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* 1. INTRODUCTION

-3 1.1 Summary of the AIVD System

The Artificial Intelligence for VHSIC Systems Design (AIVD) project was undertaken
in order to enhance the capabilities of the Architecture Design and Assessment System
"(ADAS)1 and to provide additional support for the ADAS software/hardware codesignt methodology. AIVD supports software/hardware codesign in several ways:

"* AIVD assists the user in building complex software system models from libraries3- of generic algorithms.

"* AIVD assists the user in transforming generic algorithm descriptions to meet
hardware resource constraints and interacting software subsystem resource re-
quirements.

"* AIVD assists the user in defining software performance attributes in terms of
mission parameters and architecture parameters.

"* AIVD assists the user in building experiments to explore trade-offs across large
design spaces.

3 AIVD uses artificial intelligence techniques to implement these capabilities:

"* Rule-based programs for software to hardware allocation and for graph trans-3 formations.

"* Transformation rules (in the form of context-sensitive graph grammar produc-5 tions) for modifying the structure and attributes of graphs.

"* Attribute grammars to define performance measures in terms of mission and
hardware parameters and to back-annotate models with performance results.

i- 1ADAS is a registered trademark of the Research Triangle Institute.£



23 1.2 Conventions Used in this Manual

g The following font conventions are used throughout this manual:

italics used to designate ADAS attributes, variables and terms of special
interest.

typewriter used to designate system prompts and responses sent to the
computer system's standard output, example file, node,
and node template names, algorithms, and example ADL files.

I bold used to designate input to invoke a software tool or to respond to aI system's or a tool's prompt or query.
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1.3 Related Documents

AIVD is based on the tools and methodology developed by Research Triangle Institute
(RTI) for ADAS. The following manuals for ADAS are important reference books for
AIVD users:

S The ADAS User Manual, Version 2.5

3 The ADAS Training Manual, Basic Course

e The ADAS Training Manual, Advanced Course

There are several excellent references on system design. The reference that most
closely fits with the AIVD design philosophy is Bowen and Brown, "Systems De-
sign," Volume II of VLSI Systems Design for Digital Signal Processing. Another
important reference on searching large design spaces is T. Carpenter and S. Yala-
manchili, "Rapid Evaluation of Parallel Architectures: An ADAS Implementation,"
Presented at GOMAC '87, (October, 1987).



P2. AIVD OVERVIEW

* 2.1 The AIVD System

The AIVD system structure is shown in Figure 2.1. The system consists of four major
tools interacting with four major data bases and the existing commercial ADAS tool
set. The tools and data bases are described in the following sections.

2.2 The AIVD Tools

2.2.1 The Intelligent User Interface

The Intelligent User Interface (IUI) guides the user to select appropriate algorithms
from the Application Domain Hierarchy. The IUI provides a browsing capability for
exploring hierarchical libraries of generic algorithms. This includes viewing the graph
and template hierarchies associated with a library and reading the help files associated
with the library. It also includes an object-oriented editing capability for hierarchical
models, so that the user can point to an object and edit text files associated with the
object, such as an ADL program, Ada or C language source code files, and help files.

2.2.2 The Graph Transformation System

The Graph Transformation System (GTS) aids the user in customizing software to
fit system constraints, including the capabilities of available hardware resources and
the processing requirements of other algorithms that are part of the system model.

Transformations define how to change an algorithm to improve its fit with the
system constraints without changing its function. Transformations can be used to
increase or decrease parallelism, to insert fault-tolerant features into an algorithm, to
represent the cost of communications delays, or to eliminate unnecessarily redundant
operations from an algorithm's description.

2.2.3 The Attribute Definition Language Evaluator

The Attribute Definition Language Evaluator (ADLEVAL) translates ADL programs
into script files which can be read by the other AIVD tools, including the ADAS
editor and simulator. The script files set the performance attributes of the ADAS
models, including node firing-delay and module-class, inport token- consume-rate and
firing-threshold, and outport token-produce-rate.

I 4
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2.2.4 The ADAS Simulators

The AIVD tool set is compatible with the three ADAS simulators: GIPSIM, CSIM,
and ADASIM. GIPSIM is a directed graph simulator, while CSIM and ADASIM are
functional simulators using C and Ada,' respectively. The AIVD tool set creates a
loosely-coupled interface with the ADAS simulators through the generation of ADAS
script files.

For more information on the ADAS simulators, refer to the related documents
referenced in Section 1.3 of this manual.

2.2.5 The Allocator of Software to Hardware (ASH)

The Allocator of Software to Hardware (ASH) has been enhanced in the AIVD pro-
gram to employ simulated annealing methodology in assigning software functions to
hardware resources. These functions and resources are represented in ADAS software
graphs and hardware graphs, respectively. The allocations are made in an effort to
minimize the maximum utilizations of given hardware resources.

2.3 The AIVD Data Bases

2.3.1 The Application Domain Hierarchy

The Application Domain Hierarchy (ADH) organizes the descriptions of generic algo-
rithms by application. Each level of the hierarchy will have a template file associated
with it containing the templates for all the lower level algorithms. With each level
may be associated transformation rules that can be applied to any of the graphs in the
lower-levels of the ADH. At the lowest level, there will be several types of information:

"* A set of node and arc templates which refer to common libraries of basic algo-
rithms, such as sort algorithms or Fourier transform algorithms.

" The ADL programs for each of the algorithms which describe the performance
characteristics of the algorithm, typically in terms of the number of instructions
executed or in terms of the number of operations required.

* Ada program fragments for the primitive algorithms which are developed to the
level needed to support functional simulation of the algorithm.

'Ada is a registered trademark of the U.S. Government.
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73 2.3.2 The Hardware Domain Hierarchy

The Hardware Domain Hierarchy (HDH) contains the descriptions of potential archi-3- tectures. For each architecture, there are several types of information:

* A set of node and arc templates referring to common libraries of components,
such as 1750A or 32020 processors, PI-Bus or TMDE interconnections, andI
different memory architectures.

9 A set of transformation rules for building an instance of the architecture from
the components.

9 A set of transformation rules for adapting a software algorithm to the architec-
ture.

e A set of ADL descriptions of the performance characteristics of the components
of the architecture and information about the operating system for the archi-
tecture, such as compilation rates for estimating machine code size from source
code.

2.3.3 The Transformation Rule Base

The transformation rule base is a set of ADAS graphs, each of which describes the
patterns and transforms of a consistent set of rules designed to transform a software
data flow graph in order to achieve a specific purpose. Transformation rule bases may
be developed for a specific application by the user, or may be constructed by selecting
and then merging rules that are distributed throughout the ADH and the HDH.

2.3.4 Attribute Definition Language Programs

Attribute Definition Language (ADL) programs describe the ADAS node, graph, and
arc attributes in terms of formulas which use system parameters defined by the user.
These parameters typically consist of mission parameters, hardware performance pa-
rameters, and parameters used for back-annotation.

The ADL supports two types of communication: inheritance and synthesis. Inher-
itance allows parameters to be defined at a global level (such as the root graph of the
system software hierarchy) and inherited into all nodes and arcs in the subgraph below
the graph where they are defined. Inheritance is appropriate for distributing mission
parameters to all the software nodes. Synthesis allows parameters to be computed
by aggregating the values of ADAS attributes in a subgraph to define the value of an
attribute in the parent node or graph. Synthesis is appropriate for back-annotating
either software or hardware graph hierarchies.



83• 2.3.5 ADAS Software Data Base

The ADAS software data base is a hierarchy of data flow graphs. It serves as the cen-
tral working data base during an AIVD session, which will typically involve multiple
trade-off experiments. At the top levels of the hierarchy, it describes the functions of
the system. At the middle levels of the hierarchy, it describes the algorithms and data
structures that provide the functions required of the system. At the lowest levels of
the hierarchy, it describes the partitioning of the algorithms and data structures to
fit onto the system hardware architecture.I The attributes of the ADAS software graph hierarchy describe the performance
characteristics of the system, including the amount of time it takes to perform each
atomic action of each algorithm, and how much input and output data is required for
each atomic action.

1 2.3.6 ADAS Hardware Data Base

The ADAS hardware data base is a hierarchy of graphs which describe the structure
and components of the system hardware architecture.

The ADAS hardware graph hierarchy constrains the possible mappings performed
by ASH. Each component of the architecture belongs to a module-class and each
atomic action of each algorithm must be mapped to a hardware component with the
same module-class. Each arc of the software data flow graph must map onto a node
or arc of the hardware graph. During simulation, atomic actions of algorithms must
contend for the shared resources of the hardware components.

The attributes of the ADAS hardware graph hierarchy describe the performance
characteristics of the components of the architecture, such as sensors, processors,
memories, and interconnections.
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* 3. AIVD METHODOLOGY

ALVD was designed to support a system design methodology which has been used by
RTI and by ADAS customers. The nature of the design process and in particular the
nature of software/hardware codesign is described below.

3.1 System Design Process Characteristics

I The types of system design problems that ADAS was developed to support share

- several common characteristics:

Iterative Processing System design is an iterative process. There are several types
of cycles that can occur in the design process, and a system design tool needs
to support the process of working through all of those cycles efficiently. Typical
types of iterations are:

1 iterating the incremental design of software and hardware

* iterating the incremental design of different levels of the hierarchy

3I e iterating the definition of models based on different system parameters

The most important iterative cycle to support efficiently is the innermost iter-
I ation, i.e., the cycle which is repeated most often. AIVD focuses on supporting

the incremental modifications to the model based on different system param-
eters that are inherent in performing trade-off studies. This gives the system
architect more time to focus on designing different variations of the software
and the hardware, rather than building the models required to perform trade-

j off analyses.

Quantitative Trade-offs ADAS was designed to assist the system architect by pro-
viding quantitive performance information. AIVD extends that support to in-
clude the many performance analysis required to make trade-offs. Thus, critical
issues for a system architect using AIVD is defining the set of trade-off exper-
iments to be performed, defining the parameters for those experiments, and
deciding how to interpret the results of the simulations.

Software and Hardware Interactions A basic tenet of the ADAS methodology
is that system performance is based on the interaction between the software
and the hardware. ADAS models this interaction in terms of the mapping
of software to hardware and the contention of software processes for shared
hardware resources.

1 9
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Multidimensional Design Space The need to perform trade-off studies across
many different design options leads to a multidimensional design space. Typical
trade-off studies must consider a bewildering number of different design options
and system parameters. Each option and parameter defines a new dimension
of the design space. Each simulation evaluates one point in that design space.
Thus, the system architect must use the modeling resources wisely if a large
number of options and parameter values is to be considered. AIVD is designed
to allow the system architecture to explore a wider range of options.

In AIVD, the cycle that was chosen is the process of evaluating points in a large,
parameterized design space.

3.2 The ADAS View of Software/Hardware Code-
sign

The first basic assumption that ADAS makes it that timing is a critical design issue.
ADAS focuses on the design and assessment of real-time computer systems. A real-
time system is a system in which there are critical requirements upon the time at
which events occur. These requirements may take several forms:

9 The rate at which an input data stream is consumed and processed without
losing data may be critical. For example of this type of requirement is that a
sensor has to be sampled at a particular rate.

* The rate at which an output data stream is produced may be critical. For
example of this type of requirement is that an image has to be outputted 30
times a second in order to be flicker free.

* The sequence of events may be critical. For example, a parachute must be
deployed before the landing gear is extended.

* The time between events may be critical. For example, the time between sight-
ing a target and launching a weapon must be less than 5 seconds.

The second basic assumption that ADAS makes is that the system software can
be modeled with hierarchical data flow graphs. This assumption is based on extensive
work on the use of data flow graphs for structured systems analysis and structured
system design which has been pioneered by Tom DeMarco.' ADAS extends this model

'Tom DeMarco. Structured Analysis and System Specification. Englewood Cliffs; Yourdon Press,
1979.
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by providing attributes for graphs, nodes, and arcs which describe the performance
characteristics of the system. These attributes lead to a capability to simulate the
performance of the system using a form of Petri Nets called marked graphs.

The third basic assumption that ADAS makes is that the system design must take
into account the interactions between software and hardware. ADAS has modified the
marked graph models in order to account for the contention for hardware resources
that are experienced when independent software processes share hardware resources.

The ADAS methodology is based on performing a series of steps to build a model
of the system and then evaluate its performance:

e Building hierarchical data flow diagrams which describe the system software.

* Defining the performance attributes of the system software.

e Building hierarchical block diagrams which describe the structure of the system
hardware.

e Mapping software to hardware.

e Simulating performance at the marked graph level.

1 . Evaluating the performance results produced by the simulation.

ADAS provides mapping and simulation tools and a graphical user interface to
support the construction of models. AIVD focuses on assisting the user in iteratively
making incremental changes in the models in order to evaluate many trade-off options.

1 3.3 The AIVD Design Process

I The AIVD design process is shown in Figure 3.1.

Select Architecture from Hardware Domain Hierarchy. The architecture is de-
scribed by:

* A set of component models (e.g., CPUs, IOPs, Memories, Buses).

