
AD-A259 205

W LL-TR- 92-3101

URV FLIGHT TEST OF AN ADA IMPLEMENTED
SELF-REPAIRING FLIGHT CONTROL SYSTEII

H. Hears, S. Pruett, J. Houtz

Control System Development Application
Branch DTIC

Flight Control Division ELECTE
JAN 1 3 7993,

AUG 1992 S
FINAL REPORT FOR 01/01/85 - 08/31/92 C

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION 16 UNLIMITED.

FLIGHT DYNAMICS DIRECTORATE 93-00744
WRIGHT LABORATORY,,•,"" •.= ,.,,,o,,,, ,,Y,, ,,o, ,,,,.., • ,. o,,.,,,,ii iliiH Bill III!1 Ail li HIEIll 111111
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-6553

iMOM

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

MARK J. M 5, Electronic Engr IE K.Chief
Control S ttems Development Control Systems Development

and Application Branch and Application Branch
Flight Control Division Flight Control Division

H. MAX DAVIS
Assistant For R&T
Flight Control DWIeN

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/FIGS , WPAFB, OR 45433-6553 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

REPOT DCUMNTATON AGEForm Approved

1. AGENCY USE ONLY(Leave blank) I2. REPORT DATE j3.REOTYPANDTSCVRD
JAUG 1992 j FINAL 01/01/85--08/31/92

4. TITLE AND SUBTITLE URV FL GHT TEST OF AN ADA IMPLEMESNT 8V. FUNDING NUMBERS
SELF-REPAIRING FLIGHT CONTROL SYSTEM

C
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ PE 62201F

6. AUTHOR04. Mears, S. Pruett, J. Houtz PR 2403
TA 07
WU 37

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Control System Development Application REPORT NUMBER..

Branch WL-TR-92-3101
Flight Control Division

9. SPC 4SOPTMORIVIESE "0611110 N U lf BDDRESS(E S) 10. SPONSORING/ MONITORING

WRIGT LBORAORYAGENCY REPORT NUMBER

AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH '45433-6553

WL/FIGS, Attn: MEARS 513-2558291 _______________________________________
11. SUPPLEMENTARY NOTES

12a. CARJl(VMLXI'lARLAE DISTRIBUTION IS 1 2b. DISTRIBUTION CODE

UNLIMITED.

13. BSTRCT (aximum-70-woifs
Self-Repairing Flight Control System (SRFCS) technology is an extension of
traditional redundancy management. It uses existing redundancy in aircraft control
surfaces to compensate for control surface failures and battle damage effects. This
report describes the results of flight tests of a SRFCS, coded in Ada for an
Unmanned Research Vehicle (URV). This includes a description of the design of the
control reconfiguration method, the Failure Detection (FDI) method, the Ada code,
the URV model, data analysis of the flight test time histories, and the
computational aspects of the algorithms. Time history plots of selected flight
test results are included in this report and acceptable performance was achieved
for all the failure cases which were flown.

14 tlVEtnrl Self-Repairing, Ada, FDI 15. NUMBEROF PAC-

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. LIMITATION OF ABSRC
0!.LASSIFIED %ift'?AWIFIED j fl't)MTI FI ED UL TA 1

NSN 7540.01 -280-5500 Standard ýcnrm 298 (Rev 2-89)

Foreword

The URV flight test and this final report are the result of the efforts of

several individuals. In particular, Dave Dawson (WL/FIGL), Bill Adams, Douglas

Roy and Jim Miller (Lear Siegler) were responsible for the operation of the URV

during the project. It is due to their efforts that the designs were implemented

and flight tests were completed without incident.

Two groups of flight tests were performed during this study. The first

flights were performed in August and September 1987. However all time histories

shown in this report were a product of the later flights in August 1989.

The URV flight test work was begun to support the WL/FIGL Self-Repairing

Flight Control System (SRFCS) Program. Mark J. Mears is the principle author of

this technical report, however, verbal and written inputs have also been provided

by other project participants.

The author wishes to express special thanks to Stanley H. Pruett and John

Houtz (WL/FIGL), who participated in the flight test activities and who wrote and

edited portions of this report.

The chief engineer of the SRFCS program, Philip R. Chandler (WL/FIGL),

supported and participated in the flight test project on the URV. Much of the

flight test work was managed and performed by Dave Dawson, Capt. Robert Kelly

and William Lindsay. Many individuals participated in designing the SRFCS for

the URV; these include Dr. Kuldip Rattan (Wright State University), Tom Molnar,

Greg Carter, Capt. Harry Gross, Capt. Barry Migyanko (WL/FIGL), and Capt. Brian

Ray (WL/FIGC). Ada code development and implementation for the SRFCS was

done by John Houtz, Stan Pruett (WL/FIGL) and Douglas Roy (Lear Siegler).

During all tests the URV was piloted by Jim Miller (Lear Siegler).

AceQ03la lor

Justiris~atiai

rDisvtrIwin,

IAvaIilaility Codes~

!Avmit1 and/or
Dist • p•cial.

iii k.

Table of Contents

Section Page

1.0 Background 1

1.1 Self-Repairing Flight Control System Design 1

1.2 Use of the Ada Programming Language 2

1.3 History of the XBQM-106 2

2.0 Self-Repairing Flight Control System 4
Introduction

2.1 Control System Reconfiguration 5
Strategy

2.2 Failure Detection and Isolation 9

3.0 Model Description 11

4.0 Application of SRFCS to the URV 15

5.0 Computational Problem Overview 21

5.1 Ada Implementation 22

5.2 FDI Computation 23

5.3 Control Mixer Gain Computation 23

5.4 Pseudoinverse Algorithms 24

6.0 Data Analysis 26

6.1 FDI Stubbed 28

6.2 FD! Evaluations 29

7.0 Conclusions 32

8.0 References 35

Appendix A Control Mixer Gain Calculations 37

V

Appendix B Simulation Time Histories 48

Appendix C Flight Data Time Histories 57

Appendix D Ada Code 80

Appendix E Matrix Inversion Operations 109

List of Figures

Figure

1 URV Draw 3

2 URV Control System 13

3 FDI Flow Chart 19

4 URV Sign convention 27

vi

Nomenclature

A Small perturbation linear model stability matrix

AUTH weighting matrix

KLINKS Linkage ratio matrix
Aij the (ij) element of the matrix A

Anxn nxn matrix A

Bi impaired B matrix (in general)

Bia impaired B matrix for failed aileron

Bic impaired B matrix for failed elevator

Bir impaired B matrix for failed rudder

Bo nominal B matrix

inv() denotes matrix inverse

Ki impairment gain matrix (in general)

Kia impairment gain matrix for failed aileron case

Kie impairment gain matrix for failed elevator case

Kir impairment gain matrix for failed rudder case

Ko unimpaired gain matrix

[L] lower diagonal matrix

p roll rate

Pf Probability of having a surface fail

Pfa Probability of false alarm

Ph Probability of being hit (battle damaged)

Pk Probability of being killed

PkIf Probability of being killed given that a failure has occurred

PkIh Probability of being killed after having been hit

"Pmd Probability of missed detection

q pitch rate

r yaw rate

I system inputs vector

[U] upper diagonal matrix

aircraft state vector (in radians)

a angle of attack

side slip angle

surface command vector (in degrees)

Vii

Bal left aileron deflection angle

8ar right aileron deflection angle

Bcom deflection command
8 el left elevator deflection angle

Ber right elevator deflection angle

8fl left flap deflection angle

8fr right flap deflection angle

8r rudder deflection angle

At time increment
* roll attitude angle

O pitch attitude angle

0+ matrix pseudoinverse of 0

0 T matrix transpose of 0

Abbreviations:

AFTI Advanced Fighter Technology Integration

FDI failure detection/isolation

RPV Remotely Piloted Vehicle

SRFCS Self Repairing Flight Control System

SVD Singular Value Decomposition

URV Unmanned Research Vehicle

viii

1.0 Background

1.1 Self-Repairing Flight Control System Design

In aircraft control system design, one of the primary concerns is safety of
flight. Stringent requirements regarding the number of failures allowed in a

given period of time are defined for mission completion and system failure1 .

Another driving concern is aircraft survivability in battle scenarios. These

concerns are driven by factors such as pilot safety, weapon system effectiveness

and cost. The objective of the Self-Repairing Flight Control System (SRFCS)

methodology is to meet these requirements by allowing the designer to use

aircraft resources more wisely.

Operational reliability requirements have traditionally been met in one of
two ways. The first of these is the use of highly reliable components to meet high

reliability requirements. However, these components are typically expensive.

Another way to satisfy stringent reliability requirements is to use hardware
redundancy. But hardware redundancy implies additional hardware which adds

weight and decreases tli.. system pcrformance.

SRCFS is a means of achieving high flight control system reliability by

intelligently using available aerodynamic redundancy in aircraft control

surfaces. However, to use this redundancy requires knowledge of the aircraft

dynamics, and computing resources to mechanize the algorithm.

The Flight Control Division's Control System Development Branch

(WL/FIGL), began investigating the viability of SRFCS methods in the 1980's and

decided to use the Unmanned Research Vehicle (URV) as a means for test and

evaluation of the concept. The primary benefit of using the URV was cost; the

URV was an FIGL resource which had been used to demonstrate flight control

concepts. Also, flight safety for the URV is less of a concern than that associated
with manned flight test.

Information from the SRFCS program provided a starting point for the URV

flight test study, and the final SRFCS program reports provide a baseline for

future SRFCS studies4' 5' 6' 7.

1.2 Use of the 4kda Programming Language

The Ada computer programming language is the official mandated DoD

High Order Language (HOL) to be used for mission critical weapon systems

software. One objective of the effort was to assess the impact of Ada on a real-time
flight control related application.

The purpose for mandating use of one software language is to reduce

software life cycle costs. Such features as information hiding and strong typing

may increase readability and understandability of the code, and result in less Lime

and effort during modifications.

1.3 History of the XBQM-106
The XBQM-106 is an in-house designed Mini-RPV (referred to as 'URV' -

.2Unmanned Research Vehicle) with a pusher propeller configuration2. The URV
has a wing span of twelve feet, a fuselage length of ten feet and weigh

approximately two hundred pounds. Fig. I is a line drawing of the URV.
The purpose of the URVs is to test and demonstrate emerging technology.

To support their use in flight control applications, wind tunnel work was

performed in 1978 to provide aerodynamic model information 2 . This data has

been modified as the RPV characteristics have changed due to changes in weight
and e.g. location 3 , and with the inclusion of flaps as control surfaces.

Some of the early work done on the URV resulted in development of an
inner loop control algorithm to improve the URV dynamic characteristics9. This
algorit',mn runs on a flight control computer which uses a micro-controller that

was mass produced for automobile engine control. This same flight control system

was used during the SRFCS flight tests.

2

S I ji

* Ill
'ha A

GJ
s.d

I

I I
C

S

U L

3

2.0 Self-Repairing Flight Control System Introduction

Self-Repairing Flight Control Systems (SRFCS) are an extension of inner

loop control, motivated by the desire to reduce the probability of aircraft 1 6 loss

(Pk). -e. pk is decreased by reducing the conditional probability of aircraft loss

from battle damage (Pklh). This goal is achieved by allowing the control system to

adapt to battle damage or surface failures by altering the signals sent to the

remaining healthy control surfaces. With this technology, the aircraft does not

rely as heavily on each individual surface since other surfaces can combine to

perform the same (or nearly the same) function.

Reduction in vulnerability is a direct result of the control system

adaptation, which then permits a trade off between improved system reliability

(afforded by the SRFCS) and system hardware redundancy. That is, the additional
reliability allows the designer to reduce the number of actuators, hydraulic lines,

etc. and thus, the aircraft weight. These trades make for an aircraft which

performs better and is less likely to be damaged in battle.

These system benefits do not come without some cost. One aspect of this cost

is the computational burden that must be absorbed by the flight control computer.

The computations are required to model dynamics, predict states, estimate surface

effectiveness and perform various matrix, and vector calculations.

Another cost associated with any adaptive control technique is that

incorrect action may be taken by the controller. This may occur because of

increased algorithm complexity, sensor noise, or modelling

uncertainty/inaccuracy.

Adaptive control (including SRFCS) can be mechanized in a direct or

indirect manner. A direct mechanization implies that explicit FDI is not

performed. The controller simply reacts to changes in sensed variables and
17makes alterations in control as a matter of course . Indirect adaptation uses

separate diagnosis and action algorithms. The methods used on the URV were

confined to indirect adaptation.

Fault diagnosis is performed by an FDI algorithm which compares actual

outputs with modeled values to determine if faults exist, establishes the source of

the fault and then updates the internal model. The reconfiguration strategy acts

cn the .niormation provided by the FDI by redistributing control authority to

"best" cope with the changes.

4

2.1 Control System Reconfiguration Strategy

The purpose of the control strategy is to distribute remaining aircraft

control authority after an anomaly has been isolated. This can be done in a

number of ways. The method implemented in the URV was the "Control Mixer"

which uses a pseudoinverse to determine a new gain matrix.

The pseudoinverse works by operating on the basic linear state space

equation.

x=Ax&+B (2.1)

where

= Ko * (2.2)

The pseudoinverse effects only the contribution of the command. The

nomenclature is defined below.

D.- surface command vector

-- system input vector

Bo -- nominal B matrix

Bi -- impaired B matrix

Ko -- unimpaired gain matrix

Ki -- impaired gain matrix

m -- number of non-zero rows of the Bi matrix

n - number of non-zero columns of the Bi matrix

The Bi matrix represents control effectiveness after surface failures. The

Bi matrices representing locked surfaces are created by zeroing the column of the

Bo matrix corresponding to the failed surface. The effects of surfaces locked at

non-zero deflection angles could be created by adding a bias term in the state

equati *. The Bi matrices for partially missing surfaces are generated by

replacing the column of the Bo matrix associated with the failed surface, with the

effective percentage of that column. Both partially missing and failed at non-

zero deflection angles failure modes can be reconfigured by the mixer, however

only the locked at zero deflection modes were investigated during flight tests.

The objective of the Control Mixer is to modify the calculations involving

the system inputs (L) to the impaired system so that they have the same effect as

they would have had on the unimpaired system. This can be done by equating the
control effects of the state space equation before and after impairment.

Bo*Ko*u =Bi*Ki*u (2.3)

This implies that

Bo*Ko = Bi*Ki (2.4)

To find the Ki matrix, an inverse is used. The characteristics of the inverse

depend on the Bi matrix and can fall into one of the three general categories
10listed below

1. Rows (m) and columns (n) of the Bi matrix equal.

This case is the simplest and implies that after the failure the number of slates

being controlled is the same as the number surfaces available. If the rank of the

Bi matrix is full (rank of Bi = m = n) then a standard matrix inverse can be used to

find the Ki gain matrix. By multiplying the above equation by inv(Bi)

Ki = inv(Bi)*Bo*Ko (2.5)

2. Rows (m) of the Bi matrix greater than the columns (n).

This is the overdetermined case where there are more states to be

controlled than surfaces to control them. In this case, one cannot hope to

reproduce the exact time response of the unimpaired aircraft with the impaired

aircraft. Instead, one is attempting to reduce the mean squared error betweca

the nominal (unimpaired) response and the response of the impaired aircraft.

Bi*Ki = Bo*Ko (2.6)

6

BiT*Bi*Ki = BiT*Bo*Ko (2.7)

Taking the inverse of BiT*Bi, and pre-multiply each side of the above equation by

this value results in the following equation.

Ki = inv(Bi T*Bi)*BiT*Bo*Ko (2.8)

The above inverse will exist if the columns of Bi are linearly independent.

3. Rows (m) of the Bi matrix less than the columns (n).

This is the underdetermined case which is of concern in the URV demonstration

because the URV has more surfaces available than states to be controlled. This

case allows a time history flown by the unimpaired aircraft model to be duplicated

exactly by the impaired aircraft model. The mixer minimizes the Euclidean norm

of the deflections needed to achieve the desired response. The mixer gain matrix

for this case is derived in the following manner:

Bi*Ki = Bo*Ko (2.9)

Inserting an identity into the right side of the equation does not change it.

