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Preface

There are two prevailing, and often conflicting, work ethics that drive any product. The first is that

quantity has its own quality and the second is that quality has its own quantity. This author is an ardent

subscriber to the second ethic. Thus, throughout this work, I've striven to produce a perfect product. While I

fully recognize that perfection can never be achieved, it remains, nonetheless, the goal, the bulls-eye towards

which I aim. But what is perfection in software and precisely what is the goal of this investigation? Very

simply, it is to produce a computer aided design program for control systems engineers that is at once intuitively

easy to use, completely bug free, and precisely accurate in all numerical computations. Any such attempt

involves much more that just control systems theory but also encompasses numerical methodology, software

engineering, and human factors engineering. Obviously, the scope of such an effort is well beyond any single

masters thesis effort and much work remains at the conclusion of this one. Hopefully, we've laid a good

foundation for future development. Much of this research is just that, a foundation upon which to build. We've

changed the very format of ICECAP-PC from a functionally structured form to a highly modular object-oriented

format. Furthermore, we've looked at every single basic numerical algorithm, changed most of them, and brought

the numerical methodology of ICECAP-PC into the state of the art. Finally, we've provided links for future

toolbox design in areas of Hoo, LQR, LQG, etc. I look forward to seeing future developments of this program.

I owe a debt of gratitude to many people who'4e supported this effort foremost among whom is my

lovely wife Patricia. I'm constantly amazed at her patience having put up with me for 12 years while I got a BS

and now an MS in electrical engineering. We've been through both good times and tough times and always we

did it together. I'm also indebted to my three sons whom I've ignored far too much and whom I look forward

to spoiling absolutely rotten. Thanks are also due to my very capable thesis buddy-dude, Wayne Bell, and my

advisor Dr. Gary Lamont. Its been great.

These are dynamic times. No one in my class envisioned a military draw-down that would put AFIT

students out of the Air Force and into the street upon graduation. I've known many of them for years being

enlisted together, commissioned together, and brought to AFRT together. Together, we've learned camaraderie,

friendship and even brotherhood. We've served our country well and it is to them that I dedicate this thesis, my

final Air Force product.
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Abstract

This investigation is a continuation of the ICECAP-PC research project conducted under Prof. Gary B.

Lamont at the Air Force Institute of Technology. It is an ongoing development of a public domain Computer

Aided Design (CAD) package for Control Engineering students and faculty with a special emphasis on education.

This investigation focuses on three areas. First, an object-oriented environment is specified, designed and

implemented. The functional structure of ICECAP-PC is then converted into an object-oriented structure because

object-orientation provides an advanced logic and implementation structure and effectively addresses common

software engineering issues. Additionally, a new interface featuring pull-down menus, mouse support, and single

stroke access provides optimal user friendliness. Second, the numerical methods used for modem control

capabilities are updated providing state of the art numerical capabilities. Third, using a program extension

known as a toolbox, a basic MIMO (Multiple Input Multiple Output) faculty is created to augment the MISO

capabilities. The MIMO QFT toolbox allows the entry and manipulation of up to a 3x3 MIMO plant matrix of

transfer functions for the QFT solution to MIMO control systems problems.



1 Introduction

CACSD (Computer Aided Control System Design) software development is an inherently complex

process because of (1) the multitude of mathematical operations and capabilities required and (2) the variety of

requirements posed by the end users. Most programs today are modular in structure and tasks are

compartmentalized into functional procedures (subroutines). User commands are processed through a

hierarchical tree of procedures until the command is fully executed. Relatively new, and growing rapidly, is the

use of object-oriented programming (OOP) techniques. While the software engineering community embraces this

technique with open arms, other engineering disciplines, control systems engineering inclusive, have been slow to

adopt this technology. This is unfortunate because object-orientation provides an ideal structure for CACSD

program design because structural complexities are elegantly resolved.

1.1 History of CACSD (Kheir, 1988)

The evolution of CACSD (Computer Aided Control System Design) directly follows the evolution of

control system theory itself. The defense industry has been the major driving force in the development of

automatic control systems since World War II as increasingly sophisticated weaponry was needed. In the period

between 1930 to 1950, the largest category of problems was the SISO (Single Input Single Output) systems and

design was predominantly performed in the frequency domain. Prominent figures were W.R. Evans and H.

Nyquist. Early control systems problems were solved without the aid of computer and only simple cases (by

today's standards) could be considered.

As systems become more complex and MIMO (Multiple Input Multiple Output) problems were

presented, the frequency domain graphical techniques of the past decades failed to produce solution. Among

others, R. Kalman lead engineers into the time domain where systems were represented in state space by a set of

first order differential equations in place of nth order ordinary differential equations. Concurrent, with these

developments, was the advent of the computer age. Engineers began producing code to solve very specific

problems. However, there was no single collection of routines unified under a single package until the late
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seventies. In the early days of computing, the largest obstacle was the lack of interactive systems. Programs

were place on punch cards and run in batch mode; a process that was extremely time consuming.

In the early seventies, researchers began to look again at the frequency domain for control systems

solutions and diversification of theory began to rapidly take place. Different approaches were presented for

different classes of problems. Concurrent with these developments, was the development of collections of

routines previously scattered. In 1977, Fredrick L. O'Brian in his masters thesis a the Air Force Institute of

Technology developed the Consolidated Computer Program for Control System Design which was a collection of

these routines (O'Brian, 1977). In 1978, follow on work at AFIT produced TOTAL, recognized as the first

interactive CACSD program. In 1979, ancther such product, INTOPS was produced. In the fall of 1989, KJ.

sUtrm and G. Golub held the first Conference On Numerical Techniques in Control. At this conference. Cleve

Moler, demonstrated the newly released MATLAB software package which has since become the most widely

used program for control systems design.

MATLAB was not designed for CACSD use at all and had many shortcomings (Kheir, pg 644).

Several other software programs have since come to the surface to address these shortcomings including Matrixx

by Integrated Systems and Control-C from Systems Control Technology. Many of these programs, now much

more mature than at their inception, offer considerable power but come at considerable price. There still exists a

need for a quality public domain CACSD program directed at the educational community. ICECAP-PC fulfills

this requirement.

1.2 History of ICECAP-PC

Since 1977, graduate students at the Air Force Institute of Technology (AFT), under the direction of

Prof. Gary B. Lamont, have contributed to the ICECAP (Interactive Control Engineering Computer Analysis

Package) program. ICECAP traces its origin to a masters thesis entitled Consolidated Computer Program for

Control System Design by Fredrick L. O'Brian. As a follow on effort, Stanley Larimer, in his thesis effort

entitled An Interactive Computer-Aided Design Program for Discrete and Continuous Control System Analysis

and Synthesis created the program known as TOTAL (Larimer, 1978). TOTAL incorporated the ability to

analyze systems in both the discrete and the continuous time domains and was developed in FORTRAN for the
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CDC Cyber. In 1981, Glen Logan rehosted TOTAL for the DEC VAX-11/780 and renamed the program

ICECAP. In 1982, Charles Gembarowski added the menu driven interface implemented in Pascal. Work

continued on the VAX version of ICECAP through many thesis cycles and in 1985, Susan Mashiko and Gary

Tarjyruski developed the program for the personal computer renaming it ICECAP-PC. This version of ICECAP-

PC went through nine design revisions, the last being 9.OA. The current task and subject of this thesis is the

complete and comprehensive re-hosting of ICECAP-PC into an object-oriented format using the interface

definition of Turbo Vision in Turbo Pascal 6.0. Object-orientation provides an advanced logic and

implementation structure and effectively addresses the software engineering issues of extendibility,

maintainability, reusability, etc. Additionally, ICECAP-PC provides for the addition of toolboxes to the basic

program. Toolboxes provide additional capability to ICECAP by implementing new control system theories

without modification of the core ICECAP-PC code. In this latest edition of ICECAP-PC, both MISO and MIMO

QFT toolboxes are included.