I A set of basic models for the interconnection patterns (e.g., a hypercube
would have a 2 node hypercube as a basic component.).
A set of rewrite rules which would allow particular instances of the archi-
tecture to be built from the basic models (e.g., a hypercube would have a
rewrite rule for building a larger hypercube from a smaller one by copying
the existing hypercube and then connecting all the corresponding nodes in
the two copies).

I
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* A set of attribute definitions which would be used to configure the algo-
rithms.

Transform Architecture In order to simulate a system, a specific instance of the
architecture must be constructed. -This is done by configuring an architecture
using the proper number of each type of component, and connecting them ac-
cording to the connection patterns of the architecture. With AIVD, the system
architect uses the graph transformation system to connect the components ac-
cording to the specification for the architecture as encapsulated in the graphI transformation rules for the architecture. A design trade-off will often exper-
iment with different numbers of components. Figure 3.1 shows the change in
these numbers, Network Size Parameters being the middle loop for the design
process.

Modify Architecture Attributes Typical architecture attributes are processor speed,
memory bandwidth, interconnect bandwidth, and memory size. These at-
tributes will affect the mapping process and the algorithm node processing
times. A design trade-off will often require experiments with different values
for these attributes.

Select Algorithm The user selects appropriate algorithms for each of the system
functions from Application Domain Hierarchy. The ADH is organized hierarchi-
cally by function in order to make it easier for the user to determine which algo-
rithms in the library are appropriate for the particular function and application.
Furthermore, the ADH may have several variations on a particular algorithm,
where different variations are associated with different hardware architectures.
Thus, the user may use information about the architecture, as provided by at-
tribute definitions, to select appropriate variations on the algorithms suited to
the functions of the application.

Transform Algorithm The next step is to customize each of the algorithms in
the system to fit the available architecture resources. This is done in a global
context, so that trade-offs for resources can be made between algorithms for
different functions of the system. When the algorithms are selected from the
ADH, they come equipped with different transformations which are needed to
adapt the algorithm to different instn.nces of architectures. Once the architec-
ture has been defined, its characteristics can be used to select the appropriate
transformations for the algorithms. The architect uses the graph transformation
system to customize the algorithm. Typical reasons for making architecture-
specific transformations are:

* Increase the parallelism of an algorithm.

* ,decrease the parallelism of an algorithm.
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* Model the communication costs of an algorithm as distributed across the
architecture.

o Provide the data or processing redundancy needed to support system fault
tolerance.

Modify Algorithm Attributes Once the algorithm has been transformed, the al-
gorithm attributes such as data structure size and operation counts are com-
bined with the architecture attributes such as processor speed, memory band-

width, and interconnect bandwidth to define the produce and consume rates
and firing delays of the performance model. This process is performed by ADL-
EVAL, using the attribute definition programs attached to the algorithm nodes,

Mparcs, and graphs, and the ADL include files provided by the architecture model.

Map Software to Hardware The fully instantiated algorithm is mapped to theI fully instantiated architecture using the Allocator of Software to Hardware.

Simulate System In AIVD, the user can evaluate performance by simulating the
system at the marked graph level. Alternatively, the user can build a functional
model using C or Ada code segments for each leaf node, and then perform a
combined functional and performance simulation.

1 Evaluate Simulation Results This critical step is performed manually by the AIVD
user, who must decide whether or not to continue the search through the design
space, and which point in the design space should be evaluated next. The user
implements the decision by setting new parameter values in ADL files, and by
invoking the appropriate tool to start the next cycle through the process.

I

I
I

I
I
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4. INTELLIGENT USER INTERFACE

4.1 Overview

The AIVD Intelligent User Interface (IUI) is an enhanced version of the Architecture
Design and Assessment System (ADAS) Version 2.5 graph editor EDIGRAF. It is
executed by entering the command

iui dbase -s script -d gterm

I where:

* dbase is the name of the graph data base,

& script is the name of a script file, and

1 gterm is the name of the graphics display device.

4.2 IUI Inputs

4.2.1 ADAS Graph Files

The node-user-text attribute of each node contains the name of the associated help file.
Similarly, the arc-user-text attribute of each arc contains the name of the associated
arc help file, and graph-user-text contains the name of the associated graph help file.
The node-user.file.name attribute of each node contains the name of the associated
Attribute Definition Language (ADL) file. Similarly, the arc-user-file-name attribute
of each arc contains the name of the associated arc ADL file, and graph-user.file-name
contains the name of the associated graph ADL file.

4.2.2 ADAS Template Files

The IUI keeps track not )nly of the current template file (i.e., the template file
associated with the current graph), but also of template files associated with the
graphs in the current graph hierarchy.

15
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3 4.2.3 New Commands

IUI extends the current set of ADAS EDIGRAF commands with four types of new5 commands:

" help commands, which display files associated with graphs, nodes, arcs, node3 templates, and arc templates to help the user.

" view commands, which display for the user the structure of the graph and
template hierarchies.

" edit text commands, which allow the user to edit text files associated with
graphs, nodes, arcs, node templates, and arc templates.

" subtmpl command, which allow the user to edit the graph specified by the
subgraf-file-name of a node template.

4.2.3.1 Help Commands

The help commands display help files about the current graph, nodes, and arcs, and
about the current node and arc templates.

help graph

The file whose name is the value of the graph-user-text attribute of the current
graph is displayed on the terminal screen using the VMS type/page command.

help node node.id

A menu of the names of the nodes of the current giaph is displayed. When a
node is selected (either by picking off the display, picking off the menu, or typing
in the node name), then the file whose name is the value of the node-user-text
attribute of the selected node is displayed on the terminal screen using the VMS
type/page command.

help nodetmpl template

A menu of the current set of node templates is displayed. When a node tem-
plate is selected (either by picking off the menu or by typing in the template
name), then the file whose name is the value of the node-user-text attribute of
the selected node template is displayed on the terminal screen using the VMS
type/page command.
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II
173 help arc node.id output-port-number

A menu of the names of the nodes of the current graph is displayed. When
a node is selected (either by picking off the display, picking off the menu, orI typing in the node name), then a menu of output port numbers for the selected
node is displayed. When an output port is selected (either by picking off the
menu or by typing in the port number), then the file whose name is the value

_ of the arc.user.text attribute for the selected arc is displayed on the terminal
screen using the VMS type/page command.

3 help arctmpl template

A menu for the current set of arc templates is displayed. When an arc tem-
plate is selected (either by picking off the menu or by typing in the template
name), then the file whose name is the value of the arc-user-text attribute for
the selected arc template is displayed on the terminal screen using the VMS3 type/page command.

5 4.2.3.2 View Commands

The view commands give the user a sense of the template and subgraph hierarchies
associated with the current graph. The template hierarchies represent the Application
Domain Hierarchy (ADH) available below the current graph, i.e., all possible domain
selections. Recall that the application domain hierarchy consists of a hierarchy of
empty graphs, each with its own template file, help file, and msociated ADL files. This
view capability allows the user, for example, to determine which primitive functions
are available at the lowest levels of the current application domain hierarchy. The
subgraph hierarchies give him a sense of where certain functions are performed in the
system. For example, he might like to know which of his top-level functions requires
an FFT operation, or in which subgraph the edge detection function is performed.

name

view hierarchy template graph-name level
file-name

full-file

This command displays the application domain hierarchy, as defined by the
hierarchy of one of the following user-specified options: template names, tem-
plate subgraph graph-names, template subgraph file-names, or the template
subgraph full path file names. The top level of the hierarchy consists of the
user-specified option of the current graph. This command traverses the cur-
rent graph hierarchy and collects the user-specified option information of all
the templates. This information is presented in a hierarchical fashion, with the
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hierarchy represented by indentation. The printing on the terminal screen stops
at page boundaries, as in the VMS type/page command. If level = 0, then
all levels are printed. If level = i > 0, then only the first i levels of the
hierarchy are presented by the view command. No negative values of level are
permitted.

For example, if the name option is selected by the user, T is the name of a
node template at level n, the node class of T is internal, and T has a specified
subgraph that exists and has a template file name F specified, then the name
of any node template S in F is displayed at level n + 1. A problem can result
from circular definitions of the hierarchy. If node template T in template file F
has subgraph G and the template file for G is also F, then a circular definition of
the hierarchy will result. In this situation, only the highest level is displayed.

name

view hierarchy graph graphname levelfile-name ee

full-file

This command displays lower levels of the current software graph (i.e., applica-
-tion domain hierarchy) as defined by the hierarchy of one of the following user-
specified options: node names, node subgraph graph-_names, node subgraph
file-names, or the node subgraph full path file names. This command traverses
the current graph hierarchy and collects the user-specified option information
on all the nodes. This information is presented in a hierarchical fashion, with
the hierarchy represented by indentation. The printing on the ter inal screen
stops at page boundaries, as in the VMS type/page command. i. level = 0,
then all levels are printed. If level = i > 0, then only the first i levels of the
hierarchy are presented by the view command. No negative values of level are
permitted.

4.2.3.3 Edit Commands

These edit commands were created to allow the edit of a text file referenced by an
attribute without having to leave the EDIGRAF session or retype the name of the
file.

edit text graphsertextedittextgrap graph-user-file-name

This command edits a text file associated with two attributes associated with
graphs: graph-user-text for help files and graph-user-file.name for ADL files.
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When this command is entered, EDIGRAF calls the appropriate editor (EDT
on VMS) and passes the attribute value to the editor as the name of the file to
be edited.

edit text [ node d&ueex ]nodetp][ node-user-text
edInodetmpl node-user.file.name

This command edits a text file associated with two name attributes associated
with nodes or node templates: node.user.text for help files and node-user.file-name
for ADL files. When this command is entered, EDIGRAF calls the appropriate
editor (EDT on VMS) and passes the attribute value to the editor as the name
of the file to be edited.

edit text [ arc ][ arc-uiser.t extedIttx arctmpl arc-user-fi le -name

This command edits a text file associated with two attributes associated with
arcs or arc templates: arc.user-text for help files and arc.user.file-name for ADL
files. When this command is entered, EDIGRAF calls the appropriate editor
.(EDT on VMS) and passes the attribute value to the editor as the name of the

-- file to be edited.

4.2.3.4 Subtmpl Command

A subtmpl node-template command was created to allow one to use EDIGRAF on
a graph referenced by the subgraf.file.name attribute of a node template, without

-- having to leave the current EDIGRAF session or retype the name of the file. This is
similar to the present subgraf command in EDIGRAF except it enters an EDIGRAF
session with a node template's subgraf.file.name instead of a node's subgraf-file. name.I A quit command returns the user to the previous graph.

For example, assume the graph being used in an IUI session is x. swg, its tem-
plate-file is x. swt, tempa is the name of a node template in x. svt, and the sub-
graf.file-name attribute for tempa is y. swg. When the command subtmpl tempa
is entered the user will be editing y. swg. A quit command returns the user to theIx. svg IUl session.

- 4.3 IUI Outputs

As an example of IUI output, there is a graph radar.swg which has two node templates,
f fft and armult. Its full path name is project: [aivd. adh. radar] radar. swg. From

II

Il
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these two node templates two nodes are created, fftO and armultO. Both the nodes
and the node templates from which they were created share the same graph-names
and subgraf-file- names. These nodes and node templates comprise level 1 of the radar
template and graph hierarchies. The graph fft.swg has four node templates, mult,
add, read and write. From these four templates four nodes are created: multO,
addO, readO and writeO. Both the nodes and the node templates from which they
were created share the same graph-names and subgraf-file.names. These nodes and
node templates comprise level 2 of the radar template and graph hierarchies.

If, during an IUI session on radar.swg, view hierarchy template name 0 is
entered, the resulting name hierarchy is

fft
mult
add
read
write

armult,

is while if view hierarchy graph name 0 is entered, the resulting name hierarchy

fft0
multO
addO
readO
writeO

armultO.

If view hierarchy template graph-name 0 is entered, the resulting graph-name
hierarchy is

Fast FourierTransform
Multiply
Add
Memory-Read
Memory-Write

Array-Multiply,

while if view hierarchy graph file-name 0 is entered, the resulting file-name
hierarchy is
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E multi mult. SWg
[.addladd.swg
S. read] read. svg
[.writ el rite. swg

C.armultlarmult.swg.

I Finally, if view hierarchy graph fuillfile 0 is entered, the resulting fuillfile
hierarchy is

project: Eaivd .adh .radar.ffti fft. swgI ~ ~project: [aivd. adb .radar.fft .multlmult. sug
project: [aivd.adii.radar.fft .addladd. swg3 ~project: [aivd.adh .radar.fft .readlread. swg
project: Eaivd. adhi.radar .fft .write) write. swg

project: Eaivd. adh .radar. armult] armult. swg
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"* 5. ATTRIBUTE DEFINITION LANGUAGE

"3 5.1 Overview

The Attribute Definition Language (ADL) provides a flexible interface for defining
ADAS component attributes in terms of functions and expressions of ADL variables.
A noninteractive tool, ADLEVAL reads an ADAS graph hierarchy and its associated
ADL files and generates a script file which rewrites the graph hierarchy's attributes

_- based on the rules defined in the ADL files. The modified graph can then be trans-
formed, mapped, simulated, and analyzed by the other tools in the ADAS set. A
second program, ADLLINT, can be used to check the syntactic correctness of indi-
vidual ADL programs.