Bi*Ki = I*Bo*Ko (2.10)

Now let

I = V*inv(V) (2.11)

where

V = Bi*BiT (2.12)

* then

Bi*Ki = (Bi*BiT)*inv(Bi*BiT)*Bo*Ko (2.13)

7

The inverse of V will exist if the rows of Bi are linearly independent. Thus

Bi*Ki = Bi*(BiT*inv(Bi*BiT))*Bo*Ko (2.14)

or

Ki = BiT*inv(Bi*BiT)*Bo*Ko (2.15)

It is worth noting that the zero rows of the B matrices represent states that

are integrals of other states (e.g., 0 is the integral of q) and these B matrix zero

rows have no effect on the states. Since zero rows cause rank deficiency in the

pseudoinversion calculations, they are removed before performing the mixer

gain calculations.
One problem with the above derived control mixer implementation, is that

it does not recognize surface saturation. In fact there may be considerable

authority for a particular command remaining in unsaturated surfaces which the

mixer would not use. One way around this is to provide the mixer with

information about eaell surface's deflection angle. This is done by way of an
"authority" matrix, AUTH. The AUTH matrix is a diagonal matrix with elements

equal to the absolute value of the difference between each surface limit and the

corresponding surface deflection. With the AUTH matrix the gain derivation is

similar to that above, with

V = (Bi*AUTH)*(Bi*AUTH)T (2.16)

The new mixer gain becomes

Bi*Ki = (Bi*AUTH)*(Bi*AUTH)T * inv[(Bi*AUTH)*(Bi*AUTH)T] * Bo * Ko

(2.17)

rearranging terms

Ki = (AUTH*AUTHT) *BiT * inv[Bi*(AUTH*AUTHT) * BiT] * Bo * Ko

(2.18)

This gain matrix has the effect of reducing the weighted mean squared

deflections.

8

Addressing the saturation problem with this effector weighting method

requires that the gain matrix be updated as the surfaces move (after the FDI has

isolated a failure). This can be a significant computational burden requiring a

pseudoinverse calculation each time a new gain matrix is required.

The control mixer uses a model of the control effects to calculate the gain

matrix. Thus, the gains are only as good as the representation of the controls by

the B matrix in equation 2.1. If the model changes due to aircraft state and

effector position, the gains can cause results different from those desired.

The mixer produces good results when the aircraft has a surface failure for

which there exists another surface with similar characteristics. However, this

can make the FDI problem more difficult. In general, surface configurations

which are good for FDI, are bad for reconfiguration and vice versa.

Obviously no two surfaces have the exact same effects in all axes, at all

flight conditions, because no two surfaces can occupy the same location on an

aircraft. However it is possible that finite dimensional, linear models for the

aircraft at some flight conditions will have linearly dependent (or nearly

linearly dependent) B matrix columns. Thus, it may be helpful to form the

controllability Grammian of each impaired system to determine which directions

in the state space are most difficult to control 12 .

2.2 Failure Detection and Isolation

The objective of FDI is to detect system failures when they occur and isolate

the cause of the failure. Other SRFCS programs have been concerned with both

aerodynamic ("global") and actuator ("local") FDI. Global FDI presents a much

greater problem than local FDI, however only local FDI was investigated in the

URV study. Since only local FDI was performed, isolation of the failure is not an

issue. Once the failure is detected, the cause of the failure is known.

The local FDI methodology implemented on the URV was a modified version

of contractor developed code for the Advanced Fighter Technology Integration

(AFTI) F-16 that was adapted for the URV by FIGL. Actuators are flagged as failed

if their filtered residual, which are formed by low pass filtering the difference

between an actuator model and the real actuator, exceeds an analytically

determined threshold value. The logic flow can be seen in Fig. 3.

9

The FDI algorithm is constrained to work quickly to prevent the failure

transient from having an adverse effect on the aircraft. This time to detect Is

therefore, driven by the speed of the aircraft dynamics.

The time to detect failure is also based, in part, on surface activity. If the

surface has relatively small inputs, there may not be a sufficient signal to noise

ratio to detect a failure. However, failures which are not immediately detected

because of low information content, are by definition, not critical since small

surface activity causes small transients. These failures are detected when it is

important that the surface become active.
FDI is driven by two opposing parameters; probability of false alarm (Pf.)

and probability of missed detection (Prd). The amount of noise present in the

system determines what threshold will work in light of the required Pfa and Prmd'

The question of isolation is not of concern with local FDI since each actuator has

its own failure detection flag. Since failures were modeled as locked at zero

deflection, the issue of estimation of the remaining authority was not addressed in

this study.

10

3.0 Model Description

The URV Control System (see Fig. 2) shows the components of the

simulation. This includes the control mixer, aircraft, sensors and control system.

The control mixer is a gain matrix and implements the control reconfiguration.

The "Aircraft Model" part of the simulation diagram contains five blocks. The

dark shaded region denotes components of the actuators. The "Servos" block

represents the dynamics of the electric motors which drive the surfaces. The

"KLINKS" block models the linkage ratios associated with each surface. The

"Limits" block is the position limits of each surface. The "Equations of Motion"

block is the state space formulation of the aircraft equations of motion relating

surface deflections to aircraft body attitude and rate. The remaining block in the

"Aircraft Model" section is a conversion to bring out the states in degrees.

The URV stability and control derivatives were derived using DIGITAL

DATCOM 8 and have been modified using flight data 3 . The resulting model is a

constant coefficient, linear, small perturbation, decoupled lateral-directional and

longitudinal representation with second order actuator models. The linear model

takes the form of equation 3.1 where

-2.4776 0.0000 0.9748 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

-42.512 0.0000 -3.3361 0.0000 0.0000 0.0000 0.0000

A = 0.0000 0.0000 0.0000 -0.745 0.2451 0.0010 -0.9848

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 -25.804 0.0000 -8.7554 2.7068

0.0000 0.0000 0.0000 23.2230 0.0000 0.0647 -2.0286

(3.1)

and the unimpaired B matrix is

11

-0.0034 -0.0034 -0.0022 -0.0022 -0.0040 -0.0040 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

-0.5812 -0.5812 -0.0481 -0.0481 -0.0660 -0.0660 0.0000

B = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2455 -0.2455 0.6697 -0.6697 0.6221 -0.6221 0.0554

-0.0130 0.0130 -0.0428 0.0428 -0.0403 0.0403 -0.1789

(3.2)

The states of the model are

& = [a, , q, ,p, r] T (radians) (3.3)

(The model uses the states in radians (or rps), however they are converted to

degrees (or deg/sec) before they are output as simulation time histories.)

The control inputs are

S= [5 el, 8 er, 8 al, 8ar, 8fl, 8fr, 8r T (degrees) (3.4)

where the following variable definitions are given:

a angle of attack 8el left elevator deflection angle

0 pitch attitude angle 8er right elevator deflection angle

q pitch rate 8 al left aileron deflection angle

1 side slip angle 8ar right aileron deflection angle

Sroll attitude angle 8f left flap deflection angle

p roll rate 8 fr right flap deflection angle

r yaw rate ar rudder deflection angle

The actuator model is described by the following transfer function:

12

WLA J< <LL-LL. (3 TC.0ýC

co coo (4 co0o c o

o U

0 C0

0 0
C5-

c; 'J

(D~ 1130

324

s2+ 25.4s + 324 (35)

The output equation of the model is

Y= (3.6)

where the C matrix is a 7-by-7 identity matrix. Thus, the outputs are equivalent to

the states of the model.

Another part of the model (Fig. 2) is the lightly shaded region representing

the sensors. One darkly shaded region is the Gyros; one for pitch and one for roll.

These measure the pitch and roll angle and have dynamics of significantly

higher bandwidth than the rest of the system and are thus modeled as gains

only 9 These gains represent the sensitivities of each attitude gyro. The

sensitivities are:

pitch -- 2.5 volts/60 deg = .0416

roll -- 2.5 volts/90 deg = .0278

The body rates are measured by fluidic rate sensors with dynamics

approximated as a first order lag with comer frequency at 50 rps and sensitivities
9

of 2.5 volts per 50 deg/sec in pitch and yaw, and 2.5 volts per 100 degrees in roll

These quantities are shown in the darkly shaded region named "Rates".

The "Control Laws" part of the diagram represent the control equations

that are in the URV.

Simulation time histories are shown in Appendix B, Fig. B.1 to B.8. These

responses are for the unfailed URV in response to unit pitch, roll and yaw

commands. The longitudinal and lateral axes are decoupled. Responses not shown

for states or surfaces deflections that have not been excited and remain at zero.

14

4.0 Application of SRFCS to the URV

One of the first steps to implementing control system reconfiguration on

the URV was an analytical investigation determining the controllability of the

URV. This study was based on a linear model developed during past efforts.

The URV originally had differential ailerons, collective elevators, one

rudder and no flaps; the first linear model reflecting this three input

configuration. It was clear, however, that both differential and collective

deflections of the ailerons and elevators were needed. Therefore, the model was

altered by attributing the effects of individual left and right elevators and

ailerons to separate B matrix columns; each with half the combined (left and

right) authority. This resulted in a five input model.

This change to a five input system was still not adequate. With five inputs,

locked surface failures still result in an overdetermined system for which the

Control Mixer cannot restore nominal performance. The best it can do is

minimize the norm of deviations from the desired states.

Another problem with use of the control mixer in dealing with the five

input URV model, was that the pseudoinverse calculation for rudder failure

resulted in large values in the mixer gain matrix. The reason for these high

gains is explained as follows: The ailerons have much more effect in yaw than do

the elevators and the mixer favors their use over that of the elevators. Also, the

ailerons have much larger effect in roll than in yaw and small yaw commands

induce large rolling moments from the ailerons which must countered by

elevator deflections. To generate the commanded yaw effect, the ailerons and

elevator end up fighting each other in roll. This can be seen in the values of the

matrices without flap inputs for the case of rudder failure shown later in this

section.

The columns of the Ko and Ki matrices indicate pitch, roll and yaw

commands respectively. The entries in the Kir matrices are large because the

roll, which is induced while the aileron attempts to create yaw, must be balanced.

The ratio of roll authority to yaw authority for the aileron is 15.647, while this

ratio for the elevators is 18.885. Since these ratios are close, the deflections must

be large to generate movements in one axis while balancing the other axis. In

15

other words, this is attributable to nearly linearly dependent effects of ailetoa*

and elevators in roll and yaw.

Methods for reducing these matrix gain values for the failed rudder case

were considered. One method was to zero certain elements of the impaited 8

matrix. These zero elements had the effect of reducing the use of the sutfac;•

corresponding td the zeroed column entry, for effect in the state correspondhng to

the zeroed row. However, without flaps, adjustments to the model (zeroing of El

matrix model elements) could not be found to reduce the gains to reagonablk

magnitudes.

When flaps are added to the model, the system is underdetermined because

it has more surfaces than states to be controlled. In these cases the control tdilx.f

minimizes the norm of the surface deflections and restores the Model

performance to exactly what it was before the failure.

Also, flaps add about 22.5% of the yaw control power of the rddefr3 ,

Various methods for increasing the yaw control power were investigated awd
3these are described in a Technical Memorandum

The values for the mixer gain matrices, for an assortment of failures mod

configurations, is contained in Appendix A. However, to illustrate the difficuvkda

associated *ith rudder fallma, the mixer gain matrix for rudder failufr (WS# Is

shown below for the "no-flap" and "flap" configurations.
"No-flap" configurationf with rows corresponding to 8 el, 8 er, 8a1. and 8.,

respectively:

1.0000 0.0000 -32.5982

1.0000 0.0000 32.5982
Kir -

0.0000 1.0000 11.9913

0.0000 -1.0000 -11.9913

(4.1)

"Flap" configuration with rows corresponding to 8el, 8er, 8al, 8ar, 8 fl atld Off

respectively:

16

0.9996 0.0988 -30.7668

0.9996 -0.0988 30.7668

0.0175 0.5086 2.8785
Kir-

0.0175 -0.5086 -2.8785

-0.0093 0.4901 9.0873

-0.0093 -0.4901 -9.0873

(4.2)

When the rudder column of the Bo matrix is zeroed to become the Bir

matrix, it becomes a rank four matrix. By eliminating the zero row, a normal

inverse replaces the pseudoinverse, but makes the matrix multiplications used in

the Kir matrix solution non-conformal. Also, given the model, the impaired

aircraft has no way to recreate the 0 authority. Therefore, the sideslip was

ignored.

Thus, addition of flaps had three purposes: 1) To make the system

underdetermined which allowed the mixer to find gains that would completely

regain performance. 2) To add yaw authority, in an attempt to reduce the gain

values calculated by the mixer for the failed rudder case. 3) To help alleviate the

yaw command, aileron induced roll for the case of failed rudder. (The flaps were

also desired to reduce landing speed, but this was not related to reconfiguration.)

The addition of flaps, in itself, did not significantly reduce the values in the

impaired gain matrices. In the case of elevator failures, the flap configured

model resulted in higher gains. The reason the addition of flaps had little effect

on the mixer gain matrix values was that the B matrix columns associated with

ailerons and flaps are vectors that are nearly linearly dependent.

To reduce mixer gain matrix values to a useable level, the designer was

forced to fool the mixer (gain calculation) by zeroing B matrix elements. By doing

this the designer tells the system which surface to use to produce a state change-

the mixer discourages use of surfaces in axes where a zero B matrix entry is

placed.

By zeroing elements of the B matrix, the designer changes physics to mect

the problem. In the physical system, use of the surfaces for commands or moment

17

balancing may well generate changes in states corresponding to zero B matqix

entries in the model. Therefore the aircraft does not perform exactly as expected.

The linkage ratios were not considered during the calculation of the gain

matrices. This resulted in the values in the gain matrix being a different

magnitude than they should have been. It was fortunate that these values in the

gain matrices were pot drastically different in magnitude since this would hava

caused unexpected flight test performance. The driving reason that the

differences caused by neglect of the linkage ratios did not make drastic

differences between flight test and simulation, is that all surfaces on the URV

have a very large portion of their total authority in one axis. For aircraft with

axes coupled surfaces, the linkage ratios would make a much greater difference in

the gains and thus surface deflections after failure.

The FDI design used for the URV had originally been done for the AFTI F-16.

The local FDI section was removed from the original code and modified for use

with the URV. The logic flow of the local FDI for the URV was as shown in Fig. 3.

The first task of the FDI algorithm was to transform the data into floating

point format. The next task was filtering of the position information to reduce the

noise. This used a 20 radian per second first order filter. This frequency is

slightly beyond the actutor cutoff to minimize the impact of the filter qp ihe

signal information. The basis of the FDI was comparison of the surface rate

measurements with expected surface rates. This required data measurement and a

model. Thus, the position was measured and the "measured" rate calculated 4s 14

Eqn. 4.3 where At is the time step, (k) indicates the present time and (k-1) Is Owi

time step in the past.

rate(k) = [position(k) - position(k-l)]/(At) (4.3)

The model rate was based upon the transfer function of the actuator. The

digitized state space representation (1/60 second) of each of the seven actuatQr* Is:

.9610 .0134 I.0390
S.623] c.34

(4.4)

where

IT = [position rate] (4.4a)

18

Put sensed data
in floating point Residual magnitude Yes
format 4 Residual ?

Low pass filter the No
surface position

Reset failure

count
Calculate the

model rate

Failure count > 2
counNo

* Generate the residual Yes
by subtracting modeled
and measured rate

-• Declare a
failure

Figure 3. FDI Flow Chart

19

and
8com = actuator command (4.4b)

To improve the accuracy of the model, model position was not used. Instead

the measured position information was used to generate each model rate. This can

be seen in the code which is included in Appendix D.

For each of the seven actuators, the modeled rate and measured rate were

compared. If the difference was greater than a predefined threshold, a failuft

counter for that actuator was incremented. If the difference was less than the

threshold, the counter was cleared. If a counter reached a count of three, that

actuator was flagged as failed and the reconfiguration algorithm was activated.

Given accurate noise data and an actuator model, the threshold value tot
FDI could be set analytically based upon the probability of false alarm (Pt.) and

probability of missed detection (Pmd). However, the threshold values used M

flight test were based upon trial and error. Due to inaccuracies in the actuatot

model dynamics, the threshold values had to be set very large.

20

5.0 Computational Problem Overview

The computational hardware used in the SRFCS experiment consisted of two

separate computers connected by a telemetry link. The control mixer and FDI,

which make up the SRFCS, ran on the ground based computer, while the on-board

computer performed the feedback control functions. By partitioning the software

in this way, the previously existing flight control system hardware and software

could remain essentially the same, and the SRFCS could be coded in Ada and

targeted for the 68020 based ground computer. The telemetry system relayed

information from the on-board computer/sensors to the FDI algorithm on the

ground computer, and telemetered control system gain information from the

control mixer algorithm, running on the ground computer, to the on-board

computer.