ICECAP-PC is a public domain CACSD tool targeted for educational use. Every effort is made to

ensure that ICECAP-PC Release 10 is mathematically correct, rich in capability, and both easy and quick to use.

The purpose is simply to challenge the state of the art in CACSD software design. Thus, the new ICECAP-PC

is easier to use, more accurate, faster, leaner, more capable, and robust than any prior version.
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1.3 General Objectives

This project encompasses three basic objectives: The development of an object-oriented, user friendly

CACSD environment, the refinement of numerical methods used by ICECAP-PC in the solution of modem and

classical control problems, and the development and inclusion of QFT MISO and QFT MIMO toolboxes.

The Object-Oriented CACSD Environment

The first general objective is to provide an object-oriented CACSD environment to perform basic control

system analysis functions such as polynomial and matrix manipulations, and time and frequency domain analysis

with a user-friendly interface including graphical presentations, help, and macro facilities. While these already

exist in the current modular version of ICECAP-PC, they are not provided with the sophistication available with

modem software design techniques. In this case, we mean both structural sophistication and interface

sophistication where structural sophistication is the use of modem software constructs (i.e. object-orientation) to

enforce software engineering principles and interface sophistication is the use of a window based, event driven

interface based on well developed human factors engineering principles (Bell, 1992). Very few engineering

programs are written with human factors concepts included in the design process. A good interface is not merely

a luxury but frees the engineer to concentrate on the problem at hand not having to struggle with the computer

itself.

The Refinement Of Nunerical Methods

The second objective, the refinement of numerical methods used in ICECAP-PC is important for two

reasons. First, mathematical procedures of previous ICECAP versions are dated having been developed in the

late seventies and early eighties. Much progress has been made since then and even the standard usage of

Linpack (Dongarra, 1979) and Eispack (Smith, 1976) routines no longer provides optimal speed and accurncy.

Second, the mathematical engine of previous ICECAP-PC versions was developed by a series of control systems

engineering students with little knowledge of computer engineering and numerical methodology. As a result,

the algorithms in the previous ICECAP-PC mirrored solution techniques taught in standard math courses taken

by engineering students. However, some of these same methods can be unstable, inaccurate or both when

codified into a computer program. A very good example of this is the quadratic equation itself. Directly

1-4



programming the quadratic equation can yield very large roundoff error in the vicinity of b64ac because the

subtraction of small similar numbers leads to loss of significant digits on a computer. However, the optimal

numerical solution of the quadratic equation is easily obtained from a number of numerical methods texts and is

now included in ICECAP-PC.

Toolboxes

In order to project ICECAP-PC into the future, it is necessary to provide extendibility of the basic

ICECAP-PC program. While the basic ICECAP-PC provides many useful functions, it doesn't include many of

the more powerful and recent control theories such as H-o, LQG and QFr. An early design decision (discussed

in chapter 2) was to provide hooks for their future implementation by way of toolboxes. In this way, future

control engineering students can add to ICECAP-PC by devising a toolbox to implement a specific theory. In

fact, our final design goal is the development of QFT toolboxes for the solution of IUSO and MIMO control

systems problems. This is special interest to the Air Force and to flight control problems because of its ability to

incorporate plant variation. While some work has been done recently in the area of MISO QFT program design

(Yaniv, 1992), we seek a program specifically tailored to educational purposes. Therefore, the inclusion of

interactive boundary specification and loop shaping methodology is appropriate. With these tools, a student can

manually generate bounds on a graphics terminal as well as modify the L-Zero curve. After learning the theory

behind these techniques, the student can do subsequent designs in the automatic generation mode.

The MIMO QFT development effort is a natural extension to the MISO effort (Bell, 1992). The MIMO

technique centers around the description and definition of the MIMO plant (a matrix of transfer functions) and its

decomposition into equivalent MISO loops. The method is affirmed to work provided certain conditions,

diagonal dominance etc., are met. The most difficult part of developing a MIMO QFT CAD program is not the

method itself, but rather developing a numerical engine with sufficient robustness to handle the intricate

mathematics accurately. Specifically, the inversion of matrix P, a matrix of transfer functions, poses a difficult

numerical problem; one that is beyond the scope of floating point arithmetic for large order systems. Inverting

such a matrix requires roo finding accuracy to the number of decimal places used for all other floating point

calculations.
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1.4 Report Organization

This report presents the results of this investigation and design effort by developing all three subject

areas from general concept to specific implementation. Chapter 2 presents the research conducted on oject-

oriented design, numerical methodology and Quantitative Feedback Theory. It does so in a general manner

exploring numerous alternatives and discussing basic concepts. Chapter 3 gives a set of specific requirements for

ICECAP-PC based on the research presented in Chapter 2. Chapter 4 discusses the actual design and

implementation of ICECAP-PC. The discussion of chapter 4 presents each of the major code families with

specific attention paid to program structure, choice of numerical methodology, and decision process involved in

critical implementation areas. Chapter 5 presents both an in depth look at the toolbox concept and specifically

the MIMO QFT toolbox. Chapter 6 provides a discussion on the testing plan used and events experienced in the

development of T,'ECAP-PC code in general and of the numerical methods developed. Chapter 7 contains the

concluding remarks and recommendations for future ICECAP-PC development.

1.5 .Sumnmary

In summary, this investigation covers three major engineering disciplines. Object-orienteL software

engineering, the ability to design and write computer programs, is central to this effort. Equally imixxtant is the

development of advanced CACSD software and problem solving techniques. Specifically, the develoA'ment of an

object-oriented implementation of the MIMO QFT problem is unprecedented. Finally, mathematical rikor is

fundamental to any CACSD program and much attention is paid to this discipline in this investigation.
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2 General Technical Review

2.1 Introduction

This chapter presents the literature review and investigation in three key subject areas: (1) Object

Oriented Modeling and Design, (2) Numerical Methodology and (3) Quantitative Feedback Theory. Thus it

forms a general basis of knowledge from which CACSD program specifications are made, a design defined, and

program implemented. While this is not an all inclusive investigation of all disciplines required in CACSD

design, it does touch on those areas crucial to this investigation.

Section 2.2, Object Oriented Design Discussion and Terminology, gives a general discussion on the

emerging and still somewhat nebulous field of object oriented analysis, modeling, and design. Object-orientation

is not a mere program structure, but a unique developmental methodology that views a problem space in a

different context than any classical approach. The structure of an object-oriented model parallels the real world,

which is a collection of things or objects, more closely than a functionally decomposed program. As mentioned

above, it is still a developing field, and there are as many modeling systems as there are authors all of which

differ in syntax but agree in basic logical decomposition. That is, the software engineer models the problem

space using OOA (object-oriented analysis) techniques, designs a program specification using OOD (object-

oriented design) techniques and develops the program code using OOP (object-oriented programming)

techniques; each following the unique logic axioms of object-orientation. This project adheres to the modeling

system presented by Rumbaugh (Rumbaugh, 1991).