Attributes and variables can be assigned values based on values that are inherited
from the parent graph level or synthesized from values in the subgraph or the current
graph. ADLEVAL processes ADL programs in two passes: it processes inherited vari-
ables top-down on the first pass and synthesized variables bottom-up on the second
pass.

3 5.2 The Attribute Definition Language

3 5.2.1 ADL Data Types and Constants

ADL supports the ADAS attribute data types described in Table 5.1. Each of theI data types may have corresponding constants in the language. Integer constants are
always in decimal format, and may have an optional sign in front of them. The signs
on the exponent of a floating point number are optional. Strings can have any ASCII
characters except double quotes.

-Type Description Examples
float Floating point number 2.375,-12. lle-10
integer Integer number -4,22
boolean Boolean value true, false
string Text string (up to 200 chars.) "ThisJIsA.-Sample-String"

Table 5.1: ADAS Attribute Data Types

22
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5.2.2 ADAS Attributes

ADL programs read ADAS attribute values from the current graph and write attribute
values into script files. The use of ADAS attributes is described in Table 5.2 through
Table 5.6.

An ADL program can only overwrite attributes whose modification status is M
(modifiable) or P (program modifiable). An attempt to redefine the value of an
attribute whose modification status is N (not modifiable) will cause ADLEVAL to
print an error message.

Only graph ADL programs may reference ADAS graph attributes or assign val-
ues to them. The name, type, and use of ADAS graph attributes are described in
Table 5.2.

I Attribute Name Data Type ADLEVAL Access
graph.version-number string read and write
time-unit string read only
conversion-factor string read only
graph-user.float float read and write
graph.user.integer integer read and write

Table 5.2: ADAS Graph Attributes Used By ADLEVAL

Only node ADL programs may assign values to ADAS node attributes. Node ADL
programs may use ADAS node attributes in inheritance statements. Both node and
graph ADL programs may reference ADAS node attributes in synthesis statements.
The name, type, and use of ADAS node attributes are described in Table 5.3.

Only node ADL programs may assign values to ADAS inport and outport at-
tributes. Node ADL programs may use ADAS inport and outport attributes in inher-
itance statements. The name, type, and use of ADAS inport and outport attributes
are described in Table 5.4 and Table 5.5.

ADAS port attributes are referred to in an ADL expression by entering their
ADAS attribute name and an extension selecting an indi-idual inport or outport.
Port extensions are of the form (ini) or (outi), where i is the port number (from 0
to 63). Figure 5.8 shows the format for referencing input and output ports.

Only arc ADL programs may assign values to ADAS arc attributes. Arc ADL
programs may use ADAS arc attributes in inheritance statements. The name, type,
and use of ADAS node attributes are described in Table 5.6.
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Attribute Name Data Type ADLEVAL Access

node-color string read and write
hwtmodule string read and write
execution-order integer read and write

Snode-utilization float read and write
module-utilization float read and write
firing-delay float read and write
node-latency float read and write
times-fired integer read and write
when.next-available float read only
-module-class string read and write
node-orientation string read and write
node-width float read and write
node-height float read and write
node-user-float float read and write
node.user.integer integer read and write
trace-flag integer read and write

I Table 5.3: ADAS Node Attributes Used By ADLEVAL

Attribute Name Data Type ADLEVAL Access
in-token-data-type string read only

token-consume.rate integer read and write
firing-threshold integer read and write
initiaLtoken- count integer read and write

Table 5.4: ADAS Input Port Attributes Used By ADLEVAL

SAttribute Name Data Type ADLEVAL Access

outtoken-data-type string read only
token.produce-rate integer read and write

Table 5.5: ADAS Output Port Attributes Used By ADLEVAL

I
I
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Attribute Name Data Type ADLEVAL Access

arc-color string read and write
queue-size integer read and write
token.data-type string read only
average-token.count float read only
maximum-token.count integer read only
current-token.count integer read only
token.access.count integer read only
arc.user.float float read and write
arc.user.integer integer read and write

Table 5.6: ADAS Arc Attributes Used By ADLEVAL

5.2.3 ADL Variables

ADL variable names may contain alphanumeric characters or the underscore () and
they must begin with an upper or lower case letter of the alphabet. A number of
ADL names are reserved; they are listed in Table 5.7. All ADAS graph, node, arc,
inport, and outport attribute names are also reserved.

and arc avg - bool count end
endfor endif false float for graph if
include inport int log2 max - minI- node not or outport parent select
sqrt string sum - synth synthesis synthesize
then true var - where -

Table 5.7: ADL Reserved Words

5.2.3.1 Local Variables

Local variables may be declared in graph, node, or arc ADL programs and be assigned
values based on the values of constants, attributes, and variables. The type of a local
variable is defined by its declaration; the value of a local variable is defined by an
inheritance assignment statement in the same ADL program where it is declared.
Local variables declared in a graph ADL file can also be referenced by graph, node,
or arc ADL files in the subgraphs. Local variables declared in a node ADL file can
be referenced by the graph ADL file for the node's subgraph.

I
I
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5.2.3.2 Graph Variables

A graph, node, or arc ADL program can reference local, graph, or parent variables
declared in the parent graph's ADL program by declaring such variables as graph
variables. A graph, node, or arc ADL program cannot assign values to a graph
variable. The names used in the parent graph ADL program must match the names
used in the graph, node, or arc ADL program. The data type of a graph variable is
determined by the type used in the parent graph.

5.2.3.3 Parent Variables

A graph ADL program can reference local, graph, or parent variables declared in
the parent node's ADL program by declaring such variables as parent variables. A
graph ADL program cannot assign values to a parent variable. The names used in the
parent node ADL program must match the names used in the graph ADL program.
The data type of a parent variable is determined by the type used in the parent node.

5.2.4 ADL Expressions

An ADL expression is either a constant, an ADAS attribute, a variable, or is con-
stru -ted by using an operator to combine one or more ADL expressions. ADL expres-
sion values can be assigned to variables or ADAS attributes. ADL supports inherited

I and synthesized expressions. The order of evaluation of expressions depends on oper-
ator precedence as described in the sections below. Left and right parentheses can be
used to force a certain order of evaluation or make the order of precedence explicit;
expressions in parentheses are evaluated first, starting with the deepest embedded
parentheses.

I 5.2.4.1 Math Operators

A number of mathematical operators are provided for use in ADL expressions; they

include operators for addition, subtraction, multiplication, and division. Multipli-
cation, division, addition, and subtraction all operate on either integers or floating
point data types. Table 5.8 lists these operators in order of precedence from highest
(top) to lowest (bottom). Operators in the same row have the same precedence; they
are evaluated in an expression from right to left.
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Gperators Meanings
•*,/ Multiplication, Division
+I- Addition, Subtraction

Table 5.8: ADL Mathemat;cal Operators

5.2.4.2 Logical Operators

Conditional ADL expressions use a set of relational and logical operators to qualify
ADAS attribute and ADL variable evaluation. ADL provides a logically sufficient set
of logical operators. Table 5.9 lists these operators in order of preference from highest
(top) to lowest (bottom). Operators with the same precedence are evaluated in an
expression from right to left.

Operators Meanings Example
and intersection (A > 5) and (A < 10)
or union

Table 5.9: ADL Logical OperatorsIi
5.2.4.3 Relational Operators

I ADL provides relational operators for equality, inequality, and range tests. Table 5.10
lists these operators, which can be applied to either integer or floating point values.
A subset of these operators can be applied to string and boolean values. (All of
these operators have the same precedence.) Operators with the same precedence are
evaluated in an expression from right to left.

5.2.4.4 String Operators

I ADL includes a concatenation operator and two relational operators for strings as
indicated by Table 5.11.

I 5.2.4.5 Aggregation Functions

ADL provides a number of aggregation functions that may be included in synthesized
expressions. They return an integer or float value calculated or composed from a

I
I
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property of a cluster of components in the subgraph or the current graph. These
functions are listed in Table 5.12.

Operators Meanings Example
==, /= Equality, inequality Name /= 'Filter'
<, > Less than, greater than Delay < 5.0
<=, >= Less than or equal to,

greater than or equal to token-consume_.rate(in0) <= 10

Table 5.10: Relational Operators

Operator Meaning Example
+ concatenation "CPU" + "0"
== equality test hw.module =="CPU"
/= inequality test hw-module /= "DPU"

Table 5.11: ADL String Operators

Name Returns Description Example
max integer, float Maximum max(queue-size
sum integer, float Sum sum (node-user-integer

Table 5.12: ADL Aggregation Functions

5.2.5 ADL Statements

5.2.5.1 Comments

Comments contain a double dash ('--') at the beginning of a line or immediately
after an ADL statement on the same line followed by zero or more ASCII characters.
Comments are terminated by new lines. They can be used anywhere in an ADL
program.
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295 5.2.5.2 Declaration Statements

A variable that is inherited by a node or arc ADL program from the current graph
ADL program must be declared as a graph variable in the node or arc ADL program.
Similarly, a variable that is inherited by a graph ADL program from the parenit
graph ADL program must be declared in the ADL program for the subgraph. Graph
variables inherit both their type and their value from the parent graph ADL program
variable, which must have the same name. Graph variables cannot occur on the left
hand side of an assignment statement. Graph variables are declared either local,
parent, or graph in the parent graph ADL program. Graph variables which are
declared in graph ADL programs can be referenced as graph variables in the node
or arc ADL programs for the current graph and in the graph ADL programs for all

"- immediate subgraphs. Graph variables which are declared in a node ADL program
can be referenced as parent variables in the graph ADL program for an immediateI subgraph. Graph declarations take the following form:

graph : <name>{,<name>}*;

where <name> is a graph variable's name. Note that multiple variables can be
declared with a single declaration.

A variable that is inherited by a graph ADL program from a parent node's ADL
program must be declared as a parent variable in the subgraph's ADL program.
Parent variables inherit both their type and their value from the parent node ADL
program variable, which must have the same name. Parent variables cannot occur on
the left hand side of an assignment statement. Parent variables are declared either
local or graph in the parent node ADL program. Parent variables can be referenced
as graph variables in the node or arc ADL programs for the current graph and in
the graph ADL programs for all immediate subgraphs. Parent declarations take the
following form:

Sparent : <name>{,<name>}*;

where <name> is a variable's name. Note that multiple variables can be declared
with a single declaration.

A variable that is assigned a value generated by an inheritance expression must be
declared as a local variable in a graph, node, or arc ADL program. The declaration
of a local variable defines the type of the variable. Local variables are assigned their
values through the use of an inheritance assignment statement, where the expression3 on the right hand side is an inheritance expression. Local variables which are declared
in graph ADL programs can be referenced as graph variables in the node or arc ADL

I
I
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programs for the current graph and in the graph ADL programs for all immediateI psubgraphs. Local variables which are declared in node ADL programs can be ref-
erenced as parent variables in the graph ADL program for an immediate subgraph.I Local declarations take the following form:

3 <type> : <name>{,<name>}*;

where <type> is the type of the variables and <name> is a variable's name. Note3, that multiple variables can be declared with a single declaration.

1" 5.2.5.3 Assignment Statements

An assignment statement assigns a value to an attribute or variable in a graph's ADL
file in terms of values that are inherited from the parent node's or parent graph's
ADL file. Assignment statements take the form:

f{<attribute> I <name>} = <expr>;

where <attribute> is an ADAS attribute, <name> is the name of a local variable,
and <expr> is an ADL expression. If an expression contains only local, graph, or
parent variables, then the expression is an inheritance expression and can be used
in inheritance assignment statements. If an expression contains aggregation func-I tions, then it is a synthesis expression and must be used in a synthesis assignment
statement. Synthesized expressions can contain aggregate function calls and local, or
synthesized variables. Synthesized expressions can contain inherited variables since
inheritance precedes synthesis during evaluation.

£ -- Graph ADL for filter.swg: Initialize global variables

graph : mips;
parent : array-size;
int : cutoff;

cutoff = array-size/mips;

Figure 5.1: Filter Graph ADL Program

_1
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0 5.2.6 ADL Programs

An ADL file contains one or more lines of ASCII characters that define variables,
variable values, and attribute values. A section containing variable declaration state-
ments precedes one or more sections containing attribute and variable assignment
statements. Any declaration or assignment section may be empty. Individual state-
ments are separated by semicolons. Within any section, statements are evaluated
according to their. order of appearance in the file. ADL is a free-format language;
individual words (i.e., variable names, keywords, attribute names, operators) can be
separated by blanks or new lines.

