)
{ ROSE_PUT_PRIM (AND_Op,PERSISTENT_And1,aAnd1); }

/* Constructors */

100

UNCLASSIFIED
CDRL No. 0002AC-4

UNCLASSIFIED
CDRL No. 0002AC-4

Rules ();
Rules (
Expression * aexpl,
AND_Op aAndl);
b

/* Methods Implementation */

Rules::Rules () {
PERSISTENT _expl = NULL;
PERSISTENT_Andl = (AND_Op) NULL_ENUM;
ROSE_CTOR_EXTENSIONS;

}

Rules::Rules (
Expression * aexpl,
AND_Op aAndl)

expl (aexpl);
Andl (aAndl);
ROSE_CTOR_EXTENSIONS;

}
5.2.12 Expression Specification

/* Class Declaration */
ROSE_DECLARE (Expression) : public RoseUnion {
public:

ROSE_DECLARE_MEMBERS(Expression);

/* Access and Update Methods */

BOOL is_Equation()

{ return (getAttribute() == getAttribute("_Equation"));
)

Equation * _Equation()
{ return ROSE_GET_OBJ (Equation, PERSISTENT _data.value.aPtr); }

void _Equation (Equation * a_Equation)
{ this->putAttribute("_Equation"),
if {ROSE.error())
ROSE_PUT_OBJ(Equation, PERSISTENT_data.value.aPtr,a_Equation); }

BOOL is_ComplexExp()
{ return (getAttribute() = getAttribute("_ComplexExp"));

" ComplexExp * _ComplexExp()
{ return ROSE_GET_OBJ (ComplexExp,PERSISTENT _data.value.aPtr); }

void _ComplexExp (ComplexExp * a_ComplexExp)
this->putAttribute("_ComplexExp");
if ({ROSE.error())

ROSE_PUT_OBJ(ComplexExp,PERSISTENT_data.value.aPtr,a_ComplexExp); }

101

Ul VWl W Wl B U Ul W Gl O W W VB VI Ban W e e e

UNCLASSIFIED
CDRL No. 0002AC-4

BOOL is_SimpleExp()
{ return (getAttribute() == getAttribute("_SimpleExp"));
}

SimpleExp * _SimpleExp()
{ return ROSE_GET_OBJ (SimpleExp,PERSISTENT _data.value.aPtr); }

void _SimpleExp (SimpleExp * a_SimpleExp)
{ this->putAttribute("_SimpleExp");
if ({ROSE.error())
ROSE_PUT_OBJ(SimpleExp,PERSISTENT_data.value.aPtr,a_SimpleExp); }

BOOL is_StringValue()
{ return (getAttribute() == getAttribute("_StringValue"));
}

StringValue * _StringValue()
{ return ROSE_GET_OBJ (StringValue, PERSISTENT _data.value.aPtr); }

void _StringValue (StringValue * a_StringValue)
{ this->putAttribute("_StringValue™);
if ({ROSE.error())
ROSE_PUT_OBIJ(StringValue, PERSISTENT _data.value.aPtr,a_StringValue);

}

/* Constructor */
Expression ();

b4

/* Methods Implementation */
Expression::Expression () {

ROSE_CTOR_EXTENSIONS;
} .

5.213 ComplexExp Specification

/* Class Declaration */
ROSE_DECLARE (ComplexExp) : virtual public RoseStructure {
private:

Equation * PERSISTENT_Equl;

Equiv_Op PERSISTENT_EquivOpl;

Expression * PERSISTENT_Expl;

public:
ROSE_DECLARE_MEMBERS(ComplexExp);

/* Access and Update Methods */
/* Equl Access Methods */
Equation * Equl()
{ return ROSE_GET_OBJ (Equation,PERSISTENT_Equ1); }
void Equl (Equation * aEqul)
{ ROSE_PUT_OBJ(Equation,PERSISTENT_Equl,aEqul); }

/* EquivOp1l Access Methods */

102

UNCLASSIFIED
CDRL No. 0002AC-4

Equiv_Op EquivOp1()
{ return ROSE_GET_PRIM (Equiv_Op,PERSISTENT_EquivOp1);

}
void EquivOp1 (Equiv_Op aEquivOpl)
{ ROSE_PUT_PRIM (Equiv_Op,PERSISTENT_EquivOp1,aEquivOp1); }

/* Expl Access Methods */
Expression * Exp1()
{ return ROSE GET_OBJ (Expression,PERSISTENT_Exp1); }
void Exp1 (Expression * aExpl)
{ ROSE_PUT_OBIJ(Expression, PERSISTENT_Expl,aExp1);)

/* Constructors */
ComplexExp ();
ComplexExp (
Equation * aEqul,
Equiv_Op aEquivOpl,
Expression * aExpl),
I

/* Methods Implementation */

ComplexExp::ComplexExp () {
PERSISTENT_Equl = NULL;
PERSISTENT_EquivOpl = (Equiv_Op) NULL_ENUM;
PERSISTENT_Expl = NULL;
ROSE_CTOR_EXTENSIONS;

}

ComplexExp::ComplexExp (
Equation * aEqul,
Equiv_Op aEquivOpl,
Expression * aExpl)

Equl (aEqul);

EquivOp1 (aEquivOpl);

Expl (aExpl);

ROSE_CTOR_EXTENSIONS;
}

5.2.14 SimpleExp Specification

/* Class Declaration */
ROSE_DECLARE (SimpleExp) : virtual public RoseStructure {
private:

Unary_Op PERSISTENT_Notl;

DataDictStr * PERSISTENT_DataDictVar;

public:
ROSE_DECLARE_MEMBERS (SimpleExp);

/* Access and Update Methods */
/* Notl Access Methods */

Unary_Op Notl()

103

' UNCLASSIFIED
CDRL No. 0002AC-4

' { return ROSE_GET_PRIM (Unary_Op,PERSISTENT_Not1);

}
void Not1 (Unary_Op aNot1)
{ ROSE_PUT_PRIM (Unary_Op,PERSISTENT_Notl,aNotl); }

/* DataDictVar Access Methods */
DataDictStr * DataDictVar()
{ return ROSE_GET_OBJ (DataDictStr,PERSISTENT _DataDictVar);

}
void DataDictVar (DataDictStr * aDataDictVar)
{ ROSE_PUT_OBJ (DataDictStr, PERSISTENT_DataDictVar,aDataDictVar); }

/* Constructors */
SimpleExp ();
SimpleExp (
Unary_Op aNotl,
| DataDictStr * aDataDictVar);

/* Methods Implementation */
SimpleExp::SimpleExp () {
PERSISTENT_Notl = (Unary_Op) NULL_ENUM,;
PERSISTENT_DataDictVar = NULL;
ROSE_CTOR_EXTENSIONS;

}

SimpleExp::SimpleExp (
Unary_Op aNotl,
DataDictStr * aDatachtVar)

Notl (aNotl);
DataDictVar (aDataDictVar);
ROSE_CTOR_EXTENSIONS;

}
5.2.15 Equation Specification

/* Class Declaration */
ROSE_DECLARE (Equation) : public RoseUnion {
public:

ROSE_DECLARE_MEMBERS(Equation);

/* Access and Update Methods */

BOOL is_Term()

{ return (getAttribute() == getAttribute("_Term"));

Term * _Term()
{ return ROSE_GET_OBJ (Term,PERSISTENT _data.value.aPtr); }

void _Term (Term * a_Term)

this->putAttribute("_Term");
if {ROSE.error())

104

UNCLASSIFIED
CDRL No. 0002AC-4

ROSE_PUT_OBJ(Term,PERSISTENT _data.value.aPtr,a_Term); }

BOOL is_ComplexEquation()
{ return (getAttribute() == getAttribute("_ComplexEquation"));
)

ComplexEquation * _ComplexEquation()
t return ROSE_GET_OBJ (ComplexEquation, PERSISTENT_data.value.aPtr); }

void _ComplexEquation (ComplexEquation * a_ComplexEquation)
this->putAttribute("_ComplexEquation");
if ('ROSE.error())

ROSE_PUT_OBJ(ComplexEquation, PERSISTENT _data.value.aPtr,a_ ComplexEquation); }

/* Constructor */
Equation ();

/* CLASS DECLARATION EXTENSIONS */
float evaluate()

9,

/* Methods Implementation */
Equation::Equation () {

ROSE_CTOR_EXTENSIONS;
}

float Equation::evaluate() {}

5.216 ComplexEquation Specification

/* Class Declaration */
ROSE_DECLARE (ComplexEquation) : virtual public RoseStructure {
private:

Term * PERSISTENT_Varl;

Operator PERSISTENT _Operl;

Equation * PERSISTENT_Value;

public:
'ROSE_DECLARE_MEMBERS(ComplexEquation);

/* Access and Update Methods */
/* Varl Access Methods */
Term * Varl()
{ return ROSE_GET_OBJ (Term,PERSISTENT_Varl); }
void Varl (Term * aVarl)
{ ROSE_PUT_OBJ(Term,PERSISTENT_Varl,aVarl); }

/* Operl Access Methods */

Operator Operl()
return ROSE_GET_PRIM (Operator, PERSISTENT_Operl);

}
void Operl (Operator aOper1)
{ ROSE_PUT_PRIM (Operator, PERSISTENT_Operl,aOperl); }

105

UNCLASSIFIED
CDRL No. 0002AC-4

/* Value Access Methods */
Equation * Value()
{ return ROSE_GET_OBJ (Equation,PERSISTENT_Value); }
void Value (Equation * aValue)
{ ROSE_PUT_OBJ(Equation,PERSISTENT_Value,aValue); }

/* Constructors */
ComplexEquation ();
ComplexEquation (
Term * aVarl,
Operator aOperl,
Equation * aValue);
)

/* Methods Implementation */

ComplexEquation::ComplexEquation () {
PERSISTENT _Varl = NULL;
PERSISTENT_Operl = (Operator) NULL_ENUM;
PERSISTENT_Value = NULL;
ROSE_CTOR_EXTENSIONS;

}

ComplexEquation::ComplexEquation (
Term * aVarl,
Operator aOperl,
Equation * aValue)

Varl (aVarl);

Operl (aOperl);

Value (aValue);
ROSE_CTOR_EXTENSIONS;

}

5§.2.17 ParenEquation Specification

/* Class Declaration */
ROSE_DECLARE (ParenEquation) : virtual public RoseStructure {
private:

LParen PERSISTENT_Lparenthesis;

Equation * PERSISTENT_Equ;

RParen PERSISTENT_Rparenthesis;

public:
ROSE_DECLARE_MEMBERS (ParenEquation);

/* Access and Update Methods */

/* Lparenthesis Access Methods */

LParen Lparenthesis()

{ return ROSE_GET_PRIM (LParen, PERSISTENT_Lparenthesis);

void Lparenthesis (LParen al_parenthesis)
{ ROSE_PUT_PRIM (LParen PERSISTENT_Lparenthesis,alparenthesis); }

106

UNCLASSIFIED
CDRL No. 0002AC-4

/* Equ Access Methods */
Equation * Equ()
{ return ROSE_GET_OBJ (Equation,PERSISTENT_Equ); }
void Equ (Equation * aEqu)
{ ROSE_PUT_OBIJ(Equation,PERSISTENT_Equ,aEqu);)

/* Rparenthesis Access Methods */
RParen Rparenthesis() _
{ return ROSE_GET_PRIM (RParen, PERSISTENT_Rparenthesis);

}
void Rparenthesis (RParen aRparenthesis)
{ ROSE_PUT_PRIM (RParen PERSISTENT_Rparenthesis,aRparenthesis); }

/* Constructors */
ParenEquation ();
ParenEquation (
LParen alparenthesis,
Equation * aEqu,
RParen aRparenthesis);
b

/* Methods Implementation */

ParenEquation::ParenEquation () {
PERSISTENT_Lparenthesis = (LParen) NULL_ENUM;
PERSISTENT_Equ = NULL;
PERSISTENT_Rparenthesis = (RParen) NULL_ENUM,;
ROSE_CTOR_EXTENSIONS;

)

ParenEquation::ParenEquation (
LParen aL parenthesis,
Equation * aEqu,
RParen aRparenthesis)

Lparenthesis (aL.parenthesis);

Equ (aEqu); .
Rparenthesis (aRparenthesis);
ROSE_CTOR_EXTENSIONS;

}
5.2.18 Term Specification

/* Class Declaration */
ROSE_DECLARE (Term) : public RoseUnion {
public:

ROSE_DECLARE_MEMBERS(Term);
/* Access and Update Methods */

BOOL is_Const()
{ return (getAttribute() == getAttribute("_Const"));