Section 2.3, Literature Review of Numerical Methodology, covers several algorithms that solve

mathematical problems of special interest in ICECAP-PC. It addresses questions about the mathematical engine

that drives the final CACSD design. What is the best way to invert a general complex matrix? What are the

alternatives? How do we design a numerical procedure to yield maximum accuracy? What are the pitfalls? All

of these questions, and others, are explored therein.

Section 2.4, Literature Review of the QFT Technique, covers the mathematical and theoretical

foundations of the Quantitative Feedback Theory developed by Prof Isaac Horowitz. This section is included
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herein because it forms the general basis of knowledge for the development of the MISO QFT and MIMO QFT

toolboxes as mentioned in chapter 1.

Another area of research of special interest to this project is the design of hunan interfaces. This

research is presented by another student who was also involved in the ICECAP-PC project (Bell, 1992). The

reader is referred to this study for the general conceptual development of the human interface of ICECAP-PC.
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2.2 Object Oriented Design Discussion and Terminology

Introduction

In the software design process, the objective is to develop a high-level design and then to decompose

this design into lower level modules until reaching the primitive level (implementation/coding). Two software

design approaches to decomposition are functional and object-oriented design.

Most packages today are modular and are written using functional programming techniques. Tasks are

modularized into functional procedures (subroutines). Commands given by the user are processed through a

hierarchical tree of procedures until the commanded function is fully carried out. Thus a functional program is a

collection of sequential statements which the program sequentially executes, operating on its information in the

way each program line instructs.

An object-oriented (00) program is also modular except the modules are objects. Objects are

executable records that contain both data and procedures (methods) that operate on that data. Further, 00

programs are not sequential in nature but are event-driven. An event is, for example, a user selecting a

command from a menu object. The menu object contains an event-handler that sends appropriate messages to

the other objects in the program telling each of them what function the user has asked to be performed. Each

object can operate on its data in order to achieve that function. Thus the big difference between 00 programs

and functional programs can be viewed as nouns doing verbs (objects responding to messages) instead of verbs

acting on nouns (sequential statements doing something to stored data). This section explains what is involved

in using OOD, and what advantages and disadvantages OOD has over functional design.

Terminology

In order to understand OOD, the reader needs a comprehensive understanding of the terms used in the

object-oriented field. The following section is an exhaustive dictionary of the terms used in this section.

Abstract Data Types: Examples of data types can include integers, characters, and boolean variables.

However, the state of the data can be viewed after associated operations. A more formal method of defming

these data types is the concept of abstract data types (ADT). By formal definition, an ADT is a three-tuple,

(D,F,A), where D represents the domains of the data type, F the functions, methods, or operations on the data
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type, and A is a set of axioms (first-order predicate calculus) that encode the desired semantics of the operations.

Generally, an ADT is an encapsulated data structure and associated operations without an explicit enumeration of

the axioms in order to provide ease of development. The invisibility of an ADT's state and the separation of its

interface component from its implementation are the distinguishing features which separate an ADT from a

simple data type such as an integer.

Object. In order to understand the concept of an object, several preliminary concepts dealing with

computers and computer programs must be understood. All computer programs operate on structured data sets.

Typical data structures are stacks, queues, arrays and records. A reasonably new and important data structure is

that of an object. An object is an instance of an object class ADT and contains both data and methods

(executable procedures) that operate on that data. Thus an object is unlike other typical computer data

structures because it can modify its information and can send instructions to other objects to change their

information. An object is implemented in a computer program by three main parts: its data, an event handler,

and methods. Two of these are, in fact, the (D, F) of the ADT data type mentioned previously. The domain

data is the useful information the object maintains and is stored in the computer's memory under the object's

name. The event handler is a listing of messages to which the object can respond and the functional methods

the object should enact if the corresponding message is received. The methods are the typical computer

program instructions which operate on the object's information and which send messages to other objects.

Methods. As was mentioned previously in the definition of Object, methods (also called operations or

functions) are executable procedures that operate on the object's data. Their counterpart in functional

programming would be subroutines. The set of object methods can be further classified by their functional type.

Constructors. These methods generate or construct memory locations for an object's instantiated (see

below) variables.

Destructors: These methods remove an instantiated object from the computer's memory and release that

memory for later use.

Selectors: These methods perform a selection of the current state generally to output some data or make

a decision as to the next process (a series of tasks or methods).
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Iterators. These operations perform an iteration over the object data structure.

Exceptions: These methods, after determining that an error has occurred, perform a desired set of tasks.

Although these terms are useful for understanding, most applications do not classify specific object operations.

Class: A class is a higher level of abstraction than an object, that is, a set of objects can share a

common structure and common behavior. A class is defined as a collection of operations (methods) and the data

types the methods operate on. When the data and methods can be accessed by other objects, they are visible by

definition. If they can not be accessed by another object, then the data and methods are defined as invisible;

i.e., information hiding. The class interface consists of public (visible) elements, private (not visible) elements,

and protected (visible only to subclasses) elements. In selecting a class, the criteria includes reusability,

complexity (time and space), and applicability. This definition represents a general ADT concept as previously

presented.

Instantiation: An object is by definition an instantiation or instance of a class. An instance can be

thought of as the variable name where the class is the type the variable name is defined as being. So while a

class defines the methods to operate on data and describes the data types to describe the data structure, classes

do not contain any real uata until they are instantiated into existence as an object. Objects of the same class,

therefore, share the same methods but not the same instantiated variables (or domains)! Two objects of the same

class may each own a variable named DATATEM, but if Objectl changes its instance of the variable, the

DATA1TEM in Object2 is unchanged. However, the method they each run to modify that DATAITEM is

indeed the same exact method inherited from their common parent class.

Inheritance: An important property of an object is inheritance. Class inheritance is a relationship

among classes where by one class shares the structure and behavior defined in one or more other classes. An

object by definition inherits the methods and data types of its associated class when it is instantiated. Thus,

under instantiation, unique data variables are created for the object, but the class methods are used for the object

methods. In addition the instantiated object can have new code defining its own unique methods. This is called

polymorphism and is discussed later. An inheritance hierarchy of objects is a tree structure that permits any

object in the tree to inherit and operate using any method or data type in an object class higher in the tree. Thus
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the object has inherited the methods and data structures higher in the tree. The utility of this inheritance is that

once an object type has been fully written and tested, the programmer never needs to modify it again. These

same tested capabilities can be used by future objects by simply declaring them to be children of the first

object's class. This vastly simplifies the process of software development and maintenance providing far better

reusability than simple modular software design.

Inheritance and instantiation differ in the way they are implemented in different programming languages.