5.2.6.1 Graph ADL Program Structure

A graph ADL program contains the following subsections:

{<graph inherited variable declaration>}*
,{<parent node inherited variable declaration>}*
{<local variable declaration>}*
{<inheritance statements>}*

I {<synthesis statements>}*

5 5.2.6.2 Node ADL Program Structure

"A node ADL program contains the following subsections:

I <graph inherited variable declaration>*
<local variable declaration>*
<inheritance statements>*
<synthesis statements>*

1 5.2.6.3 Arc ADL Program Structure

3 An arc ADL program contains the following subsections:

<graph inherited variable declaration>*
<local variable declaration>*
<inheritance statements>*

I,
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*- 5.3 The ADLEVAL Program

ADLEVAL is invoked as a stand-alone tool while running Prolog. The command
to start Prolog, quintus.engine, should also load the compiled ADLEVAL code,
adlrun. During a Prolog session, the command adleval specifies the program, the
parameter filename specifies the root ADAS graph, debuglvl is an integer (0-4, defaultI = 1) that specifies the level of information to be displayed on the standard output dur-
ing processing and errhlt is a boolean (default = 0) no halt determining whether the
Prolog processing should halt if an error is encountered. The parameter errhlt should
not be used without specifying debuglvl. Below is an example of a session invoking
adleval. The bold font represents what the user enters, whereas the typewriter font
represents the system's prompts and responses. All of the adleval commands are
valid.

$ quintus.engine dua0:[aivd.src.adleval.july29]adlrun

Quintus Prolog Release 2.0 (VAX/VMS)
Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415)965-7700

I?- adleval ('filename',debugivi,errhlt).
OR

I?- adleval ('filename',debuglvo.
ORI?- adleval ('filename').

LEXICAL ANALYSIS IN PROGRESS ....

PARSING IN PROGRESS...

ADAS FILE filename HAS BEEN SUCCESSFULLY PARSED!

EVALUATING GRAPH ...

5.3.1 ADLEVAL Inputs

5.3.1.1 ADAS Data Base

ADLEVAL will read all graph files in the hierarchical ADAS data base. ADLEVAL
works with the ADAS attributes described in Table 5.2 through Table 5.6.

I
I-



33s 5.3.1.2 ADL Files

ADLEVAL will examine every graph's graph.user.file.name to determine the name
of the graph's ADL file. If the attribute has not been assigned a value, no ADLK, processing will take place for the graph. Note that no node in a graph without a
graph ADL file can have an ADL program which references a graph variable.

ADLEVAL will examine every node's node.user.file.name to determine the nameI of the node's ADL file. If the attribute has not been assigned a value, no ADL process-
ing will take place for the node. All node ADL files will be evaluated, including nodes
whose node-class attributes are internal, inport, or outport. This means subgraphs
will be expanded without flattening.

ADLEVAL will examine every arc's arc-user-file-name to determine the name ofI. the arc's ADL file. If the attribute has not been assigned a value, no ADL processing
will take place for the arc. The ADL files associated with arcs attached to graph port
nodes will be evaluated.

V
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5.3.2 ADLEVAL Processing

5.3.2.1 Processing Algorithm

"1 ADLEVAL will evaluate ADL file entities using the following recursive algorithm:

Instantiate variables of graph ADL program
-_ Process inherited section of graph ADL program

For each node in the graph
Instantiate variables of node ADL program
Process inherited section of node ADL program
Invoke ADLEVAL on the node's subgraph (if any)
Process synthesis section of node ADL program

For each arc in the graph
Instantiate variables of arc ADL program
Process inherited section of arc ADL program

Process synthesis section of graph ADL program

Figure 5.2: ADL Processing Algorithm

5.a-.3 ADLEVAL Outputs

5.3.3.1 Script File

ADLEVAL will write a script file named graph-name. scr, where graph-name is the
name of the top level graph, to set modified attribute values instead of modifying the
ADAS data base files directly. The script file can be read during an EDIGRAF or
GIPSIM session to set the attributes before simulation or display.

The script file will include commands for updating those ADAS attributes with
write access listed in Table 5.2 through Table 5.6.

5.3.3.2 Errors

Two levels of error messages are generated by ADLEVAL:

"* serious error In this case, an error message is generated and both syntax
analysis and semantic processing continues at the next statement.

"* fatal error All processing is stopped immediately.

The conditions in Table 5.13 will raise ADLEVAL errors.
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Im

I Table 5.13: ADLEVAL Error Conditions

Error Condition I Severity

Nonexistent ADL file Fatal
Nonexistent ADAS Graph file Fatal
A duplicate variable declaration within an ADL file Serious
A variable is declared as a reserved word Serious
A parent declaration appearing in a top-level graph ADL file Serious
A graph declaration appearing in a top-level graph ADL file Serious
A parent declaration appearing in a node ADL file Serious
A parent declaration appearing in an arc ADL file Serious
A variable declared as graph in a graph ADL file is not declared Serious
in the parent graph's ADL file
A variable declared as parent in a graph ADL file is not declared Serious
in the parent node's ADL file
A variable declared as graph in an arc or node ADL file is not Serious
declared in the graph in which the node/arc is embedded
Referencing a variable which has not been declared Serious
Referencing a variable which has. not been defined Serious
Assigning a value to an ADAS attribute that does not have an Serious
ADLEVAL access of write or has a modification status of
not modifiable
Assigning a value to a parent or graph variable Serious
Referencing an ADAS attribute which does not have ADLEVAL Serious
read access
Invalid floating point format Serious
The operand of a mathematical operator is not Serious
of type integer or float
The operand of a logical operator is not Serious
of type boolean
The data type of an expression value does not match the data Serious
type of the variable or attribute being assigned
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1 5.4 The ADLLINT Program

An ADLLINT facility is provided for performing syntax checking on individual ADL1 files prior to executing ADLEVAL. ADLLINT only detects syntax errors; it does not
detect semantic errors and it does not generate a script file.

ADLLINT is invoked as a stand-alone tool while running Prolog. The command
to start Prolog, quintus.engine, should also load the compiled ADLLINT code,
lintrun. To check the syntax of a graph ADL file, the program graph.ps is invoked
with the parameter filename, which specifies the name of the graph ADL file. Simi-
larly, to check the syntax of a node ADL file, the program node.ps is invoked with
the parameter filename, which specifies the name of the node ADL file. Finally, to
check the syntax ot an arc ADL file, the program arc.ps is invoked with the param-
eter filename which specifies the name of the arc ADL file. Below is an example of a
session invoking these three programs.

3 $ quintus.engine duaO:[aivd.src.adleval.july29]lintrun

.Quintus Prolog Release 2.0 (Vax/VMS)
Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415)965-7700

S?- aphps('toplevel.adl').

Graph ADL file: toplevel.adl

Sint : DataArcValue , CtlArcValue , node-data

DataArcValue = 5
CtlArcValue = 10
node-data = 7 ;
graph-version-number = graph.version-number + time-unit
graph-user-float = graph.user.float + 1.5 + conversionlfactor
graph-user-integer = graph-user-integer * 2

yes
I ?- node-ps('subnode.adl').

-- Node ADL file: subnode.adl

graph : node-date
Sint : consumeO, consumel, produceO, parent.val

Im

I
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node-user..integer - node-.user-integer + node-dataI consumeO = token-.consume-rate(inO);
>>> ''consumel = token-.consume-xate CINI );' is an illegal
assignment statement.I, produceO - token-produce..rate(outO)£ parent-val - 42

synthesize
node-uiser-integer =node-.user..integer + max (node..user-.integer);Itracelflag - sum (tracelflag

end synthesis

ft yes
I ?- node-ps('subnode.adl').

5 Node ADL file: subnode.adl

graph : node-data;I mnt :consumeO , consume 1 , produceO , parent-.val

node..user-..nteger - node..user-integer + node-dataI ~cousumeO = token-.consume-xate(inO)
consumel - token-.consuzue-rate(ini)
produceO = token...produce..rate(inO)

parent-val = 42

synthesize

node-.user-integer =node-.user-integer + max (node -us erint eger);
trace-llag = sum Ctracelflag)3 end synthesis

yes3 ~I ?- arc-.ps('datarc.adl').

Arc ADL file: datarc.adl

I graph :Dat aArcValue

arc..user-integer -arc-.user-integer + DataArcValueI arc-.color " 'orange" ;
queue-size =queue-.size + 55 ~arc-user-float - arc..userlfloat + average-.token..count
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I yes
I ?- halt

i E End of Prolog execution )

5.5 Example

The following graphs and ADL code are an example of using ADLEVAL.

5.5.1 Top-Level Graph

Please refer to Figure 5.3, the Top-Level ADAS Graph, Figure 5.4, the Top-Level
ADAS Graph ADL File, Figure 5.5, the I/O Node ADL File, Figure 5.6, the Top-
Level Internal Node ADL File, Figure 5.7, the Data Arc ADL File, and Table 5.14,
ADLEVAL Results for Top-Level Graph.

5.5.1.5 ADLEVAL Results

Table 5.14: ADLEVAL Results for Top-Level Graph

Component Initial After After
Name Attribute Value Inheritance Synthesis

Graph file graph.user.integer - - 107
Node Ain node.user.integer l 8 8
Node Bin node-user-integer 2 9 9
Node Out node.user.integer 4 11 11
Node Sub node.user.integer 3 10 107
Arc postO arc.user.integer 2 7 7
Arc preO arc.user.integer 1 6 6
Arc prel arc.user-integer 1 6 6

I
I
I
I
I
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5.5.1.1 ADAS Graph

Ain Bin

Sub

I

IL

poI tO

I Out

I Figure 5.3: Top-Level ADAS GraphI
I
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5.5.1.2 Top-Level Graph ADL

-- Graph toplevel.swg: Initialize local variables and
-- store maximum node attribute value from current graph

int : DataArcValue, CtlArcValue;
int : node-data;

DataArcValue = 5;
CtlArcValue = 10;
node-data = 7;

synthesize
graph-user-integer = max(nodeuser-integer);

end synthesis

Figure 5.4: Top-Level ADAS Graph ADL File

5.5.1.3 Top-Level Nodes ADL

-- Nodes AlL, Bin, Out: set user attribute to
-- global value plus current attribute value

graph : node-data;

node.user-integer = node.user.integer + node-data;

Figure 5.5: I/O Node ADL File
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-- Node Sub: set user attribute to global value plus
-- current attribute value plus maximum attribute value
-- from subgraph; place port attributes in variables for
-- inheritance

int : consumeO, consumel;
int : produceO;
int : parent-val;

graph : node-data;

node-user-integer = node.user.integer + node-data;
consumeO = token-consume-rate(inO);
consumel = token-consume-rate(inl);
produceO = token.produce.rate(outO);
parent-val = 42;

synthesize
node-user- integer = node-user- integer + max (node.user. integer);

end synthesis

Figure 5.6: Top-Level Internal Node ADL File

5.5.1.4 Top-Level Arcs ADL

' -- Arcs of type pre, post, and data: set user attribute to
-- global value plus current attribute value

graph : DataArcValue;

Sarc.user.integer = arc.user.integer + DataArcValue;

I Figure 5.7: Data Arc ADL File

I
I
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5.5.2 Mid-Level Graph

Refer to Figure 5.8, the Subgraph ADAS Graph, Figure 5.9, the Mid-Level Graph
I ADL File, Figure 5.10, the First Leaf Node ADL File, Figure 5.11, the Second Leaf

Node ADL File, Figure 5.12, the Subgraph Internal Node ADL File, Figure 5.13, the
Control Arc ADL File, and Table 5.15, ADLEVAL Results for Mid-Level Graph.
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5.5.2.1 ADAS Graph

FixIti ixt

3 SubSub

outo

Figure 5.8: Subgraph ADAS Graph
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3 5.5.2.2 Mid-Level Graph ADL

3 -- Graph sub.adl: Define global variables and store maximum
-- attribute value from current graph

I
int : sub-node-data;

5 graph : node-data;
graph : DataArcValue, CtlArcValue;

i parent : parent.val;
parent : consumeO, consumel, produceO;

I sub-node-data = node-data + parent-val - 13;

3 synthesize
graph.user.integer = max(node.user.integer);

end synthesis

Figure 5.9: Mid-Level Graph ADL File

3 5.5.2.3 Mid-Level Nodes ADL

3 -- Node Sub:FixItl: set user attribute to
-- global variable value plus current attribute
-- value; inherit port attribute from parent node

graph : consumeO;
graph : sub-node-data;

node.user.integer - node-user-integer + sub-node-data;I token-consume-rate(inO) = consumeO;

I . Figure 5.10: First Leaf Node ADL File

I
I
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£ Node Sub:FixIt2: set user attribute to
glblvral value plus current attribute
vau;inei port attribute from parent node

graph :consumel;5 ~graph :sub-.node-.data;

node-.user-.integer = node-.user-integer + sub-.node-.data;5 ~token..consume..rate(ino) = consumel;

I Figure 5.11: Second Leaf Node ADL File

I Node Sub:SubSub: set user attribute to global value;
-- place port attributes in variables for inheritance

int :consumeO, consumel;
int :producel;

int :parent ..val;

3 ~graph :sub-.node-.data;
graph :produceO;

Inode-.user..jnteger = node-.user-integer + sbnd-aa
token-.produce-.rate (out 0) = produceO;
consuzne0 = token-.consunae..rate(ino);Iconsumel = oe-osmert~n)
producel = token..produce-.rate (out 1);3 parent-val = 33;

synthesize
node-.user-integer = node-.user-.integer + max(node..user-.integer);

end synthesis

3 Figure 5.12: Subgraph Internal Node ADL File
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5.5.2.4 Mid-Level Arcs ADL

The arcs in the mid-level graph use the same ADL files as the arcs in the top-level
graph, as well as the ADL for control arcs defined below.