107

UNCLASSIFIED
CDRL No. 0002AC-4

Const * _Const()
{ return ROSE_GET_OBJ (Const,PERSISTENT _data.value.aPtr); }

void _Const (Const * a_Const)
{ this->putAttribute("_Const");
if ({ROSE.error())
ROSE_PUT_OBIJ(Const,PERSISTENT _data.value.aPtr,a_Const); }

BOOL is_DataDictStr()
{ return (getAttribute() = getAttribute("_DataDictStr"));

DataDictStr * _DataDictStr()
{ return ROSE_GET_OBJ (DataDictStr, PERSISTENT _data.value.aPtr); }

void _DataDictStr (DataDictStr * a_DataDictStr)
this->putAttribute("_DataDictStr");
if 'ROSE.error())
ROSE_PUT_OBJ(DataDictStr,PERSISTENT_data.value.aPtr,a_DataDictStr);

)

BOOL is_ParenEquation()
{ return (getAttribute() == getAttribute("_ParenEquation”));

ParenEquation * _ParenEquation()
{ return ROSE_GET_OBJ (ParenEquation, PERSISTENT _data.value.aPtr); }

void _ParenEquation (ParenEquation * a_ParenEquation)
{ this->putAttribute(”_ParenEquation”);
if (ROSE.error())

ROSE_PUT_OBJ(ParenEquation, PERSISTENT _data.value.aPtr,a_ParenEquation); }

/* Constructor */
Term ();

b4

/* Methods Implementation */
Term::Term () {

ROSE_CTOR_EXTENSIONS;
}

5.2.19 Const Specification

/* Class Declaration */

ROSE_DECLARE (Const) : public RoseUnion {
public:

ROSE_DECLARE_MEMBERS(Const);

/* Access and Update Methods */

BOOL is_float()
{ return (getAttribute() == getAttribute("_float"));

108

UNCLASSIFIED
CDRL No. 0002AC-4

float _float()
{ return (float) ROSE_GET_PRIM (float, PERSISTENT_data.value.aFloat); }

void _float (float a_float)
this->putAttribute("_float");
if {ROSE.error())
ROSE_PUT_PRIM(float, PERSISTENT _data.value.aFloat,a_float); }

BOOL is_int()

{ return (getAttribute() = getAttribute("_int"));

)

int _int()

{ return (int) ROSE_GET_PRIM (int, PERSISTENT_data.value.anInt); }

void _int (int a_int)
this->putAttribute("_int");
if (\ROSE.error())
ROSE_PUT_PRIM(int,PERSISTENT _data.value.anInt,a_int); }

/* Constructor */
Const ();

b

/* Methods Implementation */
Const::Const () {

ROSE_CTOR_EXTENSIONS;
}

5.2.20 AND_Op Specification

/* Enumerated Type */

enum AND_Op {
AND_Op_NULL = NULL_ENUM,
AND_Op_Comma =0

};

5.2.21 Operator Specification

/* Enumerated Type */

enum Operator {
Operator_NULL = NULL_ENUM,
Operator_Multiply =0,
Operator_Divide,
Operator_Add,
Operator_Subtract

)
5.2.22 Unary_Op Specification

/* Enumerated Type */
enum Unary_Op {
Unary_Op_NULL = NULL_ENUM,

109

UNCLASSIFIED
CDRL No. 0002AC-4

Unary_Op_U_Op =0
I

5.2.23 Equiv_Op Specification

/* Enumerated Type */

enum Equiv_Op {
Equiv_Op_NULL = NULL_ENUM,
Equiv_Op_Less =0,
Equiv_Op_LessEqual,
Equiv_Op_Greater,
Equiv_Op_GreaterEqual,
Equiv_Op_Equal,
Equiv_Op_NotEqual

1K

5.2.24 StringValue Specification

/* Class Declaration */
ROSE_DECLARE (StringValue) : virtual public RoseStructure {
private:

DQuote PERSISTENT_quotel;

STR PERSISTENT _valuel;

DQuote PERSISTENT _quote2;

public:
ROSE_DECLARE_MEMBERS(StringValue);

/* Access and Update Methods */

/* quotel Access Methods */

DQuote quotel()

{ return ROSE_GET_PRIM (DQuote, PERSISTENT_quotel),

void quotel (DQuote aquotel)
{ ROSE_PUT_PRIM (DQuote,PERSISTENT_quotel,aquotel); }

/* valuel Access Methods */
STR valuel()
{ return ROSE_GET_PRIM (STR,PERSISTENT _valuel);

}
void valuel (STR avaluel)
{ ROSE_PUT_PRIM (STR,PERSISTENT _valuel,avaluel); }

/* quote2 Access Methods */
DQuote quote2()
{ return ROSE_GET_PRIM (DQuote, PERSISTENT_quote2);

)
void quote2 (DQuote aquote2)
{ ROSE_PUT_PRIM (DQuote, PERSISTENT _quote2,aquote2); }

/* Constructors */

StringValue ();
StringValue (

110

!

UNCLASSIFIED
CDRL No. 0002AC-4
DQuote aquotel,
STR avaluel,
DQuote aquote2);

)

/* Methods Implementation */
StringValue::StringValue () {
PERSISTENT_quotel = (DQuote) NULL_ENUM;
PERSISTENT _valuel = NULL;
PERSISTENT_quote2 = (DQuote) NULL_ENUM;
ROSE_CTOR_EXTENSIONS;

}

StringValue::StringValue (
DQuote aquotel,
STR avaluel,
DQuote aquote2)

quotel (aquotel);

valuel (avaluel);

quote2 (aquote2);
ROSE_CTOR_EXTENSIONS;

}

5.2.25 DataDictStr Specification

/* Abstract Base Class Declaration */

ROSE_DECLARE (DataDictStr) : virtual public RoseStructure {
private: ,

public:
ROSE_DECLARE_MEMBERS(DataDictStr);

/* Access and Update Methods */

_/* Constructors */

DataDictStr ();

?

/* Methods Implementation */
DataDictStr::DataDictStr () {

ROSE_CTOR_EXTENSIONS;
}

5.2.25.1 EntityName Specification

/* Class Declaration */
ROSE_DECLARE (EntityName) : virtual public DataDictStr {
private:

STR PERSISTENT _name;

public:
ROSE_DECLARE_MEMBERS(EntityName);

111

UNCLASSIFIED
CDRL No. 0002AC-4

/* Access and Update Methods */

/* name Access Methods */

STR name()

{ return ROSE_GET_PRIM (STR,PERSISTENT _name);

void name (STR aname)
{ ROSE_PUT_PRIM (STR,PERSISTENT_name,aname); }

/* Constructors */
EntityName ();
EntityName (

STR aname);
)

/* Methods Implementation */
EntityName::EntityName () {
PERSISTENT _name = NULL,;
ROSE_CTOR_EXTENSIONS;
)

EntityName::EntityName (
STR aname)
{

name (aname);
ROSE_CTOR_EXTENSIONS;
}

5.2.25.2 EntityAttrName Specification

/* Class Declaration */
ROSE_DECLARE (EntityAttrName) : virtual public DataDictStr {
private:

ListOfString * PERSISTENT_entityName;

STR PERSISTENT _attrName;

public:
ROSE_DECLARE_MEMBERS(EntityAttrName);

/* Access and Update Methods */

/* entityName Access Methods */

ListOfString * entityName();

void entityName (ListOfString * aentityName)

{ ROSE_PUT_OBJ (ListOfString, PERSISTENT _entityName,aentityName); }

/* attrName Access Methods */

STR attrName()

{ return ROSE_GET_PRIM (STR,PERSISTENT _attrName);

)

void attrName (STR aattrName)

{ ROSE_PUT_PRIM (STR,PERSISTENT _attrName,aattrName); }

/* Constructors */
EntityAtrName ();

112

——,—-_———-——-———-——--—-—-—-mm—_u

UNCLASSHALD
CDRL. No. G2 AC

EntityAtrName (
ListOfString * uentityNume,
STR aaurName);
)i
/* Methods Implementation */
EntityAttrNamc::EntityAttrName () |
PERSISTENT _entityName = NULL;

PERSISTENT _attrName = NULL,;
ROSE_CTOR_EXTENSIONS;

)

EntityAttrName::EntityAttrName (
ListOfString * aentityName,
STR aattrName)

entityName (aentityName),
attrName (aattrName);
ROSE_CTOR_EXTENSIONS;

}

ListOfString * EntityAttrName :: entityName()
{ if('PERSISTENT _entityName)
if(this->isPersistent())
entityName (pnewIn (design()) LxstOmeng),
else entityName (new ListOfString);
return ROSE_GET_OBJ (ListOfString, PERSISTENT _entityName);

)
5.3 Analyzer

The manufacturing Analyzer is a subsystem of MO which is responsible for performing the
manufacturability analysis based on what the user has selected from the user interface form.
The Analyzer provides the user with the ability to perform a process selection, calculate vield
and rework, and calculate time and cost. The Advisor uses the output of the Analyzer runs
which it then displays to the user. Following are the object diagram, state transition diagram, and

corresponding specification and methods for the Analyzer class/object.

113

UNCLASSIFIED
CDRL No. 0002AC-4

531 Object Diagram

aProcess

JgetEntityValue

aProduct
Design

(1) selectProcess

(3) calcYield&Rework

anAnalyzer

(2) AddProcess aProcess

Figure 5.3-1 Analyzer Object Diagram

53.2 State Transition Diagram

Start
Process
Analysis

SelectModel

Figure 5.3-2 Analyzer State Transition Diagram

533 Analyzer Specification
ROSE_DECLARE (Analyzer) : virtual public RoseStructure {

private:
STR PERSISTENT _productDesignName;

114

UNCLASSIFIED
CDRL No. 0002AC-4

ProcessModel * PERSISTENT_pModel;
STR PERSISTENT_dateTime;
Process * PERSISTENT _plan;

public:
ROSE_DECLARE_MEMBERS(Analyzer);

/* Access and Update Methods */

/* productDesignName Access Methods */

STR productDesignName()

{ return ROSE_GET_PRIM (STR,PERSISTENT _productDesignName);

}
void productDesignName (STR aproductDesignName)
{ ROSE_PUT_PRIM (STR,PERSISTENT_productDesignName,aproductDesignName);

}

/* pModel Access Methods */
ProcessModel * pModel()
{ return ROSE_GET_OBJ (ProcessModel PERSISTENT _pModel);

)
void pModel (ProcessModel * apModel)
{ ROSE_PUT_OBJ (ProcessModel, PERSISTENT _pModel,apModel); }

[* dateTime Access Methods */
STR dateTime()
{ return ROSE_GET_PRIM (STR,PERSISTENT _dateTime);

)
void dateTime (STR adateTime) ,
{ ROSE_PUT_PRIM (STR,PERSISTENT_dateTime,adateTime); }

/* plan Access Methods */
Process * plan()
{ return ROSE_GET_OBJ (Process, PERSISTENT_plan);

void plan (Process * aplan)
{ ROSE_PUT_OBJ (Process,PERSISTENT_plan,aplan); }

/* Constructors */

Analyzer ();

Analyzer (
STR aproductDesignName,
ProcessModel * apModel,
STR adateTime,
Process * aplan);

/¥ CLASS DECLARATION EXTENSIONS */
Process* PerformAnalysis();

}’

/* Methods Implementation */

Analyzer::Analyzer () {
PERSISTENT_productDesignName = NULL;
PERSISTENT_pModel = NULL,;
PERSISTENT _dateTime = NULL;

115

}

PERSISTENT plan = NULL,;
ROSE_CTOR_EXTENSIONS;

Analyzer::Analyzer (

}

STR aproductDesignName,
ProcessModel * apModel,
STR adateTime,

Process * aplan)

productDesignName (aproductDesignName);
pModel (apModel);

dateTime (adateTime);

plan (aplan);

ROSE_CTOR_EXTENSIONS;

Process* Analyzer::PerformAnalysis() {}

5.4

Advisor

UNCLASSIFIED
CDRL No. 0002AC-4

The Advisor is the subsystem of MO that is responsible for displaying the results produced

by each process selected during an Analyzer run. The user can select analysis runs to view. The

user can display process, yield, rework, or costing results as graphs, and can also view complete

analysis data to the screen or to file in report format.

The Advisor graphs will be implemented using XRT/Graph for Motif widget which displays

data graphically in a window. The graph widget has resources which determine how the graph

will look and behave. We will be writing methods attached to the Advisor managing object that

will take the output results from the Analyzer subsystem, and display them as pictured in

section 4.3 of the Advisor user interface design section.

» graph type (bar, stacked bar, line, and pie).