The SRFCS ran on the ground based computer. However since it provided,

inner loop gain information to the on-board flight control computer, the

structure and implementation of the FDI and control mixer software was a critical

part of the entire system.

The role of FDI is conceptually simple, but its execution should be

synchronized with the SRFCS and the control system. The period of execution of

the FDI should be an integer multiple of the control system period to insure that

all actuator data is measured during the same sample period. However, due to the

characteristics of the telemetry system linkin2 the ground based FDI

computations with the flying URV, the FDI and the URV control system were not

synchronized.

The URV telemetry system was used in previous experiments to download

flight data for analysis. No need for synchronous interaction between a ground

based system and the on-board flight computer had ever been established. The

rate at which the telemetry system ran was determined by the number of

variables transmitted and the telemetry bandwidth limits. Although hardware

and software to allow synchronous execution of the ground and flight systems was

developed, it was ignored during implementation. Since the maximum possible

data latency due to the asynchronous running SRFCS was very small in

comparison to the actuator time constant, the fact that the telemetry and control

system were asynchronous, by itself, turned out to be a relatively small part of the

problems that affected the performance of the FDI. Therefore, during the SRFCS

21

flight tests, the flight control computer and the ground based SRFCS were run

asynchronously; the control system rate remained 60 Hz and the ground computer

sample rate, driven by the telemetry system, was about 28.5 Hz.

FDI problems were compounded by inaccuracies in the actuator model due

to mismodelled dynamics and the fact that the model had been digitized at the

control system rate, while it ran at the telemetry system rate on the ground

computer. This mistake could have been easily fixed, but was overlooked during

implementation.

The discrete dynamic equations of the FDI requires the use of a hardware

interrupt or code to continually poll the system clock. In the case of the URV,

polling the system clock would be not only computationally wasteful, but result in

timing delays as a result of the 1/128 second quantization of the Ada system clock

(a 128 Hz clock is defined as a part of the Ada language).

By using a hardware interrupt, problems associated with Ada system clock

were avoided. However, in keeping with the ideals of the Ada programming

language, the interrupts were serviced using Ada tasking constructs instead of

assembly language routines. This meant that the exact times of execution of the

user routines (FDI and control mixer) were affected by the efficiency of the real-

time operating system, the number interrupts and the order in which interrupts

were handled. However, for the URV SRFCS code, interrupts were serviced almost

immediately and interrupt handling delays had no noticeable impact upon system

performance.

5.1 Ada Implementation

Ada was the programming language chosen for the SRFCS algorithms on

the 68020 based ground computer. This choice was made to become familiar with,

and to evaluate some of the features of Ada as used in real-time systems.

In an effort to reduce life cycle costs, the Ada language was designed to

allow readable structured program development, and to include many features

that would be useful to software developers. The scope of the language definition

of Ada makes the impact of the compiler and real-time library routines of great

importance.

Ada tasking permits the development of independent processing entities

that can execute simultaneously on separate processors, or can share a single

processor. Ada tasks are structured to communicate with each other by copying

22

within a common memory or by using input/output statements between

processors that do not share memory. Entry calls and accept statements are the

primary method for synchronizing tasks and communicating values between

tasks. The interaction between the calling and accept statements is referred to as

the Ada rendezvous.

Ada also has interrupt-handling constructs available. These interrupt

handling constructs are described in section 13.5.1 of the Ada Language

Reference Manual1 4 .

Ada representation clauses are used to specify how the type declarations

are to be mapped onto the target machine. They can also be used to associate data

objects, subprograms task units, and task entries with a specific address.

5.2 FDI Computation

The purpose of the FDI task is to detect a failure in any of the actuators.

This is done by comparing a model of each actuator with measurements of the

state of the actuator. This task by itself is not a large computational burden.
However, with the use of Ada tasking constructs, this task poses a nontrivial

computational problem. In fact, during the URV flight test, the processing
overhead associated with the Ada tasking was greater than the actual numeric

computation.

In Ada, even with a hardware interrupt, a rendezvous must take place.

Variables must be passed to the control mixer task using the Ada rendezvous. By

using a hardware interrupt with assembly language, this Ada overhead can be
avoided. However, for this program, the Ada overhead was accepted to avoid the

use of an assembly language serviced hardware interrupt.

5.3 Control Mixer Gain Computation

After the FDI detects a failure, the control strategy (control mixer) code

must be initiated. The FDI initiates the control strategy by setting a flag. (See

Appendix D for the Ada code.)

The control mixer task (SLOGI routine) computes the twenty one control

mixer gains (7 by 3 matrix) used to redistribute the commands to the surface

actuators. This allows the unfailed effector surfaces to take over the activity of

the failed surface.

23

The gains are computed using Eqn. 5.1 (Bi+ denotes the pseudoinverse of

Bi). This equation dictates that the rates of change of the states before and after a

failure will be equal, or at least as close as can be achieved.

Ki = (Bi)+ * Bo * Ko (5.1)

From the implementation viewpoint, this matrix equation presents two

problems: 1) matrix computations require some overhead (for this reason they

are not generally used in real-time applications), 2) the equation requires the

computational expense and potential numeric difficulty of a pseudoinverse

operation. Both of these problems combine to make the equation difficult to

implement in real-time on an embedded processor.

Embedded processors tend to be smaller and more limited than larger

mainframe or minicomputers and often lack hardware for floating point and

matrix calculations. The hardware used for the FDI and control strategy

calculations for the URV flight tests was a VMEI33 board 1 8 which has the

capability to perform floating point operations directly in hardware. However,

the VMEI33 board had no special purpose hardware for matrix operations.

S.4 Pseudoinverse Algorithms

The implementation of the pseudoinverse operation can be achieved by two

distinct categories of algorithms. The first category does not use an explicit

matrix inverse operation, but instead uses a more direct approach (e.g. singular

value decomposition algorithm for computing the pseudoinverse). The second

category of algorithms that is commonly referenced in the literature 15 makes use

of a standard matrix inverse operation. This second class of algorithms essentially

recast the pseudoinverse operation so that a standard matrix inverse operation

can be used to achieve a pseudoinverse operation.

A singular value decomposition (SVD) algorithm was considered, but found

to be unsuitable for real-time implementation using the available processing

hardware. A vendor supplied direct pseudoinverse method was also investigated,

however the performance of the was algorithm never acceptable. It was never

determined whether the cause was ill-conditioned numerical computations or

possibly a software "bug" that caused poor numerical performance.

24

The pseudoinverse method for the URV flight tests uses the explicit matrix

inverse calculation. The method utilizes the equation for the underdetermined

pseudoinverse (see Eqn. 2.15) which is shown below.

Bi+ = BiT*inv(Bi*BiT) (5.2)

From Eqn. 5.2, it can be observed that the following operations must be

performed to complete the pseudoinverse operation: matrix transpose, matrix

multiplication, and matrix inversion. There is also a need to assure that the

product of the matrix multiplication (Bi*BiT) is invertible.

FDI algorithms that estimate surface effectiveness for a general set of

failure conditions require a check for singularity/conditioning of (Bi*BiT).

However, the failure scenarios considered in this program resulted in adequately

conditioned (Bi*BiT) in all cases except the case of failed rudder (which was not

flight tested).

Various methods for performing the matrix inverse of Eqn. 5.2 were

investigated. The particular method chosen for this project relies on the

following equation.

Y-nxl = 2' x * x nxl (5.3)

where y. and & are vectors of length n and Anxn is a matrix of dimension, n by n.

Note that the A matrix in Eqn. 5.3 is not related to the A matrix in Eqns. 2.1 or 3.1

(the URV dynamics).

This method first employs a variation of LU Decomposition using the

Crout 1 1 method, and then uses backsubstitution and forward substitution to find

the vector, L. This is done for each column vector, y., of the identity matrix. The

resulting L vectors are then concatenated to form the inverse of [A).

25

6.0 Data Analysis

The Self-Repairing Flight Control System (SRFCS) flight test was performed

in two phases. The first phase was the reconfiguration strategy algorithm

(control mixer) flight test with the FDI stubbed. During these tests, various

surface failures were emulated and the new (pre-computed) gain matrix values

were immediately used (perfect FDI). In the second phase the FDI was tested in

conjunction with the control mixer. The control mixer was not initiated until the

FDI detected a failure. Failures were emulated, the FDI acted on the changed

system, sent information to the control mixer, and the control mixer reconfigured

the gains to recover nominal flight performance.

Fig. 4 shows the coordinate axes and sign conventions that were used for

the project. The sign convention for the surface deflections is given below.

Surf ace Sign convention

8el positive - trailing edge up

Aer positive - trailing edge up

gal positive - trailing edge down

8at positive - trailing edge up

8n positive - trailing edge down

8fr positive - trailing edge down

Sr positive - trailing edge right

Nominal performance of the URV is shown in Appendix C Figs. C.1 - C.6 for

cases of pitch, roll and yaw doublets. This data is provided as a basis of comparison

for the failed and reconfigured URV. Maneuvers for both nominal and

reconfiguration/failure cases were doublets of pitch, roll or yaw. Doublets were

used to test the response to both positive and negative commands. The

reconfiguration strategy was tested for cases of a single failure of aileron.

elevator, or flap failed to locked at zero degrees deflection angle, with each of the

pitch, roll and yaw doublet commands.

The amcunt of data gathered from the flight tests is very large. The

discussion of flight data and inclusion of strip chart recordings is limited to a

small fraction of the total data gathered and analyzed. This report includes some

26

41 'I

0 0

V

a V,,

V4 4J

US 460

00 o44J c
not.4 0

10'sS.
0SA*J

US 4

I', y4127

interesting cases of reconfiguration which worked properly, cases involving

problems with the control mixer and its implementation, and FDI related strip

chart recordings.

6.1 FDI Stubbed

Failed Right Aileron, Roll Command:

Reconfiguration worked well for a failed left aileron with a roll command.

This time history is shown in the strip chart of Appendix C, Figs. C.10 - C.13. The

data shows that the primary surface for the maneuver is the remaining right
aileron and the flaps. The flaps and remaining aileron very nearly restore

performance to nominal. The elevators have little effect in the roll axis compared
with their effect on the pitch axis and are thus not significant in this maneuver.

The neglect of the KLINKS matrix during the mixer gain matrix calculation

caused the sign of some deflections to be wrong for initial flight tests. For this

case (failed right aileron and roll command), this resulted in the elevators
responding with deflections of the wrong sign during the first flight tests for this

maneuver. After this was noted, the sign of the gain values were changed. The

time histories shown here depict the results after the sign of elevator deflections

had been corrected.

The notable differences between the unfailed roll response and the failed

aileron case, are the more sluggish roll rate and exaggerated adverse yaw after

the failure.

Left Elevator Failed, Pitch Command:
The case of failed left elevator (Appendix C, Figs. C.7 - C.9) with a pitch

command should reveal problems associated with the decision to alter the B matrix

before performing the mixer gain calculations. However, it is difficult to

determine the origin of various effects from the traces. For this case, the B matrix

has zeroed the contribution of the flaps to the roll and ailerons to pitch. This

change in the B matrix is done to prevent force fights between the flaps and

ailerons (which result in high surface deflections which are not desired). This

change is not a manifestation of the physics of the problem, however it does keep

the surface deflections small without adverse results.

During initial flight tests (not shown in this report) of this condition, the

sign of the right flap was incorrect. Because the flap has minimal affect for this

28

case, it went largely unnoticed and caused no large problems. The sign was

changed after the first set of flight tests and data shown in this report is for flight

tests after this correction had been made. With this sign change the right flap

then deflects upward for positive pitch commands improving the pitch

performance.

The gain matrix sign changes after the first flights were based on

heuristics and do not reflect the accompanying changes in ratios that the mixer

algorithm would have generated by inclusion of KLINKS. However, the

performance of the URV shown by the strip charts is rather good. Nearly

unfailed performance is attained in pitch without significant degradation in

other system states.

If the URV had control surfaces which were more evenly multi-axis

effective, the sign variations would have been noted during ground test. The

decoupled nature of the control surfaces meant that the non-primary control

surface deflections were comparatively small and unnoticed. This same decoupled

control surface characteristic also meant that these sign errors had little effect

on the system performance during flight.

The end result of zeroing the flap and aileron B matrix entries, for roll and

pitch respectively, is to greatly reduce the effect of the flaps on the URV

performance. This can be seen by observing the values of the Kie matrix for

flaps in Eqn. A.21.

6.2 FDI Evaluations

The procedure for testing the FDI was to emulate failure by commanding

the "failed" surface to zero deflection angle during flight and observing the

performance of the FDI in terms of time to detect the failure. However, the

maneuvers for testing the FDI were not regimented to include pitch, roll and yaw

doublets as was the case in the test of the mixer. Because the FDI is local (looking

for failures in each actuator independently), the states of the URV are not

relevant. The only requirement of the maneuver, is that it attempt to excite the

failed surface.

During the FDI tests, the flaps are not commanded until reconfiguration is

initiated. Therefore, flap activity signifies that the FDI has found a failed surface,

calculated the new gain matrix and initiated the reconfiguration. Also, the

sample rate of the FDI is 28.5 Hz. The FDI requires a minimum of three sample

29

periods (about lOOms) to detect a failure, while the mixer gain calculation takes
about 70ms. Therefore, the shortest amount of time possible for the FDI and
reconfiguration is about 170ms.

Failed Left aileron:

A representative set of time histories for the case of failed aileron are

shown in Appendix C, Figs. C.14 - C.17. In these traces, the introduction of the
failure of the left aileron is marked by the initiation of the command (from the
failure emulator) of left aileron to zero degrees. The commands during these

traces are in response to a pitch and roll command. The time for detection is equal
to the difference between the beginning of the activity of the flaps and the
"failure" command to the aileron, minus the gain matrix calculation time (about

70ms).

The total SRFCS time is difficult to accurately determine from the strip
chart recordings. However, this time is relatively small and appears to be about
200ms. This would indicate about 130ms for the FDI time. No appreciable

transients appear since the URV dynamics are much too slow to be affected by this
small detctiou time. For the most part, the flaps are commanded to fill the roll of

the failed aileron. The somewhat oscillatory roll and pitch rate can be attributed
to the fact that most of the recording was taken during a banking turn. The
elevators are called upon to generate pitch and appear to be unaffected by the

failure. The near nominal performance of the elevators is to be expected since

their gains change very little as a result the reconfiguration.

Failed Right Elevator:

Appendix C, Figs. C.18 - C.22, show a typical right elevator failure time
history plots. Like the previous FDI case, this failure is inserted during a rather

large maneuver. The URV is being driven by large pitch and yaw commands

when this failure is inserted. The relatively large deflection angles needed to

respond to these commands cause the FDI system to detect quickly. From the strip
charts, the detection time is measured as the difference between the time of
initiation of the simulated failure (the zero command to the right elevator) and

the time that the flaps begin to respond, less the gain calculation time. Again, the

time to detect the failure appears to be between lOOms and 200ms.

30

The elevator recordings show that both elevators were beginning to

decrease in magnitude, since the desired maneuver was nearly complete when the

failure occurred. The failure forced the left elevator to respond to the feedback

error immediately. As soon as the detection occurs, the flaps begin to aid the

ailerons in reducing the roll rate (since the roll axis was not commanded).

The importance of reconfigurable flight controls depends on severity of

surface failures/battle damage, the dynamics of aircraft, and the flight condition

of the aircraft. For some aircraft, impairments require immediate corrective

action. However, the dynamics of the URV are relatively slow and the pilot is able

to fly the aircraft with failed surfaces. Therefore FDI response time is not critical.
There is a trade-off between the detection threshold levels and the Pfa" To

reduce the Pfa' the thresholds must be large. This also means the surfaces must

have large deflections to trip the FDI.

During steady flight, a failure (on any aircraft) may not be immediately

detected if the surface is lightly loaded. There must be activity for detection to

occur. Thus, those failures which are not immediately detected are not

necessarily detrimental to system performance.

31

7.0 Conclusions

The URV flight test of a Self-Repairing Flight Control System (SRFCS) coded

in Ada, was one of the first tests of an air vehicle with part of its inner loop

control system coded in Ada, and one of the first flight tests of a Control

Reconfiguration System. This project provided a basis for understanding the pros

and cons of both SRFCS and Ada coded flight control.

The FDI worked well for large maneuvers due to the large signal to noise

ratio. However, the thresholds had to be set large to prevent false alarms.

