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Foreword

The URV flight test and this final report are the result of the efforts of
several individuals. In particular, Dave Dawson (WL/FIGL), Bill Adams, Douglas
Roy and Jim Miller (Lear Siegler) were responsible for the operation of the URV
during the project. It is due to their efforts that the designs were implemented
and flight tests were completed without incident.

Two groups of flight tests were performed during this study. The first
flights were performed in August and September 1987. However all time histories
shown in this report were a product of the later flights in August 1989.

The URV flight test work was begun to support the WL/FIGL Self-Repairing
Flight Control System (SRFCS) Program. Mark 1. Mears is the principle author of
this technical report, however, verbal and wntten inputs have also been provided
by other project participants.

The author wishes to express special thanks to Stanley H. Pruett and John
Houtz (WL/FIGL), who participated in the flight test activities and who wrote and
edited portions of this report.

The chief engineer of the SRFCS program, Philip R. Chandler (WL/FIGL),
supported and participated in the flight test project on the URV. Much of the
flight test work was managed and performed by Dave Dawson, Capt. Robert Kelly
and William Lindsay. Many individuals participated in designing the SRFCS for
the URV; these include Dr. Kuldip Rattan (Wright State University), Tom Molnar,
Greg Carter, Capt. Harry Gross, Capt. Barry Migyanko (WL/FIGL), and Capt. Brian
Ray (WL/FIGC). Ada code development and implementation for the SRFCS was
done by John Houtz, Stan Pruett (WL/FIGL) and Douglas Roy (Lear Siegler).
During all tests the URV was piloted by Jim Miller (Lear Siegler).
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Nomenclature

A Small perturbation linear model stability matrix
AUTH weighting matrix

KLINKS Linkage ratio matrix

Aij the (i,j) element of the matrix A

An nxn matrix A

Bi impaired B matrix (in general)

Bia impaired B matrix for failed aileron

Bic impaired B matrix for failed elevator

Bir impaired B matrix for failed rudder

Bo nominal B matrix

inv() denotes matrix inverse

Ki impairment gain matrix (in general)

Kia impairment gain matrix for failed aileron case
Kie impairment gain matrix for failed elevator case
Kir impairment gain matrix for failed rudder case
Ko unimpaired gain matrix

(L] lower diagonal matrix

p roll rate

Ps Probability of having a surface fail

Pe, Probability of false alarm

Ph Probability of being hit (battle damaged)

Py Probability of being killed

Pyis Probability of being killed given that a failure has occurred
Piin Probability of being killed after having been hit
Pod Probability of missed detection

q pitch rate

r yaw rate

u system inputs vector

(U] upper diagonal matrix

X aircraft state vector (in radians)

o angle of attack

B side slip angle

8 surface command vector (in degrees)
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|
8:, right aileron deflection angle
8.om deflection command
81 left elevator deflection angle
Ser right clevator deflection angle
8q left flap deflection angle
LTS right flap deflection angle
8, rudder deflection angle
At time increment
¢ roll attitude angle
0 pitch attitude angle
()+ matrix pseudoinverse of ()
()T matrix transpose of ()
Abbreviations:
AFTI Advanced Fighter Technology Integration
FDI failure detection/isolation
RPV Remotely Piloted Vehicle
SRFCS Self Repairing Flight Control System
SVD Singular Value Decomposition
URV Unmanned Research Vehicle

left aileron deflection angle
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1.0 Background

1.1 Self-Repairing Flight Control System Design

In aircraft control system design, one of the primary concerns is safcty of
flight. Stringent requirements regarding the number of failures allowed in a
given period of time are defined for mission completion and system failurel.
Another driving concern is aircraft survivability in battle scenarios. These
concerns are driven by factors such as pilot safety, weapon system effectiveness
and cost. The objective of the Self-Repairing Flight Control System (SRFCS)
methodology is to meet these requirements by allowing the designer to use
aircraft resources more wisely.

Operational reliability requirements have traditionally been met in onc of
two ways. The first of these is the use of highly reliable components to mect high
reliability requirements. However, these components are typically expensive.
Another way to satisfy stringent reliability requirements is to use hardwarc
redundancy. But hardware redundancy implies additional hardware which adds
weight and decreases tiuce System performance.

SRCFS is a means of achieving high flight control system reliability by
intelligently using available aerodynamic redundancy in aircraft control
surfaces. However, to use this redundancy requires knowledge of the aircraft
dynamics, and computing resources to mechanize the algorithm,

The Flight Control Division's Control System Development Branch
(WL/FIGL), began investigating the viability of SRFCS methods in the 1980's and
decided to use the Unmanned Research Vehicle (URV) as a means for test and
evaluation of the concept. The primary benefit of using the URV was cost; the
URV was an FIGL resource which had been used to demonstrate flight control
concepts. Also, flight safety for the URV is less of a concern than that associatcd
with manned flight test.

Information from the SRFCS program provided a starting point for thc URV
flight test study, and the final SRFCS program reports provide a basclinc for
future SRFCS studies®:6+7.




1.2 Use of the Ada Programming Language

The Ada computer programming language is the official mandated DoD
High Order Language (HOL) to be used for mission critical weapon sysiems
software. One objective of the effort was to assess the impact of Ada on a real-time
flight control related application.

The purpose for mandating use of one software language is to reduce
software life cycle costs. Such features as information hiding and strong typing
may increase rcadability and understandability of the code, and result in less time
and cffort during modifications.

1.3 History of the XBQM-106

The XBQM-106 is an in-house designed Mini-RPV (referred to as 'URV' -
Unmanned Research Vehicle) with a pusher propeller configurationz. The URYV
has a wing span of twelve feet, a fuselage length of ten feet and weigh
approximately two hundred pounds. Fig. 1 is a line drawing of the URV.

The purpose of the URVs is to test and demonstrate emerging tlechnology.
To support their use in flight control applications, wind tunnel work was
performed in 1978 to provide aerodynamic model information2. This data has
been modified as the RPV characteristics have changed due to changes in weight

and c.g. location3

, and with the inclusion of flaps as control surfaces.

Some of the carly work done on the URV resulted in development of an
inner loop contro! algorithm to improve the URV dynamic characteristics”. This
algoriti.m runs on a flight control computer which uses a micro-controlier that
was mass produced for automobile engine control. This same flight control system

was used during the SRFCS flight tests.
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2.0  Seif-Repairing Flight Control System Introduction

Sclf-Repairing Flight Control Systems (SRFCS) are an extension of inncr

loop control, motivated by the desire to reduce the probability of aircraft!® loss
(py). The p, is decreased by reducing the conditional probability of aircraft loss

from battle damage (pklh)' This goal is achieved by allowing the control system 1o

adapt to battle damage or surface failures by altering the signals sent to the
remaining healthy control surfaces.  With this technology, the aircraft does not
rely as heavily on each individual surface since other surfaces can combinc to
perform the same (or nearly the same) function.

Reduction in vulnerability is a direct result of the control sysicm
adaptation, which then permits a trade off between improved system reliability
(afforded by the SRFCS) and system hardware redundancy. That is, the additional
reliability allows the designer to reduce the number of actuators, hydraulic lincs,
etc. and thus, the aircraft weight. These trades make for an aircraft which
performs better and is less likely to be damaged in battle.

These system benefits do not come without some cost. One aspect of this cost
is the computational burden that must be absorbed by the flight control computer.
The computations are required to model dynamics, predict states, estimate surface
effectiveness and perform various matrix, and vector calculations.

Another cost associated with any adaptive control technique is that
incorrect action may be taken by the controller. This may occur becausc of
increased algorithm complexity, sensor noise, or modelling
uncertainty/inaccuracy.

Adaptive control (including SRFCS) can be mechanized in a direct or

indirect manner. A direct mechanization implies that explicit FDI is not
performed. The controller simply reacts to changes in sensed variables and
makes alterations in control as a matter of course!’. Indirect adaptation uses

separate diagnosis and action algorithms. The methods used on the URV were
confined to indirect adaptation.

Fault diagnosis is performed by an FDI algorithm which compares aciual
outputs with modeled values to determine if faults exist, establishes the sourcc of
the fault and then updates the internal model. The reconfiguration strategy acts
cn the .niormation provided by the FDI by redistributing control authority to
"best” cope with the changes.




2.1 Control System Reconfiguration Strategy

The purpese of the control strategy is to distribute remaining aircralt
control authority after an anomaly has been isolated. This can be done in a
number of ways. The method implemented in the URV was the "Control Mixer"
which uses a pseudoinverse to determine a new gain matrix.

The pseudoinverse works by operating on the basic linear state space
equation.

x=Ax+B3 (2.1)
where
8 =Ko*y (2.2)

The pseudoinverse effects only the contribution of the command. The
nomenclature is defined below.

8 — surface command vector

u - system input vector

Bo -- nominal B matrix

Bi -- impaired B matrix

Ko -- unimpaired gain matrix

Ki -- impaired gain matrix

m -- number of non-zero rows of the Bi matrix

n -- number of non-zero columns of the Bi matrix

The Bi matrix represents control effectiveness after surface failures. The
Bi matrices representing locked surfaces are created by zeroing the column of the
Bo matrix corresponding to the failed surface. The effects of surfaces locked at
non-zero deflection angles could be created by adding a bias term in the state
equati . The Bi matrices for partially missing surfaces arc generated by
replacing the column of the Bo matrix associated with the failed surface, with the

effective percentage of that column. Both partially missing and failed at non-




zero deflection angles failure modes can be reconfigured by the mixer, howcver
only the locked at zero deflection modes were investigated during flight tests.

The objective of the Control Mixer is to modify the calculations involving
the system inputs (u) to the impaired system so that they have the same effect as
they would have had on the unimpaired system. This can be done by equating the
control effects of the state space equation before and after impairment.

Bo*Ko*u =Bi*Ki*y (2.3)

This implies that

Bo*Ko = Bi*Ki (2.4)

To find the Ki matrix, an inverse is used. The characteristics of the inverse
depend on the Bi matrix and can fall into one of the three general categorics

listed below1 0.

1. Rows (m) and columns (n) of the Bi matrix equal.

This case is the simplest and implies that after the failure the number of stiatcs
being controlled is the same as the number surfaces available. If the rank of the
Bi matrix is full (rank of Bi = m = n) then a standard matrix inverse can be uscd to

find the Ki gain matrix. By multiplying the above equation by inv(Bi)

Ki = inv(Bi)*Bo*Ko (2.5)

2. Rows (m) of the Bi matrix greater than the columns (n).

This is the overdetermined case where there are more states to be
controlled than surfaces to control them. In this case, one cannot hope 1o
reproduce the exact time response of the unimpaired aircraft with the impaired
aircraft. Instead, one is attempting to reduce the mean squared error betwcen

the nominal (unimpaired) response and the response of the impaired aircraft.

Bi*Ki = Bo*Ko (2.6)




BiT*Bi*Ki = Bi! *Bo*Ko (2.7)

Taking the inverse of BiT"‘Bi, and pre-multiply each side of the above equation by

this value results in the following equation.
. Tenriver:Tar*
Ki = inv(Bi" *Bi)*Bi *Bo*Ko (2.8)
The above inverse will exist if the columns of Bi are linearly independent.

3. Rows (m) of the Bi matrix less than the columns (n).

This is the underdetermined case which is of concern in the URV demonstration
because the URV has more surfaces available than states to be controlled. This
case allows a time history flown by the unimpaired aircraft model to be duplicated
exactly by the impaired aircraft model. The mixer minimizes the Euclidean norm
of the deflections needed to achieve the desired response. The mixer gain matrix

for this case is derived in the following manner:
Bi*Ki = Bo*Ko (2.9)

Insenting an identity into the right side of the equation does not change it.

Bi*Ki = I*Bo*Ko (2.10)
Now let

I = V*inv(V) (2.11)
where

V = Bi*Bi" (2.12)
then

Bi*Ki = (Bi*BiT)*inv(Bi*BiT)*Bo*Ko (2.13)




The inverse of V will exist if the rows of Bi are linearly independent. Thus
Bi*Ki = Bi*(Bil *inv(Bi*BiT))*Bo*Ko (2.14)
or
Ki = Bil *inv(Bi*Bi®)*Bo*Ko (2.15)

It is worth noting that the zero rows of the B matrices represent states that
are integrals of other states (e.g., 0 is the integral of q) and these B matrix zcro
rows have no effect on the states. Since zero rows cause rank deficiency in the
pscudoinversion calculations, they are removed before performing the mixer
gain calculations.

One problem with the above derived control mixer implementation, is that
it does not recognize surface saturation. In fact there may be considerable
authority for a particular command remaining in unsaturated surfaces which the
mixer would not use. One way around this is to provide the mixer with
information about each sutface's deflection angle. This is done by way of an
"authority” matrix, AUTH. The AUTH matrix is a diagonal matrix with elements
equal to the absolute value of the difference between each surface limit and the
corresponding surface deflection. With the AUTH matrix the gain derivation is
similar to that above, with

V = (Bi*AUTH)*(Bi*AUTH)' (2.16)
The new mixer gain becomes

Bi*Ki = (Bi*AUTH)*(Bi"‘AUTH)T * inv[(Bi"‘AUTH)*(Bi*AUTH)T] * Bo * Ko
(2.17)

rearranging terms

Ki = (AUTH*AUTHY) *Bi! * inv[Bi*(AUTH*AUTHYT) * BiT] * Bo * Ko
(2.18)
This gain matrix hus the effect of reducing the weighted mcan squared
deflections.




Addressing the saturation problem with this effector weighting mecthod
requires that the gain matrix be updated as the surfaces move (after the FDI has
isolated a failure). This can be a significant computational burden requiring a
pseudoinverse calculation each time a new gain matrix is required.

The control mixer uses a model of the control effects to calculate the gain
matrix. Thus, the gains are only as good as the representation of the controls by
the B matrix in equation 2.1. If the model changes due to aircraft state and
effector position, the gains can cause results different from those desired.

The mixer produces good results when the aircraft has a surface failure for
which there exists another surface with similar characteristics. However, this
can make the FDI problem more difficult. In general, surface configurations
which are good for FDI, are bad for reconfiguration and vice versa.

Obviously no two surfaces have the exact same effects in all axes, at all
flight conditions, because no two surfaces can occupy the same location on an
aircraft. However it is possible that finite dimensional, linear models for the
aircraft at some flight conditions will have linearly dependent (or nearly
linearly dependent) B matrix columns. Thus, it may be helpful to form the
controllability Grammian of each impaired system to determine which directions
in the state space are most difficult to control! 2.

2,2 Failure Detection and Isolation

The objective of FDI is to detect system failures when they occur and isolate
the cause of the failure. Other SRFCS programs have been concerned with both
acrodynamic ("global") and actuator ("local") FDI.  Global FDI presents a much
greater problem than local FDI, however only local FDI was investigated in the
URYV study. Since only local FDI was performed, isolation of the failure is not an
issue. Once the failure is detected, the cause of the failure is known.

The local FDI methodology implemented on the URV was a modified version
of contractor developed code for the Advanced Fighter Technology Integration
(AFTI) F-16 that was adapted for the URV by FIGL. Actuators are flagged as failcd
if their filtered residual, which are formed by low pass filtering the differcnce
between an actuator model and the real actuator, exceeds an analytically
determined threshold value. The logic flow can be seen in Fig. 3.




The FDI algorithm is constrained to work quickly to prevent the failure
transient from having an adverse cffect on the aircraft. This time to dctect is
therefore, driven by the speed of the aircraft dynamics.

The time to detect failure is also based, in part, on surface activity. If the
surface has relatively small inputs, there may not be a sufficient signal to noise
ratio to detect a failure. However, failures which are not immediately detectied
because of low information content, are by definition, not critical since small
surface activity causes small transients. These failures are detected when it is

important that the surface become active.
FDI is driven by two opposing parameters; probability of false alarm (P )

and probability of missed detection P, g)- The amount of noise present in the
system determines what threshold will work in light of the required P, and P ,.

The question of isolation is not of concern with local FDI since each actuator has
its own failure detection flag. Since failures were modeled as locked at zcro
deflection, the issue of estimation of the remaining authority was not addressed in
this study.