The graph widget has resources which allow programmatic control of the following items:

 header and footer positioning, border style, text, font, and color.
» data styles: line colors and patterns, fill color and patterns, line thickness, point style,

size and color.

« legend positioning, orientation, border style, anchor, font and color.

« graph positioning, border style, color, width, height, and 3D effect.

» point and set labels.

e axis maximum and minimum, numbering increment, tick increment, grid increment,

font, origin, and precision.

116

UNCLASSIFIED
CDRL No. 0002AC-4

+ window background and foreground color.
» text areas.

+ double buffering.

¢ axis inversion.

» data transposition.

» marker positioning.

XRT/graph also provides several procedures and methods which allocate and load data
structures containing the numbers to be graphed, output a representation of the graph in
Postscript format, assist the developer in dealing with user-events, and assist the developer with

setting and getting indexed resources.

5.5 Modeler

The process Modeler is the subsystem of MO that is responsible for capturing and
modifying manufacturing process models. The Modeler provides a graphical user interface
where the user can capture process dependencies to other processes, selection rules, operations,
and resources. The output of the Modeler is a ProcessModel object which is comprised of a
dependency graph of process nodes. The ProcessModel object is used by the Analyzer and the
Advisor to select the manufacturing processes that are used in the cost, yield, and rework
calculations. Following are the object diagram, state transition diagram, and corresponding

specification and methods for the Modeler class/object.

117

UNCLASSIFIED
CDRL No. 0002AC-4

5.5.1 Object Diagram

newModelsayeMods
deleteModel
J _selectModel

aProcess
Model
aProcess

Figure 5.5-1 Modeler Object Diagram

5.5.2 State Transistion Diagram

Allocaté
Resources
Define
Dependencies

Modeler processes Process
Model

Selection Rules

Figure 5.5-2 Modeler State Transition Diagram

553 Modeler Class Specification

/* Class Specification */
ROSE_DECLARE (Modeler) : virtual public RoseStructure {
private:

118

UNCLASSIFIED
CDRL No. 0002AC-4

ProcessModel * PERSISTENT _current_model,;

public:

ROSE_DECLARE_MEMBERS (Modeler);

/* Access and Update Methods */
/* current_model Access Methods */
ProcessModel * current_model()
{ return ROSE_GET_OBJ (ProcessModel, PERSISTENT _current_model);
} .
void current_model (ProcessModel * acurrent_model)
{ ROSE_PUT_OBJ (ProcessModel, PERSISTENT _current_model,acurrent_model); }
/* Constructors */
Modeler ();
Modeler (
ProcessModel * acurrent_model);
/¥ CLASS DECLARATION EXTENSIONS */
ProcessModel *readModel();
void writeModel();

b4

/* Methods Implementation */
ProcessModel* Modeler::readModel() {}
void Modeler::writeModel() {}

5.6 RequirementManager API Interface

The Product Track Requirements Manager (RM) is a system designed to manage product
requirements, specifications and corporate policies to support concurrent engineering. Within
the MO program, Raytheon will be using the RM to manage manufacturability and
producibility guidelines and evaluate product design data for compliance with those guidelines.

Cimflex has informed Raytheon that they plan to release an Application Programming
Interface (API) to the RM in the first quarter of 1993. The API will consist of a library of C
programming language functions. These functions will provide the ability to populate the
product and requirement structures of the SQL database which the RM is using. Functions will
also be provided to evaluate and interrogate requirement satisfaction values.

A task management object called RequirementManager will be developed for interaction
with RM. The RequirementManager attributes and methods will be established once CIMFLEX
releases its API specification. At a minimum, an interface between the MO database (ROSE)
and the RM database (SQL) will be created in order to keep product data consistent between the

two systems.

119

UNCLASSIFIED
CDRL No. 0002AC-4

6. Schema Specifications

This section defines the schemas of data to be used by MO. Schemas are defined for
process model data, resource data, selection rule and equation data, and PWB product data. The
schemas are defined in the modeling languages EXPRESS and EXPRESS-G.

EXPRESS is a draft International Standards Organization (ISO) language for the
specification of information models. It was originally developed to enable a formal specification
of the forthcoming ISO 10303 standard, familiarly known as STEP. The language is also
increasingly being used in many other contexts, for example in the mechanical, electronic and
petro-chemical industries, as well as in other national and international standards efforts.
EXPRESS-G is a graphical subset of the EXPRESS language. The graphical nature of
EXPRESS-G make it a valuable tool for understanding and analyzing information models.

6.1 Process Model Schema Specification

The Process Model provides the selection logic for the MO Manufacturing Analyzer when
generating the set of process nodes to be included in the cost and yield analysis. The process
model is decomposed into a graph of process nodes. Each process node consists of selection
rules, dependencies, and operations. Selection rules define criteria that must be satisfied for the
process node to be considered in the specific overall manufacturing process. Each process node
is dependent on one or more parent nodes. For each process node, an AND/OR flag is kept that
specifies if the node is dependent on any one parent node being satisfied, or all parent nodes
being satisfied. For a process node to be selected for inclusion in a specific instantiation of a

manufacturing process, the following two criteria must be met :
1. At least one of the nodes selection rules is satisfied.

2. All of the nodes parent processes are satisfied or the node AND/OR flag is set to OR and
at least one parent node is satisfied.

At each process node there is a list of operations that are performed. Each operation is
annotated with an associated yield rate, rework rate, and its usage of resources. From the list of
operations the Manufacturing Analyzer will determine the aggregate cost, yield, and rework for

this process node.

120

UNCLASSIFIED
CDRL No. 0002AC-4

The EXPRESS model specified in this section was created for process model

representation. Figure 6.1-1 is an EXPRESS-G representation of the same model.

6.1.1 EXPRESS Schema for Process Model

This EXPRESS schema listing defines the process model. The process model schema
includes two auxiliary schemas, the selection_rules schema and the resource_schema. The

specification of these two schemas will follow.

RE ification :
*

INCLUDE 'rules.exp’;
INCLUDE 'resource.exp’;

SCHEMA process_model;

REFERENCE FROM selection_rules;
REFERENCE FROM resource_schema;

(*
6.1.1.1 ProcessModel Entity
A ProcessModel entity is the specification of a manufacturing process model that contains a

dependency graph of Process entities. Additional data about the model is also stored including

its name, author, creation date, and last modification date.

ENTITY ProcessModel;
name : STRING; -- Process Model name
creationDate : Date; -- Model creation date
modifyDate : Date; -- Model last modify date
author : STRING; -- Model author
topProcess : Process; -- Top process in

END_ENTITY; -- dependency graph

i jefinitions:

name: Name of the manufacturing process model.
creationDate: The date that the model was created.
modifyDate: The date that the model was last modified.
author: The author of the model.

topProcess: The root or top most process in the process model dependency graph.

121

|

UNCLASSIFIED
CDRL No. 0002AC-4

6.1.1.2 Process Entity

A Process entity is the specification of a manufacturing process that contains selection rules,
operations, and resources. Rules and dependencies of the manufacturing process are modeled in
the process nodes. If the rules and dependencies are satisfied, then the process node is included
in the overall process analysis. Processes are organized as a directed dependency graph. The
dependency graph takes the form of a tree where each node can héve one or more parents and
one or more children. Each Process will also have a reference to its immediate siblings (i.e. its

neighboring nodes at the same level in the tree).

XP ification :
ENTITY Process;
name: STRING; -- Process Name
andParents : BOOLEAN -- AND/OR dependency flag
rules: LIST [0:7] OF ComplexRule; -- List of Selection Rules
elimrules: LIST [0:7] OF ComplexRule; -- List of Selection Rules
resources: LIST [0:?] OF Resource; -- List Of Resources
parents : LIST (0:?] OF Process; -- List of Parents (Ancestors)
children : LIST [0:?7] OF Process; -- List of Children (Descendants)
Isibling : OPTIONAL Process; -- Left Sibling
rsibling : OPTIONAL Process; -- Right Sibling
OperList : LIST [0:7] OF Operation; -- List of Process Operations
Auri finitions:

name: Name of the manufacturing process.

andParents: AND/OR dependency flag. If set to TRUE, the parent nodes to which this node
must be satisfied for this node to be considered for selection. If set to FALSE, a
minimum of one of the parent nodes must be satisfied for this node to be considered
for selection.

rules: List of selection rules. The rules are comprised of design feature entity and attributes
being present or of specific values.

elimrules: List of exception rules. These rules are identical to the selection rules in their

syntax. If an exception rule is satisfied then this process will not be considered for
selection.

resources: List of resources used by the process node as an entity. This list of resources are
"~ associated with the process node. A separate list of resources is kept with each
operation. Therefore, this list should not contain any resources that have been attached

to an operation.

parents: List of processes that this node is dependent on. The nodes in this list are the

immediate ancestor to this node. For this node to be selected, depending on the
andParents flag, all or one of the nodes in this list must be satisfied.

122

UNCLASSIFIED
CDRL No. 0002AC-4

children: List of processes that are dependent on this node. The nodes in this are direct
descendants of this node.

rsibling: The process to the immediate right of this node on the same level of the dependency
graph.

Isibling: The process to the immediate left of this node on the same level of the dependency
graph.

OperList: List of operations attached to this process. If this node is selected, then the
operations in this list will be evaluated for cost, yield and rework.
6.1.1.3 Operation Entity

Attached to each process is a list of operations. When a process is selected and included in
the overall manufacturing process, its list of operations is evaluated for cost, rework and yield
analysis. Each operation is comprised of the following: A list of resources that are required to
perform the operation, the time required to setup for and actually run the operation, an efficiency
rate is kept with each operation this provides a factor that when applied to the labor standard for
the operation, will calculate the actual time for the operation. Data for computing scrap and

rework rates can be stored in a set of lookup tables or specified by a set of rules.

ification ;
*)
ENTITY Operation;

name : STRING; - Operanon Name

desc: STRING; ?u

resources: LIST {0:?7] OF ResourceUtilization; -- Llst Of Resources

scrap_rate : LIST [0:?] OF Scrap; - Scrap rates

rework_rate : LIST [0:?] OF Rework; -- Rework rates

cost : OPTIONAL OpCost; : -- Operation Cost (for Analyzer)
(* END_ENTITY;

name: Alpha-numeric name of the operation.

desc: Textual description of the operation.

resources: List of resources required to perform the operation.

scrap_rate: A list of a list table entries providing an indexed lookup of scrap rates based on
values of entities and their attributes or an equation that when evaluated will provide
the scrap rate for the operation.

rework_rate: A list of a list table entries providing an indexed lookup of rework rates based on

values of entities and their attributes or an equation that when evaluated will provide
the rework rate for the operation.

123

UNCLASSIFIED
CDRL No. 0002AC-4

6.1.1.4 Scrap Entity

The scrap entity is used to represent scrap rate data. Scrap being the percentage of product
parts that must be scrapped due to this operation. Scrap data is maintained in a list of scrap
entities. In each entity there is a scrap rule and a corresponding scrap rate. If the scrap rule is

satisfied, then the corresponding scrap rate is computed.

EXPRE ification ;
*)
ENTITY Scrap;
scrapRule : ComplexExp; -- Rule to be evaluated
scrapRate : Equation; -- Scrap that applies if rule is satisfied
END_ENTITY;
(*
Attribute definitions:
scrapRule: The scrap rule to be evaluated.

scrapRate: The scrap rate equation to apply if the scrapRule is satisfied.
6.1.1.5 Rework Entity

The rework entity is used to represent rework rate data. Rework being the percentage of
prodﬁct parts that must be reworked due to this operation. Rework data is maintained in a list of
rework entities. In each entity there is a rework rule and a corresponding rework rate. If the
rework rule is satisfied, then the corresponding rework rate is computed. There is a list of
resources associated with the rework which is used to calculate the cost of performing the

rework operation.

EXPRESS Specification -

*)
ENTITY Rework;
reworkRule : ComplexExp; -- Rule to be evaluated
reworkRate : Equation; -- Rework that applies if rule is satisfied
resources : LIST [0:?) OF ResourceUtilization; -- Rework resources
END_ENTITY;

(#
Attri initions:
reworkRule: The rework rule to be evaluated.

reworkRate: The rework rate equation to apply if the reworkRule is satisfied.