Because the thresholds were large, the maneuvers used to test the FDI had to be

large also. Therefore, to show the FDI working, it was started while the URV was

aggressively maneuvering. The need for high thresholds can be attributed to a

variety of difficulties including; 1) inadequacy of the actuator model dynamics, 2)

improper sampling rate used to digitize the actuator model, and 3) asynchronous

operation of the ground based SRFCS functions and the on-boa'd flight computer.

One difficulty with test of any FDI method concerns the adequacy of the

failure scenarios considered, as well as the fidelity of their mechanization. For

the URV flight test, the failure modes and their mechanization were chosen only

because they simplified SRFCS mechanization. This failure scenario topic

deserves considerably more e.ffort in any future work.

The benign nature of the URV provided a good platform for test and

demonstration of Self-Repairing Controls and the control mixer worked well for

most maneuvers which were considered. However, the gains found by the mixer

were not always the most logical for recovering system performance. There was a

tendency for the mixer to provide gains that would cause surfaces to oppose each

other and eventually saturate. However, this was primarily due to inadequate

control effector modelling in the state equation over the range of states and

surface deflections encountered.

The B matrix of Eqn. 3.2 is derived assuming small perturbations and

linearity. This assumption is, for the most part, valid. However, for the yaw rate

equation, these assumptions are largely violated. Although the constant B matrix

of Eqn. 3.2 seems adequate for most of the states for the entire flight envelope, the

entries in the yaw rate row change magnitude and sign during maneuvers. This

was the reason for the large gains generated for the failed rudder case and

resulted in the decision not to flight test the SRFCS for the failed rudder case.

32

The lack of a redundant yaw control surface was a problem for the URV and

is typical of modern fighter aircraft. However, alternative yaw authority is often

available. The real difficulty is plant identification, to determine the source of

the authority, and its intelligent use by the SRFCS algorithm. The URV with flaps

may have had sufficient yaw control power (throughout its envelope) from

ailerons and flaps, to deal with rudder failures. The problem was identification of

the yaw rate control effects of the surfaces for more than a narrow operating
region, and then best using this plant information to fulfill the command without

surface saturation. The identification and intelligent use of drag induced yaw

authority is one of the most difficult problems involving SRFCS.

Because the control mixer used the B matrix to generate new gain matrices

(after failures), the gains reflect the errors in the model representation. If the

model were updated during flight, the results would be much better. However,

this would require the addition of an on-line model identification routine. Also,

the need to update the mixer gain matrix based upon distance to maximum

deflection of each surface (to prevent saturation of surfaces) would require the

pseudoinverse calculations whenever the deflections of the surfaces change

enough to affect performance. In all, these requirements create a larger

computational burden and increase the problem complexity beyond the budget

and schedule of this first SRFCS flight test on the URV.

The task of SRFCS implementation on the URV was aided by three factors: 1)

availability of "off-the-shelf" hardware, 2) the use of Ada for development, and 3)

test on an unmanned vehicle.

The processing hardware available at the time of the flight test was

sufficiently advanced to easily perform all the SRFCS functions without affecting

the URV dynamics. The control mixer (taking about 70ms) and the FDI (taking

about lOOms) were not able to work within one time step (FDI requires more than

one time step in general), however the tasks were able to run fast enough to

prevent noticeable effects in the time histories of the flight test.

Ada contributed during algorithm implementation primarily by assisting

code complexity management. Even for a small flight test project, the number of

people and software involved made hierarchical procedure support, strong typing

and HOL interrupt handling very useful language characteristics.

Because this project used an unmanned aircraft, most safety issues

associated with manned flight test were not applicable. This simplified all aspects

33

of the flight tests including hardware selection and design, software required and

flight test planning.

The use of unmanned vehicles and Ada, for studying complex, safety

critical algorithms, have proven useful during the Ada implemented SRFCS study.

Many issues associated with SRFCS, including stability changes, pilot notification

of status, failure/damage scenarios, model identification, nonlinear aircraft

characteristics and computational requirements need further investigation.

34

8.0 References

1. "General Specification for Flight Control System", Mil-F-87242, March 1986.

2. Pigford, J. A., "Static Aerodynamic Characteristics of a Full Scale Powered Modcl

of the AFFDL XBQM-106 Mini-RPV with and without Side Force Surfaces," AFFDL-

TM-78-60-FXS, June 1978.

3. Ray, B. S., "Aerodynamic Characteristics of the XBQM-106 Unmanned Research

Vehicle Modified for Flight Control Reconfiguration", AFWAL-TM-86-183-FIGC,

April 1986.

4. Stifel, J. M., Dittmar, C. J. and Zampi, M. J., "Self-Repairing Digital Flight Control

System Study", AFWAL-TR-88-3007, May 1988.

5. Weinstein, W. and Merchandante, R., "Control Reconfigurable Combat Aircraft",

AFWAL-TR-88-3118, July 1989.

6. Caglayan, A. K., Allen, S. M. and Rahnamai K., "Failure Detection, Isolation, and
Estimation for Reconfiguration of Aircraft Flight Control Systems Subjected to

Actuator Failure and Surface Damage", WRDC-TR-89-3058, June 1989.

7. Wehmuller, K. and Nguyen B., "Reconfigurable Control Laws for the Control
Reconfigurable Combat Aircraft Subjected to Actuator Failures and Surface

Damage", WRDC-TR-89-3052, June 1989.

8. Finck, R. D., "USAF Stability and Control DATCOM",AFWAL-TR-83-3048, October
1960, Revised 1978.

9. Koogler, 0. D. and Tietz, D. E., "Microprocessor-Based Digital Autopilot
Development for the XBQM-106 Mini-RPV", MS Thesis, AFIT/GE/EE/78D-31, School

of Engineering, Air Force Institute of Technology, Wright-Patterson AFB,

February 1979, AD-A064315.

35

10. Rattan, K. S., Study of Control Mixer Concept for Reconfigurable Flight Control

System", Proceeding NAECON, May 1985, pp. 560-569.

11. Press, W. H., Flannery, B., Teulosky, S. and Vetterling, W., "Numerical Recipes:

The Art of Scientific Computing", Cambridge University Press, 1986.

12. Reid, J. G., "Linear System Fundamentals", McGraw-Hill, 1983.

13. Matrixx User's Guide, Version 7, 1988.

14. Ada Programming Reference Manual, ANSI/MIL-STD-1815 A, January 1983.

15. Strang, G., "Linear Algebra and Its Applications", Academic Press, 1980.

16. Chandler, P. R., Issues in Flight Control Design for Robustness to Failures and

Damage", International Control Conference, 1989.

17. Gross, H. G. and Migyanko B. "Application of Supercontroller to Fighter

Aircraft Reconfiguration", American Control Conference, June 1988.

18. "MVME133 VMEmodule 32-bit Monoboard Microcomputer User's Manual",

Motorola Inc., 1986.

36

Appendix A
Control Mixer Gain Calculations

This appendix includes matrices and some of the Matrixx calculations used

to calculate the control mixer gain matrices for left side failure scenarios. All

matrices refer to left side failures. (The gain matrices for the right side failures

are very similar.) The nomenclature is defined below.

Ko == the nominal mixing gain matrix

Boo == nominal control authority matrix

Bor -= nominal control authority for failed rudder

Bie == failed elevator control authority matrix

Bia failed aileron control authority matrix

Birt= failed rudder control authority matrix

Kie == failed elevator gain matrix

Kia == failed aileron gain matrix

Kir == failed rudder gain matrix

The following section of data is that which would result with no flaps and

no bogus (zeroing of elements) modifications to the B matrix.

1. 0. 0.

1. 0. 0.

Ko = 1 1. 0.

0. -1. 0.

0. 0. 1.

(A.1)

37

-0.0034 -0.0034 -0.0022 -0.0022 0.0000

-0.5812 -0.5812 -0.0481 -0.0481 0.0000

Boo = 0.0000 0.0000 0.0000 0.0000 0.0016

0.2455 -0.2455 0.6697 -0.6697 0.0554

-0.0130 0.0130 -0.0428 0.0428 -0.1789

(A.2)

0.0000 -0.0034 -0.0022 -0.0022 0.0000

0.0000 -0.5812 -0.0481 -0.0481 0.0000

Bic = 0.0000 0.0000 0.0000 0.0000 0.0016

0.0000 -0.2455 0.6697 -0.6697 0.0554

0.0000 0.0130 -0.0428 0.0428 -0.1789

(A.3)

-0.0034 -0.0034 0.0000 -0.0022 0.0000

-0.5812 -0.5812 0.0000 -0.0481 0.0000

Bia 0.0000 0.0000 0.0000 0.0000 0.0016

0.2455 -0.2455 0.0000 -0.6697 0.0554

-0.0130 0.0130 0.0000 0.0428 -0.1789

(A.4)

38

-0.0034 -0.0034 -0.0022 -0.0022

-0.5812 -0.5812 -0.0481 -0.0481
Bir =

0.2455 -0.2455 0.6697 -0.6697

-0.0130 0.0130 -0.0428 0.0428

(A.5)

Now to avoid rank deficiency, eliminate the zero column of Bie.

<> bie=bie(1:5,2:5)

-0.0034 -0.0022 -0.0022 0.0000

-0.5812 -0.0481 -0.0481 0.0000
Bie = 0.0000 0.0000 0.0000 0.0016

-0.2455 0.6697 -0.6697 0.0554

0.0130 -0.0428 0.0428 -0.1789

(A.6)

<> kie=inv(bie'*bie)*bie'*boo*ko

2.0000 0.0000 0.0000

0.3679 1.0000 0.0000
Kie =

-0.3678 -1.0000 0.0000

-0.0307 0.0000 1.0000
am

(A.7)

39

The above Kie matrix has rows corresponding to right elevator, left aileron,

right aileron and rudder.

Now, as above with the Bie matrix, the Bia matrix is modified.

<> bia=[bia(1:5,1:2),bia(1:5,4:5)1

-0.0034 -0.0034 -0.0022 0.0000

-0.5812 -0.5812 -0.0481 0.0000

Bia = 0.0000 0.0000 0.0000 0.0016

0.2455 -0.2455 -0.6697 0.0554

-0.0130 0.0130 0.0428 -0.1789

(A.8)

<> kia=inv(bia'*bia)*bit'*boo*ko

1.0000 2.7153 0.0000

1.0000 -2.7151 0.0000
Kia =

0.0000 -0.0024 0.0000

0.0000 0.0833 1.0000

(A.9)

The above K matrix has rows representing left elevator, right elevator,

right aileron, and rudder.

Now Bir is modified. In the case of the B matrix for rudder calculations, thie

Srow of the matrix is removed to remove singularity and maintain conforrnmil

matrices.

40

-0.0034 -0.0034 -0.0022 -0.0022

-0.5812 -0.5812 -0.0481 -0.0481Bir =

0.2455 -0.2455 0.6697 -0.6697

-0.0130 0.0130 -0.0428 0.0428

(A.10)

<> bor=[bor(1:4,1:4),bor(l:4,7)1

-0.0034 -0.0034 -0.0022 -0.0022 0.0000

-0.5812 -0.5812 -0.0481 -0.0481 0.0000
Bor =

0.2455 -0.2455 0.6697 -0.6697 0.0554

-0.0130 0.0130 -0.0428 0.0428 -0.1789

(A.11)

<> kir=inv(bir)*bor*ko

1.0000 0.0000 -32.5982

1.0000 0.0000 32.5982
Kir =

0.0000 1.0000 11.9913

0.0000 -1.0000 -11.9913

(A.12)

The Kir matrix shown above has rows of left elevator, right elevator, Icft

aileron and right aileron.

41

The next set of matrices that follow are those that result from adding flap

effects to the B matrices and performing the calculations as above. The no-fail
gain matrix does not use the flaps. Therefore the Ko matrix is

1. 0. 0.

1. 0. 0.

0. 1. 0.

Ko= 0. -1. 0.

0. 0. 0.

0. 0. 0.

0. 0. 1.

(A.13)

0.0000 -0.0034 -0.0022 -0.0022 -0.0040 -0.0040 0.0000

0.0000 -0.5812 -0.0481 -0.0481 -0.0660 -0.0660 0.0000

Bie = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016

0.0000 -0.2455 0.6697 -0.6697 0.6221 -0.6221 0.0554

0.0000 0.0130 -0.0428 0.0428 -0.0403 0.0403 -0.1789

(A.14)

<> kie=bie'*inv(bie*bie')*boo*ko

42

0.0000 0.0000 0.0000

1.9603 -0.0038 0.0000

5.7599 1.0759 0.0000

Kie = -3.9942 -0.9049 0.0000

-5.3321 -0.0359 0.0000

4.3947 -0.0549 0.0000

0.0000 0.0000 1.0000

(A.15)

-0.0034 -0.0034 0.0000 -0.0022 -0.0040 -0.0040 0.0000

-0.5812 -0.5812 0.0000 -0.0481 -0.0660 -0.0660 0.0000

Bia - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016

0.2455 -0.2455 0.0000 -0.6697 0.6221 -0.6221 0.0554

-0.0130 0.0130 0.0000 0.0428 -0.0403 0.0403 -0.1789

(A.16)

<> kia=bia'*inv(bia*bia')*boo*ko

43

1.0012 0.1453 0.0000

0.9985 -0.1313 0.0000

0.0000 0.0000 0.0000

Kia - 0.0135 -0.6239 0.0000

0.0032 0.8517 0.0000

-0.0104 -0.5205 0.0000

0.0000 0.0000 1.0000

(A. 17)

-0.0034 -0.0034 -0.0022 -0.0022 -0.0040 -0.0040

-0.5812 -0.5812 -0.0481 -0.0481 -0.0660 -0.0660
Bir =

0.2455 -0.2455 0,6697 -0.6697 0.6221 -0.6221

-0.0130 0.0130 -0.0428 0.0428 -0.0403 0.0403

(A.18)

<> bor=[boo(1:2,1:7);boo(4:5,1:7)]

-0.0034 -0.0034 -0.0022 -0.0022 -0.0040 -0.0040 0.0000

-0.5812 -0.5812 -0.0481 -0.0481 -0.0660 -0.0660 0.0000
Bor =

0.2455 -0.2455 0.6697 -0.6697 0.6221 -0.6221 0.0554

-0.0130 0.0130 -0.0428 0.0428 -0.0403 0.0403 -0.1789

(A.19)

<> kir=bir'*inv(bir*bir')*bor*ko

44

0.9996 0.0988 -30.7668

0.9996 -0.0988 30.7668

0.0175 0.5086 2.8785Kir =

0.0175 -0.5086 -2.8785

-0.0093 0.4901 9.0873

-0.0093 -0.4901 -9.0873

(A.20)

The above Kir matrix has rows corresponding to left elevator, right

elevator, left aileron, right aileron, left flap and right flap.

Note that in the above Kie matrix which includes the flaps, that the values

in the first column are rather large in comparison to the Kie matrix which does

not include flaps. This is due to the force fight between the flaps and ailerons.

The cases of failed ailerons did not zero any elements in the B matrix,

therefore the values flown are the values shown above (except for some sign

changes). However, the gain matrices that were flown for the elevator failure

cases were derived with B matrices that had some elements zeroed. Therefore the

gain matrix for the left elevator failure which flew (shown below) is different

from that shown above.

45

0.0000 0.0000 0.0000

1.9852 -0.0025 0.0000

0.2568 0.9812 0.0000

Kie = -0.4709 -1.0179 0.0000

-0.0011 0.0113 0.0000

0.1314 0.0111 0.0000

0.0000 0.0000 1.0000

(A.21)

The values in the above gain matrix are reduced due to the zeroing of the B

matrix elements.

The gains that result from if linkage ratios are considered as part of the

control matrix are the gain matrices that follow. (These matrices have zeroed B

matrix values as was done for the flight tested matrices.)

1.0029 -0.2237 0.0000

0.9964 0.2010 0.0000

0.0000 0.0000 0.0000

Kia = -0.0208 -0.6475 0.0000

-0.0048 0.8462 0.0000

0.0159 -0.5025 0.0000

0.0000 0.0000 1.0000

(A.22)

46

0.0000 0.0000 0.0000

1.9656 0.0039 0.0000

-0.0713 0.9814 0.0000

Kie 0.3899 -1.0177 0.0000

-0.0550 0.C0 11 0.0000

-0.1390 0.0110 0.0000

0.0000 0.0000 1.0000

(A.23)

47

Appendix B

Simulation Time Histories

This appendix shows time histories for the nominal (without surface

failures) URV for pitch, roll, and yaw commands using the linear small

perturbation model given in Eqn. 2.1 and matrices defined in Eqns. 3.1 and 3.2.