-- Arcs of type control: set user attribute to
global value plus current attribute value

graph : CtlArcValue;

arc.user-integer = arc.user-integer + CtlArcValue;

Figure 5.13: Control Arc ADL File

5.5.2.5 ADLEVAL Results

Table 5.15: ADLEVAL Results for Mid-Level Graph

Component Initial After After
Name Attribute Value Inheritance Synthesis

Graph file graph-user-integer - - 97
Node FixItl node-user-integer 5 41 41
Node FixItl, inport 0 token-consume-rate 0 2 2
Node Fixlt2 node-user.integer 6 42 42
Node Fixlt2, inport 0 token-consume-rate 0 3 3
Node SubSub node.user.integer 7 43 97
Node SubSub, outport 0 token.produce.rate 0 4 4
Arc controlO arc-user-integer 3 13 13
Arc data0 arc.user-integer 4 9 9
Arc datal arc.user-integer 4 9 9
Arc postO arc.user-integer 5 10 10
Arc pre0 _arcuserinteger 6 11 11
Arc prel arc.user.integer 6 11 11
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i 5.5.3 Bottom-Level Graph

Refer to Figure 5.14, the Bottom-Level ADAS Graph, Figure 5.15, the Bottom-Level
Graph ADL File, Figure 5.16, the Third Leaf Node ADL File, Figure 5.17, the Send
Control Node ADL File, Figure 5.18, the Send Data Node ADL File, and Table 5.16,
ADLEVAL Results for Bottom-Level Graph.

i

i

i
i

I
I
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I
i

I

I
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!
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5.5.3.1 ADAS Graph

mO mSinO in1
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da 1

FixIt
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po tl coni roll

outo outl

Figure 5.14: Bottom-Level ADAS Graph
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5.5.3.2 Bottom-Level Graph ADL

- Graph subsub.swg: Define global variables and store maximum
S-- attribute value from nodes in current graph

int : subsubnodedata;

graph : sub-node-data;
graph : DataArcValue, CtlArcValue;

parent : parent-val;
parent :consumeO, consumel, producel, produceO;

subsub-node-data = sub-node-data + parent-val - 25;

synthesize
graph.user.integer = max(node.user.integer);

end synthesis

Figure 5.15: Bottom-Level Graph ADL File

5.5.3.3 Bottom-Level Nodes ADL

-- Node Sub:SubSub:Fixlt: set user attribute to
-- global variable value plus current attribute
-- value; inherit port attributes from parent node

graph : consumeO, consumel;
graph : subsub-node-data;

node.user.integer = node-user-integer + subsub-node-data;
token-consume-rate(inO) - consumeO;
token-consume-rate(inl) = consumel;

I . Figure 5.16: Third Leaf Node ADL File
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- Node Sub:SubSub:SndCtl: set user attribute to
-global variable value plus current attribute

-- value; inherit port attribute from parent node

S--
graph : producel;5 graph : subsub-node-data;

node-user-integer - node-user.integer + subsub-node-data;
token-produce-rate(outO) = producel;

__ Figure 5.17: Send Control Node ADL File

I --

-- Node Sub:SubSub:SndDat: set user attribute to
-- global variable value plus current attribute
-- value; inherit port attribute from parent node

Sgraph : produceO;
graph : subsub-node-data;

I node.user.integer a node.user.integer + subsub-node-data;
token-produce-rate(outo) - produceO;

Figure 5.18: Send Data Node ADL File

5.5.3.4 Bottom-Level Arcs ADL

The arcs in the bottom-level graph use the same ADL files as the arcs in the top- and
-- mid-level graphs.

U
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6. GRAPH TRANSFORMATION SYSTEM

6.1 Overview

The AIVD Graph Transformation Systems (GTS) transforms a software graph sup-
plied by the user according to transformation rules. The transformation rules are
developed by the user in the form of ADAS software graphs.

6.1.1 Execution

GTS is invoked as a stand-alone tool while running Prolog. The command to start
Prolog, quintus-engine, should also load the compiled GTS code, gtsrun. During a
Prolog session, the command testgts.all specifies the program, the parameter ingraph
specifies the application graph to be transformed, outgraph specifies the name of the
result graph, rulesgraph specifies the transformation rule base to be used in making
the transformation, and prtlvl is an integer (0-4) that specifies the level of information
to be sent to the standard output.

GTS can be invoked in three levels of interaction: automatic, semi-automatic
and controlled. Upon entering Prolog with the compiled gtsrun, the user will be
prompted as to which level of interaction he prefers to use in executing the program.
An example session of GTS follows. The typewriter font represents the system's

I
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prompts and responses, whereas the bold font represents the inputs of the user. The
example session is in controlled mode with prtlvl set to zero.

$ quintus.engine duaO:[aivd.src.gts.oct1O]gtsrun

Quintus Prolog Release 2.0 (VAX/VMS)
Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415)965-7700

I?- testgts.all(' ingraph',' outgraph',',rulesgraph',prtIvo.

LOADING INPUT GRAPH FILE: ingraph

Please enter design packages in list form:

Please enter hardware types or classes in list form:I: fl.

Print Levels:
0 Minimum PrintingI 1 Sorted rules; some in-process printing.
2 All rules; additional in-process printing; warnings.
3 Additional transformation details.
4 Additional pattern matching details.

The Print Level is now:
0 : Minimum Printing

Enter: #.<CR> to change debugging level;
"-C for prolog trace options;
c.<CR> to continue: c.

LOADING TRANSFORM RULES GRAPH

ORDERING TRANSFORM RULES

*** BEGINNING OR CONTINUING GRAPH TRANSFORM PROCESS ***

Target graph for transformation: ingraph

I
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Enter: c.<CR> to begin search for pattern match;
o.<CR> to output transformed graph to named file;
h.<CR> to halt and output to normal output file;
a.<CR> to abort.
I: C.

Enter: #.<CR> to change debugging level;
""C for prolog trace options;
c.<CR> to continue: c.

The following match was found:...

6.1.2 Notation

* The user's graph before transformation will be called the application graph.

e The user's graph after transformation will be called the result graph.

* .The left hand side of a transformation rule will be called the pattern graph.

* The right hand side of a transformation rule will be called the transform graph.

A pattern graph node that has exactly one associated transform graph node will
be called external. External nodes link the pattern graph and the transform graph
to the original application graph. All other nodes in the pattern graph will be called
not external. Only external nodes of a pattern graph will be allowed to have ports
with unattached arcs.

6.2 GTS Inputs

6.2.1 Transformation Rule Base

The transformation rule base structure of taxonomy is shown in Figure 6.1. A trans-
formation rule base file is an ADAS graph file which contains nodes whose subgraphs
are pattern graphs and transform graphs. The parent node of a transform graph is
associated with the parent node of a pattern graph through an arc connecting the
outport of the pattern graph's parent node and the inport of the transform graph's
parent node. A pattern graph may have one or more transform graphs associated
with it.
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TRANSFORMATION RULE BASE GRAPH

IPATTERN PATTERN PATTERN PATTERN

NODE 0 NODE 1 NODE 2 NODE NI
TRANSFORM TRANSFORM TRANSFORM TRANSFORM

NODE 0 NODE i NODE 2 NODE NIF
TRANSFORM

NODE lb

Ii

PATTERN NODE 2

SUBGRAPH

TRANSFORM NODE 2

SUBGRAPHI
I

IPEI PEI PE2

I VoTE

I
I Figure 6.1: Graph Transformation System Taxonomy
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6.2.2 Application Graph

The application graph attributes indicated contain the following:

graph-user-file-name The name of the ADL file associated with the graph.
graph.user-text The name of the help file associated with the graph.
node.user.file.name The name of the ADL file associated with the node.
node.user.text The name of the help file associated with the node.
arc.user.file.name The name of the ADL file associated with the arc.
arc.user.text The name of the help file associated with the arc.

6.2.3 Pattern Graph

1. A pattern graph is not allowed to have any graph ports. It may have nodes
with ports with no incident arcs.

2. Each node in the pattern graph must be given a unique positive value for its
graph.port-number attribute, and that attribute must be given a status of N for
no match required. This may be accomplished through the edit status node
nodename command.

3. Each inport in the pattern graph must be given a unique identifier for its in-
port-id attribute, and that attribute must be given a status of N for no match
required. This may be accomplished through the edit status node nodename
command.

4. Each outport in the pattern graph must be given a unique identifier for its
outporLid attribute, and that attribute must be given a status of N for no
match required. This may be accomplished through the edit status node
nodename command.

5. Each arc in the pattern graph must be given a unique identifier for its token-units
attribute, and that attribute must be given a status of N for no match required.
This may be accomplished through the edit status arc arcname command.

6. In a pattern graph, the status facet of the attribute is used to indicate conditions
in matching the pattern graph against the application graph.

"* M or match required implies that the pattern node (or arc) can only be
matched with application nodes (or arcs) that have the same attribute
value.

"* N for no match required implies that the pattern node can be matched
with any application node regardless of its attribute value.

"* P is not used.
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6.2.4 Transform Graph

1. Transform node attribute graph.port-number is used to indicate that a particular3 transform node is associated with a particular pattern node.

* A value 0 means new node or no association.

* A value of n means that the transform graph node is associated with the
pattern graph node that has n as its graph.port-number value.

2. Transform inport attribute inport-id is used to indicate that a particular trans-
form inport is associated with a particular pattern inport.

I * A value N means new inport or no association.

* A value of In means that the transform graph node inport is associated
with the pattern graph node inport that has In as its inport-id value.

I 3. Transform outport attribute outport.id is used to indicate that a particular
transform outport is associated with a particular pattern outport.

I . A value N means new outport or no association.

* A value of On means that the transform graph node outport is associated
with the pattern graph node outport that has On as its outport-id value.

4. Transform arc attribute token-units is used to indicate that a particular trans-3 form arc is associated with a particular pattern arc.

9 A null value means new arc or no association.

I e A value of ID means that the transform graph arc is associated with the
pattern graph arc that has ID as its token-units value.

3 5. For each transform attribute, the modifiable facet of the attribute is used to
indicate whether, in the transformed node (or arc), the value of the attribute is
to be copied from the matched application node (or arc) or from the transform
graph node (or arc).

"" N or not modifiable implies copy from the matched application node or
arc.

"* M or user modifiable implies copy from the associated transform node or
3 arc.

"* P or program modifiable is not used.I
I
I



I

I 58

* 6.3 GTS Processing

6.3.1 The Matching Process

A pattern graph matches an application graph if the following hold:

1 1. Each node N.P in the pattern graph matches a corresponding node N in the
application graph; i.e.,

mI (a) For each node attribute a(N.p) of N-p,

if status(N.p, a) = M
* then a(NUp) = a(N)

(b) For each input port attribute a(N.p, k) of N.p,

5 if status(N-p, k, a) = M
then a(N.p, k) = a(N, k)

(c) For each output port attribute a(N.p, k) of N.p,I if status(N-p, k, a) = M
then a(N.p, k) = a(N, k)

ImU Where status (N.p, a) means the status of attribute a of node N-p and status
(N.p, k, a) means the status of attribute a of the kth inport or outport, as
applicable.

2. Each arc A.p in the pattern graph matches a corresponding arc A in the appli-
cation graph; i.e.,

(a) The arc sources must match, that is,

if source(A-p) = Ngp and source(A) = N
then N.p must match N

(b) The arc sinks must match, that is,
-- if sink(A-p) = Ngp and sink(A) = N

then N-p must match N

_= (c) The arc attributes must match, that is,

if status(A-p, a) = M5- then a(A.p) = a(A)

3. All arcs in the application graph that are incident to a node that matches the
pattern graph will either connect two nodes that match pattern nodes, or will
connect a node that does not match a pattern node to a node that matches

I
I
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an external node. This rule guarantees that all arcs in the application graph
that connect the matched portion of the graph to the rest of the graph will also
occur in the result graph.I

6.3.2 The Replacement Process

I 1. The equivalent of block move operations are performed to create enough space
around the matched section of the application graph to accommodate the trans-

n form graph.

2. All nodes in the application graph that match nodes in the pattern are deleted.

1 3. For each node in the transform graph a node is added to the application graph.
If the node has no association, the transform graph node is copied into the

* appropriate location in the application graph.

4. For each node in the transform graph that has an associated node, the attributes
of the application graph node and the transform graph node is merged using
the attribute status as a guide.

5. Arcs in the application graph which match arcs in the pattern graph are deleted.

6. For each arc in the transform graph, an arc is added to the application graph.

7. If an arc in the transform graph has no association, the transform graph arc
attributes are copied. For each arc in the transform graph that has an associated
arc, the attributes of the application graph arc and the transform graph arc are
merged using the attribute status as a guide.

