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FOREWORD

Artificial neural systems offer promising programming
paradigms for solving complex problems in the area of perception,
pattern recognition, and adaptive behavior. This technical report
describes the application of such paradigms to the field of
knowledge processing and acquisition, focusing on the relevant task
of machine learning.
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ABSTRACT

Theoretical study was performed to determine if artificial
neural systems can be used to generalize rules from examples. A
method for generating rules from a multi-layer network was
investigated.

When the network was presented with few training patterns, the
rules derived from the network classified all patterns correctly.
The generalization capabilities of the Pao-Hu and neural network
classifiers were compared with each other and with the ID3 method.
Classifiers were compared by applying all methods to several data
sets and examining the similarities and differences among them. It
was demonstrated that the neural network could act as a rule
generator for an expert system. The tests have shown that the
network can correctly generate rules and subsequently correctly
classify patterns.
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INTRODUCTION

One of the most time consuming tasks in building an expert
system is the formulation of rules obtained by interviewing human
experts, otherwise known as knowledge engineering. As an
alternative to the task of using a knowledge engineer to bridge
this gap between the expert's knowledge and the formulated rules of
the expert system, an Artificial Neural System (ANS) may be used.
Since ANSs are good at generalization, given a set of examples, the
time needed to generate the rules of the system may be drastically
reduced, as well as the number of rules actually needed to cover
all of the possible input cases. By using an artificial neural
system to generate the rules for the system, the task of knowledge
engineering may not only be automated but optimized. The classes
of expert systems that use this method of rule generation are
connectionist expert systems.

There are several conventional approaches for rule generation
from a body of labeled examples. Among these are the ID3 (Quinlan,
1983)1 and Pao-Hu (Pao, 1989)2 methods. The ID3 method creates an
efficient decision tree for classifying patterns consisting of
nonnumeric feature values. The data necessary to create such a
tree is a set of patterns, each described by a set of nonnumeric
features and a class label. This data is called the 'training set'
for the procedure. The training set should consist of a subset of
all of the possible patterns. The goal is to discover from the
training set what minimum combinations of feature values are
necessary to determine class memberships for patterns. The Pao-Hu
method creates a set of rules, rather than a decision tree, to
classify the patterns. As in the ID3 approach, it uses a set of
labeled example patterns for its input, however, an inferencing
technique is used to discover the conditions that describe class
membership.

Classification trees are popular due to their conceptual
simplicity and their computational efficiency. A large variety of
methods have been proposed for the design of classification trees,
and these methods have been successfully applied to a diverse set
of problems. To construct a classification tree, it is assumed
that a data set consisting of feature vectors and their
corresponding class labels is available. The classification tree
is then constructed by recursively generating the tree in such a
way as to recursively partition the feature space.

ANS algorithms such as backpropagation networks have attracted
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a great deal of interest because of their apparent potential for
learning complex pattern recognition tasks. Feedforward layered
neural networks are being used in a wide variety of applications in
computer vision and pattern recognition. These networks consist of
multiple hidden layers. Generally, these networks have no built-in
hierarchy and consequently are fully connected. A related
architecture has been employed by Allen (1988)3 for modeling a
variety of high-level cognitive processes. These architectures
include a 3-layer backpropagation network, with an additional layer
of neurons, which maintains previous internal states of the
network. Unlike traditional state machines, these systems are self-
adaptive. Training such systems in stages can produce effective
learning. Presumably, the use of an adaptive training schedule
allows a simple representation to be developed initially. The
initial representation then allows the network to learn longer and
more complex patterns.

Artificial neural systems exhibit characteristics of
associative memory, pattern matching, generalization, and learning
by example (Rumelhart," 1986)4. Insofar as they directly compute
specific outputs in response to specific inputs, ANS can be viewed
as implementing reflexive task knowledge. Knowledge based systems
have demonstrated the ability to encode and exercise expert
knowledge within limited do- ins, providing a hierarchical software
organization and expla..iable solutions. The inferencing
capabilities of these systems effectively implement declarative
task knowledge.

There are important advantages to constructing rule-based
systems using artificial neural systems (Gallant, 1988)5. One is
time savings for expert system development and the potential of
using large knowledge bases. The neural network is used as a
design aid for the expert himself. The tool generalizes from the
trainer's examples to rules it forms itself. In the case where a
database exists, the net uses that source for the training examples
for learning. The rules are tested by the expert system shell on
sample problems. Results reflect where more training is required.

DATA PREPARATION

This technical report focuses on methods for classifying
patterns with nonnumeric features. A single nonnumeric feature
represents a characteristic of an object expressed in a symbolic
rather than numeric fashion. An object might have a nonnumeric

2



NAVSWC TR 91-358

feature reflecting a color, with the possible values blue or brown.

The data used for experiments was originally taken from Pao
(1989)2. The data follows the format described below. The first
line of the input file contains a list of nonnumeric feature names,
separated by commas. Following this header will be a set of
patterns, one per line. Each pattern contains a value for each of
the features from the header line, separated by commas. The
locations of these feature values in each pattern correspond to the
locations of the features in the header line. Each pattern will
also contain a class label. The class label will be the last
component of the pattern, separated from the feature values by a
colon.

As more data was needed for purposes of experimentation, it
was constructed in the same form. Four datasets are used in this
report. Each contains a number of patterns, comprised of four non-
numeric features and a class label. The class of each pattern may
be either "a" or "o". Classes have no physical meaning, other than
to indicate a logical category.