The inputs to the model are unit steps and the non-unity magnitudes of the output

variables are due to the system gain. Each set of traces indicates response to a

single step input while the other two commands are zero and only those output

variables that displayed activity are included in these figures.

48

Nominal Pitch Response

20

18

I'I

16 j
14

I I
18 I

12
I 1

10

I I

I I
I I

0 12 3 4 5
seconds

ax (deg)
0 (deg) --

Fig. B.1 q (deg/sec)-

49

Nominal Pitch Response

0

-. 3

-. 6

-. 9

-1.2

-1.5
-1.8/

-2.1

-2.4

-2.7

- 3 r I I 1 I I 1 1 I I I I I

0 1 2 3 4 5

seconds

Left/Right Elevator

(degrees)

Fig. B.2

50

Nominal Roll Response

50

I \

I'40i

\

30-4--

. ..I ----... ...

I- - -- - - - - -- ---

0 1 2 3 5
seconds

0 (deg)
(deg) ----

Fi.B3p (deg/sec)-
gr (deg/sec

51

Nominal Roll Response

8

6

4

2

-2;

2 3 5

seconds

Left/Right Aileron
(degrees)

Fig. BA4

52

Nominal Roll Response

1.5

1.2

.9

.6

0

-. 3

-.6

-. 9

- 1 .2 ' ' ' ' ' ' ' ' ' ' ' ' ' '
0 1 2 3 4 5

seconds

Rudder
(degrees)

Fig. B.5

53

Nominal Yaw Response

14

12 -¾--"

10

8 I

* I .;

I I \

4................ ±-f----+ --------
i I ,"

2!;4

2II ..-

-2

• 6 I I I ____ ___I ___ I a I i a I 1 a

0 1 2 3 4 5

seconds

e (deg)
* (deg)

p (deg/sec)

Fig. B.6 p (deg/sec

54r (deg/se)

54

Nominal Yaw Response

0

-2

-4

-6

-8

-10

- 12 ' ' '' ' ' ' ' ' ' ' ' ' ' '
0 2 3 4 5

seconds

Rudder

(degrees)

Fig. B.7

55

Nominal Yaw Response

1.2
1 .2 .°... •..... L...................

.9

.3 .

-. 3

-. 6

-. 9

- 1 .2 t I I I_ _

0 1 2 3 4 5

seconds

Left/Right Aileron
(degrees)

Fig. B.8

56

Appendix C
Flight Data Time Histories

This appendix shows a few of the time history strip charts taken during the

flight test to record the activity of the states and surfaces of the URV. Only traces

for states and surfaces which are significant (in terms of SRFCS) are shown. The

charts are labeled to note the state or surface represented, the direction of

increasing time, the time scale, the units, and denote a point in time which is
common for each plot of a particular maneuver (to).

57

No Fail, Pitch

-50 -50 +20 -30 +10 -10

77 ~ ~ ~ ~ ~ - 1. ..

. .7~ .-7- ..-. (X8
.. . .. 7+ 7... .~ EL...... 1.. ..

77.. . n

..
.. ~ se c .

77: 7:

Fig C.

77! 58

No Fail Pitch

AL corn:

V .

'~ II......-...... -....

.....

I . .Increasing I time

I -> 0.25 sec

!-7

Fig. C.2

59

No Fail, Roll

+50 -5 0 45-45 +50 -50

-t tme

a)) measurements In
degrees or deg/ sec

Fig. C.3

60

No Fail, Roll

-15 -50 -50 +15 -15

AR AL

S)

Increasing

time

__•0.25 sec

t 0
all measurements In
degrees or deg/sec

Fig. CA

61

No Fail,, Yaw

-25 -25 -50 -50 "+25 -25

SIIncreasing

all measurements In
degrees or deg/sec

Fig. C.5

62

No fail, Yaw

*50 -50 +25 -25 *15 -15

..

44.

I.I

tincreasing
time

t0

all measurements in
degrees or deg/sec

Fig. C.6

63

Left Elevator Failed, Pitch

*15 -15 i50 -50 Q25 -25

SA L_ - q cmmm m_

CO o

IIncreasIng
>0.25 sec

0

all measurements in
degrees or deg/sec

Fig. C.7

64

Left Elevator Failed, Pitch

+5 -50 10-0 +5-15

Increasing

all measurements in
degrees or deg/ sec

Fig. C.8

65

Left Elevator Failed, Pitch

÷15 -15 +50 50 *20 0 =30

t Increasing
time

__> 0.25 sec

t

all measurements In
degrees or deg/sec

Fig. C.9

66

Right Aileron Failed, Roll

+50 -50 +45 -45

Increasing
time

0t 5 e

0

all measurements In
degrees or deg/sec

Fig. C.l1

67

Right Aileron Failed, Roll

Increasing

time

0

aV measurements In
degrees or deg/sec

Fig. C. 11

68

Right Aileron Failed, Roll

15-15 *10 -10 +10 0

tIncreasing
time

0

all measurements in
degrees or deg/sec

Fig. C. 12

69

Right Aileron Failed, Roll

115 +15 -15

Increasing
time

0 0

a)l measurements In
degrees or deg/secr mo allf m e s re e t 1 f1ltl im ORn

Fig. C. 13

70

FDI of Left Aileron Failure

-45 -45 +25 -25

i ncreasing
time

t
0

*all measurements in
degrees or deg/sec

Fig. C. 14

71

FDI Left Aileron Failure

-10 -10 ÷10 -10 +50 -50

Sa~FR
"

1 6

.a

increasing
time

"0 0

ail measurements in
degrees or deg/sec

Fig. C. 15

72

EDI of Left Aileron Failure

-50 -50 -10 -10 *10 -10

Increasing
time

0

all measurements in
degrees or deglsec

Fig. C. 16

73

FDI of Left Aileron Failure

+15 -15 -15 -15 +15 -15

AoR AR AL com

increasing
= time

.. 0.25 sec

t 0

all measurements In
degrees or deg/sec

Fig. C. 17

74

FDI for Right Elevator Failed

-25 -25 -50 -50 ÷20 -20

--
2

I Iincreasing
time

> 0.25 sec

all measurements in

degrees or deg/sec

Fig. C.18

75

FDI for Right Elevator Failed

-15 -15 '25 -25 -50 -50

FLr
COrn

0

increasing
* f time

o >0.25 sec

""i o WN.

all measurements In
aegrees or deg/sec

Fig. C. 19

76

FDI for Right Elevator Failed

+10 -10 +10 -10 +10 -10

......*......ER ER

t0

t Increasing
time

S_> 0.25 sec

all measurements In
degrees

Fig. C.20

77

EDI for Right Elevator Failed

-10 +10

increasing
time

t0

all measur-emrerts in~
degf ees or leq/sec

Fig. C.2 1

78

FDI for Right Elevator Failed

-1 15 -15 =15 +25 -25

•t

0

IIncreasing

all measurements
In degrees

Fig. C.22

79

Appendix D

Ada Code

The URV flight test of a Self-Repairing Flight Control System (SRFCS) coded

with SYSTEM,SDTYPESTEXTIOFDIAUXRECM;
use SYSTEM,SDfTYPES,FDIAUX;

procedure FD-USER is

-- Modified Wednesday June 7, 1989 for SD-Ada
Wednesday May 30, 1989 Added reconfiguration transient suppression code

-- memory set as Integer 2946, 7122, 1500, and 20000 starting at
-- 16#00100030# or hexidecimal B82, IBD2, 5DC, 4E20, and 10 to produce
-- 0.2946, 7.1218, 15.0, 0.2, and 10

subtype INDXTYPE is Integer range 1 .. 4;
KK : INDX_TYPE;

OFFSET : constant Integer := 2048;
FAILURESTATE : Integer,
JAGO : Integer-,

Transient-Cycles : Integer,
TransitionCount ,Integer,

Fdijdling : Integer,
Fdi_Running : Integer,
FdiLooping Integer;

RESETBUITON : CHARACTER;
MIDXEGAINSSTATE : CHARACTER;
SURFACEDATASTATE: CHARACTER;
TEMPDATASTATE CHARACTER;
INTERRUPTSTATUS : CHARACTER;
ENABLED : CHARACTER := ASCII.eot;
DISABLED : CHARACTER := ASCII.nul;

SURF CMDDATA : array (I .. MAX-SURFS) of Integer,
SURF_POSDATA : array (I .. MAXSURFS) of Integer;
COEFFiCIENTS : array (INDX_TYPE) of Integer;

MIXERGAINS : URVMATRIX(1 .. MAXSURFS, 1 .. 3);
GAINMATRIX : MATRIX(1 .. MAX_SURFS, I .. 3);

for FAILURESTATE use at SYSTEM.CONVERTADDRESS("00100016");
for RESET_BUTTON use at SYSTEM.CONVERTADDRESS("00100014");
for MIXERGAINS_STATE use at SYSTEM.CONVERTADDRESS("00100012");
for SURFACeDATASTATE use at SYSTEM.CONVERTADDRESS("00100010");
for INTERRUPTSTATUS use at SYSTEM.CONVERTADDRESS('00FF0103");

for SURFCMDDATA use at SYSTEM.CONVERTADDRESS("100020");

80

for COEFFICIENTS use at SYSTEM.CONVERT_ADDRESSQ' 100030");
for TransitionCount use at SYSTEM.CONVERTADDRESS("100038");

for FdiIdling use at SYSrFEM.CONVERT_-ADDRESS('10003A");
for FdiRunning use at SYSTEM.CONVERTADDRESS('10003C');
for FdiLooping use at SYSTEM. CONVERTADDRESS (" 10003E ");
for SURFPOSDATA use at SYSTEM.CONVERT_-ADDRESS(" 100040");
for MIXERGAINS use at SYSTEM.CONVERTADDRESS("100060");

EFFECTIVELSURFACES :BOOLEAN_-ARRAY(1 . MAX_SURFS);
UNFAILEDSURFACES : BOOLEANARRAY(l . MAXSURFS);
MODELEDACTRATE :LINEAR_ARRAY(I .. MAXSURFS);
FILTEREDSURFACECMD :LINEARARRAY(1 .. MAX_SURFS);
FILTEREDSURFACEPOS :LINEARARRAY(1 . MAXSURFS);
FILTEREDMODELRATE LINEARARRAY(I .. MAXS URFS);
FILTERED_-SURFACERATE : LINEAR_-ARRAY(1. MAXSURFS);
FAULT_-WINDOW :LINEARARRAY(I .. MAXSURFS);
PastSurfaceCmd LINEAR_ARRAY(I .. MAX_SURFS);
Delayed&ModeIRate LINEAR_ARRAY(1 .. MAX_SURFS);

SURFACECOMMAND : LINEARARRAY(1 .. MAX_SURFS);
SURFACEPOSITION :LINEARARRAY(1 . MAX_SURFS);
PAST_-SURFACE_-POS LINEAR_-ARRAY(1 . MAXS URFS);
DERIVEDSURFACERATE : LINEARARRAY(1 .. MAXSURFS);
CONVFACTOR :LINEARARRAY(I .. MAX-SURFS):

(0.00391, 0.00391, 0.00586, 0.00586, 0.00586, 0.00586, 0.01220)

APU_-COEFF :LINEAR -ARRAY(INDXTYPE);
AMPL, LINEARARRAY(INDXTYPE): (0.0001, 0.001, 0.01,

0.00001);

FAULTDETECTED :BOOLEAN;
FAULT-.QUEUE BOOLEAN;
NOTDONE :BOOLEAN;
No_Faults :BOOLEAN;
Stable :BOOLEAN;

ELEMENT :APUFLOAT;

-- STARTTIME :APUFLOAT :=0.O;
-- STOP_-TIME : APUFLOAT :=0.0;
-- ELAPSEDTIME: APUFLOAT;

RATEDT : constant APUFLOAT := 28.0;
XMPL :constant APUFLOAT := 256.0;

package Fit-lo is new TEXTIO.Float-lo (APUFLOAT);

task PCINTERFACE is

entry ACQUIREFDI.
for ACQUIRE_FDI use at SYSTEM. CONVERTADDRESS ("00000208");
pragma PRIORITY (15);

81

end PC-INTERFACE;

task body PCJNTERFACE is

procedure DETECTFAULT is

begin

-- convert the SURFACECOMMAND's and SURFACEPOSITION's from Integer
-- format to APU_FLOAT format

for II in SURF_CMD_DATA'range(1)
loop

CNWDA:
begin
SURFACECOMMAND(II)

CONVFACTOR(1I)*APUFLOAT(SURFý_CMDDATA(II) - OFFSET);

exception

when others =>
SURFACECOMMAND(II) :=FILTEREDSURFACECMD(ll);

null;
end CMIDA;
end fLOOP;

for 11 in SURFPOSDATA'rangt(1)
loop
POSýA:

begin
SURFACEPOSITON(I1)

CONVYPACTOR(II)*APUFLOAT(SURFý_P05_DATA(II) - OFFSET)
exception

when others =>
SURFACEPOSITION(II) :=FILTEREDSURFACEP05(I1);

null;
end POS A;
end loop;

SURFACEDATASTATE:D;

-- smooth the SURFACE_COMMAND's and SURFACE_POSITION's calculate the
-- rate and smooth it

LOWPASSFITER(UN_FILTERED => SURFACECOMMAND,
FILTERED => FILTERED-SURFACE_CMD);

LOWPASS_FILTER(UNFILTERED => SURFACEPOSITION,
FILTERED => FILTEREDSURFACEPOS);

RATE-PIFFERENCER(MULTIPLIER, => RATEJ)T.
PRESENTPOSITION => FILTERED_SURFACEP05,
PREVIOUSPOSITION => PAST SURFACEPOS,

82

RATE => DERIVEDSURFACERATE);

-- LOWPASSFILTER(UNFILTERED => DERIVEDSURFACERATE,
FILTERED => FILTEREDSURFACERATE);

ACTUATORMODEL(SurfaceNotFailed => UNFAILEDSURFACES,
ModelActRate => MODELEDACTRATE,

PreviousAct_Cmd => PastSurfaceCmd,
PresentActCmd => SurfaceCommand,
MeasuredActPos => FilteredSurface_Pos,
Coef => APUCOEFF);

-- smooth the ModeledActuatorrate
-- LOWPASSFILTER(UNFILTERED => MODELED_ACT_RATE,

FILTERED => FILTEREDMODELRATE);

if Stable then

-- **** Modified Tuesday June 6, 1989 for on-going observations ****
-- Failure Detection Identification algorithm

-- ACTUATORFDI(SURFACENOTFAILED => UNFAILEDSURFACES,
-- MODELACTUATORRATE => DelayedModelRate,

-- MEASUREDACTUATORRATE => FILTEREDSURFACERATE,
-- FDI_WINDOW => FAULT_WINDOW,
-- COEF => APU_COEFF,
-- FAULTYACTUATOR => FAULTDETECTED);

Failure Detection Identification algorithm
ACTUATORFDI(SURFACENOTFAILED => UN_FAILED_SURFACES,

MODELACTUATORRATE => Delayed_ModelRate,
MEASUREDACTUATORRATE => DERIVEDSURFACERATE,

FDI_WINDOW => FAULTWINDOW,
COEF => APUCOEFF,

FAULTYACTUATOR => FAULTDETECTED);

if FAULTDETECTED then
-- The great ALLAH has granted us a failure

-- set the FAILURESTATE word
FAILURESTATE:= 0;
JAGO := 1;

for II in UNFAILEDSURFACES'range loop
if not UNFAILEDSURFACES(II) then

EFFECTIVESURFACES(II):= FALSE;
FAILURESTATE:= FAILURESTATE + JAGO;
end if;

JAGO:= JAGO + JAGO;
end loop;

-- Cancel any Rudder failure inserted
EFFECTIVESURFACES(EFFECTIVESURFACES'last):= TRUE;

FAULT-QUEUE TRUE;
TransientCycles 0;

Stable False;

83

end if;

else
if Transient-Cycles < TransitionCount then

Transient-Cycles :=Transient-Cycles + 1;
else

Transient_.Cycles :=0;
Stable :=True;

end if,
end if;

for KK in DelayecLModel Rate'range(l) loop
-- Delayed_ModelRate(KK) :=Filtered_ModelRate(KK);