8. Each arc in the application graph which was connected to a node not matched
by the pattern graph at one end of the arc and was connected to a node matched
by some pattern graph node at the other end of the arc, is reconnected to a new

node, using the node inport or outport association as a guide.

* 6.4 GTS Outputs

The output of is a transformed ADAS graph, with attributes modified as de-3 scribed in the preceding section on GTS Processing.

I
I
I
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* 6.5 An Example

Figure 6.2 shows the example ADAS application graph. Based on the topology of3 the application graph, there are three possible matches for the pattern graph, one for
each row of the graph. However, only one of the matches satisfies all the conditions
required for a match.I Figure 6.3 shows the example pattern graph, which is a simple three-stage pipeline
graph. Note the extra input and output ports on the external nodes of the pattern,
namely the first and last stages of the pipeline. The following attributes are being
used for matching nodes and input and output ports:

node.user.file.nameI in.token-data-type
out-token-data-type

The following attributes are being used for matching arcs:

arc-color
arc.user.file.name

Node A in the pattern graph could match Al, A2, or A3 in the application graph,
and similarly C could match C1, C2, or C3. However, node B could match BI or B2,
but not B3, since B is not an external node and B3 has an arc incident that does not
match an arc in the pattern. Furthermore, arc arrov3 in the pattern graph cannot
match arc arrow30 in the application graph since their colors do not match. This
forces exactly one match, with A matching A2, B matching B2, and C matching C2.

Figure 6.4 shows the corresponding transform graph. Notice that a new node is
created, and so is a new arc. The transform files associate transform node attributes
with pattern node matches as follows:

A gets attributes from the node matched with A
BO gets attributes from the node matched with B
Bi gets attributes from the node matched with C
C gets attributes from the node matched with C

Attributes are shared for input ports as follows:

AMO) gets attributes from the input port matched with A(O)
A(1) gets attributes from the input port matched with A(1)
BO(O) gets attributes from the input port matched with B(O)
Bi(O) gets attributes from the input port matched with C(0)
C(O) gets attributes from the input port matched with C(O)
C(1) gets attributes from the input port matched with C(1)
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Attributes are shared for output ports as follows:

AMO) gets attributes from the output port matched with A(1)
A (1) gets attributes from the output port matched with A (1)
BO (0) gets attributes from the output port matched with B(0)
B1 (0) gets attributes from the output port matched with C(0)
C(O) gets attributes from the output port matched with C(O)
C (1) gets attributes from the output port matched with C(1)

The inheritance of node-color attributes is set as follows:

A gets its color from the node matching pattern node A
BO gets its color from the transform graph
Bi gets its color from the node matching pattern node C
C gets its color from the transform graph

I The inheritance of arc-color attributes is set as follows:

arrowO gets its color from the arc matching pattern arc arrow2
arrowl gets its color from the transform graph
-arrow2 gets its color from the arc matching pattern arc arrov3
arrow3 gets its color from the transform graph

Figure 6.5 shows the result of transforming the original application graph. One
match has taken place, and in fact only one match can take place.

* 6.6 GTS Control Rules

Additional "intelligent" control over the graph transformation process is provided
through the use of GTS control rules. GTS control rules may be used for

1. Rule selection - deciding which GTS pattern/transform combinations should
be tried.

2. Pattern Matching - providing additional logical capabilities for accepting or
-- rejecting pattern matches.

3. Transform Evaluation - deciding which of a set of transform graphs, all as-
sociated with some particular pattern graph, should be used in a given graph
transformation.

4. Attribute Calculations - calculating attribute values as functions of prior graph
attributes.

I
I
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6.6.1 Rule Selection

Control rules for rule selection are "built-in" and use rule "class" specifications.. Every
_ rule may have an associated design package class and hardware class.

Design package classes are specified using the package.file.name at-5 tribute of the rule graph pattern node. Any number of package names
may be specified, separated by a semicolon - no spaces are allowed. For
example, the list of names "filter-design" and "4kfilter" are specified using
the package.file-name attribute value "filter-design;4kfilter."

Hardware classes are specified using the hw.module attribute of the
rule graph transform node or nodes. Only a single name may be specified
for any particular transform. Hardware classes may be either a specific
design of hardware or a class of hardware designs for which particular
Stransformations may be appropriate.

In using GTS, a user is asked to input desired design packages and hardware
I classes. These are input in the form

[<class.name>,< class.name>,...].

GTS uses these class names by accepting situations of one or more matching
Sname values as "allowing" a controlled situation whenever non-empty values or sets
of values are specified. Two situations are controlled in this way: the initial selection
of rules (patterns) to be applied and the selection of transforms to be evaluated for
use after a pattern match is found. If a rule class specification is empty, or a user
does not input any class specification list, the associated class tests are omitted.

GTS also uses rule priority to order all selected rules before trying pattern matches.
-- Rule priority is specified by using the rule graph pattern node attribute node-user-integer.

Higher values have higher priority.

6.6.2 Pattern Matching

When GTS has succeeded in making a pattern match of a pattern graph to an appli-
cation graph, as specified in Section 6.3, GTS will then attempt to "accept" the match
through use of an associated "match" rule. A match rule may be defined in a file whose
filename is specified by the rule graph pattern node attribute node-user.file- name. If

no match rule is specified, the pattern match is accepted.

Currently, match rules are written in Prolog, in the form
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matchrule < rule >.

A match rule must set a "global" flag "acceptmatch(true)" if a match is to be
accepted. The following example, taken from Example 2, illustrates a match rule:

-- iosfa-m.adl
-- Matching rule for iterated overlap-save filter (A).
-- Accept a match if the application node matched has an input
-- dimension greater than 4096.1 */

matchrule
retractall(acceptmatch (_)),
(matchnval('FO ,inport('I 1 ,cons),V),

V > 4096,
assert (acceptmatch(true))

assert (acceptmatch(false)) ),
I.

matchrule.

The term "matchnval ('FO',inport('I1',cons),V)" gets the value of the consume
attribute of the inport named I1 of the application graph node which matches pattern
node FO. In general, the term

matchnval(<pattern.node>, <attribute>, Value)

gets the value of <attribute> of the application graph node which matches
<pattern-node>. <attribute> may be either a simple attribute name, or may be

inport (<inport-name>, <inport-attribute> )
or outport (<outport-name>, <outport-attribute> )

The Prolog construct

I (<terms 1>;< terms•2>)

is an "or" construct; if <termsl> is not "proven," <terms2> will be tested. Thus,
in the example, if the value of cons is greater than 4096, the match will be accepted;
if the value of cons is less than or equal to 4096, the match will not be accepted.
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6.6.3 Transform Evaluation

After a pattern match has been accepted, GTS will evaluate whether to make a trans-
form. If the rule graph pattern node has only one transform node associated with it
and no evaluation rule is specified, the transform will be executed. If an evaluation
rule is specified, the transform may or may not be executed, depending on the eval-
uation rule. If more than one transform node is specified for the pattern node, the
transform for which the associated evaluation rule defines the highest "evaluatevalue"
value is executed.

An evaluation rule may be specified for a transform graph by defining it in a file
which is specified by the rule graph transform node attribute node-user.file.name.
Evaluation rules are defined in Prolog, in the form

evaluaterule :-
< rule >.

An evaluation rule must set a global value "evaluatevalue(<value>)"; the trans-
form for which the value is highest is selected for execution. If only a single transform
node is associated with a rule graph pattern node, the transform will be executed if
<value> is not zero. For example, suppose a particular transform is intended for a
pipeline (fft.mult.fft) transformation and is to be accomplished if the datarate lies be-
tween limits MinRate and MaxRate. An example of an evaluation rule implementing

this logic is

-- fltl.adl

-- Evaluation rule for pipeline (fft.mult.fft)
-- filter transformation.

-- FrameRate is vectors per second; use nodeuserfloat
-- attribute

-- MaxRate is maximum datarate, bytes per second,
-- MinRate is minimum datarate (use a simpler implementation
-- if datarate is less than MinRate).

-- Do transform if datarate <= MaxRate and > MinRate.

evaluaterule

I
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retractall(evaluatevalue(_)),
MaxRate = 6500000,
MinRate = 4000000,
matchnval ('FO' ,usfp,FrameRate),
matchnval ('FO' ,inport('Ii 1,cons),N_data),
DataRate is N-data * FrameRate,
( DataRate -< MaxRate,

DataRate > MinRate,
assert (evaluatevalue(10)))

assert(evaluatevalue(O))).

6.6.4 Attribute Calculations

The graph transformation is initially processed as described in Section 6.3.2. After
making the transformation, GTS checks to see if an attribute rule is specified. An
attribute rule is specified in the same file as used for evaluation rules; that is, the
file is specified by the rule graph transform node attribute node.user.file.name. If an
attribute rule is specified, it is executed to set attribute values which cannot be set
using the "merge" operations of Section 6.6.3. An attribute rule is defined in Prolog
in the form

attributesrule
< rule >.

For example,

-- iosfa-t.adl
-- Calculated attributes for iterated overlap-save filter (A)
-- transformation.

attributesrule
matchnval('FO' ,inport( 'I1' ,cons) ,N-data),
matchnval('FO' ,inport( 'IO' ,cons),N.coef),
Overlap is N-coef - 1,
Rem.seg is N-data - 4096 + Overlap,

Difference is Rem.seg - Overlap,
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setuval ('copyo' ,outport( '000' ,prod) ,N..data),I ~ ~setnval('copyo' ,outport('001' ,prod) ,N..data),
setnval( 'sfn0' ,inport('IIO' ,cons) ,N-Aata),I ~ ~setnvaiC 'fn' ,inport('II0' ,cons) ,N-.data),
setnval('sfn0' ,outport('000' ,prod) ,Rem-.seg),
setnval('copyl' ,outport('000' ,prod) ,N-.coef),I ~ ~setnval('copyl' ,outportC'00i' ,prod) ,N-.coef),
setnva1('filtl' ,inport('II0' ,cons) ,N-.coef),
setnval('filt0' ,inport('II0' ,cons) ,N-.coef),I ~setuval('filt0' ,inport('III' ,cous) ,Rem..seg),
setnval('filt0' ,outport('000' ,prod) ,Rem..seg),
setnval('sfnil',inport('IIO' ,cons) ,Rem-.seg),

setnval( 'sfni' ,outport ('110' ,prod) ,Difference),
setnval('cct' ,inport('IIO' ,cons) ,Difference).

I The terms "setnval (..." are somewhat the inverse of matchnval(...

I ~setnval(< transform..node>,<attribute>,Value)

sets the value of <attribute> of the new application graph node associated withI ~the <transform..n ode>.
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1 7. THE ALLOCATOR OF SOFTWARE TO
HARDWARE

I 7.1 Overview

I The AIVD Allocator of Software to Hardware (ASH) is an enhanced version of the
ADAS Version 2.5 mapping tool (also called ASH). ASH reads a software graph data
base and attempts to map its nodes onto a hardware graph data base using rules from
a mapping rules base. ASH is executed by entering the command

ash swdbase hdwbase -s script -d gterm

I where:

e swdbase is the name of the software graph data base,

e hwdbase is the name of the hardware graph data base,

* script is the name of a script file, and

o gterm is the name of the graphics display device.

I ASH generates an ADAS script file which sets the hw.module attributes of software
nodes. Only those nodes with an attribute modification status other than N for the
hw.module attribute are considered for assignment.

Figure 7.1 shows the inputs and outputs of ASH. The user interface for ASH is
based on the standard ADAS model, where the current graph of the hierarchy is
displayed in a window, and a menu is attached either to the left side or the right side
of the graph window. The primary format for ASH outputs is the script file, which
can be read by other ADAS tools.

70
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5 7.2 Input

1 7.2.1 Parameters

The following parameters are entered as part of the ASH command line.

software graph data base This is the file name for the root graph of the software

grapb h*erarchy.

hardware graph data base This is the file name for the root graph of the hardware

graph hierarchy.

script file This is the file name for a script file. The script file can contain spec-
ifications of the ASH mapping parameters described in the control command,
initial software graph utilization information as generated by GIPSIM for an
unconstrained graph, as well as the ADL initialization of graph attributes.

graphics display device This is the identifier for graphics device for the display
and the mouse. If ASH is being run from an ASCII terminal, as opposed to a
-graphics workstation, then the device name is null. If either a workstation or

Sdisplay terminal is being used, then the standard ADAS identifier for the device
should be used.

a= 7.2.2 Files

3 7.2.2.1 ADAS Software Graph

The software graph hierarchy for ASH specifies the software which is mapped to
the hardware. ASH reads the data base and flattens the graph before starting the
mapping process. ASH uses the following information in the software graph:

1 1. The connectivity of the software graph is used to constrain the possible map-
pings. In particular, there must be an arc B in the hardware graph which cor-
responds to each arc A in the software graph such that hw.mod(Source(A)) =

Source(B) and hwmod(Sink(A)) = Sink(B).

2. The attributes that ASH uses for its calculations which are embedded in the
-software graph data base are:

* The node hardware module attribute, denoted by hw-mod(N). Generally,
this attribute will be blank when ASH starts working. If it is not blank and
the modification status on the attribute is "N", then ASH will treat thisI

I
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mapping information as locked by the user, and therefore will not modify
this mapping.