The first dataset, Dataset 1, contains a set of twenty-four
patterns, representing all possible combinations of the given
features (Table 1). Of these twenty-four patterns, seventeen are
of class "o", and seven of class "a". Dataset 2 (Table 2) is a
subset of Dataset 1 containing only thirteen of the twenty-four
patterns. Of these, seven are of class "o", and six of class "a".
Dataset 3 (Table 3) is another subset of Dataset 1, containing five
patterns of class "o", and only two of class "a". Dataset 4 (Table
4) is again a subset of Dataset 1, and contains eight patterns of
class "o" and four of class "a". Dataset 4 is used primarily for
in-depth examples of the Pao-Hu method and rule derivation.

3
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TABLE 1. DATASET 1

WEIGHT HEIGHT HAIR EYES CLASS
1. light, tall, dark, brown: a
2. light, short, dark, brown: o
3. light, tall, dark, blue: o
4. light, short, dark, blue: 0
5. light, tall, blond, brown: o
6. light, short, blond, brown: o
7. light, tall, blond, blue: o
8. light, short, blond, blue: o
9. light, tall, red, brown: a

10. light, short, red, brown: o
11. light, tall, red, blue: o
12. light, short, red, blue: o
13. heavy, tall, dark, brown: a
14. heavy, short, dark, brown: o
15. heavy, tall, dark, blue: o
16. heavy, short, dark, blue: o
17. heavy, tall, blond, brown: a
18. heavy, short, blond, brown: a
19. heavy, tall, blond, blue: o
20. heavy, short, blond, blue: a
21. heavy, tall, red, brown: a
22. heavy, short, red, brown: a
23. heavy, tall, red, blue: a

TABLE 2. DATASET 2 (SUBSET OF DATASET 1)

WEIGHT HEIGHT HAIR EYES CLASS
1. light, tall, dark, brown: o

10. light, short, red, brown: o
11. light, tall, red, blue: o
12. light, short, red, blue: o
13. heavy, tall, dark, brown: a
14. heavy, short, dark, brown: o
15. heavy, tall, dark, blue: o
17. heavy, tall, blond, brown: a
18. heavy, short, blond, brown: a
20. heavy, short, blond, blue: a
21. heavy, tall, red, brown: a
23. heavy, tall, red, blue: a
24. heavy, short, red, blue: a

4
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TABLE 3. DATASET 3 (SUBSET OF DATASET 1)

WEIGHT HEIGHT HAIR EYES CLASS
2. light, short, dark, brown: o
9. light, tall, red, brown: o

10. light, short, red, brown: o
14. heavy, short, dark, brown: o
17. heavy, tall, blond, brown: o
18. heavy, short, blond, brown: a
21. heavy, tall, red, brown: a

TABLE 4. DATASET 4 (SUBSET OF DATASET 1)

WEIGHT HEIGHT HAIR EYES CLASS
1. light, tall, dark, brown: o
2. light, short, dark, brown: o
8. light, short, blond, blue: o
9. light, tall, red brown: o

10. light, short, r-?d, brown: o
12. light, short, red, blue: o
14. heavy, short, dark, brown: o
17. heavy, tall, blcnd, brown: o
18. heavy, short, blor•i, brown: a
21. heavy, tall, red, orown: a
22. heavy, short, red, brown: a
24. heavy, short, red, blue: a

5
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RULE-BASED CLASSIFIERS

There are two conventional algorithms of interest for
classifying patterns with nonnumeric feature values. The first is
the ID3 approach, by Quinlan (1983)'. This algorithm creates an
efficient decision tree to classify the patterns. It uses labeled
example patterns to determine how the features may be examined in
sequence, until all of the labeled example patterns have been
classified correctly. The second algorithm is the Pao-Hu method
(Pao, 1989)2. This algorithm creates a set of rules, rather than
a decision tree, to classify the patterns. The following section
will describe these two methods in detail.

ID3 METHOD

Concept

The ID3 algorithm (Quinlan, 1983)' for classification of
patterns with nonnumeric features was implemented. This procedure
creates an efficient decision tree for classifying patterns
consisting of nonnumeric feature values. The data necessary to
create such a tree is a set of such patterns, each with a labeled
class. This data is called the 'training set' for the procedure.
The training set should consist of a subset of all possible
patterns given the combinations of features and their values
available. The goal is to discover, from the training set, what
minimum combinations of feature values are necessary to determine
class memberships for patterns, both those that are in the training
set (with their labeled classes) and those that are not. Each
pattern to be classified has the same number of features but
different values associated with those features.

The primary equation used by ID3 to determine how the decision
tree will be created is the entropy equation (Pao, 1989)2, or

Entropy=-plog 2 (P)

where p is defined as probability, based on frequency of
occurrence. The smaller the entropy, the greater the amount of
information present. The procedure is that at any point in the
creation of the tree, an entropy value is calculated for a feature
(that is not already used in the tree). The smaller the entropy
value calculated, the greater the amount of information gained if
that feature is used in the next level of the tree.

6
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FIGURE 1. FORM OF A COMPLETED DECISION TREE

The completed decision tree will be of the form shown in
Figure 1, where the number of values (and therefore the number of
branches) for each feature will vary. The number of features may
also vary, depending on the problem.

Algorithm

The algorithm to create a decision tree from a set of labeled
examples using the ID3 method is as follows.

1. First calculate the initial entropy of the system with the
following equation,

C
Initial System Entropy=• -p(i)log2 (p(i))

i-1

where C equals the total number of classes found in the
training set, and p(i) equals the probability of the ith-type
class. The probability p(i) is actually a ratio of the form

p(i)= number of patterns within class i
total number of patterns in the training set

From here on, the number of patterns in class i will be

referred to as c(i), and the total number of patterns in the

7
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training set will be referred to as P.

