
AD-A259 492I ~ ! li/Il lIII llil ill I! ll! XII! ill!

Technical Report 1283 B a iR e u t o
S~Basis Reduction

Algorithms and
Subset Sum

Problems
DTIC

S ELECTE

C
Brian A. LaMacchi

MIT Artificial Intelligence Laboratory

93-01227
IJJlIl !//ii'!lI!lr i ,:!;""-,,,-.,,,, .,,,.. • •! 8 1 2 2 1 0 ,9

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 070oo0188

Pub•lic reporting burden for this collection of 1nformation 1S .ttamare. to arerage I hour per response. including the time for revuewing instructions. searching existing data sources.
gathering and matning the data needed, and completing n g the collection 01 iformation Send comments regarding this burden estimate or any other aspect of this
colletaion of InformatiOn. including suggestion% for reducing this burden. to Washington Headouarters Services. Oirectorate for information Operations and Reports, 121S Jeffersoin
Oais Highway. Suite 1204. Arlington. VA 22202.4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1991 technical report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Basis Reduction Algorithms and Subset Sum Problems N00014-89-J-3202

6. AUTHOR(S)

Brian A. LaMacchia

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Artificial Intelligence Laboratory AI-TR 1283
545 Technology Square
Cambridge, MA 02139

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Information systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

This thesis investigates a new approach to lattice basis reduction suggested by M. Sey-
sen. Seysen's algorithm attempts to globally reduce a lattice basis, whereas the
Lenstra, Lenstra, Lovisz (LLL) family of reduction algorithms concentrates on lo-
cal reductions. We show that Seysen's algorithm is well suited for reducing certain
classes of lattice bases, and often requires much less time in practice than the LLL
algorithm. We also demonstrate how Seysen's algorithm for basis reduction may be
applied to subset sum problems. Seysen's technique, used in combination with the
LLL algorithm, and other heuristics, enables us to solve a much larger class of subset
sum problems than was previously possible.

14. SUBJECT TERMS 15. NUMBER OF PAGES

subset sum problems integer lattice 110
knapsack cryptosystems Seysen's algorithm 16. PRICE CODE

public key cryptography lattice basis reduction $8.00
17. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

unclassified unclassified unclassified unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Sid 13-1.'
291-902

AJ

AoNTIS For...

Basis Reduction Algorithms and
Subset Sum Problems i tkMI.L1'Ao ,.

by

Brian A. LaMacchia DiSt..•±.r/

Dist Sp cial

Artificial Intelligence Laboratory
and

Department of Electrical Engineering and Computer Science
'Massachusetts Institute of Technology

Abstract

This thesis investigates a new approach to lattice basis reduction suggested by M. Sey-
sen. Seysen's algorithm attempts to globally reduce a lattice basis, whereas the
Lenstra. Lenstra. Lovisz (LLL) family of reduction algorithms concentrates on lo-
cal reductions. We show that Seysen's algorithm is well suited for reducing certain
classes of lattice bases. and often requires much less time in practice than the LLL
algorithm. We also demonstrate how Seysen's algorithm for basis reduction may be
applied to subset sum problems. Seysen's technique, used in combination with the
LLL algorithm, and other heuristics, enables u.s to solve a much larger class of subset
sum problems than was previously possible.

Thesis Supervisor: Silvio Micali
Associate Professor of Computer Science and Engineering

Company Supervisor: Andrew M. Odlyzko
AT&T Bell Laboratories

This report is a revised version of a thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in the Department of Electrical
Engineering and Computer Science at the Massachusetts Institute of Technology in
May, 1991.

Acknowledgments

This thesis could not have been completed without the support of a great many
people. I wish to take this opportunity to express my appreciation for their help
throughout this project.

First, my sincerest thanks to Andrew M. Odlyzko, my company supervisor at
AT&T Bell Laboratories. This thesis would not have been begun, let alone finished,
without Andrew's guidance. Throughout my time at Bell Labs Andrew has been
my supervisor, mentor and friend; his initial suggestion that I look at applications
of Seysen's algorithm to subset sum problems was the basis for this work. Andrew's
support and encouragement were without bound.

I also thank Matthijs J. Coster for his assistance throughout this project. Matthijs
suggested numerous variants of Seysen's algorithm and helped design Algorithm SL
for solving subset sum problems. His comments on early drafts of this thesis were
also quite helpful.

Many people have commented on different aspects of this project while work was
in progress. In particular, I'd like to thank Jeff Lagarias, Claus Schnorr and
Warren Smith for their assistance.

This work was performed under the auspices of the Center for Mathematical Sciences
Research at AT&T Bell Laboratories. I thank Mike Garey, director, and the other
members of the Math Center for the research environment they maintain and their
constant support during my tenure at Bell Labs.

Many thanks to Professor Silvio Micali, my thesis supervisor at MIT, for overseeing
this work. Silvio's enthusiasm for this project never wavered, and his comments when
I began writing this thesis were very useful.

Thanks also Professors Harold Abelson and Gerald J. Sussman, and the mem-
bers of Project MAC (Mathematics and Computation), for their support upon
my return from Bell Labs. In particular, thanks to Andy Berlin, Elizabeth
Bradley, Mike Eisenberg, Mark Freidman, Arthur Gleckler, Chris Han-
son, Elmer Hung, Stefan Kozlowski, Bill Rozas, Sameer Shalaby, Thanos
Siapas, Panayotis Skordos, Franklyn Turbak, Henry Wu, and Feng Zhao.
They are a very special group of people.

This project was performed as part of the MIT VI-A Internship Program. The director
of the VI-A Program is Kevin O'Toole. Professor Frederic Morgenthaler serves
as faculty liaison between the VI-A Office and AT&T Bell Laboratories. At Bell Labs,
the VI-A Program is administered by J. Michael Milner and Jose L. Reyes. My
thanks to all of them for making VI-A at Bell Labs so successful.

This paper describes research conducted at AT&T Bell Laboratories, as part of the
MIT VI-A Internship Program, and at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Laboratory's artificial intelli-
gence research is provided in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N00014-89-J-3202.

Contents

1 Introduction 1

1.1 Point Lattices 1

1.2 Reduced Lattice Bases 3

1.3 Lattice Basis Reduction Algorithms 5

2 The Seysen Basis Reduction Algorithm 9

2.1 Theoretical Analysis 13

2.1.1 Sufficiency of T-A- Matrices 14

2.1.2 Choosing Vector Pairs to Reduce 16

2.1.3 The S(A) Function 17

2.1.4 Choosing A Values 20

2.2 Empirical Analysis 23

2.2.1 Lazy vs. Greedy Selection Methods 24

2.2.2 Choosing A Values 27

2.2.3 Testing the B6 Lattice 32

2.2.4 Testing Random Integer Lattices 36

2.3 When Seysen's Algorithm Fails 39

2.3.1 Row Moves Involving Three or Four Vectors 40

2.3.2 Simulated Annealing and Rapid Quenching 43

2.3.3 Using Hadamard Matrices to Permute Lattice Bases 44

2.4 Extending Seysen's Algorithm 46

iii

iv CONTENTS

2.4.1 General n-vector Row Operations 46

2.4.2 Alternate Selection Criteria 48

2.4.3 Alternate Choices of A 48

2.4.4 Alternate S(A) Functions 50

3 Solving Subset Sum Problems 53

3.1 Introduction 53

3.2 Theoretical Bounds on Solving Subset Sum Problems 55

3.3 Previous Empirical Methods 58

3.4 Seysen's Algorithm and Subset Sum Problems 64

3.5 Empirical Tests Using Algorithm SL 74

4 Conclusions 87

4.1 Candidate Lattices for Seysen Reduction 89

4.2 Modifying Algorithm SL 90

List of Tables

2.1 Comparison of Lazy and Greedy Selection Methods 25

2.2 Comparison of (Z, Z), (Z, ±1) and (-1, -1) Options 30

2.3 Performance of Seysen's Algorithm on Be for 0 = 0.4,5 < n < 105 . . 34

2.4 Performance of Seysen's Algorithm on Random Integer Lattices . . 38

3.1 Test Results Using Algorithm SL for 42 < n < 58 77

3.2 Test Results Using Algorithm SL for 66 < n < 82 81

3.3 Test Results Using Algorithm SL for 90 < n < 106 83

v

vi LIST OF TABLES

List of Figures

2-1 Performance of Seysen's Algorithm on BO.4 Lattice: L*0 and L*0' vs. n 35

3-1 Lagarias-Odlyzko Results: Success Rate vs. Density 60

3-2 Radziszowski-Kreher Inner Loop 61

3-3 Radziszowski-Kreher Results: Success Rate vs. Density 63

3-4 Overview of Algorithm SL 65

3-5 Algorithm SL: LLL-Phase 68

3-6 Algorithm SL: LLL-Loop Structure 71

3-7 Algorithm SL: LLL(x) Internal Structure 72

3-8 Algorithm SL: S1 vs. Density 82

3-9 Algorithm SL: S5 vs. Density 84

vii

viii LIST OF FIGURES

Chapter 1

Introduction

In 1985 Lagarias and Odlyzko [26] developed a general attack on knapsack cryp-

tosystems which reduces solving subset sum problems to the problem of finding the

Euclidean-norm shortest nonzero vector in a point lattice. Recent improvements to

this attack [12, 19] have stimulated interest in finding lattice basis reduction algo-

rithms well-suited to the lattices associated with subset sum problems. This thesis

studies a new approach to lattice basis reduction originally developed by M. Seysen

[38]. Seysen's reduction algorithm was initially developed to find simultaneously good

bases of a lattice and its dual lattice. However, it may also be successfully applied to

solving subset sum problems, especially when combined with other known reduction

methods. Using a collection of techniques, including Seysen's algorithm, we show

that it is possible to solve in practice a much larger class of subset sum problems

than was previously possible.

1.1 Point Lattices

Let B be a set of vectors (bl,b 2, ... ,b) in R'. If these vectors are independent,

then they form a basis of Rn and any point x in n-space may be written as a linear

2 CHAPTER 1. INTRODUCTION

combination of vectors in B:

n

x=Zribi, forriER,1<i<n.
i1=

Consider the set of points L C R' which may be written as the sum of integer

multiples of the basis vectors:

L = ýx- (Xl, 2,...,Xn) : x-- zibi, for zEZ 1<i <n.

We call this set L the point lattice (or just lattice) described by the basis B.

Point lattices are pervasive structures in mathematics, and have been studied

extensively. See [253, for example, for a survey of the field. In the area of combinato-

rial mathematics alone it is possible to phrase many different problems as questions

about lattices. Integer programming [20], factoring polynomials with rational co-

efficients [27], integer relation finding [16], integer factoring [35], and diophantine

approximation [36) are just a few of the areas where lattice problems arise. In some

cases, such as integer programming existence problems, it is necessary to determine

whether a convex body in Rn contains a lattice point (for some specific lattice). In

other cases the items of interest are short vectors in the lattice. As we shall see below,

for certain cryptographic applications, we would like to be able to quickly determine

the Euclidean-norm shortest nonzero vector in a lattice.

It is important to note that the difficulty of finding the Euclidean-norm shortest

nonzero vector in a lattice is an open question. If x = (xI,. . . , x,), then the sup-norm

of x, denoted IlxII , is defined as

JxJJ = max 1--I.

It is known that finding the sup-norm shortest nonzero vector in a lattice is NP-hard

[5]. Based on this evidence, we suspect that finding the Euclidean-norm shortest

nonzero vector for any given lattice is also computationally difficult. However, it may

be possible to find the shortest nonzero vector for many lattices quickly. Indeed,

1.2. REDUCED LATTICE BASES 3

current techniques for finding short vectors are slow in theory but often perform well

in practice.

The remainder of this chapter establishes the environment for our study of lattices

and specific applications to cryptography. Section 1.2 discusses reduced bases of

lattices and lattice reduction theory. Section 1.3 mentions some of the algorithms

which currently exist for computing a reduced lattice basis B' given a basis B of

a particular point lattice. In particular, we detail the operation of the Lenstra-

Lenstra-Lovisz (LLL) basis reduction algorithm [27], which is currently the best

known method for finding short vectors in a lattice.

1.2 Reduced Lattice Bases

Any lattice L may be described by many different lattice bases. Let B1, B 2 ,... be

distinct sets of vectors, all of which form bases of lattice L. We can imagine that

there exists some ordering or ranking of the bases Bi, and thus one or more of the

Bi might be considered "good" lattice bases of L. Lattice reduction theory deals with

identifying "good" lattice bases for a particular lattice. If we are given a basis B

which describes L, we would like to reduce B to basis B', also describing L, where B'

is a "good" lattice basis in the sense of some reduction theory.

There are two classical lattice reduction theories, one due to Korkin and Zolotarev

[23, 243 and one due to Minkowski [29]. A basis B = (b 1 , b 2 ,. .. ,b,) of lattice L is

said to be Alinkowski-reduced if

1. b, is the shortest nonzero vector in L.

2. For 2 < i < n, bi is the shortest vector in L such that (b 1 ,...,b1) may be

extended to a basis of L.

Minkowski-reduced lattice bases always contain the shortest nonzero vector in the !;ýt-

tice. Subsequent basis vectors bi are selected by choosing the shortest lattice vector in

4 CHAPTER 1. INTRODUCTION

L which is not a linear combination of the already selected basis vectors bl,... , bi-1 .

If bi= •7- zjbj, zj E Z, then it would be impossible to extend (bL,.. .,b) to be a

basis of L.

The definition of Korkin-Zolotarev reduction is similar to that of Minkowski. We

say a basis B = (bl,..., b,) is Korkin-Zolotarev reduced if it satisfies the following

three conditions:

1. bi is the shortest nonzero vector in L.

2. For 2 < i < n, let Si be the (i - 1)-dimension subspace spanned by the basis

(bi,..., bi- 1). Let Sý be the orthogonal complement of Si in R'. Finally, let

Pi(L) denote the orthogonal projection of L onto S,"L. Then choose bi such that

P,(bi) is the shortest nonzero vector in Pi(L).

3. Size reduction condition. For 1 < i < j <n,

I(P,(bi), P, (bj))l _< 1 II (bi)11'

where P1(x) = x.

In the definition of Minkowski reduction, successive basis vectors bi are added to the

lattice basis only if bi is the shortest vector in the lattice which will allow the basis

to be extended. In Korkin-Zolotarev reduction, though, successive basis vectors bi

are chosen based on their length in the orthogonal complement of the space spanned

by the previous basis vectors bl,..., bi-1 .

Depending on the specific problem, we may find either, both, or neither of the

above definitions of "good" lattice bases is sufficient. Certainly if the goal is to find

the shortest nonzero vector in the lattice, as is the case with subset sum problems (see

Chapter 3), we could use either Minkowski reduction or Korkin-Zolotarev reduction

as a measure of how "good" a particular lattice basis is. If the item of interest involves

multiple vectors in the lattice, one definition may be preferred over the other for that

particular application.

1.3. LATTICE BASIS REDUCTION ALGORITHMS 5

1.3 Lattice Basis Reduction Algorithms

Although both Minkowski reduction and Korkin-Zolotarev reduction provide frame-

works for studying lattice basis reduction, computing a reduced lattice basis (in either

sense) is in general a difficult problem. Currently, there are no known polynomial-

time algorithms for finding either a Minkowski or a Korkin-Zolotarev reduced basis

for a given lattice L. If such an algorithm existed, then we would be able to find

the Euclidean-norm shortest nonzero vector in L in polynomial time by finding the

reduced basis, for which b, is the desired vector. Thus, any polynomial-time lattice

basis reduction algorithm we use will not be able to satisfy the strict conditions of

Minkowski or Korkin-Zolotarev reduction.

Techniques for finding relatively small vectors in a lattice have been known for

some time (see [22] for example); it was not until recently, though, that a fast algo-

rithm was known which was guaranteed to produce lattice bases with relatively short

vectors. In [27] Lenstra, Lenstra and Lovisz described a polynomial-time algorithm

for transforming a give lattice basis B = (bt,..., b.) of lattice L into an LLL-reduced

lattice basis B' = (b ,.... b'J). A basis B' is LLL-reduced if it has the following two

properties:

fo1 1<~= (bl, bj)' (1.1)

b! + 11 for 1 < i < n, (1.2)

where the parameter y E (1,1) and bj = b 1- , ,jb! (That is, B* = (b•,...,b•)

is a Gram-Schmidt orthogonalized basis generated from B). Notice that LLL reduc-

tion is similar to but weaker than Korkin-Zolotarev reduction.

The Lenstra-Lenstra-Lovisz basis reduction algorithm converts lattice basis B

into B' by performing two types of transformations. In a size-reduction step, LLL

finds the largest j such that there exists an i > j and pij violates Equation 1.1. By

6 CHAPTER 1. INTRODUCTION

performing the transformation

bi •- bi - rpidj bi,

where [.J denotes the nearest-integer function, we find that the new value of pij is

21. In the exchange step, LLL searches for the smallest value of i such that bi-1

and bi fail to satisfy Equation 1.2. Here LLL swaps the two vectors (bi-, * bi

and bi - bi-0) to force compliance with the second LLL-reduced condition. The

LLL basis reduction algorithm alternately performs size-reduction and exchange steps

until both Equations 1.1 and 1.2 are satisfied, at which point the algorithm halts.

LLL-reduced lattice bases satisfy a number of bounds. In particular, if y is the

global LLL constant, then the first vector in the reduced lattice basis b, satisfies:

11b1 l _< (4y 1) jIxil, for all X E L,x # 0.

In particular, for y = (the value used in [27]), we have

Ilb1ll __ 2n-111x11, for all XE L,x # 0.

Thus the length of bi is at most an exponential multiple of the length of the shortest

nonzero vector in the lattice. (Similar bounds exist for the other vectors in the

reduced basis.) In practice, the LLL algorithm usually performs much better than

this exponential bound, although example lattice bases are known which cause the

LLL algorithm to exhibit worst-case performance.

Most of the work on lattice basis reduction algorithms since the introduction

of LLL has focused on improving and extending the technique. For example, the

version of LLL described above requires rational arithmetic (the pij variables in

particular must be stored as fractions); multiprecision floating-point numbers are

usually used to reduce the computation requirements, but may introduce error into

the calculations. One method of reducing the multiprecision requirements is described

in [33]. Similarly, [32] showed how to modify the LLL algorithm so that the set of

1.3. LATTICE BASIS REDUCTION ALGORITHMS 7

input vectors can be linearly dependent. Hierarchies of LLL-type algorithms have

been investigated [34], stretching from LLL-reduction at one end of the spectrum to

Korkin-Zolotarev reduction at the other. However, little effort has been expended on

looking at algorithms not derived from or similar to LLL.