Classes in Turbo Pascal V 6.0 are defined with the type statement and brought into existence upon being

instantiated in the var section of the program. For instance, an object called NewPoly, an instantiation of class

PolyObjectType which is a child of the parent class DatalOType, could be declared with the following

statements:

PROGRAM SomeProgram;

TYPE

Polynomial - Array[l..MaxCoefficients] of real;

(Parent Object Class Declaration]
DataIOType - object

(Data Structures)
Polyl Polynomial;
Poly2 Polynomial;
Poly3 : Polynomial;
(Methods)
PROCEDURE RetrievePoly(PolyName: String; var OutPoly: Polynomial);
PROCEDURE StorePoly(PolyName: String, var OutPoly: Polynomial);

end;

(Child Object Class Declaration)
PolyObjectType - object(DatalOType)

(No new data structures)
(Some new methods)
CONSTRUCTOR: Init;
PROCEDURE : HandleEvent(EventType); (EventType is a reserved word)
PROCEDURE : AddPoly(InPolyl,InPoly2: Polynomial: var OutPoly: Polynomial);
PROCEDURE : MultPoly(InPolyl,InPoly2: Polynomial: var OutPoly: Polynomial);
DESTRUCTOR : Done;

end;

VAR
NewPoly : PolyObjectType;

BEGIN
NewPoly.Init;

NewPoly. Done;
END.

Listing 2-1: Basic Inheritance
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In the above example, a parent object class called DataIOType is defined to have three polynomials

(two operands and a result) and basic file 1/0 procedures to retrieve and store the polynomials to file. The

object class PolyObjectType is declared as a child of DatalOType. Thus, it inherits all three polynomials and the

two 1/0 procedures (methods) from DatalOType. They are present in PolyObjectType just as though they had

been explicitly declared. Note further that PolyObjectType has an event handler, a constructor and a destructor.

The HandleEvent method is necessary for external communication (message reception) with other objects. The

constructor initializes a specific instance of the PolyObjectType class when a variable of the type

PolyObjectType is instantiated. In this case, NewPoly becomes a specific instantiation of the class

PolyObjectType. Each such variable declaration constitutes an instantiation of PolyObjectType and this can be

accomplished as many times as the programmer desires.

The above example clearly demonstrates the principles of inheritance and instantiation. Inheritance

defines the structure and capabilities of an object class while instantiation defines lines of ownership and control

of actual data. The two concepts are quite different and understanding this difference is key to understanding

OOP.

Polymorphism: If a child class redefines a method of its parent class, it is said to be polymorphing that

method. For example, if the previous example class PolyObjectType defined a method called RetrievePoly just

like in its parent, and then changed the program statements RetreivePoly executes, then one would say

PolyObjectType polymorphed the method RetreivePoly. (Pressman)

Object-Oriented Analysis (OQA): OOA is an approach to problem definition and partitioning. The

product of OOA is a high level design of objects depicted in a set of diagrams (object diagram, instance

diagram, state diagram, data flow diagram, etc.). Thus, the nature of the objects involved in a problem space,

the relationships the object have to each other, and a high level view of data movement between objects is fully

specified by the OOA process. (Rumbaugh, 1991)

OOA Notation: Notation of OOA can be expressed in a set of hierarchical graphs: class diagrams,

object diagrams, module diagrams and process diagrams, state transition diagrams and timing diagrams.

Although not enumerated here, specific icons are associated with the characteristics of each diagram (Grady).
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A class diagram presents each class and its relationship with other classes, the dynamic behavior of the class is

represented by a state transition diagram which portrays the transition from state to state as caused by an event

as well as the actions resulting from a state change. The object diagram presents each object and its relationship

to others. Since objects are created and destroyed during program execution, the object diagram represents the

dynamics of the object. Object diagrams are prototypical classifications. By construction, class and object

diagram development document the logical design of the system. Module diagrams present the encapsulation of

classes and objects. All the diagrams should be evaluated in terms of the formerly mentioned metrics.

Object-Oriented Design (OOD): OOD is a medium level process, the product of which is a fully

specified and decomposed yet uncoded software design. While OOA strictly views the problem space of a

design, OOD views the OOA in relation to the impending implementaion issues that must be addresses.

Algorithm design, numeric formulas, parameter passing, etc. are all specified during the OOD phase. (Rumbaugh,

1991)

Object-Oriented Programming (COP): OOP is a programming technique in which the data structures

are represented as cooperating collections of objects, each object being an instance of a class within a hierarchy

of classes that permit inheritance. OOP evaluation of objects (or classes) can be done using standard

programming discipline metrics such as object coupling, cohesion, sufficiency, completeness and primitiveness.

Coupling refers to the relationship between objects, cohesion refers to the relationship between internal object

constructs, sufficiency and completeness refer to the object having enough of all possible behaviors so as to be

useful, and primitiveness is when a desired program behavior can only be implemented by accessing invisible

structures of an object. (Pressman)

The Object-Oriented Process

The object-oriented process consists of identifying the classes and objects at some level of abstraction,

identifying the data and operations of each class and object, identifying the relationships between classes and

objects, and implementing the classes and objects into modules. Object-orientation allows the programmer to

take advantage of three important software design concepts: abstraction, information hiding, and modularity. The
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process begins with object-oriented analysis (OOA). Pressman offers an easily understood approach for OOA.

(Pressman, pp 334-346)

First, a paragraph is written in plain English language that describes the function to be performed by the

computer program. Objects are extracted from the paragraph by underlining the nouns in the sentences.

Attributes of objects are extracted by underlining the adjectives of the sentence and grouping them with their

associated objects (nouns they modify). Methods are identified by underlining all the verbs, verb phrases, and

predicates in the sentences. Attributes of the methods are found by underlining all the adverbs and grouping

them with their associated methods (verbs they modify). Now each grouping of objects and methods is

identified as either part of the solution or part of the problem. Now we are ready to enter the object-oriented

design (OOD) phase.

Again a paraphrased and modified methodology for the object-oriented process from the work of

Pressman is borrowed. The steps are:

1 Define the problem to be solved

2 Decompose the problem into objects

3 Determine each object's required data

4 Determine each object's required methods

5 Determine interfaces between objects and methods

6 Determine a parent-child hierarchy related to the data and methods

7 Determine inheritanrelpolymorphism relationships related to the data and methods

8 Create a user-interface object

9 Create each object

The first four steps are already arrived at in the OOA phase of the design. Obviously, there exist many

techniques for iteratively applying these four steps further down levels of abstraction until finally arriving at the

primitive level. At this lowest level the objects required to solve the problem are obvious, as are the methods

they need to perform, and the data they need to own.
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Determining interfaces between objects and methods is done by determining how each object depends

on the others. From this it can be determined what messages each object needs to send to the other objects and

when. Thus event-handling routines are designed for each object, so they can perform the desired methods when

the message is received.

At the implementation level, we see an overwhelming advantage of object-orientation. The objects that

have methods and data types in common are grouped into classes. These classes can be completely separate

from one another, or they may have common data items or common methods. Whenever possible, blocks of

code should not be repeated, so the common data and methods are grouped into a class of their own and other

classes are made children cf that new class. This class may not make sense as an object in itself and there may

never be an object who is a direct instantiation of it, but its children have tighter code since they have this

"library" of ready-made methods to use.

Now the step of creating an object who serves as the menuing system interface between the human user

and the internal objects as well as the output screen interface between the internal objects and the human user is

added. This object contains the overall event-handling method as well as most of the file 1/0 and screen 1/0.

The final step is to pick a particular language and implement the design in code. The next section

describes just such a language.