For example, given 8 patterns in the training set and 2
different kinds of classes, the initial system entropy would
be

Initial System Entropy=- c(1)lg 2 ( c(1) c(2) log2( c(2)
8 8 8 2 8

2. The next step is to determine which feature, in the list of
different features found from the training set, will be used as
the root of the decision tree.

a. For each feature k(i), i=l,2,...,K, divide the number of
patterns in the training set, P, into categories
corresponding to its values. Do this by looking at each
pattern to see what value it has for the feature k(i) and
put the pattern in the appropriate value branch.
For the algorithm the feature k(i) corresponds to the root
of the tree, and its values correspond to the branches of
the root. For J different values of the feature k(i), refer
to the set of patterns with value(j) for feature k(i) as
n(j). Here, n(j) is the branch population for the value j,
where j=l,2,...,J.

b. After all of the patterns have been sorted to their
appropriate branches, calculate the entropy for each branch
with the following equation.

Branch Entropy (k(i) ,j)=E n(j,m) log2 n(j,m)
m-1 n(j) n(j)

where n(j), as stated above, is the branch population for
the value j (for feature k(i)), and n(j,m) is the number of
patterns with class m in the jth branch.

c. The feature entropy for k(i) may then be calculated by
summing all of the branch entropies. The equation for
feature entropy is the following.

Feature Entropy k(i)= n (j) *[Branch Entropy (k(i),j)]jjP

d. Find the feature for which the smallest feature entropy
value was calculated. Use the feature (from step d) as the
root of the decision tree. Once the root, with its value
branches, has been created as the first level of the decision

8
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tree, the new system entropy will be the feature entropy
value that was calculated for the root feature.

3. If the new system entropy is not 0, then find one of the other
features (that has not been built into the decision tree) to
use in the next level of the decision tree. This step is
performed in the same manner that rootnode was performed. But
the fact that the tree is now partially created must be taken
into account.

a. For each feature k(i), i=l,2,...,K, not already built into
the decision tree, find the feature entropy based on the
partially created tree.

i. For each value branch of the most recently added feature
of the tree, divide the number of patterns into
categories corresponding to k(i)'s feature values. This
is similar to step 2(a) above, but the process is done
for each previous value branch.

The most recently added feature of the tree will be
referred to as prevk, and the values of that feature will
be referred to as prevk(m), m=1,2,...,M, where M is the
number of values (or value branches) associated with
prevk.

Therefore, step i can be written as

For each m, m=1,2,...,M, divide the number of
patterns into categories corresponding to k(i)'s
feature values.

ii. For each prevk(m), and for each value of k(i), find the
branch entropy using the equation in step 2(b). In other
words, if j=l,2,...,J, where J is the number of different
values associated with k(i), then

For each m, m=l,2,...,M, and for each j, j=l,2,...,J,
find Branch Entropy (k(i),j).

iii. For each prevk(m), calculate the feature entropy using the
equation in step 2(c). So

For each m, m=1,2,...,M, find Feature Entropy (k(i),m).

iv. The population (or number of patterns) of each prevk(m)
will be referred to as prevkn(m). Now the total feature
entropy can be found (based on the partially created
decision tree) using the following formula.

b. After the completion of 3(a), find the smallest total

9
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Total Feature Entropy k(i)=m prevkn(m) * [Feature Entropy (k(i) ,m)]E P
in-i

feature entropy value.

c. Choose the corresponding feature k(i) with that entropy
value to be built into the next level of the decision tree.
The feature, with its value branches, will need to be
attached to a maximum of M value branches, which are the
value branches associated with prevk. Once this feature has
been incorporated into the decision tree, the new system
entropy will be the smallest total feature entropy that was
calculated for the chosen feature.

4. Repeat step 3, until either the system entropy is 0 or until
all of the features have been built into the tree.

Experimental Results

Consider Dataset 1, shown in Table 1, as an entire test set.
The tree generated by the ID3 method from the data in Dataset 1 is
shown in Figure 2. This decision tree correctly identified all
examples from this dataset.

Next, a subset of the original file is considered, in the form
of Dataset 2 (Table 2). The result of the ID3 algorithm on this
dataset is shown in Figure 3. This tree has the same decisions and
conclusions as that of Figure 2. The examples removed from Dataset
1 to create Dataset 2 did not affect the tree.

Next, ID3 was applied to Dataset 3 (Table 3). The results are
shown in Figure 4. The tree produced is similar with the exception
of one branch. Those patterns having WEIGHT=heavy are queried on
their hair color. In the tree produced from Dataset 3, the
conclusion is that those with HAIR=dark are of class o. Since the
pattern (heavy, dark, tall, brown) in Dataset 1 is of class a, this
is incorrect. Examination of Dataset 3 shows that this pattern is
not present in those used to build this tree, while (heavy, short,
dark, brown) of class o was. The algorithm picked the best tree on
the basis of the information it had, misclassifying one out of the
original twenty-four patterns.

10
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FIGURE 2. DECISION TREE GENERATED FROM DATASET 1
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FIGURE 3. DECISION TREE GENERATED FROM DATASET 2



NAVSWC TR 91-358

Class~ o hayHIR°

FIGURE 4. DECISION TREE GENERATED FROM DATASET 3

PAO-HU METHOD

Concept

The Pao-Hu method uses list processing techniques to infer a
minimal set of classification rules sufficient to classify non-
numeric patterns. The Pao-Hu method produces rules in a Sum Of
Products form (several AND clauses joined by an OR connective),
with one rule for each class. Each individual AND clause is
referred to as a partial rule, and the entire expression formed by
joining all partial rules for a given class with an OR connective
is referred to as the complete rule. Because the partial rules are
ORed together, faster evaluation of the entire expression can be
performed (if any partial rule evaluates to TRUE, then the complete
rule evaluates to TRUE).