This thesis examines an approach to lattice basis reduction of different structure

than that of the LLL algorithm and related methods. This method was originally

suggested by M. Seysen [381 to simultaneously produce a reduced basis and a reduced

dual basis for some lattice L. Where the LLL algorithm concentrates on local opti-

mizations to produce a reduced lattice, the Seysen approach considers the entire basis

for methods of optimization. (Recall that the LLL size-reduction steps only consider

pij for the smallest possible j, and that only adjacent vectors bi-1 and bi may be

exchanged.)

Chapter 2 describes the first phase of the research, in which Seysen's basis reduc-

tion algorithm and multiple variants were implemented and examined. Theoretical

and empirical analyses of the fixed components of Seysen's algorithm are given. For

those parts of the algorithm which are permitted to vary, we examine some of the

possible variations, and look at the effect of these changes on the performance of the

algorithm. Possible extensions of the algorithm are also discussed.

The motivation behind our study of Seysen's lattice basis reduction algorithm is

presented in Chapter 3. It is known that certain subset sum problems may be solved

by finding the shortest nonzero vector in a particular lattice (the lattice is generated

based on the specific construction of the subset sum problem). The best methods

previously known for reducing subset sum problem lattices [26, 33] involve the LLL

algorithm and some other heuristics, and are not very successful for n > 25 (n is the

size of the subset sum problem to be solved). Chapter 3 details experiments which

used Seysen's algorithm in combination with the LLL algorithm and other heuristics

to solve a much greater range of subset sum problems.

8 CHAPTER 1. INTRODUCTION

Chapter 2

The Seysen Basis Reduction

Algorithm

In 1990, Martin Seysen proposed a new method for performing lattice basis reduc-

tion [38]. Seysen's basis reduction algorithm (or just Seysen's algorithm) differs from

the LLL algorithm and its variants in that it considers all vectors in the lattice si-

multaneously, and performs operations on those vectors which will reduce the lattice

according to some measure. Recall that the LLL algorithm works locally on the lattice

it is reducing; LLL will only perform an operation on two vectors which are adjacent

to each other in the ordered lattice basis.

Seysen was motivated to create a new method for basis reduction by a desire

to find a better way to simultaneously reduce a lattice and its reciprocal (or dual)

lattice. If lattice L is defined by basis vectors b 1 ,. . . ,b., then the dual lattice L° of

L is defined by basis vectors b*,...,b*, where

(bi,b•) = 1,
(2.1)

(bi, b)= 0, for i 0 j.

Now consider what happens in the dual lattice when we perform a row move on bi

and bj in L. (A row move is any operation which adds a constant multiple of i!Ie

lattice basis vector to another basis vector.) Let bj = bj + Abi, where A E Z. We

9

10 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

consider what changes must occur in the dual lattice basis vectors b-,... ,b*., since

Equation 2.1 must hold at all times. For k # i, we find that:

since

(biIb;) = (bi + AbI,b;),

= (bj, b;) + A(bi, b;),

=0.

For k = i, however, this is not the case:

b7'= b; - A\,,

since

(bj.b") = (bj + Abi, b'),

= (bj, b*') + A(bi, b!'),

= (bi, b! - Abj) + A(bi,b! - Xbj),

= (bj, b) - A(bj, bj) + A(bi, b!)- A2(bi, b-),

=0- A + A - 0,

-0.

Thus, when we add Abi to bj in the basis of lattice L, we must subtract Ab* from

b! in the basis of L*. It is easy to see that if lattice L is reduced with the LLL

algorithm, the resulting reduced lattice may have a dual in which some basis vector

is quite large, as no attempt is ever made to consider the size of the dual basis when

row moves are being performed. Seysen's algorithm attempts to choose row moves

that reduce both the lattice and its dual.

11

We now outline the basic operation of Seysen's algorithm. Let L and L" be a

lattice and its dual which we wish to simultaneously reduce. Let A and A* be the

associated quadratic forms of L and L*, respectively:

A = {ajj<i,3 <5 = [(bi, bj)] 1<ij<n,

A-= "a=j l<i,j:_n [(b- , I<ij<_n

The element aij of matrix A is the inner product of the basis vectors bi and bj of

lattice L. Notice that A and A* are inverses of each other and are symmetric.

If L is the lattice defined by basis B, then any other basis B' of L may be written

as:

B' = B T,

where T E SLn(Z) (i.e. T is an n x n integer matrix with determinant 1). The

quadratic form A' associated with B' may similarly be derived from A:

A' = T t A T.

For any quadratic form A, define the Seysen measure S(A) as follows:
n

S(A) = Zai,ia,,i = 1' IibIIý2Ibfl 2. (2.2)
i=1 i=1

A basis B is then S-reduced if:

S(A) < S(T t A T), for all T E SL,(Z). (2.3)

We suspect that it is computationally difficult to find the optimal transformation

matrix T for a given basis B. Consider, however, the class of transformation matrices

T' defined by:

Ti,= I,, + AU/,j, where i 6 j, A E Z,

In is the n-dimensional identity matrix, and

UIT, = [u j k.I<,k ,<k I where uk,,f i

(0 ifkj~iorl-?j.

12 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

(The matrix Uij has exactly one nonzero entry. Matrix Tij has diagonal entries

of 1 and exactly one nonzero off-diagonal entry.) Right-multiplying B by any T.,.

simply adds A times the i11 column of B to the jih column of B. If the columns

of B are the basis vectors bi, then B Ti.• is simply the transformed basis B' =

(bi,b2,...,bj-.,bj + Abj,...,b.).

Since it is easy to perform calculations with V.. transformations, we focus our

attention on products of one or more TV. transformation matrices. It can be shown

that every T E SLn(Z) may be written as such a product:

SL(Z) T: = Tk,1 < k < oo}.
k

We call a quadratic form S2-reduccd if

S(A) < S(TV A T.,), for 1 < ij < n, for A E Z.

Seysen suggests the following algorithm for S2-reducing a quadratic form:

while (A is not S 2-reduced)

do

choose ij such that 3 A E Z with

S (TV A V) < S(A)

let

let

A =TV. ATA.i's t,3

where f.J denotes the nearest-integer function. This procedure for S2-reducing a

quadratic form is Seysen's basis reduction algorithm.

2.1. THEORETICAL ANALYSIS 13

To date, little has been proven concerning the performance of Seysen's algorithm.

There are no known bounds on the Seysen measure of an S2-reduced basis (although

bounds have been proven for S-reduced lattice bases), nor on the length of the short-

est nonzero vector in the basis. The running time of Seysen's algorithm is clearly

bounded if the lattice basis consists of only integer vectors, but it is not known if the

algorithm even terminates for basis vectors with real coefficients. However, prelimi-

nary experiments performed by Seysen on lattices of dimension n < 30 suggest that

this technique may be faster than the LLL algorithm and yield bases with shorter

vectors. Based on these observations, a comprehensive investigation of theoretical

and practical aspects of Seysen's algorithm was undertaken. This chapter details the

results of our study of Seysen's basis reduction algorithm.

Section 2.1 below discusses the theoretical underpinnings of Seysen's algorithm.

Empirical tests performed with various versions of the Seysen algorithm are detailed

in Section 2.2. Section 2.3 mentions some modifications which may be made to

Seysen's algorithm when the performance of the basic version breaks down. Finally,

Section 2.4 discusses possible extensions to Seysen's algorithm.

2.1 Theoretical Analysis

We consider first the theoretical foundations of Seysen's basis reduction algorithm.

There are a number of questions concerning the actual structure of the algorithm

which immediately arise. For a given quadratic form A, how might the S-reduced

and S2-reduced forms derived from A differ? Is it even sufficient to consider only T2.

transformation matrices, or are there lattices for which it is impossible to find the S-

reduced form using only TV transformations? How do we choose the order in which

to apply the T-,, transformations., or equivalently how do we choose pairs of basis

vectors for row moves? Is the Seysen measure function S(A) = =aiia i a "good"

way to rank different bases of a lattice? Finally, given that S(A) is an acceptable

14 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

measure function, is our choice of A = ["(a' -)J, given i and j, optimal? This

section considers theoretical justifications for all of these questions. Section 2.2 below

considers these questions from an empirical point of view.

2.1.1 Sufficiency of V. Matrices

As defined above, a basis B is S-reduced if and only if its associated quadratic form

A satisfies:

S(A) < S(T t A T), for T E SL,(Z). (2.4)

Thus, in order to Seysen-reduce a given lattice L which we know has basis B, we need

to find a transformation matrix T E SL,(Z)" such that for all other T' E SL,(Z) we

have S(T t A T) < S((T')t A T'). As SL,(Z) is the set of all n x n matrices of unit

determinant, we suspect that it is computationally difficult to find the desired matrix

T directly. However, there are ways to avoid having to compute matrix T directly.

Specifically, we can restrict our attention to a set of generating matrices for SL,(Z),

as we show below.

Initially, let us assume that n = 2 and that A is the quadratic form associated

with a lattice basis we wish to reduce. SL2(Z) thus contains all 2 x 2 matrices [c d]

with ad - bc = 1. Now, it is known [2, 37] that the set G2 is a set of generating

matrices for SL2(Z), where:

G2 ={I[A]}[A]AZ}

That is, if T E G2 , then there exists a sequence of matrices T1, T2,..., Tk such that

T = T, T2 ... TkT, EG 2 for I <i<k.

2.1. THEORETICAL ANALYSIS 15

(Actually, the set {[0] ,[1 A] : A E {-1,0,1}} is sufficient, since

+ +A

0..[1 0]

Section 2.2.2 below discusses the performance of Seysen's algorithm when we restrict

A= ±1.)

Notice that the matrices [0 j] and [1 0] describe all possible row moves which can

be performed on a 2 x 2 matrix. As an example, note that the matrix So - [' •] is

generated by: so. 1 1] 1o : 11:li
(So corresponds to swapping the two rows in a matrix.) Thus, the set of matrices

Tj for n = 2, i # j is exactly a set of generating matrices for SL2(Z). Therefore, it

is sufficient for n = 2 for Seysen's algorithm to consider only products of matrices of

the form Ti'j. The difficulty is in choosing the right matrices and the right order of

operations.

Our analysis above assumed n = 2, but similar results are known where n is an

arbitrary integer [30]. For fixed n > 0,

G,,,= IU { ,T..-.,}
I1< j:5

is a set of generating matrices for SL,(Z). Thus, it would be sufficient for Seysen's

algorithm to consider only Tj1, and T-17 transformation matrices if it could pick the

proper triples (i,j, ±1) at every step. In practice, Seysen's algorithm chooses triples

(i,j, A) where A E Z, but the basic problem is still choosing the right triples in the

right order. Choosing the correct (i,j) pairs to reduce and the value of A for that

pair are discussed below.

16 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

2.1.2 Choosing Vector Pairs to Reduce

Seysen's algorithm does not specify how to choose which pair of basis vectors (bi, bj)

to reduce on each iteration of the algorithm. At every iteration, it is necessary to find

an (ij) pair for which there exists a transformation matrix T-', A 3 0, such that:

S(T3 ., A TV.) < S(A).

Therefore, given that initially there are likely to be many pairs of vectors which may

be reduced, we must decide how to select the best pair.

Two options appear immediately as candidate vector selection methods: lazy

selection and greedy selection. A lazy selection scheme simply chooses any available

(i,j) pair in the easiest possible manner. For example, we can imagine two nested

loops which generate (ij) pairs and stop at the first pair for which A(ij) -$ 0, where

A(i~j) = [1(L-!ija*,ý, a,.,

Once such a pair is found, a T,\i'j) transformation can be performed on the lattice

basis. Then the algorithm could :earch for another (i,j) pair, perhaps continuing the

search at the first pair lexicographically after (ij).

The second possible candidate selection method is a greedy approach. Here we

calculate A?(i,j., A) for each possible pair (i,j), where A(i,j, A) is defined:

A(i,j. A) = S(T., A r,\.) - S(A).

Thus, any transformation matrix V, will have A(i,j, A) < 0. The algorithm then

uses the pair of vectors (bi. bj) which minimizes A(i,j,A) in the next row move.

One immediate disadvantage to a greedy approach is that it requires more exten-

sive computations than the lazy selection method. This is true of any set of selection

criteria which attempts to choose vector pairs to reduce in some fashion which per-

forms better than random selection. If the two selection methods yield reduced bases

of comparable Seysen measure, the added cost of an "intelligent" method may be

2.1. THEORETICAL ANALYSIS 17

greater than the time saved by reducing the number of row operations. However, if

one method should yield lattices with lower Seysen measure, the extra costs may be

justified.

We should point out that there is a distinction between choosing a pair of vectors to

reduce and actually performing the reduction. Choosing a pair of vectors to reduce

because they have the greatest potential to reduce the Seysen measure does not

necessarily imply that we should perform the entire reduction and use the largest

possible value of A. It may be wise to perform only a fraction of the possible row

moves and reevaluate other possible pairs of vectors. We run the risk, if we are too

greedy, of getting stuck too soon in a local minimum.

There are reasons both to favor and to suspect the value of intelligent vector pair

selection methods. One of the advantages that Seysen's method has over the LLL fam-

ily of basis reduction algorithms is that it looks at all the vector pairs simultaneously.

The LLL algorithm works in a fashion similar to a bubble sort and LLL only considers

row operations involving "adjacent" basis vectors (i.e. bi and bi- 1 for 2 < i < n).

The cost of intelligent selection methods in terms of additional operations is certainly

a disadvantage, but only if the cost is a significant fraction of the total running time.

Section 2.2.1 below discusses these issues and presents empirical evidence of the cost

and performance of a number of selection schemes for Seysen's algorithm. From our

experiments, the greedy selection scheme performs better than the lazy scheme, and

the additional computation required to implement greedy selection is small.

2.1.3 The S(A) Function

Equation 2.2 above introduced the Seysen measure function S(A) = Z'1 11bi1 2 Ilb11b 2;

the entire operation of Seysen's lattice basis reduction algorithm centers on this quan-

tization of relative reduction of two bases of lattice L. It is natural to question whether

Seysen measures are indeed a reasonable means of ranking different lattice bases. We

mention here some of the theoretical evidence which suggests that ranking lattice

18 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

bases by their Seysen measure is appropriate.

The use of the quantity II bjiIIjbfl derives from elementary n-dimensional geometry.

Recall the definition of the dual lattice B' = (b*,..., b*.) of lattice B:

(bi,b;) = Sjj, for 1 < i,3 < n,

where i,,j is the Dirac delta function (b,,j = 1 if i = ,ij = 0 otherwise). Now, fix i

and notice that

(bi,b') 1,

b 11IIBI[jbcos(a) 1,
1

Ilb, lllb~l =cos(a)' (2.5)

where a is the angle between bi and b?. (Note that -Z < a < E beacuse of the way

in which b! is defined.)

Let Si denote the (n - 1)-dimensional hyperplane spanned by the basis vectors

bi . b... bj-j bi+l , b,. Notice that b! is perpendicular to Si by definition. Thus,

given that a is thlc a..le between bi and b!, the angle between bi and Si is 7r - a.

Thus, if 73 . - a, Equation 2.5 becomes
1

Ijb~III[b•[[= sin(3)"

If basis vector bi is relatively dependent of the other vectors bj, 1 < j •:n,j : Z,

then the angle between bi and the hyperplane Si will be relatively small, and thus

;,.() will be large. Conversely, if bi is relatively independent of the other basis vectors,

/3 will be close to 1 radians, and the product libel!lib[II will be close to one'.

These geometric arguments lead directly to a measure which is a function of

the products I[bjI[[[bfl[[where 1 < i < n. Since I[J/ < j, we could choose the

function SI(A) = 2lIlbjIjiibf]- = E 1 as the measure function. Unfortunately,

'Note that because of the duality between B and B*, we could also have considered f3 to be the

angle between b! and the hyperplane spanned by b . ,b +j b•.

2.1. THEORETICAL ANALYSIS 19

as Section 2.4.4 points out below, there is no simple formula for finding the optimal

value of A for a row move involving the basis vectors bi and bj. Seysen is able to

avoid these computational difficulties by using

n

S(A) = F IlbIIlIlbrll2,
n 1
•=sin-2(8)'

as the measure function, which does yield a simple formula for A. Since sin(fli) E [0, 11,

the squared terms in the S(A) function are guaranteed to be larger on a term-by-

term basis than the corresponding terms in the SI(A) sum. Thus, if lattice basis B,

has smaller measure than basis B2 using the S, measure function, B, will also have

smaller measure than B2 when compared using the Seysen measure S.

An additional advantage to using a function of the Ilbi I1ib! I product terms is that

bounds exists on the size of the individual terms. In [17] Hastad and Lagarias show

that the following bound applies for some primal basis B and dual basis B* of a given

lattice:

max {fjbill, IIb*II1 < exp(O(n3)). (2.6)
l<i<n (26

This bound immediately implies that there exists a basis of L with Seysen measure
I

bounded by exp(O(n0)), since:

max f Ijbill, jib* 1} <5 exp(O(n),
l<i<n • -

max IJbjjjjjb, II < exp(O(n)) + exp(O(n3))= exp(O(n3)),,<i<n

jjbjjjIjb~ j :ll 5l_ nexp(O(n½)),

S(A) :_ exp(O(n3)).

Seysen shows in [38] that the bound in Equation 2.6 may be improved to

ma~x 1llb 11l, 11b'11)} < exp(O((In n)2)), (2.7)
l<i<n

20 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

which reduces the bound on S(A) for an S-reduced lattice to:

SI]bi 11bjjbý 11 n exp(O((ln n)2),

• exp(ln n) exp(O((ln n)2),

S(A) •_ exp(O((lnn)').

To date, this is the best known bound on the Seysen-measure of an S-reduced lattice

basis. However, as is the case with the LLL algorithm, in some cases Seysen's algo-

rithm produces S2-reduced lattice bases which have measures much lower than the

theoretical bound.

2.1.4 Choosing A Values

We now consider the choice of A values in Seysen's basis reduction algorithm. Assume

that S(A) is as in Equation 2.3 above, and that only two-vector row moves are

considered (i.e. transformation matrices of the form T.' for integer values of i,j and

A). We first show that

A =1()(2.8))•=2 \aj ai,i]

yields the maximum possible reduction in S(A) for fixed values of i and j where

A E R. Further, we show that if we require A E Z, then

A [(,, a, (2.9)
2 aaj ai,i

is indeed the value which yields the best possible reduction in the Seysen measure of

the lattice basis.

Let i,j be fixed integers with 1 < i,j <__ n; bhbj, b! and b; are the basis vectors

on which we will perform a row move. Without loss of generality, we assume that Abi

will be added to bj and Ab; will be subtracted from b!. Define bj and b!' to be the

2.1. THEORETICAL ANALYSIS 21

values of bj and b! after the row move is performed:

bj- = bj + Ab,,

b!= b - Ab.

Let A and A* be the quadratic forms associated with the lattice and its dual before

the row move occurs, and let A' and A` be the associated quadratic forms after the

row move. Then

A' =VT. A V.,j
i's 1,31

A*/ T,:-- A* T--\.