Borland Turbo Vision

Borlandn provides support for object-orientation and an excellent pre-defined object library in its Turbo

Vision package available with Turbo Pascal V 6.0 and Turbo C++. The Turbo Vision object library provides a

predefined framework to develop object-oriented windowing applications including:

1. Multiple, resizeable, overlapping windows (view the same function on multiple planes such as

s, z and w)

2. Mouse support

3. Drop-down menus and dialogue boxes for usae input

4. Buttons, scroll bars, check boxes and radio buttons

5. Standardized event handling for keyboard and mouse events
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Experience with Turbo Vision has shown that while it presents an extremely steep learning curve, time

spent learning it is worthwhile. One word of caution: if the decision is made to build an application with Turbo

Vision, the entire project should be built using Turbo Vision objects and standards. Attempting to mix standard

functional code with Turbo Vision objects will only create memory conflicts. Ancther point to note is that

Turbo Vision programs are not portable between platforms. Turbo Vision programs are limited to MS-DOS

computers.

Tab Ject-- TView---TGroup Progra.m TApplication
Desktop

-- Window - TDialog
E--THistory

-- TScroller - TTextDevic --------- TTerminal
-- TScroll Bar

-- T Clus t e- -- TCheckBoxes_-E---TýRadioButtons

5-InputLine
-- History

ListViewe r------TListBox
r --- history 'iewer

MenuView T 14enuBar'----HenuBox

Collection
Stream
ResourceFile

Listing 2-2: Abbreviated Turbo Vision Family Tree

Turbo Vision consists of a family tree of predefmed object types that provide a basic user interface.

This tree is shown in Listing 2. The team 'Tamily tree" is used to indicate the inhezitance lines of each object.

This is a different concept than a simple hierarchical tree.

From Listing 2, it is seen that the root object is TObject. TObject has no ancestors and is extremely

limked functionally. It has a constructor (Constructor INIT), a destructor (Destrctor DONE), and a method

(Procedure FREE) that disposes co the object and frees its memory. TObject has six children, among whom are

TVMew, TCallection, TStream, and TResourceFile. TView is of primary importance because its children provide

the user interface.
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TView is the parent to all objects that can write to the screen. The converse is also true. All objects

that can write to the screen are children of TView. The Turbo Vision standard is that all screen writes be

accomplished via the TView.Draw method. While it is possible to use the standard Pascal write and writeln

statements, it violates the Turbo Vision standard and their use is strongly discouraged. The writeln and read

statements employed for user input are replaced by dialogue boxes which are descendants of TView. TView has

another important property worth noting; it is the lowest object on the tree that is capable of message

transmission and reception. Thus, any object that needs to communicate with other objects should be a

descendant of TView whether or not they are visible. All the workhorse type objects in Turbo Vision are made

descendants of TView. For example, a matrix object, a polynomial object, or a transfer function object should

all be descendants of TView. TView has several descendants, among whom are TApplication, TDesktop,

TMenuBar, TWindow, TDialog, and TScroller. The following discussion is limited to these objects as they are

of primary importance. For further information the Borland Turbo Vision Guide that comes with Turbo Pascal V

6.0 is highly recommended. (Turbo Vision Guide, 1991)

TApplication is a child of TProgram which is a child of TGroup which is a child of TView. Thus

TApplication is a descendant, several generations removed, of TView. The focal point of any Turbo Vision

program is always a child of TApplication which the programmer must define. Furthermore, there should only

be one TApplication object for any given program. This object owns via instantiation all other objects, handles

all message dispatching, communicates directly with the main menu, manages idle times, and processes computer

errors.

To write a hypothetical program, say a DSP program for example, the main program would be a child

of TApplication. It would be declared in under Turbo Visiom as shown in listing 2-3.
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PDSP - ATDSP
TDSP - Object(TApplication)(Note TDSP is a child of TApplication]

CONSTRUCTOR: Init;
PROCEDURE HandleEvent(var Event: TEvent); virtual;
PROCEDURE Idle; virtual;
PROCEDURE : InitMenuBar; virtual;
PROCEDURE : InitStatusLine; virtual;
PROCEDURE OutOfMemory; virtual;
DESTRUCTOR Done; virtual;

end;

Listing 2-3: Hypothetical DSP Object Class

From this code it is seen that TDSP is a child of TApplication. PDSP is a pointer type to the TDSP type.

Turbo Vision makes heavy use of dynamically allocated variables and uses pointers abundantly. Each virtual

method listed above is a polymorphed version of identically named methods in ancestor objects. In other words,

it is the programmers responsibility to overwrite the ancestor methods in order to fully define the desired

interface and program operation--any inherited method not redefined uses its parent's method as is. The

IntMenuBar and InitStatusLine methods instantiate the menu bar and status line objects that define the user

interface and menu structure. The HandleEvent method processes all events (menu events, mouse events,

keyboard events, message broadcast events, etc) and sends messages to the proper objects in response to these

events. The OutOfMemory method guards against memory overflow errors and the Idle method does

background maintenance during idle periods when the user has not requested any commands.

TDialog is a child of TWindow which is a child of TGroup which is a child of TView. Descendants of

TDialog provide pop-up dialogue boxes for user input. Dialogue boxes contain radio buttons, check boxes, list

boxes, and input lines. Radio buttons are input devices that allows the user to choose only one item among a

palette of options. Check boxes are input devices that allow the user to choose any combination of items among

a palette of options. List boxes provide a list of items to choose from such as files on disk or directories. Input

lines provide text entry of a string variables. Each of these (radio buttons, check boxes, list boxes and input

lines) are themselves object descendants of TView. Specifically TRadioButtons is the radio button object,

TCheckBoxes is the check box object, TListBox is the list box object and TinputLine is the input line object.

Each are polymorphed and instantiated into a descendant of a TDialog object by the programmer. Examples are

abundant in the Turbo Vision Guide.
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Other objects worth brief mention are TDesktop, TMenuBar, TStatusLine, and TWindow. TDesktop is

a child of TGroup which is a child of TView. It is simply the background view upon which all other visible

views appear. TMenuBar is the menu bar object that displays and controls drop down menus. Note that in the

above application object definition, TDSP. InitMenuBar instantiates a child of TMenuBar into the application

object. TStatusLine provides a bottom frame to display and control shortcut keystrokes and other useful

information such as remaining heap size. TWindow is merely a frame that borders views with a frame.

Event Handling is always a big design concern in OOP. In Turbo Vision, all event handling is

processed via a TEvent type record. TEvent is a record that identifies the type of event that has occurred and

the specific command should one be directed. All events are not commands, however, all commands are events.

For example, the movement of a mouse pointer is not a command, however it is an event. All Turbo Vision

object have event handlers to process TEvent records, however the polymorphed descendant of TApplication is

the focal point for all event handling. Assume the following basic event handler for the TDSP descendant of

TApplication described previously.