10




3.0 Model Description

The URV Control System (see Fig. 2) shows the components of the
simulation. This includes the control mixer, aircraft, sensors and control sysitcm.
The control mixer is a gain matrix and implements the control reconfiguration.
The "Aircraft Model” part of the simulation diagram contains five blocks. The
dark shaded region denotes components of the actuators. The "Servos” block
represents the dynamics of the electric motors which drive the surfaces. The
"KLINKS" block models the linkage ratios associated with each surface. The
"Limits" block is the position limits of each surface. The "Equations of Motion"
block is the state space formulation of the aircraft equations of motion relaling
surface deflections to aircraft body attitude and rate. The remaining block in the
"Aircraft Model" section is a conversion to bring out the states in degrees.

The URV stability and control derivatives were derived using DIGITAL
DATCOM? and have been modified using flight data®. The resulting model is a
constant coefficient, linear, small perturbation, decoupled lateral-directional and
longitudinal representation with second order actuator models. The linear modecl

takes the form of equation 3.1 where

-2.4776 0.0000 0.9748 0.0000 0.0000 0.0000 0.0000

—

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
-42.512 0.0000 -3.3361 0.0000 0.0000 0.0000 0.0000
A = 0.0000 0.0000 0.0000 -0.745 0.2451 0.0010 -0.9848
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 -25.804 0.0000 -8.7554 2.7068

0.0000 0.0000 0.0000 23.2230 0.0000 0.0647 -2.0286J

3.1)

and the unimpaired B matrix is

11




-0.0034 -0.0034 -0.0022 -0.0022 -0.0040 -0.0040 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.5812 -0.5812 -0.0481 -0.0481 -0.0660 -0.0660 0.0000
B = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2455 -0.2455 0.6697 -0.6697 0.6221 -0.6221 0.0554

L-0.0130 0.0130 -0.0428 0.0428 -0.0403 0.0403 -0.1789

3.2)

The states of the model are
1=[a,0,q,B, ¢ p, r]T (radians) (3.3)
(The model uses the states in radians (or rps), however they are converted to

degrees (or deg/sec) before they are output as simulation time histories.)
The control inputs are

8 = [8) 8¢, 841 8ar, 871 B, 8,17 (degrees) (3.4)

where the following variable definitions are given:

o angle of attack 8.1 left elevator deflection angle
0 pitch attitude angle 8,, right elevator deflection angle
q pitch rate 8, left aileron deflection angle
B side slip angle 8, right aileron deflection angle
¢ roll attitude angle 8nq left flap deflection angle

p roll rate 8¢, right flap deflection angle

r yaw rate 8, rudder deflection angle

The actuator model is described by the following transfer function:

12




P S

oo Qe a

" g
¥4Q
14Q
uv Q
v Q
¥3Q

13Q
.

13

walIsLS [oazuo) A¥N 7 2anSyyg
MB| MeA
(Z +5)
- 500 owm 2 990 I & Hmvm
- 5200 omom 2 o _ <Z'0
w 500 et K ¢ \\\\\\
b — meq 110y SMET [0J3U0D7
\ \
n 8L20°0 9/8 M - M 8c0
50449 Meq Udlid K4
. 9100 \\mwu\mmc\mxm\\ g £l
.
7 uotjow sIWiT S SOAIOS Joxiul AI@Ar
% pey/bag Jo ‘b3 {0J3U0D
] §J01BN}IY
(3P0 1JBJdJIY 7.




324
sz+25.4s+324 (3.5)

The output equation of the model is
y=Cx (3.6)

where the C matrix is a 7-by-7 identity matrix. Thus, the outputs are equivalent to
the states of the model.

Another part of the model (Fig. 2) is the lightly shaded region representing
the sensors. One darkly shaded region is the Gyros; one for pitch and one for roll.
These measure the pitch and roll angle and have dynamics of significantly
higher bandwidth than the rest of the system and are thus modeled as gains
onlyg. These gains represent the sensitivities of each attitude gyro. The

sensitivities are:

pitch -- 2.5 volts/60 deg = .0416
roll -- 2.5 volts/90 deg = .0278

The body rates are measured by fluidic rate scnsors with dynamics
approximated as a first order lag with comer frequency at 50 rps and sensitivitics
of 2.5 volts per 50 deg/sec in pitch and yaw, and 2.5 volts per 100 degrees in roll”.
These quantities are shown in the darkly shaded region named "Rates'".

The "Control Laws" part of the diagram represent the control equations
that are in the URV.

Simulation time histories are shown in Appendix B, Fig. B.1 to B.8. These
responses are for the unfailed URV in response to unit pitch, roll and yaw
commands. The longitudinal and lateral axes are decoupled. Responses not shown

for states or surfaces deflections that have not been excited and remain at zero.

14




4.0 Application of SRFCS to the URYV

One of the first steps to implementing control system reconfiguration on
the URV was an analytical investigation determining the controllability of the
URV. This study was based on a linear model developed during past efforts.

The URV originally had differential ailerons, collective elevators, one
rudder and no flaps; the first linear model reflecting this three input
configuration. It was clear, however, that both differential and collective
deflections of the ailerons and elevators were needed. Therefore, the model was
altered by attributing the effects of individual left and right elevators and
ailerons to separate B matrix columns; each with half the combined (left and
right) authority. This resulted in a five input model.

This change to a five input system was still not adequate. With five inputs,
locked surface failures still result in an overdetermined system for which the
Control Mixer cannot restore nominal performance. The best it can do is
minimize the norm of deviations from the desired states.

Another problem with use of the control mixer in dealing with the five
input URV model, was that the pseudoinverse calculation for rudder failure
resulted in large values in the mixer gain matrix. The reason for these high
gains is explained as follows: The ailerons have much more effect in yaw than do
the elevators and the mixer favors their use over that of the elevators. Also, the
ailerons have much larger effect in roll than in yaw and small yaw commands
induce large rolling moments from the ailerons which must countered by
elevator deflections. To generate the commanded yaw effect, the ailerons and
clevator end up fighting each other in roll. This can be seen in the values of the
matrices without flap inputs for the case of rudder failure shown later in this
section.

The columns of the Ko and Ki matrices indicate piich, roll and yaw
commands respectively. The entries in the Kir matrices are large because the
roll, which is induced while the aileron attempts to create yaw, must be balanced.
The ratio of roll authority to yaw authority for the aileron is 15.647, while this
ratio for the elevators is 18.885. Since these ratios are close, the deflections must

be large to generate movements in one axis while balancing the other axis. In
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other words, this is attributable to nearly linearly dependent effects of ailerons
and elevators in roll and yaw.

Methods for reducing these matrix gain values for the failed rudder case
were considered. One method was to zero certain elements of the impaited B
matrix. These zero elements had the effect of reducing the use of the sutface,
corresponding to the zeroed column entry, for effect in the state corresponding (6
the zeroed row. However, without flaps, adjustments to the model (zeroing of B
matrix model elements) could not be found to reduce the gains to reasonable
magnitudes.

When flaps are added to the¢ model, the system is underdetermined because¢
it has more surfaces than states to be controlled. In these cases the control rixer
minimizes the norm of the surface deflections and restores the model
performance to exactly what it was before the failure.

Also, flaps add abouwt 22.5% of the yaw control power of the rudder’
Various methods for incfeasing the yaw control power were investigated and
these are described in & Technical Memorandum3.

The values for the mixer gain matrices, for an assortment of failures and
configurations, is containéd in Appendix A. However, to illustrate the difficultles
associated with rudder failure, the mixer gain matrix for rudder failure (Kify is
shown below for the "no-flap" and "flap" configurations.

"No-flap" configuration with rows corresponding to Sel' Ser, 85, and 8y¢

respectively:

foms
1.0000 0.0000 -32.5982
1.0000 0.0000 32.5982
0.0000 1.0000 119913

0.0000 -1.0000 -11.9913

(4.1)

S

"Flap” configuration with rows corresponding to &, 3,

531’. Sﬂ aﬂd "'

al,
respectively:
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B ]
0.9996 0.0988 -30.7668

0.9996 -0.0988 30.7668
0.0175 0.5086 2.8785

Kir =
0.0175 -0.5086 -2.8785
-0.0093 0.4901 9.0873

-0.0093 -0.4901 -9.0873

h— —

(4.2)

When the rudder column of the Bo matrix is zeroed to become the Bir
matrix, it becomes a rank four matrix. By eliminating the zero row, a normal

inverse replaces the pseudoinverse, but makes the matrix multiplications used in

the Kir matrix solution non-conformal. Also, given the model, the impaired
aircraft has no way to recreate the B authority. Therefore, the sideslip was
ignored.

Thus, addition of flaps had three purposes: 1) To make the system

underdetermined which allowed the mixer to find gains that would completely
regain performance. 2) To add yaw authority, in an attempt to reduce the gain
values calculated by the mixer for the failed rudder case. 3) To help alleviate the
yaw command, aileron induced roll for the case of failed rudder. (The flaps were
also desired to reduce landing speed, but this was not related to reconfiguration.)

The addition of flaps, in itself, did not significantly reduce the values in the
impaired gain matrices. In the case of elevator failures, the flap configurcd
model resulted in higher gains. The reason the addition of flaps had little effect
on the mixer gain matrix values was that the B matrix columns associated with
ailerons and flaps are vectors that are nearly linearly dependent.

To reduce mixer gain matrix values to a useable level, the designer was
forced to fool the mixer (gain calculation) by zeroing B matrix elements. By doing
this the designer tells the system which surface to use to produce a state changc;
the mixer discourages use of surfaces in axes where a zero B matrix entry is
placed.

By zeroing clements of the B matrix, the designer changes physics to mect
the problem. In the physical system, use of the surfaces for commands or moment
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balancing may well generate changes in states corresponding to zero B mairix
entries in the model. Therefore the aircraft does not perform exactly as expecied,

The linkage ratios were not considered during the calculation of the gain
matrices.  This resulted in the values in the gain matrix being a different
magnitude than they should have been. It was fortunate that these values in the
gain matrices were not drastically different in magnitude since this would have
caused unexpected flight test performance. The driving reason that the
differences caused by neglect of the linkage ratios did not make drastic
differences between flight test and simulation, is that all surfaces on the URV
have a very large portion of their total authority in one axis. For aircraft with
axes coupled surfaces, the linkage ratios would make a much greater difference in
the gains and thus surface deflections after failure.

The FDI design used for the URV had originally been done for the AFTI F-16.
The local FDI section was removed from the original code and modified for use
with the URV. The logic flow of the local FDI for the URV was as shown in Fig. 3,

The first task of the FDI algorithm was to transform the data into floating
point format. The next task was filtering of the position information to reduce the
noise. This used a 2Q radian per second first order filter. This frequency is
slightly beyond the actuator cutoff to minimize the impact of the filler am the
signal information. The basis of the FDI was comparison of the surface rale
measurements with expected surface rates. This required data measurement and a
model. Thus, the position was measured and the "measured” rate calculated 3s ip
Eqn. 4.3 where At is the time step, (k) indicates the present time and (k-1) is ope
time step in the past.

rate(k) = [position(k) - position(k-1)]/(At) (4.3)

The model rate was based upon the transfer function of the actuator. The
digitized state space representation (1/60 second) of each of the seven actualarg is:

9610 .0134 0390
= x + )
434 623 434 com
(4.4)
where
LT = [position rate] (4.423)
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and

Scom = actuator command (4.4b)

To improve the accuracy of the model, model position was not used. Instead
the measured position information was used to generate each model rate. This can
be seen in the code which is included in Appendix D.

For each of the seven actuators, the modeled rate and measured rate wete
compared. If the difféerence was greater than a predefined threshold, a failure
counter for that actuator was incremented. If the difference was less than the
threshold, the counter was cleared. If a counter reached a count of three, that
actuator was flagged as failed and the reconfiguration algorithm was activated.

Given accurate noise data and an actuator model, the threshold value fof
FDI could be set analytically based upon the probability of false alarm (Pfa) and

probability of missed detection (Pm d). However, the threshold values used in

flight test were based upon trial and error. Due to inaccuracies in the actuatof
model dynamics, the threshold values had to be set very large.
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5.0 Computational Problem Overview

The computational hardware used in the SRFCS experiment consisted of two
separate computers connected by a telemetry link. The control mixer and FDI,
which make up the SRFCS, ran on the ground based computer, while the on-board
computer performed the feedback control functions. By partitioning the software
in this way, the previously existing flight control system hardware and software
could remain essentially the same, and the SRFCS could be coded in Ada and
targeted for the 68020 based ground computer. The telemetry system relayed
information from the on-board computer/sensors to the FDI algorithm on the
ground computer, and telemetered control system gain information from the
control mixer algorithm, running on the ground computer, to the on-board
computer.

The SRFCS ran on the ground based computer. However since it provided,
inner loop gain information to the on-board flight control computer, the
structure and implementation of the FDI and control mixer software was a critical
part of the entire system.

The role of FDI is conceptually simple, but its execution should be
synchronized with the SRFCS and the control system. The period of execution of
the FDI should be an integer multiple of the control system period to insure that
all actuator data is measured during the same sample period. However, due to the
characteristics of the telemetry system linkinz the ground based FDI
computations with the flying URV, the FDI and the URV control system were not
synchronized.

The URV telemetry system was used in previous experiments to download
flight data for analysis. No need for synchronous interaction between a ground
based system and the on-board flight computer had ever been established. The
rate at which the telemetry system ran was determined by the number of
variables transmitted and the telemetry bandwidth limits. Although hardware
and software to allow synchronous execution of the ground and flight systems was
developed, it was ignored during implementation. Since the maximum possible
data latency due to the asynchronous running SRFCS was very small in
comparison to the actuator time constant, the fact that the telemetry and control
system were asynchronous, by itself, tumed out to be a relatively small part of the
problems that affected the performance of the FDI. Therefore, during the SRFCS
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flight tests, the flight control computer and the ground based SRFCS were run
asynchronously; the control system rate remained 60 Hz and the ground computer
sample rate, driven by the telemetry system, was about 28.5 Hz.

FDI problems were compounded by inaccuracies in the actuator model due
to mismodelled dynamics and the fact that the model had been digitized at the
control system rate, while it ran at the telemetry system rate on the ground
computer. This mistake could have been easily fixed, but was overlooked during
implementation.

The discrete dynamic equations of the FDI requires the use of a hardware
interrupt or code to continually poll the system clock. In the case of the URYV,
polling the system clock would be not only computationally wasteful, but result in
timing delays as a result of the 1/128 second quantization of the Ada system clock
(a 128 Hz clock is defined as a part of the Ada language).

By using a hardware interrupt, problems associated with Ada system clock
were avoided. However, in keeping with the ideals of the Ada programming
language, the interrupts were serviced using Ada tasking constructs instead of
assembly language routines. This meant that the exact times of execution of the
user routines (FDI and control mixer) were affected by the efficiency of the real-
time operating system, the number interrupts and the order in which interrupts
were handled. However, for the URV SRFCS code, interrupts were serviced almost
immediately and interrupt handling delays had no noticeable impact upon sysiem
performance.

5.1 Ada Implementation

Ada was the programming language chosen for the SRFCS algorithms on
the 68020 based ground computer. This choice was made to become familiar with,
and to evaluate some of the features of Ada as used in real-time systems.

In an effort to reduce life cycle costs, the Ada language was designed to
allow readable structured program development, and to include many features
that would be useful to software developers. The scope of the language definition
of Ada makes the impact of the compiler and real-time library routines of great
importance.

Ada tasking permits the development of independent processing entitics
that can cxecute simultaneously on separate processors, or can sharc a single

processor. Ada tasks are structured to communicate with each other by copying
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within a common memory or by wusing input/output statements between
processors that do not share memory. Entry calls and accept statements are the
primary method for synchronizing tasks and communicating values between
tasks. The interaction between the calling and accept statements is referred to as
the Ada rendezvous.

Ada also has interrupt-handling constructs available. These interrupt
handling constructs are described in section 13.5.1 of the Ada Language
Reference Manuall4.

Ada representation clauses are used to specify how the type declarations
are to be mapped onto the target machine. They can also be used to associate data

objects, subprograms task units, and task entries with a specific address.