DelayedModel__Rate(KK) :=ModeledAcLRate(KK);
end loop,

end DETECTFAULT;

begin
loop

Fdi_ýLooping :=1;
accept ACQUIREFDI do
FDI:

begin

__ FdiRunning :=FdiRunning + I;
if NOTDONE then

-, Interrupt timed out display message
-- INTERRUPT_,STATUS :=DISABLED;
TEXTJO.Put C" TIME OUT");
TEXTr_IO.Newjline;

end if;
FdL-Looping :=2;

NOT_-DONE :=TRUE;

if SURFACEDATASTATE = 'B' then

FdjLLooping :=3;
SURFACE_ýDATA .STATE:='C';
DETECTFAULT;
SURFACEDATASTATE:D'

else

TEMPDATASTATE: SURFACE_-DATA_STATE;

TEXT JO-Put (" FDI-NO'ILB");
TEXTO.NewLine;

TEXTlO.Put (" TEMP_-DATASTATE")
TEXT-IO.Put (TEMPDATASTATE);
TEXT_lO.NewLine;

TEXT-IO.Put (" SURFACE_DATA_STATE)

TEXTIO.Put (SURFACEDATA-STATE);

84

TEXTIO.NewLine;

end if;

FdiLooping := 4;
NOTDONE :=FALSE;

exception

when NUMERICERROR I CONSTRAINTERROR =>

TEXT_IO.Put (" FDI NUMERICERROR");
TEXTIO.NewLine;

when others =>

TEXTIO.Put (" FDI OTHERERROR");
TEXTIO.New_Line;

end FDI;
end ACQUIREFDI;

end loop;

exception
when others =>
TEXTIO.Put (" OTHERERROR: PCINTERFACE");
TEXTIO.NewLine;

end PCINTERFACF:

begin
Fdi Idling := 0;
FdiRunning := 0;
Fdi Looping := 0;
Stable := False;
INTERRUPTSTATUS := DISABLED;

OUTERLOOP-
begin
RESETBUTTON :=T;
FAULT-QUEUE FALSE;

OPLOOP:
begin
loop

if RESETBUTTON = '3' then
RESET:

begin
-- Set initial conditions

INTERRUPTSTATUS := DISABLED;
Fdi-jdling := 0;
Fdi_Running := 0;

FdiLooping := 0;
Stable := False;

NOTDONE := FALSE;

85

SURF_CMDDATA (others => Offset);
SURF_POSDATA (others => Offset);

MODELEDACTRATE := (others => 0.0);
FAULT_WINDOW (others => 0.0);
PASTSURFACE_POS (others => 0.0);

FilteredSurfaceCmd (others => 0.0);
Filtered_Surface_Pos (others => 0.0);
FilteredSurfaceRate (others => 0.0);

FilteredModelRate (others => 0.0);
PastSurface-Cmd (others => 0.0);
DelayedModelRate (others => 0.0);

-- Wednesday April 5, 1989 reverse sign of RtElevator
-- Restored Thursday July 27, 1989

MIXERGAINS
((256, 0, 0), (256, 0, 0),
(0, 256, 0),(0, 256, 0),
(0, 0, 0),(0, 0, 0),
(0, 0, 256));

TEXTIO.NewLine;
for KK in APU_COEFF'range loop
APUCOEFF(KK):= AMPL(KK)*APUFLOAT(COEFFICIENTS(KK));

TEXTIO.Put (" COEFF (" & INDXTYPE'IMAGE(KK) & ") =
Fitlo.Put (APUCOEFF(KK));

TEXTJO.New_Line;
end loop;

ELAPSEDTIME := STOP_TIME - START-TIME;
TEXT_IO.Put(" RECONFIGURE TIME =

FIt_Io.Put(ELAPSEDTIME);
TEXTIO.NewLine;

while RESETBUTTON = 'J' loop
null;

end loop;

FAILURESTATE 0;
EFFECTIVESURFACES := (others => TRUE);
UNFAILEDSURFACES := (others => TRUE);

FAULTQUEUE := FALSE;
-- No_Faults inserted Thursday June 15, 1989 to permit a

-- single fault
NoFaults := TRUE;

Transient-Cycles := 0;
INTERRUPTSTATUS := ENABLED;

exception

when others =>

TEXTIO.Put (" OTHERERROR: RESETLOOP");

86

TEXTIO.NewLine (2);

end RESET;
end if;

if FAULTQUEUE then
FAULTQUEUE :=FALSE;

if NoFaults then -- Start NoFaults
NoFaults := False;

STARTTIME APUFLOAT(Calendar.Seconds(Calendar.Clock));

FAULT:
begin

SLO:
begin

-- call to SLOGI
RECM.SLOGI(SURFNOTFAILED => EFFECTIVESURFACES,

KI => GAINMATRIX);

while MIXER_GAINS_STATE [= 'H' loop
null;

end loop;
exception

when NUMERICERROR I CONSTRAINTERROR =>

TEXT IO.Put (" NUMERICERROR: SLO");
TEXTIO.NewLine;

when others =>

TEXTIO.Put (" OTHERERROR: SLO");
TEXTIO.New_Line;

end SLO;

MIXER:
begin

MIXERGAINSSTATE := 'E';

-- Convert the Re-configuration matrix (GAIN_MATRIX) to sixteen-bit
-- Integer format and write into the (MIXER-GAINS) matrix

for II in GAINMATRIX'first(l) .. GAIN_MATRIX'last(l)
loop

for JJ in GAINMATRIX'first(2) .. GAINMATRIX'last(2)
loop

ELEMENT XMPL*GAIN_MATRIX(lI,JJ);
-- Limit -32760.0 < ELEMENT < 32760.0
if ELEMENT > 32760.0 then

MIXERGAINS(ll,JJ) := 32760;

87

elsif ELEMENT < -32760.0 then
MIXERGAINS(II,JJ) -32760;

else
MIXERGAINS(II,JJ)

Integer(ELEMENT);
end if;

end loop;
end loop;

-- Thursday July 27, 1989 reverse sign of LtAileron,
-- LtFlap, and RtFlap

for IIin4..6
loop

for JJ in GAINMATRIX'first(2) .. GAINMATRIX'last(2)
loop

MIXERGAINS(II,JJ) := -MIXER_GAINS(II,JJ);
end loop;

end loop;

MIXERGAINSSTATE :='F';

exception

when NUMERICERROR I CONSTRAINT-ERROR =>

TEXTIO.Put (" NUMERIC-ERROR: MIXER");
TEXTIO.NewLine;

when others =>

TEXTIO.Put (" OTHERERROR: MIXER");
TEXT_IO.Newline;

end MIXER;

exception

when NUMERICERROR I CONSTRAINTERROR =>

TEXTIO.Put (" NUMERICERROR: FAULT_LOOP");
TEXTIO.NewLine;

when others =>

TEXTIO.Put (" OTHERERROR: FAULTLOOP");
TEXTIO.NewLine;

end FAULT;
STOPTIME := APUFLOAT(Calcndar.Seconds(Calendar.Clock));

end if; -- End NoFaults
else

NOFAULT:
begin

88

while MIXERGAINSSTATE = 'H' loop
null;

end loop;

MIXERGAINSSTATE :='I';

exception

when others =>

TEXTIO.Put ("OTHERERROR: NO_FAULTLOOP");
TEXTIO.New Line (2);

end NOFAULT;
end if;

exit when RESETBUTTON = 7';

end loop;

exception
when others =>

TEXTIO.Put (" OTHERERROR: OPLOOP");
TEXTIO.NewLine (2);

end OPLOOP;

exception

when others =>

TEXTIO.Put (" OTHERERROR: OUTERLOOP");
TEXT_IO.NewLine (2);

end OUTERLOOP;
end FDUSER;

package SDTYPES is

type APUFLOAT is new FLOAT;
type SIXTEENBITS is new INTEGER; -- range -32768 32767;
subtype ORDER is SIXTEENBITS range 0 .. 7;

APU_ONE : constant APU_FLOAT := APUFLOAT(1);
APUZERO : constant APU_FLOAT := APUONE - APUONE;
MAXSURFS: constant ORDER := 7;

89

type LINEARARRAY is array (SIXTEENBITS range <>) of APULOAT;
type BOOLEANARRAY is array (SIXTEENBITS range <>) of BOOLEAN;
type MATRIX is array (SIXTEENBITS range <>,SIXTEEN_BITS range <>)

of APU_FLOAT;
type URV_MATRIX is array (SIXTEENBITS range <>,SIXTEENBITS range <>)

of SIXTEEN-BITS;
type INTEGERARRAY is array (SIXTEENBITS range <>) of ORDER;

------------------ last line package SD_TYPES --------------------
end SDTYPES;

------------------- first line of package RECM --------------------
with SDTYPES;
use SD_TYPES;

package RECM is

procedure REDUCE_MATRIX(ABLESURFACE: in BOOLEANARRAY;
AA: in MATRIX;
BB: out MATRIX;

ROWS: out ORDER;
COLS : out ORDER;

ROWNOTNIL: in out BOOLEANARRAY);

procedure REPLACEZEROS(AA : in MATRIX;
BB: out MATRIX;

NONZEROROW: in BOOLEANARRAY;
NON_ZERO_COL : in BOOLEANARRAY);

procedure TRANS_A_MULT INV(AA: in MATRIX;
BB: in MATRIX;
CC: out MATRIX;

K_ROWS: in ORDER;
LCOLS: in ORDER);

procedure AMULT TRANSA(AA: in MATRIX;
CC: out MATRIX;

K_ROWS: in ORDER;
L_COLS: in ORDER);

procedure TRANS A _MULTA(AA : in MATRIX;
CC : out MATRIX;

K_ROWS: in ORDER;
L_COLS : in ORDER);

prucedure I§:V_MULTTRANS_A(AA : in MATRIX;
BB : in MATRIX;
CC : out MATRIX;

K_ROWS : in ORDER;

90

L_COLS: in ORDER);

procedure CROUTINVERSE(AA : in out MATRIX;
UU: out MATRIX;
NN: in ORDER);

procedure LUDCMP(AA : in out MATRIX;
NN: in ORDER;

INDX: out INTEGERARRAY);

procedure LUBKSB(AA: in MATRIX;
BB : in out LINEARARRAY;

NN: in ORDER;
INDX: in INTEGERARRAY);

procedure AMULT_ KBYL(AA : in MATRIX;
RB : in MATRIX;

CC: out MATRIX;
K_ROWS : in ORDER;
L_COLS : in ORDER);

procedure SLO_GI(SURFNOT_FAILED: in BOOLEAN-ARRAY;
K_1: out MATRIX);

------------------- last line of package RECM ----------------------
end RECM;

package body RECM is

procedure REDUCEMATRIX(ABLESURFACE: in BOOLEANARRAY;
AA : in MATRIX;
BB: out MATRIX;

ROWS: out ORDER;
COLS : out ORDER;

ROWNOTNIL: in out BOOLEANARRAY) is

-- Procedure REDUCEMATRIX copies the AA(MAX SURFS,MAXSURFS) matrix
-- into tne BB(KROWS,LCOLS) matrix omitting rows consisting of
-- elements that are insignificant -NILVALUE < element < +NILVALUE
-- and columns representing disabled surfaces

NILVALUE : constant APU_FLOAT := -0.0001;
XX : APUFLOAT;

ZERO : APUFLOAT renames SD_TYPES.APU ZERO;

begin

SET ROW:
begin

91

-- The BOOLEANARRAY ROWNOTNIL is set to TRUE to record the deleted
-- ROWS for reconstituting a MAXSURFS by MAXSURFS pseudo-inverse
-- positions 2 and 5 are set FALSE to indicate that in the initial
-- AA(MAXSURFS,MAXSURFS) matrix these ROWS are zero others are
-- set TRUE

for ROW in AA'first(1) .. AA'last(1) loop

if ROWNOTNIL(ROW) then

-- Test for a ABS(AA(ROW,COL)) greater than +NILVALUE in any valid
-- column position

ROWNOTNIL(ROW):= FALSE;
for COL in AA'first(2) .. AA'last(2) loop

if ABLESURFACE(COL) then
XX := AA(ROW,COL);
if XX < ZERO then

XX:= NIL_VALUE - XX;
else

XX:= NILVALUE + XX;
end if;

if XX > ZERO then
ROWNOT_NIL(ROW) -. TRUE;
end if;

exit when ROWNOTNIL(ROW) = TRUE;
end if;

end loop;
end if;

end loop;

end SETROW;

-- Copy reduced AA(MAXSURFSMAXSURFS) into BB(ROWS,COLS) and set
-- ROWS and COLS to number of rows and columns

SETBB:
declare

KK : ORDER:= 0;
LL :ORDER;
begin

for ROW in AA'first(l) .. AA'iast(1) loop

if ROWNOTNIL(ROW) then
KK :=KK+ 1;
LL =0;

for COL in AA'first(2) .. AA'iast(2) loop
if ABLESURFACE(COL) then
LL :=LL+ 1;
BB(KKLL) := AA(ROW,COL);
end if;

92

end loop;
end if;

end loop;
ROWS:= KK;
COLS:- LL;

end SETBB;
----------------- last line of procedure REDUCEMATRIX ---------------

end REDUCEMATRIX;

procedure REPLACEZEROS(AA : in MATRIX;
BB: out MATRIX;

NONZEROROW: in BOOLEANARRAY;
NONZERO_COL• in BOOLEANARRAY) is

-- procedure REPLACEZEROS copies an AA(IROWS,J_COLS) matrix into a
-- BB(MAXSURFS,MAX SURFS) matrix and fills with ZERO the ROWS and
-- COLUMNS that have been tagged in the NONZEROROW and NONZEROCOL
-- BOOLEANARRAY as being deleted

ZERO APUFLOAT renames SD_TYPES.APUZERO;

begin

COPYAA:
declare
KK : ORDER:= 0;
LL :ORDER;

begin

for ROW in AA'first(l) .. AA'last(l) loop

-- replace the ZEROROWS as indicated by the NONZERO_COL BOOLEAN-ARRAY
if NONZEROCOL(ROW) then

KK:= KK + 1;
LL"= 0;

for COL in AA'first(2) .. AA'last(2) loop
-- replace the ZEROCOLS as indicated by the NONZEROROW BOOLEAN-ARRAY

if NONZEROROW(COL) then
LL := LL + 1;
BB(ROW,COL) := AA(KK,LL);

else
BB(ROW,COL) :=ZERO;

end if;
end loop;

else
for COL in AA'first(2) .. AA'Iast(2) loop

BB(ROW,COL) :=ZERO;
end loop;

end if;
end loop;

end COPY_AA;
----------------- last line of procedure REPLACEZEROS --------------

93

end REPLACE-ZEROS;

procedure AMULTTRANSA(AA : in MATRIX;
CC: out MATRIX;

K_ROWS : in ORDER;
L_COLS : in ORDER) is

-- This procedure calculates the product of a matrix AA(KROWS,LCOLS)
-- multiplied by its transpose The result is returned in the square
-- matrix CC (KROWS,KROWS)

SUM : APU_FLOAT;

ZERO: APU_FLOAT renames SDTYPES.APU_ZERO;

begin

for I in 1 .. KROWS
loop

for J in 1 .. KROWS
loop
SUM := ZERO;

for K in I .. L_COLS
loop

SUM:= SUM + AA(I,K)*AA(J,K);
end loop;

CC(I,J) := SUM;
end loop;

end loop;

- -last line of procedure AMULTTRANSA

end A_MULT_TRANSA;

procedure TRANS_A_MULTINV(AA in MATRIX;
BB : in MATRIX;
CC : out MATRIX;

K_ROWS : in ORDER;
L_COLS : in ORDER) is

-- This procedure calculates the product of a transpose matrix
-- AA(KROWS,LCOLS) multiplied by a square inverse matrix
-- BB(KROWS,K ROWS) the result is returned in the matrix
-- CC(LCOLS,KROWS)

94

SUM :APUFLOAT;

ZERO: APUFLOAT renames SDTYPES.APUZERO;

begin

for J in I .. L_COLS
loop

for I in I .. KROWS
loop
SUM := ZERO;

for K in I .. K_ROWS
loop

SUM := SUM + AA(K,J)*BB(K,I);
end loop;

CC(J,I) := SUM;
end loop;

end loop;

----------------- last line of procedure TRANSAMULTINV ---------------

end TRANS_A_MULTINV;

procedure TRANSA_MULTA(AA : in MATRIX;
CC : out MATRIX;

K_ROWS : in ORDER;
L_COLS : in ORDER) is

-- This procedure calculates the product of the transpose of a matrix
-- AA(KROWS,LCOLS) and the matrix The reslut is returned in the
-- square matrix CC (LCOLS,L-COLS)