Now, given that TP transition matrices have exactly one off-diagonal nonzero

entry, it is easy to see that A' differs from A only in the values in the ith row, the

jth row, the ith column, and the jth column. The same is also true for A". Since the

Seysen measure function S(A) only depends upon the diagonal elements in A and A*,

we know that

S(A') - S(A) = a' '- ii(
i=I t=1

ai iai,i + aj,jaj,j -ai,jaj, - ajja,. (2.11)

When A is right-multiplied by V,, the ith column of A is added to the jth column of

A. When this matrix is subsequently left-multiplied by V., the ith row is added to

the jth row. Thus, after these two transformations, the value of ajj is unchanged, but

a,,, = as,, + 2Aai,, + A2aj,j. (2.12)

If we perform a similar analysis in the dual quadratic form A*, we find that

Si= ai -2Aa, + AaLj . (2.13)

22 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

Using Equations 2.12 and 2.13, Equation 2.11 becomes:

s(A')- S(A)= ,a,, (a,,- 2a,+ 2a;) +a (. + + \2

- ai,,i,,i - ajjaj,

- 2A2ai,ia•, + 2Aai 4a,, -- 2Aai -a!

Differentiating with respect to A and setting the result equal to 0, we find that:

aT__ (S(A') - S(A)) = 4Aai,ia; 1 + 2aia;!. - 2ai,ia! = 0,

4Aai,ia; 3 = 2ai,.a 38 - 2ajja*.P

A - ai,iai,, - ai,ja;j
ai,iaJJ

= -2 (j ai,,)

Thus, if A could take on any real value, for fixed i and j the minimum value of S(A')

is obtained with A = I _ a,..,

We have shown that the minimum value of S(A) with A E R is obtained when

A satisfies Equation 2.8. Our goal now is to show that if A is restricted to integer

values, Equation 2.9 yields that value of A for which S(A) is minimized. Let

A = Az + A,, where 2z E Z,O 5Ar < 1,

A(i,j,A) = S(TV,. A VI) - S(A).

We know that for fixed i, j, A = .! - aOu)'minimizes the value of A. Furthermore,

as A is a quadratic function of A, at least one of A, and A2 + 1 must minimize A for

fixed, integer values of A.

Consider Az(i,j, A,) and A(ij, A2 + 1):

A(i,j, A2,) = 2A2ai~ia* -+ 2A a,,a,- -- 2A2 a ,,a*,,

A(ij, A2, + 1) = 2(A, + 1)2ai,iaj + 2(A2, + 1)aiiaj - 2(A, + 1)ai,,a*,j,
2 2A aiia* + 2Aa ,.-a, - 2A a ,-a*,

+ 4Aj,,aj + 2a,,,,aL + 2ai.,,a, - 2a.-,

2.2. EMPIRICAL ANALYSIS 23

Thus,

A(i,j,A- + 1) - A(ij, A,) = 4Aai,ia*, + 2a-,-a;! + 2ai 4a'j - 2a-,,a 4 . (2.14)

As S(A) is a non-negative valued function which we want to minimize, we are interest-

ed in large, negative A values (i.e. JAI should be large, A < 0). Thus, if Equation 2.14

is > 0, we should choose A = A,; similarly, if Equation 2.14 is < 0, set A = A, + 1.

When is Equation 2.14 greater than zero?

A(i,j, A, + 1) - A(i,j, A,) > 0,

Oz4ai,ia, -+ 2aiia*,- + 2ai,jaL,. - 2ai ,a', > 0,
4Aa,a i,a*,- > 2aij- 2ai,,a;,- 2a-a*

1 (a9.2 a j, 1 4,

• => I (ay ,, a •,

A2> A - .
2'

2"

Thus, if A,, < , then Equation 2.14 is positive, and we should choose A' = A.. If2'

A > 1, Equation 2.14 is negative, and we should set A' = A, + 1. Thus,

A, =A 2 + ATJ,

which proves Equation 2.9.

2.2 Empirical Analysis

In the previous section we attempted to provide some theoretical justification for

Seysen's basis reduction algorithm. The basic analysis suggests that Seysen's tech-

nique is viable, but as yet there are no significant bounds on the running time of

24 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

the algorithm. In this section we detail numerical experiments which were performed

using Seysen's algorithm. These experiments yield greater insight into the classes of

lattices best suited for reduction by Seysen's algorithm, as well as an indication of

the effectiveness of Seysen's technique.

Before we begin detailing the empirical results it is appropriate to detail our

test conditions. All implementations of Seysen's basis reduction algorithm and the

LLL algorithm were written in FORTRAN. Multiprecision floating point arithmetic

operations were performed by a package of routines written by David Bailey at the

NASA Ames Research Center [4]. Tests were run on Silicon Graphics, Inc., IRIS-4D

workstations; the IRIS uses the MIPS R3000 chip set as its main processor.

The experiments described below explore many of the same aspects of Seysen's

algorithm discussed in the previous section. Section 2.2.1 compares lazy and greedy

schemes for choosing the row move to perform on each iteration of the algorithm. The

effects of restricting A choices are discussed briefly in Section 2.2.2. Sections 2.2.3

and 2.2.4 compare the performance of Seysen's algorithm with the LLL lattice on two

classes of lattice bases.

2.2.1 Lazy vs. Greedy Selection Methods

In Section 2.1.2 above we outlined the differences between lazy and greedy methods

for selecting a row move to perform on each iteration of the Seysen while loop. In this

section we describe the results of test lattice reductions on small-dimension lattices

using both the lazy and greedy approaches.

All experimental tests were performed on random integer lattices of determinant

one. Integer lattice bases were generated as follows. Let B be an n x n integer matrix

where the 11h column of B corresponds to basis vector bi. The elements of matrix B

2.2. EMPIRICAL ANALYSIS 25

Table 2.1: Comparison of Lazy and Greedy Selection Methods

'[nAvg. # Steps (Lazy) Avg. # Steps (Greedy) Ratio (Lazy/Greedy)]

20 2079.90 758.50 2.74

25 4096.40 1624.25 2.52

30 7444.80 3279.45 2.27

35 8787.35 3094.25 2.84

are:

1 ifi=j,

B = [b[r]and'x)n = 0 if i > j,

rand(x) - ½xj if i< j.

The function rand(x) generates a random number chosen uniformly from the interval

[0. xj; in these experiments x = 4. Notice that det(B) = 1 since B is upper-triangular

and all diagonal entries bi,j = 1.

To generate a random, dense lattice which is not upper-triangular yet still has

determinant equal to 1, we perform random row moves on matrix B to generate

matrix B'. We choose n2 pairs of integers (i,j) with 1 < ij < n and i # j. For each

such pair. A is chosen to be +1 or -1 with equal probability. Then, the current bi

is scaled by A and added to bj. (That is, we set B = B T2,j.) The result of these

n2 random row moves is matrix B', which is a basis for our test lattice L. Since TA.

transformations preserve the determinant of the lattice, we know that det(L) = 1.

We may thus measure the performance of Seysen's algorithm on lattice L by how

close reduced lattice L' is to I,.

Table 2.1 summarizes the results of tests comparing the performance of lazy and

greedy selection methods. Twenty test lattices were generated for each dimension

n E {20.25,130.35}. In all cases where n < 30, both lazy and greedy algorithms were

26 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

able to completely reduce all test lattices to I,. The table shows the average number

of row moves required by the lazy and greedy methods to reduce a lattice to I,,. On

average, the lazy selection scheme required over twice as many row reductions as the

greedy scheme did to reduce a given test lattice.

At n = 35 the lazy algorithm was able to reduce to J, only two of the twenty

attempted lattices; the remaining problems all encountered local minima during the

reduction, thus halting Seysen's algorithm. The greedy implementation was unable to

completely reduce any of the n = 35 test lattices. The two versions of the algorithm

performed about equally well if we look at the Seysen measure of the reduced n = 35

test lattices.

These experimental results tell us two things concerning the relative merits of lazy

and greedy selection schemes. First, when both lazy and greedy methods are likely

to produce lattice bases with similar Seysen measures, the greedy selection methods

will save at least a factor of two in the number of reduction steps. Second, based on

the n = 35 data, using greedy instead of lazy does not appear to significantly reduce

the performance of the algorithm as a whole. For our test lattices neither method

performed significantly better than the other in terms of the Seysen measure of the

S2-reduced lattice bases.

One might argue that it is not reasonable to compare only the number of reduction

steps required to reduce lattices using greedy and lazy selection methods, since that

measure fails to take into account the cost of selecting the two basis vectors to reduce.

A naive implementation of the greedy algorithm might require 0(n 2) time, as there

are in(n - 1) possible pairs of basis vectors (b1, bj),i # j which must be considered.

However, it turns out that, after an initial 0(n 2) precomputation phase, only 0(n)

time is required to greedily select the next row move. Assume that we have computed

A(i,j, A(i,j)) values for all pairs of integer (i,j), 1 _< ij < n. Now, after a specific

row move involving basis vectors i' and j' is performed, the only previously computed

values of A which need to be updated are those for which = i',i = j',j = i' or

2.2. EMPIRICAL ANALYSIS 27

i = j'. (If you consider A to be an array of values, the (i')th and (j')t' rows and

columns of A are all that need to be recomputed.) Thus, this recomputation can be

performed in O(n) time.

Storing A values can reduce the cost of a greedy selection method from O(n 2) to

O(n). However, even O(n) cost would be prohibitive if the actual amount of compu-

tation required to select a pair of vectors was comparable to the cost of performing

a row move. This is not the case; performing a row move requires O(n) multipreci-

sion math operations, whereas the stored A values need only be stored as single- or

double-precision floating point numbers. (The values are generally different enough

that 32 or 64 bits will provide more than enough precision.) Since multiprecision op-

erations take significantly more time than double-precision operations, and since each

row-move requires O(n) operations, it seems reasonable to discount the added cost of

performing the greedy selection as noise when compared to the cost of implementing

the main portion of the algorithm.

Based on these experimental results, we chose to use a greedy selection strategy

in all subsequent implementations of Seysen's basis reduction algorithm. For lattices

where we know that Seysen's algorithm will be able to perform a significant amount

of basis reduction, such as the sparse lattices associated with subset sum problems

(see Chapter 3), the greedy selection method and its expected reduced execution time

are preferred.

2.2.2 Choosing A Values

As shown in the previous section, the selection method for choosing row moves in

Seysen's algorithm can affect both the algorithm's performance and running time. In

our comparison of lazy and greedy selection methods above, however, we implicitly

sidestepped another such issue: the method by which values of A are chosen for, a

specific row move. Section 2.1.4 showed that for specified lattice basis vectors (bi, bj),

28 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

the value of A which minimizes A(ij, A) is:

A = [(~: :i)](2.15)2 a!,. aj,i/.

However, recall from Section 2.1.1 that any transformation matrix T7 may be repre-

sented as the product of A Till matrices (+1 if X > 0, -1 otherwise). Thus, when a

T\j transformation is applied to lattice basis B, we are implicitly performing A row

moves at once. It may be the case that for some lattices, a finer degree of control is

required; that is, a greedy algorithm might perform even better if it was restricted to

performing only Tij and Ti1 transformations. That way the algorithm would have

the finest possible degree of control over row operations.

It is also importar. , to note that a greedy selection mechanism uses A values in

two distinct places. First, in order to select a pair of basis vectors to reduce, the

greedy approach calculates A(i,j, A(i,j)) for all possible values of i,j, i #ý j (A(i,j)

is the function in Equation 2.15 above). Once a pair of vectors has been chosen,

a Ti,\ transformation is applied. In the first case, A is used as part of the scoring

mechanism in order to choose a set of basis vectors to reduce. In the second case A

plays a different role, the number of times to add vector bi to bj. Because A values

have these two distinct functions, it is important that we distinguish between those

roles when testing methods of choosing A values.

We consider in this section three versions of Seysen's basis reduction algorithm

and their performance on a set of randomly generated integer lattices'. All three

versions use a greedy selection scheme to choose the next row move to perform. They

differ only in the set of allowed values of A in the scoring and transformation phases.

These version are:

1. (Z, Z): A may take on any integer value when choosing a set of basis vectors for

the next row move, and any T,V may be performed on those vectors.

2 1n fact, we use the same set of integer lattices used in the previous section for comparing the

lazy and greedy selection mechanism.

2.2. EMPIRICAL ANALYSIS 29

2. (Z, ±1): A may take on any integer value when choosing a set of basis vectors

for the next row move. However, only TV, and T.1 actual transformations are

allows. (If A > 0 we add bi to bj. If A < 0 we subtract bi from bj.)

3. (±-1, ±t1): A may only be ±-1 when choosing the next row move, and only T*,-S

transformations may be performed on the basis.

The (Z, Z) version is identical to our "greedy" implementation of the previous section;

it will serve as our control. The (Z, ±1) version of Seysen's algorithm is designed to

greedily select the best possible row move based on unlimited A values, but to perform

the least possible number of changes to the lattice basis before recomputing what to

do next. The (±1, ±1) version also restricts lattice basis changes to the minimum

amount possible on each step, but this version selects a row move based only on what

it can do immediately to reduce the S(A) measure, not on any "future potential."

Table 2.2 compares the performance of the (Z,Z), (Z, ±-1) and (±1, ±1) versions of

Seysen's basis reduction algorithm. For each value of n, twenty test lattices of dimen-

sion n were generated and Sevsen-reduced by each of the three methods. The table

lists aggregate information for each value of n (all numbers shown are the geometric

mean of the experimental values obtained for each of the twenty test lattices):

* n: The dimension of the test lattice in this group.

e LZ0 : E', log1 0 Ijbill before reduction.

* S(A): The Scysen measures before reduction.

* LT0: _ log1 o IIbfll before reduction.

* Method: The restructions placed of A values.

* L',0 : ZT=' log, 0 Ilb II after reduction.

* S(A'): The Seysen measure after reduction.

30 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

Table 2.2: Comparison of (Z,Z), (Z,4-1) and (4-1,±-1) Options

[n L10 S(A) 1Lj0 [Method L'10 S(Al) I.4o' I # Steps

(ZZ) 0. 20. 0. 757.4

20 82.4 4.7. 1011 118.2 (Z,±-1) 0. 20. 0. 767.0

(±1, ±1) 0. 20. 0. 787.3

(ZZ) 0. 25. 0. 1622.1

25 132.0 5.7. 1014 192.9 (Z, ±1) 0. 25. 0. 1603.4

(±1, ±1) 0. 25. 0. 1610.3

(Z, Z) 0. 30. 0. 3275.3

30 195.8 9.3 • 101" 287.2 (Z, ±1) 0. 30. 0. 3176.1

(±1, ±1) 0. 30. 0. 3316.1

(Z,Z) 110.4 1.0- 108 112.6 3037.0

35 269.2 6.2. 1020 390.0 (Z,:± 1) 99.0 4.0. 107 102.2 3022.0

(±-1,4-1) 112.3 1.3-108 114.6 2920.8

(Z,Z) 216.9 5.2-1012 227.1 2240.2

40 343.8 1.8. 1023 507.0 (Z, ±1) 206.5 1.6. 1012 217.0 2399.4

(±1, ±1) 205.0 1.5- 1012 217.3 2527.2

(Z,Z) 304.6 4.2- 10'1 323.5 2369.9

45 434.0 2.0. 1026 656.7 (Z, ±1) 290.6 1.2.1015 312.3 2569.8

(±1, ±1) 296.5 1.9. 1015 315.8 2739.2

(Z,Z) 402.8 2.3. 1018 429.2 2698.1

50 541.2 4.5.1029 833.5 (Z,±-1) 386.1 6.3. 1017 418.4 3276.4

(-1,-1) 393.8 1.1.1018 422.4 3491.1

2.2. EMPIRICAL ANALYSIS 31

SL10: E', log1 0 IIbil after reduction.

* # Steps: The number of row moves performed during the reduction.

For n < 30, all three implementation were able to completely reduce all test lattices

to I,. The only difference in the performance of the three methods was in the number

of reduction steps required to reduce a test lattice, and these differences were minor

(no more than 5% variation among any of the values for a given dimension).

More differences among the methods appeared once n >- 35 and Seysen's algorithm

was no longer able to reduce any of the test lattices to I,,. For the majority of the test

lattices, the (Z. ±1) appears to yield the most Seysen-reduced lattice basis, although

it requires significantly more row moves to perform this reduction than the (Z, Z)

method. This improvement is expected; after all, the only difference between the

(Z, Z) and (Z, ± 1) methods is that that latter looks more frequently at the lattice basis

and takes smaller "steps" while performing a reduction. However, as the dimension

of the lattice basis increased, the ratio of row moves required by (Z, ±1) to row

moves required by (Z,Z) also increased. By the time n = 50, the (Z,4±1) method

required approximately 30% more reduction steps to reduce test lattices than the

(Z, Z) method did.

The performance of the (±1, ±1) method fell somewhere between that of (Z, ±1)

and (Z.Z) for test lattices with n > 45. This is somewhat surprising in and of

itself, since the capability of the (±1, ±1) method to consider future reduction is

severely limited. This unexpected performance may be an artifact of our method of

generating test lattices; we only performed n2 row operations on the initial upper-

triangular lattice basis and used only TV. transitions to modify the lattice basis. This

could account for the relatively good performance of the (±1, ±1) method, and also

the differences between the (Z,Z) and (Z, ±1) methods.

The experiments summarized in Table 2.2 do not indicate that any one of the

tested methods consistently performs better than the others. Without any clear

32 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

indication that one method would yield significantly better results (especially as n ---

100), we were reluctant to use any method in Seysen's algorithm except the (Z,Z)

one implicitly defined by Seysen himself. For special types of lattices, it is probably

worthwhile to compare these methods again. It may be that increased performance

by the (Z, ±1) method more than offsets the increase in the number of row operations.

However, for our experiments in subsequent sections (and the subset sum lattices of

Chapter 3) we continued to use the (Z, Z) form of Seysen's algorithm.

2.2.3 Testing the B0 Lattice

The previous sections detailed small tests which compared the relative performance of

Seysen's algorithm when a few minor changes were made to its structure. In this sec-

tion and the following one we investigate more fully the performance of the algorithm

itself as a reduction technique for self-dual lattice bases and random integer lattices.

Our next series of tests was suggested by J. C. Lagarias (personal communication) to

test the self-dual reduction performance of the algorithm. Let B, 0 < 0 < ½ be the
2

lattice basis consisting of the following basis vectors:

b = (1,0,0,0,...),

b 2 = (0,1,0,0,...),

b 3 = (-0,, 1,0,...),

b4 =(0, -0, 0,, 1. . ..

If Be is represented as a matrix with bi as the ith column, then we have:

I if i =j,

Be = [bij I< i =j<n 0 if i > j,

-1)j-i+10 if i < j.