5.2 FDI Computation

The purpose of the FDI task is to detect a failure in any of the actuators.
This is done by comparing a model of each actuator with measurements of the
state of the actuator. This task by itself is not a large computational burden.
However, with the use of Ada tasking constructs, this task poses a nontrivial
computational problem. In fact, during the URV flight test, the processing
overhead associated with the Ada tasking was greater than the actual numeric
computation.

In Ada, even with a hardware interrupt, a rendezvous must take place.
Variables must be passed to the control mixer task using the Ada rendezvous. By
using a hardware interrupt with assembly language, this Ada overhead can be
avoided. However, for this program, the Ada overhead was accepted to avoid the

use of an assembly language serviced hardware interrupt.

5.3 Control Mixer Gain Computation

After the FDI detects a failure, the control strategy (control mixer) codec
must be initiated. The FDI initiates the control strategy by setting a flag. (Sce
Appendix D for the Ada code.)

The control mixer task (SLOGI routine) computes the twenty one control
mixer gains (7 by 3 matrix) used to redistribute the commands to the surface
actuators. This allows the unfailed effector surfaces to take over the activity of
the failed surface.
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The gains are computed using Eqn. 5.1 (Bi* denotes the pseudoinverse of
Bi). This equation dictates that the rates of change of the states before and afier a
failure will be equal, or at least as close as can be achieved.

Ki = (Bi)* * Bo * Ko ;5.1

From the implementation viewpoint, this matrix equation presents two
problems: 1) matrix computations require some overhead (for this reason they
are not generally used in real-time applications), 2) the equation requires the
computational expense and potential numeric difficulty of a pseudoinverse
operation. Both of these problems combine to make the equation difficult to
implement in real-time on am embedded processor.

Embedded processors tend to be smaller and more limited than larger
mainframe or minicomputers and often lack hardware for floating point and
matrix calculations. The hardware used for the FDI and control strategy
calculations for the URV flight tests was a VME133 board!3
capability to perform floating point operations directly in hardware. = However,

which has the

the VME133 board had no special purpose hardware for matrix operations.

5.4 Pseudoinverse Algorithms

The implementation of the pseudoinverse operation can be achieved by two
distinct categories of algorithms. The first category does not use an explicit
matrix inverse operation, but instead uses a more direct approach (e.g. singulas
value decomposition algorithm for computing the pseudoinverse). The second

15 makes use

category of algorithms that is commonly referenced in the literature
of a standard matrix inverse operation. This second class of algorithms esseatially
recast the pseudoinverse operation so that a standard matrix inverse operation
~can be used to achieve a pseudoinverse operation.

A singular value decomposition (SVD) algorithm was considered, but found
to be unsuitable for real-time implementation using the available processing
hardware. A vendor supplied direct pseudoinverse method was also investigated,
however the performance of the was algorithm never acceptable. It was never
determined whether the cause was ill-conditioned numerical computations or

possibly a software "bug" that caused poor numerical performance.
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The pseudoinverse method for the URV flight tests uses the explicit matrix
inverse calculation. The method utilizes the equation for the underdetermined

pseudoinverse (see Eqn. 2.15) which is shown below.
Bi* = Bil*inv(Bi*Bi!) (5.2)

From Eqn. 5.2, it can be observed that the following operations must be
performed to complete the psecudoinverse operation: matrix transpose, matrix
multiplication, and matrix inversion. There is also a need to assure that the
product of the matrix multiplication (Bi"‘BiT) is invertible.

FDI1 algorithms that estimate surface effectiveness for a general set of
failure conditions require a check for singularity/conditioning of (Bi*BiT).
However, the failure scenarios considered in this program resulted in adequalely
conditioned (Bi*BiT) in all cases except the case of failed rudder (which was not
flight tested).

Various methods for performing the matrix inverse of Eqn. 5.2 were
investigated. The particular method chosen for this project relies on the
following equation.

Ynx1 © Anxn * X nxi1 (5.3)

where y and x are vectors of length n and A . is @ matrix of dimension, n by n.

n
Note that the A matrix in Eqn. 5.3 is not related to the A matrix in Eqns. 2.1 or 3.1
(the URV dynamics).

This method first employs a variation of LU Decomposition using the

11 method, and then uses backsubstitution and forward substitution to find

Crout
the vector, x. This is done for each column vector, y, of the identity matrix. The

resulting x vectors are then concatenated to form the inverse of [A].
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6.0 Data Analysis

The Sclf-Repairing Flight Control System (SRFCS) flight test was performed
in two phases. The first phase was the reconfiguration strategy algorithm
(control mixer) flight test with the FDI stubbed. During these tests, various
surface failures were emulated and the new (pre-computed) gain matrix values
were immediately used (perfect FDI). In the second phase the FDI was tested in
conjunction with the control mixer. The control mixer was not initiated until the
FDI detected a failure. Failures were emulated, the FDI acted on the changed
system, sent information to the control mixer, and the control mixer reconfigurcd
the gains to recover nominal flight performance.

Fig. 4 shows the coordinate axes and sign conventions that were used for
the project. The sign convention for the surface deflections is given below.

Surface Sign _convention
Be1 positive - trailing edge up
Ser positive - trailing edge up
8, positive - trailing edge down
8 positive - trailing edge up
8n positive - trailing edge down
3¢, positive - trailing edge down
5 positive - trailing edge right

Nominal performance of the URV is shown in Appendix C Figs. C.1 - C.6 for
cases of pitch, roll and yaw doublets. This data is provided as a basis of comparison
for the failed and reconfigured URV. Maneuvers for both nominal and
reconfiguration/failure cases were doublets of pitch, roll or yaw. Doublets were
used to test the response to both positive and negative commands. The
reconfiguration strategy was tested for cases of a single failure of aileron,
clevator, or flap failed to locked at zero degrees deflection angle, with each of the
pitch, roll and yaw doublet commands.

The amcunt of data gathered from the flight tests is very large. The
discussion of flight data and inclusion of strip chart recordings is limited to a
small fraction of the total data gathered and analyzed. This report includes some
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interesting cases of reconfiguration which worked properly, cases involving
problems with the control mixer and its implementation, and FDI related strip
chart recordings.

6.1 FDI Stubbed
Failed Right Aileron, Roll Command:

Reconfiguration worked well for a failed left aileron with a roll command.
This time history is shown in the strip chart of Appendix C, Figs. C.10 - C.13. The
data shows that the primary surface for the maneuver is the remaining right
aileron and the flaps. The flaps and remaining aileron very nearly restore
performance to nominal. The elevators have little effect in the roll axis compared
with their effect on the pitch axis and are thus not significant in this maneuver.

The neglect of the KLINKS matrix during the mixer gain matrix calculation
caused the sign of some deflections to be wrong for initial flight tests. For this
case (failed right aileron and roll command), this resulted in the elevators
responding with deflections of the wrong sign during the first flight tests for this
mancuver.  After this was noted, the sign of the gain values were changed. The
time histories shown here depict the results after the sign of elevator deflections
had been corrected.

The notable differences between the unfailed roll response and the failed
aileron case, are the more sluggish roll rate and exaggerated adverse yaw afier
the failure.

Left Elevator Failed, Pitch Command:

The case of failed left elevator (Appendix C, Figs. C.7 - C.9) with a pitch
command should reveal problems associated with the decision to alter the B matrix
before performing the mixer gain calculations. However, it is difficult to
determine the origin of various effects from the traces. For this case, the B matrix
has zeroed the contribution of the flaps to the roll and ailerons to pitch. This
change in the B matrix is done to prevent force fights between the flaps and
ailerons (which result in high surface deflections which are not desired). This
change is not a manifestation of the physics of the problem, however it does kecp
the surface deflections small without adverse results.

During initial flight tests (not shown in this report) of this condition, the
sign of the right flap was incorrect. Because the flap has minimal affect for this
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case, it went largely unnoticed and caused no large problems. The sign was
changed after the first set of flight tests and data shown in this report is for flight
tests after this correction had been made. With this sign change the right flap
then deflects upward for positive pitch commands improving the pitch
performance.

The gain matrix sign changes after the first flights were based on
heuristics and do not reflect the accompanying changes in ratios that the mixer
algorithm would have generated by inclusion of KLINKS. However, the
performance of the URV shown by the strip charts is rather good. Nearly
unfailed performance is attained in pitch without significant degradation in
other system states.

If the URV had control surfaces which were more evenly multi-axis
effective, the sign variations would have been noted during ground test. The
decoupled nature of the control surfaces meant that the non-primary control
surface deflections were comparatively small and unnoticed. This same decoupled
control surface characteristic also meant that these sign errors had little effect
on the system performance during flight.

The end result of zeroing the flap and aileron B matrix entries, for roll and
pitch respectively, is to greatly reduce the effect of the flaps on the URV
performance. This can be seen by observing the values of the Kie matrix for
flaps in Eqn. A.21.

6.2 FDI Evaluations

The procedure for testing the FDI was to emulate failure by commanding
the "failed" surface to zero deflection angle during flight and observing the
performance of the FDI in terms of time to detect the failure. However, the
maneuvers for testing the FDI were not regimented to include pitch, roll and yaw
doublets as was the case in the test of the mixer. Because the FDI is local (looking
for failures in each actuator independently), the states of the URV are not
relevant. The only requirement of the maneuver, is that it attempt to excite the
failed surface.

During the FDI tests, the flaps are not commanded until reconfiguration is
initiated. Therefore, flap activity signifies that the FDI has found a failed surface,
calculated the new gain matrix and initiated the reconfiguration. Also, the
sample rate of the FDI is 28.5 Hz. The FDI requires a minimum of three sample
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periods (about 100ms) to detect a failure, while the mixer gain calculation takes
about 70ms. Therefore, the shortest amount of time possible for the FDI and
reconfiguration is about 170ms.

Failed Left aileron:

A representative set of time histories for the case of failed aileron are
shown in Appendix C, Figs. C.14 - C.17. In these traces, the introduction of the
failure of the left aileron is marked by the initiation of the command (from the
failure emulator) of left aileron to zero degrees. The commands during these
traces are in response to a pitch and roll command. The time for detection is equal
to the difference between the beginning of the activity of the flaps and the
"failure” command to the aileron, minus the gain matrix calculation time (about
T0ms).

The total SRFCS time is difficult to accurately determine from the strip
chart recordings. However, this time is relatively small and appears to be about
200ms. This would indicate about 130ms for the FDI time. No appreciable
transients appear since the URV dynamics are much too slow to be affecied by this
small detection time. For the most part, the flaps are commanded to fill the roll of
the failed aileron. The somewhat oscillatory roll and pitch rate can be attributed
to the fact that most of the recording was taken during a banking turn. The
elevators are called upon to generate pitch and appear to be unaffected by the
failure. The near nominal performance of the elevators is to be expected since
their gains change very little as a result the reconfiguration.

Failed Right Elevator:

Appendix C, Figs. C.18 - C.22, show a typical right elevator failure time
history plots. Like the previous FDI case, this failure is inserted during a rather
large maneuver. The URV is being driven by large pitch and yaw commands
when this failure is inserted. The relatively large deflection angles neceded 10
respond to these commands cause the FDI system to detect quickly. From the strip
charts, the detection time is measured as the difference between the time of
initiation of the simulated failure (the zero command to the right elevator) and
the time that the flaps begin to respond, less the gain calculation time. Again, the
time to detect the failure appears to be between 100ms and 200ms.

30




The clevator recordings show that both elevators were beginning (o
decrecase in magnitude, since the desired mancuver was nearly complete when the
failure occurred. The failure forced the left elevator to respond to the feedback
error immediately. As soon as the detection occurs, the flaps begin to aid the

ailerons in reducing the roll rate (since the roll axis was not commanded).

The importance of reconfigurable flight controls depends on severity of
surface failures/battle damage, the dynamics of aircraft, and the flight condition
of the aircraft. For some aircraft, impairments require immediate corrective
action. However, the dynamics of the URV are relatively slow and the pilot is able

to fly the aircraft with failed surfaces. Therefore FDI response time is not critical.
There is a trade-off between the detection threshold levels and the Pfa' To

reduce the Pfa’ the thresholds must be large. This also means the surfaces must

have large deflections to trip the FDI.

During steady flight, a failure (on any aircraft) may not be immediately
detected if the surface is lightly loaded. There must be activity for detection to
occur. Thus, those failures which are not immediately detected are not

necessarily detrimental to system performance.
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7.0 Conclusions

The URV flight test of a Self-Repairing Flight Control System (SRFCS) coded
in Ada, was onc of the first tests of an air vehicle with part of its inner loop
control system coded in Ada, and one of the first flight tests of a Control
Reconfiguration System. This project provided a basis for understanding the pros
and cons of both SRFCS and Ada coded flight control.

The FDI worked well for large maneuvers due to the large signal to noise
ratio. However, the thresholds had to be set large to prevent false alarms.
Because the thresholds were large, the maneuvers used to test the FDI had to be
large also. Therefore, to show the FDI working, it was started while the URV was
aggressively maneuvering. ‘The need for high thresholds can be attributed to a
variety of difficulties including; 1) inadequacy of the actuator model dynamics, 2)
improper sampling rate used to digitize the actuator model, and 3) asynchronous
operation of the ground based SRFCS functions and the on-boa.d flight computer.

One difficulty with test of any FDI method concerns the adequacy of the
failure scenarios considered, as well as the fidelity of their mechanization. For
the URV flight test, the failure modes and their mechanization were chosen only
because they simplified SRFCS mechanization. This failure scenario topic
deserves considerably more eoffort in any future work.

The benign nature of the URV provided a good platform for test and
demonstration of Self-Repairing Controls and the control mixer worked well for
most maneuvers which were considered. However, the gains found by the mixer
were not always the most logical for recovering system performance. There was a
tendency for the mixer to provide gains that would cause surfaces to oppose each
other and cventually saturate. However, this was primarily due to inadequate
control effector modelling in the state equation over the range of states and
surface deflections encountered.

The B matrix of Eqn. 3.2 is derived assuming small perturbations and
linearity. This assumption is, for the most part, valid. However, for the yaw rate
equation, these assumptions are largely violated. Although the constant B matrix
of Eqn. 3.2 seems adequate for most of the states for the entire flight envelope, the
entries in the yaw rate row change magnitude and sign during maneuvers. This
was the reason for the large gains generated for the failed rudder case and
resulted in the decision not to flight test the SRFCS for the failed rudder case.
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The lack of a redundant yaw control surface was a problem for the URV and
is typical of modem fighter aircraft. However, alternative yaw authority is often
available. The real difficulty is plant identification, to determine the source of
the authority, and its intelligent use by the SRFCS algorithm. The URV with flaps
may have had sufficient yaw control power (throughout its envelope) from
ailerons and flaps, to deal with rudder failures. The problem was identification of
the yaw rate control effects of the surfaces for more than a narrow operating
region, and then best using this plant information to fulfill the command without
surface saturation. The identification and intelligent use of drag induced yaw
authority is one of the most difficult problems involving SRFCS.

Because the control mixer used the B matrix to generate new gain matrices
(after failures), the gains reflect the errors in the model representation. If the
model were updated during flight, the results would be much better. However,
this would require the addition of an on-line model identification routine. Also,
the need to update the mixer gain matrix based upon distance to maximum
deflection of each surface (to prevent saturation of surfaces) would require the
pseudoinverse calculations whenever the deflections of the surfaces change
enough to affect performance. In all, these requirements create a larger
computational burden and increase the problem complexity beyond the budget
and schedule of this first SRFCS flight test on the URV.

The task of SRFCS implementation on the URV was aided by three factors: 1)
availability of "off-the-shelf" hardware, 2) the use of Ada for development, and 3)
test on an unmanned vehicle.

The processing hardware available at the time of the flight test was
sufficiently advanced to easily perform all the SRFCS functions without affecting
the URV dynamics. The control mixer (taking about 70ms) and the FDI (taking
about 100ms) were not able to work within one time step (FDI requires more than
one time step in general), however the tasks were able to run fast enough to
prevent noticeable effects in the time histories of the flight test.

Ada contributed during algorithm implementation primarily by assisting
code complexity management. Even for a small flight test project, the number of
people and software involved made hierarchical procedure support, strong typing
and HOL interrupt handling very useful language characteristics.

