
REPORT DOCUMENTATION PAGE ForrmNo.ove0

AD-A7hm w resonse. ivk&V to fihfe u for r.~e~vt9 mmwlrctn& seardirig existng data soixcee giathering and mintairnanif the dataA D A 1 1 i *buw.q geleate or "n Wtu aqted of ths colsotton of rnfamaonr Wickdrig siuggeetiors f0, reduing th6 burden, to We.1"'* ~ ~ II~h~ lullilil iii Jeftm~n Davig H~tway. Suet 1204. ArtWart. VA m2=4302, and to fth GAice of ktforiation and Rlegulatory Affairs. Office ct
"'i ' _ _RT DATE 3. REPORT TYPE AND DATES COVERED

IFinal:08 Oct 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: International Computers Limited VME Ada Compiler
VA3.1 0, IOL Series 39 Level 80 (Host & Target), 921008N1.1 1293

6, AUTHOR(S)

National Computing Centre Limited
Manchester, UNITED KINGDOM

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Computing Centre Limited REPORT NUMBER

Oxford Road 90502/82-921112
Manchester Ml 7ED
UNITED KINGDOM
9. SPONSORING/MONITORING, AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Off ice REPORT NUMBER

United States Department of Defense
Washington, D.C. 20301 -3081

11. SUPPLEMENTARY NOTES

12a. D1STRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

International Computers Limited, VME Ada Compiler VA3.10, Machester England, ICL Series 39 Level 80 (under VME with
VMAEB Environment Option Version sV292), ACVC 1.11.

EECTE~

S DEC _ __92AU
14. SUBJECT TERMS 15 NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIOMIL-STD-1815A, AJPO. 16. PRICE CODE

17. ECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT NUB OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298 RE'Rv 2-89)

Prescribed by ANSI Std. 239-128



AVF Control Number: 90502/82-921112

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #921008N1.11293

International Computers Limited
VME Ada Compiler VA3.10

ICL Series 39 Level 80

Prepared By:
Testing Services

The National Computing Centre Limited

Oxford Road
Manchester

M1 7ED
England

Template Version 91-05-08

92-31682
1111111 ll lll 111 IiEllll 9 2 12 1 6 0 7 8

Validation Smumry Report AVFVSt_90502/G

Internationml Caqmuters Limited VE Ads VA3.10

TESTING

No 0226S1



Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 8 October 1992.

Compiler Name and Version: VME Ada Compiler VA3.10

Host Computer System: ICL Series 39 Level 80 (under VME with VMEB
Environment Option Version SV292)

Target Computer System: ICL Series 39 Level 80 (under VME with VMEB

Environment Option Version SV292)

See section 3.1 for 2ny additional information about the testing environment.

As a result of this validation effort, Validation Certificate #921008NI.11293 is awarded to
International Computers Limited. This certificate expires 2 years after ANSI/MIL-STD-1815B is
approved by ANSI.

This report has been reviewed and is approved.

Accesion For

Jon Leig& • - NTIS CRA&I
Manager, System Software Testing OTIC TAB
The National Computing Centre Limited Ut,aa:iourced
O x f o r d R o a d . ..ti f iC a t i. . . .

Manchester .......

M1 7ED By
England Dist ":bu'tion•

Availability Cods

Dist Av il W.C/or
Ada Vaii#oý Organization
,• Direc~or, G puter and Software Engineering Division
Institute for Defense Analyses I..
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense -.. .D
Washington DC 20301

Vatidetion Siy Report AVF_VSR_90502/82

Internationat Compters Limited VNE Ada VA3.10



Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 8 October 1992.

Compiler Name and Version: VME Ada Compiler VA3.10

Host Computer System: ICL Series 39 Level 80 (under VME 'with VMEB
Environment Option Version SV292)

Target Computer System: ICL Series 39 Level 80 (under VME with VMEB
Environment Option Version SV292)

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate #921008N1.11293 is awarded to
International Computers Limited. This certificate expires 2 years after ANSI/MIL-STD-1815B is
approved by ANSI.

This report has been reviewed and is approved.

Jon Leigth•'•
Manager, System Software Testing
The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED
England

Ad-a V a raizton

;Direci r, = uter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

VaLidmtion Suimry Report AVF-VSR_90502/82

interrntiorsl Computers Limited VNE Ada VA3.10



DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Declaration of Conformance

Customer: International Computers Limited

Ada Validation Facility: National Computing Centre Limited

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: VME Ada Compiler VA3.10

Host Computer System: ICL Series 39 Level 80 (under VME with VMEB
Environment Option Version SV292)

Target Computer System: ICL Series 39 Level 80 (under VME with VMEB
Environment Option Version SV292)

Declaration:

I, the undersigned, declare that I have no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-1815A, ISO 8652-1987, FIPS 119 as tested in this
validation and documented in the Validation Summary Report.

Customer Sgnature Date

vaeidetion SLinry Neport AW _V5R90SG2

Internatiot Camptters Limited VNE Ads VA3O



TABLE OF CONTENTS

TABLE OF CONTENTS

CH A PTER 1 ........................................................... 1

INTRODUCTION ........................................................ 1
1.1 USE OF THIS VALIDATION SUMMARY REPORT ................. 1
1.2 REFERENCES .............................................. 1
1.3 ACVC TEST CLASSES ........................................ 2
1.4 DEFINITION OF TERMS ..................................... 3

CH APTER 2 ........................................................... 1

IMPLEMENTATION DEPENDENCIES ....................................... 1
2.1 WITHDRAWN TESTS ........................................ 1
2.2 INAPPLICABLE TESTS ....................................... 1
2.3 TEST MODIFICATIONS ...................................... 4

CH A PTER 3 ........................................................... 1

PROCESSING INFORMATION ............................................. 1
3.1 TESTING ENVIRONMENT .................................... 1
3.2 SUMMARY OF TEST RESULTS ................................ 1
3.3 TEST EXECUTION .......................................... 2

APPEND IX A .......................................................... I

MACRO PARAMETERS .................................................. 1

A PPEND IX B .......................................................... 1

COMPILATION SYSTEM OPTIONS ......................................... 1

A PPEND IX C .......................................................... 1

APPENDIX F OF THE Ada STANDARD ..................................... 1

Validation Sumary Report AVF_VW_90502/82

International Computers Lfuited Table of Contents - Page 1 of I NE Ads VA3.10



INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada Validation Procedures
[Pro92] against the Ada Standard [Ada83] using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of this Ada
implementation. For any technical terms used in this report, the reader is referred to IPro92]. A
detailed description of the ACVC may be found in the current ACVC User's Guide [UG89]. (-

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and free public disclosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Lanmuage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures,
Version 3.1, Ada Joint Program Office, August 1992.

[UG89] Ada Compiler Validation Capability U,•zr's Guide
21 June 1989.

Validation Sumary Report AVF-VSR-90502/82

international Computers Limited Chapter I - Page I of 4 WE Ada VA3.10



INTRODUCTION

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are executed. Three Ada library units,
the packages REPORT and SPPRT13, and the procedure CHECK FILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECKFILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Standard. The operation of REPORT and CHECKFILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is provided
in Appendix A. In addition to these anticipated test modifications, additional changes may be required
to remove unforeseen conflicts between the tests and implementation-dependent characteristics. The
modifications required for this implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by the AVF. This customization
consists of making the modifications described in the preceding paragraph, removing withdrawn tests
(see section 2.1), and possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite
according to the Ada Standard.

Vatidat ion iry Report AVF_VSM90502/82

International Computers Limited Chapter 1 - Page 2 of 4 VIE Ada VA3.1O



INTRODUCTION

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to a given
host and target computer system to allow transformation of Ada
programs into executable form and execution thereof.

A d a C o m p i I e r The means for testing compliance of Ada implementations, consisting of
Validation Capability the test suite, the support programs, the ACVC user's guide and the
(ACVC) template for the validation summary report.

Ada Implementation An Ada compiler with its host computer system and its target computer
system.

Ada Joint Program The part of the certification body which provides policy and guidance for
Office (AJPO) the Ada certification system.

Ada Validation Facility The part of the certification body which carries out the procedures
(AVF) required to establish the compliance of an Ada implementation.

A d a V a Ii d a t i o n The part of the certification body that provides technical guidance for
Organization (AVO) operations of the Ada certification system.

Compliance of an Ada The ability of the implementation to pass an ACVC version.
Implementation

Computer System A functional unit, consisting of one or more computers and associated
software, that uses common storage for all or part of a program and also
for all or part of the data necessary for the execution of the program;
executes user-written or user-designated programs; performs user-
designated date manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify themselves during
execution. A computer system may be a stand-alone unit or may consist
of several inter-connected units.

Conformity Fulfilment of a product, process or service of all requirements specified.