************************************ ******************************

SUM : APUFLOAT;

ZERO: APU_FLOAT renames SDTYPES.APUZERO;

begin

for I in I .. LCOLS
loop

for J in 1 .. LCOLS
loop
SUM := ZERO;

for K in I .. K_ROWS
loop

SUM:= SUM + AA(I,K)*AA(K,J);

95

end loop;
CC(I,J) := SUM;
end loop;

end loop;

--.-------------- last line of procedure TRANS_A_MULT_A

end TRANSAMULTA;

procedure INVMULTTRANS_A(AA in MATRIX;
BB : in MATRIX;
CC: out MATRIX;

K_ROWS: in ORDER;
L_COLS : in ORDER) is

-- This procedure calculates the product of a square inverse matrix
-- AA(LCOLS,LCOLS) multiplied by the transpose of matrix
-- BB(KROWS,KROWS) the result is returned in the matrix
-- CC(LCOLS,KROWS)

SUM : APUFLOAT;

ZERO: APU_FLOAT renames SD_TYPES.APUZERO;

begin

for I in I .. LCOLS
loop

for J in 1 .. KROWS
loop
SUM := ZERO;

for K in I .. LCOLS
loop

SUM:= SUM + AA(I,K)*BB(J,K);
end loop;

CC(I,J) := SUM;
end loop;

end loop;

- ----------------- last line of procedure INVMULTTRANSA A --------------

end INVMULTTRANSA;

procedure AMULT_ KBYL(AA : in MATRIX;
BB: in MATRIX;
CC : out MATRIX;

K_ROWS: in ORDER;
L_COLS : in ORDER) is

96

This procedure calculates the matrix product of a square matrix AA
multiplied by the (KROWS,LCOLS) matrix BB The result is
returned in the square matrix CC (KROWS,L_COLS)

SUM :APUFLOAT;

ZERO: APU_FLOAT renames SDTYPES.APUZERO;

begin

for I in I .. K_ROWS
loop

for J in 1 .. LCOLS
loop
SUM := ZERO;

for K in I .. K_ROWS
loop

SUM - SUM + AA(I,K)*BB(K,J);
end loop;

CC(I,J) := SUM;
end loop;

end loop;

----------------- last line of procedure AMULTKBY_L

end AMULTK BYL;

procedure CROUTINVERSE(AA : in out MATRIX;
UU: out MATRIX;
NN: in ORDER) is

NDX : INTEGERARRAY(l.. MAXSURFS);
YY : LINEARARRAY(I .. MAXSURFS);

ZERO : APUFLOAT renames SDTYPES.APUZERO;
ONE : APUFLOAT renames SDTYPES.APUONE;

begin

-- procedure LUDCMP over writes the AA-MATRIX and procedure LUBKSB over
-- writes the YY-VECTOR

-- enter the LU CROUT algorithm decomposition routine

LUDCMP(AA,NN,NDX);

-- do the column by column inverse

for I in 1 .. NN

97

loop
for J in I .. NN
loop
YY(J) := ZERO;
end loop;

YY(1):= ONE;
LUBKSB(AA,YY,NN,NDX);

-- build up the UU-MATRIX column by column

for J in I.. NN
loop

UU(J,I) := YY(J);
end loop;

end loop;

-------------- last line of procedure CROUT INVERSE ---------------
end CROUTINVERSE;

procedure LUDCMP(AA: in out MATRIX;
NN: in ORDER;

INDX: out INTEGER-ARRAY) is

-- DESCRIPTION: procedure LUDCMP takes an N x N MATRIX with elements
-- AA(I,J) and uses the CROUT ALGORITHM to replace the elements by the
-- LU (lower-triangle upper-triangle) decomposition of a rowwise
-- permutation of itself.

-- local OBJECTS

VV : LINEARARRAY(1 .. MAXSURFS);

-- IFIRSTI,LAST : ORDER;
-- K,FIRST K,LASTK : ORDER;

IIJ,K,IMAX : ORDER;

SUM,AMAX,DUM : APU FLOAT;

ZERO : APU_FLOAT renames SDTYPES.APU_ZERO;
ONE : APU_FLOAT renames SDTYPES.APUONE;
TINY : constant APUFLOAT := .OE-6;

begin

-- loop over rows to get implicit scaling information

for I in 1 .. NN
loop
A_MAX := ZERO;

for J in I.. NN
loop

if ABS(AA(I,J)) > AMAX then
A_MAX := ABS(AA(I,J));

end if;

98

end loop;

-- test for SINGULAR MATRIX (no nonzero largest element) and retain
-- the scaling

if A_MAX = ZERO then
SINGULAR:= TRUE;

VV(l) ZERO;
else

VV(I) ONE/AMAX;
end if;

end loop;

loop over columns of CROUT'S method

for J in I .. NN
loop

if J > I then
-- LASTI := J - 1;
-- for I in I .. LASTI

for I in I .. (J - 1)
loop

SUM:= AA(,J);
if I > 1 then

-- LASTK := I - 1;
-- for K in I .. LAST_K

for K in I .. (I - 1)
loop

SUM:= SUM - AA(I,K)*AA(K,J);
end loop;

AA(I,J) := SUM;
end if;

end loop;
end if;

-- initialize AMAX for the search for the largest pivot element

A_MAX:= ZERO;
for I in J .. NN
loop

SUM := AA(IJ);
if J > 1 then

-- LAST-K := J- 1;
-- for K in I .. LASTK

for K in 1 .. (J - 1)
loop

SUM := SUM - AA(i,K)*AA(K,J);
end loop;

AA(I,J) := SUM;
end if;

-- figure of merit for the PIVOT

99

DUM:= VV(I)*ABS(SUM);
if DUM >= AMAX then

-- it is the best so far
I_MAX := I;

A_MAX :=DUM;
end if;

end loop;

. is a row interchange indicated ?

if J /= IMAX then
for K in I .. NN
loop
DUM AA(IMAX,K);
AA(IMAX,K) := AA(J,K);

AA(J,K) DUM;
end loop;
VV(I MAX):= VV(J);

end if;

INDX(J) := IMAX;

-- if the PIVOT is 0.0 the matrix is SINGULAR (to the precision of the
-- algorithm), for some applications on SINGULAR matrices, it lzs
-- desirable to substitute a small value (TINY) for 0.0

if AA(JJ) = ZERO then
AA(JJ) := TINY;

end if;

-- now divide by the PIVOT

if J /= NN then

DUM := ONE/AA(J,J);
FIRST-I := J + 1;

for I in FIRSTI .. NN
for I in (J + 1).. NN
loop

if I /= J then
AA(I,J):= AA(I,J)*DUM;

end if;
end loop;

end if;
end loop;

---------------- last line of procedure LUDCMP
end LUDCMP;

procedure LUBKSB(AA: iai MATRIX;
1B: in out LINEARARRAY;

NN: in ORDER;
INDX: in INTEGER-ARRAY) is

100

-- DESIGNERS compiler

-- DESCRIPTION: procedure LUBKSB solves a set of N linear equations
-- A * X = B by using foward substitution and backward substitution.
-- A is an N x N LU (lower triangle upper triangle) MATRIX decomposed
-- by the CROUT algorithm, in the process the MATRIX B is over written

-- local OBJECTS

KK,LL : ORDER;
-- FIRST_JLASTJ : ORDER;

NONZERO : BOOLEAN;

SUM :APU_FLOAT;

ZERO : APUFLOAT renames SDTYPES.APUZERO;

begin

-- when NONZERO is set to TRUE J = I becomes the index of the first
-- non-vanishing element of B

NONZERO := FALSE;
KK := 0;

-- this loop does the foward substitution

for I in I .. NN
loop
LL := INDX(I);
SUM := BB(LL);
BB(LL) := BB(I);
if NONZERO then

-- LASTJ := I - I;
-- for J in I .. LASTJ

for J in I .. (I - 1)
loop

if J > KK then
SUM := SUM - AA(IJ)*BB(J);

end if;
end loop;

elsif SUM > ZERO then

-- a non-zero element was encountered. SUM in subsequent looping is
-- calculated in the above loop.

NON ZERO := TRUE;
KK = - 1;

end if;
By '0) := SUM;

en. loop;

-- this loop does the backward substitution

101

for I in reverse I .. NN
loop
SUM:= BB(I);
if I < NN then

-- FIRSTJ := I + 1;
-- for J in FIRSTJ .. NN
-- for J in I.. NN

for J in (I+ 1).. NN
loop

if J > I then
SUM:= SUM - AA(IJ)*BB(J);

end if;
end loop;

end if;
BB(I) := SUM/AA(I,J);

end loop;
-last line of procedure LUBKSB ----------------------

end LUBKSB;

procedure SLO GI(SURFNOTFAILED: in BOOLEAN_ARRAY;
K_1 : out MATRIX) is

-- local OBJECTS

JCOLS constant ORDER := KlI'last(2);
K-ROWS,L-COLS : ORDER; -- K x L MATRIX ------
MATRIXORDER : ORDER;

--- N linear array ---
ROWNOT_ZERO : BOOLEAN-ARRAY(1 .. MAXSURFS);

--- N x N matrices ---
TEMPI : MATRIX(I .. MAXSURFS, I .. MAXSURFS);
TEMP2 • MATRIX(1 .. MAXSURFS, I .. MAXSURFS);
TEMP3 MATRIX(1 .. MAXSURFS, 1 .. MAXSURFS);
BZERO : MATRIX(1 .. MAXSURFS, I .. MAXSURFS);

B_INIT : MATRIX(1 .. MAX_SURFS, I .. MAXSURFS) :=
((-0.0034, -0.0034, -0.0022, -0.0022, -0.0040, -0.0040, 0.0000)
,(0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)
,(-0.5812, -0.5812, -0.0481, -0.0481, -0.0660, -0.0660, 0.0000)
,(0.000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0016)
,(0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)
,(0.2455, -0.2455, 0.6697, -0.6697, 0.6221, -0.6221, 0.0554)
,(-0.0130, 0.0130, -0.0428, 0.0428, -0.0403, 0.0403, -0.1789));

--- I x J matrices ---
K_ZERO : MATRIX(I .. MAXSURFS, I .. JCOLS)
((1.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0)
,(0.0, -1.0, 0.0), (0.0, 0.0, 0.0), (0.0, 0.0, 0.0)
,(0.0, 0.0, 1.0));

begin

102

-- to include compensation for Aileron-Flap interaction and Rudder effects
B_ZERO:= BINIT;

for Surface in 1 .. MAXSURFS loop
if not SURFNOTFAILED(Surface) then
case Surface is
when 1 I 2 =>
B_ZERO(3,3) 0.0;
B_ZERO(3,4) 0.0;
B_ZERO(6,5):= 0.0;
B_ZERO(6,6):= 0.0;

when 7 =>
B_ZERO(7,3):= -BZERO(7,3);
B_ZERO(7,4):= -BZERO(7,4);
when others =>
null;

end case;
end if;

end loop;

-- Initialize ROWNOTZERO BOOLEANARRAY to indicate ROWS 2 and 5 in

-- the BZERO matrix are zero (FALSE)

ROWNOTZERO :=(TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE);

-- Remove the zero value ROWS and COLUMNS and return
-- TEMPI (K ROWS,LCOLS)

REDUCEMATRIX(ABLESURFACE => SURF_NOT_FAILED,
AA => BZERO,
BB => TEMPI,

ROWS => K ROWS,
COLS => LCOLS,

ROWNOT_NIL => ROWNOTZERO);

if KROWS > LCOLS then

-- form the TEMP3(LCOLS,LCOLS) matrix by multiplying the transpose
-- of the TEMPI matrix by the TEMPI matrix

MATRIXORDER:= LCOLS;
TRANSAMULTA(TEMPI,TEMP3,KROWS,LCOLS);

else

-- form the TEMP3(KROWS,KROWS) matrix by multiplying the TEMPI
-- matrix by the transpose of the TEMPI matrix

MATRIXORDER:= KROWS;

AMULTTRANSA(TEMPJ ,TEMP3,K-ROWS,LCOLS);

end if;

-- form the TEMP2 matrix by taking the CROUTINVERSE of TEMP3
-- the procedure CROUTINVERSE over_writes the TEMP3 matrix

103

CROUTINVERSE(TEMP3 ,TEMP2,MATRIX ORDER);

if KROWS > L_COLS then

-- form TEMP3 by multiplying TEMP2 (the CROUTINVERSE of TEMP3)
-- by the transpose of TEMPI

INVMULTTRANSA(TEMP2,TEMPI ,TEMP3,KROWS,LCOLS);

else

-- form TEMP3 by multiplying the transpose TEMPI(KROWS,L_COLS)
-- by TEMP2 (the CROUTINVERSE of TEMP3)

TRANSAMULTINV(TEMP1,TEMP2,TEMP3,KROWS,L-COLS);

end if;

-- replace the the zero value ROWS and COLUMNS that were previously
-- removed (COLUMNS for ROWS and ROWS for COLUMNS)

REPLACEZEROS(AA => TEMP3,
BB => TEMPI,

NONZERO_ROW => ROWNOTZERO,
NONZEROCOL => SURF_NOT-FAILED);

-- calculate the BZERO KZERO product and store in TEMP2

A_MULT_K_BYL(BZERO,KZERO,TEMP2,MAXSURFS,JCOLS);

-- calculate the new Kj matrix ** TEMPI multiply TEMP2 **

A_MULT_K_BYL(TEMPI,TEMP2,KI,MAXSURFS,JCOLS);

end SLOGI;
---------------- last line of package body RECM --------------

end RECM;

with SDTYPES;
use SDTYPES;

package FDILAUX is

procedure RATEDIFFERENCER(MULTIPLIER in APUFLOAT;
PRESENTPOSITION in LINEARARRAY;
PREVIOUSPOSITION : in out LINEARARRAY;

RATE: out LINEARARRAY);

procedure LOWPASSFILTER(UNFILTERED :in LINEAR_ARRAY;
FILTERED: in out LINEARARRAY);

104

procedure ACTUATORMODEL(SurfaceNotFailed : in BOOLEANARRAY;
ModelActRate : in out LINEARARRAY;

PreviousAct_Cmd : in out LINEARARRAY;
PresentActCmd : in LINEARARRAY;
MeasuredActPos: in LINEARARRAY;

Coef: in LINEARARRAY);

procedure ACTUATORFDI(SURFACENOT_FAILED : in out BOOLEANARRAY;
MODELACTUATORRATE: in LINEAR_ARRAY;

MEASURED_ACTUATORRATE: in LINEAR-ARRAY;
FDIWINDOW : in out LINEARARRAY;

COEF: in LINEARARRAY;
FAULTYACTUATOR: out BOOLEAN);

----------------------- last line of package FDiLAUX ----------------------
end FDIAUX;

****** ******** *** **** *************** ******************************

package body FDIAUX is

procedure RATEDIFFERENCER(MULTIPLIER : in APUFLOAT;
PRESENTPOSITION : in LINEAR_ARRAY;
PREVIOUSPOSITION : in out LINEARARRAY;

RATE: out LINEARARRAY) is

-- Procedure RATEDIFFERENCER calculates a differenced rate

begin

for II in PRESENTPOSITION'range loop

RATE(II) := MULTIPLIER*(PRESENTPOSITION(II)
- PREVIOUS POSITION(II));

PREVIOUSPOSITION(II) := PRESENTPOSITION(II);
end loop;

--.------------ last line of procedure RATEDIFFERENCER----------
end RATEDIFFERENCER;

procedure LOWPASS FILTER(UNFILTERED: in LINEARARRAY;
FILTERED: in out LINEARARRAY) is

-- implement low pass filter, comer freq = 20 r/s, digital at 60Hz
-- CI: constant APUFLOAT := 0.7165;
-- C2 : constant APUFLOAT := 0.2835;
-- New Values Inserted Monday April 3, 1989

CI: constant APUFLOAT := 0.4895;
C2 : constant APUFLOAT := 0.5105;

begin

105

for II in FILTERED'range loop
FILTERED(II) := CI*FILTERED(II) + C2*UNFILTERED(II);

end loop;
------------- last line of procedure LOWPASSFILTER----------

end LOW_PASS_FILTER;

procedure ACTUATORMODEL(Surface_Not_Failed : in BOOLEANARRAY;
Model_Act_Rate: in out LINEARARRAY;

PreviousActCmd : in out LINEARARRAY;
PresentLAct_Cmd : in LINEARARRAY;
Measured_ActPos : in LINEARARRAY;