Because this project used an unmanned aircraft, most safety issues

associated with manned flight test were not applicable. This simplified all aspects
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of the flight tests including hardware selection and design, software required and
flight test planning.

The wuse of unmanned vehicles and Ada, for studying complex, safety
critical algorithms, have proven useful during the Ada implemented SRFCS study.
Many issues associated with SRFCS, including stability changes, pilot notification
of status, failure/damage scenarios, model identification, nonlinear aircraft

characteristics and computational requirements need further investigation.
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Appendix A

Control Mixer Gain Calculations

This appendix includes matrices and some of the Malrixx

to calculate the control mixer gain matrices for left side failure scenarios.

matrices refer to left

calculations uscd
All

side failures. (The gain matrices for the right side failurcs

are very similar.) The nomenclature is defined below.

Ko ==
Boo ==
Bor ==
Bie ==
Bia ==
Bir ==
Kie ==
Kia ==

Kir ==

The following

the nominal mixing gain matrix

nominal control authority matrix

nominal control authority for failed rudder
failed elevator control authority matrix
failed aileron control authority matrix
failed rudder control authority matrix
failed elevator gain matrix

failed aileron gain matrix

failed rudder gain matrix

section of data is that which would result with no flaps and

no bogus (zeroing of elements) modifications to the B matrix.

[ -
1. 0. 0.
1. 0. 0.
Ko = 0. 1. 0.
0. -1. 0.
0. 0. 1

(A.1)
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Bie =

Bia =

™ =
-0.0034 -0.0034 -0.0022 -0.0022 0.0000

-0.5812 -0.5812 -0.0481 -0.0481 0.0000
Boo = 0.0000 0.0000 0.0000 0.0000 0.0016
0.2455 -0.2455 0.6697 -0.6697 0.0554

L-0.0130 0.0130 -0.0428 0.0428 -0.1789

(A.2)

0.0000 -0.0034 -0.0022 -0.0022 0.0000
0.0000 -0.5812 -0.0481 -0.0481 0.0000
0.0000 0.0000 0.0000 0.0000 0.0016
0.0000 -0.2455 0.6697 -0.6697 0.0554
0.0000 0.0130 -0.0428 0.0428 -0.1789

(A.3)

-0.0034 -0.0034 0.0000 -0.0022 0.0000
-0.5812 -0.5812 0.0000 -0.0481 0.0000
0.0000 0.0000 0.0000 0.0000 0.0016
0.2455 -0.2455 0.0000 -0.6697 0.0554

L—0.0130 0.0130 0.0000 0.0428 -0.1789

(A4)
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pra—

Bir =

Now to avoid rank deficiency, eliminate the zero column of Bie.

<> bie=bie(1:5,2:5)

-0.0034
-0.5812
Bie = 0.0000
-0.2455

0.0130

-0.0034 -0.0034
-0.5812 -0.5812
0.2455 -0.2455
-0.0130 0.0130

-0.0022
-0.0481
0.0000
0.6697
-0.0428

<> kie=inv(bie'*bie)*bie’'*boo*ko

Kie =

g

2.0000 0.0000 0.0000

0.3679
-0.3678

-0.0307 0.0000 1.0000

39

-0.0022 -0.0022
-0.0481 -0.0481
0.6697 -0.6697
-0.0428 0.0428

1.0000 0.0000
-1.0000  0.0000

-0.0022 0.0000 ]

-0.0481 0.0000
0.0000 0.0016
-0.6697 0.0554
0.0428 -0.1789

(A.5)

(A.6)

(A7)




The above Kie matrix has rows corresponding to right elevator, left aileron,
right aileron and rudder.
Now, as above with the Bie matrix, the Bia matrix is modified.

<> bia=[bia(1:5,1:2),bia(1:5,4:5)]

Bia =

-0.0034 -0.0034
-0.5812 -0.5812
0.0000 0.0000
0.2455 -0.2455

-0.0022 0.0000
-0.0481 0.0000
0.0000 0.0016
-0.6697 0.0554

-0.0130 0.0130 0.0428 -0.1789
(A.8)

<> kia=inv(bia'*bia)*bia'*boo*ko

1.0000 2.7153 0.0000
1.0000 -2.7151 0.0000
0.0000 -0.0024 0.0000

Kia =

0.0000 0.0833 1.0000

= ———

(A9)

The above K matrix has rows representing left elevator, right elevator,
right aileron, and rudder.

Now Bir is modified. In the case of the B matrix for rudder calculations, the
B row of the matrix is removed to remove singularity and maintain conformal

matrices.
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E0.0034 -0.0034 -0.0022 -0.0022

Bir = -0.5812 -0.5812 -0.0481 -0.0481

0.2455 -0.2455 0.6697 -0.6697
-0.0130  0.0130 -0.0428 0.0428

e

<> bor=[bor(1:4,1:4),bor(1:4,7)]

-0.0034 -0.0034 -0.0022 -0.0022 0.0000

B -0.5812 -0.5812 -0.0481 -0.0481 0.0000
or =
0.2455 -0.2455 0.6697 -0.6697 0.0554

-0.0130 0.0130 -0.0428 (.0428 -0.1789

ey

<> kir=inv(bir)*bor*ko

1.0000 0.0000 -32.5982

1.0000 0.0000 32.5982

Kir =
0.0000 1.0000 11.9913

0.0000 -1.0000 -11.9913

-

|

(A.10)

(Aan

(A.12)

The Kir matrix shown above has rows of left elevator, right elevator, lcft

aileron and right aileron.
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The next set of matrices that follow are those that result from adding flap
effects to the B matrices and performing the calculations as above. The no-fail

gain matrix does not use the flaps. Therefore the Ko matrix is

p— —

S | and
e L e e e e

(A.13)

p— —

0.0000 -0.0034 -0.0022 -0.0022 -0.0040 -0.0040 0.0000
0.0000 -0.5812 -0.0481 -0.0481 -0.0660 -0.0660 0.0000
Bie = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016
0.0000 -0.2455 0.6697 -0.6697 0.6221 -0.6221 0.0554

LO.OOOO 0.0130 -0.0428 0.0428 -0.0403 0.0403 -0.1789

(A.14)

<> kie=bie'*inv(bie*bie')*boo*ko
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Bia

Kie =

-0.0034 -0.0034
-0.5812 -0.5812
0.0000 0.0000
0.2455 -0.2455
-0.0130 0.0130

0.0000

5.7599

0.0000

0.0000

1.9603 -0.0038

1.0759

-3.9942 -0.9049
-5.3321 -0.0359
43947 -0.0549

0.0000

0.0000 -0.0022
0.0000 -0.0481
0.0000 0.0000
0.0000 -0.6697

0.0000 0.0428

<> kia=bia'*inv(bia*bia')*boo*ko

43

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

-0.0040
-0.0660
0.0000
0.6221
-0.0403

-0.0040 0.0000
-0.0660 0.0000
0.0000 0.0016
-0.6221 0.0554

0.0403 -0.1789

(A.15)

(A.16)




1.0012 0.1453
0.9985 -0.1313
0.0000 0.0000
Kia = 0.0135 -0.6239
0.0032 0.8517
-0.0104 -0.5205
0.0000 0.0000

Bir =

L

<> bor=[boo(1:2,1:7);boo(4:5,1:7)]

-0.5812 -0.5812 -0.0481 -0.0481

Bor =
0.2455 -0.2455 0.6697 -0.6697

b

<> kir=bir'*inv(bir*bir’)*bor*ko

44

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

-0.0034 -0.0034 -0.0022 -0.0022 -0.0040 -0.0040
-0.5812 -0.5812 -0.0481 -0.0481 -0.0660 -0.0660
0.2455 -0.2455 0.6697 -0.6697 0.6221 -0.6221
-0.0130 0.0130 -0.0428 0.0428 -0.0403 0.0403

-0.0034 -0.0034 -0.0022 -0.0022 -0.0040 -0.0040 0.0000
-0.0660
0.6221 -0.6221

-0.0130 0.0130 -0.0428 0.0428 -0.0403 0.0403

-0.0660 0.0000

(A.17)

(A.18)

(A.19)




0.9996 0.0988 -30.7668
0.9996 -0.0988 30.7668
0.0175 0.5086 2.8785
Kir =
0.0175 -0.5086 -2.8785

-0.0093 0.4901 9.0873

-0.0093 -0.4901 -9.0873

(A.20)

The above Kir matrix has rows corresponding to left eclevator, right
elevator, left aileron, right aileron, left flap and right flap.

Note that in the above Kie matrix which includes the flaps, that the valucs
in the first column are rather large in comparison to the Kie matrix which docs
not include flaps. This is due to the force fight between the flaps and ailerons.

The cases of failed ailerons did not zero any elements in the B matrix,
therefore the values flown are the values shown above (except for somc sign
changes). However, the gain matrices that were flown for the elevator failure
cases were derived with B matrices that had some elements zeroed. Therefore the
gain matrix for the left elevator failure which flew (shown below) is different
from that shown above.
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— 7
0.0000 0.0000 0.0000

1.9852 -0.0025 0.0000
0.2568 0.9812 0.0000
Kie = -04709 -1.0179 0.0000
-0.0011 0.0113 0.0000
0.1314 0.0111 0.0000

0.0000 0.0000 1.0000
L. -

(A.21)

The values in the above gain matrix are reduced due to the zeroing of thc B

matrix elements.

The gains that result from if linkage ratios are considcred as part of the
control matrix are the gain matrices that follow. (These matrices have zcrocd B

matrix values as was done for the flight tested matrices.)
1.0029 -0.2237 0.0000 i
0.9964 0.2010 0.0000
0.0000 0.0000 0.0000
Kia = -0.0208 -0.6475 0.0000
-0.0048 0.8462 0.0000
0.0159 -0.5025 0.0000
0.0000 0.0000 1.0000

(A.22)
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Kie

—
0.0000 0.0000

1.9656 0.0039
-0.0713 0.9814
0.3899 -1.0177
-0.0550 0.C'il
-0.1390 0.0110
0.0000 0.0000

47

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

(A.23)




Appendix B
Simulation Time Histories

This appendix shows time histories for the nominal (without surface
failures) URV for pitch, roll, and yaw commands using the linear small
perturbation model given in Eqn. 2.1 and matrices defined in Eqns. 3.1 and 3.2.
The inputs to the model are unit steps and the non-unity magnitudes of the output
variables are due to the system gain. Each set of traces indicates responsc to a
single step input while the other two commands are zero and only those output

variables that displayed activity are included in these figures.
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Appendix C
Flight Data Time Histories

This appendix shows a few of the time history strip charts taken during the
flight test to record the activity of the states and surfaces of the URV. Only traces
for states and surfaces which are significant (in terms of SRFCS) are shown. The
charts are labeled to note the state or surface represented, the direction of

increasing time, the time scale, the units, and denote a point in time which is
common for each plot of a particular maneuver (to).

57




No Fail, Pitch

time

T Increasing

T D 025 sec
L] -t

0

58




No Fail Pitch

increasing
time

—_> 0.25sec

-t

Fig. C.2

59




| o Fail, Roll

Civeasaae :
Serdiesariesana adae
AL sesrasne

sesne N
R TRt TET IR

Cevdiererioaie

Ivetsas e
M
100

sessivieates
Bresiievavenye
Neetliaertisazerts
Piesann

Vlideriaissinsead e
Clagsinrarrenacer

PSSR

: nitlt increasing
Y Y time

0.25 sec

il

ih
veaserssrrred:
P IIt Iy

all measurements in
degrees or deg/sec
Fig. C.3

60




No Fail, Roll

-15 +50 -S0 +15 ~-15

(o]
.lv
2333
4

AR | - q = -
-
-
- B =
- B os
- -
¥
- X
5 H s ]
- satesesssives e i st
: i S
4> 4 o
+ : -4 v .
-
: - % S
.. - - 3 3
- 3 . E -
3 - ! B 3
- -
- .
- sy
R H
- L "o u
:
vacaned - o st m H
cesa oo dd + H :
iy L T e o
i ieies iy
as : 38
H : tfefre H -
c - assh H
5 H
* M
S ] |
! : i
TR S HEH
s ST el 4 BHHEHEHHE et 4 i HEHH
pd - P
: # e 3 4
4
+ Crpppeasds obpb b0 L ERRTTRITERITTLLTIITTIMEEPRRTIIRRIRIIESIE SN 4 IOt
hainiEhamn : 45t % HE i
e rodihed - 1T
veassns o a - - 1esess 1t
messe 2 seiileslisenenasea H
siitem B "
H B et
phod ceves : ..
1e
:
ssee .34 :E
18 s 4
n. . o
.s
Rt 1 B2
L | 28 - -
¥ o - b sot E
1t oes
- v » o
> ¥ 3O e DA N PSS SN 1S D
- . -
-
- e g
E. :
s
:
<
- st : :
iass 3 AT i :
: 8] |- il “
. o s
< - 3 it
S increasmg
i time
B seasess
. . B M J
- :
paet
- - e :
- 3
- iasee - —
B H
- ;4 essesmsnsj
st {__> 0.25sec
. - Sppapinl . ——
-
..... : HE
s . BE - : <
I niE b - 4 soen H 5
RE | :m" :
- fre=s - HiHE H 9
- .
s s 13135 35
: : i : : t H -
| H
i . i : :
e
: e tHHHE 3 : T
.“ : . .
26 00684 19803 8430800010 | AR NINNLIRIREArEIDS 1 1090aB4088050 BINNSHELINNINNIRNINNS
sl i ) B S g

all measurements n 0

degrees or deg/sec

Fig.C.4

61




L4 L4 v

¢ ¢ ¥

+25

com

¢odt1e
'

yonas

No Fail, Yaw

increasing
time

0.25 secC

it

fioeseeds

Fig. C.5

62

HI R

Tt

all measurements in
degrees or deg/sec




No fail, Yaw

-15

+15

=25

+25

-50

T TsTITITIIIIIN
vaRvare

+50

increasing

time

) 0.2S sec

o —

-~

] ] ) L) L] \J Ll T v ]
:
H :
] H
tH :
T H 53 3
3
u" m 2
3 3+
: $H
: 5T it 3
= "o nw -
i i i H ot
: H H
u 3 33
B : e
HHIT
=3:33s 2 e
B % 3 i
B33 H % 3t H $3ails
11 THIHIRTE vaeygss 1 32 1l 11t s agspeenassiygs .23y
23 H 4 133 HE ad H H
h i : : T T ‘
: ﬁ 1 3 3331333223358
3 HEH i 3
11 ¥ o o Tt 23 . 1522331 y & 3
83 ot B 3 H 313 Wmm t H nun»unnﬂ-ﬁéur:: tH+H
. . [ . [ [] ] ] ] A s 4 A N | A A.. -4 4 i i
L L 4 i L A e - ' L 1. L ] ' 'y
L L] ¥ v L] L L] A L v LI LIS L] L) L) LE v
: 333533333233233535 38 R ) F s33ss
: o2 sssa2iness T 1t o 3 yeasoSsoaializg 17t e sametvocass
3 T n" T® sanmen 2 sow
B H 23382888 H : %
33 - 4 3 se
W EHEHT : i
3t sTriiist : T H
S B S :
: ot b4
: H
uuuuuu m e 3 W
: 3221
133 i3 FHHE : 3t
:
+ 3t :
11 e3mass H 2ttt taisan
HH 3 i

sracy

1t

: H
: EH 3 :
-3 b o H
Hil FIEHIEN st i G RE i
* R H R R R B R
¥ i HH T R Y
........ I HE T
1581 113 HH HH
131
..... etiiziilii
:
Hi i
H
SRR TN U U U F U S § A J =t i U B T N U S R

all measurements in
degrees or deg/sec

Fig. C.6

63




Left Elevator Failed, Pitch

+15 =15 +25 =25
] 1 1
L - q
AL s -
r : com
> ir | 4
i 4+ 9
- .L ]
- J
P
- 1- T
! T )
o *. )
- 1 t )
- T : )
- T i}
- J- )
- -
| - -
T increasing
T - time
s ]’ )
i : : : _—
i ‘t T __> 0.25sec
= A it N
] t ] --—
- ails T t“u‘ : )

all measurements in
degrees or deg/sec

64




Left Elevator Failed, Pitch

+50

v ¥ AR

v v L4

4

65

ittt
1

stsacaiss

1t

T

3t

1t
I

11T

A A

increasing
time

"> 0.25sec
il t

all measurements in
degrees or deg/sec

0




I I
ahahin

66

Left Elevator Failed, Pitch

"o pys -

fad
3T

i

15

siteas 3

all measurements in
degrees or deg/sec

increasing
ttme

0.25 sec¢

t




Right Aileron Failed, Roll

~45
p 1
com |
-
-
1
- increasing
. time
"> 0.2Ssec
t
0
all measurements in
degrees or deg/sec
Fig. C.10