Customer An individual or corporate entity who enters into an agreement with an
AVF which specifies the terms and conditions for AVF services (of any
kind) to be performed.

D e c I a r a t i o n o f A formal statement from a customer assuring that conformity is realized
Conformance or attainable on the Ada implementation for which validation status is

realized.

Host Computer System A computer system where Ada source programs are transformed into
executable form.

Validation Stmatry Report AVFVSR_90502/82

International Couters Limited Chapter 1 - Page 3 of 4 VNE Ads VA3.10



INTRODUCTION

Inapplicable test A test that contains one or more test objectives found to be irrelevant for
the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 AND ISO 8652-1987. Citations from the
LRM take the form "<section>. <subsection >: <paragraph>."

Operating System Software that controls the execution of progams and that provides
services such as resource allocation, scheduling, input/output control and
data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are possible.

Target Computer A computer system where the executable form of Ada programs are

System executed.

Validated Ada Compiler The compiler of a validated Ada implementation.

V a I i d a t e d A d a An Ada implementation that has been validated successfully either by
Implementation AVF testing or by registration [Pro92].

Validation The process of checking the conformity of an Ada compiler to the Ada
programming language and of issuing a certificate for this
implementation.

Withdrawn test A test found to be incorrect and not used in conformity testing. A test
may be incorrect because it has an invalid test objective, fails to meet its
test objective, or contains erroneous or illegal use of the Ada
programming language.

Validation Sumary Report AVFVSR-90502/82

International Computers Limited Chapter 1 - Page 4 of 4 VIE Ada VA3.10



IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for this list of withdrawn tests is 2
August 1991.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49OF3 A74006A C74308A B83022B
B83022H B83025B B83021D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
implementation. Reasons for a test's inapplicability may be supported by documents issued by the ISO
and the AJPO known as Ada Commentaries and commonly referenced in the format Al-ddddd. For
this implementation, the following tests were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

C241131..N (6 tests) contain lines that exceed this implementations maximum input-line length of 126
characters.

The following 159 tests have floatirg-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C241130..Y (11 tests) C357050..Y (11 tests)
C357060..Y (11 testl) C357070..Y (11 tests)

Validation Sun ry Report AVFVSR-90502/82

Internationalt Computers Limited Chapter 2 - Page 1 of 5 vmE Ads VA3.10



IMPLEMENTATION DEPENDENCIES

C357080..Y (11 tests) C358020..Z (12 tests)
C45241O..Y (11 tests) C45321O..Y (11 tests)
C45421O..Y (11 tests) C455210..Z (12 tests)
C455240..Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

The following 21 tests check for the predefined type SHORTINTEGER; for this implementation,
therc is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined integer type with a
name other than INTEGER, LONGINTEGER, or SHORTINTEGER; for this implementation,
there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORTFLOAT; for this implementation, there is no such type.

C45423A..B (2 tests), C45523A, and C45622A check that the proper exception is raised if
MACHINEOVERFLOWS is TRUE and the results of various floating-point operations lie outside
the range of the base type; for this implementation, MACHINE OVERFLOWS is FALSE.

B86001Y uses the name of a predefined fixed-point type other than type DURATION; for this
implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the range of type
DURATION; for this implementation, the ranges are the same.

CA2009C and CA2009F are not applicable because the implementation requires that generic unit
bodies be compiled together with their specifications.

CD1009C checks whether a length clause can specify a non-default size for a floating-point type; this
implementation does not support such sizes.

CD2A84A, CD2A84E, CD2A841.J (2 tests), and CD2A840 use length clauses to specify non-default
sizes for access types; this implementation does not support such sizes.

CD2B15B checks that S'1 ORAGEERROR is raised when the storage size specified for a collection
is too small to hold a single value of the designated type; this implementation allocates more space
than was specified by the length clause, as allowed by AI-00558.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code insertions; this
implementation provides no package MACHINE-CODE.

Vatidetion Summry leport AVFVS _90502/82

intermational CWpters Limited Chapter 2 - Page 2 of 5 VNE Ada VA3.10



IMPLEMENTATION DEPENDENCIES

AE2101C and EE2201D..E (2 tests) use instantiations of package SEQUENTIALTO with
unconstrained array types and record types with discriminants without defaults; these instantiations
are rejected by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10 with unconstrained
array types and record types with discriminants without defaults; these instantiations are rejected by
this compiler.

The tests listed in the following table check that USEERROR is raised if the given file operations
are not supported for the given combination of mode and access method; this implementation
supports these operations.

Test File Operation Mode File Access Method
CE2102D CREATE INFILE SEQUENTIAL_10
CE2102E CREATE OUT_FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO
CE2102F CREATE IN FILEL DIRECT-10

CE2102J CREATE OUT FILE DIRECT_10
CE2102N OPEN INFILE SEQUENTIAL_10
CE21020 RESET INFILE SEQUENTIAL_10
CE2102P OPEN OUTFILE SEQUENTIALIO
CE2102Q RESET OUTFILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 1O
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUTFILE DIRECT 10
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE INFILE TEXT_10
CE3102F RESET Any Mode TEXT_[0
CE3102G DELETE -------- TEXT_10
CE31021 CREATE OUTFILE TEXT_10
CE3102J OPEN IN FILE TEXT_10
CE,3102K OPEN OUTFILE TEXT_10

The test listed in the following table checks the given file operation for the given combination of
mode and access method; this implementation does not support this operations.

Test File Operation Mode File Access Method
- - - - - - -----------------------------------------------------------------------------------.... ... -. -----------------............

CE2111C RESET From IN-FILE to OUTFILE SEQUENTIAL_10

Validation Summery Report AFVSR_90502/82

International Computers Limited Chapter 2 - Page 3 of 5 VNE Ada VA3.10



IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and text files when multiple internal
files are associated with the same external file and one or more are open for writing; USEERROR
is raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CF-311 1B CE3111D..E CE3114B
CE-31 15A

CE2203A checks that WRITE raises USE ERROR if the capacity of an external sequential file is
exceeded; this implementation cannot restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an external direct file is
exceeded; this implementation cannot restrict file capacity.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this implementation did not report the
violations of the Ada Standard in the way expected by the original tests.

B22003A B220051 B25002A B26001A B26002A B26005A
B27005A B28003A B29001A B33301B B35101A B37106A
B37301B B37302A B38003A B38003B B38009A B38009B
B55AO1A B61001C B61001F B61001H B610011 B61001M
B61001R B61001W B67001H B83A07A B83A07B B83A07C
B83EO1C B83EO1D B83EO1E B85001D B85008D B91001A
B91002A B91002B B91002C B91002D B91002E B91002F
B91002G B91002H B910021 B91002J B91002K B91002L
B95030A B95061A B95061F B95061G B95077A B97103E
B97104G BA1001A BAlI01B BC1109A BC1109C BC1109D
BC1202A BC1202E BC1202F BC1202G BD2A25A BE2210A
BE2413A

C64103A and C95084A were graded passed by Evaluation Modification as directed by the AVO.
Because this implementation's actual values for LONGFLOAT'SAFE LARGE and
SHORTFLOAT'LAST lie within one (SHORT-FLOAT) model interval of each other, the tests'
floating-point applicability check may evaluate to TRUE and yet the subsequent expected exception
need not be raised. The AVO ruled that the implementation's behaviour should be graded as passed
because the implementation passed the integer and fixed-point checks; the following
REPORT.FAILED messages were produced after the type conversions at line 198 in C64103A and
lines 101 and 250 in C95084A failed to raise exceptions:

C64103A: "EXCEPTION NOT RAISED AFTER CALL -P2 (B)"
C95084A. "EXCEPTION NOT RAISED BEFORE CALL - T-2 (A)"

"EXCEPTION NOT RAISED AFTER CALL - T5 (B)"

Vatidetion Summary Report AVF VS 90502/82

Internatiormt Coqmpters Limited Chapter 2 - Page 4 of 5 VNE Ads VA3.10



IMPLEMENTATION DEPENDENCIES

C83030C and C86007A were graded passed by Test Modification as directed by the AVO. These tests
were modified by inserting "PRAGMA ELABORATE (REPORT);" before the package declarations
at lines 13 and 11, respectively. Without the pragma, the packages may be elaborated prior to package
REPORT's body, and thus the packages' calls to function REPORT. IDENTINT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

Vatidation Summry Report AVFVSR_90502/82

International Computers Limited Chapter 2 - Page 5 of S VwE Ads VA3.10



PROCESSING INFORMATION

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately by the information
given in the initial pages of this report, together with the following.

The memory Size of the Host/Target Configuration is 64 Mbytes.