2.2. EMPIRICAL ANALYSIS 33

Basis B6 has the property that jibrjj grows exponentially with n, but rather slowly

for small dimensions.

Tests were performed on Be lattices with 0 = 0.4 using Seysen's basis reduction

algorithm for dimensions 5 < n < 105. Based on the experimental results of Sec-

tions 2.2.1 and 2.2.2 above, we used a greedy selection method to choose which pairs

of vectors to reduce on each iteration of the algorithm, and A was allowed to be any

integer value during all stages of the algorithm. The results of these tests are given

in Table 2.3. For each test lattice, the following information is given:

"* n: The dimension of the lattice.

"* LI0 : E_=' log1 0 IibiI] before reduction.

"* S(A): The Seysen measure of Be before reduction.

SL;0 : _U1 log1 0 IIb I1 before reduction.

" L'0: Zi•= log10 libill after reduction.

"* S(A'): The Seysen measure of Be after reduction.

" L;0: Fn=I log1 0 Jib[II after reduction.

e # Steps: The number of row moves performed during the reduction.

The exponential growth of Ilb! 11 may be easily seen by looking at the rate of growth of

the L/ 0 column in the tables. Remember that L*0 is the sum of the base 10 logarithms

of the lengths of the dual basis vectors. This sum grows at least linearly with respect

to n; thus, the IjbflI grow exponentially in n.

For the BO lattice Seysen's basis reduction algorithm yields little improvement

in the vector lengths Ijbill. Indeed, for some values of n we have L10 < L10. This

is not the case, though, for the dual lattice; Seysen's reduction algorithm greatly

decreases the lengths of the vectors in the dual basis. When the algorithm completes,

34 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

Table 2.3: Performance of Seysen's Algorithm on Be for e = 0.4,5 _< n < 105

nJ L1 o S(A) L 0oJ L'10 S(A')I L 0o' # Steps

5 0.30 7.36e+00 0.50 0.30 6.59e+00 0.30 3

10 1.10 3.65e±01 3.80 1.10 1.61e+01 1.00 12

15 2.30 1.88e+02 10.60 2.10 2.78e+01 1.90 29

20 3.70 1.00e±03 21.10 3.40 4.28e+01 3.10 45

25 5.30 5.37e+03 35.20 4.90 5.80e+01 4.20 70

30 7.10 2.89e+04 53.00 6.30 7.88e+01 6.20 135

35 9.10 1.55e+05 74.40 8.20 1.03e+02 8.00 177

40 11.20 8.35e+05 99.50 10.40 1.30e+02 9.90 240

45 13.40 4.49e+06 128.30 13.10 1.72e+02 12.80 363

50 15.70 2.42e+07 160.70 15.80 2.32e+02 16.90 509

55 18.20 1.30e+08 196.70 18.60 2.62e+02 18.30 698

60 20.70 6.99e+08 236.40 22.30 3.53e+02 22.50 772

65 23.30 3.76e+09 279.70 25.00 4.01e+02 25.70 1067

70 25.90 2.02e+10 326.80 26.40 4.40e+02 28.10 1467

75 28.70 1.09e+11 377.40 32.70 6.93e+02 36.60 1702

80 31.50 5.85e+11 431.70 31.90 6.00e+02 35.70 2123

85 34.40 3.15e+12 489.70 35.70 7.25e+02 40.40 2775

90 37.30 1.69e+13 551.30 39.70 8.50e+02 45.40 3345

95 40.30 9.10e+13 616.60 44.10 1.03e+03 51.00 4839

100 43.30 4.89e+14 685.60 49.00 1.20e+03 55.50 6363

105 46.40 2.63e+15 758.10 50.80 1.19e+03 56.70 8303

2.2. EMPIRICAL ANALYSIS
3
35

700 -

70 0
L1 0

500

10. * O0

4O0-
300 -o

500

10

20000030 0
0000Oe''

25 45 65 85 105

Figure 2-1: Performance of Seysen's Algorithm on B0.4 Lattice: LI0 and LIo' vs. n

36 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

we have L' 0 ; L;0' and the lengths of the vectors in the prime and dual lattice bases

are comparable. Figure 2-1 shows graphically the improvement made by Seysen's

algorithm to IjbtII.
The results obtained from application of Seysen's algorithm to Be lattices are

quite promising. The algorithm was able to significantly reduce the lengths of the

dual basis vectors b! without significantly increasing the lengths of the basis vectors

for B9 themselves. In fact, the resulting primal and dual bases have basis vector

lengths which are comparable. Certainly this suggests that Seysen's algorithm is a

viable technique for applications in which we wish to simultaneously reduce a lattice

and its dual.

2.2.4 Testing Random Integer Lattices

The reductions of B, lattices tested application of Seysen's algorithm to a very narrow

class of lattices. From a cryptographic point of view (see Chapter 3 below), and in

many other cases, our goal is to reduce random lattices with integer basis vectors.

In general, we do not know that our lattice conforms to some specific structure; we

are give only the basis vectors themselves. Thus, it is appropriate to investigate the

performance of Seysen's algorithm on randomly generated integer lattices.

When we considered in Section 2.2.1 the choice of a lazy or greedy selection method

for Seysen's algorithm, we ran tests on random integral lattices L with det(L) = 1

of small dimension (n < 35). We utilize the same technique for generating random

lattices as used before, except now we consider lattices up to dimension 50. In addition

to running Seysen's algorithm over these test cases, each lattice was also reduced using

the LLL algorithm with y < 1.0.

Table 2.4 summarizes the results of these experiments. For each value of n-

0 mod 5, 20 < n < 50, twenty different test lattices were generated. The columns n,

L1o, S(A), L-o. L'o, S(A'), and L•0' identify the same quantities as in Table 2.2 above.

The column labeled "# Steps (Seysen)" reports the average number of reduction

2.2. EMPIRICAL ANALYSIS 37

steps (row moves) performed by Seysen's algorithm for each test lattice. The average

number of row operations performed by the LLL algorithm is listed in the "# Steps

(Lovasz)" column. (LLL reduction was not performed on lattices with n > 45 because

of the excessive amount of computer time required to obtain results).

The LLL basis reduction algorithm was able to reduce all tested lattice bases to

the n-dimensional cubic lattice basis (i.e. B' = In), which has Seysen measure zero.

Seysen's algorithm performed similarly on all lattice bases with n < 31. (Values in

parentheses in the L10 column indicate the number of lattice bases which were Seysen-

reduced to the n-dimensional cubic lattice.) For 32 < n < 34 the Seysen algorithm

was able to completely reduce only some of the attempted lattice bases; no lattice

basis with n < 35 was ever reduced by the Seysen algorithm to In.

The degradation in the performance of Seysen's algorithm as n increases from

30 to 35 is quite surprising. Apparently, for these types of lattices, the probability

of reaching a lattice basis which is a local minimum of the Seysen measure function

increases substantially over that range. The LLL reduction algorithm does not exhibit

any decrease in performance, except for an overall increase in the number of reduction

steps required to convert the given lattice basis into the n-dimensional cubic lattice

basis. Of course., the LLL algorithm does take significantly longer to run than the

Seysen algorithm, but these tests suggest that Seysen's algorithm alone will not be

sufficient to reduce lattice bases in higher dimensions. We may need to combine

Seysen's algorithm with other lattice basis reduction techniques to efficiently reduce

large lattice bases. Alternately, it may be possible to use some heuristic technique to

reduce the probability of reaching a lattice basis which is a local minimum of S(A),

or to "kick" a Seysen-reduced basis out of a local minimum. The following section

suggests a few possible methods which may be employed when Seysen's algorithm

fails to S-reduce a lattice basis and stops at a local minimum of S(A).

38 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

Table 2.4: Performance of Seysen's Algorithm on Random Integer Lattices

I Ir Steps # Steps
n Ljo S(A) L1*o L'o S(A') L*1o' #Stp #Ses

(Seysen) (Lovasz)

20 82.37 J 4.71• 10" 118.22 0. (20) 20. 0. 757.37 4424.0

25 131.95 15.67. 1014 1192.93 0. (20) 1 25. 0. 1622.11_j 12977.4

30 195.81 9.28. 1017 287.24 0. (20) 30. 0. 3275.30 32718.5

31 205.86 3.05. 1018 308.06 0. (20) 31. 0. 3690.51 38085.2

32 222.41 1.04 1019 323.66 0. (11) 1695.8 0. 3626.00 44770.0

33 237.86 5.07- 10'9 348.19 0. (5) 86999.0 0. 3408.27 53407.4

34 243.86 4.48- 1019 358.86 0. (1) 4.26. 106 0. 3075.63 60299.7

35 269.25 6.24 . 102 390.02 110.39 1.00. 108 112.57 3036.95 70047.2

36 287.16 5.26. 1021 423.62 138.11 2.48.109 141.13 2738.39 80836.3

37 291.86 5.23 . 102' 438.94 162.17 3.20 . 10'0 167.33 2400.10 91491.5

38 310.35 3.17- 1022 469.18 175.52 1.07.1011 182.50 2520.02 103624.0

39 329.32 1.78. 1023 500.89 196.26 7.45.1011 203.87 2555.72 118338.0
40 343.84 1.82. 1023 507.02 216.88 5.21 . 1012 227.10 2240.23 132901.0

45 434.01 2.02. 1026 656.67 304.56 4.20- 1015 323.53 2369.90 -

50 541.20 4.53.1029 833.54 402.80 2.33. 1018 429.15 2698.11 -

2.3. WHEN SEYSEN'S ALGORITHM FAILS 39

2.3 When Seysen's Algorithm Fails

We have seen above that for random, dense lattices L with det(L) = 1, Seysen's

algorithm starts to break down for 30 < n < 35. As n increases beyond 35, the

number of local minima for the S(A) function apparently increases, and thus the

chance that Seysen's algorithm will reduce lattice L to I,, decreases. As the number

of local minima increases, it is increasingly likely that in the process of reducing

lattice L the S(A) function (where A is the quadratic form associated with L) will

encounter one of these local minima. As described above, Seysen's algorithm cannot

tell whether it has reached a local or a global minimum. Thus, it stops as soon as all

possible TI.j transformations cause S(A) to increase.

For many types of lattices, such as the sparse lattices generated by subset sum

problems (see Chapter 3), Seysen's algorithm has performed sufficient work by the

time it encounters a local minimum that it is acceptable for it to stop. However, for

many lattice reduction problems Seysen's algorithm stops too soon. We would like

the algorithm to be able to detect local minima and overcome them. If one considers

the surface described by S(A) values, local minima are "wells" or "depressions" in

the surface which are large enough to contain all points reachable by performing one

row move on the lattice. In this section we discuss possible techniques for "kicking"

the reduced lattice out of these wells; methods of enhancing Seysen's algorithm so

that it may consider other options when it encounters a local minimum.

There are many methods which could conceivably be applied to a lattice to move

it out of a local minimum; we consider only some of these options. Section 2.3.1

considers an obvious possibility, which is to consider row moves involving 3 or 4

vectors at once (general n-moves are discussed in Section 2.4.1 below). In Section 2.3.2

we investigate simulated annealing and rapid quenching approaches to the problem.

Finally, Section 2.3.3 discusses using Hadamard matrices to permute the entire lati ice

basis.

40 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

2.3.1 Row Moves Involving Three or Four Vectors

As initially described in (381, Seysen's basis reduction algorithm only considers row

moves involving two basis vectors. That is, we only consider moves of the form:

bj + bj + Abi. (2.16)

(These moves, of course, correspond to the set of transformation matrices V .) How-

ever, there is no real theoretical reason to restrict ourselves to row moves of the form

given in Equation 2.16. We consider here possibilities for row moves of the form

bj .- bj + Abi, + rbi2,

bj 4-- bj + Abit + cbi,2 + pbi.,

and their dual basis counterparts

b; -b; + Ab*, + Kb*2,

b; b; + Ab!, + Kb + b

Before we begin, it should be noted that there are practical reasons for not consid-

ering row moves involving more than two vectors at any given time. First, if we are

using a greedy selection method to choose the vectors upon which to operate, more

work is required to choose the correct n-tuple. (If we use a lazy implementation this

is less of a concern). Second, 2-moves3 exhibit a symmetry between the prime and

dual lattice which is lost when we consider n-moves with n > 2. When we perform a

Ij transformation, bI - bj + Abi and b I - b - Abj. Thus we need not explicitly

consider operations on the dual lattice, since every dual lattice transformation has an

equivalent transformation in the prime lattice (with ij swapped and A multiplied by

-1). For n-moves with n > 2, however, this duality is lost. The 3-move

bj +- bj + Abi, + Kbi2 ,

3 We use "k-move" to designate a row operation in which multiples of k - I vectors are added

simultaneously to another vector.

2.3. WHEN SEYSEN'S ALGORITHM FAILS 41

for example, has the following effects in the dual basis:

bK Kb - Abj*,

b!2 b! - sb;.

Thus, even if we use a lazy approach to choose which vectors to use in a row operation,

there are many more candidate operations which must be considered since there is

no longer any overlap between moves in the primal and dual lattices.

Calculating the best possible values of A, K, p,... for a given set of basis vectors is

also more complicated as the number of vectors involved in the move increases. As an

example, let us consider the computation required to choose A and K for the 3-move

bj bj + Abi, + Kbi2,

b!2 -b, - Kb;.

We assume without loss of generality that ii < i2 < j. Then we may represent this

transformation by a transformation matrix, where:transormaion y a ,1,2,3

Tý'ý + AU21,,j + KUi2 ,,.

Similar to Section 2.1.4 above, let us define

A(i*1, i=A, K) S((Tý', -)' AT.'\ - S(A)
11,2- S1 t2 ,

= (-2ai 2 ,i2a* + 2ai2,2a;,) K + 2ai2,i2amK 2

+ (-2ai,,ia*,, + 2aja)A+ 2a!,,. + 2a- ,a! A2

Now, we compute the partial derivatives of A(il, i2 ,j, A, K) with respect to K and A,

a A(?,. i2, j, A, K) = 92a 2, 2a! -+ 2ai2,,a,, + 4a 2 ,-2 a,j! +

A(,i•,j.,) = -2a,, ,i ,j + 2ai,,ja 3j + 2aj,,i 2a;,K + 4ai,.i,a*,.A,

42 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

set them equal to 0, and solve for K and A:
aA i9A

--K = 0'A 0

A -a, 2 2 (2a 1,j~a*,j + 2a,1,,ja;,, a;,-2~,~(2ai,,i 2 a!2 , + 2ai 2 ,1a;1A -aii)!.2a - a4(ai,,i2)2(a•.j)2- 16aj, ,j,ai2,i, (a~)2

1, (a;* 4ai,,,a!j (-2ai2,ja, + 2ai 2+,,ao)

4(ai, i,2) 2 (a', 1) 2 - 16ajjaii2 (a'.)2

If we wish to implement a version of Seysen's algorithm which allows 3-moves in

general, we must calculate six sets of (A, K) values; one set for each of

bj -bj + Abi, + Kbi2 b - b• + Ab!, + ±Kb!, (2.16)

bh b--h, + Abj + Kbi 2 b! b! + Ab± + Kb!,, (2.17)

bi, 2- bi, + Abh + Kbj b!2 - b*3 + Ab!, + Kbj. (2.18)

Clearly including the six possible 3-moves and the eight possible 4-moves in Sey-

sen's algorithm is computationally expensive. However, there are reasons for wishing

to do so. When Seysen's algorithm reaches a local minimum of S(A) for some lattice

L it is reducing, it has reached a point where any single row move increases S(A). By

allowing the algorithm to look at 3-moves when it has run out of 2-moves to perform,

we increase the number of configurations Seysen's algorithm must investigate before

it gives up. It is quite possible that one or more configurations which are 3-move

attainable but not 2-move attainable will have Seysen measure smaller than S(A).

These reduced lattices would then permit the algorithm to move out of the local

minimum and continue its reduction steps.

We added routines to our implementation of Seysen's basis reductions algorithm

to implement three- and four-vector row operations. In all cases one vector was

designated the "target" vector and integer multiples of the other two or three vectors

were added to the target. We did not notice any significant improvement in the

performance of the algorithm on random integer lattices of determinant 1 when these

additional moves were allowed to occur on any iteration of the algorithm. In some

2.3. WHEN SEYSEN'S ALGORITHM FAILS 43

cases, the greedy selection scheme actually performed worse when allowed to use

3-moves and 4-moves; usually this decrease in performance occurred because the

algorithm "jumped ahead" too quickly by using the 3-move and would have done

better by using a sequence of 2-moves. Three- and four-vector operations were helpful,

however, when a lattice reduction reached a local minimum. In many of these cases

a few 3-moves (or 4-moves, if considered) existed which would carry the lattice out

of the local minimum and allow the algorithm to resume processing. Given these

experiences and the increased complexity required to operation on more than two

vectors at a time, we would suggest using n-moves when n > 2 only to move the

lattice being reduced out of a local minimum.

2.3.2 Simulated Annealing and Rapid Quenching

Many combinatorial optimization problems have been successfully attacked using sim-

ulated annealing, which was initially developed independently by [10, 21]. Simulated

annealing approaches resemble local optimum algorithms, except that a random com-

ponent is introduced which allows occasional "uphill" moves (moves which worsen the

current solution to the problem according to a cost schedule). As simulated anneal-

ing methods have been successfully applied to a wide variety of problems, it seems

reasonable to consider adding simulated annealing techniques to Seysen's algorithm

in the hope of reducing the number of lcoal minima which cause the algorithm to stop

before reaching a global minimum.

Modifying Seysen's algorithm to work along the lines of a simulated annealing

approach would not be difficult. In the implementation of the algorithm, we simply

need to accept row moves which increase the Seysen measure of the lattice basis.

The probability of accepting a move which increases S(A) will depend upon the tern-

perature of the reduced lattice, which starts high and decreases according to some

cooling schedule and the reduction proceeds. It thus remains to specify the initial

temperature of a lattice basis, the probability (as a function of temperature) of ac-

44 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

cepting a row move which increases S(A), and a cooling schedule which describes how

temperature decreases with time/reduction steps.

Another technique, based on physical systems, for solving combinatorial optimiza-

tion problems is the rapid quenching approach. Simulated annealing slowly reduces

the temperature of the solution, thus gradually reducing the probability of accepting

a move to a higher energy/cost state. Rapid quenching, on the other hand, quickly

reduces the temperature in the model, bringing the system to a minimum quickly.

The system is then reheated to a temperature lower than the initial temperature, and

the process is repeated. Seysen's algorithm itself can be viewed as one iteration of a

rapid quenching process. The heated system is the initial lattice basis, and the algo-

rithm itself, by greedily reducing the Seysen measure of the lattice basis, decreases

the temperature of the system.