67




Right Aileron Failed, Roll

Caet e

v et
fissicteirerintas

. T increasing
time

0.2% sec

all measurements in
degrees or deg/sec

68




+15

. ER e EL

Right Aileron Failed, Roll

+10 -10  +10 -10

- 4 4
- i ]
i i - T HE T ]
et i - 1 4 : <
H - Pt 3
. SEnd - : T FE )
HEEE E . i i .
i A i i 1 4
352 - s :
1esast, 11t . bue "ﬁ"” * = 1 o
- I J
E K- - . L o :ﬁ: b
- B -  laseassesss
: 1 - 4+ -
it - ]
: .- T
: - . -
. 3 - -
o L o o
.k + 1 Increasing
- 4 1 time
o JP -
-t T 1
1t 4+ -
It + - —
i | 1 .V 025sec
S :
ir T [ )
s it 4+ G - to
. 4+ T H i ©
: ' a i .
: 11 : g T Bt
i 1t i +

all measurements in
degrees or deg/sec

Fig.C.12

69




Right Aileron Failed, Roll

*15 -15

eieeserrace
s

i increasing
. i - time

— 0.25 sec

seanrsy

sasiaisnned
“vsanpisee
o

A 4_ t
- 5
0

all measurements in
degrees or deg/sec

eoes

70




71

increasing
time

: > 0.25 sec

to

all measurements in
degrees or deg/sec




FDI Left Aileron Failure

~10 +10 -10  *50 -50

FL

T -
-> - -
-+ - -
- - -
-r - -

-

-

A
v
1 i
v ¥y
.

el
Lo LA |
L} [

'l
L RS BN ¥ Ll
=~

1 1

. . -
<+ -r’ -
- -+ -
.~ E -

i
14
i

L3 LA

- 4 - increasing
time

-+ -+ -
4 4 .
L L o

"> 0.25sec

T T -t
:
0
) .
- -L- -
i -+ H H -’ E -
B AT Jirissssine
. L o ‘eoe - -

all measurements in
degrees or deg/sec

Fig. C.15

72




Saseess

teairen
vreeraririviss

evarires
HH

Fig.C.16

73

searcans

increasing
time

: > 0.25sec

-4—120

all measurements in
degrees or deg/sec




FDI of Left Aileron Failure
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FDI for Right Elevator Failed
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Appendix D
Ada Code

The URYV flight test of a Self-Repairing Flight Control System (SRFCS) coded

with SYSTEM,SD_TYPES, TEXT_IO,FDI_AUX,RECM;
use SYSTEM,SD_TYPES,FDI_AUX;

procedure FD_USER is

-- Modified Wednesday June 7, 1989 for SD-Ada
Wednesday May 30, 1989 Added reconfiguration transient suppression code

-- memory set as Integer 2946, 7122, 1500, and 20000 starting at

-- 16#00100030# or hexidecimal B82, 1BD2, 5DC, 4E20, and 10 to produce
-- 0.2946, 7.1218, 15.0, 0.2, and 10

subtype INDX_TYPE is Integer range 1 .. 4;
KK : INDX_TYPE;

OFFSET : constant Integer := 2048;
FAILURE_STATE : Integer;
JAGO : Integer;
Transient_Cycles : Integer;
Transition_Count  : Integer;
Fdi_ldling : Integer;
Fdi_Running : Integer;
Fdi_Looping - : Integer;

RESET_BUTTON : CHARACTER;
MIXER_GAINS_STATE : CHARACTER;
SURFACE_DATA_STATE : CHARACTER;
TEMP_DATA_STATE :CHARACTER;
INTERRUPT_STATUS : CHARACTER;
ENABLED : CHARACTER := ASCll.eot;
DISABLED : CHARACTER := ASCILnul;

SURF_CMD_DATA : amray (1 .. MAX_SURFS) of Integer;
SURF_POS_DATA : array (1 .. MAX_SURFS) of Integer;
COEFFiCIENTS : array (INDX_TYPE) of Integer;

MIXER_GAINS : URV_MATRIX(1 .. MAX_SURFS, 1 .. 3);
GAIN_MATRIX : MATRIX(1.. MAX_SURFS, 1..3),

for FAILURE_STATE use at SYSTEM.CONVERT_ADDRESS("00100016");

for RESET_BUTTON use at SYSTEM.CONVERT_ADDRESS("00100014");

for MIXER_GAINS_STATE usc at SYSTEM.CONVERT_ADDRESS("00100012");
for SURFACE_DATA_STATE use at SYSTEM.CONVERT_ADDRESS("00100010");
for INTERRUPT_STATUS use at SYSTEM.CONVERT_ADDRESS("00FF0103");

for SURF_CMD_DATA use at SYSTEM.CONVERT_ADDRESS("100020");
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for COEFFICIENTS use at SYSTEM.CONVERT_ADDRESS("100030");
for Transition_Count use at SYSTEM.CONVERT_ADDRESS("100038");

for Fdi_ldling use at SYSTEM.CONVERT_ADDRESS("10003A");
for Fdi_Running use at SYSTEM.CONVERT_ADDRESS("10003C");
for Fdi_Looping use at SYSTEM.CONVERT_ADDRESS("10003E");

for SURF_POS_DATA use at SYSTEM.CONVERT_ADDRESS("100040");
for MIXER_GAINS use at SYSTEM.CONVERT_ADDRESS("100060");

EFFECTIVE_SURFACES :BOOLEAN_ARRAY(1.. MAX_SURFS);
UN_FAILED_SURFACES : BOOLEAN_ARRAY(1 .. MAX_SURFS),
MODELED_ACT_RATE : LINEAR_ARRAY(1 .. MAX_SURFS);
FILTERED_SURFACE_CMD : LINEAR_ARRAY(1 .. MAX_SURFS);
FILTERED_SURFACE_POS :LINEAR_ARRAY(1 .. MAX_SURFS),
FILTERED_MODEL_RATE :LINEAR_ARRAY(1 .. MAX_SURFS);
FILTERED_SURFACE_RATE : LINEAR_ARRAY(1 .. MAX_SURFS);
FAULT_WINDOW : LINEAR_ARRAY(1 .. MAX_SURFS);
Past_Surface_Cmd : LINEAR_ARRAY(1 .. MAX_SURFS);
Delayed_Model_Rate : LINEAR_ARRAY(1 .. MAX_SURFS);

SURFACE_COMMAND : LINEAR_ARRAY(1 .. MAX_SURFS);
SURFACE_POSITION : LINEAR_ARRAY(1 .. MAX_SURFS);
PAST_SURFACE_POS : LINEAR_ARRAY(1 .. MAX_SURFS);
DERIVED_SURFACE_RATE : LINEAR_ARRAY(1 .. MAX_SURFS)
CONV_FACTOR : LINEAR_ARRAY(1 .. MAX_SURFS) =

( 0.00391, 0.00391, 0.00586, 0.00586, 0.00586, 0.00586, 0.01220 );

APU_COEFF : LINEAR_ARRAY(INDX_TYPE);
AMPL : LINEAR_ARRAY(INDX_TYPE) := ( 0.0001, 0.001, 0.01,
0.00001);

FAULT_DETECTED : BOOLEAN;
FAULT_QUEUE : BOOLEAN;
NOT_DONE : BOOLEAN;

No_Faults : BOOLEAN;

Stable : BOOLEAN;
ELEMENT : APU_FLOAT;

START_TIME : APU_FLOAT :=0.0;
STOP_TIME : APU_FLOAT :=0.0;
ELAPSED_TIME : APU_FLOAT;

RATE_DT : constant APU_FLOAT :=28.0;
XMPL : constant APU_FLOAT := 256.0;

package Flt_lo is new TEXT_IO.Float_lo (APU_FLOAT);
task PC_INTERFACE is

entry ACQUIRE_FDI,

for ACQUIRE_FDI usc at SYSTEM.CONVERT_ADDRESS("00000208");
pragma PRIORITY (15);
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end PC_INTERFACE;
task body PC_INTERFACE is
procedure DETECT_FAULT is

begin

-- convert the SURFACE_COMMAND's and SURFACE_POSITION's from Integer
-- format to APU_FLOAT format

for II in SURF_CMD_DATA'range(1)
loop
CMD_A:
begin
SURFACE_COMMANIDID) :=
CONV_FACTOR(II*APU_FLOAT( SURF_CMD_DATA(I) - OFFSET );

exception

when others =>
- . SURFACE_COMMAND(I) :=FILTERED_SURFACE_CMD(I1);
null;
end CMD_A;
end ioop;

for I in SURF_POS_DATA'range(1)
loop
POS_A:
begin
SURFACE_POSITION(II) :=
CONV_FACTOR(II)*APU_FLOAT( SURF_POS_DATA(II) - OFFSET );
exception

when others =>
- SURFACE_POSITION(I) := FILTERED_SURFACE_POS(II);
null;
end POS_A,;
end loop;

- SURFACE_DATA _STATE :='D’;

-- smooth the SURFACE_COMMAND's and SURFACE_POSITION's calculate the
-- rate and smooth it

- LOW_PASS_FILTER(UN_FILTERED => SURFACE_COMMAND,
- FILTERED => FILTERED_SURFACE_CMD);

LOW_PASS_FILTER(UN_FILTERED => SURFACE_POSITION,
FILTERED => FILTERED_SURFACE_POS);

RATE_DIFFERENCER(MULTIPLIER => RATE_DT,
PRESENT_POSITION => FILTERED_SURFACE_POS,
PREVIOUS_POSITION => PAST_SURFACE_POS,
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RATE => DERIVED_SURFACE_RATE);

-- LOW_PASS_FILTER(UN_FILTERED => DERIVED_SURFACE_RATE,
FILTERED => FILTERED_SURFACE_RATE);

ACTUATOR_MODEL(Surface_Not_Failed = UN_FAILED_SURFACES,
Model_Act_Rate => MODELED_ACT_RATE,
Previous_Act_Cmd => Past_Surface_Cmd,
Present_Act_Cmd => Surface_Command,
Measured_Act_Pos => Filtered_Surface_Pos,

Coef => APU_COEFF),

-- smooth the Modeled_Actuator_rate
-- LOW_PASS_FILTER(UN_FILTERED => MODELED_ACT_RATE,
FILTERED => FILTERED_MODEL_RATE);

if Stable then

-- **** Modified Tuesday June 6, 1989 for on-going observations ****
-- Failure Detection Identification algorithm
-- ACTUATOR_FDI(SURFACE_NOT_FAILED => UN_FAILED_SURFACES,
MODEL_ACTUATOR_RATE => Delayed_Model_Rate,
MEASURED_ACTUATOR_RATE => FILTERED_SURFACE_RATE,
FDI_WINDOW => FAULT_WINDOW,
-- COEF => APU_COEFF,
FAULTY_ACTUATOR => FAULT_DETECTED),

-- Failure Detection Identification algorithm
ACTUATOR_FDI(SURFACE_NOT_FAILED => UN_FAILED_SURFACES,
MODEL_ACTUATOR_RATE => Delayed_Model_Rate,
MEASURED_ACTUATOR_RATE => DERIVED_SURFACE_RATE,

FDI_WINDOW => FAULT_WINDOW,
COEF => APU_COEFF,
FAULTY_ACTUATOR => FAULT_DETECTED);,

if FAULT_DETECTED then
-- The great ALLAH has granted us a failure
-- set the FAILURE_STATE word
FAILURE_STATE = 0;
JAGO =1;
for Il in UN_FAILED_SURFACES'range loop
if not UN_FAILED_SURFACES(II) then
EFFECTIVE_SURFACES(II) := FALSE;
FAILURE_STATE := FAILURE_STATE + JAGO;
end if;
JAGO :=JAGO + JAGO;

end loop;
-- Cancel any Rudder failure inserted
EFFECTIVE_SURFACES(EFFECTIVE_SURFACES'last) := TRUE;

FAULT_QUEUE :=TRUE;

Transient_Cycles := 0;
Stable := False;
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end if;

else
if Transient_Cycles < Transition_Count then
Transient_Cycles := Transient_Cycles + 1;
else
Transient_Cycles := 0;
Stable := True;
end if;
end if;

for KK in Delayed_Model_Rate'range(1) loop
-- Delayed_Model_Rate(KK) := Filtered_Model_Rate(KK);
Delayed_Model_Rate(KK) := Modeled_Act_Rate(KK);
end loop;

end DETECT_FAULT;

begin
loop
Fdi_Looping := 1;
accept ACQUIRE_FDI do
FDI:
begin

-- Fdi_Running := Fdi_Running + 1;
if NOT_DONE then
-- Interrupt timed out display message

-- INTERRUPT_STATUS := DISABLED;
TEXT_IO.Put (" TIME OUT");

TEXT_IO.New_line;

end if;

Fdi_Looping := 2;

NOT_DONE := TRUE;
if SURFACE_DATA_STATE = 'B' then

Fdi_Looping := 3;
SURFACE_DATA _STATE :='C
DETECT_FAULT;
SURFACE_DATA_STATE :='D';

else
TEMP_DATA_STATE := SURFACE_DATA_STATE;

TEXT_10.Put (" FDI_NOT_B");
TEXT_IO.New_Linc;

TEXT_IO.Put (" TEMP_DATA_STATE "),
TEXT_10.Put (TEMP_DATA_STATE);,
TEXT_10.New_Line;

TEXT_IO.Put (" SURFACE_DATA_STATE ")

TEXT_IO.Put (SURFACE_DATA_STATE);
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TEXT_lO.New_Line;
end if;

Fdi_Looping := 4;
NOT_DONE := FALSE;

exception
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

TEXT_IO.Put (" FDI NUMERIC_ERROR");
TEXT_IO.New_Line;

when others =>

TEXT_IO.Put (" ¥FDI OTHER_ERROR");
TEXT_10.New_Line;

end FDI;
end ACQUIRE_FDI,;

end loop;

exception
when others =>
TEXT_IO.Put (" OTHER_ERROR: PC_INTERFACE");
TEXT_IO.New_Line;
end PC_INTERFACEF:

begin
Fdi_Idling := 0;
Fdi_Running := 0;
Fdi_Looping := 0;
Stable := False;
INTERRUPT_STATUS := DISABLED;

OUTER_LOOP:
begin
RESET_BUTTON =)
FAULT_QUEUE :=FALSE;
OP_LOOP:
begin
loop
if RESET_BUTTON ="} then
RESET:
begin
-- Set initial conditions
INTERRUPT_STATUS := DISABLED;
Fdi_lgling :=0;
Fdi_Running := Q;
Fdi_Looping := 0;
Stable := Falsc;
NOT_DONE :=FALSE;
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SURF_CMD_DATA = ( others => Offset);

SURF_POS_DATA = ( others => Offset);
MODELED_ACT_RATE := (others => 0.0);
FAULT_WINDOW := ( others => 0.0);
PAST_SURFACE_POS := ( others => 0.0);
Filtered_Surface_Cmd := ( others => 0.0);
Filtered_Surface_Pos = ( others => 0.0);
Filtered_Surface_Rate = (_others => 0.0);
Filtered_Model_Rate := ( others => 0.0);
Past_Surface_Cmd := ( others => 0.0);
Delayed_Model_Rate = ( others => 0.0);

-- Wednesday April 5, 1989 reverse sign of Rt_Elevator
-- Restored Thursday July 27, 1989
MIXER_GAINS =
( 256, 0, 0),( 256, 0, 0),
( 0, 256, 0),( 0, 256, 0),
¢ 0, 0, 0), 0, 0, 0),
( 0, 0, 256));