For technical information about this Ada implementation, contact:

Christine Saunders
Interntional Computers Limited
Eskdale Road
Winnersh
Wokingham
Berks
RGl 51IT

Testing of this Ada implementation was conducted at the customer's site by a validation team from
the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained that conforms to the Ada
Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories. All tests were
processed, except those that were withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the implementation's maximum precision (item
e; see section 2.2), and those that depend on the support of a file system -- if none is supported (item
d). All tests passed, except those that are listed in sections 2.1 and 2.2 (counted in items b and f,
below).

a) Total Number of Applicable Tests 3816
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 259
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point Precision Tests 0
f) Total Number of Inapplicable Tests 259
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

Vatidution S.mmiry Report AVFVSR_90502/82

Interrationt Caputers Limited Chapter 3 - Page 1 of 2 VNE Ads VA3.10



PROCESSING INFORMATION

3.3 TEST EXECUTION

A set of magnetic tapes containing the customized test suite (see section 1.3) was taken on-site by
the validation team for processing. The contents of the set of magnetic tapes were loaded directly
onto the host computer.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

Testing was performed using command scripts provided by the customer and reviewed by the
validation team. See Appendix B for a complete listing of the processing options for this
implementation. It also indicates the default options. The options invoked explicitly for validation
testing during this test were:

LISTINGS selected for SOURCE and OBJECT. The other options as per default.

Test output, compiler and linker listings, and job logs were captured on a set of magnetic tapes and
archived at the AVF. The listings examined on-site by the validation team were also archived.

Validation Simmry Report AVFVSR_90502/82

international Computers Limited Chaptcr 3 - Page 2 of 2 VE Ads VA3.10



MACRO PARAMETERS

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The meaning and
purpose of these parameters are explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms of the maximum input-line length,
which is the value for $MAX IN LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN LEN 126 -- Value of V

$BIG_ID1 (1..V-1 = > 'A', V = > '1')

$BIGID2 (1..V-1 = > 'A', V = > '2')

$BIGID3 (1..V/2 = > 'A') & '3' & (1..V-1-V/2 = > 'A')

$BIGID4 (1..V/2 = > 'A') & '4' & (1..V-1-V/2 = > 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

SBIGREALLIT (1..V-5 = > '0') & "690.0"

$BIGSTRING1 9"9 & (1..V/2 = > 'A') & "t

$BIG.STRING2 `" & (1..V-1-Va2 => 'A') & '1' &

$BLANKS (1..V-20 =>'')

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

SMAXLENREALBASEDLITERAL
"16:" & (1..V-7 = > '0') & "F.E:"

$MAXSTRINGLITERAL "' & (1..V-2 = > 'A') & "'

Validation Slmmry Report AVFV95002/82

Interrmtionat Coguters Limited Appwendix A - Page 1 of 4 VNE Ado VA3.10



MACRO PARAMETERS

The following table lists all of the other macro parameters and their respective values.

Macro Parameter Macro Value
----------- --------------------------------------------------------------------------------------
$ACC-SIZE 32

$ALIGNMENT 4

$COUNT-LAST 131070

$DEFAULTMEM SIZE 16#FFFF-FFFF#

$DEFAULT-STOR UNIT 8

$DEFAULTSYSNAME VME_2900

SDELTADOC 2#1.0#E-63

$ENTRYADDRESS T.ENT'ADDRESS

SENTRYADDRESS1 T.ENT1'ADDRESS

SENTRY ADDRESS2 T.ENT2-'ADDRESS

$FlELDLAST 67

$FILE-TERMINATOR 1

$FIXED-NAME NO SUCH TYPE

SFLOAT NAME NO SUCH TYPE

$FORM-STRING

$FORM-STRING2 "CANNOTRESTRICTFILE CAPACITY"

$GREATER THAN DURATION 75000.0

$GREATER THANDURATION BASE LAST
2#1.0#E44

$0 REATER THAN FLOAT BASE LAST
8.OE+75

$GREATERTHAN-FLOATSAFE LARGE
16#0.FFFF-FFFF-FFFF-F0#E63

Vat idet ion Swinry Report AVFVSU_90502/82

Jntervistirona Comuters Limited Appendix A - Page 2 of 4. VNE Ads VA3.10



MACRO PARAMETERS

SOREATER THAN SHORT FLOATSAFELARGE
16#0.FFFFFC#E63

SHIGH-PRIORITY 63

$ILLEGAL EXTERNAL FILE NAME1
<NOT-A-VME-FILENAME>

$ILLEGAL EXTERNALFILENAME2
[ANOTHER-BADNVMF-FILENAME)

SINAPPROPRIATE LINE-LENGTH 4096

$INAPPROPRIATE PAGELENGTH

-1

$INCLUDE-PRAGMAl1 PRAGMA INCLUDE (-A28o06D1.TsT")

$INCLUDE-PRAGMA2 PRAGMA INCLUDE (-B28006D1.TsT")

SINTEGER-FIRST -2147483648

$INTEGER-LAST 2147483647

SINTEGER-LAST-PLUS-l 2147483648

$INTERFACELANGUAGE S3

$LESS THAN DURATION -75000.0

SLESS THAN DURATION BASEFIRST
-2#1 .0#E45

SLINE-ERMINATOR,

SLOW-PRIORITY 0

$MACHINECODESTATEMENT NULL;

SMACHINE CODE TYPE NO-SUCH-TYPE

$MANTISSA-DOC 6-3

SMAX DIGIT 18

SMAXJINT 9223372036854775807

Vatidation Swwry Report AVF-V1Rt90502/82

internatiansi C.aq~ters Limited Appenidix A - Page 3 of 4 WNE Ad@ VA3.1O



MACRO PARAMETERS

$MAXINTPLUS 1 9223372036854775808

SMININT -9223372036854775808

$NAME NO SUCH TYPEAVAILABLE

$NAME-LIST VME-2900

$NAMESPECIFICATIONi :ADAVAL.X2120A(1,*,l)

$NAME-SPECIFICATION2 :ADAVAL.X2120B(I,,¶1)

SNAMESPECIFICATION3 :ADAVAL.X3119A(1,*,1)

SNEGBASEDINT 16#FFFF-FFFF-FFFF-FFFE#

SNEWMEM SIZE 16#FFFF-FFFF-#

$NEWSTORUNIT 8

SNEWSYSNAME VME_2900

$PAGETERMINATOR ASCII.FF

$RECORD-DEFINITION NEW INTEGER;

$RECORD-NAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

$TASK-STORAGE SIZE 8192

$TICK 0.000002

SVARIABLEADDRESS VAR'ADDRESS

$VARIABLE-ADD RESSi VARV ADDRESS

$VARIABLE-ADDRESS2 VAR2'ADDRESS

$YOUR-PRAGMA INTERFACE-SPELLING

Validation Summry Report AVF-vsa_905W&2/

Internatianul Compters Limited Appendix A - Page 4 of 4. vE Ada VA3.1O



COMPILATION SYSTEM OPTIONS

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report.

Vatidation Smary Report AVF VSlU90502/82

International Comqpters Limited Appendix B - Page I of 2 wvE Ack vA3.10



COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to linker documentation
and not to this report.

Vatidation Summary Report AVF_VSR_90502/82

International Computers Limited Appendix B - Page 2 of 2 WE Ada VA3.10



THIS

PAGE

IS

MISSING

IN

ORIGINAL

DOCUMENT



VME Ada Compilation System User uulce

D.3 kDA_COMPILE
ADA

Summary

The ADA COMPILE command is used to compile one or more Ada
compilation units.

ADACOMPILE (
@literal@ INPUT,
@literal@ SUBLIBRARY :="",
@literal SAVELIST :=$o,
@superliteral@ LISTINGS :-SOURCE,
@literal@ CONFIG
@literal@ TEST
@boolean@ PROGRESS :=FALSE,
@int@ UNIT ID :--I,
@boolean@ SOURCESAVE :-TRUE,
@literal@ SUPPRESS CHECKS :="NO",
@literal@ OPTIMISE :="NO",
@boolean@ DEBUG :-FALSE,
@response@ RESPONSE :-RESULT)

Parameter details

Keyword Use, options and effect Default

INPUT Name of file (in any VME format) Mandatory
containing the input to the compiler.
The file may hold one or more
compilation units.

Must not be *STDAD.

SUBLIBRARY Specifies the current sublibrary and Null
thereby also the current library which
consists of the current sublibrary and
its ancestor sublibraries (see Section
3.1). The name may be up to 16
characters.

If the parameter is defaulted the
sublibrary designated by the JSV
ICL8ADASUBLIBRARY 4_8 used as the
current sublibrary.

SAVELIST Name of permanent VME file to hold the Null
compilation listing. This must not be
greater than 38 characters.

Alternatively the name of a library
followed by a full stop may be
specified. In this case the filename
is the terminal part of the input file
name and the complete name must not be
greater than 38 characters.