Rules are formed by considering the values of features,
referred to as descriptors, contained in the patterns. The Pao-Hu
method creates partial rules that are as short as possible by using
only as many descriptors as are necessary to determine class
membership. Each partial rule will then produce as few queries
about the features of the current pattern as necessary.

To generate the partial rules, all descriptors are first
considered individually to see if they uniquely identify a class.
If any do, they are considered to be distinct descriptors (or
first-level descriptors). All distinct descriptors form partial
rules. (WEIGHT=light) is an example. When all single descriptors

12
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are examined, the search continues with the conjunction (the AND)
of two descriptors. If this conjunction uniquely identifies a
class, second level descriptors are constructed. For example,
(WEIGHT=heavy)&(HAIR=red) is a second level descriptor. This
continues until all of the example patterns are covered by a
partial rule. The OR of all of the partial rules will result in
the complete rule.

Because the partial rules are ORred together, evaluation of
the entire expression can be performed (if any partial rule
evaluates to TRUE, then the complete rule evaluates to TRUE).
Since each of the partial rules are short (requiring a minimum of
queries to be evaluated) and independent (evaluation of one partial
rule has no bearing on another), the rules produced by the Pao-Hu
method are well suited for use on a parallel machine. Each attempt
to evaluate a partial rule can be treated as a process. When any
process determines that its partial rule has fired, the related
complete rule can be fired.

Algorithm

The Pao-Hu method uses list processing techniques to infer
classification rules.

First, the patterns are rewritten in terms of their
descriptors. For the data in Dataset 4 (Table 4), this gives us
the following (Table 5).

TABLE 5. DATASET 4 EXPRESSED AS CONJUNCTIONS OF DESCRIPTORS

Pattern Pattern Class
Number Description Label

1 (WEIGHT-light) & (HEIGHT-tall) & (HAIR-dark) & (EYES-brown) o
2 (WEIGHT-light) & (HEIGHT-short) & (HAIR-dark) & (EYES-brown) o
3 (WEIGHT-light) & (HEIGHT-short) & (HAIR-blond) & (EYES-blue) o
4 (WEIGHT-heavy) & (HEIGHT-tall) & (HAIR-blond) & (EYES-brown) o
5 (WEIGHT-heavy) & (HEIGHT-short) & (HAIR-dark) & (EYES-brown) o
6 (WEIGHT-heavy) & (HEIGHT-short) & (HAIR-blond) & (EYES-brown) a
7 (WEIGHT-light) &(HEIGHT-tall) & (HAIR-red) & (EYES-brown) 0
8 (WEIGHT-light) & (HEIGHT-short) & (HAIR-red) & (EYES-blue) o
9 (WEIGHT-light) & (HEIGHT-short) & (HAIR-red) & (EYES-brown) o

10 (WEIGHT-heavy) &(HEIGHT-tall) &(HAIR-red) &(EYES-brown) a
11 (WEIGHT-heavy) & (HEIGHT-short) & (HAIR-red) & (EYES-blue) a
12 (WEIGHT=heavy) & (HEIGHT-short) & (HAIR-red) & (EYES-brown) a

13
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Second, a table of descriptors and their associated patterns
is formed (Table 6).

TABLE 6. DESCRIPTORS AND THEIR PATTERNS

Descriptor Associated Patterns
Class o Class a

WEIGHT=light 1,2,3,7,8,9
WEIGHT=heavy 4,5 6,10,11,12
HEIGHT=tall 1,4,7 10
HEIGHT=short 2,3,5,8,9 6,11,12
HAIR=dark 1,2,5
HAIR=red 7,8,9 10,11,12
HAIR=blond 3,4 6
EYES=brown 1,2,4,5,7,9 6,10,12
EYES=blue 3,8 11

One class is selected for rule generation (the target class).
The first partial rules are formed by using distinct descriptors.
Distinct descriptors are descriptors whose patterns are present in
only the target class. Since at this point descriptors are
considered individually, they are referred to as first level
descriptors. For class o, the first level descriptors are
(WEIGHT=light) and (HAIR=dark), since these descriptors are found
in patterns belonging to the target class, and not to any other
class. Therefore,

pattern E class o if it contains (WEIGHT=light), or
pattern E class o if it contains (HAIR=dark).

After all first level distinct descriptors are considered,
then the distinct descriptors used are removed from the list.
Since any patterns containing these descriptors can be classified
by the information already obtained, all patterns covered by the
distinct descriptors can be removed. The resulting table contains
a list of patterns which have not yet been identified, and the
descriptors which have not yet been used (Table 7).

At this point, all other descriptors whose patterns are
covered by the first level descriptors can be removed from
consideration as well. The descriptors (HEIGHT=short), (HAIR=red),
and (EYES=blue) need not be considered any longer. The patterns
they are contained in have been dealt with by the two first level
descriptors as shown in Table 8.

14
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TABLE 7. DESCRIPTORS AND THEIR ASSOCIATED PATTERNS AFTER
REMOVING FIRST-LEVEL DESCRIPTORS

Descriptor Associated Patterns
Class o Class a

WEIGHT=heavy 4 6,10,11,12
HEIGHT=tall 4 10
HEIGHT=short 6,11,12
HAIR=red 10,11,12
HAIR=blond 4 6
EYES=brown 4 6,10,12
EYES=blue 11

TABLE 8. DESCRIPTORS AND PATTERNS AFTER REMOVAL OF COVERED
PATTERNS

Descriptor Associated Patterns
Class o Class a

WEIGHT=heavy 4 6,10,11,12
HEIGHT=tall 4 10
HAIR=blond 4 6
EYES=brown 4 6,10,12

Since all distinct descriptors have been considered, the next
step is to look for second level descriptors.