124

UNCLASSIFIED
CDRL No. 0002AC-4

resources: The resources associated with the rework.
6.1.1.6 OpCost Data

The OpCost data types and entities are used to represe~t calculated analyzer data associated

with an operation.
RE ifi
*)
ENTITY OpCost;
setupTime: REAL; -- Operation Setup Time
runTime: REAL; -- Operation Run Time
scrapPercentage: REAL; -- Actual Calculated Operation Scrap
reworkPercentage: REAL; -- Calculated Operation Rework
reworkCost: REAL; -- Calculated Rework Cost
prodQty: INTEGER; -- Actual Prod. QTY Required
IdealFait: REAL; -- Calculate Ideal FAIT
ActualFait: REAL; -- Calculate Actual Estimated FAIT
END_ENTITY;
(*

Atribute definitions:

setupTime: Operation calculated setup time.

runTime: Operation calculated run time.

scrapPercentage: Operation calculated scrap percentage.
reworkPercentage: Operation calculated rework percentage.

reworkCost: Operation calculated rework cost.

prodQty: Required operation production quantity.

IdealFait: Ideal Operation Fabrication, Assembly, Inspection, and Test Cost

ActualFait: Actual Estimated Operation Fabrication, Assembly, Inspection, and Test Cost

6.1.2 EXPRESS-G Schema for Process Model

The following EXPRESS-G model (figure 6.1-1) represents the Process Model schema:

125

6.13

UNCLASSIFIED
CDRL No. 0002AC-4

rules L|0:? P -
se)ccuon_rules.ComplexRule))—

e - — - 1
BOOLEAN Isiblin rsiblin elimrules L[0:?]
r - =y " -
andParem? _—I'_b__b_;_
‘ s ot |
Process |———— = = “1designFeawres L{0:?
— Qesignfeamres LIO2T
r i
parents L[0:7] children L[0:7] (selection_mlesEnﬁtyAttrName)
nam operations L [0:? e e e - — —m = - I
pe resources L[0:?]
STRING desc - === === - |
Jamc | Operation |——(] resomce_schema.RcsourceUtilizati@
<;(-)st- T T — resources
L0:?] b= o= = = — — -_—
OpCost
scrap_rate L[0:? ework_rate L[0:?]
resources L[0:?]
Scrap Rework
reworkR,
scrapRulq scrapRate reworkRule
r- - - - - —1
C selection_rules.Equation)
e o o e o e m— - |
r—-——-—-—--=-=-=- |

Figure 6.1-1 EXPRESS-G Model of Process Model Schema

EXPRESS Schema for Resource

The resource schema defines a collection of entities that are used to specify resources. A

resource is any facility, labor, equipment, or consumable material used in the manufacturing

process. A consumable material is a material that is used to aid the manufacturing process and

is not considered raw material of the product. As defined in the schema a resource is a generic

entity. Specific subtypes of the resource entity are defined to represent facilities, people,

equipment, and consumable materials.

126

UNCLASSIFIED
CDRL No. 0002AC-4

ification :

%
SCHEMA resource_schema;

6.1.3.1 ResourceUtilization Entity

The ResourceUtilization Entity is used to store which resource(s) are utilized by a process

or operation.

EXPRESS Specification :

*)
ENTITY Resoll{rceUtilization;
resource : Resource; -- Resource utilized
setupTime: Equation; -- Setup Equation
runTime: Equation; -- RunTime Equation
effRate : OPTIONAL REAL; -- Efficiency Rate
END_ENTITY;

(*

Artrit jefinitions:

resource: The resource being utilized.

setupTime: The amount of setup time required for the resource.

runTime: The amount of time that the resource is being used while running the operation.

effRate: This optional attribute provides an efficiency rate factor that when applied to a labor
standard associated with an operation will provide the actual time for the operation.

6.1.3.2 Resource Entity

This is the generic resource entity. Each resource is named and can be coded of a certain

type. A list of generic attributes can be attached to each resource using the parameter entity.

EXPRESS Specification :

*)

ENTITY Resource;
resource_name : STRING; -- Resource Name
resource_code : STRING; -- Resource Code
parameters : LIST [0:7] of parameter; - Resource Parameters

END_ENTITY;

(*

Agtrit lefinitions:

resource_name: The name string associated with the resource.

resource_code: A string used to assign a code to the resource.

127

UNCLASSIFIED
CDRL No. 0002AC-4

parameters: A list of generic attributes that can be attached to this resource.
6.1.3.3 Parameter Entity

The parameter entity is used to define a generic attribute.

EXPRESS Specification ;
*)
ENTITY Parameter;
p_name : STRING; - Parameter Name
p_value : STRING; ~ Parameter Value
END_ENTITY;

(*
Attribute definitions:
p_name: The name of the parametér.

p_value: The value of the parameter.
6.1.3.4 Labor Entity

The entities in this section define the labor resource. The labor entity is a subtype of the
generic resource entity.
EXPRESS Specification :
*) .
ENTITY Labor SUBTYPE OF (Resource);

job_code : STRING; -- Labor Job Code
rate : REAL; -- Labor Rate
END_ENTITY;
(*
Attril {efinitions:

job_code : A unique identifier associated with the labor.

rate : The labor rate.
6.1.3.5 Equipment Entity

The equipment entity is a subtype of the generic resource entity. It is used to specify the
cost of operating the equipment resource during an operation or process.
XP ification :
*)

ENTITY Equipment SUBTYPE OF (Resource);
equipment_category : STRING; -- Equipment Category

128

UNCLASSIFIED
CDRL No. 0002AC-4

cost_per_time_unit : REAL; -- Cost Per Time Unit
END_ENTITY;
(*
Attri finitions:

equipment_category: The equipment code or category.

cost_per_time_unit: The cost of operating the equipment resource per unit of time.
6.1.3.6 Facility Entity

The facility entity is a subtype of the generic resource entity. It is used to specify the cost of

using the facility resource during an operation or process.

*

ENTITY facility SUBTYPE OF (Resource);
square_feet_allocated : REAL; -- Square Feet Allocated
cost_per_sq_ft_per_time_unit : REAL; -- Cost Per Sq Foot Per Time Unit

¢ '
Attri finitions:
square_feet_alloeated: The square feet allocated to this particular operation or process.

cost_per_sq_ft_per_time_unit: The cost per square foot per time unit.
6.1.3.7 ConsumableMaterial Entity

The consumable material entity is a subtype of the generic resource entity. Consumable
materials are those materiais used to aid in the manufacturing of a product that are consumed by
the process. These materials are not considered as part of the raw materials used in the
manufacture of the product. They only aid in the production process and are consumed at some

measurable rate during the process.

EXPRESS Specification :
*)
ENTITY ConsumableMaterial SUBTYPE OF (Resource);
cost_per_unit : REAL; ---Cost Per Unit
resourceRates: LIST [0:?] OF ResourceConsumable; -- list of resource rates
END_ENTITY;

ENTITY ResourceConsumable;
aresource : Resource; -- Associated Resource
units_exhausted_per_time_unit : REAL; -- Units Exhausted Per Hour
F.I*ID_ENTITY;

129

UNCLASSIFIED
CDRL No. 0002AC-4

A i Jefinitions:
cost_per_unit: The cost of one unit of the consumable material.
resourceRates: The list of resource rates.

aResource: The associated Consumable Resource.

units_exhausted_per_time_unit: Units consumed per unit of time during or by the operation
or process.

6.14 EXPRESS-G Schema for Resource

The following EXPRESS-G schema (figure 6.1-2) represents the Resource schema:

r - - - —---- |setupTimc
C lection_rules.Equati]O | ResourceUtilizatio cffRate REAL
selection_rules.Equation
d O————
1 runTime
resourceL
Tesource_name
Parameter O ' STRING
] B —,
p_valueg) (')p_name CI) resource_code
STRING
T— Labor ' Facility
job_code
J\rate cost_per_sq_ft square_feet
_per_time_unit _allocated
REAL
REAL
cost _per_unitT
Equipment
IConsumableMateria
cost_per_time_unit !)equipmcnt_category
ourceRates
REAL STRING L{0:7]
resource
? ResourceConsumable $—

units_exhausted
_per_time_unit

Figure 6.1-2 EXPRESS-G Model of Resources Schema

130

UNCLASSIFIED
CDRL No. 0002AC-4

6.1.5 EXPRESS Schema for Selection Rules

This schema defines a grammar format which rules for selection and equations for
evaluation can be specified. Rules are tied to process nodes and equations are tied to such
entities as scrap and rework formulas. Provided below is the complete BNF (Backus-Naur
Form) grammar format for the selection rules and equations which the EXPRESS schema is
based on.

Complex Rule Grammar Format
<complexRule> := <rules> [<complexRule>]

<rules> := <expression> | <expression> , <rules>
<expression> := <equation> | <equation> <equiv_op> <expression> | <unary_op> <var> | "string"
<equation> := <term> | <term> <op> <equation>
<term> := <const> | <var> | (<equation>)
<var> := <data dictionary strings>
<data dictionary strings> := <alpha> [<alpha> | <digit> | <underscore>]
<const> := real numbers | integers
<op> =
* multiplications
/ division
+ addition

- subtraction

<unary_‘op> =
! not

<equiv_op> :=
< less than
<= less than equal to
> greater than
>= greater than equal to
= equalto
!= not equal to

1 ! logical negation

2 * multiplications
/ division (left to right)

3 + addition
- subtraction (left to right)

131

UNCLASSIFIED
CDRL No. 0002AC-4

4 < less than
<= less than equal to
> greater than (left to right)
>= greater than equal to
5 = equal to
1= not equal to (left to right)
6 , AND

6.1.5.1 Constants and Types for Rule Construction

The following is a listing of the EXPRESS source that defines symbolic constants and
aggregate types that are necessary for the specification of the rules BNF:
XPRE ification :
*)
SCHEMA selection_rules;

CONSTANT
Multiply : STRING := '+,
Divide : STRING := '/,
Add : STRING := '+
Subtract : STRING :='-;
U_Op : STRING :="1";
Less : STRING := <’}
LessEqual : STRING := '<=';
Greater : STRING := ">';
GreaterEqual : STRING := '>=";
Equal : STRING := ="
NotEqual - : STRING :="l=";
LP : STRING := '(;
RP : STRING :=")';
Comma : STRING ="}
DQ : STRING =",

END_CONSTANT;

TYPE DQuote = ENUMERATION OF (DQ);
END_TYPE;

TYPE AND_Op = ENUMERATION OF (Comma);
END_TYPE;

TYPE LParen = ENUMERATION OF (LP);
END_TYPE,

TYPE RParen = ENUMERATION OF (RP);
END_TYPE;

TYPE Unary_Op = ENUMERATION OF (U_Op):;
END_TYPE;

TYPE Swrings = STRING;
END_TYPE;

TYPE Real_numbers = REAL;
END_TYPE;

132

UNCLASSIFIED
CDRL No. 0002AC-4

TYPE Integers = INTEGER;
END_TYPE;

TYPE
TokenReturnValue = SELECT (Real_numbers, Integers, Strings);
END_TYPE;

TYPE
E Const = SELECT (Real_numbers, Integers);

TYPE Operator = ENUMERATION OF
(Multiply, Divide, Add, Subtract);
END_TYPE;

TYPE Equiv_Op = ENUMERATION OF
(Less, LessEqual, Greater, GreaterEqual, Equal, NotEqual);
END_TYPE,;
(*
6.1.5.2 DataDictStr Entity

The DataDictStr entity is an abstract base class from which two subclass have been created.
The first is the EntityName class which holds the name of an entity name. The other is the
EntityAttrName which is used to support the following entity attribute specification :

entity{.attr{.attr{... .attr]]]

An example of an instance of this might be :

line.pointl.x

EXPRESS ification ;
*)

ENTITY DataDictStr; -- abstract base class
END_ENTITY;

ENTITY EntityName
SUBTYPE OF (DataDictStr);
name : STRING;
END_ENTITY;

(*

At jefinitions:

name: The name of the entity as it appears in the product data EXPRESS model.
*)

*)
ENTITY EntityAttrName

133

UNCLASSIFIED
CDRL No. 0002AC-4

SUBTYPE OF (DataDictStr);
entityName : STRING;
atrName : LIST [1:7] OF STRING;
END_ENTITY;

(t
At Jefinitions:
entityName: The name of the entity as it appears in the product data EXPRESS model.

attrName: List of attribute names that correspond to the structure : .attr[.atr]... .attr]). These
attribute name should be specified as they appear in the product data EXPRESS
model.