We modified our implementation of Seysen's algorithm to simulate multiple rapid

quenching iterations. When a lattice basis reached a minimum of the Seysen measure

function and no single two-vector row move could decrease S(A), a randomization

function was performed on the lattice to "heat" it and Seysen's algorithm was subse-

quently applied to the heated lattice basis. Our randomizing function chose a linear

number of pairs of vectors (bi, bj), i :ý j, and (with equal probability) either added bi

to or subtracted bi from bj. (This is the same randomizing operation used previous-

ly to generate random integer lattices, except that we perform 0(n) randomizations

here instead of 0(n ') as was done before.) Multiple iterations of the heating/Seysen-

reducing process did successfully reduce lattice bases more than Seysen-reduction

alone, although it is unclear as to how much benefit can be gained from repeated

applications of this process.

2.3.3 Using Hadamard Matrices to Permute Lattice Bases

Our third and last suggestion for moving lattice bases out of local minima was sug-

gested by Matthijs Coster (personal communication). Instead of randomly permuting

2.3. WHEN SEYSEN'S ALGORITHM FAILS 45

the lattice basis as random quenching does, Coster suggests using a Hadamard matrix

H to transform a Seysen-reduced lattice basis B into lattice basis B' = B H. Recall

that matrix H is a Hadamard matrix if it satisfies the following two properties:

1. Each entry hij of H is either +1 or -1.

2. If hl,... ,h. are the rows of H, then for all ij with i 3 j, (hi,hi) = 0.

It is not difficult to show that if H is an n x n Hadamard matrix, then n = 2 or

n - 0 mod 4 ([1], 2.21 Exercise 10).

Now, consider the lattice basis B' obtained by multiplying B by a Hadamard

matrix H. (If n # 0 mod 4 we may consider B and the corresponding lattice L to be

sublattices of an n'-dimension space with n' > n, n' = 0 mod 4.) Each basis vector in

B' is a linear combination of all the basis vectors in B, but no two B' vectors have

similar constructions, since hi and hj differ in in coordinates if i : j. The basis

vectors in B' will have lengths z V/• times the lengths of the basis vectors in B, so

while we obtain a good randomization of the lattice, the lengths of the basis vectors

are still manageable.

We should point out that the matrix H is not a linear transformation matrix;

det(H) 5 1. This means that the lattice generated by B is not the same lattice

generated by B'. However, all n-dimensional Hadamard matrices H, satisfy:

Hn H, = n In.

Thus,

B H,, H, = n B

and the net result of the operation is to scale B (and the associated lattice L) by a

factor of n. Thus we can divide out the factor of n and we are left with the lattice L

we started with.

So, our plan of attack should be as follows. When Seysen's algorithm stops a-id

reports that lattice basis B is a local minimum of S(A), create B' = B H where H

46 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

is a Hadamard matrix. Now, Seysen-reduce lattice basis B' until a local minimum

is reached. Then compute B" B'H,,. Finally, Seysen-reduce basis B", producing

basis B"'. Bases B and B"' describe the same lattice L. Note that there is no

guarantee that S(A') < S(A), where A,A"' and the quadratic forms associated

with B, B"' respectively. Further study is required before we may conclude whether

Hadamard permutations provide a reasonable method for "kicking" lattice basis B.

2.4 Extending Seysen's Algorithm

The description Seysen gave in [38] of his algorithm was only an outline of a lattice

basis reduction technique. We have tried in this chapter to give both theoretical and

empirical reasons for the choices made in implementing Seysen's algorithm. However,

we have only touched upon a few of the many possible combinations of techniques.

As the next chapter shows, these choices are effective as reducing lattice bases derived

from subset sum problems. For other lattices, their effectiveness may be in question.

We briefly mention here some of the other possible choices for the various components

of Seysen's algorithm.

2.4.1 General n-vector Row Operations

Section 2.3.1 above discussed the possibility of extending Seysen's algorithm to con-

sider row operations involving three and four vectors at once. It is possible to extend

these operations to encompass arbitrary k-moves where integer multiples of k - 1

basis vectors are added to another basis vector. For fixed k, let bj be the target basis

vector (the vector to be modified) and let bi ,....., b ik- be the basis vectors to be

added to bi in multiples of A,,..., Ak- 1 respectively. Then, after the row move, we

2.4. EXTENDING SEYSEN 'S ALGORITHM 47

will have:

k-ibj -- bj + E Ambi.,

b!. +-b! -Ambj, for 1 _<m_<k-1.

Now, we may solve for the new values of the quadratic forms A and A* after the

row move has occurred. In A, the only value that changes is a1 ,1 . Its new value is:
k-1' k-1 k-1

aj~j +--ajj .+ (m=a ini,. 2m + E 2Amai,,,j +4 E 2Am~pai,,,i,. (2.20)

=m=l m,p=l
vn~p

In the dual lattice quadratic form A*, the values a<im change for 1 < m < k - 1.

Their new values are:

a* 2Ama* * for 1< < k-1.
aim,im, ai,,im - 2A ,m•, + "a,1, f m _3- (2.21)

If we compute A, the change in S(A) resulting from this row move, we find that:

a = ~j aimmm +E 2Amaim,,j + E 2Am.•ai,
m=1 m,p=1

m~p

k--I

+ S: ai~ (A'a*,j 2Ama*i,(.2
m=
k-1 k-1

A•2 a*

-a

A 2 m j,jaim,im + 2 1 Am (ajm a -,, , i .,,maimd)

k-1 (2.23)
+ 2 E AmApaim,ipa;j.

m,p=1
mn~p

Thus, for all 1 < rn < k - 1 we have:

a k-i
A = 4Amai,,i,,a;, + 2(a!iai,, a- ai,,mai,) + 2 E A ai,,ipa.i. (2.24)

p~m

We may thus compute formulae for all Am for 1 < m < k - 1 if we solve the si-

multaneous system of equations obtained by setting the k - 1 derivatives defined in

48 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

Equation 2.24 equal to zero. Of course, we still must solve the problem of finding

optimal integer values for the Am. For the 2-move case we showed that [)A7J was the

best integer choice for A. It is not clear that rounding will work in the k-move case.

The real values derived for the Am may only indicate some range of integer values

which need to be searched.

2.4.2 Alternate Selection Criteria

Seysen's original implementation of his basis reduction algorithm used a "lazy" ap-

proach for choosing pairs of basis vectors to reduce. Pairs of integers (i,j), 1 < i,j < n

were searched in lexicographic order until a suitable row move involving bi and bj

was found. We have presented above empirical evidence which favors a "greedy" ap-

proach, even when the extra computation time required to implement the "greedy"

method is considered.

Selection methods other than the "greedy" and "lazy" approaches were not con-

sidered in our experiments, but are certainly possible. For example, in addition to

taking into account the reduction in S(A) which will result from a row move, we

might also wish to consider the other row moves which will be blocked by performing

this move. That is, if Abj is added to bi, the potential S(A) reductions of all other

row moves which involve either bi or bj will be modified. Perhaps we should choose

row moves so that the moves they block have minimum S(A) reduction potential.

We could combine this idea with the "greedy" method; selecting a row move with

the greatest difference between the amount it reduces S(A) and the average S(A)

reduction of all the moves it blocks.

2.4.3 Alternate Choices of A

In Section 2.2.2 above we looked at the effect of placing restrictions on the possible

values of A on the performance of Seysen's algorithm. In particular, A was allowed

2.4. EXTENDING SEYSEN'S ALGORITHM 49

either to be any integer value, or to only take on the values ±1. We found that the

algorithm worked slightly better if row moves were chosen with A E Z but only TV

moves with A = ±1 were actually performed, probably because the changes made

to the lattice basis on any single row move are smaller. We pay for the improved

performance, however, though an increase in the running time of the overall algorithm,

as it takes more row operations with the restriction in place to add a large integer

multiple of one basis vector to another basis vector.

As an example of other possible methods of choosing or restricting A values, con-

sider the following set of restrictions:

* When choosing a pair of vectors for a row move, A may take on any integer

value.

* When the row move is actually performed, if A > 0 use the largest power of two

strictly less than A (unless A = 1, in which case A should be used). If A < 0

use the smallest power of two strictly greater than A (again, unless A = -1, in

which case -1 should be used).

We may abbreviate this set of conditions as (Z,2k). What we are doing is computing

the best possible value of A, but instead of performing one row move to compute

bj +- bj + Abi, we perform a logarithmic number of moves. In this way we might

be able to combine the benefits of the (Z,Z) approach (fast running time) and the

(Z, ±1) approach (better overall performance). This approach has not been tested,

and judging from the relative differences noticed between the (Z, Z) and (Z, ±1) cases

is not likely to produce very large changes in reduction performance. However, it is

an example of other possible A restrictions which could be tried.

50 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

2.4.4 Alternate S(A) Functions

Section 2.1.3 above gave reasons for using functions of the product terms Ijb1iJljbflj.

In particular, the function

nt

S(A) = 1 12 I1biII2 1bflI2

i=l 1=W

was selected as the Seysen measure function because it yielded a closed form solution

for the optimal value of A given i and j. However, other functions could certainly

be employed as the method of comparing different lattice bases. In this section we

briefly describe how Seysen's algorithm would have to be modified to accommodate

another measure function.

We restrict our attention to versions of Seysen's algorithm which use only row

moves involving two basis vectors (i.e. bj #- bj + Abi). Recall that the formula in

Equation 2.9 for the optimal choice of \ was derived by maximizing the change in the

Seysen measure function caused by a row move involving two particular basis vectors.

In the Seysen measure function is changed, the only direct impact it will have upon

the operation of the algorithm is that the optimal value of A for basis vectors (bi, bj)

will be computed in a different manner.

In [3S] Seysen mentions two possible replacements for the S(A) function:

S 1(A) = J1 ai~ia*,i = l1 bi [211b•[12,
i=1 --

S 2(A) = jai- = Z 11b11 lllb~I.
i=1 i---1

Replacing S(A) with S1 (A) implies that our choice of A must minimize:

Az(i,j, A) = Sj(TJ1 A TV)- S-(A),
I 't I

rnl=a{i,},ja~s'a, 4 a;1 '-

Solving 0 yields an extremely complex expression for A. Similar results occur

2.4. EXTENDING SEYSEN'S ALGORITHM 51

when we try to substitute S2 (A) for S(A). In both cases, no simple closed-form

solution for A exists as was the case with S(A).

It may be still be possible to utilize measure functions in Seysen's algorithm with

no simple closed-form solution for A if we are willing to sacrifice some performance.

If the range of possible integer A values is bounded, for given i and j we can compute

A(i,j, A) for all possible A values in the permitted range. The A which provides the

greatest change may then be selected. The cost of this procedure is that we can

no longer guarantee that the maximal A for a pair of basis vectors (bi, bj) may be

found in constant time. If the range of A values to consider is usually small, then we

will probably notice little more than a linear slowdown in the running time of the

algorithm. For large ranges of possible A values, further heuristics might be applied,

such as only considering A values which are near a power of two.

In our experiments we noticed that large A values tended to occur only during

the first few row reduction performed by Seysen's algorithm. After this initial burst

in reduction of S(A) row moves tended only to involve small integer A values; it was

quite rare to find JAI > 10. If similar conditions occur for the lattice bases in question,

it is probably reasonable to use a more complex measure function than S(A) and use a

small exhaustive search over a bounded range of possible A values to find the optimal

A coefficient for a row move.

52 CHAPTER 2. THE SEYSEN BASIS REDUCTION ALGORITHM

Chapter 3

Solving Subset Sum Problems

3.1 Introduction

In the previous chapter we discussed the theoretical and empirical implications of Sey-

sen's basis reduction algorithm. As Chapter 1 pointed out, many problems in discrete

mathematics may be reduced to problems involving lattices and basis reduction. In

this chapter we use Seysen's algorithm to solve subset sum problems. The subset sum

problem in the general case is NP-complete, and many knapsack-type cryptosystems

have been suggested which depend on the difficulty of solving subset sum problems.

WVe show below that Seysen's algorithm, when used in conjunction with the LLL al-

gorithm and other techniques, allows us to solve a large class of subset sum problems

in polynomial time.

We begin our analysis with the definition of a subset sum problem.

Definition. Let A = {al,...,an} be a set of positive integers (the weights). Let

A' C A be some subset of A, and let s be the sum of the elements of A'. Then

n
s = -eiai, for ei E f{O, 1},l1 < i < n. (3.1)

t=1

The subset sum or knapsack problem is to find, given the set A of weights and the

sum s, some subset A' of A. Equivalently, one may find a set of values for the 0-1

53

54 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

variables el,..., e,,, where ei = 1 if and only if ai E A'.

The subset sum problem is known to be NP-complete [15]. In the INSTANCE-

QUESTION format often used to phrase NP-complete decision problems, the subset

sum decision problem would be described as follows:

INSTANCE A set of positive integers A = {a,,. a.,} and an integer s.

QUESTION Does there exist a subset A' of A such that the sum of the

elements of A' is s?

Clearly, if we can solve subset sum problems in polynomial time, we can answer

the subset sum decision problem in polynomial time. The converse is also true; we

can ask an oracle which answers the subset sum decision problem in polynomial time

whether there is a solution to the subset sum problem with weights a2, .. .,a,, and

sum s - a,. If there is such a solution, then there exists a solution to the original

problem that included a, (i.e. we can set el = 1). If the oracle say no such solution

exists, then a, cannot be in the subset which sums to s, and we know that el = 0.

We can then recurse and determine e2, e3,. . . , en in sequence.

Many public-key cryptosystems have been proposed with the difficulty of solving

subset sum problems as the basis for their security. (See [7, 8, 13, 31] for surveys of

this field.) Almost all of these cryptosystems have been shown to be insecure; the

Chor-Rivest one [111 is perhaps the most widely known system which has not yet been

broken. The majority of the attacks on knapsack-based cryptosystems have involved

discovering the secret information hidden in the weights which allows the receiver A to

decrypt the message quickly. However, there have been two independent attacks, one

due to Brickell [6] and one due to Lagarias and Odlyzko [26], which attempt to solve

all subset sum problems of a certain type, independent of the method in which the

weights were chosen. These methods (and the newer result in [12]) depend in theory

only on the density of the subset sum problem to be solved. In practice, however, the

3.2. THEORETICAL BOUNDS ON SOLVING SUBSET SUM PROBLEMS 55

success rate of these methods is bounded by the performance of the basis reduction

technique used in the attack.

Section 3.2 below outlines currently known methods for solving subset sum prob-

lems, and describes a new method which significantly increases the class of problems

which may be attacked in practice. Section 3.3 discusses current methods for actually

solving a specific subset sum problem, and the limits of these methods. In Section 3.4

we show how to use Seysen's algorithm in conjunction with multiple versions of the

LLL algorithm and other heuristics to solve a larger class of subset sum problems.

Section 3.5 presents empirical results obtained by solving a large number of subset

sum problems using Seysen's algorithm. These results give experimental evidence

that it is possible to solve a much larger class of subset sum problems in polynomial

time than was previously thought possible.

3.2 Theoretical Bounds on Solving Subset Sum

Problems

The majority of attacks on knapsack-based cryptosystems exploit the specific con-

structions of the cryptosystems. Two algorithms have been proposed, however, which

depend only on the properties of the subset sum problem and not on any specific

method of construction. These algorithms, one by Brickell [6] and one by Lagarias

and Odlyzko [26], show that almost all low-density subset sum problem may be solved

in polynomial time. The density d of a set of weights a,,... , a is defined by

d = (3.2)
log 2 max a"I<i<n

For d > 1 there will in general be many subsets of weight with the same sum s, so

from an encryption-decryption point of view we are interested in subset sum problem

instances with d < 1. The Brickell and Lagarias-Odlyzko algorithms show that it is

possible to solve almost all subset sum problems with d sufficiently small.

56 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

The Brickell and Lagarias-Odlyzko attacks reduce the subset sum problem to

the problem of finding the Euclidean-norm shortest nonzero vector in a lattice. As

was mentioned in Section 1.1 above, finding short vectors in lattices may be very

hard in general. The theoretical worst-case bounds for the LLL algorithm and its

variants are not encouraging, and no bound currently exists for Seysen's algorithm.

However, these techniques tend to perform much better in practice than in theory; the

performance of Seysen's algorithm on the Korkin-Zolotarev test lattice with 0 = 0.4

(Section 2.2.3) is one such empirical example. Thus, it seems important to separate

the efficiency of lattice reduction and finding short nonzero vectors from the difficulty

in reducing subset sum problems to lattice reduction questions.

We consider a Euclidean-norm lattice oracle (or lattice oracle for short) that, when

given a lattice basis as its input, with high probability finds in polynomial time the

Euclidean-norm shortest nonzero vector in the given lattice. We do not know how

to construct such an oracle, but it might be possible to do so. Data provided in

[26., 33] show that at low densities the LLL algorithm behaves as a lattice oracle, and

our results in Section 3.5 below show that this is also the case for a combination of

the Seysen and LLL algorithms, even for significantly larger and denser subset sum

problems. Given the existence of a lattice oracle, the analysis in [26] shows that

it is possible to solve almost all subset sum problems of density d < 0.6463... in

polynomial time. Recently, Coster, LaMacchia, Odlyzko and Schnorr [12] and Joux

and Stern [19] independently demonstrated via different techniques that this bound

could be improved to d < 0.9408. In fact, if we assume the existence of a sup-norm

lattice oracle instead of a Euclidean-norm lattice oracle, [12] showed that the density

bound then becomes d < 1.

The Lagarias-Odlyzko attack proceeds as follows. Let {al,.. .,an) be a set of

weights with 0 5 a, < A for some positive integer A and for all 1 < i < n. Let

3.2. THEORETICAL BOUNDS ON SOLVING SUBSET SUM PROBLEMS 57

e = (e,... ,e) E {0, 1}1,e j (0,0,... ,0) be fixed and depend only on n. Then

n

s=Z eia,, foreE{0,1},
j=l

is the sum of the subset of weights, where ai is in the subset if and only if ej - 1.

Now, define basis vectors bl,..., bn+1 as follows:

bi = (1,0,...,0,Naj),

b 2 = (0,1,...,, Na 2),

bn = (0,0,..., 1,Nan),

bn+1 = (0,0,...,0,Ns),

where N is a positive integer > /fn-. Let L be the lattice defined by the basis vectors

bl,...,b,+1 . That is,

L = {j zibi: ziEZ, for 1<i<n+l}.

Notice that lattice L contains the vector 6 = (el, e2,. .. , en, 0), the solution vector to

the subset sum problem, since

= eibi - b-+'.
i=1

Let P denote the probability that there exists another vector * E L such that

111[<5 11• 1 and R ' {0,V,-6}. The simplified analysis of the Lagarias-Odlyzko

attack presented in [14] shows that this probability is bounded:

P < n 2 n + [1--n for co = 1.54724... (3.3)

Thus, if the bound on the size of the weights A = 21 with c > co, lim P = 0. If the

density of a subset sum problem is less than 0.6463..., then

n I < 0.6463... ==* max ai > 2n/0.646''"
log 2 max ai I ,I<_i<_n

==•A > 2•.