Second level descriptors are formed by the conjunction (AND)
of first level descriptors. A useful second level descriptor must
uniquely identify patterns of the target class. Whether a
descriptor pair is useful can be determined by examining the
patterns covered by both descriptors under consideration. Two
criteria must be met for a second level descriptor to be valid:

The intersection of the set of patterns in the target class
for both descriptors must not be empty, and

The intersection of the set of patterns in all other classes
must be empty.

Both first level descriptors must then be present together in at
least one pattern of the desired class, and must not be present
together in any patterns belonging to any other classes.
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To find a valid second level descriptor, pairs of descriptors
are chosen and tested. For the first pair above, which is
(WEIGHT=heavy)&(HEIGHT=tall), the intersection of the set of
patterns in the target class is pattern 4. The intersection of the
patterns in the non-target class, however, is pattern 10, since
both descriptors are present in pattern 10. This second level
descriptor is not useful, since it identifies patterns in both
sets. The search will then continue with other combinations of
descriptors. Only one combination is of use, namely pair
(HEIGHT=tall) and (HAIR=blond). These descriptors do occur in
pattern 4 in the target class, and do not occur in any other
patterns belonging to other classes. The second level descriptor
formed from this pair, (HEIGHT=tall) & (HAIR=blond), can therefore be
used:

pattern E class o if it contains (HEIGHT=tall)&(HAIR=blond)

Pattern 4 was the only uncovered pattern in the target class
remaining, and is covered by this second level descriptor. At this
point, then, no more patterns need to be considered, and the
complete rule can be expressed (Table 9).

TABLE 9. RESULTING RULES FOR DATASET 1

IF (WEIGHT=light) or
(HAIR=dark) or
(HEIGHT=tall)&(HAIR=blond)

If patterns remained uncovered in the target set at this time,
then other second level descriptors can be formed. If all possible
pairs of second level descriptors have been tested, and none are
valid second level descriptors, then the process will continue
similarly, with the search for third level descriptors formed by
the conjunction of three descriptors. This process will continue
until partial rules are generated to uniquely identify all
patterns.

To derive rules for the remaining patterns, this process can
then be repeated with class a being the target class.

Experimental Results

Dataset 1 is first presented to the Pao-Hu method, resulting
in the rules shown in Table 10. These rules are sufficient to
classify all patterns in Dataset 1 correctly.

16



NAVSWC TR 91-358

TABLE 10. RULES GENERATED FROM DATASET 1 BY THE PAO-HU METHOD

IF (WEIGHT=light) or
(HEIGHT=tall & HAIR=blond) or
(HEIGHT=short & HAIR=dark) or
(HAIR=dark & EYES=blue)

THEN class=o

IF (WEIGHT=heavy & HAIR=red) or
(WEIGHT=heavy & HEIGHT=short & HAIR=blond) or
(WEIGHT=heavy & HEIGHT=tall & HAIR=dark & EYES=brown)

THEN class=a

Using Dataset 2, the Pao-Hu method induces the rules shown in
TABLE 11. These rules miss discriminating on the (WEIGHT=heavy)
feature for the second partial rule in class "a". This leads to a
conflict in the rules generated when an example with WEIGHT=light,
HEIGHT=short, HAIR=blond is presented. These examples classify as
both "o" and "a". Because the Pao-Hu method attempts to generate as
few rules as possible by assuming as much as it can in the absence
of conflicting examples, rules for different classes may include

TABLE 11. RULES GENERATED FROM DATASET 2 BY THE PAO-HU METHOD

IF (WEIGHT=light) or
(HEIGHT=tall & HAIR=blond) or
(HEIGHT=short & HAIR=dark) or
(HAIR=dark & EYES=blue)

THEN class=o

IF (WEIGHT=heavy & HAIR=red) or
(HEIGHT=short & HAIR=blond) or
(WEIGHT=heavy & HEIGHT=tall & HAIR=dark & EYES=brown)

THEN class=a

the same unknown patterns.

The Pao-Hu method was then applied to Dataset 3, resulting in
the rules shown in Table 12. Since the example requiring the
longest rule for class "a" was not used in generating the rules, it
is reasonable that the method did not generate this rule. The
rules produced are again sufficient to classify the patterns used,
but will result in conflicts with two of the non-training patterns.
The two patterns (light, short, blond, brown) and (light, short,
blond, blue) are classified as belonging to both class "a" and
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class "o". Again, this is because the method tried to use as few
features as needed, and in the absence of a counterexample chose
(HAIR=blond & HEIGHT=short) as one rule.

TABLE 12. RULES GENERATED FROM DATASET 3 BY THE PAO-HU METHOD

IF (WEIGHT=light) or
(HEIGHT=tall & HAIR=blond) or
(HAIR=dark)

THEN class=o

IF (WEIGHT=heavy & HAIR=red) or
(HEIGHT=short & HAIR=blond)

THEN class=a

ANS CLASSIFIER

An area of interest in this study was the use of ANS to
perform classification tasks on patterns with non-numeric features.
The approach used in this study centered on feedforward networks
trained with the backpropagation algorithm. Since the neural
networks considered are numeric by nature, work had to be d-ne to
devise a method to convert data from a non-numeric representation
to a numeric one. Previous work proposed several ways to provide
numeric input. One was to present a normalized average of the
ASCII codes of the letters to the network, another to select a
number for each value of each feature that was far away fror other
numbers (0.1 for 'light', 0.9 for 'dark', for example). Each of
these potential solutions had problems. The average ASCII value of
a character string is not unique ('light' and 'glith' will have the
same average, for example), and for a large number of values it is
difficult to pick values that are 'far away' from each other
without knowing all data to be considered a priori. In light of
these problems and the importance of data representation to the
network, encoding schemes that would allow automatic and unique
representation of each input feature were examined.