PROCEDURE TDSP.HandleEvent(var Event: TEvent);
[Note the Event variable is a record of TEvent type)

procedure DosShell;

begin

end;

begin
TApplication. HandleEvent(Event);
if Event.What - evKeyDown then begin

(Desktop Hotkeysj
'A', 'a': About;
'C', 'c': Calculator;
'X', 'x': DosShell;

end;

if Event.What - evCommand then begin
case event.comalnd of

cMTFCopy Message(TransFunction, evBroadcast, brTFCopy , nil);
cmTFDefine Message(TransFunction, evBroadcast, brTFDefine , nil);
cmTFDisplay : Message(TransFunction, evBroadcast, brTFDisplay, nil);

end;
end;

end;

Listing 2-4: Event Handler For Hypothetical DSP Object

This example shows the basic operation of a hypothetical TDSP event handler. Note that the first action

taken is a call to the parents event handler (TApplication.HandleEvent). This is to process non-command events
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such as mouse movement and cursor key presses. Turbo Vision does a nice job of this and relieves the software

engineer from a great burden! If the Event.What field is equal to the predefined integer constant named

evKeyDown and the key pressed is an "a", "c", or "x", the appropriate subroutines are called. For proper OOP,

these subroutines should be local to the TDSP.HandleEvent method. If the Event.What field is equal to one of

the predefmed integer constants named cmTFCopy, cmTFDefine, or cmTFDisplay, TDSP.HandleEvent sends a

message to an object instantiated as TransFunction. Note that 1) the message is directed to a specific instantiated

object and that 2) message transmission is a predefined function of Turbo Vision. Thus the software engineer is

again relieved of a great burden! The message is transmitted as an event of evBroadCast type and sends the

command bfTF... which is a predefmed integer constant (the software engineer must predefine these constants

into a global unit). The TransFunction object must then contain its own event handler to receive this message

and process it accordingly.

As demonstrated in the previous paragraph, Turbo Vision provides several tools to relieve the software

engineer of many mundane chores of interface design while allowing all the benefits of programming in a

standard high-level language. Execution speed, numerical precision, and mathematical algorithms are all

designed with far greater control and efficiency in such a language than could ever be attained by commercial

control system packages with their own language interpreters. Once the initial steep obstacle of learning OOP

and the Turbo Vision toolbox are mastered, building applications becomes a quick and rewarding task.

Advantages of OOP Over Functional Programming

The following opinions were formed from specific experiences with first having tried to modify and

debug the functional version of ICECAP-PC (a CACSD package) and then having translated it into 00 code.

While the experiences discussed here are from a specific package, they can certainly-based on current literature

of similar design projects--be generalized.

A typical danger spot in functional programming is opening a data file in one section of the code and

then closing it (or forgetting to close it, or hitting some conditional branching statement that bypasses the close

command) in some later section of code. In OOP, a database-type object is used that is the only object in the
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program that can get and save data from files. Therefore, only one OPEN command and one CLOSE command

are used for the entire program.

An advantage of the user interface object is that it abstracts the programmer from having to worry about

any user I/O while writing the mathematical code, etc. One object deals with user requests and translates

requests into event messages to be sent to the "workhorse" objects. Likewise, the same object returns the

workhorse answers to the user in some screen format.

The same nature of abstraction allows the software engineer to abstract a problem to a higher level for

debugging or original design. For example, if the math object wants to tell the user 1/O object to print its

answer to screen, it doesn't need to know how the 1/0 object does it, it just sends the I/O object a message

telling it what information to print, and the I/O object can take care of it. From the software engineer's point of

view, during debugging or design they can design at the highest level of abstraction listing the upper level tasks

that need to be done to solve the problem and assume that some object can do each task. Then the programmer

moves down one level of abstraction and takes each task and breaks it down into sub-tasks assuming some object

(or method) can do each sub-task. This is done down to the primitive/coding level. Debugging is broken down

the same way. The programmer looks at the input and output of the highest level object. If it is wrong, he

looks at the input and output of each of the objects in the next level down. He then only has to break down the

object that had incorrect output. Because each object is self-contained, it makes maintenance very easy.

After the main objects in the program have been fully defined in terms of what data they would need

and what methods they would need, inheritance is used to decrease the size of the code. Parent objects are

defined for all the main categories of workhorse objects. The parent objects contains all the methods that the

workhorse objects hold in common. This means that each of the separate objects could be smaller because they

could globally access the methods they inherited from their parent. The parent contains methods like ones to

decipher user textual input, ones to work with data friles, and other general purpose type methods.

Because the object library from Borland Turbo Vision is available for use, productivity is much higher

than would be typically expected in software development. The functional version of ICECAP-PC always

suffered in the contemporary human factos engineering area because only so much time could be devoted to
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menuing systems and output screen formatting and context sensitive help screens. Using the professionally

packaged object library of Turbo Vision, the software engineer is able to focus almost completely on

mathematical algorithms and let the commercial package take care of user 1/0. Because of this, the authors have

been able to work on expanding ICECAP-PC's CACSD toolboxes beyond that which could otherwise have been

accomplished. Furthermore, future thesis students will be able to go even farther since the overhead of porting

the ICECAP-PC subroutines into an 00 environment has already been accomplished.

OOP disciplines produce more reliable code due to modular debugging and using existing objects that

have been debugged through years of use. In the case of ICECAP-PC, the benefits of two worlds have been

inherited. At the lowest level, the program has its 110 based on a commercially produced and tested package

(Turbo Vision). At mid-level, the object methods are based on the basic control system algorithms from

ICECAP-PC (developed over several thesis projects and used by a large student body). After the 00 program

had been tested at all levels of abstraction and it was apparent that each object performed its functions properly

and that all the objects communicated among themselves properly, new objects could be added to the existing

reliable code with a high degree of confidence in the reliability of the CACSD package as a whole.

The same OOP disciplines produce more maintainable code due to the self-sufficiency of objects.

Proper OOP techniques avoid the use of global variables and low functional independence which often plagues

functional program modules. If each object is compiled separately and it responds with expected output

responses to test inputs, then it does not display the undesirable dependence qualities of low cohesion or coupling

with some other object. This research finds that following proper OOP disciplines results in highly cohesive

code, because each object is functionally bound to operate on its data alone. Of course, while objects higher on

the parent-child tree own more data, they still perform only one higher level function: it receives messages to

change its data in some way, and it can do it. Then that higher level object is made up of smaller objects who

are each functionally bound to operate on their more specific piece of data. This recurses down through the

object tree until the primitive level is reached. At this lowest level very cohesive methods (subroutines) are

written. In the same way, following proper OOP disciplines results in low coupling between objects, because

each object is again functionally bound to operate on its data alone.
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Disadvantages of OOP Over Functional Programming

Only two disadvantages with using OOP have been experienced, neither of which are directly related to

OOP itself. The first can be attributed to learning a new programming language and learning a new way of

thinking about algorithms to solve problems. The second can be attributed to the decision to operate within an

MS-DOS environment.

Any time a new programming syntax must be adopted, there is a learning curve that must be overcome.

With OOP this is doubly true, because not only must the syntax of Turbo Vision, or some other 00 language

package, be learned, but the software engineer must also change their logical concept of problem solution.

Humans typically think in functional terms. For example, if a person wants to sign his name on a piece of

paper, the algorithm he might imagine to solve this problem might be:

(a) I hold inkpen.

(b) I lay paper flat on table.

(c) I move inkpen to trace out my name.

The person who thinks in terms of objects might imagine this algorithm:

MAN: Name, sign yourself.

NAME: Paper, display me.

PAPER: Hand, lay me flat on the table.

INKPEN: Hand, use me to trace out the NAME pattern on the PAPER

In this example, consider the HAND as being the primitive level or the coding level of the methods.

Humans tend to think more in terms of the first example scenario; therefore, the transition into OOP is not as

intuitively easy as using functional programming techniques.

Any time code is developed within the MS-DOS environment, limitations are placed on how much

memory room is available for use by the program. A stack cannot be larger than 64K, variable declarations

carnnot be larger than 64K, and the compiled program and heap space (dynamic variable space) cannot exceed

640K. The 640K barrier can be overcome in Turbo Pascal by breaking the compiled code into overlay units, but

even then each unit cannot be larger than 64K and must be able to be compiled to some extent separately from
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the other units. These memory restrictions place some limit on how closely a programmer can follow the

generally accepted rules of OOP.