58 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

Thus, all subset sum problems with density < 0.6463... could be solved in polynomial

time, given the existence of a lattice oracle.

Recently, two independent improvements [12, 19] to the Lagarias-Odlyzko attack

have been developed, both of which increase the density bound to d < 0.9408

The modification suggested in [12] is to replace the b.+, basis vector in L with

b'+l .+•.... , ,Ns).

Let L' be the lattice spanned by the vectors bj,...,b.,b'0 +,. Lattice L' does not

contain the solution vector 6, but it contains a similar vector &':

(6' 1,.., en,0), where ei = ej- -

We know that -' E { , D} for 1 < i < n since ei E {0,1} for 1 < i < n. Thene no tht i 2, 2 ..

114&112 < n independent of the number of ei's which are equal to 1.

Using lattice L' we are now interested in the probability P' that there exists a

vector R' E L' such that:

~i
I1,1 1 21--• • (3.4)

:R1 {0, 6',-•

Utilizing similar techniques to those in [14, 26, 28], [12] shows that the probability P'

is bounded above by:

P' < n (nK --+ 1) 2 for c' = 1.0628 (3.5)

A0

This bound is similar to that in Equation 3.3 above. Since 1/c4 = 0.9408..., any

subset sum problem with density d < 0.9408... may be solved in polynomial time,

given the existence of a lattice oracle.

3.3 Previous Empirical Methods

Along with their theoretical results, Lagarias and Odlyzko [26] presented in 1985

the results of the first empirical attacks on general subset sum problems. Their

3.3. PREVIOUS EMPIRICAL METHODS 59

method was to apply a multiprecision version of the LLL algorithm to the basis L

presented in Section 3.2 above (b.+ 1 = (0,0,0,...,0,s)). Lagarias and Odlyzko set

the LLL parameter y = 1, which they said yielded better results than y = 0.75 but

tripled execution time in practice. Also, five random orderings of the basis vectors

for lattice L were tried, since different initial orderings yield different LLL-reduced

bases. Experiments were conducted on various subset sum problems with n < 50 and

densities d between 0.5 and 0.875. Figure 3-1 graphically shows the performance of

the Lagarias-Odlyzko method. For each tested value of n, the labeled curve connects

(density,success rate) points in the plot obtained by attempting to solve subset sum

problems of size n.

For n < 26, the LLL algorithm appeared to function almost as well as a square-

norm lattice oracle; all subset sum problems with density d < 0.6408... and n < 26

were solved when LLL was used on five random permutations of the basis vectors.

However, performance degrades quickly as n grows above 30. For n = 40, Lagarias

and Odlyzko were able to solve all attempted subset sum problems only for density

0.5. At n = 50, only two-thirds of the attempted density 0.5 problems were solved.

In [33] Radziszowski and Kreher reported the results of extensive attempts to solve

subset sum problems. Their reduction algorithm, based on LLL, differed from that

used in Lagarias-Odlyzko in two important ways. First, Radziszowski and Kreher

modified the LLL algorithm to reduce the number of required multiprecision calcula-

tions. In essence, instead of running LLL once on a lattice with numbers k bits long,

they ran LLL m times with numbers k/rn bits long (a divide-and-conquer approach).

This modification sped up their algorithm and allowed them to attack larger subset

sum problems than Lagarias and Odlyzko (larger here means greater value of n).

The second change Radziszowski and Kreher made to the Lagarias-Odlyzko attack

was to use another algorithm in conjunction with LLL to find short vectors in the

lattice. This second algorithm, called Weight-Reduction, searches for pairs of vectors

60 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

Success
Rate

0.8'

0.6

26
0.4--

0.2-

0-

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Density

Figure 3-1: Lagarias-Odlyzko Results: Success Rate vs. Density

3.3. PREVIOUS EMPIRICAL METHODS 61

(bi, bj) in the lattice for which:

IJbi + fbjl[< max{I[bjtI, I[bj[I}, for e = ±1. (3.6)

When Weight-Reduction finds such a pair, it replaces the larger of bi and bj (in terms

of square-norm) by the sum bi + Ebj. Equation 3.6 is satisfied by a pair (i,j), i # j

if and only if

maxf 11bill', llbjll'} < 2 - 1(bl, bj)1l.

The W1eight-Reduction algorithm can easily be implemented in O(n2) time to search

for all pairs of vectors (b1 , bj) which satisfy Equation 3.7.

Input Basis

tLLL

Weight-Reduction

Sort

LLL

TRUE

FALSEj

Weight-Reduction

FOutput BasisI

Figure 3-2: Radziszowski-Kreher Inner Loop

Radziszowski and Kreher alternated calls to the modified LLL algorithm with calls

to llcight-Reduction and a sorting procedure to improve the search for short vectors

62 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

in the lattice. Figure 3-2 is a flowchart-like representation of the process. The initial

basis L is LLL-reduced (y = 0.99 for all invocations of LLL). The output of LLL is then

Weight-Reduced, sorted by length, and then fed back into LLL. This process continues

until some termination condition is met. In theory, "no decrease in V=11b1bill" could

be used as the termination condition. In their experiments, Radziszowski and Kreher

set an explicit bound on the maximum number of loops which could be performed.

The output of this iterative process is then Weight-Reduced one more time.

One important feature of the Radziszowski-Kreher loop is the insertion of the

sorting phase before LLL is run each time. By sorting the vectors in the lattice

by length, the length of the shortest vector in L is guaranteed not to increase by

application of LLL. If L is a lattice output by the sort procedure, then vector bL in

L is the shortest vector in the lattice. Now, LLL can renlace b, with some vector

b' only if IIb' 1 < 11b ll. (This does not hold for bi in general but is true for b1 .)

Thus, we are guaranteed that the shortest vector in L before LLL is applied will not

disappear from the basis unless an even shorter vector is found.

Figure 3-3 shows graphically the results of the experiments carried out in [33].

For these experiments, only 15 loop iterations were allowed (9 if all the vectors in the

basis were of length < in). For values of n < 34, this algorithm was able to solve all

attempted subset sum problems of density d < 0.654, which is above the Lagarias-

Odlyzko bound. As n increases from 42 to 98 the density at which all attempted

problems were solved decreases. As was reported in [26], the effectiveness of LLL as

a lattice oracle drops off as the size of the lattice grows. Radziszowski and Kreher's

results show however that it is possible to increase the effective range of LLL by

combining it with other heuristic techniques.

The Radziszowski-Kreher algorithm was the best known method to date for solving

subset sum problems. In the following section, we show how to to combine the

Seysen basis reduction algorithm with the LLL algorithm, other heuristics, and the

theoretical improvements in [12] (Section 3.2) to greatly extend the range of subset

3.3. PREVIOUS EMPIRICAL METHODS 63

Success
Rate

148

0.8-

0.6- 0

0.4" 6

23

0.2- 58
4

26
0-

I I I I I II

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Density

Figure 3-3: Radziszowski-Kreher Results: Success Rate vs. Density

64 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

sum problems which may be empirically attacked and successfully solved.

3.4 Using Seysen's Algorithm to Solve Subset Sum

Problems

In both [26] and [33] the LLL algorithm was used almost exclusively to perform

the required lattice basis reductions. Given the existence of Seysen's basis reduction

algorithm and knowledge as to how it performs relative to LLL, it is natural to wonder

how Seysen's algorithm could be applied to solving subset sum problems. We know

from some of the comparisons performed between LLL and Seysen's algorithm in

Chapter 2 that Seysen's algorithm tends to perform fewer row operations than LLL.

If we used Seysen's algorithm then as part of an attack on subset sum problems,

we should be able to perform more reduction operations (or other work) without

increasing the overall execution time of our method.

T.'iere are also theoretical and empirical reasons to suspect that Seysen's algorithm

alone will not perform well on subset sum problems. Seysen's algorithm was originally

suggested for simultaneously reducing a lattice and its dual lattice, not for finding the

shortest vector in a lattice. If a lattice and its dual are of comparable size, the Seysen

algorithm is not likely to perform row operations that generate short vectors in one

lattice if that move increases the lengths of vectors in the dual lattice. If the vectors

in th,- dual are significantly larger than those in the prime lattice, Seysen's algorithm

may actually produce vectors larger than those originally input. Also, the algorithm's

operation is not dependent on the ordering of the basis vectors, which means that

the benefits gained by running LLL multiple times on different randomizations of the

subset sum lattice disappear.

These predicted benefits and deficiencies of the Seysen algorithm suggest that

the best place to use Seysen is at the beginning of our attempt to solve a subset

sum problem. The initial subset sum lattice L has primal basis vectors which are

3.4. SEYSEN'S ALGORITHM AND SUBSET SUM PROBLEMS 65

much larger than those in the dual; this favors the generation of shorter vectors in

L and longer vectors in L*. Also, as Seysen tends to perform many fewer row moves

than LLL to reach the same reduced lattice basis, using Seysen's algorithm initially

will reduce the total number of multiprecision row moves as compared to using only

LLL. Once Seysen's algorithm stops at a local minimum, we can use LLL and other

techniques to further reduce just the primal lattice L and look for short vectors.

Inital attce -- -- -Seysen-Reduction

Sesn-PhZJI GCD-Reduction

... e ISeysen-Reducion

ReucdLattice

Figure 3-4: Overview of Algorithm SL

Figure 3-4 shows the basic outline of the SL (Seysen-Lovisz) algorithm. We

start with the initial lattice basis suggested in [26]. If the weights of the subset sum

problem are sufficiently large, then the lengths of the basis vectors in L will be much

greater than the corresponding lengths of the basis vectors in the dual lattice L*. We

apply the Seysen algorithm to the L, L* self-dual pair of lattice bases, using a greedy

algorithm (Section 2.1.2) to choose at each step the pair of basis vectors (bi,bj) to

be reduced. The measure function S(A) is the one suggested by Seysen [38]:

S(A) = IbIll'llbf 2.
i=o

When computing the change in S(A) for each pair of vectors (b1 , ba), i -• j, A is always

66 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

set to its maximum value of:

A a, ai,•j
A [cal as.j)]

Let Ls, be the lattice basis which is produced by this (first) application of the Seysen

algorithm.

Recall that the goal of the SL algorithm is to find a basis vector which describes

the solution to the given subset sum problem. In [26, 33] the desired solution vector e

was always of the form (e1 , ... , e,,) with ei equal to either 0 or a fixed constant 1. We

will call all such vectors e Type-I solution vectors, to designate them from another

class of solution vectors which will appear below. At the completion of the first.Seysen

reduction in the SL algorithm, it is possible that lattice basis Ls, contains a Type-I

solution vector. If so, then we are finished, and Algorithm SL halts. We assume that

Ls, does not contain a Type-I solution vector, and continue with the next stage of

the algorithm.

The algorithms of [26, 33] searched for short vectors of the form (ej,... , e,,, e"+1 =

0) in the LLL-reduced bases, where ei E {0, K} for 1 < i < n and r E Z is any fixed

integer. One of the problems with these methods is that often the short vectors

produced by LLL reduction had e,,+l : 0; that is, the sum 1 ejai was not of the

form s + yt and did not describe any relation involving the target subset sum. One

method of reducing the probability that LLL (or Seysen) will include a vector of

this form in the reduced basis is to scale the ai and s by some constant factor N,

which increases the length of any vector having a nonzero e,+i by about VNY if N

is sufficiently large. However, this approach has the drawback that it increases the

size of numbers which are already quite large and require multi-precision arithmetic.

We suggest another method for elimination from consideration all lattice vectors with

e,+i :fl 0: GCD-reduction.

The idea behind GCD-Reduction is to perform row moves on the lattice basis so

that the entire (n + 1)th column contains exactly one nonzero element, the GCD of the

3.4. SEYSEN'S ALGORITHM AND SUBSET SUM PROBLEMS 67

weights a,,... ,a,n. If (for example) vector b.+, contains the GCD, we can remove

b,+1 from the basis and remove the (n + 1)"t column completely from the lattice

basis. This reduces what was an (n + 1)-dimension lattice to an n-dimension lattice,

and guarantees that any lattice vector generated by reducing this basis would have

had its (n + 1)St component equal to 0 in the (n + 1)-dimension space.

Implementing GCD-Reduction is easy. The basic algorithm we use was described

by Brun [9]. Basis vectors are sorted in order of decreasing hi,,,+1. Then b2 is re-

peatedly subtracted from b, until b2,n+ 1 > b1,n+1 . The vectors are then resorted in

order of decreasing bi,,,+i and the process loops. In reality, only vector b1 needs to

be inserted into the previously generated order. This can be performed very fast by

using an auxiliary pointer array; the actual basis vectors don't even need to be moved

around. Eventually, the only nonzero element in the (n + 1)st will be b1,n+1 , at which

point both the vector bi and all bi,,,+ 1, 2 < i < n + 1 can be removed from the lattice.

We apply GCD-Reduction to the lattice basis LS, output by the first application

of Seysen's algorithm. We do not use GCD-Reduction on the original lattice basis

L because the resulting lattice basis matrix would be quite dense (which means the

Seysen algorithm will take longer to run) and the vectors in the dual lattice would also

be much larger. After GCD-Reduction is applied to basis Ls, (yielding output basis

LG in n dimensions) we again search for the presence of a Type-I solution vector.

Assuming we do not find such a vector, the Seysen algorithm is applied to LG to

reduce the lattice to a local minimum of the measure function S(A). Call this lattice

Ls2, the output of the second Seysen application.

For small values of n (n < 20), it is possible that Ls. will contain a Type-I solution

vector. For larger values of n and sufficiently high densities d, however, it is unlikely

that the Seysen- GCD-REduction-Seysen portion of the algorithm will have found the

desired vector. Thus we begin the second portion of the algorithm: the LLL phase.

Figure 3-5 shows the first level of detail in the LLL-phase of Algorithm SL. The

input to this phase of the algorithm is the lattice basis Ls2 which was the result of

68 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

1/2-Vector Extension

Randomizer Randomizer

LLL-Lo-p LLL-Loop. •LLL-Loop

LL-LopLLL -Loop, LLL-Loop

loops

LLL-Loop LLL-Loop...................... LLL-Loop

S..................... I ,

loops

Figure 3-5: Algorithm SL: LLL-Phase

3.4. SEYSEN'S ALGORITHM AND SUBSET SUM PROBLEMS 69

the second application of Seysen reduction. We now take advantage of the theoret-

ical improvements in the density bound given in [121 and Section 3.2 above. (The

introduction of the "one-half" vector is delayed until after the Seysen stage of Al-

gorithm SL has completed to increase the sparsity of the lattice bases which are

Seysen-reduced.) We extend the Rn lattice described by Ls, into a lattice in R"÷1 by

adding an (n + 1)st component to each of the basis vectors bl,..., b.:

old bi = (bi, 1, bi, 2, .. , bi,n)

new bi = (bi, 1, bi, 2,.... bi,,, bi,,+l = E_ bij)

The new (n + 1)st component of each basis vector is simply the sum of the first n

components. To complete the extension, we need to add one more vector to the lattice

basis. New basis vector b.+, is defined as follows:

=1bn+l = (-1, 1,...- , ½, 1(n-1)

n terms

For bn+,, the (n + 1)st component is the sum of the first n terms minus ½. The -1

correction is needed because otherwise the (n + O)lt column of the basis would be

dependent. Let Lin designate this extended lattice.

With the introduction of vector b,+, we have also introduced a second class of

solution vectors. If e is a Type-I solution vector for a subset sum problem with in

elements in the subset, then there now exists a Type-H vector in the lattice of the

form

(ill,... Ii, i,,•+), for 6i E {-,}1<i<n + 1.

Also, if e was a solution vector of the n-dimensional lattice, in the extended lattice

Lin vector e will be transformed into e' = (el,... , e,,, e,+l) where e,+ 1 equals K times

the number of elements in the subset which sums to s. Thus, during the LLL phase

of Algorithm SL, we search for both extended Type-I solution vectors and Type-II

solution vectors.

70 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

The structure of the LLL phase of Algorithm SL is based upon the successful

attacks of [26, 33]. Lagarias and Odlyzko showed that using LLL multiple times on

random orderings of the input basis improved the chances of finding a solution vector.

Thus, Algorithm SL initially tries to reduce lattice Lin, and upon failure randomizes

Lin and tries again. This process continues until a total of 7rl reduction attempts

have been made (Lmn and 7r, - 1 random orderings of Lin). In [26] T, = 5, but there

is nothing special about that particular value.

Recall from Section 3.3 above that the Radziszowski-Kreher approach, while set-

ting 7r, = 1, repeatedly called LLL in conjunction with Weight-Reduction and Sort

(Sort just sorts the basis vectors by length.). They showed that repeated iterations

of the LLL- Weight-Reduction-Sort loop shown in Figure 3-2 yielded better results

than a single application of LLL. Algorithm SL incorporates this approach, applying

a number of iterations of LLL- WeIight-Reduction-Sort before giving up and trying a

new randomization of Lin (Figure 3-5). Each ordering of Lin passes though up to 7r2

iterations of the loop before Algorithm SL gives up. As stated above, in [33] r,2 = 15,

or 7r2 = 9 if all the vectors in the lattice were of length < in. Again, there is nothing

special about these particular values. Theoretically, one could choose 7r, and 7r2 to be

quite large. Any practical algorithm, though, would probably want to use reasonable

constants for both 7', and 7r2 .

Although both [26] and [33] run the LLL algorithm with the parameter y ;Z 0.99,

Lenstra, Lenstra, and Lovgsz show that y may be any value in the range 1 < y < 1
[27]. For y ; 1, LLL will only exchange vectors in the lattice (Equation 1.2) for

4,

relatively large differences between vectors bi and bi+1 . As y --+ 1, the amount

of improvement required to trigger the LLL exchange step decreases, and LLL will-

swap vectors and continue running for minimal improvement. Thus, larger values

of y will likely lead to improved results, but LLL will also take longer to run. This

suggests that instead of running the entire LLL algorithm with y = 0.99, as was done

previously, a version of LLL which started with y ; 1 and adjusted it upwards as the
4

3.4. SEYSEN'S ALGORITHM AND SUBSET SUM PROBLEMS 7.1

n <90LLL-wp n -- 9

LLL(O.2578 125) LLL(0.2578 12,5)7

LLL(O.625) LLL(O.34375)

LLL(O.75) LLL(0.4375)

LLL(O. 87 5) LLL(O.53 125)

LLL(O.9375) LLL(O.625)

LLL(O.9921 875) LLL(O.75)

Weight-Reductio~n LLL(O.875)

LLL(0.9375)

LLL(O.9921875)

Weight-Reductio~n

Figure 3-6: Algorithm SL: LLL-Loop Structure

72 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

algorithm ran might work just as well but require fewer row operations (18].