6.1.5.3 ComplexRule Entities

A complex rule is composed of a list of rules. A rule is an Expressions anded together. The

following BNF segment defines the grammar of the EXPRESS entities :
<Rules> := <Expression> <AND_OP> | <Expression> <AND_OP> <Rules>

EXPRESS Specification ;
*)
ENTITY Rules;
expl : Expression;
Andl : And_Op;
END_ENTITY;

ENTITY ComplexRule;
Irule: LIST [0:?] OF Rules;
END_ENTITY;

(*
6.1.5.4 Expression Entities

The Expression syntax is represented by the following BNF segment :
<Expression> := <Equation> | <ComplexExp> | <SimpleExp> | <String Value>

EXPRESS Specification :
*)
TYPE

Expression = SELECT (Equation, ComplexExp, SimpleExp, StringValue);
END_TYPE;

ENTITY StringValue;
quotel : DQuote;
valuel : STRING;

quote? : DQuote;

ENTITY;

134

ENTITY ComplexExp;
Equl : Equation;
EquivOp1 : Equiv_Op;

Expl : Expression;

END_ ;

ENTITY SimpleExp;

Notl : Unary_Op;
DataDictVar : DataDictStr;
END_ENTITY;

(#

6.1.5.5 Equation Entities

The Equation syntax is represented by the following BNF segment :

<Equation> := <Term> | <ComplexEquation>

EXPRE ification :
*)
TYPE
Equation = SELECT (Term, ComplexEquation);
END_TYPE;
ENTITY ComplexEquation;
Varl : Term;
Operl : Operator;
Value : Equation;
END_ENTITY;
ENTITY ParenEquation;
Lparenthesis : LParen;
Equ hesi :Eguauon;
parenthesis : RParen;
END_ENTITY;

(ll
6.1.5.6 Term Entities

The Term syntax is represented by the following BNF segment :

<Term> := <Const> | <DataDictStr> | <Equation>

ification :
*)
TYPE
Term = SELECT (Const, DataDictStr, Equation);
END_TYPE;
END_SCHEMA;

(!l

135

UNCLASSIFIED
CDRL No. 0002AC-4

UNCLASSIFIED
CDRL No. 0002AC-4

6.1.6 EXPRESS-G Schema for Selection Rules

INTEGER REAL
r = -1 - -
integers Real_numbers
L - s = Il L - o - d
Const
L - { |
] m Tarm 1
aiak vl
fur T
, qu - n - - Consta it
‘ ParenEqu ation _ ComplexE quation Jpe O Operator —C) gT,F“NG
Lparent is renthesis ?. _5value — = - L +-)
r“Lpa\ren | r-RParen LT Equat 1
- N . quation o
& LP TP AL — o —]
- Constant Constant g u1
STRING STRING a r=--n T
(L ’ i . nsta
) Lo compexExp ’ELQ‘“%_ Equiv_Op | ——c] STRING |
E xp1 . —_ o = J <, <=, >, >, = =)
-— & -_— auei
i 1 STRING
E xpression ’—-c StringValue
u — - J ° uote1
o - oQ Cons@ant
quote DQuote ——0 STRING
. o q R |]
—0l SimpleExp DataDictvar Q| DataDictStr [—————————
Nott —
exp1 —6_ - |"|U Op . Constant & . ﬂl’
Unary_Op —_—] STRING]]
L 14 () EntityName EntityAttrName
ant [~ T 7 Ikomma[Consant na’ne&
Rules ——(1_ And_Op L ST?I)NG mtityName
- STRING
Irule L[0:7]
ComplexRule
Arules L{O:?] imrules L[0:?]
r. — —

|G'ocess_mod eI.Procesgl

Figure 6.1-3 EXPRESS-G Model of Selection Rules Schema

136

UNCLASSIFIED
CDRL No. 0002AC-4

6.2 Product Model Schema Specification

Product data interpretable by the MO system must be modeled in the EXPRESS language
and stored as STEP objects in a repository that is interfaced to the STEP Data Access Interface
(SDAI). Currently the SDAI only supports a STEP physical file. In the following sections an
EXPRESS schema for a PWB product is presented. This schema was created to demonstrate
the functionality of the MO system. The schema defines lists of entities that model features of a
PWB.

6.2.1 Printed Wiring Board Product Data Model

At Raytheon, PWB product data is stored in the RAPIDS (Raytheon's Automated
Placement and Interconnect Design System) database. Two interfaces were developed to
support e transition of PWB product data to and from STEP physical files.

Generating the STEP physical file is facilitated by the interface RAPIDS 1o STLP which
maps RAPIDS data items into instantiated STEP entities. We created an information model
using the EXPRESS information modeling language. The model was based on the RAPIDS
database. The EXPRESS information model was compiled using the STEP Tools express2c++
compiler which generated a STEP schema and a C++ class library. The class library consists of
methods for creating and referencing persistent instances of the STEP entities which are stored
in a ROSE database. The STEP schema is used by the STEP Tools STEP filer for reading and
writing the STEP physical file.

The MO system will use the STEP data directly, as well as for information exchange
between the various members of the design team. At Raytheon, the top level team would most
likely be using RAPIDS. This is not a requirement for using the core of the MO system. The
only requirement is that the top level team and the lower level teams are capable of creating,

exchanging and using the STEP physical file.

The Manufacturing Team passes back a consolidated design position to the top level. To aid
in the generation of a consolidated position, conflict resolution and design merging must be
supported. This is done using the STEP Toolkit from STEP Tools Inc. The diff tool reads two
versions of a design and creates a delta file. The difference report generator reads the
difference file and the original design, and presents each STEP entity and its attributes with the

original values and its change state clearly marked with an asterisks.

137

UNCLASSIFIED
CDRL No. 0002AC-4

Once the conflicts of the Manufacturing team members have been resolved, design versions
are merged using the STEP Tools sed tool. The sed tool read the delta file created by the diff
tool and updates the original design version. This updated version of the design will be
transferred back to the top-level product team as the Manufacturing Team’s consolidated

position.
6.2.1.1 PWB Design Schema

This is the top level schema for the Raytheon PWB EXPRESS model. The model is
primarily derived from the Raytheon's Automated Placement and Interconnect Design System
(RAPIDS) data dictionary. RAPIDS is a concurrent engineering design station for Printed
Wiring Boards. Its database was designed to capture data from many diverse CAE, CAD, CAM,
CAT systems as well as analysis systems for thermal, reliability, critical signal analysis, and
manufacturability. Emphasis was placed on making the model extremely modular and flexible.

E ification ;
*)

INCLUDE 'rpdtypes.exp';
INCLUDE 'rpd_header.exp':
INCLUDE ‘'alias.exp';
INCLUDE 'annotation.exp';
INCLUDE ‘cari.exp':
INCLUDE ‘class.exp':
INCLUDE ‘comment.exp';
INCLUDE 'dr_block.exp';
INCLUDE 'gate.exp':;
INCLUDE ‘'net.exp';
INCLUDE ‘metal_area.exp':;
INCLUDE ‘part.exp';
INCLUDE 'pin.exp':;
INCLUDE 'route.exp':
INCLUDE 'via.exp';
INCLUDE ‘'xref.exp';
INCLUDE ‘'shape.exp':
INCLUDE 'stackup.exp';
INCLUDE 'model.exp';

SCHEMA rpd_design;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM rpd_header_schema;
REFERENCE FROM alias_schema;
REFERENCE FROM annotation_schema;
REFERENCE FROM cari_schema;
REFERENCE FROM class_schema;
REFERENCE FROM comment_schema;
REFERENCE FROM dr_block_schema;
REFERENCE FROM gate_schema:
REFERENCE FROM net_schema;
REFERENCE FROM metal_ area_schema;
REFERENCE FROM part_schema:
REFERENCE FROM pin_schema;

138

UNCLASSIFIED
CDRL No. 0002AC-4

REFERENCE FROM route_schema;
REFERENCE FROM via_schema:;
REFERENCE FROM xref_ schema;
REFERENCE FROM model _schema;
REFERENCE FROM shape_schema;
REFERENCE FROM stackup_schema;

ENTITY rpd _design_rec;
alias header : header rec:

aliases : LIST [0:?]) of alias_rec; -- list of aliases
annotation header : header_rec;
annotations : LIST {0:?] of annotation_rec; -- list of annctations
cari_header : header_rec:;
cari_rules : LIST (0:?] of cari_rule_rec; -- list of cari rules
class_header : header_rec;
classes : LIST [0:?] of class_rec; -- list of classes
comment _header : header_rec;
comments : LIST [0:?] of comment_rec; -= list of design comments
dr_block_header : header rec;
dr_blocks : LIST [0:?] of dr_block_rec:; -- list of design rule blocks
gate_header : header_rec;
gates : LIST [0:?] of gate_rec; -- list of gates
net_header : header_rec;
nets : LIST [0:?] of net_rec: -- list of nets
part_header : header_rec;
parts : LIST [0:?) of part_rec; -- list of parts
pins_header : header_ rec;
pins : LIST [0:?] of pin_rec; -- list of pins
route_header : header_rec;
routes : LIST [0:?] of route_rec: -- list of routes
vias_header : header_rec;
vias : LIST [0:?] of via_rec; -- list of vias
xref_header : header_rec;
xrefs : LIST [0:?] of xref_rec: -- list of xrefs
shapes_header : header_rec;
shapes : LIST [0:?] of pad_shape_rec; -- list of pad shapes
stackups_header : header_rec;
stackups : LIST [0:?]) of stackup_rec; -- list of pad stackups
models : LIST [0:?] of model_rec: -~ list of part mechanical
models
END_ENTITY;
END_SCHEMA;

6.2.1.2 PWB Generic Types and Entities

This schema defines types and entities that are used throughout the entire PWB model.
these types and entities are generic and low level and are used as resources by higher level
entities. |
EXPRE ification :

*)

SCHEMA rpdtypes_schema;

TYPE token = STRING; END_TYPE;
TYPE name_type = STRING; END_TYPE;

TYPE layer_ type = STRING; END_TYPE;

139

UNCLASSIFIED
CDRL No. 0002AC-4

TYPE keyword = STRING; END_TYPE;

TYPE dimension = INTEGER; END_TYPE;
TYPE shape_type = STRING; END_TYPE;
TYPE loading_type = REAL; END_TYPE;
TYPE blocking_type = STRING; END_TYPE;

-- BINARY data type is not currently supported by the EXPRESS compiler
-- Assumming 8 bit characters (256 layers, 1 bit per layer)
TYPE bitmask = ARRAY [0:31] of STRING(1l); END_TYPE;

ENTITY time_rec;
high : INTEGER;
low : INTEGER;

END_ENTITY;

ENTITY r_ range_rec;
minimum : REAL;
maximum : REAL;

END_ENTITY;

ENTITY i_range_rec;
minimum : INTEGER;
maximum : INTEGER;

END_ENTITY;

ENTITY r_ span_rec;
minimum : REAL;
maximum : REAL;
span : REAL;

END_ENTITY;

ENTITY i_span_rec;
minimum : INTEGER;
maximum : INTEGER;
span : INTEGER;

END_ENTITY;

ENTITY pin_name_rec;
device : name_type;

gate ! name_type;
pin : name_type;
END_ENTITY;

ENTITY vertex_rec;
% : dimension;
y : dimension;
radius : dimension;
END_ENTITY;

ENTITY point_rec;
x : dimension;
y : dimension:

END_ENTITY:

ENTITY loadirng_rec;
rated : REAL;
derated : REAL;
actual : REAL;

END_ENTITY;

140

UNCLASSIFIED
CDRL No. 0002AC-4

ENTITY attribute_rec;
key : keyword;
value : STRING;

END_ENTITY;

END_SCHEMA;
6.2.1.3 Header Data Schema

This schema defines entities for the unit and scale of other entity instances and the creation,

access, and modification time entities.

ification :
*)
SCHEMA rpd header_schema;
REFERENCE FROM rpdtypes_schema:;

ENTITY version_rec;
name : NAME_TYPE;
revision : NAME_TYPE;

END_ENTITY;

ENTITY header_rec;

file name : NAME_TYPE;

version : NAME TYPE;

creation : TIME_REC;

access : TIME_REC;

modification : TIME_REC;

unit : NAME TYPE;

scale : REAL;

tool : NAME_TYPE;

tool_ver : INTEGER;

tool _rev : INTEGER;

assembly : version_rec:;

drawing : version_rec;

codeid : NAME TYPE; -- Wire Wrap code id

comment : STRING:;

attribute : LIST OF ATTRIBUTE_REC;
END_ENTITY;

END_SCHEMA;

6.2.1.4 Alias Data Schema

This is the EXPRESS schema for storing data aliases required by limitations of some CAx
system (e.g. NET names in one system are restricted to a particular length that has been
violated by a system that is upstream in the design process)

ification :
*)
SCHEMA alias_schema;

141

UNCLASSIFIED
CDRL No. 0002AC-4

REFERENCE FROM rpdtypes_schema;

ENTITY alias_list_rec:
rapids_name : NAME TYPE:
alias_name : NAME TYPE;
object_name : NAME TYPE:

END_ENTITY;
ENTITY alias_rec;
object : NAME_TYPE; -- type of object
property : NAME TYPE; -- object property
system : NAME TYPE; -- system requiring an alias
alias_list : LIST [0:?] of alias_list_rec: -- list of aliases
comment : NAME TYPE;
END_ENTITY;
END_SCHEMA;

6.2.1.5 Annotation Data Schema
This is-the EXPRESS model for annotation data. Currently, annotation is limited to text.

EXP ification :
*)
SCHEMA annotation_schema:;

REFERENCE FROM rpdtypes_schema;

ENTITY annotation_rec;

text : STRING; -- label
text_height : DIMENSION; -- text size
text_width : DIMENSION; -- text size
line_width : DIMENSION; -- width of text line
layer : NAME_TYPE; -- text layer
location : POINT_REC; -- text location
rotation : INTEGER; -- text rotation
justification : NAME TYPE; -- text justification
END_ENTITY;
END_SCHEMA;

6.2.1.6 CARI Data Schema

This Express model is in place for Raytheon legacy data for its proprietary Computer Aided
Routing of Interconnect (CARI) system. As a generic model this should be eliminated.
XP ification :
*)
SCHEMA cari_schema;
REFERENCE FROM rpdtypes_schema;

ENTITY cari_rule_rec;

cari_id : NAME_TYPE; -~ keyword for CARI record
record : NAME TYPE; -- CARI record card image
comment : NAME_ TYPE; -~ pointer to comment string
END_ENTITY;
142

UNCLASSIFIED
CDRL No. 0002AC-4

END_SCHEMA;
6.2.1.7 Class Data Schema

This EXPRESS model defines data entities for classifying signal nets into groups for

particular design rules.
EXP ification :
*)

SCHEMA class_schema;
REFERENCE FROM rpdtypes_schema;

ENTITY class_rec;

group_name : NAME TYPE; -- class identifier
design_rules : NAME TYPE; -- design rules block
signal_list : LIST [0:?] of NAME TYPE; -- signals in the class
attribute : LIST [0:?]) of ATTRIBUTE REC; -- user defined attribute
comments : LIST [0:?] of STRING; -- text description
END_ENTITY;
END_SCHEMA;

6.2.1.8 Comment Data Schema

This schema defines a single entity for a comment a list of comments is kept with each

PWB design.
*)
SCHEMA comment_schema;
REFERENCE FROM rpdtypes_schema;
ENTITY comment_rec;

comment : NAME_TYPE;
END_ENTITY;

END_SCHEMA;
6.2.1.9 Design Rule Data Schema

This EXPRESS schema defines entities for design rules. Design rules are stored in named
blocks. Each block except for the GLOBAL block has a Parent name which it inherits from.
EXPRESS Specification ;

*)
SCHEMA dr_block_schema;

REFERENCE FROM rpdtypes_schema;

143

ENTITY substrate_block_rec;
name NAME TYPE;
technology : NAME TYPE;
mode INTEGER;
layers INTEGER;
pad_stack_file

stackups
layer_model : LIST [0:?] of LAYER TYPE;

NAME_TYPE;

separation LIST [0:?]) of INTEGER;
prepreg_mat : NAME_TYPE;
substrate_mat : NAME TYPE;
solder_mat NAME TYPE;

attribute
END_ENTITY;

LIST [0:?] of ATTRIBUTE_ REC;

ENTITY via_spec_rec;
via_shape : STRING;
via_length : DIMENSION;
via_height : DIMENSION;

END_ENTITY;

ENTITY via_step rec;
via_spacing DIMENSION;
via_depth : INTEGER;
first_layer : INTEGER;
pattern NAME TYPE;
direction : REAL;

END_ENTITY;

ENTITY min_space_rec;
line_to_line INTEGER:
line_to pad : INTEGER;
pad_to_pad : INTEGER;
line_to_profile INTEGER;
pad_to_profile : INTEGER;

END_ENTITY;

ENTITY design_block_rec;
boundary : LIST (0:2?] of vertex rec;
layer_t : LAYER_TYPE;
layer_polarity : NAME TYPE;
x_grid LIST [0:?] of REAL;
y_grid LIST [0:?] of REAL;
grid_offset : POINT_REC;
x_via_grid : LIST [0:?] of REAL;
y_via_grid : LIST [0:?) of REAL;
via_grid_offset POINT_REC;
spacing : min_space_rec;
via_spec : via_spec_rec;
via_stepping : via_step_rec;
acid trap : INTEGER;
attribute : LIST [0:?] of ATTRIBUTE_REC;
END_ENTITY;

ENTITY miter_rec;
angle DIMENSION;
length I_RANGE_REC;
END_ENTITY;

ENTITY termination_rec;
term_type TOKEN;
OUTPUT!| DUAL)
value REAL;

144

UNCLASSIFIED
CDRL No. 0002AC-4

substrate name
technology code

code for mode

number of layers

RLD file containing pad

layer model names
spacing between layers
prepreg material
substrate material
solder_mask material
user defined attributes

default
default
default

via shape
via length
via height

minimum via separation
maximum via depth

first stepping layer
stepping pattern
direction for first step

line-to-line spacing
line-to-pad spacing
pad-to-pad spacing
line-to-profile spacing
pad-to-profile spacing

design rules boundary
design rules layer

layer polarity codes
board routing x grid size
board routing y grid size
routing grid offset

board via x grid size
board via y grid size

via grid offset

feature spacing rules
pointer to default via
via stepping data

acid trap angle

user defined attributes

mitering angle
length of miter

type of termination (INPUT

resistor value in ohms

untexrm : DIMENSION;

END_ENTITY;

ENTITY necking_rec;
line_width : DIMENSION;
length I_RANGE_REC:
spacing : DIMENSION;

necks

END_ENTITY;

ENTITY parallelism_rec;

parallel type : NAME_ TYPE;
plane : NAME TYPE;
separation : DIMENSION;
traces
limit DIMENSION;
threshold
END_ENTITY;
ENTITY shield rec;
shield_type : NAME TYPE;
stripline,
signal : NAME TYPE;

cover_width : DIMENSION;

strip_width DIMENSION;
isoclation : DIMENSION;
post_spacing : DIMENSION;

post_stackup: NAME TYPE;

END_ENTITY;

ENTITY signal_block_rec;
layers bitmask;
layer_t LIST [0:?] of LAYER_TYPE;
signal_type : NAME TYPE;

ecl, etc.
line_width : DIMENSION;
line_shape : NAME TYPE;
max_length : DIMENSION;
min_length : DIMENSION;
stub : DIMENSION;
net_order NAME TYPE;

DAISY, STAR, WIREWRAP

route_bias REAL;
clearance DIMENSION;
place_bias : REAL;
via_type NAME_TYPE;
transmission DIMENSION;
span DIMENSION;

via count INTEGER;

tolerance : DIMENSION;

miter : miter_rec;

termination : termination_rec:

necking : necking_rec;

parallelism :

delay_rule

shield_data

attribute
END_ENTITY;

r_span_rec;
shield_rec:
LIST [0:?] of ATTRIBUTE_REC;

ENTITY layer_ block_rec;
layer_t LAYER_TYPE;
cu_weight REAL;
thickness REAL;

145

LIST [0:?] of parallelism rec;

UNCLASSIFIED
CDRL No.0002AC-4

max unterminated length

minimum necked width
length of neck
unnecked spacing between 2

total or individual
coplanar or biplanar
separation threshold between

parallel traces length

shielding type: microstrip,

grounded, guarded, shielded
signal shield connected
cover width for shield
stripline width

isolation dist

via post space distance
stackup for vias for posts

eligible routing layers
list of layer types
signal type: power, grcund,
default wire line width
line aperture_shape

max signal conductor length
min signal conductor length
max stub length

stringing algorithm: MST,

routing priority

net isolation distance
placement priority

pad stack for via

max transmission length
driver span

maximum # of vias
matched length tolerance
corner mitering rules
terminatin rules
necking rules

-- parallelism rules
propagation delay rules
shielding rules

user defined attributes

design rules layer
copper weight
thickness of metal

impedance : INTEGER;

purpose NAME TYPE;
attribute : LIST [0:?] of ATTRIBUTE_REC;
END_ENTITY;

ENTITY device_block_rec’
x_grid : LIST (0:7] of REAL;
y_grid : LIST [0:?) of REAL;
grid_offset : POINT_REC;
layer_name : LAYER TYPE;
via_flag : BOOLEAN;
location_set : NAME TYPE;
auto_insert : NAME_TYPE;

technology : NAME_TYPE;
device_bias : REAL;
thermal bias REAL;

space_rule : LIST [0:?] OF NAME_TYPE;

decoupling : DIMENSION;

overlap : LIST [0:?] OF NAME_TYPE:

wire_bond : I_RANGE_REC;

aspect : R_RANGE_REC;

heat_sink : NAME_TYPE;

attribute
END_ENTITY;

ENTITY metal_area_block_rec;
pin_clearance : DIMENSION;
via_clearance DIMENSION;
wire_clearance : DIMENSION;
conn_number : INTEGER;
conn_width : DIMENSION;

cutout_flag BOOLEAN;
suppress_flag BOOLEAN;
show_connect BOOLEAN;
default_drill DIMENSION;

attribute
END_ENTITY;

ENTITY dr_block_rec;
block_name : NAME TYPE;
parent_name NAME TYPE;

block
substrate_block
design_block : design_block_rec;
signal_block signal_block_rec;
layer_block : layer_block_rec;
device_block : device_block_rec;
metal_ area_block

END_ENTITY;

substrate_block_rec;

END_SCHEMA;
6.2.1.10 Gate Data Schema

This schema defines entities for device gates.

*)
SCHEMA gate_schema;

REFERENCE FROM rpdtypes_schema;

146

LIST (0:?] of ATTRIBUTE_REC;

: LIST [0:?] of ATTRIBUTE_REC:

metal_area_block_rec;

UNCLASSIFIED
CDRL No. 0002AC-4

layer impedence
user define purpose
user defined attributes

placement grid size
placement grid size
placement grid offset
component placement layer
via inhibit flag
placement location set
auto insertion code
device technology

device affinitity

thermal affinitity
placement spaceing rule
decoupling distance
placement overlap rule
wire bonding device rules
aspect ratio for resist
heat sink id

user defined attributes

metal to pin clearance
metal to via clearance
metal to wire clearance
connections to each pin
width of pin connections
flag to generate cutouts
unused pad suppression
show pad connections
default drill size

user defined attributes

name of design rule block
name of parent design rule

substrate rules
design rules
signal rules
level rules
signal rules
metal area rules

ENTITY gate_package_rec;

component : NAME TYPE;
gate_no NAME TYPE;
END_ENTITY;

ENTITY sheet_rec;
num : NAME TYPE;
x_location REAL;
y_location : REAL;

END_ENTITY;

ENTITY gate_net_rec;
logic_pin : NAME_TYPE;
signal : NAME_TYPE;

END_ENTITY;

ENTITY gate_rec:
instance : NAME TYPE;
package gate_package_rec:
old_package gate_package_rec;
gate_swap_code NAME_TYPE;
swap_inhibit INTEGER;
gate_count : INTEGER;
sheet sheet_rec;
corment NAME TYPE;
signal_map :
old signal_map

attribute : LIST [0:?] of attribute_rec;
END_ENTITY;
END_SCHEMA;
6.2.1.11 Net Data Schema

LIST (0:?] of gate_net_rec;
LIST [0:?) of gate_net_rec;

UNCLASSIFIED
CDRL No. 0002AC-4

L)

symbolic component name
element number

sheet number
location on sheet
location on sheet

logical pin name
default net name

gate name (handle)
package reference
original package ref
swap group name
gate/pin swapability
identical gate/device
schematic location
pointer to comment string
list of pins and nets
list of pins and nets
user defined attribute

This schema defines entities for net signals.