Coef: in LINEARARRAY) is

-- procedure ACTUATORMODEL is the input limited actuator modeled

MaxDelta : LINEARARRAY(1 .. MAXSURFS) := (1.71429, 1.71429,
2.67857, 2.67857, 2.67857, 2.67857, 5.35714);

MinDelta : LINEARARRAY(1 .. MAXSURFS) := (-1.71429, -1.71429,

-2.67857, -2.67857, -2.67857, -2.67857, -5.35714);

DeltaPosition : Sd_Types.Apu_Float;

begin

for SURFACE in SURFACENOTFAILED'range loop

-- Model each actuator that is not tagged as failed

if SURFACENOTFAILED(SURFACE) then

Limit model actuator input as required

DeltaPosition := PresentActCmd(Surface)
- PreviousActCmd(Surface);

if DeltaPosition > MaxDelta(Surface) then
Delta_Position := MaxDelta(Surface);
elsif Delta_Position < MinDelta(Surface) then
Delta_Position := MinDelta(Surface);

end if;

PreviousActCmd(Surface) := PreviousActCmd(Surface)
+ DeltaPosition;

ModelAct Rate(Surface) := Coef(l)*Model_ActRate(Surface)
+ Coef(2)*(PreviousAct_Cmd(Surface) - Measured_ActPos(Surface));

end if;
end loop;

------------------ last line of procedure ACTUATORMODEL ------------------
end ACTUATORMODEL;

106

procedure ACTUATORFDI(SURFACENOTFAILED : in out BOOLEAN_ARRAY;
MODELACTUATORRATE: in LINEARARRAY;

MEASUREDACTUATORRATE : in LINEAR-ARRAY;
FDI_WINDOW: in out LINEARARRAY;

COEF: in LINEARARRAY;
FAULTYACTUATOR: out BOOLEAN) is

-- procedure ACTUATOR_FDI is the actuator fault detection identifica-
-- tion algorithm
-- constants set to fixed memory location

-- COEF01 • constant APU_FLOAT := 0.6231;
-- COEF02 • constant APU_FLOAT := 4.3437;
-- TRSHAC : constant APU_FLOAT := 15.0;
-- NSTRSH • constant APU_FLOAT := 0.2;

-- CPOSMX : LINEARARRAY(1 .. MAX_SLURFS) := (8.0, 8.0, 12.0, 12.0
- 12.0, 12.0, 25.0);

-- CPOSMN : LINEARARRAY(1 .. MAX_SURFS) (-8.0, -8.0, -12.0, -12.0
,-12.0, -12.0, -25.0);

Error : Sdjypes.ApuFloat;

begin

FAULTYACTUATOR := FALSE;

for SURFACE in SURFACE_NOT_FAILED'range loop

-- examine each actuator that isn't already failed

if SURFACENOT_FAILED(SURFACE) then

-- this is the error between measured ank' modeled:

ERROR := MEASUREDACTUATORRATE(SURFACE)
- MODELACTUATOR RATE(SURFACE);

-- if sensor position has exceeded max or min limit, or
-- if error (difference between the model and the sensor measurement)
-- is beyond the threshold:
-- nstrsh = .2, trshac = 15.

-- if MEASUREDSURFACEPOSITION(SURFACE)
-- > CPOSMX(SURFACE) + NSTRSH or else
s -- MEASUREDSURFACEPOSITION(SURFACE)
-- < CPOSMN(SURFACE) - NSTRSH or else
-- ABS(ERROR(SURFACE))
-. > TRSHAC then

if ABS(ERROR) > COEF(3) then

-- increment fdi window

FDI_WINDOW(SURFACE) := FDIWINDOW(SURFACE) + 1.0;

107

if FDI_WINDOW(SURFACE) > 2.5 then

-- set SURFACENOTFAILED(SURFACE) to FALSE and
-- set FAULTDETECTED to TRUE

-- modifications to cancel Rudder (Surface = 7) Failure
SURFACE_NOT_FAILED(SURFACE) := FALSE;

if SURFACE < SURFACENOTFAILED'Iast then
FAULTYACTUATOR :=TRUE;
end if;

-- Allow only one fault to be detected at a time by reseting
-- all FDI_ WINDOWS to 0.0

for II in FDI_WINDOW'range loop
FDIWINDOW(II) := 0.0;

end loop;
end if;

else
FDI_WINDOW(SURFACE):= 0.0;

end if;
end if;

end loop;
--------------- last line of procedure ACTUATORFDI

end ACTUATORFDI;
---------------- last line of package body FDIAUX

end FDIAUX;

108

Appendix E
Matrix Inversion Operations

Backsubstitution and Forward Substitution

Backsubstitution and forward substitution use Eqn. 5.3, with the [A] matrix
already in LU decomposed form, to find the & vectors. Thus, for the following

discussion of backsubstitution and forward substitution, assume that the matrix

that is being inverted has been decomposed into lower and upper triangular

matrices. That is, the Eqn 5.3 can be written as

Y-nxI= ([L] * [U]) * .nxI (E.1)

where

([LInxn * [U1 nxn) = Anxn (E.2)

The procedure used to decompose the [A] matrix into the [L] and [U] matrices will

be developed in the next section of this report.

Eqn. E.A can be written as

[Llnxn * fU~nxn *X-nx)= Y-nxlI (E.3)

The [L] and [U] matrices are known because they are derived from [A], y- is known

(y_ is defined as one of the columns of the identity matrix) and A is the unknown.

If we now let

Y---nx1 = ([U] nxn * 'Lnxi) (E.4)

we get

L]nxn * Y-Ynxi = Y-nxl (E.5)

109

Now the fact that [LI is lower triangular can be used to help solve for the
vector yy_. Then the fact that [U] is upper triangular can be used to help solve for

x using Eqn. E.4.

In general, triangular sets of equations are relatively simple to solve. To
illustrate the procedure followed to calculate the inverse, a 4 by 4 example is

shown below. However, this procedure is valid for matrices of arbitrarily defined
size. Eqn. E.5 can be written as

Al
1

0 0 0 YYI Y
A2 1 A 2 2 0 0 * Y Y2
A3 1 A32 A 3 3 0 Y Y 3
A4 1 A 4 2 A 4 3 A 44] YL Y 4 (

(E.6)

A procedure known as forward substitution is used to solve for vector yy. From
the definition of matrix multiplication, the equation for y, element y1 is

A l l YY1 = Y1 (E.7)

or,

YY1 =y 1 /All (E.8)

In a similar manner, the equation for element Y2 is written below.

A 2 1 yyl + A2 2 YY2 Y2 (E.9)

Solving for YY2 ,

YY2 = (y 2 -A 2 1 *yyl)/A 2 2 (E.10)

(Note that yyl is known from the previous step.)

If we continue, a pattern will become evident that will suggest a closed

form solutiun to the set of equations defined by the matrix equation. This closed

110

form provides a solution to systems of arbitrary size and is represented !y Eqn.

E.15.

i-1
YYi = /1Aii)(Yi'- 1 Aij * yyj) (E. 11)

j=1

For i = 2,3 N

It is important to realize that the form of the above equation is such that

the ith y.y value is always known from a previous calculation. In Eqn. E.11, the

order of the computations is defined such that the necessary variables are known

and available for use by the algorithm. Given the solution for vector yy., it is now

possible to solve for &.

Eqn. E.4 is the other diagonal system that was generated when Eqn. E.4 was

decomposed into two parts. Because Eqn. E.4 is an upper diagonal system the

method of forward substitution is not applicable. However, a similar method,

referred to as "backsubstitution" can be utilized. Backsubstitution is used to solve

upper diagonal systems in the same manner as the method of forward substitution

is used to solve lower diagonal systems. The development of the backsubstitution

algorithm proceeds in a manner similar to the development of the algorithm for

forward substitution.

Eqn. E.4 will be expanded below as a 4 by 4 matrix to illustrate the

backsubstitution procedure.

All A 12 A 13 A 14 x]YY
A 22 A 2 3 A 24 1 2 y2

0 0 A 33 A 34 x 3 y3Y

0 0 A 44]

(E.12)

The elements of matrix [U] have been designated Ai.. This will be explained

in more detail later, but essentially the reason is that the storage of the [U] matrix

and the [L] matrix will be in the same memory locations that are used by the A

matrix. Therefore, all operations will take place on one matrix.
The equation of y.y. element YY4 is

111

A4 4 * x4 = YY4 (E.13)

By inspection,

x4= YY4 / A4 4 (E.14)

The equation for YY3 is

A33 *x3 + A x4 = YY3 (E.15)

With x4 obtained, the number of unknowns in the equation for YY3 has

gone from two to one, and it is possible to solve for x3 .

x3 = (YY3 - A3 4 * x4) / A3 3 (E.16)

As with forward- substitution, if we continued this process, a pattern

becomes evident suggesting a closed form solution for vector &. The closed form

solution is not limited to the 4 by 4 example case, but is applicable to the general

case of an n by n upper diagonal system. The closed form solution is

N

xi = (1/Aii) * (yyi - Aij * x (E.17)

j=i+l

Fori =1 ... N

Description of LU Decomposition

The heart of the inverse algorithm being described is the decomposition of

a matrix, [A], into a lower triangular matrix [L] and an upper triangular matrix

[U]; the [A] matrix represents the [Bi*BiT] matrix which must be inverted to find

the control mixer gain. This step must take place before the algorithms

(backsubstitution and forward substitution) that solve the lower and upper

triangular systems can be employed.

The objective is to find a matrix IL] and a matrix (UI such that the following

equation holds:

112

[L]nxn * IUlnxn = [Alnxn (E.18)

As in the development of the algorithms for solving the diagonal systems, the

development of the algorithm to decompose a matrix [A] into diagonal matrices [LI

and [U] will be illustrated with a 4 by 4 example in Eqn. E.23.

Expanding Eqn. E.18 for illustrative purposes using a 4 by 4 system,

Lu "33 U314 A 1l A 12 A 13 A0
0 0=i U3U2 A 3 A3 A14L 21 L22 0 0 iF 212 U ' iF UA 21 A22 A23 A24

L L41 L42 L43 L 4 4 j0 0 0 U 24 A41 A42 A3 A 4

(E.19)

The goal here is to derive an algorithm that will determine the values for
the Lij elements and the Uij elements. The values of the Aij are known and are

specified.

Before anything else is done, it is necessary to put some constraints on the

problem. This becomes evident when examining Eqn. E.19 because there are an

infinite number of ways of choosing a lower diagonal [LI matrix and upper

diagonal [U] that will suffice.

In general, for an N by N matrix, there are N2 equations and (N 2 + N)

unknowns. However, N of these unknowns are arbitrarily set to a value of one, so

there are really only N2 unknowns in this system of equations. Thus, a unique

solution can be determined.

To illustrate that this is indeed the case, consider the following equation

derived from matrix Eqn. E.19.

• U11 = A11 (E.20)

In this equation for element All, there are two unknowns and one known.

If one of the unknowns is given an arbitrary value it is then possible to specify a

unique value for the other unknown.

However, now the problem is specifying some of the the val-es of matrices

[LI and [U]. Not surprisingly, many mathematicians have worked on this

particular problem and many different solutions have been developed.

Fortunately, one of these solutions is very applicable to this project. The solution

113

procedure is an improved Gaussian elimination method, called the Crout

algorithm, which is computationally efficient and requires less memory than do

some other solutions. Both of these attributes are important in an embedded real-

time control application.

The Crout algorithm begins by assigning all diagonal elements of the upper

diagonal matrix to one. This eliminates the need for storage of the diagonal

elements of the [U] matrix and allows both the upper and lower diagonal matrt -s

to occupy the original [A] matrix. The Crout algorithm performs all the

calculations on the original [A] matrix without the need to store any other

matrices. Becau:se the numbers are manipulated and stored in overlapping

locations in the A matrix, the Crout algorithm is sometimes referred to as an "in-

place" algorithm. This type of algorithm widl destroy the contents of the [A]

matrix, but this application did not require further use of the original [A] matrix.

Because the ailgorithm is using and writing to locations of the [A] matrix,

any computation that requires unaltered components of the [A] matrix must have

access to those matrix elements prior to their alteration. Consequently, the
"order" of the computations must follow a pattern that never overwrites an [A]

matrix element that will be needed in future computations. This point is critical

and must be fully taken into account when implementing the algorithm.

The equations of the algorithm are grouped according to the location of

their Aij terms in the [A] matrix . The first group of equations has Aij elements

that are above the diagonal, that is the i row index is less than the j column index.
The second group of equations has A.. elements that are on the diagonal, thus the i

row index is equal to the j column index. The third group of equations has Aij

elements that are below the diagonal, therefore the i row index is greater than

the j column index. The structural form of these three groups of equations are

presented below.

For the case of elements above the main diagonal where i < j. Eqn. E.21

applies.

"Lil * Ulj + Li2* U2j +... + Lii * Uij = Aij (E.21)

For the main diagonal case where i j, Eqn. E.22 applies.

Lil * Ulj + Li2* U2j +...+ Lii * Uij = Aij (E.22)

114

For the case of elements below the main diagonal where i > j, Eqn. E.23

applies.

Lil * Ulj + Li2 * U2j + ... + L *UA = A.. (E.23)

Instead of explicitly solving for a solution to the values of the L's and the

U's by using Eqn. E.21, E.22 and E.23, we will first explore finding a solution by

using a step by step approach. This is absolutely critical to finding the correct

approach to solving this problem. This is because the order of the computations,

as previously stated, must meet the condition of not overwriting any data in the

[A] matrix that will be needed by any future computations.

Referring to matrix Eqn. E.19, consider the equation that specifies matrix

element All.

Ll1 *U 11 = A1 1 (E.24)

Note first that there is only one unknown in this equation because UlI has been

arbitrarily defined to be equal to one. Now, because Ull = 1,

L 1 1 = A1 1 (E.25)

In other words, the All element remains unchanged and an efficient algorithm

will not write over this variable.

Continuing the analysis, consider the equation for A21, the next (A] matrix

element down the first column.

L2 1 *U 1 1 + L2 2 *(0) = A2 1 (E.26)

The only unknown in Eqn. E.26 is L21 and solving for L21 yields the following

solution.

L21 = A2 1 / U I I (E.27)

and again because we have set U11 = 1,

115

L = A2 1 (E.28)

As for the last element, the value of the A matrix element A21 does not

change value. Consequently, the algorithm computing the values of [LI and [U]
does not need to alter the value A2 1 because it is equal to L2 1.

Furthermore, if we continued we would find that the entire first column of

the A matrix does not need to be altered. It follows that the algorithm that is

computing the values of [LI and [U] does not need to modify the entire first

column of the A matrix and would be wasting time if it did write over the first

column. This pattern can be extrapolated to the N by N matrices.
Now consider the next column of the A matrix. The equation for A12 is

written below.
L U + (0) * U (E.29)L11 U12 U22 A A12

Solving for the only unknown, U1 2 , in this equation,

U1 2 = A12 L 1 (E.30)

First, note that because of the order of the computations, the other
variables in this equation are already known, namely L1-1 has already been

determined. Secondly, note that this is the first time in this development that a

variable has been computed that is above the diagonal. The form of the solution is

slightly different in that there is now a divide operation involved in the solution

computation.

Continuing in the same manner, consider the equation for the next [A]
matrix element down the second column, namely, A2 2.

L *U 2 + L2 2 * U2 2 = A22 (E.31)

Because of the order of computation, all of the variables in this equation
are known except for L 2 2 . Therefore L 22 can be determined and a unique solution

found. This is illustrated below.

22= A2 2 - L11 * U1 2 (E.32)

116

Recalling that there is a distinction when above, on, or below the diagonal,
this last equation involving A2 2 , is on the diagonal.

This form of development can be carried further and an entire 4 by 4 case

could be carried through in its entirety. The order of computation is essentially

down the columns, starting with the second column, then the third column and so

forth. At this point the generalized solutions can be extrapolated from the

previous development.

The analytic solutions are as follows:

For j <= i andi= 1,2,3, ... n,

i-I

Lij= A.- i Lik * Ukj) (E.33)
kflj

k= 1

Fori <=j and j =2,3, ...-n.

i-I

Uij -(Aij -Y(Lik * U kj)) Lii (E.34)

k=1

Once the ILI and IUI matrices have been found, they can be used in the

backsubstitution and forward substitution algoriLhms to find the desired matrix

inverse.

117
ll.S. GOVERNMENT PRINTING OFFICE 750-113