Set y=x

LLL-Reduction

i ueductiongRedupon

Figure 3-7: Algorithm SL: LLL(x) Internal Structure

Algorithm SL uses a version of the LLL algorithm which varies the parameter y

among a finite number of values. Figure 3-6 shows what happens each time SL calls
LLL-Loop. For subset sum problems with n < 90, each call to LLL passes through

six stages (i.e. six distinct values for y)'. Upon entry to each stage, the y parameter

is updated, and LLL-reduction is performed upon the lattice basis using the new y

value (see Figure 3-7). Let Lwo,in and L0,out represent respectively the lattice bases

input to and output from an application of the LLL algorithm with y = yo. We now

'Three additional stages are used for subset sum problems with ,n > 90 to help reduce error.

3.4. SEYSEN'S ALGORITHM AND SUBSET SUM PROBLEMS 73

compute the boolean value of the following expression:

min{I1bi1 E Lyo,out} < min{11 b11 E Lyrom})

OR((min{(Ibill E o,..t} = min{11bllb E LE (3.7)

AND (max{I1bill E Lwo.t} < max{IllbillE

(This decision point is represented by the diamond in Figure 3-7.) If the boolean

value of Equation 3.7 is TRUE, then the Weight-Reduction procedure is applied, the

Sort procedure is invoked, and the output is input again into LLL with y = yo. Thus,

we perform LLL- FVeight-Reduction-Sort loops until either the length of the shortest

vector in the lattice has increased after LLL-reduction, or if the length of the shortest

vector has remained constant and the length of the longest vector has not decreased2.

By using the recursive structure in Figure 3-7 and the termination condition rep-

resented by Equation 3.7, we attempt to have the LLL algorithm perform as many

reduction steps as possible with small values of yo. We delay increasing the value

of y until LLL fails to make any improvement in the length of the largest vector in

the lattice basis. In this way we restrict the set of row swaps and moves which LLL

will consider, which improves the running time of the algor;ihm. Initially, for y small

(say y < 0.75) LLL will only consider row moves which will "significantly" reduce

the current lattice basis. Later, for values of y - 1, LLL will consider any row move

which reduces the lattice.

For n < 90, six specific y values are used: 0.2578125, 0.625, 0.75, 0.875, 0.9375,

and 0.9921875. These values were chosen for two reasons. First, all of the numbers

have exact fractional binary representations in double-precision floating point. This

meant that error would not be introduced into the LLL algorithm by performing

arithmetic operations on y. Second, experiments with small subset sum problems

(n < 24) showed that the number of row moves performed by LLL for each of the four

middle values were approximately equal. That is, work was evenly distributed across

'The loop termination condition in Equation 3.7 is strictly a heuristic. Other terminating con-

ditions could certainly be used.

74 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

all intermediate stages represented in Figure 3-6. (The endpoint values 0.2578125

and 0.9921875 were fixed). For n > 90, three additional values were used: 0.34375,

0.4375, and 0.53125. These values evenly divide the interval [0.2578124,0.625] into

four equal pieces. As discussed in Section 3.5 below, our initial implementation of

the LLL algorithm did not work correctly for lattice bases with n > 90 because of

rounding error introduced into the computations. We were able to reduce the effects

of rounding error to acceptable levels by modifying the LLL algorithm itself and by

introducing the 0.34375, 0.4375 and 0.53125 stages into the algorithm.

We have detailed the operation of Algorithm SL, a combination of the Seysen and

the Lenstra-Lenstra-Lovasz basis reduction algorithms which also utilizes the GCD-

Reduction, Half- Vector, Weight-Reduction, and Sort heuristics. In the next section

we present the results of our experiments with this algorithm and show how the

combination of these techniques greatly increases the range of subset sum problems

which may be solved.

3.5 Empirical Tests Using Algorithm SL

We now present the results of our experimental attempts to solve subset sum problems

using Algorithm SL as describes in Section 3.4 above. Following the tabulated results

of Radziszowski and Kreher, we attempted to solve random subset sum problems of

size n, where:

n E {42, 50,58,66,74,82,90,98, 106}.

For each value of n, a set of b values (representing the number of bits in the binary

representation of the weights ai) was chosen. Algorithm SL was then run on a number

of randomly generated subset sum problems for each pair (n, b). Where possible,

values of b were chosen to coincide with values used in [26, 33].

Algorithm SL was implemented in FORTRAN and utilized Bailey's multiprecision

floating-point package [4]. The Seysen reduction algorithm stored all lattice bases in

3.5. EMPIRICAL TESTS USING ALGORITHM SL 75

multiprecision floating point and used both multiprecision and double-precision float-

ing point operations. The size of the multiprecision floating-point representation was

changed for each value of n so that b was at most one-half the size of the representa-

tion in bits. In many cases significantly more bits were available in the representation

to help reduce rounding error.

The LLL portion of Algorithm SL was also implemented in FORTRAN but used

only integer and double precision operations. One advantage of the Seysen-LLL

structure of Algorithm SL is that by the time the LLL stage is reached, the lattice

basis to be reduced contains only relatively small integers. In all cases investigated,

the input lattice basis to the LLL phase of the algorithm did not contain any single

coefficient larger than 216. This meant that we could safely store the basis vector

coefficients as 32-bit integers, and we could use integer and double-precision floating

point to carry out all calculations necessary to run LLL. Avoiding multiprecision row

moves during the LLL phase greatly decreases the execution time of Algorithm SL.

For values of n < 90, these implementations of the Seysen and LLL algorithms

were sufficient for our purposes. However, for n E {90, 98,106}, rounding error started

to significantly alter the operation of the algorithm. Recall that the LLL algorithm

stores the values of the ,jj coefficients as rational numbers; our implementation of

LLL used double-precision floating point approximations to decrease the running time

of the algorithm. Since such an approximation will introduce error, code was included

to detect and attempt to correct errors resulting from rounding in double-precision

calculations. In addition, while not changing the operation of the LLL algorithm,

we performed a change of variables to reduce the rounding error which is necessarily

introduced. LLL as defined in [27] uses two arrays of variables to hold information

about the lattice being reduced:

(bi, b!)

(bi, bi)

BA IjbflJ = (b•,b•).

76 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

(Note that the b? are orthogonalized versions of the bi in LLL, not the basis vectors

of the dual lattice as in Seysen's reduction algorithm.) Our version of LLL used three

arrays of variables to maintain the same information:

S(bi, b;) = 115b11
-~ Ilb~Il" IIb;II = jj�/Al

ci = IIbflI =

bbi = (bi, bi)

It is not difficult to transform the LLL relations between values of p,,j and Bi into

equations involving mi,, ci and bbi. The advantage gained is that:

(bi, b;)m,,j = Ib"[b•l

Cos al,

where a is the angle between the vectors bi and bj. In the original version of LLL,

i,,j = i mij,

and thus could take on a wide range of values, depending on the ratio of the lengths

of bi and bj. Limiting mij E [--1, 1] and keeping the length information separate

in ci and bbi reduces the error introduced by double-precision arithmetic operations.

(Notice that bbi values are integers and can be regenerated at will from the integer

basis vectors.) Of course, with sufficient multiprecision representation for all variables

there is no need for this transformation. It is simply an implementation-specific

modification which allowed us to use a fast, double-precision version of LLL to reduce

the lattices which arose while solving 106-element subset sum problems.

Tables 3.1 through 3.3 show the results of experiments performed on random

subset sum problems with n < 106. For n < 74 twenty subset sum problems were

3.5. EMPIRICAL TESTS USING ALGORITHM SL 77

Table 3.1: Test Results Usin Algorithm SL for 42 < n < 58

n Ib d = n/b RMs IRMALLL [TL IS,(S1) I% Solved Average Time]

[_20 trials for each length b for each n

42 42 1.000 36907 420357 21 20 (19) 1.00 98.39

42 44 0.955 38955 276031 20 20 (20) 1.00 94.67

42 46 0.913 40264 362848 21 20 (19) 1.00 99.88

42 48 0.875 42288 234513 20 20 (20) 1.00 97.65

42 50 0.840 43826 222350 20 20 (20) 1.00 99.67

42 52 0.808 45144 178153 20 20 (20) 1.00 100.29

42 54 0.778 46405 209717 20 20 (20) 1.00 102.56

50 50 1.000 55122 3206204 42 20 (9) 1.00 283.93

50 52 0.962 56243 2672637 36 19 (10) 0.95 262.24

50 54 0.926 58249 2112480 31 20 (14) 1.00 243.22

50 56 0.893 59721 1596051 26 20 (16) 1.00 224.80

50 58 0.862 61594 1098460 21 20 (19) 1.00 208.40

50 60 0.833 63604 1220857 22 20 (18) 1.00 217.68

50j62 0.806 65563 978497 21 20 (19) 1.00 210.71

58 58 1.000 73587 15664277 83 7 (1) 0.35 808.68

58 60 0.967 77371 13477268 70 10 (5) 0.50 744.32

58 63 0.921 80574 13869151 74 13 (2) 0.65 837.96

58 66 0.879 82284 12949088 67 12 (5) 0.60 803.07

58 69 0.841 87569 7581281 43 19 (10) 0.95 594.55

58 72 0.806 90773 6234735 38 20 (10) 1.00 548.75

58 75 0.773 93896 4408841 29 20 (14) 1.00 480.70

58 78 0.744 98289 3411933 23 20 (18) 1.00 450.66

58 81 0.716 101104 3572104 25 20 (15) 1.00 463.48

58 84 0.690 105325 2090306 20 20 (20) 1.00 412.65

5S 87 0.667 107711 1792670 20 20 (20) 1.00 406.44

78 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

attempted per b value. Only ten such problems were attempted per b value for

82_< n < 106. For each problem, in elements were chosen from among the weights

a1,... ,an to be in the subset. During the LLL phase of the algorithm, parameter

'r, -= 5 and r 2 = 8. Six distinct values of y were used for n < 90; nine were used for

n > 90.

All tests were run on Silicon Graphics 4D-220 workstations with four or eight

MIPS Computers, Inc., R3000 processors per workstation. Each workstation was

equipped with (32Mbytes. # processors) of main memory. As Algorithm SL requires

significantly less than 32Mbytes of memory per process, all processors in a given

workstation could be used simultaneously to work on different subset sum problems.

The majority of the R3000 processors ran at 33MHz; the remainder operated with a

clock frequency of 25MHz. All running times reported in Tables 3.1 through 3.3 have

been adjusted to reflect the running time on a 33MHz processor.

The columns in Tables 3.1 through 3.3 show the value of the following variables

for each (n, 6) pair:

e n: The number of elements in the set of weights (a,,... ,a,,). Exactly one-half

of these elements were chosen to form the subset sum s.

* b: The number of bits in the binary representation of the ai's. Each ai was

generated randomly by choosing b random 0 - 1 variables and concatenating

the bits.

* d: The density of this class of subset sum problems. d = n/b.

* RMs: The number of row moves performed by the Seysen phase of Algorithm

SL on all trials.

0 RMLLL: The number of row moves perform by the LLL phase of Algorithm SL

on all trials.

3.5. EMPIRICAL TESTS USING ALGORITHM SL 79

"* TL: The total number of lattices reduced by LLL during all attempted trials,

where we consider each randomization of the input lattice to be a new lattice.

Thus, for 20 trials, 20 < TL < 207r, = 100.

"* S5 : The number of subset sum problems successfully solved with ir, = 5.

"* SI: The number of subset sum problems successfully solved with 7r, = 1.

This number is useful when comparing the results of Algorithm SL to the

Radziszowski-Kreher method.

"* % Solved: The success rate for r, = 5 measured as a fraction of the number of

attempted problems.

"* Average Time: The average amount of CPU time (in seconds) required to run

Algorithm SL on a single trial, adjusted to reflect a 33MHz R3000 processor.

It should be noted that the running times for Algorithm SL, while an improvement

over the Radziszowski-Kreher method, could be improved. The code for SL was not

tuned to the Silicon Graphics machine (although Bailey's multiprecision code was

written to work with SGI workstations). Careful recoding and tuning of crucial sub-

routines could probably yield significant improvements without changing the overall

operation of the algorithm.

A quick look at the results summarized in Table 3.1 shows that Algorithm SL

greatly improves upon the performance of previous methods for small values of n

(n < 58). In [33] Radziszowski and Kreher were able to solve all attempted subset

sum problems for (n, d) = (42,68), but only managed to solve 30% of the (42,54)

problems. Compare this result to SL, which was able to solve all attempted subset

sum problems with n = 42 and density d < 1.0. In fact, SL appears to work as well

as a lattice oracle for all n < 50. The algorithm first shows signs of degradation at

n = 58, where a 100%, success rate was not reached until b = 72. A true lattice oratle

(using the Euclidean norm) should have been able to achieve 100% success at b = 63,

80 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

where the density d = 0.926 is less than the critical 0.9408 bound. However, SL was

still able to solve over half of the attempted subset sum problems at d = 0.962; in

[33] the 0.50 success rate was not reached until d ; 0.56.

Columns four and five of the Table 3.1 show the number of row moves performed by

the Seysen and LLL phases of SL. These numbers are a good first-order approximation

of the amount of work performed by each phase, although it should be pointed out that

there is no direct correspondence between the absolute magnitudes of the numbers.

For fixed n, as b increases the Seysen phase performs more reduction steps on the

lattice basis, and less work is required by the LLL phase to find the solution to

the subset sum problem. As the density of the system decreases, Seysen's reduction

algorithm comes closer to finding the desired solution vector. Indeed, in ten test

cases with (n, d) = (24,24), the LLL phase was able to find solutions using only

the y = 0.2578125 and y = 0.625 reductions. For higher densities of subset sum

problems, the Seysen phase of SL reached a local minimum earlier, and LLL had a

greater reduction to perform to find the solution. Note that once a Seysen reduction

reached a local minimum it was considered finished; no attempt was made to "kick"

or "heat" the reduced basis and then reapply Seysen. Application of one or more of

the techniques described in Section 2.3 might yield better results, and is certainly a

topic which should be investigated in the future.

Although Algorithm SL works exceptionally well for small values of n, its per-

formance degrades quickly with respect to n once n > 60. Table 3.2 shows the

performance of SL for n in the range [66,82]. At n = 66, SL did not obtain a 100%

success rate until the density dropped to d = 0.66, although the fact that SL solved

19 out of 20 attempts at b = 92 suggests that incrementing 7r1 and/or 12 might yield

a 100% success rate at d = 0.717. If we consider only successes on the first attempt,

SL reached the 100% level at b = 112, compared to b = 144 for Radziszowski and

Kreher. (Note too that the method in [33] uses 7r, = 1,9 <_ 7 : 15, whereas in these

experiments r2 = 8 for SL.) Similar improvements may be seen for the cases where

3.5. EMPIRICAL TESTS USING ALGORITHM SL 81

Table 3.2: Test Results Usin Algorithm SL for 66 < n < 82

n b d =n/bJ RMs I R jjLJLT S.(SI) % Solved Average TimeJ

20 trials for each length b for each n

66 76 0.868 109671 36111021 90 5 (0) 0.25 1774.39

66 80 0.825 116604 33233636 84 7 (1) 0.35 1670.55

66 84 0.786 120172 23212075 60 16 (5) 0.80 1465.55

66 88 0.750 128015 24791753 63 17 (2) 0.85 1560.71

66 92 0.717 134563 17049844 45 19 (9) 0.95 1249.72

66 96 0.688 139469 14280958 40 19 (10) 0.95 1140.53

66 100 0.660 142870 10472664 30 20 (11) 1.00 993.57

66 104 0.635 148379 6026607 21 20 (19) 1.00 819.64

66 108 0.611 155150 5688732 22 20 (18) 1.00 825.37

66 112 0.589 162192 4621556 20 20 (20) 1.00 803.30

74 106 0.698 175993 67316342 85 8 (2) 0.40 3416.51

74 112 0.661 183540 55347194 71 12 (4) 0.60 3095.85

74 118 0.627 189322 51147665 66 13 (5) 0.65 2850.97

74 124 0.597 202651 23245962 33 19 (13) 0.95 1852.46

74 130 0.569 211750 17077901 25 20 (16) 1.00 1600.57

10 trials for each length b for each n

82 134 0.612 122353 74911469 50 0 (0) 0.00 8499.82

82 140 0.586 126724 54569482 37 5 (1) 0.50 6144.08

82 146 0.562 132948 63474238 42 5 (0) 0.50 6315.46

82 152 0.539 139374 22873751 17 10 (5) 1.00 3375.16

82 158 0.519 144353 18199583 14 10 (7) 1.00 3154.05

82 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

n = 74 and n = 82. Although at n = 82 Algorithm SL did not attain a success rate

of 1.00 until the density had decreased to d = 0.539, similar results were not reported

in [33] until d had dropped to below 0.39.

Table 3.3 shows the performance of SL on subset sum problems with n Z 100. The

density at which 100% a success rate is reached is steadily and significantly decreasing

for small increases in n. By the time n = 106, SL is able to solve all attempted

problems with density - 0.35, but densities above 0.4 appear unobtainable.

Si1

1

0.8

0.6,

0
0.4--

8

0.2, 0

1 6
8

0- *2 6

I I ,I, ,I, ,I
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

Figure 3-8: Algorithm SL: S1 vs. Density

Figure 3-8 shows the success rate for solving subset sum problems on the first ran-

domization (S1) versus density for all the test cases described in Tables 3.1 through 3.3.

3.5. EMPIRICAL TESTS USING ALGORITHM SL 83

Table 3.3: Test Results Using Algorithm SL for 90 < n < 106

Inj bd=n/b RM j RMLLL ITL IS(%) I% Solved IAverage Time]

10 trials for each length b for each n

90 178 0.506 180739 111553580 40 3 (2) 0.30 14300.87

90 186 0.484 188560 88163144 32 8 (2) 0.80 11241.77

90 194 0.464 196090 67630320 25 8 (4) 0.80 9362.65

90 202 0.446 198909 48109448 19 10 (5) 1.00 7277.74

98 220 0.445 238948 177962307 38 3 (3) 0.30 21725.83

98 228 0.430 249432 187347238 39 6 (0) 0.60 21841.45

98 236 0.415 255213 125193960 28 9 (1) 0.90 17064.47

98 244 0.402 264404 74096833 17 10 (6) 1.00 12386.50

98 252 0.389 277285 39984465 11 10 (9) 1.00 9142.08

98 260 0.377 280876 42340342 13 10 (7) 1.00 8560.10

106 270 0.393 322902 265583840 37 5 (1) 0.50 34147.08

106 280 0.379 335435 177869835 26 9 (2) 0.90 25219.92

106 290 0.366 347679 175847501 26 8 (4) 0.80 26034.16

106 300 0.353 357841 43319759 10 10 (10) 1.00 12137.60

106 310 0.342 369215 49294587 12 10 (8) 1.00 13184.20

106 320 0.331 375548 39512954 11 10 (9) 1.00 11652.82

84 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

Compare the curves depicted in this figure to those for the Lagarias-Odlyzko (Fig-

ure 3-1) and the Radziszowski-Kreher (Figure 3-3) methods. Algorithm SL shows

significant improvement over these previous methods and extends the "frontier" of

solvable subset sum problems. Figure 3-9 shows the success rate versus density when

SL was allowed to perform five attempted reductions (S,). The improvement made

by Algorithm SL over previous methods may clearly be seen by comparing this figure

to those shown previously. The shift in the frontier caused by increasing 7r, from one

to five is also apparent.