XPRE
*)

SCHEMA net_schema:;

ification :

REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE

FROM
‘FROM
FROM
FROM
FROM
FROM

rpdtypes_schema;
pin_schema;
via_schema;
route_schema;
metal_area_schema;
dr_block_schema;

ENTITY ww_pin_data_rec;
method : NAME_TYPE:
code : NAME_TYPE;
sequence INTEGER;
group NAME TYPE;
length DIMENSION;
findno : NAME_ TYPE;
inst_path : STRING;

END_ENTITY;

ENTITY ww_data_rec;
run_number : INTEGER;
func : NAME_TYPE; --

installation method
wire type code

wrap sequence

wire group

xs wire length

installation path

wire wrap run number
net function

147

END_ENTITY;

ENTITY ww_pin_pair_rec;
method : NAME_TYPE;
code : NAME TYPE;
sequence : INTEGER;
group : NAME TYPE;
length : INTEGER;

findno : NAME_TYPE;
inst_path : NAME_TYPE;
END_ENTITY;

ENTITY pin_pair_rec:

t_pin_name : pin_name_rec;
f pin_name : pin_name_rec:

t_pin : pin_rec;

f pin : pin_rec:;

pp_index : INTEGER;

PP : route_rec;

ww_pins
END_ENTITY;

ENTITY net_rec;
name NAME_TYPE;
design_rules

ww_pin_pair_ rec;

NAME_TYPE;
signal_type : NAME TYPE;

UNCLASSIFIED
CDRL No. 0002AC-4

installation method
wire type code

wrap sequence

wire group

X8 wire length

installation path

to pin name

from pin name

to pin object

from pin object

index to route object
pointer to route object
wire wrap pin pair data

-- name of net
-- design rules block
-- signal type

pin_pairs : LIST {0:2?] OF pin_pair_rec: -- list of pin pairs

ww_data : ww_data_rec;
layer BITMASK;
layer_t : LIST [0:?] OF
line_width : DIMENSION;
line_shape : NAME TYPE;

max_length : DIMENSION;
length

min_length : DIMENSION;
Jlength

stub DIMENSION;

net_order : NAME_TYPE;

clearance : DIMENSION;
route_bias : REAL;
place_bias : REAL;
via_type NAME TYPE;
-transmission
span DIMENSION;
via_count INTEGER;
miter : miter_rec;
termination
necking : necking_rec;
parallelism :
shield : shield_ rec;
pin_names

DIMENSION;

termination_rec;

~- wire wrap data
-- eligible routing layers

NAME_TYPE: -- list of layer types

-- line width for routing
-- line aperture_shape
-- minimum total wire

-- maximum total wire

-- maximum stub length

-- stringing algorithm

-- net isolation distance
-- routing priority

-- placement priority

-- absolute pin{via) type
-- transmission length

-- driver span

-- maximum # of vias

-- corner mitering rules

-- terminatin rules

-- necking rules

LIST [0:?] of parallelism rec; -- parallelism rules

-- shielding rules

LIST [0:?] of pin_name_rec; -- pin names in the net
pins : LIST [0:?] OF pin_rec:;

-- pin records in the net

routes LIST [0:?] of route_rec; -- list of net routes
vias : LIST [0:?] of via_rec; -- list of net vias
metal_ areas LIST [0:?] of metal_ area_rec: -- list of net metal areas
delay rule r_span_rec; -- propagation delay rules
comment NAME_TYPE; -- comment string
attribute LIST ([0:?] OF ATTRIBUTE_REC; -- user defined attribute
END_ENTITY;
END_SCHEMA;

148

UNCLASSIFIED
CDRL No. 0002AC-4

6.2.1.12 Metal Area Data Schema

This schema defines entities for metal areas (areas of a PWB flooded or meshed with
conductor material).
ification :
*)
SCHEMA metal_area schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM dr_block_schema;

ENTITY cutout_rec;
cutout_type : NAME TYPE: -- type of cutout
points : LIST [0:?) of POINT_REC; -- cutout description
END_ENTITY;

ENTITY metal_area_rec;
signal : NAME TYPE;

metal area_type : NAME TYPE; -- type of metal area
style : NAME_TYPE; -~ style of metal area
design_rules : dr_block_rec; -- name of design rule block
aperture : DIMENSION; -- apperature for photoplot
spacing : DIMENSION; -- line spacing in photoplot
layer : INTEGER: -- layer for metal area
cutout_shape : NAME TYPE; -- shape for pin cutouts
origin : POINT_REC; -- boundary origin
boundary : LIST [0:?] of POINT_REC: -- boundary description
user cutouts : LIST [0:?]) of cutout_rec; -- defined cutouts
auto:; cutouts : LIST [0:?]) of cutout_rec; -- generated cutouts
comment : NAME TYPE; -- comment string
attribute : LIST [0:?) of ATTRIBUTE REC; -- user defined attribute
END_ENTITY;
END_SCHEMA;

6.2.1.13 Part Data Schema
This schema defines the electrical characteristics of the PWB components.
EXPRE ification :
*)
SCHEMA part_schema;

REFERENCE FROM rpdtypes_schema;

ENTITY pin_map_rec;

logic_pin : NAME TYPE; -~ logical pin name

component_pin : NAME_TYPE; -~ component pin name

pin_swap_code : NAME TYPE; -~ pin swap group
END_ENTITY;
ENTITY element_rec;

elem no : NAME_TYPE; -~ element number

elem swap : NAME_TYPE; -~ element Swap Code

pin_map : LIST [0:?] OF pin_map_rec; -~ element to device pin map
END_ENTITY;

149

ENTITY geo_data_rec;
rev : NAME_ TYPE;
modn : NAME TYPE;
clear_z : DIMENSION;
height : DIMENSION;
length : DIMENSION;
width : DIMENSION;
hsx : DIMENSION;
hsy : DIMENSION:
mass : REAL;
pin_offset : point_rec:

END_ENTITY;

ENTITY op_data_rec:
rev : NAME TYPE;
modn : NAME_TYPE;
power_dissip : REAL;
max_power_dissip : REAL;
peak_power : REAL;
min_power : REAL;
END_ENTITY;

ENTITY therm data_rec;
rev : NAME TYPE;
modn : NAME TYPE;
emit : REAL;
rsbtm : REAL;
rsjb : REAL;
rsjc : REAL;
rstop : REAL;
spht : REAL;
jtm : REAL;

thermal _type_code : INTEGER;
thermal_type : NAME TYPE;

END_ENTITY;

ENTITY pin_time_rec:
min : REAL;
typical : REAL;
max : REAL;

END_ENTITY:;

ENTITY input_current_rec;
iil : REAL;
iih : REAL;

END_ENTITY;

ENTITY input_voltage_rec;
vil : REAL;
vih : REAL;

END_ENTITY;

ENTITY output_current_rec;
iol : REAL;
ioh : REAL;
iozl : REAL;
iozh : REAL;
END_ENTITY;

ENTITY output_voltage_rec:;
vol : REAL;
voh : REAL;
vol _min : REAL;

UNCLASSIFIED
CDRL No. 0002AC-4

- pin data rev

pin data mod

-- component CLEARZ
-- component HEIGHT

component LENGTH
clib component WIDTH

- clib HSX pin spacing

-- clib HSY pin spacing
-- component MASS

pin offset

-- pin data rev
-- pin data mod

power dissipation

max power dissipation
peak power

min power

pin data rev
pin data mod

low current
high current

low voltage
high voltage

low voltage
high voltage

-- min voltage

l) ' UNCLASSIFIED
‘ CDRL No. 0002AC-4

I voh_max : REAL; -- max voltage
END_ENTITY;

ENTITY bi_pin_rec;
input_current : input_current_rec;
input_voltage : input_voltage_rec;
output_current : output_current_rec;
output_voltage : output_voltage_rec;
END_ENTITY;

ENTITY in_pin_ rec;
input_current : input_current_rec;
input_voltage : input_voltage_rec;
END_ENTITY;

ENTITY ou_pin_rec;
ou_config_code : INTEGER;
ou_config : NAME TYPE;
output_current : output_current_rec;
output_voltage : output_voltage_ rec;

END_ENTITY;

ENTITY pin_data_rec;
rev : NAME_ TYPE; -- pin data rev
modn : NAME_ TYPE; -- pin data mod
pin_number : NAME TYPE; -- component pin number
pin_name : NAME_TYPE; -- component pin name
pin_swap_code : NAME_TYPE; -- pin swap group name
pin_offset : POINT_REC; -- center of the pin relative to

the origin of the device
capacitance : REAL;

fall time : pin_time_rec: -- rise time

rise_time : pin_time_rec: -- fall time

pin_type : NAME TYPE; --B, I, O

bi_pin : bi_pin_rec; -- bi_directional pin data

in_pin : in_pin_rec; -- input pin data

ou_pin : ou_pin_rec; -- output pin data
END_ENTITY;
ENTITY prop_delay_ rec;

rev : NAME_TYPE; -- pin data rev

modn : NAME TYPE; -- pin data mod

pin_name_start : NAME_TYPE;
pin_name_end : NAME_TYPE;
pin_num_start : NAME TYPE;
pin_num end : NAME TYPE;

phl : REAL;
plh : REAL;
unateness : NAME TYPE;

END_ENTITY;

ENTITY part_rec;
part : NAME_TYPE: ~- part name
technology : NAME TYPE; -- device technology
spice_model : NAME TYPE; -- spice model for the device
heat_flag : BOOLEAN; -- heat sensitivity flag
stat_flag : BOOLEAN; -~ static sensitivity flag
polar_flag : BOOLEAN; -- polar component flag
part_type : NAME TYPE; -- component type
part_class : NAME TYPE; —-- component class
description : STRING; -- component description
mil_spec : NAME_TYPE; -- component mil_ spec name
findno : NAME_TYPE; -- component find number
tolerance : NAME TYPE; ~=- component tolerance

151

——

value : NAME_TYPE;

mech_name NAME TYPE;

manufacturer : NAME TYPE;

elements LIST [0:?] OF element_rec;
geo_data geo_data_rec;

op_data op_data_rec;

therm data : therm data_rec;

pin_data : LIST [0:?) OF pin_data_rec;

delay_data LIST [0:?] OF prop_delay_ rec;
comment : NAME TYPE;
attribute : LIST [0:?) OF ATTRIBUTE_REC;
END_ENTITY;
END_SCHEMA;

6.2.1.14 Pin Data Schema

UNCLASSIFIED
CDRL No. 0002AC-4

component value
mechanical name

part manufacturer

list of elements in part
geometry data

thermal data

pin data

delay data

comment string

user defined attributes

This schema defines entities for component pins instantiated on the PWB.

EXPRE
*)

SCHEMA pin_schema;

ification :

REFERENCE FROM rpdtypes_schema;

function_type :
-- I for input or source

-- O output or sink

-- B bidirectional

-- T pin on a terminating resistor

TYPE

ENTITY load_data_rec;
power : LOADING_TYPE;
voltage : LOADING_TYPE;
current LOADING_TYPE;
temperature LOADING_TYPE;
END_ENTITY;

ENTITY pin_rec;
pin : NAME TYPE;
signal : NAME TYPE;
offset POINT_REC:
location : POINT_REC:
rotation KEAL;
range BITMASK;
suppression BITMASK;
func FUNCTION_TYPE;
stepping : REAL;
pin_type : NAME_TYPE;
swap_inhibit : INTEGER;
load_data : load_data_rec;

‘comment : NAME_TYPE;

attribute LIST [0:2?) of ATTRIBUTE_REC:
END_ENTITY;
END_SCHEMA ;

152

STRING (1) FIXED; END_TYPE;

power loading data
voltage loading data
current loading data
temperature loading data

pin name

signal name

pin offset from origin
pin location on board
pin rotation in degrees
pin depth

pad suppression mask
pin function code

first stepping direction
absolute pin type
gate/pin swapability
pin loading data
comment string

user defined attributes

6.2.1.15 Conductor Routing Data Schema

UNCLASSIFIED
CDRL Nc. 0002AC-4

This schema defines entities for conductor routes of net signals.

EXPRESS Specification :

*)

SCHEMA route_schema:

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM net_schema;
REFERENCE FROM pin_schema;

ENTITY segment_rec;

x : DIMENSION;
y : DIMENSION;
radius INTEGER;

segment_width : DIMENSION;
END_ENTITY;

ENTITY ww_route_data_rec;

revision : NAME TYPE;

sequence : INTEGER;

bends LIST [0:?) of POINT_REC;
END_ENTITY;

ENTITY route_rec;
signal : NAME_TYPE;
route_type NAME TYPE;
status : NAME TYPE;
target_name pin_name_rec;
object_name : pin_name_rec:;

target_pin : pin_rec;
object_pin : pin_rec;
‘target_loc : POINT_REC;
object_loc : POINT_REC;

protect : BOOLEAN;
target_layer : INTEGER;
object_ layer INTEGER;
path LIST [0:?] OF segment_rec;
shield_id : INTEGER;
pin_pair_index : INTEGER;
pin_pair : pin_pair_rec;
ww_data ww_route_data_rec:;
comment : NAME_TYPE;

END_ENTITY;

END_SCHEMA;

6.2.1.16 Via Data Schema

x coord of point on the path
y coord of point on the path
for circular segment

the width of the segment

wire revision
wire wrap sequence
wire wrap bend points

associated signal name
type of connection

path status

assigned target pin name
assigned object pin name
assigned target pin
assigned object pin
coordinates of the target
coordinates of the object
path protection flag
assigned starting layer
assigned ending layer
list of path segments
code for linking shielding
link to pin-pair data
link to pin-pair data
wire wrapping data

This schema defines entities for signal net vias.