BINARY ENCODING SCHEME

A solution that seemed promising was to create a bitstriiLj
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representation of each feature and present the individual bits to
a network. For a given string representing a nonnumeric feature,
convert each character to its ASCII code, convert the ASCII code to
a binary representation, then present each bit to an input neuron
in the network. Enough neurons were allocated to deal with the
value having the most characters. Those values with fewer letters
were padded on the right witA spaces. This is referred to as the
binary encoding scheme.

As an illustrat7on, consider the feature (WEIGHT=light).

Character string: 1 i g h t

ASCII code: 108 105 103 104 116

Binary: 1101100 1101001 1100111 1101000 1110100

For this feature, then, thirty-five input neurons must be
allocated in the network (7 bits * 5 characters).

To allow the network to process these bitstrings, a layer of
intermediate layer neurons was added. These neurons were fully
connected to all input neurons for the feature, and allow the
network to have an intermediate representation of the features.
For the input data sets considered, the greatest number of possible
values for a given feature was three (HAIR could take on the values
red, dark, or blonde), so two neurons were assigned to this layer
for all features (allowing them to reflect a maximum of four
values). A graphical depiction of the input and classification
layers for a single feature is shown (Figure 5). For this feature,
seven input neurons were
allocated for each of five
characters, and two neurons were
allocated in the classifier layer I i g h t
(allowing the classifier layer to Input
reflect four different values for Layer
this feature). The neurons in
the classifier layer are fully
connected to the neurons in the Classification
hidden layer. Layer

The input and classification
layers are separate for different
features, so the network may be FIGURE 5. INPUT AND
scaled to allow varying numbers CLASSIFICATION LAYERS FOR ONE
of features by adding or deleting FEATURE
these blocks of neurons. Most
data sets considered in testing
had three or four features per pattern. The network architecture
was scaled to fit the input.
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Pictured below is a graphical representation of the network
architecture as applied to the problem of classifying the sample
pattern set (Figure 6).

Feature #1 Featuref2 Feature #3 Feature #4

(Wilght) (Height) (Hair) (Eyes)

Input
Layer

Classification
Layer

Hidden Layer

Output Layer

FIGURE 6. NETWORK ARCHITECTURE USING BINARY ENCODING SCHEME

As mentioned earlier, this network was trained using
backpropagation of error (the delta rule). No values were
specified in advance for the internal neurons in either the
classification layer of the hidden layer. As a result, during the
course of training the backpropagation algorithm came up with its
own internal representation of the data in both the hidden and the
classifier layer. For example, during one run using the data from
Dataset 4, the network derived the representation for the nodes in
the classifier layer shown in Table 13.

TABLE 13. REPRESENTATION OF FEATURES IN CLASSIFICATION LAYER
OF BINARY ENCODED NETWORK

Feature 1 Feature 2 Feature 3 Feature 4
Weight Height Hair Eyes

light 1 0 tall 1 0 dark 0 1 brown 0 0
heavy 0 1 short 0 0 blond 1 1 blue 0 0

red 1 0

The values for each neuron pair were not consistent between
runs, since they depend primarily on the initial random starting
weights. For example, during another run, the representation in
the classifier layer for the first feature was 1 and 1 for 'light',
and 0 and 0 for 'heavy'.

Note that the network did not learn a representation of the
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fourth feature. The network did not learn any correlation between
the value of the fourth feature and the desired output, and so did
not learn a representation for its values. The network decided
that the value of the fourth feature was not significant in the
data given.

One argument against use of this representation is that this
approach uses a large amount of resources in the form of these
connections to do something that is fairly simple, namely to
classify a string as one of two or three classes. The net has to
figure out internal representations on two levels, which is
inefficient by nature of the backpropagation learning algorithm.
For these reasons, a different encoding scheme was adopted for most
experiments performed.

FEATURE-VALUE ENCODING SCHEME

One of the primary drawbacks of the binary encoding scheme is
the large number of connections required between the input and
classification layers, which resulted in a relatively large amount
of computer time in order to train each network. An alternate
scheme used only one neuron per possible feature value. The input
patterns were preprocessed. Each input neuron was allowed to fire
if the corresponding value was present in the pattern, and
prevented from firing if the value was not present.

Figure 7 shows one group of input neurons, representing the
possible non-numeric values of light, dark, or red, indicating the
value 'dark'.

This method is easily scaled,
since to reflect a new non-numeric Light Dark Red
value all that must be done is to
add a neuron to the input layer.

To represent an input pattern 010
as a vector, the possible values
of each feature must be listed to
determine their number. All
values of the same feature are
grouped together, but this is done
only for convenience, and is not
relevant to the representation.
Shown in Table 14 are the patterns FIGURE 7. INPUT NEURON GROUP
of dataset 4 and the vectors REFLECTING A VALUE OF 'DARK'
constructed from them to be
presented to the network.
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TABLE 14. VECTOR REPRESENTATION OF DATASET 4 FOR THE FEATURE-
VALUE NETWORK

PATTERNS VECTORS

WEIGHT HEIGHT HAIR EYES light heavy tali short dark blond red brown blue
light, tall, dark, brown - ( 1 0 1 0 1 0 0 1 0 )

light, short, dark, brown - ( 1 0 0 1 1 0 0 1 0 )

Light, short, blond, blue - ( 1 0 0 1 0 1 0 0 1 )

heavy, tall, blond, brown - ( 0 1 1 0 0 1 0 1 0 )

heavy, short, dark, brown - ( 0 1 0 1 1 0 0 1 0 )

heavy, short, blond, brown - ( 0 1 0 1 0 1 0 1 0 )

Light, tall, red, brown - ( 1 0 1 0 0 0 1 1 0 )
Light, short, red, blue ( 1 0 0 1 0 0 1 0 1 )

Light, short, red, brown - ( 1 0 0 1 0 0 1 1 0 )
heavy, talk, red, brown ( 0 1 1 0 0 0 1 1 0 )

heavy, short, red, blue ( 0 1 0 1 0 0 1 0 1 )

heavy, short, red, brown•. ( 0 1 0 1 0 0 1 1 0 )

The tradeoff with this method is that some time must be spent
building the vectors to present them to the network. However,
since this scheme contains fewer neurons (by a factor of about
nine) and fewer weights (by a factor of seven), the faster training
time more than makes up for the preprocessing time.