Concluding Remarks on Object-Oriented Programming

Object-orient design and programming has grown to a standard practice because of benefits over

functional design and programming. Such advantages include the reuse of existing software components, more

maintainable systems, reduction of developmental risk, and use of OOP language constructs. Disadvantages

include the higher cost of development and possible performance degradation due to message passing, the multi-

layer abstraction, hierarchy of classes, and associated memory and execution overhead.

The object-oriented approach generally results in smaller systems because of reusable subsystems and

thus are more amenable, providing a economic framework for evolution. The original ICECAP-PC was

developed using the functional design approach as were its predecessors. The new 00 version of ICECAP-PC

provides for better maintenance and user interface.
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2.3 Literature Review of Numerical Methodology For Modern Control

Introduction

Computer Aided Design (CAD) programs play a role of increasing importance in the art and science of

engineering. The modem engineer, in any discipline, must be must be fluent in the vse of such programs as it

forms their fundamental tool kit. Systems are designed, models are analyzed, and simulations are perforned

long before project implementation. Mistakes discovered after production begins are prohibitively expensive.

The engineer tends to explicitly trust the mathematical answers generated by a CAD program; therefore, it is

crucial that such programs consistently provide the best possible numerical accuracy and, if desired, an explicit

measurement of error. Unfortunately, while the state of the art in numerical methodology is quite high, the state

of the market is not. Quite often, very expensive engineering programs are replete with inaccuracies,

inconsistencies or both because insufficient attention was paid to the numerical algorithms.

Numerical accuracy is an abstract concept. Sufficient accuracy is another abstraction that is often

difficult to define. Furthermore, it is application dependant. How much accuracy is enough? For financial

calculations, two digits of accuracy is sufficient. However, if an engineer wants to use the number ic in an N2

algorithm, they want the impossible: infinite accuracy. Since ic can only be approximated in a computer, the error

between the approximation and the true value of , some constant, is propagated N2 times and the error of the

algorithm can grow exponentially. Minimizing, or at least defining this error requires considerable effort.

The engineering community must make the required effort. Designs can fail, bridges can collapse,

planes can crash and people can die because of design err-s caused by numerical inaccuracy. For the above

case, possible improvements include increasing the computer word length (the number of bits used to represent a

number) and working symbolically with r- Discovering and inventing ways to minimize and bind inaccuracy

should be part of any CAD research.
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Numerical Accuracy Issues

Current literature generally defines two types of numerical error hardware induced error, commonly

known as roundoff error, and algorithmic error, commonly known as truncation error. Roundoff error is a term

that describes the error between a real number and a computer's floating-point approximation. It is hardware

dependant and beyond the control of the software engineer. While there are some techniques available to

minimize this error, it's impossible to eliminate it on a digital computer.

Roundoff error occurs because all floating point representations of real numbers are, in fact,

approximation Cf those numbers. Modern computers generally use floating point approximations defined by

IEEE Standard 754 (IEEE, 1985). This standard defines three floating point formats: a single precision 32 bit

format; a double precision 64 bit format; and an extended precision 80 bit format. Each format consists a single

sign bit, a small number of exponent bits and a large number of fraction bits. Real numbers are represented in

exponential form using excess 127 or excess 1023 code. As you might expect, increasing the number of bits

increases both the resolution by which numbers are represented and the range of numbers represented. The

single precision format provides a range from 1.5 x 10e to 3.4 x 10& with 7 to 8 significant digits. The double

precision format provides a range from 5.0 X 1O&m to 1.7 x 10"s with 15 to 16 significant digits. The

extended precision format provides a range from 3.4 x l0a4 to 1.1 x 104m with 19 to 20 significant digits. It is

important to realize that any real number with a decimal component smaller than the resolution of the format in

use cannot be precisely represented. The difference between the actual value of the number and its floating-

point representation is the roundoff error. ICECAP-PC uses the extended precision format exclusively.

The second error, truncation error, is solely a function of algorithm design. Herein lies the trap that

catches many unsuspecting engineers. It is often a mistake to program a mathematical function the way it is

taught in school. Consider, for example, the quadratic equation. Programming the terms under the radical (b2-

4ac) in a straightforward manner will yield considerable error for V2 << ac. This is caused by the subtraction of

two numbers with grossly different exponents and a corresponding loss of significant digits. Other forms of the

quadratic equation (not discussed here) yield significantly less truncation error. Many other common functions

display similar characteristics.
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Algorithms that inhibit the growth of error are referred to as stable algorithms. Unstable algorithms are

those whose structure permit the unbounded growth of error with successive iteration. Such algorithms are of

limited utility. They are not; however, altogether useless.

A final note on the numerical accuracy issue: It is commonly and mistakenly held that wider data paths

yield greater numerical accuracy. A 32 bit computer is often perceived more accurate than a 16 bit computer

and an "engineering workstation" is often perceived more accurate than a PC. In fact, any computer conforming

to IEEE Standard 754 will, in theory, provide identical accuracy. Differences in observed computed values are

invariably the result of algorithm differences and operating system differences rather than the width of a

particular data path. Thus, a PC program using an IEEE-754 80 bit extended precision number is more accurate

than a mainframe using an IEEE-754 32 bit real number given identical program design! With this in mind, we

now focus on specific algorithms used-in ICECAP-PC.

7he Matrix Condition Nunber

Systems of equations expressed as variants of the familiar form AX=B, including state space

representation, may or may not lend themselves to effective numerical computation. If the A matrix is nearly

singular, i.e. the Hilbert matrix, it is said to be ill conditioned. Numerical computation with such a matrix

produce large error! Gerald makes the following worst case example: (Gerald, 1978)

-0.002 4.000 4.000 1-9

-2.000 2.906 -5.387 x K -4.481

3.000 -4.031 -3.112 -4.143

Using Gaussian elimination without pivoting for inversion (a very unstable algorithm) and four places of

accuracy he arrives at a computed solution of X - (-1496, 2.000, 0 .0 0 0 )T. The actual solution is X = (1.000,

1.000, 1 .0 00)T. While this is clearly, in his own words, an "exaggeration" of reality, it does demonstrate the

potential for numerical error in ill conditioned problems.

It is desirable to 1) be able to detect in advance when a coefficient (plant) matrix is ill conditioned and

2) to be able to predict and nullify subsequent error. Such capability is provided by the condition number of the

matrix given by the following equation: (Chapra, 1988)
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Co4] = JAl • IA-'I Eq. 2-2

This equation says that the condition number of matrix A is equal to the norm (size) of the matrix times

the norm of its inverse. High condition numbers indicate ill conditioning of a matrix. The lowest and best

condition number is 1. A singular matrix has a condition number of o-.

Use of this equation requires both a method to compute the norm of a matrix and the inverse of the

matrix itself. Obviously, the computed inverse of a poorly conditioned matrix is in error as is the computed

condition number; however, since the principle application of the condition number is qualitative in nature, this

does not usually cause a problem. As the reciprocal of the condition number approaches the floating point

resolution of computer (l0xlO 3 for ICECAP), numerical error becomes increasingly dominant!