" The node hardware module-class attribute, denoted by module class(N).
This attribute is used to determine what set of possible hardware modules
would allow a mapping; i.e., if module.class(M) = module-class(N), then

software node N can be mapped to hardware module M.

" The node utilization attribute, denoted by Uf(N). This attribute should
be the result of a GIPSIM simulation of the unconstrained software graph,
i.e., a version of the software graph where each node has its own hardware
module. This attribute may be stored in the attributes when the graph is
loaded, or it may be loaded through a script file. The latter is necessary if
the software graph hierarchy has shared subgraphs.

7.2.2.2 ADAS Hardware Graph

The hardware graph hierarchy for ASH specifies the resources to which the software is
mapped. ASH reads the data base and flattens the graph before starting the mapping
process. ASH uses the following information in the hardware graph:

1. The connectivity of the hardware graph is used to constrain the possible map-
pings. In particular, there must be an arc path B in the hardware graph which
corresponds to each arc A in the software graph such that hw.mod(Source(A)) =

Source(B) and hw.mod(Sink(A)) = Sink(B).

2. The node hardware module class attribute is used to determine what set of
possible hardware modules would allow a mapping; i.e., if module-class(M) =
module-class(N), then software node N can be mapped to hardware module
M.
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3 7.2.3 Commands

The behavior of ASH can be controlled interactively through the command set listed3 below. The functions of the commands are described in the Command Processing
section.

Scontrol This command determines the values of the parameters for the
mapping process.

3 edit This is the usual ADAS command for editing graph hierarchies.

environ This is the usual ADAS command for setting the display envi-
I ronment for the ADAS graphs.

hardware This command allows the user to switch to browse through the
"* hardware graph hierarchy.

log This command turns on or off the log of moves made during theB mapping process.

macro This is the usual ADAS command for creating and deleting
macro commands.

map This command performs the mapping of software to hardware
based on the control options defined by the user.

output This command generates a script file defining the current map-
ping and the expected utilizations of software and hardware.

quit This is the usual ADAS command for moving back up the soft-
ware (or hardware) graph hierarchy or out of ASH.

save This is the usual ADAS command for saving a graph hierarchy.

script This is the usual ADAS command for reading a script file.

software This command allows the user to browse through the software
graph hierarchy.

stats This is the usual ADAS command for displaying attributes of
the software or hardware graph.

subgraph This is the usual ADAS command for moving down the software
or hardware graph hierarchy.

window This is the usual ADAS command for changing the window.
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3 7.3 Processing

I 7.3.1 Performance Estimators

The estimated utilization of a free software node N is denoted by Of (N). This
utilization is obtained by executing GIPSIM on a version of the software graph where
each node is provided with its own hardware resource.

The estimated free utilization of a hardware module M is denoted by Of (M). ItI is calculated by the formula

UO(M)= O -f(n)
I hdwmod(n)=M

The maximum free utilization of a hardware module is denoted by U,0ax. It is
calculated by the formula

Umax =rmax (Uf (M))MEhwgI The estimated utilization of a constrained software node N is denoted by Uc(N).

If U0,, < 1, then
*- U&(N) = U1(N)

Otherwise, if U,,,a > 1, then

£I U (N) = Of(N)/(.ax

This is the utilization that is written into the software utilization script file and is
displayed by the stats command.

The estimated constrained utilization of a hardware module M is denoted by
UQ(M). It is calculated by the formula

I Ur(M) (=r,(n)

hdw-7nod(n)=M

This is the utilization that is written into the hardware utilization script file and is
displayed by the stats command.

1- 7.3.2 The ASH Mapping Algorithm

Figure 7.2 shows the ASHL mapping algorithm. This is the algorithm executed whenI the data bases have been loaded, script files have been run to set the initial attributes,
and the user has defined the control options for the mapping algorithm. After the3 initial random mapping of the software to the hardware, the algorithm goes into a
series of iterations of the two major functions:

I
I
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e enforcing the connectivity constraint, i.e., making sure that each software arc AI has a unique corresponding hardware arc B such that hw.mod(Source(A)) =

Source(B) and hw..mod(Sink(A)) = Sink(B).

I * minimizing the maximum hardware module utilization, which in turn minimizes
the maximum software node utilization.

The number of iterations of this major loop is controlled by the iterations parameter
set with the control command.I Each of the two major functions described above goes through its own iteration
process of prioritizing software nodes to be moved, selecting hardware modules to
serve as the destination of the software node move, and then making the map and
updating the internal data structures. The numbers of iterations of these processes is
also controlled by the user through the enforce and move percentage parameters set3m with the control command.

7.3.2.1 Creating an Initial Map

As soon as the user has entered the map command, ASH will perform an initial
random mapping to start the optimization process. No attempt is made by the
initialization routines to enforce connectivity in the mapping of software to hardware,
but the initial mapping does meet the module-class constraints, .i.e., if software node
N is mapped to hardware node M, then module.class(N) = module .class(M).

3 7.3.2.2 The Major Iteration

ASH proceeds to optimize the mapping by changing the mappings of software nodes.
This change is made in a series of iterations. Each iteration first tries to enforce the
connectivity constraints and then attempts to reduce the maximum utilization of the
hardware modules. One of the control parameters that the user can define is the
number of iterations to be performed before the optimization process is halted.

7.3.2.3 Enforce Connectivity

During the process of enforcing connectivity, ASH attempts to minimize the number
of software arcs that violate the connectivity constraint.

The first step in this process is to determine the priority order in which software
nodes will be moved. The order is determined by the number of connectivity violations3 on arcs that are incident to the nodes. Thus a node N1 which has more connectivity
violations on its incident arcs than a node N2 will have a higher priority order than

I
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783 N2. The ordering also takes into account the amount of time since the node was last
moved. The larger this time interval, the higher the priority assigned to moving the
node.

Once the software nodes have been assigned priority orders, each node N in order
is moved by selecting the hardware module M which will cause the greatest decrease3 in the number of unmapped software edges when N is moved to M.

Finally, the highest priority software node is mapped to the selected hardware
module and is removed from the hardware module it previously was mapped to asI well as from the priority list. The next highest priority software node is then picked
and a hardware module is again selected.

The process stops when connectivity is achieved (in which case control passes
to the second part of the iteration), or a fixed number of connectivity iterations is
exceeded. If the priority list is emptied before then, the list is reloaded by recalculating3 the priorities of all the software nodes based on the mapping which resulted from the
last connectivity move. The number of connectivity iterations is a parameter which
can be selected by the user through the control command.

7.3.2.4 Reduce Maximum Hardware Utilization

U The second part of the mapping iteration is reducing hardware utilization. The first
step of this part is to priority order all the software nodes based upon the utilization of3 the hardware modules which they occupy. Software nodes in heavily utilized hardware
modules receive a high priority for being moved.

Next, a hardware module is selected which will have a utilization lower than
the current maximum hardware utilization once the software node with the highest
priority is mapped to it. This movement will reduce the utilization of the most heavily
utilized hardware module but will not increase the utilization of the selected hardware
module to the same level, thus removing potential bottlenecks.

The highest priority software node is mapped to the selected hardware module
5 and is removed from the hardware module it previously was mapped to as well as

from the priority list. This usually causes some software edges to become unmapped
and connectivity can no longer be guaranteed. When connectivity is again being re-
established in Enforce Connectivity process, this software node is given a low priority
for being moved in order to prevent it from being moved back to its original position
as an easy way to restore connectivity (that explains the reason why newly moved
nodes receive low priority for movement). Upon the completion of this step, control
returns to moving the new high priority software node to its best destination hardware
module. The Reduce Utilization process ends when a fixed percentage of the original
priority list has been moved (say 30%).

I
I
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I 7.3.3 Command Processing

The behavior of ASH can be controlled interactively through a command set, which3 is patterned on the GIPSIM command set. The following sections describe this set
of commands.

7.3.3.1 The Control Command

This command determines the values of the parameters for the mapping process.I There are three parameters:

3 iterations the number of major loop iterations to be performed by the
mapping algorithm,

move percentage the percentage of nodes to be moved from the node with the
greatest utilization, and

Senforce number of iterations of the enforce connectivity module.

i 7.3.3.2 The Edit Command

This is the usual ADAS command for editing graph hierarchies. The command edit
node allows the user to edit all the attributes for a node and its input and output
ports. The command edit arc allows the user to edit all the attributes for an arc.
The command edit select allows the user to edit the values for a particular attribute
either for all nodes, all arcs, or selected nodes, or selected arcs. The command edit
global allows the user to broadcast a value of a particular attribute to all nodes or
arcs which share the same template.

7.3.3.3 The Environment Command

I This is the usual ADAS command for setting the display environment for the ADAS
graphs. The command environ display allows the user to either turn on or off the
display of the graph. The command environ grid allows the user to either turn on
or off the display of the grid on which the nodes and the arc joints are positioned.
The command environ node.lhbels allows the user to either turn on or off the
display of the labels on the nodes of the graph. The command environ arc-labels
allows the user to either turn on or off the display of the labels on the arcs of the
graph. The command environ menu allows the user to position the menu either
on the left or the right of the graph window.

I
U
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7.3.3.4 The Hardware Command

This command changes the context from the software graph hierarchy to the hardware
graph hierarchy. If the user is in an ADAS software graph, then this command first
gives the user the option of saving the software graph (either the current graph or
the hierarchy below the current graph) and then changes the context to the root
hardware graph. If the user is already in the hardware graph context, then an error
message is printed and the command does nothing.

7.3.3.5 The Log Command

This command turns on or off the log of moves made during the mapping process.
The log indicates whether the mapping was done during the enforce connectivity
process or during the minimize utilization process. Each log record describes the
move of a software node to a hardware module. The format for a log is shown in
Figure 7.6.

I7.3.3.6 The Macro Command

This is the usual ADAS command for creating and deleting macro commands. The
command macro add macro name ADAS command allows the user to add a new
command called macro name to the top level ASH menu, where the command is
defined by an ADAS command string. The macro names must be distinct. The
command macro delete macro name deletes a macro from the top level ASH menu.
The command macro list lists the current macro definitions.

7.3.3.7 The Map Command

This command creates a mapping as described in the ASH Mapping Algorithm sec-
tion. Two messages are produced: the first indicating that the initial random mapping
has been completed, and the second indicating that all of the major iterations have
been completed.

7.3.3.8 The Output Command

This command enables the user to generate one or more cutputs resulting from the
excuted mapping.

5 mapping Produces a script file setting the hw.module attribute of the
nodes in a software graph hierarchy.I

I
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hw.names Produces a script file uniquely naming all of the node-name at-

tributes of the hardware components in the hardware graph.

utilization Produces two script files loading estimated node-utilization val-
ues for both hardware and software graphs.

report Produces % report of the assignments made during the mapping
session.

I 7.3.3.9 The Quit Command

This is the usual ADAS command for moving back up the software (or hardware)
graph hierarchy. At the root of either the software or hardware graph hierarchy, this
command causes an exit from ASH. Otherwise, the command causes ASH to exit
from the current graph and return to the parent graph. As in GIPSIM, the command
allows the user to save either the current graph or the entire graph hierarchy below
and including the current graph.

7.3.3.10 The Save Command

I This is the usual ADAS command for saving a graph hierarchy. As in GIPSIM, the
command allows the user to save either the current graph or the entire graph hierarchy3 below and including the current graph.

3 7.3.3.11 The Script Command

This is the usual ADAS command for reading a script file. The user must specify the
name of the script file. Any errors found by ASH during the execution of the script
file will cause the execution of the entire script file to be aborted.

7.3.3.12 The Software Command

This command changes the context from the hardware graph hierarchy to the software
graph hierarchy. If the user is in an ADAS hardware graph, then this command first
gives the user the option of saving the software graph (either the current graph or
the hierarchy below the current graph) and then changes the context to the root
software graph. If the user is already in the software graph context, then an error
message is printed and the command does nothing.I

I



8217.3.3.13 The Statistics Command

This is the usual ADAS command for displaying attributes of the graph. When
utilization is displayed, the utilization values are based on ASH's estimates of the
utilization. The output command must be executed before the stats command is
entered in order to ensure that current statistics are being used.

7.3.3.14 The Subgraph Command

This is the usual ADAS command for moving down the software (or hardware) graph
hierarchy. The user must specify the parent node of the subgraph which is to become
the current graph.

7.3.3.15 The Window Command

This is the usual ADAS command for changing the window displayed in terms of its
center location and relative scaling.

7.4 Output

7.4.1 Mapping Script

ASH will produce an ADAS script file which can be read by GIPSIM to set the
appropriate attribute values before simulation. The format for a mapping script is
shown in Figure 7.3. The sequence of ADAS commands in the script traverse the
graph hierarchy and use the edit select command to set the hw.module attribute of
each leaf software node in the graph hierarchy.