TEXT_IO.New_Line;
for KK in APU_COEFF'range loop
APU_COEFF(KK) := AMPL(KK)*APU_FLOAT(COEFFICIENTS(KK));
TEXT_IO.Put (" COEFF (" & INDX_TYPE'IMAGE(KK) & ") =");
Flt_lo.Put (APU_COEFF(KK));
TEXT_IO.New_Line;
end loop;

ELAPSED_TIME := STOP_TIME - START_TIME;
TEXT_IO.Put(" RECONFIGURE TIME = ");
Fit_lo.Put(ELAPSED_TIME);
TEXT_IO.New_Line;

while RESET_BUTTON ="J' loop
null;
end loop;

FAILURE_STATE :=0;
EFFECTIVE_SURFACES := ( others => TRUE);
UN_FAILED_SURFACES := ( others => TRUE);
FAULT_QUEUE = FALSE;
-- No_Faults inserted Thursday June 15, 1989 to permit a
-- single fault
No_Faults := TRUE;
Transient_Cycles :=0;
INTERRUPT_STATUS :=ENABLED;

exception
when others =>

TEXT_IO.Put (" OTHER_ERROR: RESET_LOOP");
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TEXT_IO.New_Line (2);

end RESET;
end if;

if FAULT_QUEUE then
FAULT_QUEUE := FALSE;
if No_Faults then -- Start No_Faults
No_Faults := False;
- START_TIME ;= APU_FLOAT(Calendar.Seconds(Calendar.Clock));

FAULT:
begin

SLO:
begin
-- call to SLO_GI
RECM.SLO_GI(SURF_NOT_FAILED => EFFECTIVE_SURFACES,
K_I => GAIN_MATRIX);

while MIXER_GAINS_STATE /= "H' loop
null;
end loop;
exception
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

TEXT_IO.Put (" NUMERIC_ERROR: SLO");
TEXT_IO.New_Line;

when others =>

TEXT_IO.Put (" OTHER_ERROR: SLO");
TEXT_IO.New_Line;

end SLO;

MIXER:
begin

MIXER_GAINS_STATE = 'E;

-- Convert the Re-configuration matrix (GAIN_MATRIX) to sixteen-bit
-- Integer format and write into the (MIXER_GAINS) matrix

for II in GAIN_MATRIXfirst(1) .. GAIN_MATRIX'last(1)

loop
for JJ in GAIN_MATRIX'first(2) .. GAIN_MATRIX'last(2)
loop
ELEMENT = XMPL*GAIN_MATRIX(11,1J);

-- Limit -32760.0 < ELEMENT < 32760.0
if ELEMENT > 32760.0 then
MIXER_GAINS(LJJ) := 32760,
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elsif ELEMENT < -32760.0 then
MIXER_GAINS(LJJ) := -32760;
else
MIXER_GAINS(ILJJ)) :=
Intege(ELEMENT);
end if;
end loop;
end loop;
-- Thursday July 27, 1989 reverse sign of Lt_Aileron,
-- Lt_Flap, and Rt_Flap

for lIin4 .. 6
loop
for JJ in GAIN_MATRIXfirst(2) .. GAIN_MATRIX'last(2)
loop
MIXER_GAINS(ILJ)) := -MIXER_GAINS(IL1J);
end loop;
end loop;

MIXER_GAINS_STATE := 'F;
exception
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

TEXT_IO.Put (" NUMERIC_ERROR: MIXER");
TEXT_IO.New_Line;

when others =>

TEXT_IO.Put (" OTHER_ERROR: MIXER");
TEXT_IO.New_Line;

end MIXER;
exception
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

TEXT_IO.Put (" NUMERIC_ERROR: FAULT_LOOP");
TEXT_IO.New_Line;

when others =>

TEXT_IO.Put (" OTHER_ERROR: FAULT_LOOP");
TEXT_IO.New_Line;

end FAULT;
-- STOP_TIME := APU_FLOAT(Calendar.Scconds(Calendar.Clock));

end if; -- End No_Faults
else

NO_FAULT:
begin
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while MIXER_GAINS_STATE /= "H' loop
null;
end loop;

MIXER_GAINS_STATE =T,

exception

when others =>

TEXT_IO.Put ("OTHER_ERROR: NO_FAULT_LOOP");
TEXT_IO.New_Line (2);

end NO_FAULT;
end if;

-- exit when RESET_BUTTON = 'Z';
end loop;

exception
when others =>

TEXT_IO.Put (" OTHER_ERROR: OP_LOOP");
TEXT_IO.New_Line (2);

end OP_LOOP;

exception
when others =>

TEXT_IO.Put (" OTHER_ERROR: OUTER_LOOP");
TEXT_IO.New_Line (2);

end OUTER_LOOP;
end FD_USER;
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package SD_TYPES is

type  APU_FLOAT is new FLOAT;
type SIXTEEN_BITS is new INTEGER; -- range -32768 .. 32767,
subtype ORDER is SIXTEEN_BITS range 0 .. 7;

APU_ONE : constant APU_FLOAT := APU_FLOAT(1);

APU_ZERO : constant APU_FLOAT := APU_ONE - APU_ONE;
MAX_SUREFS : constant ORDER := 7;

89




type LINEAR_ARRAY is array (SIXTEEN_BITS range <>) of APU_FLOAT;

type BOOLEAN_ARRAY is array (SIXTEEN_BITS range <>) of BOOLEAN;

type MATRIX is array (SIXTEEN_BITS range <>,SIXTEEN_BITS range <>)
of APU_FLOAT;

type URV_MATRIX is array (SIXTEEN_BITS range <>,SIXTEEN_BITS range <>)
of SIXTEEN_BITS;

type INTEGER_ARRAY is array (SIXTEEN_BITS range <>) of ORDER;

------------------- last line package SD_TYPES ------ocecemcecomaee
end SD_TYPES;

e e o e ok e o ok o sk ok e ok ok ok ok ke e ok ok ok ke ok e ok ke sk e sk sk ok ok ok sk sk ok k ok ok ko sk k k ok ke ok sk ock ok k k ok ko ke ke Xk
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use SD_TYPES;
package RECM is

procedure REDUCE_MATRIX(ABLE_SURFACE : in BOOLEAN_ARRAY;
AA:in MATRIX;
BB : out MATRIX;
ROWS : out ORDER;
COLS : out ORDER;
ROW_NOT_NIL : in out BOOLEAN_ARRAY);

procedure REPLACE_ZEROS(AA : in MATRIX;
BB : out MATRIX;
NON_ZERO_ROW :in BOOLEAN_ARRAY;
NON_ZERO_COL :in BOOLEAN_ARRAY);

procedure TRANS_A_MULT _INV(AA : in MATRIX;
BB: in MATRIX;
CC: out MATRIX;
K_ROWS : in ORDER;
L_COLS: in ORDER);

procedure A_ MULT_TRANS_A(AA : in MATRIX;
CC: out MATRIX;
K_ROWS : in ORDER;
L_COLS: in ORDER);

procedure TRANS_A_MULT_A(AA : in MATRIX;
CC:out MATRIX;
K_ROWS :in ORDER;
L_COLS:in ORDER);

prucedure 1."V_MULT_TRANS_A(AA : in MATRIX;
BB :in MATRIX;
CC :out MATRIX;
K_ROWS :in ORDER;
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L_COLS:in ORDER),

procedure CROUT_INVERSE(AA : in out MATRIX;
UU: out MATRIX;
NN : in ORDER);

procedure LUDCMP(AA : in out MATRIX;
NN : in ORDER;
INDX : out INTEGER_ARRAY);

procedure LUBKSB(AA : in MATRIX;
BB : in out LINEAR_ARRAY;

NN: in ORDER;
INDX : in INTEGER_ARRAY);

procedure A_MULT_K_BY_L(AA : in MATRIX;
RB:in MATRIX;
CC: out MATRIX;
K_ROWS :in ORDER;
L_COLS:in ORDER),

procedure SLO_GI(SURF_NOT_FAILED : in BOOLEAN_ARRAY;
K_I: out MATRIX);

---------------- last line of package RECM --e-e-cocvcncocccnnan.
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package body RECM is

procedure REDUCE_MATRIX(ABLE_SURFACE : in BOOLEAN_ARRAY;
AA :in  MATRIX;
BB : out MATRIX;
ROWS : out ORDER;
COLS : out ORDER;
ROW_NOT_NIL : in out BOOLEAN_ARRAY) is

Procedure REDUCE_MATRIX copies the AA(MAX_SURFS,MAX_SURFS) matrix
into tne BB(K_ROWS,L_COLS) matrix omitting rows consisting of

-- clements that are insignificant -NIL_VALUE < element < +NIL_VALUE

and columns representing disabled surfaces

NIL_VALUE : constant APU_FLOAT := -0.0001;
XX : APU_FLOAT;

ZERO : APU_FLOAT renames SD_TYPES.APU_ZERO;
begin
SET_ROW:
begin
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-- The BOOLEAN_ARRAY ROW_NOT_NIL is set to TRUE to record the deleted
-- ROWS for reconstituting a MAX_SURFS by MAX_SURFS pseudo-inverse
-- positions 2 and 5 are set FALSE to indicate that in the initial

-- AAMAX_SURFS,MAX_SURFS) matrix thess ROWS are zero others are
-- set TRUE

for ROW in AA'first(1) .. AA'last(1) loop

if ROW_NOT_NIL(ROW) then

Test for a ABS(AA(ROW,COL)) greater than +NIL_VALUE in any valid
-- column position

ROW_NOT_NIL(ROW) := FALSE;
for COL in AA'first(2) .. AA'last(2) loop
if ABLE_SURFACE(COL) then
XX = AAROW,COL),
if XX < ZERO then
XX :=NIL_VALUE - XX;
else
XX :=NIL_VALUE + XX;
end if;

if XX > ZERO then
ROW_NOT_NILROW) = TRUE;
end if}

exit when ROW_NOT_NIL(ROW) = TRUE;
end if;
end loop;
end if;
end loop;

end SET_ROW;

-- Copy reduced AA(MAX_SURFS,MAX_SURFS) into BB(ROWS,COLS) and set
-- ROWS and COLS to number of rows and columns

SET_BB:
declare
KK :ORDER :=0;
LL :ORDER;
begin

for ROW in AA'first(1) .. AA'last(1) loop

if ROW_NOT_NIL(ROW) then
KK =KK + 1;
LL =0;
for COL in AA'first(2) .. AA'last(2) loop
if ABLE_SURFACE(COL) then
LL :=LL+1;
BB(KK,LL) := AA(ROW,COL);
end if;
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end loop;
end if;
end loop;
ROWS :=KK;
COLS :=LL;

end SET_BB;
---------------- last line of procedure REDUCE_MATRIX ----cecmceeaaae
end REDUCE_MATRIX;

procedure REPLACE_ZEROS(AA : in MATRIX;
BB : out MATRIX;
NON_ZERO ROW :in BOOLEAN_ARRAY;
NON_ZERO_COL :in BOOLEAN_ARRAY) is

+
t

procedure REPLACE_ZEROS copies an AA(I_ROWS,J_COLS) matrix into a
BB(MAX_SURFS,MAX_SURFS) matrix and fills with ZERO the ROWS and
COLUMNS that have been tagged in the NON_ZERO_ROW and NON_ZERO_COL
-- BOOLEAN_ARRAY as being deleted

[}
L]

ZERO : APU_FLOAT renames SD_TYPES.APU_ZERO;
begin

COPY_AA:
declare
KK :ORDER :=0;
LL :ORDER;
begin

for ROW in AA'first(1) .. AA'last(1) loop

-- replace the ZERO_ROWS as indicated by the NON_ZERQO_COL BOOLEAN_ARRAY
if NON_ZERO_COL(ROW) then
KK :=KK+1;
LL:=0;
for COL in AA'first(2) .. AA'last(2) loop
-- replace the ZERO_COLS as indicated by the NON_ZERO_ROW BOOLEAN_ARRAY
if NON_ZERO_ROW(COL) then
LL:=LL + |;
BB(ROW,COL) := AA(KK,LL);
else
BB(ROW,COL) :=ZERO;
end if;
end loop;
clse
for COL in AA'first(2) .. AA'last(2) loop
BB(ROW,COL) :=ZERO;
end loop;
end if;
end loop;

end COPY_AA;
---------------- last line of procedure REPLACE_ZEROS --------------

93




end REPLACE_ZEROS;

procedure A_MULT_TRANS_A(AA : in MATRIX;
CC : out MATRIX;
K_ROWS :in ORDER;
L_COLS : in ORDER) is
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-- This procedure calculates the product of a matrix AA(K_ROWS,L_COLS)
-- multiplied by its transpose The result is returned in the square
-- matrix CC (K_ROWS,K_ROWS)

e ek ok ok 2k ok ok 3k e ok ol ak ok S e ok ok ok ke o dk ok ok sk 3k ok ke Sk sk 3k dk sk k ok ok ok ok 3 ok ok ke ok ok dk dk ko ak ak ok ok ak ok ok ok d ok 3k ko dk ok ok &
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SUM : APU_FLOAT;
ZERO : APU_FLOAT renames SD_TYPES.APU_ZERO;
begin
forIin 1.. K_ROWS
loop
forJin 1 .. K_ROWS
loop
SUM := ZERO;
forKin1.L_COLS
loop
SUM := SUM + AA(LK)*AA(J,K);
end loop;
CC(1,)) .= SUM;
end loop;
end loop;

---------------- last line of procedure A_MULT_TRANS_A ----ccocceceeee

end A_MULT_TRANS_A;

procedure TRANS_A_MULT_INV(AA : in MATRIX;
BB :in MATRIX;
CC : out MATRIX;
K_ROWS :in ORDER;
L_COLS : in ORDER) is
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-- This procedure calculates the product of a transposc matrix

--  AA(K_ROWS,L_COLS) multiplied by a square inverse matrix

-- BR(K_ROWS,K_ROWS) the result is returned in the matrix

-- CC(L_COLS,K_ROWS)
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SUM : APU_FLOAT;
ZERO : APU_FLOAT renames SD_TYPES.APU_ZERO;
begin
forJin1. L_COLS
loop
forlin 1. K_ROWS
loop
SUM := ZERO;
forKin 1. K_ROWS
loop
SUM = SUM + AA(K,))*BB(K,D);
end loop;
CC({J.,I) .= SUM;
end loop;
end loop;

---------------- last line of procedure TRANS_A_MULT_INV

end TRANS_A_MULT_INV;

procedure TRANS_A_MULT_A(AA : in MATRIX;
CC : out MATRIX;
K_ROWS :in ORDER;
L_COLS : in ORDER) is
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-- This procedure calculates the product of the transpose of a matrix
-- AA(K_ROWS,L_COLS) and the matrix The reslut is returned in the

-- square matrix CC (L_COLS,L_COLS)
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*

SUM : APU_FLOAT;
ZERO : APU_FLOAT rcnames SD_TYPES.APU_ZERO;

begin
forfin 1. L_COLS
loop
forJinl. L_COLS
loop
SUM := ZERO;
forKin 1. K_ROWS

loop
SUM = SUM + AA(LLK)*AA(K,));
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end loop;
CC(LJ) := SUM;
end loop;
end loop;

---------------- last line of procedure TRANS_A_MULT_A ---------cc-oe-

end TRANS_A_MULT_A;

procedure INV_MULT_TRANS_A(AA : in MATRIX;
BB : in MATRIX;
CC : out MATRIX;
K_ROWS :in ORDER;
L_COLS : in ORDER) is
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-- This procedure calculates the product of a square inverse matrix
--  AA(L_COLS,L_COLS) multiplied by the transpose of matrix

-- BB(K_ROWS,K_ROWS) the result is returned in the matrix

-- CC(L_COLS,K_ROWS)
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SUM : APU_FLOAT;
ZERO : APU_FLOAT renames SD_TYPES.APU_ZERO;
begin
forIin 1. . L_COLS
loop
forJin 1.. K_ROWS
loop
SUM :=ZERO;
forKin1l. L_COLS
loop
SUM = SUM + AA(LLK)*BB(J K);
end loop;
CC(1,J) = SUM;
end loop;
end loop;

---------------- last line of procedure INV_MULT_TRANS_A -----evomomeee-
end INV_MULT_TRANS_A;
procedure A_MULT_K_BY_L(AA : in MATRIX;

BB : in MATRIX;

CC : out MATRIX;

K_ROWS : in ORDER;
L_COLS : in ORDER) is
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- This procedure calculates the matrix product of a square matrix AA
--  multiplied by the (K_ROWS,L_COLS) matrix BB The result is
-- recturned in the square matrix CC (K_ROWS,L_COLS)
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SUM : APU_FLOAT;
ZERO : APU_FLOAT renames SD_TYPES.APU_ZERO;
begin
forlin 1 .. K_ROWS
loop
forJin1. L_COLS
loop
SUM :=ZERO;
forKin 1.. K_ROWS
loop
SUM := SUM + AA(LK)*BB(K,));
end loop;
CC(1,)) := SUM;
end loop;
end loop;

R et last line of procedure A_MULT_K_BY_L------c-ccuoooeee

end A_MULT_K_BY_L;

procedure CROUT_INVERSE(AA : in out MATRIX;
UU: out MATRIX;
NN :in ORDER)is

NDX : INTEGER_ARRAY(1 .. MAX_SURFS);
YY : LINEAR_ARRAY(1 .. MAX_SURFS);

ZERO : APU_FLOAT renames SD_TYPES.APU_ZERO;
ONE : APU_FLOAT renames SD_TYPES.APU_ONE;

begin

-- procedure LUDCMP over writes the AA-MATRIX and procedure LUBKSB over
-- writes the YY-VECTOR

-- enter the LU CROUT algorithm decomposition routine

LUDCMP(AA,NN,NDX);

-- do the column by column inverse

forlin 1 .. NN
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loop
forJin1. NN
loop
YY(J) := ZERO;
end loop;
YY(I) := ONE;
LUBKSB(AA,YY ,NN,NDX);

-- build up the UU-MATRIX column by column

for Jin 1 .. NN
loop
Uud.n = YY),
end loop;
end loop;

--------------- last line of procedure CROUT_INVERSE --------ooeeee-
end CROUT_INVERSE;

procedure LUDCMP(AA: in out MATRIX;
NN:in ORDER;
INDX: out INTEGER_ARRAY) is

-- DESCRIPTION: procedure LUDCMP takes an N x N MATRIX with elements
-- AA(L,J) and uses the CROUT ALGORITHM to replace the elements by the

-- LU (lower_triangle upper_triangle) decomposition of a rowwise
-- permutation of itself.