Page D-4 SCL Command Definitions



VME Ada Compilation System User Guiie

If absent, a temporary file is
created, the name of which is the
source file terminal name prefixed by
"ICL8ADALF". If the length of the
source name is greater than 23
characters then, prior to the addition
of the prefix, it will be truncated
with leading characters removed as
necessary.

LISTINGS Listings required: SOURCE
SOURCE, OBJECT, XREF.

A value of "NONE" will suppress the
compilation listing.

CONFIG Name of VME file holding configuration Null
information (see 4.4).

If absent a standard uonfiguration
file is used.

TEST Literal controlling production of Null
diagnostic listings and conditional
compilation. This parameter should
only be used at the request of the
Software Products Support Unit.

PROGRESS Boolean controlling the issue of progress FALSE
messages.

A value of TRUE will cause messages to be
generated on the user's terminal as the
passes are entered.

UNITID Integer controlling the unit number of -1
the compiled program unit. (See
2.4.2.)

If the compilation contains more than
one program unit, UNITID applies only
to the first.

Of use when incorporating non-Ada
Code.

The default value of -1 causes the
compiler to select a suitable unit
number.

SOURCESAVE A value of TRUE will cause the source TRUE
text of the compilation unit to be
stored in the program library. If the
source text file has several
compilation units the source text for
each compilation unit will be stored.

The source is not stored if there is
an error in the compilation unit.



VME Ada Compilation System User Guiude -

The source texts stored in the library
can be extracted (or inspected) using
the Program Library Utility.

A value of FALSE means that the source
is not stored in the library.

SUPPRESS_ A value of "YES" specifies that no "NO"
CHECKS checking should be performed at run

time.

Any other value will cause code to be
generated to do the checking described
in the LRM.

OPTIMISE A value of "YES" will cause various "NO"
optimisations to become active (see
4.7).

DEBUG A value of TRUE will cause information FALSE
to be generated for the debugger.

A value of FALSE specifies that no
such information should be generated.

RESPONSE Specifies the name of a JSV which will RESULT
contain the result of the command
call.

The value returned will be one of:-

0 Success
233001 An unhandled exception has

occurred
233002 An abnormal termination

condition has been detected
233004 ADA COMPILE ABANDONED
233009 ERRORS DETECTED IN SOURCE

TEXT

Page D-6 SCL Command Definitions



D. 4 ADA LINK

Summary

ADALINK is invoked to produce an executable program from the
current program library.

ADALINK (
@literal@ MAINUNIT,
@literal@ SUBLIBRARY
@literal@ COLLECTLIB,
@literal@ TAG,
@literal@ SAVELIST
@boolean@ DEBUG :=FALSE,
@literal@ DETAILS
@literal@ EXTRACOMMANDS
@integer@ TEST :=0,
@response@ RESPONSE :=RESULT

Parameter details

Keyword Useoptions and effect Default

MAINUNIT Specifies the main program which must Mandatory
be a library unit of the current
library, but not necessarily of the
current sublibrary.

SUBLIBRARY Specifies the current sublibrary and Null
thereby also the current library which
consists of the current sublibrary and
its ancestor sublibraries (see Section
3.1). The name may be up to 16
characters.

If the parameter is defaulted the
sublibrary designated by the JSV
ICL8ADASUBLIBRARY is used as the
current sublibrary.

COLLECTLIB Specifies the name of the OMF library Mandatory
in which the Ada program will be
stored. The filename used will be:

<main program name>MOD

with an entry name of:

<main program name>.

SCL Command Definitions Page D-7



Vrm Jiad L7oui•p2L. wy.L 1J•.

TAG This parameter is used to form the Main
names of both the OMF library to be program
created to hold the Ada modules name
required for the name
(ICL8ADAOMF<tag>) and the Collector's
command file (ICL8ADAOPT<tag>). After
successful collection these are
deleted. They remain only if the
collection fails or is not attempted.

SAVELIST Specifies the name of the file to hold Null
the information produced by the linker
(see section 6.2).

If absent and provided the DETAILS or
TEST parameter is used a file
"ICL8ADALINKLOG" will be used and
automatically listed, and deleted.

Output from the Collector is sent to a
separate workfile which is deleted
unless a failure occurs.

DEBUG A value of TRUE will cause information FALSE
to be generated for the debugger.

A value of FALSE specifies that no
such information should be generated.

DETAILS Specifies the amount of information "N"
the linker will output on the optional
log file.

By default only error messages and a
short summary are output. With
DETAILS - "Y", "y" or any string
starting with these characters more
information from the linking process
is output.

A more precise description of the
output is found in Section 6.2.

EXTRACOMMANDS Specifies a file containing minor Null
commands which will be added to the
command file supplied to the
Collector.

TEST This parameter should only be used as 0
advised by the Software Products
Support Unit.

Page D-8 SCL Command Definitions



VEAa Compi Z -YUA V.

RESPONSE Specifies the name of a JSV which will RESULT
contain the result of the command
call.

The value returned will be one of:-

0 Success
233001 An unhandled exception has

occurred
233002 An abnormal termination

condition has been detected
233005 ADA LINK ABANDONED
233008 COLLECTION NOT ATTEMPTED
Other Failure in VME Collector

SCL Command Definitions Page D-9



APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas.
to certain machine-dependent conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The implementation-dependent characteristics
of this Ada implementation, as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to compiler documentation and not to
this report. Implementation-specific portions of the package STANDARD are presented on the
following three pages.

Vaticetion Summry Report AVFVs._90502/82

Internstionat Comnters Limited Appendix C - Page 1 of 2 VmE Ado VA3.10



vmE Aaa L~ompi.LaL n yst~

APPENDIX F Implementation Dependent Characteristics

The following sections describe the implementation
dependent characteristics of the compiler.

Sections F2 onwards address the topics given in the
Appendix F of the Ada Language Reference Manual (ANSI/
MIL-STD-1815A), except for topic (5), which is not
relevant since implementation- generated names for
implementation-dependent components are supported by this
compiler.

F.1 Predefined Types

This section describes the implementation-dependent
predefined types declared in the predefined package
STANDARD (cf. [LRM] Annex C), and the relevant attributes
of these types.

Integer Types

Two predefined integer types are implemented, INTEGER and
LONGINTEGER.

They have the following attributes:

INTEGER'FIRST - -2 147 483 648
INTEGER'LAST 2 147 483 647
INTEGER'SIZE 3 32

LONG INTEGER'FIRST = -16:8000 0000 0000 0000:
LONG INTEGER'LAST = 16:7FFF FFFF FFFF FFFF:
LONGINTEGER'SIZE = 64

Floating Point Types

Three predefined floating point types are supported,
SHORT-FLOAT, FLOAT and LONGFLOAT.

They have the following attributes:

SHORT FLOAT'DIGITS = 6
SHORT FLOAT'FIRST -16:0.FFFF FF:E63
SHORT FLOAT'LAST 16:0.FFFFFF:E63
SHORT FLOAT'SIZE 32
SHORT FLOAT'SAFE SMALL 2:1.0:E-253
SHORT FLOAT'SAFELARGE 16:0.FFFFF8:E63
SHORT-FLOAT'SAFE-EMAX 252
SHORTFLOAT'MACHYNE RADIX W 16
SHORT FLOAT'MACHINE MANTISSA - 6
SHORT FLOAT'MACHINE EMAX W 63
SHORT FLOAT'MACHINE EMIN - -64
SHORT FLOAT'MACHINE ROUNDS - FALSE
SHORTFLOAT'MACHINEOVERFLOWS = FALSE

Implementation Dependent Characteristics Page F-i



VME d L~p~ y -~-Wz-

FLOAT'DIGITS =15

FLOAT'FIRST =-16:O.FFFFFFFF FFFF FF:E63
FLOAT 'LAST =16:0. FFF-FFEFF_-FFFF_-FF :E63
FLOAT'SIZE =64

FLOAT'SAFE SMALL = 2:1.0:E-253
FLOAT'SAFE LARGE =16:O.FFFFFFFFFFFFEO:E63

FLOAT'SAFE-EMAX - 252
FLOAT'MACHINERADIX -16

FLOAT'MACHINE MANTISSA -14

FLOAT'MACHINE-EMAX =63

FLOAT'MACHINE-EMIN =-64

FLOAT'MACHINE ROUNDS -FALSE

FLOAT'MACHINEOVERFLOWS -FALSE

LONG FLOAT'DIGITS =18

LONGFLOAT' FIRST-
-16:O.FFFFFFFFFFFFFFFFFFFFFFFFFFFF:E63

LONGFLOAT' LAST-
16:0.*FFFFFFFFFEFF_-FFFFFFFFFFFFFFFF :E6 3

LONG FLOAT'SIZE - 128
LONG FLOAT'SAFESMALL W 2:1.0:E-253
LONGFLOAT 'SAFELARGE=

16:0.PFFFFFFFFFFFFFFF8_-0000_0000_0000:E63
LONG FLOAT'SAFEEMAX = 252
LONG FLOAT'MACHINE RADIX =16

LONG7FLOAT'MACHINE MANTISSA -28

LONG FLOAT'M4ACHINE EMAX =63

LONG FLOAT'MACHINE EMIN -64
LONG FLOAT'MACHINE ROUNDS - FALSE
LONGFLOAT'MACHINEOVERFLOWS = FALSE

Fixed Point Types

Two kinds of anonymous fixed point types are supported;
FIXED and LONGFIXED occupying 32 and 64 bits
respectively with the characteristics:

FIXED'FIRST -- 2 147 483_648.0
FIXED'LAST 2 2147 483_647.0
FIXED'DELTA 1.
FIXED'SIZE -32

FIXED'MACHINEROUNDS - FALSE
FIXED'I4ACHINEOVERFLOWS - TRUE

LONG FIXED'FIRST = -16:8000 0000_0000_0000.0:
LONGFIXED 'LAST W 16: 7FF?_FFFF FPFF_ýFFFF.0:
LONG FIXED'DELTA - 1.0
LONG_-FIXED'SIZE -64

LONG_-FIXED'MACHINE ROUNDS - FALSE
LONGFIXED'MACBINEOVERFLOWS - TRUE

Page F-2 Implementation Dependent Characteristics



V1J A 1.&AW z 1UJi.i.. -

The Ty!e DURATION

The predefined fixed point type DURATION is supported and
has the following attributes:

DURATION'FIRST M -2:1.0:E44
DURATION'LAST = 16:OFFF FFFFFFFF.FFFFE:
DURATION'DELTA = 2.OE-6
DURATION'SMALL = 2:1.0:E-19
DURATION'SIZE = 64
DURATION'MACHINE ROUNDS - FALSE
DURATION'MACHINEOVERFLOWS = TRUE

DURATION'LARGE = DURATION'LAST
DURATION'FORE = 15
DURATION'AFT = 6
DURATION'MANTISSA = 63
DURATION'SAFELARGE = DURATION'LARGE
DURATION•SAFE SMALL = DURATION'SMALL

F.2 Pragmas

F.2.1 Language Defined Pragmas

This section lists all language defined pragmas and any
restrictions on their use and effect as compared to the
explanation given in the [LRM]. Pragmas which are
innapropriate to the compiler are described as "Not
applicable".

Pragma CONTROLLED

Not applicable.

Pragma ELABORATE

As in the [LRM].

Pragma INLINE

Pragma INLINE causes inline expansion except in the
following cases:

a) The whole body of the subprogram for which the inline
expansion is wanted has not been seen. This ensures
that recursive procedures cannot be inline expanded.

b) The subrrogram call appears in an expression on which
conformailce check may be applied, i.e. in a formal
specification, in a discriminant part, or in a formal
part of an entry declaration or accept statement. See
the example below:

Implementation Dependent Characteristics Page F-3



V... -1 . nra.aU .A w-.-in

1 package INLINETEST is
2
3 function ONE return INTEGER;
4 pragma inline (ONE);
5
6 end INLINETEST;
7
8 package body INLINETEST is
9

10 function ONE return INTEGER is
11 begin
12 return 1;
13 end ONE;
14
15 procedure DEFPARMS (PARM : INTEGER := ONE) is

* 46W-0: Warning : Inline expansion of ONE not
achieved here

16 begin
17 null
18 end DEFPARMS;
19
20 end INLINETEST;
21

c) The subprogram is an instantiation of the predefined
generic subprograms UNCHECKEDCONVERSION or UNCHECKED_
DEALLOCATION.

d) The subprogram is declared in a generic unit. The
body of that generic unit is compiled as a secondary
unit in the same compilation as a unit containing a
call to (an instance of) the subprogram. See the
example below:

1 -- A compilation with three units:
2 generic
3 package G is
4 procedure P;
5 pragma inline(P);
6 end G;
7
8 package body G is
9 procedure P is
10 begin
11 null;
12 end P;
13 end G;
14
15 with G;
16 procedure EXAMPLE is
17 package N is new G;
18 begin
19 N.P;

* 43W-0: Warning: Inline expansion of P not
achieved here

20 end EXAMPLE;

Page F-4 Implementation Dependent Characteristics



VM~ Aaa UM omla.U11 O7..a4.sý .

e) The subprogram is declared by a renaming declaration.

f) The subprogram is passed as a generic actual
parameter.

A warning is given if inline expansion is not achieved.

Pragma INTERFACE

Supported for S3 (see section 8.3).

Pragna LIST

As in the [LRM].

Pragma MzMOR SIZE

Not supported, cf. SYSTEMNAME

Pragma OPTIMIZE

Not applicable.

Pragna PACK

In the absence of any other representation clauses on the
type, the effect of pragma PACK on a composite type will
be as follows. Note that biased representation is not
used.

For arrays

a) BOOLEAN and other bit-sized elements will be packed
one per bit.

b) other integer, fixed and enumeration types will be
packed as tightly as possible (using their minimum
sizes) with the proviso that no byte contains more
than one element.

c) floating point, access and task types occupy their
predefined sizes

d) array and record elements occupy their already
calculated sizes, ie packed if requested on the
component type, or obeying any other size
specifications on the component type.

For records

a) inter-component gaps will be less than a byte.

b) BOOLEAN and other bit-sized components will be
packed one per bit.

Implementation Dependent Characteristics Page F-5



V74KActa CoMp-1±atC1 Wyte User7 %u.LLU.W

c) other integer, fixed and enumeration types will be
packed as tightly as possible (using their minimum
sizes) with the proviso that no byte contains more
than one component.

d) floating-point, access and task types occupy their
pre-defined sizes.

e) array and record elements occupy their already
calculated sizes, ie packed if requested on the
component type, or obeying any other size
specifications on the component type.

If the user wants any tighter packing, this should be
done by the use of other representation clauses.

If the record also has a rep clause, fields not
mentioned in the rep clause will be allocated
according to the above rules.

See also section F.5.6.

Pragna PAGE

As in the [LRM].

Pragma PRIORITY

Not applicable.

Pragna SHARED

Not applicable.

Pragma STORAGE UNIT

Has no effect.

Pragna SUPPRESS

The implementation only supports the following form of
the pragma:

progma SUPPRESS (identifier);

where identifier is as defined in [LRM] section 11.7.
i.e., it is not possible to restrict the omission of a
certain check to a specified name.

Pragua SYSTEM NAME

Not supported. The only meaningful SYSTEMNAME is
VME_2900 when using the VME Ada Compiler.

Page F-6 Implementation Dependent Characteristics



VME Ada Compiat-ion sys tem-usex-u -

F.2.2 Implementation Defined Praqmas

The following implementation defined pragmas are
supported:

Pragma INTERFACE-SPELLING

The permitted syntax is as follows:

pragma INTERFACESPELLING (name, "S3-name");

This is used in conjunction with pragma INTERFACE(S3) and
indicates that no body exists for the Ada subprogram name
and an S3 procedure S3-name will be expected by the
linker.

The use of pragma INTERFACE SPELLING will also ensure
that the S3 name is a valid S3 external name (i.e. less
than or equal to 32 alphanumeric characters, of which the
first is alphabetic and all are upper case).

Pragma MAIN

The permitted syntax is as follows:

pragma MAIN (name);

Indicates to the System Linker that the library
subprogram name is a main program. (see also section 6.3)

Pragna COM3OO

The permitted syntax is as follows:

pragma COMMON (name, omf-name);

Indicates to the System Linker that the library unit name
is to be a "visible" name in the OMF module omf-name, and
can therefore be referenced from any program forming part
of the "system". (see also section 6.3)

Pragna BASE

The permitted syntax is as follows:

pragma BASE (name);

This is used to extend a system definition, and name is
the package containing the system definition or extended
system definition to be extended. (see also section 6.3)

Implementation Dependent Characteristics Page F-7



VME Ada Compilation System User Guide

F.3 Attributes

The following implementation defined attributes are
provided:

P'DESCRIPTOR for a prefix P that denotes an object:

Yields the VME descriptor to the object.
The value of this attribute is of the type
DESCRIPTOR defincd in the package SYSTEM.