7.4.2 Hardware Module Renaming Script

A typical hardware graph often contains shared subgraphs with the same hardware
module names repeated. In order to do the mapping, ASH needs to have a unique
name for each hardware module. ASH generates these names by appending a number
onto the end of a leaf hardware module name which occurs in a shared subgraph.
ASH will produce an ADAS script file which can be read by GIPSIM or ASH to set
the appropriate hardware module names before simulation. This renaming must take
place if the utilization information generated by ASH is going to be loaded into the
hardware graph when running edigraf. The format for a hardware module renaming
script is shown in Figure 7.4. The sequence of ADAS commands in the script traverse



I
I

83I
I
I

3 edit select node select hw-module DirOut MemoryO -

subgraf Sobel
subgraf FV
edit select node select hw-module ZO TMSO:regO "
edit select node select hw-module AddO TMSO:calu -

edit select node select hw-module Add1 TMSO:calu -
edit select node select hw-module SubO TMSO:calu -

edit select node select hw-module ZI TMSO:regl -

3 quit nosave
subgraf FH
edit select node select hw-module ZO TMSO:reg2 -

edit select node select hw-module AddO TMSO:calu -

edit select node select hwvmodule Addl TMSO:calu -
edit select node select hw-module SubO TMSO:calu -

edit select node select hw-module ZI TMSO:reg3 -

I quit nosave

quit nosave
edit select node select hwvmodule Image Memoryl "
edit select node select hw-module MagOut Memory2 -

F
Figure 7.3: Example of an ASH Mapping Script Output

I

I
I
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the graph hierarchy and use an edit select node all command to set the node-name
attribute of each leaf software node in the graph hierarchy.

7.4.3 Hardware Utilization Script

ASH will produce an ADAS script file which can be read by EDIGRAF or GIPSIM
to set tht oftware node utilization attribute values. This allows the user to compare
the estin Ates used by ASH with the actual results generated by a GIPSIM run after
the mapping has been completed. The format for a hardware utilization script is
shown in Figure 7.5.

7.4.4 Software Utilization Script

ASH will produce an AI.NS script file which can be read by EDIGRAF or GIPSIM to
set the software node utilization attribute values. This allows the user to compare the
estimates used by ASH with the actual results generated by a GIPSIM run after the
mapping has been completed. The format for a software utilization script is shown
in Figure 7.11.

7.4.5 Log File

ASH will produce a log file which describes the sequence of moves created by ASH.
The format for a log is shown in Figure 7.6.i
7.5 Example

I The example shows the mapping of a flat software graph onto a hierarchical hard-

ware graph with shared subgraphs. The goal for this example is to maximize the
I throughput of the system, as measured by the utilization of the output nodes. The

system will achieve the required throughput rates if the utilization of the output
nodes is 100%. This is accomplished by reducing the maximum free utilization of all
hardware modules in an effort to minimize Urnax, and thus minimize the difference
between Of(N) and U((N) for all software nodes.

7.5.1 Example Software Graph

The example software graph is a form of the Sobel image processing example. It is
shown in Figure 7.7. There are five processes which will be mapped onto memories:
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edit select node all node-name
PEO
MemO

I PEI
MemBusIn
Meml
MemBusOut
PEBusIn

3 PEBusOut
PE2
Mem2
PE3
subgraf PEOg edit'select node all node-name
BusInO

BusOutO
3 ToBus

CPUO
FromBus
quit nosave
subgraf PEI

quit nosave
"subgraf PE2

3- quit nosave
subgraf PE3

F
-- Figure 7.4: Example of an ASH Hardware Module Renaming Script Output

i
U

I
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I.

subgraf PEO
e :dit status select node select node-utilization BusInO M -

edit select node select node-utilization BusInO 0.000000 -

edit status select node select node-utilization BusInO P "
-edit status select node select node-utilization BusutO M

edit select node select node-utilization BusOutO 0.000000
edit status select node select node-utilization BusOutO P "
edit status select node select node-utilization CPUO M -

edit select node select node-utilization CPUO 0.036068 -
edit status select node select node-utilization CPUO P -

quit nosave3 edit status select node select node-utilization MemO M -
edit select node select node-utilization MemO 0.041617 "
edit status select node select node-utilization MemO P -

•- subgraf PE1

quit.nosave
edit status select node select node-utilization Meml M -

edit select node select node-utilization Meml 0.080460 -
edit status select node select node-utilization Meml P -

Iedit status select node select nodeutilization PEBusin M

edit select node select node-utilization PEBusIn 0.236623 -
edit status select node select node-utilization PEBusIn P -
edit status select node select node-utilization PEBusOut M -

edit select node select node-utilization PEBusOut 0.359889 -
edit status select node select node-utilization PEBusOut P -
eisubgraf PE2

I quit nosave
edit status select node select node-utilization Mem2 M -

edit select node select node-utilization Mem2 0.000000 -
edit status select node select node-utilization Mem2 P -

subgraf PE3

quit nosave

SFigure 7.5: Example of an ASH Hardware Utilization Script Output
edtslc oeslc oe..tlzto e20000

edtsau eetnd eetnd..uiiainMa
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3 --- Random Mapping---
sfw Imageln mapped to hdw Hem2 -3sfw DFilter mapped to hdw CPUI -

sfw DirOut mapped to hdv CPU3 -

sfw CompEDir mapped to hdw CPUO -I ~sfv RowBuf 2 mapped to hdw Memi -
sfw VWilter mapped to hdw CPU1 -5 sfv MagOut mapped to hdv MemO -

sfw CompEMag mapped to hdv CPU1 -

sfw HFilter mapped to hdw CPU2 -

10O--- Connectivity---

enforce: CompEDir to CPU1
enforce: DFilter to CPUO3 enforce: XRow2 to PEBusIn
enforce: DFilter to CPU3

3 sfw Imageln mapped to hdv Memi -

sfv DFilter mapped to hdv CPU1 -

sfv DirOut mapped to hdw CPU1 -Isfw CompEDir mapped to hdv CPU1 -
sfw RowBuf 2 mapped to hdw Meml -

sfw VWiJter mapped to hdv CPU1 -I sfw MagOut mapped to hdw MemO -
sfv CompEMag mapped to hdw CPU1 -

sfv H2Filter mapped to hdv CPUO

sfv RowBuf 1 mapped to hdv MemBusln-
--- Optimization---3 optimize: CRowi to BusOut2
optimize: XRowl to BusOut3
optimize: HFilter to CPU33sfw Imageln mapped to hdv MemO -

sfw DFilter mapped to hdv CPU3 -

sfw DirOut mapped to hdw CPUO -I ~sfv CompEDir mapped to hdw CPU2
sfw RowBuf 2 mapped to hdw Meml -

sfw VWilter mapped to hdv CPU3 -I sfv MagOut mapped to hdv Memi
sfu CompEMag mapped to hdw CPU3-
sfv HFilter mapped to hdv CPU3

sfw RowBuf 1 mapped to hdv PEBusOut-

Figure 7.6: Example of an ASH Log File Output
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the input image data store, the magnitude output data store, the direction output
data store, and the two scan line buffers (also called row buffers). There are five pro-
cesses which will be mapped onto processors: the three filters (horizontal, vertical,
and diagonal), and the two post processing functions (calculate magnitude and cal-
"culate direction). The rest of the processes represent data transfers and are mapped
onto bus class hardware modules.

7.5.2 Example Hardware Graph

The hardware graph is hierarchical with two levels. The top level shows a configu-
ration with two buses (one for memory-processor communication and one for inter-

n processor communication), three memories, and four processing elements. The second
level shows the structure of the processing elements, each of which have an internal
bus for intra-processor communication.

7.5.3 Example Outputs

The results of an ASH run are three script files:

I A final script which defines the mappings required for the software nodes. This
script is shown in Figure 7.10. This script file can be run in GIPSIM to modify
the ADAS software graph so that GIPSIM simulations can use the results of
ASH.

* Estimated software utilization script. This script can be run against the soft-
ware file to set the software graph utilization attributes equal to the utilization
values estimated by ASH for the final mapping. These utilizations can then be
compared with results from a GIPSIM run to understand how close to optimal
the ASH mapping results are. This script is shown in Figure 7.11.

* Estimated hardware utilization script. This script can be run against the hard-
ware file to set the hardware graph utilization attributes equal to the utilization
values estimated by ASH for the final mapping. These utilizations can then be
compared with results from a GIPSIM run to understand how close to optimal
the ASH mapping results are. This script is shown in Figure 7.5.

A fourth file that is generated is a log of mapping changes made during each major
function of each iteration. This file is shown in Figure 7.6.
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, Imageln Row Row RowBuf2 Row Row RowBufl Row

I

DFilter VWilter HFilter

Di ,Du ~ uý uI

CompEDir CompEMag

Iag

DirOut MagOut

Figure 7.7: Software Graph for the ASH Example
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PEBusOut

IT

PEO PEI PE2 PE3

PEBusIn

Iu

MemO Meml Mem2

Figure 7.8: Top Level Hardware Graph for the ASH Example
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FromBus

BusOut 3

I CPU

BusIn

IL

ToBus

II Figure 7.9: Hardware Subgraph for the ASH Example
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edit select node select hw-module Iniageln MemOIedit select node select hv..module CRow3P PEBusOut-
edit select node select hw...module XRov3 MemBusln-
edit select node select hw...module CLDE PEBusOut -Iedit select node select hv-.module LDOut PEBusIn -

edit select node select hv..module CRov3M MemBusOut
edit select node select hv..module DFilter CPU1edtslcIoeslc wmdl REP~su
edit select node select hv...module CRDEu PEBus~ut
edit select node select hv..module RDiOut CPEUsO -

edit select node select hw...module XDir~ut CPEUO~
edit select node select hvwjnodule XDir~un PEBus~ut

3edit select node select hv..module CompEDir CPU3 -

edit select node select hv..module RowBuf 2 Meml -

edit-select node select hw-module CVE PEBus~ut; -Iedit select node select hw...module VEOut PEBusIn -
edit select node select hv...module VWilter CPUl -

edit select node select hv..module CRow2P PEBus~ut -

edit select node select hv..module XRow2 MemBusln
edit select node select hw-mjodule CRov2H MemBusln
edit select node select hw-.module MagOut Meal.-edtslcIoeslc w-oueXa~ e~su
edit select node select hw-.module XMag~n HemBus~ut

3edit select node select hv..module CompEMag CPU1 -

edit select node select hv-.module CHE PEBus~ut; -

edit select node select hv..module HEOut PEBusIn -

edit select node select hv..module HFilter CPU3 -

edit select node select hw-.module RowBuf 1 MemBusIn-
edit select node select hw..module CRovi PEBusOut -

edit select node select hw-.module XRovI MemBusln

Figure 7.10: Example Mapping Script Output from ASH
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edit status select node select node-utilization Imageln M -
edit select node select node-utilization ImageIn 0.041617 -

edit status select node select node-utilization ImageIn P -

edit status select node select node-utilization DFilter M -
edit select node select node-utilization DFilter 0.440349 -

edit status select node select node-utilization DFilter P -
edit status select node select node-utilization DirOut M -
edit select node select node-utilization DirOut 0.036068
edit status select node select node-utilization DirOut P -
edit status select node select node-utilization CompEDir M -

edit select node select node-utilization CompEDir 0.432818
edit status select node select node-utilization CompEDir P 0
edit status select node select node-utilization RowBuf2 M -

edit select node select node-utilization RowBuf2 0.040824 -

editstatus select node select node-utilization RowBuf2 P -

edit status select node select node-utilization Wilter M u
edit select node select node-utilization VFilter 0.242568 -
edit status select node select node-utilization VWilter P -

edit status select node select node-utilization MagOut M -
edit select node select node-utilization MagOut 0.039635 -
edit status select node select node-utilization MagOut P -

edit status select node select node-utilization CompEMag M -

edit select node select node-utilization CompEMagO.317083Iedit status select node select node-utilization CompEMag -edit elec nod selet noe.~.tiliztionComp MpgE.3703g

edit status select node select node-utilization HFilter M -
edit status select node select node-utilization HFilter H -

edit sau select node select node-.utilization HFilter 0.024 -

edit status select node select node-utilization RotBufl M -
edit select node select node-utilization RowBufl 0.040824 -

edit status select node select node-utilization RowBufl P -

Figure 7.11: Example Software Utilization Script Output from ASH

I
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I 8. ADAS ATTRIBUTE SPECIFICATIONS

Table 8.1 documents AIVD's use of a subset of the ADAS attributes. The first col-
umn, Purpose, lists the AIVD meaning of the attributes; the second column, Scope,
lists the ADAS entities with which the attributes are associated; the third column,
Implementation, lists the current data base attributes that will be used for the proto-
type. Because node.user.text will be used for the node help files, OR-nodes will not
be used with examples for this prototype.I

Table 8.1: AIVD with the ADAS Attribute Set

Purpose Scope Prototype

Help File Graph graph-user-text
Help File Node node-user-text
Help File Arc arc-user-text
ADL File Graph graph-user-f ile.name
ADL File Node node-user-f ile-name
ADL File Arc arc-user-file-name
Node Matching Node graph-port -number
Inport Matching Inport inport-id
Outport Matching Outport outport-id
Arc Matching Arc token-units
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