-- local OBJECTS

\A : LINEAR_ARRAY(1 .. MAX_SURFS);

-- LFIRST_LLAST_I : ORDER;
-- KFIRST_K,LAST_K : ORDER;
LILK,I_MAX : ORDER;

SUM,A_MAX,DUM : APU_FLOAT;

ZERN : APU_FLOAT renames SD_TYPES.APU_ZERO;
ONE : APU_FLOAT renames SD_TYPES.APU_ONE;
TINY : constant APU_FLOAT := 1,0E-6;

begin

-- loop over rows to get implicit scaling information

forIin 1 .. NN
loop
A_MAX = ZERO;
forJin 1.. NN
loop
if ABS(AA(L))) > A_MAX then
A_MAX = ABS(AA(LD));
end if;
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end loop;

-- test for SINGULAR MATRIX (no nonzero largest element) and retain
-- the scaling

if A_MAX = ZERO then
-- SINGULAR := TRUE;
VV({1) :=ZERO;
clse
VV() :=ONE/A_MAX;
end if;
end loop;

-- loop over columns of CROUT'S method

for Jin 1 .. NN
loop
if J > 1 then
- LAST 1:=J-1,
-- forTin1. LAST_I
foriinl1..(J-1)

loop
SUM = AA(L));
if I > 1 then

-- LAST K:=1-1;
-- forKinl. LAST K
forKinl.. (-1
loop
SUM := SUM - AA(LK)*AA(K,]);
end loop;
AA()) = SUM;
end if;
end loop;
end if;

-- initialize A_MAX for the search for the largest pivot element

A_MAX :=ZERO;

foriinJ. NN
loop
SUM = AA(LD);
if J > 1 then

-- LAST K:=J-1;
-- forKinl. LAST.K
forKinl.. (-1

loop
SUM = SUM - AA(LK)*AA(K.});
end loop;
AA(L)) := SUM;
end if;

-- figure of merit for the PIVOT
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DUM = VV(D*ABS(SUM);
if DUM >= A_MAX then
-- it is the best so far
I_LMAX :=1;
A_MAX =DUM;
end if;
end loop;

- is a row interchange indicated ?

if J /= I_MAX then

forKin 1. NN
loop
DUM = AA(I_MAXK);

AA(I_MAXK) := AA(JK);
AA(JK) :=DUM;
end loop;
VV(I_MAX) := VV(J),
end if;

INDX(J) := I_MAX;

[}
+

if the PIVOT is 0.0 the matrix is SINGULAR (to the precision of the
algorithm). for some applications on SINGULAR matrices, it is
desirable to substitute a small value (TINY) for 0.0

[}
L]

if AA(J,J) = ZERO then
AA(J)) = TINY;
end if;

now divide by the PIVOT

if J /= NN then

DUM = ONE/AA(J.J);
- FIRST 1:=J+1;
-- for I in FIRST_I .. NN
forlin (J + 1).. NN
loop
if I /= J then
AA(LJ) = AAQLI*DUM;
end if;
end loop;
end if;
end loop;
----------------- last line of procedure LUDCMP  -----emmococmconenns
end LUDCMP;

procedure LUBKSB(AA: in MATRIX;
BB: in out LINEAR_ARRAY;
NN: in ORDER;
INDX: in INTEGER_ARRAY) is
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DESIGNERS compiler

-- DESCRIPTION: procedure LUBKSB solves a set of N linear equations
-- A * X = B by using foward substitution and backward substitution.
-- Ais an N x N LU (lower triangle upper triangle) MATRIX decomposed
-- by the CROUT algorithm. in the process thc MATRIX B is over written

-- local OBJECTS

KK,LL : ORDER;
- FIRST_J,.LAST_J : ORDER;

NON_ZERO : BOOLEAN;

SUM : APU_FLOAT;
ZERO : APU_FLOAT renames SD_TYPES.APU_ZERO;
begin

-- when NON_ZERO is set to TRUE J =1 becomes the index of the first
-- non-vanishing clement of B

NON_ZERO :=FALSE,;
KK =0

-- this loop does the foward substitution

forlin 1. NN
loop
LL = INDX();
SUM :=BB(LL);
BB(LL) := BB(I);
if NON_ZERO then

- LAST J:=1-1;

-- forJin1 . LAST_J
forJinl.. (-1
loop

if J > KK then
SUM := SUM - AA(L)*BB());
end if;
end loop;
elsif SUM > ZERO then

-- a non-zero element was cncountered. SUM in subsequent looping is
-- calculated in the above loop.

NON_ZERO := TRUE;

KK =1-1;
end if;
BF ‘1) .= SUM;
en. ioop,

-- this loop docs the backward substitution
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for I in reverse 1 .. NN
loop
SUM := BB(l);
if I < NN then
- FIRST J =1+ 1;
-- for ] in FIRST_J .. NN
-- forJin1.. NN
forJin I+ 1)..NN
loop
if J > I then
SUM := SUM - AA(LL)*BB(J);
end if;
end loop;
end if;
BB(I) := SUM/AA(LI);
end loop;
----------------- last line of procedure LUBKSB ---------cmcommcceeen
end LUBKSB;

procedure SLO_GI(SURF_NOT_FAILED : in BOOLEAN_ARRAY;
K_I: out MATRIX) is

-- local OBJECTS

J_COLS : constant ORDER := K_I'last(2);
K_ROWS,L_COLS :ORDER; - K x L MATRIX ------
MATRIX_ORDER :ORDER;

--  --- N linear array ---
ROW_NOT_ZERO :BOOLEAN_ARRAY(1 .. MAX_SURFS);

--  --- N x N matrices ---
TEMP1 : MATRIX(1 .. MAX_SUREFS, 1 .. MAX_SURFS);
TEMP2 : MATRIX(1 .. MAX_SURFS, 1.. MAX_SURFS);
TEMP3 : MATRIX(1 .. MAX_SURFS, 1 .. MAX_SURFS);
B_ZERO : MATRIX(1 .. MAX_SURFS, 1 .. MAX_SURFS);

B_INIT : MATRIX(1 .. MAX_SUREFS, 1 .. MAX_SURFS) :=

(( -0.0034, -0.0034, -0.0022, -0.0022, -0.0040, -0.0040, 0.0000)
( 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

.( -0.5812, -0.5812, -0.0481, -0.0481, -0.0660, -0.0660, 0.0000)
,( 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0016)

( 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

A 0.2455, -0.2455, 0.6697, -0.6697, 0.6221, -0.6221, 0.0554)
A -0.0130, 0.0130, -0.0428, 0.0428, -0.0403, 0.0403, -0.1789));

--  -- 1 x J matrices ---
K_ZERO : MATRIX(1 .. MAX_SURFS, 1 ..J]_COLS) :=
(1.0, 00, 00), (1.0, 00, 00), (0.0, 1.0, 0.0
(0.0, -1.0, 0.0), (0.0, 0.0, 0.0), (0.0, 0.0, 0.0)
0.0, 00, 1.0));

begin
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-- 1o includec compcnsation for Ailcron-Flap interaction and Rudder effects
B_ZERO := B_INIT;
for Surface in 1 .. MAX_SURFS loop
if not SURF_NOT_FAILED(Surface) then
case Surface is
when 112 =>
B_ZERO(3,3) :=0.0;
B_ZERO(3.4) :=0.0;
B_ZERO(6,5) := 0.0;
B_ZERO(6,6) := 0.0;
when 7 =>
B_ZERO(7,3) := -B_ZERO(7,3);
B_ZERO(7,4) := -B_ZERO(7 4);
when others =>
null;
end case;
end if;
end loop;

-- Initialize ROW_NOT_ZERO BOOLEAN_ARRAY to indicate ROWS 2 and 5 in
-- the B_ZERO matrix are zero (FALSE)

ROW_NOT_ZERO :=(TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE);

-- Remove the zero value ROWS and COLUMNS and return
-- TEMPI(K_ROWS,L_COLS)

REDUCE_MATRIX(ABLE_SURFACE => SURF_NOT_FAILED,
AA =>B_ZERO,
BB => TEMPI1,
ROWS => K_ROWS,
COLS =>L_COLS,
ROW_NOT_NIL => ROW_NOT_ZERO);

if K_ ROWS > L_COLS then

-- form the TEMP3(L_COLS.L_COLS) matrix by multiplying the transpose
of the TEMP1 matrix by the TEMP1 matrix

MATRIX_ORDER :=L._COLS;
TRANS_A_MULT_A(TEMPI1,TEMP3,K_ROWS,L_COLS);
else

form the TEMP3(K_ROWS,K_ROWS) matrix by multiplying the TEMP1
matrix by the transpose of the TEMP1 matrix

MATRIX_ORDER := K_ROWS;
A_MULT_TRANS_A(TEMP1,TEMP3,K_ROWS,L_COLS);

end if;

-- form the TEMP2 matrix by taking the CROUT_INVERSE of TEMP3
-- the procedure CROUT_INVERSE over_writes the TEMP3 matrix
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CROUT_INVERSE(TEMP3,TEMP2 MATRIX_ORDER);
if K_ROWS > L_COLS then

-- form TEMP3 by multiplying TEMP2 (the CROUT_INVERSE of TEMP3)
-- by the transpose of TEMP1

INV_MULT_TRANS_A(TEMP2,TEMP1,TEMP3,K_ROWS,L_COLS); .
else

-- form TEMP3 by multiplying the transpose TEMP1(K_ROWS,L_COLS)
-- by TEMP2 (the CROUT_INVERSE of TEMP3)

TRANS_A_MULT_INV(TEMP1,TEMP2,TEMP3,K_ROWS,L_COLS);
end if;

-- replace the the zero value ROWS and COLUMNS that were previously
-- removed (COLUMNS for ROWS and ROWS for COLUMNS)

REPLACE_ZEROS(AA => TEMP3,
BB => TEMP]1,
NON_ZERO_ROW =>ROW_NOT_ZERO,
NON_ZERO_COL => SURF_NOT_FAILED);
-- calculate the B_ZERO K_ZERO product and store in TEMP2
A_MULT_K_BY_L(B_ZERO,K_ZERO,TEMP2, MAX_SURFS,J_COLS);
-- calculate the new K_I matrix ** TEMPI multiply TEMP2 **
A_MULT_K_BY_L(TEMP1,TEMP2,K_ILMAX_SURFS,J_COLS);

end SLO_GI;
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with SD_TYPES;
use SD_TYPES; \

package FDI_AUX is
procedure RATE_DIFFERENCER(MULTIPLIER : in APU_FLOAT; .
PRESENT_POSITION : in  LINEAR_ARRAY;
PREVIOUS_POSITION : in out LINEAR_ARRAY;
RATE : out LINEAR_ARRAY),

procedure LOW_PASS_FILTER(UN_FILTERED : in LINEAR_ARRAY;
FILTERED : in out LINEAR_ARRAY),
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procedure ACTUATOR_MODEL( Surface_Not_Failed : in BOOLEAN_ARRAY;
Model_Act_Rate : in out LINEAR_ARRAY;
Previous_Act_Cmd : in out LINEAR_ARRAY;
Present_Act_Cmd :in LINEAR_ARRAY;
Mecasured_Act_Pos : in  LINEAR_ARRAY;
Coef:in  LINEAR_ARRAY);

procedure ACTUATOR_FDI({ SURFACE_NOT_FAILED : in out BOOLEAN_ARRAY;
MODEL_ACTUATOR_RATE :in LINEAR_ARRAY;
MEASURED_ACTUATOR_RATE :in LINEAR_ARRAY;
FDI_WINDOW : in out LINEAR_ARRAY;
COEF:in LINEAR_ARRAY;
FAULTY_ACTUATOR : out BOOLEAN);

se mmmmememeeeeeeee- last line of package FDI_AUX ---ccoemmecmoeaaaoon
end FDI_AUX;
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package body FDI_AUX is

procedure RATE_DIFFERENCER(MULTIPLIER : in APU_FLOAT;
PRESENT_POSITION : in LINEAR_ARRAY;
PREVIOUS_POSITION : in out LINEAR_ARRAY;
RATE : out LINEAR_ARRAY) is

-~ Procedure RATE_DIFFERENCER calculates a differenced rate
begin
for II in PRESENT_POSITION'range loop

RATE(II) := MULTIPLIER*(PRESENT_POSITION(II)
- PREVIOUS_POSITION(II));

PREVIOUS_POSITION(II) := PRESENT_POSITION(II);
end loop;
-------------- last line of procedure RATE_DIFFERENCER ----ccoceeeeo-
end RATE_DIFFERENCER;

procedure LOW_PASS_FILTER(UN_FILTERED : in LINEAR_ARRAY;
FILTERED : in out LINEAR_ARRAY) is

-- implement low pass filter, comer freq = 20 r/s, digital at 60Hz
-- C1 : constant APU_FLOAT := 0.7165;
-- C2 : constant APU_FLOAT := 0.2835;
-- New Values Inserted Monday April 3, 1989
C1 : constant APU_FLOAT := 0.4895;
C2 : constant APU_FLOAT := 0.5105;

begin
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for 1I in FILTERED'range loop
FILTERED(I) := C1*FILTERED(I) + C2*UN_FILTERED(ll);
end loop;
-------------- last line of procedure LOW_PASS_FILTER --------cce-e-
end LOW_PASS_FILTER;

procedure ACTUATOR_MODEL( Surface_Not_Failed : in BOOLEAN_ARRAY;
Model_Act_Rate : in out LINEAR_ARRAY;
Previous_Act_Cmd : in out LINEAR_ARRAY;
Present_Act_Cmd :in LINEAR_ARRAY;
Measured_Act_Pos : in  LINEAR_ARRAY;
Coef :in  LINEAR_ARRAY) is