The type/bound word of the descriptor has
the following format:

for INTEGER, FIXED, SHORTFLOAT, TASK,
ACCESS, ENUMERATION (including BOOLEAN and
CHARACTER): type = word; bound = 1

for LONGINTEGER, LONGFIXED, FLOAT: type
- long word; bound = 1

for LONG FLOAT: type = long long word;
bound = 1

for records: type = string (not byte-
vector); bound = size of record in bytes

for unpacked arrays of recozds: type =
string; bound = record size in bytes *
total number of elements

for unpacked arrays of unconstrained
records: type - string; bound - (record
size in bytes + size of red tape in bytes)
* total number of elements

for other unpacked arrays: as above
depending on element type; bound - total
number of elements

for packed arrays of BOOLEAN: type = bit;
bound = total number of elements

for packed arrays of CHARACTER (e.g.
STRING): type - byte; bound = total number
of elements.

P'FULLADDRESS for a prefix P that denotes an object:

This attribute is the same as the
predefined attribute 'ADDRESS except for
objects (not parameters) which are
unconstrained discriminated records, in
which case this attribute yields the
address of the first storage unit of the
red tape area which precedes the actual
record data.

Page F-8 Implementation Dependent Characteristics



VME Ada Compilation System User Guide

P'FULLSIZE for a prefix P that denotes an object:

This attribute is the same as the
predefined attribute 'SIZE except for
objects which are unconstrained
discriminated records, in which case this
attribute yields the total size of the
record including the red tape area which
precedes the actual record data.

for a prefix P that denotes a type:

This attribute yields the same value as the
attribute when applied to an object of that
type.

P'EBCDICIMAGE for a prefix P that denotes a discrete
type or subtype:

The attribute is the same as the predefined
attribute 'IMAGE except that the result
type is the type STRING declared in package
EBCDIC.

P'EBCDICVALUE for a prefix P that denotes a discrete
type or subtype:

The attribute is the same as the predefined
attribute 'VALUE except that the actual
parameter must be a value of the type
STRING declared in package EBCDIC.

F.4 Packages in Root Sublibrary

F.4.1 Package SYSTEM

Package SYSTEM is

type ADDRESS is new INTEGER;
subtype DESCRIPTOR is LONGINTEGER;
type RESPONSE is new INTEGER;
subtype PRIORITY is INTEGER range 0..63;
type NAME is (VME_2900);
SYSTEM NAME: constant NAME := VME_2900;
STORAGE UNIT: constant := 8;
MEMORYSIZE: constant := 2:1:E32 - 1;
MIN INT: constant := -16:8000 0000 0000_0000:;
MAX INT: constant := 16:7FFF FFFFFFFF FFFF:;
MAX DIGITS: constant := 18;
MAX-MANTISSA: constant := 63;

FINEDELTA: constant := 2:1.0:E-63;

TICK: constant := 0.000_002;
type INTERFACELANGUAGE is (S3);

end SYSTEM;

Implementation Dependent Characteristics Page F-9



VME Ada Compilation System User Guide

The definitions of ADDRESS and DESCRIPTOR are liable to
change in future releases and for forward compatibility
should be treated as if they were private types.

F.4.2 Package EBCDIC

A following package for the purpose of manipulating
textual data held in EBCDIC format is provided:

package EBCDIC is

type CHARACTER is
( NUL, SOB, STX, ETX, E04, HT, E06, DEL,

E08, E09, EOA, VT, FF, CR, SO, SI,
DLE, DCl, DC2, DC3, E14, NL, BS, E17,
CAN, EM, ElA, EiB, FS, GS, RS, US,
MS, MNL, VP, E23, E24, LF, ETB, ESC,
E28, E29, E2A, E2B, E2C, ENQ, ACK, BEL,
E30, E31, SYN, E33, E34, E35, E36, EOT,
E38, E39, E3A, E3B, DC4, NAK, E3E, SUB,
1', E41, E42, E43, E44, E45, E46, E47,
E48, E49, [, , 1<1, (1, 0, ,
"&', E51, E52, E53, E54, E55, E56, E57,
E58, E59, 1)1, I$I, 1*', ")', ^,
'-',"/, E62, E63, E64, E65, E66, E67,
E68, E69, 'I', , , , >, ">, ?',
E70, E71, E72, E73, E74, E75, E76, E77,E 7 8 , 1 % , : 1 , I f , @ , , , , I = 1 I " ,
E80 , 'a ', "b ', 'c ', d , 'e , I ,, g '
'h', 'i', E8A, E8B, E8C, E8D, E8E, E8F,
E90, j 'k', '1', 'im', In' 'o', "p',
'q', 'r', E9A, E9B, E9C, E9D, E9E, E9F,EA 0 , ' - , s , It , u , IV , IW , 'x ,
'y', 'z', EAA, BAB, EAC, EAD, EAE, EAF,
EBO, EB1, EB2, EB3, EB4, EB5, EB6, EB7,
EB8, EB9, EBA, EBB, EBC, EBD, EBE, EBF,
"{' 'A', 'B', 'C', 'D', 'B', 'F', 'G',
'H', 'I', ECA, ECB, ECC, ECD, ECE, ECF,
"}', 'J' 'K', 'L', 'M', 'N', '0', 'P' 1
"Q', "R', EDA, EDB, EDC, EDD, EDE, EDF,
'\i, EEl, 'S', 'T', 'U', 'V', IW', 'X',
'Y', Z', EBEA, EEB, EEC, EED, BEE, EEF,
'0', '1, Id'%, '3', `4 , 1 1 6 , 1
'8', '9', EFA, EFB, EFC, EFD, EFE, EFF );

L Bracket : constant CHARACTER := "[';
Exclam : constant CHARACTER := 'I';
Ampersand : constant CHARACTER : '&';
R Bracket : constant CHARACTER := ']';
Dollar : constant CHARACTER := '$';
Semicolon : constant CHARACTER : ';';
Circumflex : constant CHARACTER := "';
Bar : constant CHARACTER := 'I';
Percent : constant CHARACTER := "%';
Underline : constant CHARACTER := ';
Query : constant CHARACTER := '?';
Grave : constant CHARACTER := '';
Colon : constant CHARACTER := '.';
Pound : constant CHARACTER := 'f';

Page F-10 Implementation Dependent Characteristics



'VME Ada Compilation System User Guide

AtSign : constant CHARACTER :=
Quotation : constant CHARACTER := "';
Tilde : constant CHARACTER := '-';

L Brace : constant CHARACTER := '{';
R-Brace : constant CHARACTER }';
BackSlash : constant CHARACTER _

FE0 : constant CHARACTER = BS; Back Space
FEl : constant CHARACTER HT; -- Horizontal

Tabulate
FE2 : constant CHARACTER LF; -- Line Feed
FE3 : constant CHARACTER VT; -- Vertical Tabulate
FE4 : constant CHARACTER FF; -- Form Feed
FE5 : constant CHARACTER CR; -- Carriage Return

ISi : constant CHARACTER US; -- Unit Separator;
IS2 : constant CHARACTER RS; -- Record Separator
IS3 : constant CHARACTER GS; -- Group Separator
IS4 : constant CHARACTER FS; -- File Separator

TC1 : constant CHARACTER SOH; -- Start of Heading
TC2 : constant CHARACTER := STX; -- Start of Text
TC3 : constant CHARACTER := ETX; -- End of Text
TC4 : constant CHARACTER : rOT; -- End of

Transmission
TCS : constant CHARACTER := ENQ; -- ENQuiry
TC6 : constant CHARACTER := ACK; -- Acknowledge
TC7 : constant CHARACTER := DLE; -- Data Link Escape
TC8 : constant CHARACTER := NAK; -- Negative

Acknowledge
TC10 : constant CHARACTER := ETB; -- End of

Transmission Block

type STRING is array(POSITIVE range <>) of CHARACTER;

pragma PACK(STRING);

-- function "=" (Left, Right : STRING) return Boolean;
-- function "I-" (Left, Right : STRING) return Boolean;
-- function "<" (Left, Right : STRING) return Boolean;
-- function "<-" (Left, Right : STRING) return Boolean;
-- function ">" (Left, Right : STRING) return Boolean;
-- function ">=" (Left, Right : STRING) return Boolean;

-- function "&"(Left : STRING;
-- Right : STRING) return STRING;

-- function "&"(Left : CHARACTER;
-- Right : STRING) return STRING;

-- function "&"(Left : STRING;
-- Right : CHARACTER) return STRING;

-- function "&"(Left : CHARACTER;
-- Right : CHARACTER) return STRING;

end EBCDIC;

Implementation Dependent Characteristics Page F-I1



VME Ada Compilation systemUser muTe

F.4.3 WME Interface Package

The VME IF package is provided to permit Ada programs to
read and write Job Space Variables, to read the real
time clock and to determine the full hierarchic name of
local names.

This package uses VME Compiler Target Machine (CTM)
procedures and while it is intended that the following
descriptions should be sufficient for most purposes
the CTM Manual [CTM] may be consulted for further
details.