S5

42•50

0.8.

0.6-

06

0.4 4
8

8 0
6

0.2-

0 2

III I I I I I

0:3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Density

Figure 3-9: Algorithm SL: S5 vs. Density

The performance of Algorithm SL is a vast improvement over the techniques used

3.5. EMPIRICAL TESTS USING ALGORITHM SL 85

in [26, 33]. Not only is the success rate higher for Algorithm SL, but its improved

running time allows larger-sized subset sum problems to be effectively attacked. Nev-

ertheless, for n > 100 Algorithm SL is still only able to attack subset sum problems

with densities below 0.4. Subset sum problems with larger n and higher densities are

unsolvable from a practical point of view.

86 CHAPTER 3. SOLVING SUBSET SUM PROBLEMS

Chapter 4

Conclusions

We have shown in this thesis that Seysen's lattice basis reduction algorithm performs

much better than other currently available techniques in a limited number of cir-

cumstances. In particular, we have demonstrated that Seysen's algorithm may be

combined with the LLL algorithm to solve subset sum problems. As a general lattice

basis reduction tool, however, Seysen's algorithm leaves much to be desired. The

lack of theoretical bounds on the running time and performance of the algorithm

is discouraging. Empirical tests performed using Seysen's algorithm also highlight

weaknesses with using this method to solve general lattice reduction problems. As

the first part of this thesis demonstrated, the performance of Seysen's algorithm on

randomly generated "dense" lattice bases degrades quickly as the dimension of the

lattice increases above a certain critical bound. There are numerous local minima of

the S(A) function for these lattices, and once Seysen's algorithm encounters one it is

unable to escape (without some external influence acting upon the lattice basis).

Seysen's algorithm should not be immediately discounted, however. In certain

specific cases the algorithm performed quite well. In general Seysen's algorithm per-

forms only a fraction of the row moves required by the LLL algorithm to reduce a

lattice basis. For certain lattices, such as the B9 lattices of Section 2.2.3, the LL-

L algorithm was unable to perform any row reductions, whereas Seysen's algorithm

87

88 CHAPTER 4. CONCLUSIONS

enjoyed great success. Even for dense lattices, if the dimension of the lattice is rel-

atively small, Seysen's algorithm obtains the same results as LLL in only a fraction

of the time. Applications which utilize basis reduction in few dimensions are good

candidates for Seysen's method.

The experiments performed on lattices derived from subset sum problems highlight

one of the main advantages of Seysen's technique: its ability to very quickly perform

significant reductions on a lattice basis. Using Seysen's algorithm as a first reduction

stage allowed us to convert lattice bases involving large, multiprecision values into

other bases with vector coefficients which could be represented in single- or double-

precision. The LLL algorithm could then be run without having to use multiprecision

arithmetic, which greatly improved its execution time. For larger lattices (with n -

100) one must be aware of possible problems due to rounding and truncation errors,

but these difficulties can be overcome.

Although the primary goal of this thesis was to investigate applications of Seysen's

basis reduction algorithm, one should not overlook the other techniques which were

used (in addition to Seysen's algorithm) to solve subset sum problems. In particular,

the theoretical improvements to the Lagarias-Odlyzko attack in [12] may be directly

incorporated into practical methods of solving subset sum problems. Also, the use of

multiple values of the y parameter in the LLL algorithm significantly reduced the total

number of row moves LLL performed. This modification does not appear to decrease

the reduction performance of LLL in any way over LLL with constant y ; 0.99,

although it does significantly reduce the running time of the algorithm. We would

suggest using multiple, increasing values of y in the future whenever LLL-reduction

is performed.

We have demonstrated that Seysen's algorithm is a good basis reduction technique

for certain types of lattices, outperforming the basic LLL algorithm in terms of the

number of row operations required. Furthermore, we have seen how Seysen's algo-

rithm may be combined with variants of the LLL algorithm and heuristic methods

4.1. CANDIDATE LATTICES FOR SEYSEN REDUCTION 89

to successfully attack many subset sum problems with n •< 100. Yet these specific

instances are but a fraction of the type of lattice reduction problems which arise. It

is therefore natural to consider what other types of lattice reduction problems are

suitable for attack by Seysen's algorithm. We conclude this chapter, and the the-

sis itself, with some remarks on other Seysen-suitable lattices, and also suggestions

for modifying Algorithm SL to solve subset sum problems of larger dimensions and

higher densities.

4.1 Candidate Lattices for Seysen Reduction

The number of "classes" of lattice bases which may be successfully reduced using only

Seysen's basis reduction algorithm appears to be quite small. It was shown in Chap-

ter 2 that Sevsen's algorithm, which was designed for finding simultaneously good

reductions of a lattice basis and its dual, indeed works well in such cases. Further-

more, if the goal of a lattice reduction is to minimize some cost function or measure

of the lattice (and perhaps its dual), an appropriately modified version of Seysen's

algorithm incorporating the cost function will likely perform much better than an

LLL-type algorithm. While there are empirical reasons which suggest the use of the

S(A) measure as a particular cost function, Seysen himself mentioned in [38] that

other function had been used in the algorithm in place of S(A) with about the same

degree of success.

Replacing S(A) with another cost function may involve some difficulty. In par-

ticular, it may not be possible to solve for the coefficients Ai in closed form using an

alternate cost function. If some range of acceptable values can be determined, then

a search considering all integers in the range of interest may be feasible. Such an

90 CHAPTER 4. CONCLUSIONS

approach was used in experiments with the cost function

S •(A =)l1

For a proposed row move bj +- bj + Abi it is possible to compute bounds on the

range of possible A values. For sufficiently small ranges A E [A1, A2] we compute the

change in S'(A) after applying the row move with A taking on every integer value

in the range. Then (assuming a greedy approach) we choose the value for A which

maximized the decrease in S'(A). Thus, although it may not be possible to solve for

the best choice for A for some proposed cost function, numerical methods may -allow

consideration of the metric anyway.

The class of lattice bases which may be successfully reduced by using only Seysen's

algorithm appears quite limited, assuming that we ignore differences in execution

time. The randomly generated lattice bases with unit determinant from Chapter 2

exemplify this point: Seysen's algorithm began to perform poorly for n > 35, whereas

the LLL algorithm continued to correctly reduce lattices to the n-dimensional cubic

lattice for all tested cases. As a stand-alone technique, Seysen's algorithm may not be

considered that useful; it works quite well for some lattices of low dimension, but it

tends to stop early for larger-dimensioned lattice bases. To reduce these lattice bases

some combination of Seysen's algorithm and other reduction methods is probably

required.

4.2 Modifying Algorithm SL

The combination of the Seysen and LLL reduction algorithms used in Chapter 3 to

solve subset sum problems is a significant improvement over previously tried tech-

niques. There is still plenty of room for improvement. The pei formance of Algorithm

SL declines steadily over the range 50 < n < 100. For subset sum problems with

4.2. MODIFYING ALGORITHM SL 91

n : 100, Algorithm SL had difficulty solving instances with density d - 0.4, well

below the 0.9408... theoretical density bound.

There are a number of ways in which Algorithm SL could be extended in order to

attack subset sum problems with larger n, d values. For example, any of the techniques

mentioned in Section 2.3 above could be applied to the Seysen phases of the algorithm.

We can clearly imagine that another measure function S'(A) might perform better for

sparse, subset-sum generated lattices when compared to the performance of S(A) -

t•=1 11bi 12Hb!]•

Another method of extending Algorithm SL would be to increase the values of

the 7r, and 7r2 parameters. We have seen that increasing 7r, (the number of different

orderings of the initial LLL lattice basis vectors) from one to five yields markedly

better performance. Along similar lines, one could also allow more LLL-Weight-

Reduction-Sort loops to occur for each randomization. Recall that for Algorithm SL,

r2, the maximum number of loops, was set to eight. After eight iterations without

finding the desired solution vector in the lattice basis, Algorithm SL would "give up"

and select a new randomization of the LLL-Phase input lattice basis. The choice

to set 7r2 = 8 was made arbitrarily; Radziszowski and Kreher used 7r2 = 15 in their

experiments. The majority of the work performed during the LLL-Phase of Algorithm

SL occurs during the first LLL-Loop on each of the 7r, iterations; the second through

r,'h LLL-Loops perform only a fraction of the number of row moves performed by the

first loop. In our experiments, subsequent LLL-Loops tended to perform only -L the

row operations performed in the initial LLL- Weight-Reduction-Sort iteration. This

means that 7r2 could probably be increased to around 20 and the overall running time

of the LLL-Phase would probably double.

Increasing the number of LLL-Loops appears to be an inexpensive way to allow

Algorithm SL to perform more reduction operations on a lattice basis. One must

consider, however, how much an increase in 7r2 will improve the rate at which Al-

gorithm SL solves subset sum problems. W'e know from [33] that Radziszowski and

92 CHAPTER 4. CONCLUSIONS

Kreher were able to improve upon the Lagarias-Odlyzko algorithm by significantly

increasing 7r2 . Furthermore, in some very recent experiments Euchner and Schnorr

(personal communication) were able to obtain performance close to that of Algorithm

SL with 7r, = 1 and 7r2 = 16. The Euchner-Schnorr reduction algorithm utilizes some

other heuristics not included in Algorithm SL but uses only the LLL algorithm as

the main reduction technique. To date, Euchner and Schnorr have only reported on

experiments involving subset sum problems of size n < 66; the performance of their

technique on lattice bases in higher dimensions is unknown. Even their preliminary

results, though. suggest that it might be worthwhile to increase the number of reduc-

tion stages in Algorithm SL. even if it is necessary to reduce 7r, in order to maintain

comparable running times. Also. as their methods uses only the LLL algorithm, a

combination of their techniques and Algorithm SL is certainly possible.

Another factor to consider in Algorithm SL is the structure of our version of LLL.

Recall that instead of running LLL with y < 1.0 we used a fixed number of LLL

stages with varying y values. The first stage used a value of y slightly greater than ,
4,

and subsequent stages used larger and larger values of y. For the first stage of the 7r2

reduction stages, the multiple-value version of LLL significantly reduced the overall

running time of the algorithm. However, later reduction stages were generally unable

to benefit from this structure; in fact, in many cases the lattice was reduced further

only by the stages with y > 0.875. Future implementations might consider removing

the LLL stages with small y values for the second through (r 2)th reduction loops.

In Section 2.3.3 we discussed how Hadamard matrices could be used to randomly

permute a lattice basis which was locally Seysen-reduced in the hope that reapplying

Seysen's algorithm would yield a better reduced lattice basis. This same technique

could be applied to both the Seysen and LLL phases of Algorithm SL and might yield

significant improvements. Hadamard matrices could be used to permute a Seysen-

reduced lattice basis whose Seysen measure is a local minimum of the S(A) function.

Such a permutation might then permit Seysen's algorithm to reach another lattice

4.2. MODIFYING ALGORITHM SL 93

basis with smaller S(A) value, which in turn could increase the ratio of work performed

by the Seysen phase to that performed by the LLL phase. rimilarly, recall that

under the current scheme once a lattice basis has been LLL-reduced r2 times without

yielding a solution vector, that basis is forgotten and a new iteration is started using

a random permutation of the output of the Seysen phase. Instead of "throwing away"

the LLL-reduced basis, which has shorter basis vectors than the Seysen-reduced basis,

a Hadamard permutation could be applied to the output of the 7r2 stages. This

permuted basis would then be used as the input basis to the next big iteration.

Assuming that the Hadamard permutation method sufficiently "scrambles" the lattice

basis, we could thus avoid the overhead of having to reduce the output of the Seysen

phase more than once.

Finally, it is possible to modify Algorithm SL to take into account additional

information related to the creation of the specific subset sum problem. In [12] it is

shown how to tailor the input lattice basis for a subset sum problem if it is known

that the number of elements in the desired subset of weights is bounded by a fraction

of n. That is, if it is known that

Ze, =0fn,
i=l1

then the lattice basis can be modified so that a solution vector exists of length

V10(1 - 0). (In the worst case, / - and the solution vector is the familiar 6' vector

with 116'1I -=½n.) For instances of the general subset sum problem no information is

known concerning _ e,. Some knapsack cryptosystem, such as the Chor-Rivest sys-

tem [11], do use subsets with relatively few weights. When attacking such systems,

Algorithm SL should be modified to use the tailored lattice basis described in [12].

94 CHAPTER 4. CONCLUSIONS

Bibliography

[1] T. M. Apostol, Calculus, Vol. II, New York: John Wiley & Sons (1969).

[2] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Grad-

uate Texts in Mathematics 41, New York: Springer-Verlag (1976).

[3] D. H. Bailey, Comparison of two new integer relation algorithms, manuscript in

preparation.

[4] D. H. Bailey, MPFUN: A Portable High Performance Multiprecision Package,

NASA Ames Research Center, preprint.

[5] P. van Emde Boas, Another NP-complete partition problem and the complexity

of computing short vectors in a lattice, Rept. 81-04, Dept. of Mathematics, Univ.

of Amsterdam, 1981.

[6] E. F. Brickell, Solving low density knapsacks, Advances in Cryptology, Proceed-

ings of Crypto '83, Plenum Press, New York (1984), 25-37.

[7, E. F. Brickell, The cryptanalysis of knapsack cryptosystems. Applications of

Discrete Mathematics, R. D. Ringeisen and F. S. Roberts, eds., SIAM (1988),

3-23.

[8] E. F. Brickell and A. M. Odlyzko, Cryptanalysis: a survey of recent results, Proc.

IEEE 76 (1988), 578-593.

95

96 BIBLIOGRAPHY

[9] Brun, Algorithmes euclidiens pour trois et quatre nombres, 13eme Congr. Math.

Scand., Helsinki, 45-64.

[10] V. Cerny, A thermodynamical approach to the traveling salesman problem: an

efficient simulation algorithm, J. Optimization Theory and Appl. 45, 41-51.

[11] B. Chor and R. Rivest, A knapsack-type public key cryptosystem based on

arithmetic in finite fields, Advances in Cryptology: Proceedings of Crypto '84,

Springer-Verlag, NY (1985), 54-65. Revised version in IEEE Trans. Information

Theory IT-34 (1988), 901-909.

[12] M. J. Coster. B. A. LaMacchia, A. M. Odlyzko and C. P. Schnorr, An improved

low-density subset sum algorithm, Advances in Cryptology: Proceedings of Eu-

rocrypt '91, D. Davies, ed., to appear.

[13] Y. Desmedt, What happened with knapsack cryptographic schemes?, Perfor-

mance Limits in Communication, Theory and Practice, J. K. Skwirzynski, ed.,

Kluwer (1988), 113-134.

[14] A. M. Frieze, On the Lagarias-Odlyzko algorithm for the subset sum problem,

SIAM J. Comput. 15(2) (May 1986), 536-539.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company (1979).

[1.6] J. H5stad, B. Just, J. C. Lagarias, and C. P. Schnorr, Polynomial time algorithms

for finding integer relations among real numbers, SIAM J. Comput. 18(5) (Oc-

tober 1989), 859-881.

[17] J. Hstad and J. C. Lagarias. Simultaneously good bases of a lattice and its

reciprocal lattice, Math. Ann. 287 (1990), 163-174.

BIBLIOGRAPHY 97

[18] D. He, Solving low-density subset sum problems with modified lattice basis re-

duction algorithm, Northwest Telecommunication Engineering Institute (Xi'an,

China), preprint.

[19] A. Joux and J. Stern, Improving the critical density of the Lagarias-Odlyzko

attack against subset sum problems, to be published.

'20] R. Kannan, Improved algorithms for integer programming and related lattice

problems, Proc. 1 5th Symp. Theory. of Comp. (1983), 193-206.

[21] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, Optimization by simulated

annealing. Science 220 671-680.

[22] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algo-

rithms, 2nd ed., Addison-Wesley 1981.

[23] A. Korkin and G. Zolotarev, Sur les formes quadratiques, Math. Ann 6, 366-389.

[24] A. Korkin and G. Zolotarev. Sur les formes quadratiques, Math. Ann 11, 242-

292.

[25] J. C. Lagarias, Point lattices, manuscript in preparation.

[26] J. C. Lagarias and A. M. Odlyzko, Solving low-density subset sum problems, J.

Assoc. Comp. Mach. 32(1) (January 1985), 229-246.

[27] A. K. Lenstra, H. NV. Lenstra, and L. Lov~.sz, Factoring polynomials with rational

coefficients, Math. Ann. 261 (1982), 515-534.

[28] J. E. Mazo and A. M. Odlyzko, Lattice points in high-dimensional spheres,

Monatsh. Math. 110 (1990), 47-61.

[29] H. Minkowski, Diskontinuitsbereich fur arithmetic Aquivalenz, J. reine Angewb.

129, 220-224.

98 BIBLIOGRAPHY

[30] J. R. Munkres, Analysis of Manifolds, Redwood City: Addison-Wesley (1991).

[31] A. M. Odlyzko, The rise and fall of knapsack cryptosystems, Cryptology and

Computational Number Theory, C. Pomerance, ed., Am. Math. Soc., Proc. Symp.

Appi. Math. 42 (1990), 75-88.

[32] M. Pohst, A modification of the LLL reduction algorithm, J. Symb. Comp. 4

(1987), 123-127.

[33] S. Radziszowski and D. Kreher, Solving subset sum problems with the L' algo-

rithm. J. Combin. Math. Combin. Comput. 3 (1988), 49-63.

[34] C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms,

Theoretical Computer Science, 53 (1987), 201-224.

[35] C. P. Schnorr, Factoring integers and computing discrete logarithms via dio-

phantine approximation, Advances in Cryptology: Proceedings of Eurocrypt '91,

D. Davies. ed., to appear.

[36] A. Sch6nhage, Factorization of univariate integer polynomials by diophantine

approximation and by an improved basis reduction algorithm, 1 1ih Interna-

tional Colloquium on Automata, Languages and Programming (ICALP '84), J.

Paredaens, ed., Lecture Notes in Computer Science 172, Springer-Verlag, NY

(1984). 436-447.

[37] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics 7, New

York: Springer-Verlag (1973).

[38] M. Seysen, Simultaneous reduction of a lattice basis and its reciprocal basis, to

be published.