-- procedure ACTUATOR_MODEL is the input limited actuator modeled

Max_Delta : LINEAR_ARRAY(1 .. MAX_SUREFS) := ( 1.71429, 1.71429,
2.67857, 2.67857, 2.67857, 2.67857, 5.35714);

Min_Delta : LINEAR_ARRAY(1 .. MAX_SURFS) := ( -1.71429, -1.71429,
-2.67857, -2.67857, -2.67857, -2.67857, -5.35714),

Delta_Position : Sd_Types.Apu_Float;
begin
for SURFACE in SURFACE_NOT_FAILED'range loop
-- Model each actuator that is not tagged as failed
if SURFACE_NOT_FAILED(SURFACE) then
-- Limit model actuator input as required

Delta_Position := Present_Act_Cmd(Surface)
- Previous_Act_Cmd(Surface);

if Delta_Position > Max_Delta(Surface) then
Delta_Position := Max_Delta(Surface);
elsif Delta_Position < Min_Delta(Surface) then
Delta_Position := Min_Delta(Surface);
end if;

Previous_Act_Cmd(Surface) := Previous_Act_Cmd(Surface)
+ Delta_Position;

Model_Act_Rate(Surface) := Coef(1)*Model_Act_Rate(Surface)
+ Coef(2)*(Previous_Act_Cmd(Surface) - Mecasured_Act_Pos(Surface));

end if;
end loop;

------------------- last line of procedure ACTUATOR_MODEL ------ccccceema-m
end ACTUATOR_MODEL;
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procedure ACTUATOR_FDI( SURFACE_NOT_FAILED : in out BOOLEAN_ARRAY;

MODEL_ACTUATOR_RATE :in LINEAR_ARRAY;
MEASURED_ACTUATOR_RATE :in LINEAR_ARRAY;
FDI_WINDOW : in out LINEAR_ARRAY;

COEF:in LINEAR_ARRAY;
FAULTY_ACTUATOR : out BOOLEAN) is

procedure ACTUATOR_FDI is the actuator fault detection identifica-
tion algorithm
constants set to fixed memory location

COEF01 : constant APU_FLOAT := 0.6231;
COEF02 : constant APU_FLOAT := 4.3437;
TRSHAC  : constant APU_FLOAT := 15.0;
NSTRSH : constant APU_FLOAT :=0.2;

CPOSMX : LINEAR_ARRAY(1 .. MAX_SURFS) := ( 8.0, 8.0, 12.0, 12.0
, 12,0, 12.0, 25.0);

CPOSMN : LINEAR_ARRAY(1 .. MAX_SURFS) := (-8.0, -8.0, -12.0, -12.0
120, -12.0, -25.0);

Error : Sd_Types.Apu_Float;

begin
FAULTY_ACTUATOR :=FALSE;
for SURFACE in SURFACE_NOT_FAILED'range loop
-- examinc cach actuator that isn't already failed
if SURFACE_NOT_FAILED(SURFACE) then
-- this is the error between measured an' modeled:

ERROR := MEASURED_ACTUATOR_RATE(SURFACE)
- MODEL_ACTUATOR_RATE(SURFACE);

if sensor position has exceeded max or min limit, or

if error (difference between the model and the sensor measurement)
is beyond the threshold:

nstrsh = .2, trshac = 15.

if MEASURED_SURFACE_POSITION(SURFACE)

> CPOSMX(SURFACE) + NSTRSH or else
MEASURED_SURFACE_POSITION(SURFACE)

< CPOSMN(SURFACE) - NSTRSH or else
ABS(ERROR(SURFACE))

> TRSHAC then

if ABS(ERROR) > COEF(3) then
-- increment fdi window

FDI_WINDOW(SURFACE) := FDI_WINDOW(SURFACE) + 1.0;
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if FDI_WINDOW(SURFACE) > 2.5 then

-- set SURFACE_NOT_FAILED(SURFACE) to FALSE and
-- set FAULT_DETECTED to TRUE

-- modifications to cancel Rudder (Surface = 7) Failure
SURFACE_NOT_FAILED(SURFACE) := FALSE,
if SURFACE < SURFACE_NOT_FAILED'last then
FAULTY_ACTUATOR :=TRUE;
end if;

-- Allow only one fault to be detected at a time by reseting
-- all FDI_ WINDOWS to 0.0

for II in FDI_WINDOW'range loop
FDI_WINDOW(I) := 0.0;
end loop;
end if;
else
FDI_WINDOW(SURFACE) := 0.0;
end if;
end if;
end loop;
---------------- last line of procedure ACTUATOR_FDI ------ccooee-e-
end ACTUATOR_FDI;
----------------- last line of package body FDI_AUX ------cecoceomeee
end FDI_AUX;

108




Appendix E
Matrix Inversion Operations

Backsubstitution and Forward Substitution

Backsubstitution and forward substitution use Eqn. 5.3, with the [A] matrix
already in LU decomposed form, to find the x vectors. Thus, for the following
discussion of backsubstitution and forward substitution, assume that the matrix
that is being inverted has been decomposed into lower and upper triangular

matrices. That is, the Eqn 5.3 can be written as

([LT*[U])* x (E.1)

nxl —nxl

where

(L1 yp * Ul )= A (E.2)

nxn nxn nxn

The procedure used to decompose the [A] matrix into the [L] and [U] matrices will
be developed in the next section of this report.
Eqn. E.1 can be written as

(L] ., * (U]

nxn -nxl )= Ynxi (E.3)

nxn

The [L] and [U] matrices are known because they are derived from [A], y is known
(y is defined as one of the columns of the identity matrix) and x is the unknown.

If we now let

y'lnxl = ([U] nxn * zs-nxl) (E.4)
we get

nxn y-y-nxl Inx1 (E.5)
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Now the fact that [L] is lower triangular can be used to help solve for the
vector yy. Then the fact that [U] is upper triangular can be used to help solve for
X using Eqn. E.4,

In general, triangular sets of equations are relatively simple to solve. To
illustrate the procedure followed to calculate the inverse, a 4 by 4 example is
shown below. However, this procedure is valid for matrices of arbitrarily defined

size. Eqn. E.5 can be written as

A11 0 0o o

Yyyi Y
Ayp A220 0 « [YY2 = Y,
A3, A32 A 330 YY3 Y 3
Ay Aa2 A ygA 4y YYg4 Y,

(E.6)

A procedure known as forward substitution is used to solve for vector yy. From
the definition of matrix multiplication, the equation for y, element Y1 is

Ay ryy =0 (E.7)
or,

Yy, =v,/A, (E.8)
In a similar manner, the equation for element Yy is written below.

Ayl * 9y, + Ay *yy, = Y, (E.9)
Solving for yy,,

YYy = (Y5 - Ay * ¥y )/ Ay, (E.10)

(Note that Yy, is known from the previous step.)

If we continue, a pattern will become evident that will suggest a closed

form soluticn to the set of equations defined by the matrix equation. This closed

110




form provides a solution to systems of arbitrary size and is represented vy Egn.
E.15.

i-1

yy; = CUA; XNy, - Z Aij * yy; ) (E.11)

=1
Fori=23,..N

It is important to realize that the form of the above equation is such that

the ithy_x value is always known from a previous calculation. In Eqn. E.11, the

order of the computations is defined such that the necessary variables are known
and available for use by the algorithm. Given the solution for vector yy, it is now
possible 1o solve for x.

Eqn. E.4 is the other diagonal system that was generated when Eqn. E.4 was
decomposed into two parts. Because Eqn. E.4 is an upper diagonal system the

method of forward substitution is not applicable.  However, a similar method,

referred to as "backsubstitution” can be utilized. Backsubstitution is used to solve

upper diagonal systems in the same manner as the method of forward substitution
is used to solve lower diagonal systems. The development of the backsubstitution

algorithm proceeds in a manner similar to the development of the algorithm for

forward substitution.
Eqn. E.4 will be expanded below as a 4 by 4 matrix to illustrate the
backsubstitution procedure.
Ajp Agp A gz A 14 X Yy,
A Agz A gl | x = |YY
0 0 A A x2 = 2
33 34 3 YY3
0 0 0 A 44 x4 yy4

(E.12)

The elements of matrix [U] have been designated Aij' This will be explained

in more detail later, but essentially the reason is that the storage of the [U] matrix
and the [L] matrix will be in the same memory locations that are used by the A

matrix. Therefore, all operations will take place on onc matrix.

The equation of yy element Yy, is
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44 X4 T Y4 (E.13)
By inspection,
Xg =¥y, | Ay (E.14)
The equation for yy, is
A33 "‘x3 + A34* X4 =YY (E.15)

With x, obtained, the number of unknowns in the equation for yy; has

gone from two to one, and it is possible to solve for X3
X4 =(yy3-A34 *x4)/A33 (E.16)

As with forward substitution, if we continued this process, a pattern
becomes evident suggesting a closed form solution for vector x. The closed form
solution is not limited to the 4 by 4 example case, but is applicable to the general
case of an n by n upper diagonal system. The closed form solution is

N

x; = (/A * (yy; - )) Ayt %) (E.17)

j=i+l
Fori=1.. N

Description of LU Decomposition

The heart of the inverse algorithm being described is the decomposition of
a matrix, [A], into a lower triangular matrix [L] and an upper triangular matrix
[U]; the [A] matrix represents the [Bi"‘BiT] matrix which must be inverted to find
the control mixer gain. This step must take place before the algorithms
(backsubstitution and forward substitution) that solve the lower and upper
triangular systems can be employed.

The objective is to find a matrix [L] and a matrix {U] such that the following

equation holds:
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L] = (Al (E.18)

nxn * [U]nxn

As in the development of the algorithms for solving the diagonal systcms, the
devclopment of the algorithm to decompose a mairix [A] into diagonal matrices [L]
and [U] will be illustrated with a 4 by 4 example in Eqn. E.23.

Expanding Eqn. E.18 for illustrative purposes using a 4 by 4 system,

Ly O 0 0 U U, U, 814 A Ay A Ay
Lyy L2z 0 0 1o Uy Ujg %2 1 A22 Ay Ay
L3, L32 L33 O 0 o Us3 834 = ‘231 A32 A33 Ay
L4y Laz Ly3 Lyg 0 0 o 44 41 A42 Mgz AM

(E.19)

The goal here is to derive an algorithm that will determine the values for
the Lij elements and the Uij elements. The values of the Aij are known and are
specified.

Before anything else is done, it is necessary to put some constraints on the
problem. This becomes evident when examining Eqn. E.19 because there are an
infinite number of ways of choosing a lower diagonal [L] matrix and upper
diagonal [U] that will suffice.

In general, for an N by N matrix, there are N2 equations and (N2 + N)
unknowns. However, N of these unknowns are arbitrarily set to a value of one, so
there are really only N2 unknowns in this system of equations. Thus, a unique
solution can be determined.

To illustrate that this is indeed the case, consider the following equation
derived from matrix Eqn. E.19,

Ly, * U, = Ay (E.20)

In this equation for element A, ,, there are two unknowns and one known.

If one of the unknowns is given an arbitrary value it is then possible to specify a
unique value for the other unknown.

However, now the problem is specifying some of the the val'es of matrices
(L] and (U]). Not surprisingly, many mathcmaticians have worked on this
particular problem and many differcnt solutions have been developed.
Fortunatcly, one of these solutions is very applicable to this project. The solution
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procedure is an improved Gaussian elimination method, called the Crout
algorithm, which is computationally efficient and requires less memory than do
some other solutions. Both of these attributes are important in an embedded real-
time control application.

The Crout algorithm begins by assigning all diagonal elements of the upper
diagonal matrix to one. This eliminates the need for storage of the diagonal
elements of the [U] matrix and allows both the upper and lower diagonal matr  :s
to occupy the original [A] matrix. The Crout algorithm performs all the
calculations on the original [A] matrix without the need to store any other
matrices. Because the numbers are manipulated and stored in overlapping
locations in the A matrix, the Crout algorithm is sometimes referred to as an "in-
place” algorithm. This type of algorithm wiil destroy the contents of the [A]
matrix, but this application did not require further use of the original [A] matrix.

Because the algorithm is using and writing to locations of the [A] matrix,
any computation that requires unaltered componcnts of the [A] matrix must have
access to those matrix eclements prior to their alteration. Consequently, the
"order” of the computations must follow a pattern that never overwrites an [A]
matrix element that will be needed in future computations. This point is critical
and must be fully taken into account when implementing the algorithm.

The equations of the algorithm are grouped according to the location of
their Aij terms in the [A] matrix . The first group of equations has Aij elements
that are above the diagonal, that is the i row index is less than the j column index.
The second group of equations has Aij elements that are on the diagonal, thus the i

row index is equal to the j column index. The third group of equations has Aij

elements that are below the diagonal, therefore thc i row index is greater than
the j column index. The structural form of these three groups of equations are
presented below.

For the case of clcments above the main diagonal where i < j. Eqn. E.21

applies.

L, * Ulj +L,* U2j +.. +L.* Uij = Aij (E.21)

For the main diagonal casc where i = j, Eqn. E.22 applies.

L.

X Ulj + Ly * U2j +..+ L * Uij = Aij (E.22)
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For the case of clements below the main diagonal where i > j, Eqn. E.23
applies.

L..*U

i + L, * U2j + ..+ Lij * U.i.i = A.. (E.23)

1j ij

Instead of explicitly solving for a solution to the values of the L's and the
U's by using Eqn. E.21, E.22 and E.23, we will first explore finding a solution by
using a step by step approach. This is absolutely critical to finding the correct
approach to solving this problem. This is because the order of the computations,
as previously stated, must meet the condition of not overwriting any data in the
[A] matrix that will be needed by any future computations.

Referring to matrix Eqn. E.19, consider the equation that specifies matrix
element All.

L,,*U = A (E.24)

11 11 11
Note first that there is only one unknown in this equation because Ull has been
arbitrarily defined to be equal to one. Now, because Ull = 1,

L,,=A

" (E25)

11

In other words, the All element remains unchanged and an efficient algorithm
will not write over this variable.
Continuing the analysis, consider the equation for A21, the next {A] matrix

element down the first column.

L,,*U,,  + Ly, * 0 = Ay (E.26)

21 1

The only unknown in Eqn. E.26 is L21 and solving for L21 yields the following

solution.

L21 =A,, /Uy, (E.27)

and again because we have sct U]1 =1,
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Ly, = Ay (E.28)

As for the last element, the value of the A matrix element A21 does not
change value. Consequently, the algorithm computing the values of [L] and (U]
does not need to alter the value A,, because it is equal 10 L,,.

Furthermore, if we continued we would find that the entire first column of
the A matrix does not need to be altered. It follows that the algorithm that is
computing the values of [L] and [U] does not need to modify the entire first
column of the A matrix and would be wasting time if it did write over the first
column. This pattern can be extrapolated to the N by N matrices.

Now consider the next column of the A matrix. The equation for A, is

written below.

L,*U,+O*U,, = A, (E.29)
Solving for the only unknown, U, ,, in this equation,
U,=A,L/ L, (E.30)

First, note that because of the order of the computations, the other
variables in this equation are already known, namely L,, has already been

determined. Secondly, note that this is the first time in this development that a
variable has been computed that is above the diagonal. The form of the solution is
slightly different in that there is now a divide operation involved in the solution
computation.

Continuing in the same manner, consider the equation for the next [A]
matrix element down the second column, namely, A,,.

L,, *U (E.31)

21 Uy + Ly * Uy = Ay,

Because of the order of computation, all of the variables in this equation
are known except for L22. Therefore L22 can be determined and a unique solution

found. This is illustrated below.

L,, = A

22 22 - Ly * Uy, (E.32)
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Recalling that there is a distinction when above, on, or below the diagonal,
this last equation involving A,,, is on the diagonal.

This form of development can be carried further and an entire 4 by 4 case
could be carried through in its entirety. The order of computation is essentially
down the columns, starting with the second column, then the third column and so
forth. At this point the generalized solutions can be extrapolated from the
previous development.

The analytic solutions are as follows:

Forj<= i andi=123,..n,

j-1
LlJ = Aij - Z( L, * Ukj ) (E.33)
k=
Fori<=j andj =23, ..n.
i-1
k=1

Once the fL} and {U} matrices have been found, they can be used in the
backsubstitution and forward substitution algornhms to find the desired matrix

inverse.
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