F.4.3.1 The Ada Specification of the Package

package VMEIF is

type VMENUMERICTIME is
record

YEAR,
MONTH,
DAY,
HOUR,
MINUTE,
SECOND,
MSEC 10 : INTEGER;

end record;

-- MSEC_10 is in 100ths of a second.

subtype VMERESULT is INTEGER;

-- zero - success.
-- 30461 - the JSV does not exist.
-- -9105 - value too small, value truncated.
-- -9110 - the JSV was created (so will not be visible
-- on return from the Ada program).
-- -9112 - string too short, name truncated.

subtype VME_TIME is LONGINTEGER;

procedure VMENUMTIM NOW (TIME : out VMENUMERICTIME;
RES : out VMERESULT);

-- TIME - the current date and time.
-- RES - always zero.

procedure VMECPUTIME (TIME : out VMEBTIME;
RES : out VMERESULT);

-- TIME - the process time in microseconds
-- RES - always zero.

procedure VMEWAITTIME (TIME : in INTEGER;
RES : out VMERESULT);

-- TIME - the delay time in milliseconds (N.B. the delay
-- will be at least TIME).
-- RES - zero, indicating that the delay has occurred.

Page F-12 Implementation Dependent Characteristics



VME Ada Compilation System User Guide

procedure VME GIVENAME (LOCAL : in STRING;
FULL : out STRING;
LEN : out INTEGER;
RES : out VMERESULT);

-- LOCAL - specifies the LOCAL name.
-- FULL - the corresponding full hierarchic name.
-- LEN - the length of the name in the string FULL.
-- RES - zero or -9112.

procedure VMEREADSTRING (NAME : in STRING;
VALUE : out STRING;
LEN : out INTEGER;
RES : out VMERESULT);

-- NAME - name of JSV.
-- VALUE - contents of JSV in upper case.
-- LEN - the length of the contents in string VALUE.
-- RES - zero, -9105 or 30461.

procedure VMEREADBOOL (NAME : in STRING;
VALUE : out BOOLEAN;
RES : out VMERESULT);

-- NAME - name of JSV.
-- VALUE - value of JSV.
-- RES - zero or 30461.

procedure VMEREADINT (NAME : in STRING;
VALUE : out LONG INTEGER;
RES : out VMERESULT);

-- NAME - name of JSV.
-- VALUE - value of JSV.
-- RES - zero or 30461.

procedure VMEWRITESTRING (NAME : in STRING;
VALUE : in STRING;
RES : out VMERESULT);

-- NAME - name of JSV.
-- VALUE - value to be written to JSV.
-- RES - zero or -9110.

procedure VMEWRITEBOOL (NAME : in STRING;
VALUE : in BOOLEAN;
RES : out VME RESULT);

-- NAME - name of JSV.
-- VALUE - value to be written to JSV.
-- RES - zero or -9110.

Implementation Dependent Characteristics Page F-13



VME Ada Compilation System User Guide

procedure VME WRITEINT (NAME : in STRING;
VALUE : in LONG INTEGER;
RES : out VMERESULT);

-- NAME - name of JSV.
-- VALUE - value to be written to JSV.
-- RES - zero or -9110.

procedure VMEREAD STRINGKEEPCASE
(NAME : in STRING;
VALUE : out STRING;
LEN : out INTEGER;
RES : out VME_RESULT);

-- NAME - name of JSV.
-- VALUE - contents of JSV.
-- LEN - the length of the contents in string VALUE.
-- RES - zero, -9105 or 30461.

end VMEIF;

F.4.3.2 Using The Interface Procedures

All of these procedures return a VME RESPONSE value (in
parameter RES) which should be tested for zero or any of
the specific values indicated above; other positive
values indicate that a VME error has occurred; other
negative values indicate that a VME warning has occurred.

JSV Procedures

Job Space Variables can be used to pass information into
an Ada program and to return results. Since an Ada
program is bracketed by a BEGIN and END it is important
to realise that any output JSV's need to be declared in
the outer block prior to entering the Ada program.

The JSV procedures use either CTMJSREAD or CTM JS WRITE
[CTM] and automatically convert from EBCDIC to ASCII and
vice versa.

Real Time Clock Procedures

The value returned by VME CPUTIME has an undefined base,
but it is constant for all calls within one job, thus the
difference between successive calls should be taken.

The real time clock procedures use the CTM DATE TIME,
CTMPROCTIME and CTMWAITTIME procedures [CTM].

Give Name Procedure

This uses the CTMGIVENAME procedure [CTM].

Page F-14 Implementation Dependent Characteristics



VME Ada Compilation System User Gula

F.5 Representation Clauses

F.5.1 SIZE specifications

In general, a size specification is taken to be the
number of bits to be allocated to objects of the type,
not an upper bound.

Integer, enumeration and fixed Types

The minimum size clause allowed for a discrete or fixed
type is the smallest number of bits required to hold the
range of values. If the range has no negative values then
the size allowed is the smallest number of bits to hold
the unsigned range. Biased representations are not used.

The maximum size clause allowed for an integer or fixed
type is 64.

The maximum size clause allowed for an enumeration type
is 32.

Floating Point Types

The only size clauses allowed are the sizes of the pre-
defined types, ie 32, 64, or 128.

Array Types

For a constrained array, the given size must be at least
as large as the (statically determinable) size that would
normally be used for the array; the size clause will not
cause packing.

For an unconstrained array the size must be sufficient
for the largest values of all the index subtypes (again,
these must be static).

Record Types

A size clause for a record does not cause packing.

The given size must be at least as large as the size that
would normally be allocated for the record.

Access Types

The only size clause allowed is 32.

Task Types

The only size clause allowed is 32.

Implementation Dependent Characteristics Page F-15



F.5.2 STORAGE SIZE specifications

Access Types

The minimum collection size allowed is 12, the number of
storage units required to hold necessary housekeeping.
The maximum collection size allowed is the maximum size
of an area allowed by VME. The value is rounded up to a
multiple of 4.

This sets the collection size, it includes space for
housekeeping. The value should be stored in, or derived
from, the collection housekeeping to support the
attribute of the same name.

For an access type that has not been given a collection
size, 'STORAGE SIZE returns -1. This value is accepted as
a collection size specification and indicates that a
dynamic sized collection is to be used.

Sized collections are allocated on the auxiliary stack.

Task Types

A storage size of a task includes the space for the
control stack and the space for the auxiliary stack, but
doesn't include the that for any dependent tasks.

The algorithm for dividing the space between the two
stacks has not been decided yet. The maximum and minimum
storage sizes allowed will be affected by this decision.
The maximum control stack size is 255 kbytes, the maximum
auxiliary stack size is the maximum VME area size. The
size will be rounded up to a multiple of 8.

This storage size value can be interrogated, and so
should be saved somewhere or derived. There should be a
default value and some means of setting it.

F.5.3 SMALL specifications

Any positive real value is allowed for SMALL.

If SIZE and SMALL specifications are inconsistent, ie
SIZE too small, then one of them is rejected.

F.5.4 Enumeration representation clauses

The range of enumeration representation codes allowed is:

-2**31 .. 2**31-1

Non-contiguous enumeration representation codes are
allowed.

If size and enumeration representation clauses are
inconsistent, ie size too small, then one of them is
rejected.

Page F-16 Implementation Dependent Characteristics



VME Aaaa ompliation System UMarVaL

F.5.5 Record representation clauses

Composite types must start on a word boundary.

No component may be forced to start on a non-byte
boundary if to do so means it would occupy all or part of
more than 8 storage units, ie bytes.
e.g. type E is (El, E2, E3);

for E'SIZE use 4;
type R is

record
A : E;
B : LONG INTEGER;

end record;

for R use
record

A at 0 range 0 .. 3;
B at 0 range 4 .. 67;

end record;

This would be rejected as B would occupy parts of 9
storage units and start on a non-byte boundary.

The only values allowed for the alignment clause are 1, 2
and 4. If a component for which a component clause has
been given has subcomponents with alignment, the
"POSITION part of the clause must agree with the highest
subcomponent alignment.

F.5.6 Restrictions

There are some restrictions on the use of non-byte
aligned components of records or arrays.

- Multi-dimensional arrays of non-byte aligned elements,
e.g. bit, are not allowed.

- Non-byte aligned components are not allowed as scalar
parameters of mode in out or out.

- Non-byte aligned components are not allowed to be
renamed.

- Non-byte aligned record components are not allowed to
have default initialisations on the record type
declaration.

F.6 Address Clauses

Address clauses are only supported for objects. The
value for an address can only be the result of an ADDRESS
attribute.

Address clauses for subprograms, packages task units and
entries are not supported.

Implementation Dependent Characteristics Page F-17



VME Ada Compilation System user Gu me

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of
the same size, where size is as defined in section 8.1
but excluding any red-tape. A compilation error will be
reported by the compiler if the objects have incompatible
sizes.