*)
SCHEMA via_schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM dr_block_schema:

153

REFERENCE FROM net_schema;

ENTITY via_rec;

signal NAME_TYPE;
location : POINT_REC;
rotation : REAL:;

range BITMASK;
suppression BITMASK;
via_type : NAME TYPE;
via_use : NAME_TYPE;
shield _id : INTEGER;
shield : shield_rec:
comment NAME_TYPE;

attribute : LIST [0:7] of ATTRIBUTE_REC;

END_ENTITY;

END_SCHEMA;

6.2.1.17 Library Cross Reference Data Schema

UNCLASSIFIED
CDRL No. 0002AC-4

name of signal net

board coordinates

via rotation in degrees
pin depth

pad suppression mask
absolute via type

special via use

code for linking shielding

comment string
user defined attributes

This schema defines entities for the device cross references.

EXPRESS Specification :
*))

SCHEMA xref schema;

REFERENCE FROM rpdtypes_schema;

REFERENCE FROM pin_schema;

ENTITY xref rec:
symbolic : NAME_ TYPE;
old symbolic : NAME_TYPE;
model NAME_TYPE;
location : POINT_REC;
mirror : INTEGER;
rotation : REAL;

symbolic_flag : BOOLEAN;

external BOCLEAN;
usa_device : NAME TYPE;
physical : NAME TYPE;
raytheon NAME TYPE;
design_rules NAME_TYPE;
layer NAME_TYPE:;
via_flag BOOLEAN;

location_set : NAME_TYPE;
auto_insert : NAME_TYPE;

swap_inhibit INTEGER;
fix : BOOLEAN;
device_bias REAL;

thermal _bias : REAL;

LIST [0:?]) of NAME_TYPE;

LIST [0:?] of attribute_rec;

coupling LIST [0:?] of NAME_TYPE;
decoupling INTEGER;
space_rule
overlap : LIST [0:?] of NAME TYPE;
heat_sink : NAME TYPE;
load_data : load_data_rec;
comment NAME TYPE;
attribute
END_ENTITY;
END_SCHEMA;

154

symbolic name

0ld symbolic name
mechanical model name
board location

mirror flag

rotation flag

symbolic pin names used flag
connector flag

USA device names

CLIB device name

raytheon part number
design rules block
component placement layer
inhibit via under device
placement location set
auto insertion code
gate/pin swapability code
fixed placement flag
device affinitity

thermal affinity
placement coupled devices
decoupling distance
placement spaceing rule
placement overlap rule
heat sink name

loading data

comment string

user defined attributes

UNCLASSIFIED
CDRL No. 0002AC-4

6.2.2 PWB Design Data EXPRESS-G Model

metal_area_schema alias_schema
class_schema jo— o net_schema
annotation_schema part_schema
pin_schema Tpd_design |__o route_schema
model_schema ‘ cari_schema

stackup_schema jo— comment_schem

0
shape_schema o—— | odr_block_schema
xref._schema, P— | d gate_schema

rpd_header_schema Lo via_schema

Q
rpdtypes_schemg)c
Figure 6.2-1 PWB Schema Level EXPRESS-G Model

6.2.3 Electronic Component Library Data Model
6.2.3.1 Component Model Data Schema

This schema defines entities for modeling PWB components.
*)
SCHEMA model_schema;
REFERENCE FROM rpdtypes_schema;
REFERENCE FROM rpd_header_schema:;
REFERENCE FROM stackup_schema;

ENTITY rev_data_rec;

issue_date : NAME_ TYPE; -- date of issue
revision : NAME TYPE; -- revision number
eco : NAME_TYPE; -- latest eco number
eco_date : NAME TYPE; -- date of latest eco
END_ENTITY;
ENTITY dev_origin_rec;
origin_type : NAME TYPE; -- origin types
center : POINT_REC; ~- device center
offset : POINT_REC; -- placement offset

155

mirror : INTEGER:;

END_ENTITY;

ENTITY label_rec;
text STRING;
height : DIMENSION;
width : DIMENSION;
location : POINT_REC;
rotation : INTEGER;
line_width : DIMENSION;
justify : NAME TYPE;
END_ENTITY;

ENTITY boundary_ rec;
boundary_type : NAME_TYPE;

shape NAME_TYPE;

outline : LIST [0:?] of VERTEX_REC;

layers : LIST [0:?] of NAME_TYPE;
END_ENTITY;

ENTITY obstruction_rec;
obstruction_type NAME TYPE;

shape SHAPE_TYPE;
outline LIST [0:?) of VERTEX_REC:
layers LIST [0:?] of LAYER_TYPE:;
blocking : LIST [0:?) of BLOCKING_TYPE;
END_ENTITY;
ENTITY device_rec;
symbolic : NAME TYPE;
physical NAME TYPE;
model NAME_TYPE:
location POINT_REC;
rotation : REAL;
mirror : INTEGER;
END_ENTITY;
ENTITY dev_pin_rec;
physical STRING;
string of integers)
symbolic : NAME TYPE;
location : POINT_REC:
drill : DIMENSION;
stackup_name : NAME TYPE;
stackup STACKUP_REC:
rotation REAL;
offset POINT_REC;
Stepping INTEGER;
END_ENTITY;
ENTITY thermal_rec;
thermal type NAME TYPE;
width : DIMENSION;
spacing : DIMENSION;

stackup_name : NAME_TYPE;
stackup STACKUP_REC:;
END_ENTITY;

ENTITY package_rec;
package_type NAME TYPE;
category NAME TYPE;
orientation : NAME TYPE;
distance DIMENSION;
depth DIMENSION:;

156

UNCLASSIFIED
CDRL No. 0002AC-4

-- reflection code

-- label text

-- text size

~- text size

-- text location

-- text rotation
width of text line
text justification

-- type of boundary

boundary outline shape
boundary outline vertices
-- boundary layers

type of obstruction
outline shape

-- pad outline

pad layers

-- blocking codes

symbolic name
physical name
mechanical model name
location on board
rotation in degrees
mirror flag

physical pin name {(must be

symbolic pin name

pin location

default drill size

pad stackup name

pad stackup record
stackup rotation

stackup offset

first stepping direction

type of thermal relief
line width

line spacing

stackup name

stackup record

package
package
package
pin row
package

type
category
orientation
separation
depih

L

UNCLASSIFIED
CDRL No. 0002AC-4

height : DIMENSION; -- package height

width : DIMENSION; -- package width
lead : DIMENSION; -- package lead diameter
fix : BOOLEAN; -- fixed device flag
body diameter : DIMENSION; -- package body diameter
span : DIMENSION; -- package pin span
insert : NAME_TYPE; -- package insertion code
mechanical : BOOLEAN; -- mechanical device flag
auto_ww_offset : POINT REC; -- automatic wirewrap offset
auto_ww_trp : INTEGER; -- automatic wirewrap initial trp
semi_ww_offset : POINT_REC; -- semiautomatic wirewrap offset
semi_ww_trp : INTEGER; -- semiautomatic wirewrap initial
trp
END_ENTITY;
ENTITY model_rec;
header : header_rec: -- pointer to header record
mm name : NAME TYPE; -- mechanical model name
rev_data : rev_data_rec:; -- revision daca
origin : dev_origin_rec; -- origin data
package : package_rec; -- packafing data
labels : LIST [0:?] of label_rec; -- list of labels
boundaries : LIST [0:?] of boundary_ rec; == list of boundaries
obstructions : LIST [0:?] of obstruction_rec; -- list of obstructions
devices : LIST [0:?] of device_rec; -- list of devices
pins : LIST [0:2?) of dev_pin_rec: -~ list of pins
thermals : LIST [0:?] of thermal_rec; -- list of thermal reliefs
comments : LIST [(0:?] of STRING; -- list of comments
attribute : LIST [0:?] of attribute_rec; -- list of user defined
attributes
END_ENTITY;
END_SCHEMA;

6.2.3.2 Pad Stack Data Schema

This schema defines entities for pin and via pad stackups. Various pad shapes for each layer
are combined. The layer assignments are then combined to form the padstack.
EXPRESS Specification :
*)
SCHEMA stackup_schema:;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM shape_schema;

ENTITY pad_rec’

pad_name : NAME_ TYPE; -- shape name

pad_shape : PAD_SHAPE_REC; -- pad shapes

func : NAME_TYPE; -- pad function
END_ENTITY;

ENTITY pad_stack_rec;

model : NAME TYPE; == layer model

offset : POINT_REC;
pad_list : LIST (0:?} of pad_rec;

END_ENTITY;

ENTITY stackup_rec;

stack_name : NAME TYPE;

157

-- pad offset
~- pad_names

-- name of stackup

pad_stack : LIST ([0:?]) of pad_stack_rec;
drill INTEGER;
comments LIST ([0:?] of STRING;
END_ENTITY;
END_SCHEMA;
6.2.3.3 Pad Shape Data Schema

UNCLASSIFIED
CDRL No. 0002AC-4

-- pad stackups
-- default drill size
-- list of comments

This schema defines entities for pin and via pad shapes.

*)
SCHEMA shape_schema;
REFERENCE FROM rpdtypes_schema;

ENTITY shape_rec;

shape : NAME_TYPE;
width : DIMENSION;
outline : LIST [0:?] of VERTEX_REC;

END_ENTITY;
ENTITY pad_shape_rec;

name : NAME TYPE;

pads LIST [0:?]) of shape_rec;
END_ENTITY;

END_SCHEMA;

6.2.4

shape type
aperature width
shape description

shape name
pad shapes

Electronic Component Library Data EXPRESS-G Model

model_schema

xref_schema

part_schema

stackup_schema _d

shape_schema

gate_schema

pin_schema via_schema

Figure 6.2-2 Component Data EXPRESS-G Schema

158

UNCLASSIFIED
CDRL No. 0002AC-4

7. Requirements Traceability

Provided below is a table which maps the applicable Software Design Specification section
numbers to the corresponding Functional Requirements and Measure of Performance

document section numbers (refer to reference 4).

Design Spec. Sections Functional Spec. Sections
3.2.1.1 3.1.1
2.1.2,5.6 3.2.2
32.2,4.1.1,5.1 3.1.2
32.3,4.1.2,5.2 4.3
3.24.1,53 3.2.1
3242,53 323
3.2.4.3,53 324
325,54 3.2.5
4, 3.3
6. 3.5

159

I UNCLASSIFIED
‘ CDRL No. 0002AC-4

8. Notes

8.1 Acronyms

CAEO Computer Aided Engineering Operations
CDRL Contract Data Requirements List

CERC Concurrent Engineering Research Center
M Communications Manager

DARPA Defense Advanced Research Projects Agency
DBMS Database Management System

DFMA Design for Manufacturing and Assembly
DICE DARPA Initiative In Concurrent Engineering
ISO International Standards Organization

MEL Mechanical Engineering Laboratory

MO Manufacturing Optimization

MSD Missile Systems Division

MSL Missile Systems Laboratories

00)) Object Oriented Design

OSF Open Software Foundation

PCB Project Coordination Board

PWA Printed Wiring Assembly

PWB Printed Wiring Board

PWF Printed Wiring Fabrication

RAPIDS Raytheon Automated Placement and Interconnect Design System
RM Requirements Manager

ROSE Rensselaer Object System For Engineering
SDAI STEP Data Access Interface

STEP Standard for Exchange of Product Model Data

160

Distribution List

DPRO-Raytheon

C/O Raytheon Company
Spencer Lab., Wayside Ave.
(one copy of each report)

. Defense Advanced Research Projects Agency
ATTN: Defense Sciences Office; Dr. H. Lee Buchanan
Virginia Square Plaza
3701 N. Fairfax Drive
Arlington, VA. 22203-1714
(one copy of each report)

Defense Advanced Research Projects Agency

ATTN: Electronic Systems Technology Office; Capt. Nicholas J. Naclerio, USAF
Virginia Square Plaza

3701 N. Fairfax Drive

Arlington, VA. 22203-1714

(one copy of each report)

Defense Advanced Research Projects Agency

ATTN: Contracts Management Office; Mr. Donald C. Sharkus
Virginia Square Plaza

3701 N. Fairfax Drive

Arlington, VA. 22203-1714

(one copy of each report)

‘Defense Technical Information Center
Building 5, Cameron Station

ATTN: Selections

Alexandria, VA 22304

(two copies of each report)