When all nine possible feature-value combinations are
included, there are nine input neurons in the network. Figure 8
shows the network architecture used by the feature-value encoding
scheme.

The neural network will, in general, successfully learn all
those patterns presented to it. Some problems occasionally arise
with local minima, but these are uncommon with the network as
presented. The interest, then, is to determine how the network
generalizes in response to incomplete examples. For this reason,
Dataset I was used as a complete dataset, and datasets 2 and 3
reflect subsets of the dataset 1.

When trained on the patterns in Dataset 1, the network learned
all patterns. The rules generated from this network are shown in
Table 15.

When trained with all patterns from Dataset 2, the network
learned to classify all patterns of Dataset 1 correctly in six out
of nine training sessions. Of the remaining three, in one case the
network fell into a local minimum, and for several thousand
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Feature #1 Feature 02 Feature 93 Feature #4

(Weight) (Height) (Hair) (Eyes)

Light Heavy Tall Short Light Dark Red Blue Brown Bias

0 0 0 Input Layer

Hidden Layer

Output Layer
dou

FIGURE 8. NETWORK ARCHITECTURE USING THE FEATURE-VALUE ENCODING
SCHEME

TABLE 15. RULES GENERATED FROM NETWORK TRAINED ON DATASET 1

IF (WEIGHT=light) or
(HElGHT=short & HAIR=dark) or
(HAIR=dark & EYES=blue) or
(HEIGHT=tall & HAIR=blond)

THEN class=o

IF (WEIGHT=heavy & HAIR=red) or
(WEIGHT=heavy & HEIGHT=short & HAIR=blond) or
(WEIGHT=heavy & HAIR=dark & HEIGHT=tall & EYES=brown)

THEN class=a

iterations after learning all other patterns correctly, the
network's conclusion about the membership for four patterns was
still indeterminate. In the remaining two training sessions, the
network incorrectly identified the pattern (light, tall, red,
brown) as class "a". Inspection of the training set shows several
patterns that differ from the incorrect pattern in only one
feature:

(light, tall, dark, brown) of class o,
(light, tall, red, blue) of class o, and
(heavy, tall, red, brown) of class a.

Expressed as vectors, this means that
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( 1 0 1 0 0 0 1 1 0 ) (the unknown)

was most often associated with the training patterns

( 1 0 1 0 1 0 0 1 0 ) (class o)
and

( 1 0 1 0 0 0 1 0 1 ) (class o),

but was sometimes associated most strongly with

( 0 1 1 0 0 0 1 1 0 ) (class a).

In these two cases, the network learned that the case where height
is tall, hair is red, and eyes are brown carried more significance
than the weight, which should be the primary distinguishing feature
for this dataset. Since the missed example was not part of the
training set, misclassification error caused by this pattern was
not included in computing the overall error used by
backpropagation. A representation that correctly reflected the
training patterns but not the testing patterns was arrived at by
the hetwork.

For a weight set trained on Dataset 2 which correctly
identified all patterns, rules were generated from the network.
They are shown in Table 16. These rules successfully classify all
patterns in Dataset 1.

TABLE 16. RULES GENERATED FROM NETWORK TRAINED ON DATASET 2

IF (WEIGHT=light) or
(HEIGHT=short & HAIR=dark) or
(HAIR=dark & EYES=blue) or
(HEIGHT=tall & HAIR=blond)

THEN class=o

IF (WEIGHT=heavy & HAIR=red) or
(WEIGHT=heavy & HEIGHT=short & HAIR=blond) or
(WEIGHT=heavy & HAIR=dark & HEIGHT=tall & EYES=brown)

THEN class=a

In another example where the network was presented with a
subset of Dataset 1, the network consistently found a solution
where all patterns but one were identified correctly. When trained
on the patterns in Dataset 3, the network consistently identified
(heavy, tall, dark, brown) as of class a.

Again, in inspecting the vectors it can be seen that
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( 0 1 1 0 1 0 0 1 0 ) (the misidentified vector)

is most similar to the training vectors in three of the four
features:

( 0 1 0 1 1 0 0 1 0 ) (class o) and
(0 1 1 0 0 1 0 1 0 ) (class o).

The network determined the class of an unknown vector by those
known vectors which were most near it.

When the network was trained on Dataset 2, it resulted in
rules shown in Table 17. The rules are shorter and less specific
than those of the previous two cases. As a result, the rules
misclassify one pattern, the pattern with features (heavy, tall,
dark, brown). This pattern is the same as that misclassified by
the ID3 method.

TABLE 17. RULES GENERATED FROM NETWORK TRAINED ON DATASET 3

IF (WEIGHT=light) or
(HEIGHT=tall & HAIR=blond) or
(HAIR=dark)

THEN class=o

IF (WEIGHT=heavy & HAIR=red) or
(WEIGHT=heavy & HEIGHT=short & HAIR=blond)

THEN class=a

DISCUSSION

The three methods discussed in this paper were applied to
Dataset 2. The results of the Pao-Hu are shown in TABLE 18, the
ID3 algorithms in Figure 9, and the results of rules generated from
a neural network trained on Dataset 2 in Table 19.