For dynamic arrays and unconstrained records, the size
check will be performed at run time. CONSTRAINTERROR
will be raised if the check fails.

The TARGET may not be an unconstrained record. If the
TARGET is an unconstrained array, it may only be a one-
dimensional array of scalar type with an index type of
size 32 bits. The index of the TARGET array will start
from 'FIRST of the index range.

F.8 Input-Output

F.8.1 Introduction

This implementation supports all requirements of the Ada
language, by providing an interface to the Series 39/VME
file system.

This section describes the functional aspects of the VME
file system interface, for the benefit of systems
programmers that need to control VME specific Input-
Output characteristics via Ada programs.

The section is organised as follows:

Subsection F8.2 discusses the requirements of Ada Input-
Output systems as given in the language definition and
provides answers to issues that are not precisely
described in the language definition.

Subsection F8.3 describes the relation between (Ada)
files and (VME) external files.

Subsection F8.4 describes the implementation dependent
FORM parameter of OPEN and CREATE procedures.

The reader should be familiar with the following
documents:

The Ada Language Reference Manual [LRM]
VME Programmer's Guide [VME]

F.8.2 Clarifications of Ada Input-Output Requirements

The Ada Input-Output concepts as presented in chapter 14
of the [LRM] do not constitute a complete functional
specification of the Input-Output packages. Some aspects
are not discussed at all, while others are deliberately
left open to an implementation. These gaps are filled in
below, with reference to sections of the [LRM].

Page F-18 Implementation Dependent Characteristics



The range of the type COUNT defined in package DIRECTIO

is O..INTEGER'LAST and in TEXTI0 is 0..131070

F.8.2.1 Assumptions

14.2.1(15) For any RESET operation, the content of the file is
not affected.

14.2.1(7) For sequential and direct input-ouput, files
created by SEQUENTIAL_10 for a given type T, may be
opened (and processed) by DIRECT 10 for the same
type and vice-versa, if the -VME RAM for this
external file supports this mode of operation. In
the case of SEQUENTIALIO access the function
END OF FILE (14.2.2(8)) may fail to produce TRUE in
the case where the file has been written at random,
leaving "holes" in the file.

14.2.1(15) For any attempt to overwite an existing record the
replacement record must be the same size as the one
being replaced.

F.8.2.2 Implementation Choices

14.1(1) An external file is any VME file, which may be
regarded as a logical collection of reco-rds.

14.1(7) An external named file created on a filestore
device will exist after program termination, and
may later be accessed from an Ada program.

14.1(13) See Section F.8.3.4 File-Access and Sharing.

14.2.1(3) The name parameter, when non-null, must be a valid
VME filename; a file with that name will then be
created. For a null name parameter, a temporary,
unnamed file will be created.

The form and effect of the form parameter is
discussed in Section F.8.4.

14.2.1(13) Deletion of a file is only supported for files on a
disk device, and requires delete permission to the
file.

14.6 Package LOWLEVEL IO is not provided.

F.8.3 Basic File-Mapping

Basic file-mapping concerns the relationship between Ada
files and (formats of) external VME files, and the
strategy for accessing the external files.

Below, the default and acceptable file formats are
summarised. The symbol ES is used to denote the element
size, that is, the number of bytes occupied by the

Implementation Dependent Characteristics Page F-19



element type, or, in case of a varying size type, the
maximum size ( which must be determinable at the point of
instantiation from the value of the SIZE attribute for
the element type).

For DIRECT 10 and SEQUENTIAL_10, when a successful
connection has been made to an external file, an
additional check is made that the record size of the
connected file is suitable for the element size.
USEERROR is raised if the record size is unsuitable.

F.8.3.1 DIRECT 10

An element is mapped into a single record of the external
file.

For CREATE the standard file description *STDDIRECT is
used by default. This is acceptable provided ES = 80. If
ES is not 80 then a suitable file description must be
created (any description that is supported by the direct
serial RAM is acceptable) and the FORM paramter must then
be used to specify this file description.

For OPEN the file specified must have a description that
is supported by the direct serial RAM, and a record size
matching the element size.

F.8.3.2 SEQUENTIAL 10

An element is mapped into a single record of the external
file.

For CREATE the standard file description *STDM is used by
default. This is acceptable provided ES is less than or
equal to 2036. If ES is greater than 2036 then a suitable
file description must be created (any description that is
supported by the serial RAM is acceptable) and the FORM
paramter must then be used to specify this file
description.

For OPEN the file specified must have a description that
is supported by the serial RAM.

F.8.3.3 TEXT 10

Lines of text are mapped onto records of external files.

The default files provided for STANDARDINPUT and
STANDARDOUTPUT are *STDAD and *STDOUT respectively.

For output, the following rules apply.

The Ada line terminators and file terminators are never
explicitly stored. Page terminators, except the last,
are mapped onto a FF character trailing the last line of
the page. (In particular, an empty page (except the
last) is mapped onto a single record containing only a FF
character). The last page terminator in a file is never

Page F-20 Implementation Dependent Characteristics



represented in the external file. It is not possible to
write records containing more than 2048 characters. That
is , the maximum line length is 2047 or 2048, depending
on whether a page terminator ( FF character) must be
written or not.

On input, a FF trailing a record indicates that the
record contains the last line of a page and that at least
one more page exists. The physical end of file indicates
the end of the last page.

For CREATE the standard file description *STDM is used
by default. This is acceptable provided ES is less than
or equal to 2036. If ES is greater than 2036 and less
than or equal to 2048 then a suitable file description
must be created (any description that is supported by the
serial RAM is acceptable) and the FORM paramter must hen
be used to specify this file description. Any attempt to
input or output a record containing more than 2048
characters will raise a USEERROR exception.

For OPEN the file specified must have a description that

is supported by the serial RAM.

F.8.3.4 File-Access and Sharing

In this section a characterisation of the file-access
used is given.

OPEN and CREATE procedures use the normal VNE defaulting
mechanism to determine the exact file to open or create.
The file generation number (when not specified), defaults
(for OPEN) to highest existing, or (for CREATE), one
higher than the highest existing or 1 when no versions
exist. If an empty string is specified as name, CREATE
will create a workfile.

External files will be accessed via standard VME access
methods. For SEQUENTIAL 10 and TEXTIO, any file
description supported by the serial RAM is acceptable,
while for DIRECT_10, any file description supported by
the direct serial RAM is acceptable.

A file opened with mode INFILE will allow other
processes and, indeed, the current process to open and
read the file (e.g. as IN FILE in an Ada program). For
INOUT FILE or OUT FILE, no file sharing is allowed. In
particular, attempting to gain write access to such an
external file by OPEN or RESET will raise USEERROR.

There is an ablolute VME limit of 255 on the number of
concurrent file connections. Since the VME System uses a
number of system files the limit for an Ada program is
somewhat less than this. This absolute limit is also for
sequential files; the limit for index-sequential files is
considerably less.

Implementation Dependent Characteristics Page F-21



VME Ada CompilationSystem Uise~r ude

F.8.4 Form parameter

The FORM string parameter that can be supplied to any
OPEN or CREATE procedure, has the intention of enabling
control over external file properties such as physical
organisation, allocation etc. In the present
implementation, this is acheived by a combination of the
name and form parameters.

Any of the following values of the FORM parameter are
permitted:

(1) Null
(2) LOCAL
(3) DESC-<fd>
(4) ALL-<fa>
(5) DESC=<fd>,ALL=<fa>
(6) DESC-<fd>,LOCAL
(7) ALL=<fa>,LOCAL
(8) DESC=<fd>,ALL=<fa>,LOCAL
(9) DESC=*STDFORM

LOCAL has the effect of causing the run time system to
treat the value of the NAME parameter as a VME local
name.

DESC which only has effect on a CREATE call, specifies
that the pre-existing file description <fd> should be
used. A new file description can be set up using the
DESCRIBEFILE command available in VME/B.

ALL which only has effect on a CREATE call, is used when
the file allocation to be used is required to be
different from the default allocation; in this case <fa>
must specify a pre-existing file allocation.

The special form parameter "DESC=*STDFORM" when supplied
to SEQUENTIALIO will provide a listing workfile.

All letters in the FORM parameter must be given in upper
case, and only the first 32 bytes of the form parameter
are analysed. If the syntax is incorrect a message will
be sent to the journal but no exception will be raised.
No semantic validation is carried out; the value given
will be passed unmodified to VME as parameters to a file
creation interface, were it may be ignored if it
conflicts with information already known about the file.
e.g a library cannot contain two files with different
descriptions..

F.8.5 Additional I/O Packages

No additional packages are provided.

Page F-22 Implementation Dependent Characteristics