While the ID3 tree correctly classifies all patterns in
Dataset 1, the Pao-Hu rules misclassify (light, short, blond, blue)
and (light, short, blond, brown) as both class "a" and class "o",
as discussed previously.
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TABLE 18. RULES FOR DATASET 2 AS GENERATED BY THE PAO-HU METHOD

IF (WEIGHT=light) or
(HAIR=dark)&(EYES=blue) or
(HAIR=dark)&(HEIGHT=short) or
(HEIGHT=tall)&(HAIR=blond)

THEN class=o

IF (WEIGHT=heavy)&(HAIR=red) or
(HEIGHT=short)&(HAIR=blond) or
(WEIGHT=heavy)&(EYES=brown)&(HAIR=dark)&(HEIGHT=tall)

THEN class=a

ClaIGHT

Cls HAIR

dar •blond red

aHClass a

EYES Class o Class 01o Class aI

brow blue

FIGURE 9. CLASSIFIER TREE GENERATED BY ID3 ON DATASET 2

The ANS used to generate rules classified all patterns
successfully. The rules generated from this network also classify
all patterns successfully. By retaining more conditions in the
rules for class a than the Pao-Hu method, the rules do not classify
any pattern as being of both classes. Note that the rules
generated are identical to those generated by the Pao-Hu method on
the entire Dataset 1.

The three methods were then applied to Dataset 3. The rules
produced with the Pao-Hu method are shown in Table 20, the tree
produced by the ID3 algorithm is shown in Figure 10, and the rules
derived from a neural network trained on Dataset 3 are shown in
Table 21.
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TABLE 19. RULES GENERATED FROM NETWORK TRAINED ON DATASET 2

IF (WEIGHT=light) or
(HEIGHT=short & HAIR=dark) or
(HAIR=dark & EYES=blue) or
(HEIGHT=tall & HAIR=blond)

THEN class=o

IF (WEIGHT=heavy & HAIR=red) or
(WEIGHT=heavy & HEIGHT=short & HAIR=blond) or
(WEIGHT=heavy & HAIR=dark & HEIGHT=tall & EYES=brown)

THEN class=a

TABLE 20. RULES FOR DATASET 3 GENERATED BY PAO-HU METHOD

IF (WEIGHT=light) or
(HAIR=dark) or
(HEIGHT=talI) & i(HAIR=b1ond)

THEN class=o

IF (HAIR=blond)&(HEIGHT=short) or
(WEIGHT=heavy) & (HAIR=red)

THEN class=a

Clso HAIR

dark •blondre

Cls o I°as a
FIGURE 10. CLASSIFIER TREE GENERATED BY ID3 FROM DATASET 3
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TABLE 21. RULES GENERATED FROM NETWORK TRAINED ON DATASET 3

IF (WEIGHT=light) or
(HEIGHT=tall & HAIR=blond) or
(HAIR=dark)

THEN class=o

IF (WEIGHT=heavy & HAIR=red) or
(WEIGHT=heavy & HEIGHT=short & HAIR=blond)

THEN class=a

The Pao-Hu method misclassifies both (light, short, blond,
brown) and (light, short, blond, blue) as both class "a" and class
"o", and the ID3 algorithm misclassifies (heavy, tall, dark, brown)
as of class o. Again, both mistakes relate to the nature of the
methods used. The Pao-Hu chose sufficient rules on the basis of
the examples it had, and ID3 chose a tree that would allow the
greatest number of known patterns to be identified at each step as
possible.

The ANS trained on this data classified all patterns correctly
but (heavy, tall, dark, brown). This is the same pattern that the
ID3 method misclassified. This similarity can probably be
attributed to the fact that both methods attempt to classify
patterns in a statistical manner. Both weigh the values of those
features that give more information about the class by finding a
correlation between an input neuron and an output neuron firing (in
the network) or by finding those values which reduce the number of
misidentified patterns the most at any given point (in the ID3).

CONCLUSION

The ID3 algorithm creates a very efficient decision tree for
classifying patterns with nonnumeric feature values. The algorithm
appears to work best when there is a large number of patterns in
the data set, and when the patterns consist of several feature
values.

There are two drawbacks in using the ID3 approach. The first
is that there is no easy way to modify the decision tree once it
has been created. Therefore, if the tree incorrectly classifies
patterns as a result of not having a large enough data set, then a
new one will have to be created given a larger data set. The
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second drawback is that the algorithm does not have the ability to
generalize. It can only create a decision tree to classify the
types of patterns that were present at the time when the tree is
created.

While the Pao-Hu method offers advantages on a true parallel
machine, if the rules are examined on a serial machine the decision
tree will allow classification in a much smaller average amount of
time. This is because the Pao-Hu method considers a relatively
large number of partial rules, each of which must be evaluated one
after another, with no knowledge gained from evaluating one partial
rule used in evaluating the next partial rule. Additionally, the
emphasis in creating rules was not to minimize the number of rules
but their length.

The independence of the Pao-Hu rules also gives some advantage
if they are to be updated. If a new pattern is discovered that is
in conflict with a partial rule, then that partial rule can be made
more specific and not fire when the new pattern is presented, and
the new pattern can be added into the rulebase by indicating its
class and forming a partial rule of its descriptors.

A layered neural network was devised. Several methods were
explored to encode the nonnumeric textual data into numeric format
for input to the neural network. A method for generating rules from
a backpropagation network was developed.

The generalization capabilities of the Pao-Hu and ANS
classifiers were compared with each other and with the ID3
classification method. Classifiers were compared by applying all
methods to several data sets and examining the similarities and
differences among them. It was demonstrated that artificial neural
systems can act as rule generators for expert system. The test
result has shown that ANS can correctly generate and infer rules
and subsequently correctly classify patterns.
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