Several norm definitions exist for matrices, all of which may be used to compute an approximate

condition number. The most accurate is the 2 norm IIAI2. This norm is related directly to the eigenvalues of the

matrix and is the minimum norm. (Chapra, 1988) Furthermore, its calculation does not require the inverse of the

matrix and is therefore least error prone. It is, however, the most difficult to compute and requires singular

value decomposition (SVD). Other norms are the euclidian norm (sometimes called the Froebinius Norm), the

maximum-magnitude norm, the column-sum norm and the row-sum norm. Chapra demonstrates the use of the

row-sum norm to calculate a condition number and predicting error bounds for a 3x3 Hilbert matrix using the

basic premise that computational error is directly proportional to the condition number (Rabinowitz, 1978).

If d is the number of significant digits allowed by a given floating point format and n is the condition

number then the maximum predicted computational error is given by: (Chapra, 1988)

e = 10c("Wi-4 Eq. 2-3

Condition number calculation was never a feature in any version of ICECAP-PC to date. It is to be

included as an integral feature of ICECAP-PC Release 10, the object oriented version.
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Matrix Inversion

Matrix inversion is a fundamental process in linear algebra and all engineering disciplines. The solution

of AX-B depends on the inversion of matrix A. There are several inversion algorithms to choose from

including direct formula application, Gauss-Jordan Elimination in several variants, Singular Value

Decomposition, and perhaps the most popular, LU Decomposition. We now consider some of these.

Previous versions of ICECAP-PC used the direct application of the following formula:

A = 4(A) 
Eq. 2-4

IA I

While this yields satisfactory results for small order systems, it is inaccurate for poorly conditioned systems and

quite slow for larger matrices.

Gauss-Jordan Elimination

Gauss-Jordan Elimination is a good, basic, and stable method of matrix inversion. Most textbooks

dismiss Gauss-Jordan in favor of LU decomposition; however, this may soon change as Gauss-Jordan is ideal for

vector operations in parallel processing. Furthermore, variants of Gauss-Jordan processes allow the computation

of pseudo-inverses for matrices of less than full rank. (Jones, 1991) If this isn't enough, other extensions

provide polynomial curve fitting solutions for over-detcrmined data sets much more quickly than the common

least-squares methods!

Gauss-Jordan uses elementary row and column operations to convert the matrix into upper triangular

form. The result of Gauss-Jordan Elimination is the following form:

A l l A 12 A 13 A 14 49 11 a 12 C 1 C9 1

A21 A= An An m 0 21 23 Eq. 2-5
A31 As• An A•t 0 0 on am

A41 An A4 A44  0 0 0 £44
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As a review, the elementary operations are:

* Any two rows/columns may be interchanged.

* Any row/column may be added or subtracted tolfrom another row/column.

* Any row/column may be multiplied by a non-zero real number.

Once in this form, several matrix properties are easily established including the rank, the eigenvalues (if

full rank), the determinant, and the inverse. There are several variants of Gauss/Gauss-Jordan Elimination

exhibiting differing degrees of sophistication.

"Elementary Gaussian Elimination" uses only the second operation. While simple, tP ,,od is also

unstable as small values on the main diagonal allow the growth of error in following operatico.s. HavLig large

values on the upper tiers of the main diagonal and smaller values on the lower tiers is a desira, c trait not

implemented in Elementary Gaussian Elimination.

A process commonly known as "pivoting", implemented in Gauss-Jordan Elimination, removes the

above instability by using the first operation, row/column swapping, to increase upper diagonal element values

whose computations occur early in the process. There are two pivoting schemes for Gauss-Jordan Elimination.

Partial Pivoting allows the interchange of rows. Full Pivoting allows the interchange of both rows and columns.

Full Pivoting is generally regarded as only slightly better than partial pivoting and most authors consider the

extra book keeping more trouble than it's worth. Scaling is another option often implemented under Gauss-

Jordan Elimination. Scaling uses the third operation, multiplication of a row or column by a real number, to

normalize rows of the operand matrix.

Matrix inverses can be calculated one of two ways using Gauss-Jordan Elimination. First, if the original

square non-singular matrix is augmented on the right with an identity matrix of equal dimension, it is possible to

perform row operations until the original matrix is an identity and the right augment contains the inverse.

Second, if the original matrix A (square and non-singular) is converted to upper triangular form and matrix B is

defined as an identity matrix of equal dimension as A, the equation AX-B is solved using backwards

substitution. With this scheme, the lowest row, which contains only a single element and one unknown, is
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solved first. This solution is used to solve the second lowest row which contains two elements and two

unknowns. The process continues until all rows are solved and the inverse calculated.

An Interesting Variant

An interesting variant of Gauss-Jordan elimination is one that places identity augment matrices to the

right and below the operand matrix prior to row and column operations. The form of such operation is:

A- I I _ I I Eq. 2-6

A` = ST

Riw operations on matrix A and its right identity augment result in matrix T. Column operations on

matrix A and its lower augment result in matrix S. The multiplications of matrices S and T produces Aý'. The

advantage of this method is its ability to find the pseudo-inverse of A to solve AX-B for A less than full rank.

This capability is not present in any current CAD package and contradicts the classical notion that a solution for

AX-B only exists for a non-singular A. In the case of a singular A, the equations above take the following

form:

1, 01 T

A-I1 0 "Eq. 2-7

S N1 0

A'-ST N.LSand M.LT

The above equations indicate that if M is orthogonal to T and N is orthogonal to S. then a solution to

AX-B exists. If orthogonallity is not present at the outset, it can often be realized by the use of the Graham-

Schmidt orthogonalization process. As an added benefit, the rank of the original matrix A is equal to the

dimension of the resulting I, matrix.
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LU Decomposition

LU Decomposition is a very good alternative to the above process because it is at once fast, accurate,

and stable. LU Decomposition is a simple factorization scheme that factors a matrix into the products of a lower

and upper triangular matrices. It is the method of choice of most commercial PC computer math programs

because it is three times faster than Gauss-Jordan Elimination. The result of LU decomposition has the

following form:

Al A1  A1 3 A14 1 0 0 0 P 11 P12 P 13 P14

A1 A22 23A4 •921 1 0 0 0 P21 P31 P41  Eq. 2-8
A31 A32 A33 A34  U31 &32 1 0 0 OP 33 P34

AM A,32 A43 A,4 a4 , c4 643 1 0 0 0 P44

A straight forward and refined LU decomposition routine appears in Numerical Recipes by Cambridge

University Press. (Press, 1989) This routine uses Crout's algorithm to solve for the individual a's and O's.

Crout's algorithm solves for these elements in the following manner:

For j - 2..N

For i = 1.j
5-1

a# - - sit sPi
k-l Eq. 2-9

For I = J+1..N

1-1

Finding the inverse of the A matrix, as with Gauss-Jordan, involves back substitution.

Singular Value Decomposition

Singular Value Decomposition (SVD) is another factoring technique that transforms a matrix into the

product of three matrices of the following form:

A,. - U.u -W ,) • V Eq. 2-10

11-27



U is a nxn matrix, Wd is a diagonal matrix, and V is a nxn orthogonal matrix.

SVD is ideally suited for nearly singular matrices. (Press, 1989) A by product of SVD is the 2-norm

condition number which is easily derived from the Wd matrix. It is simply the ratio of the largest number

divided by the smallest number along the main Wd diagonal. A divide by zero, indicating an infinite condition

number, occurs if the matrix is singular. The inverse of a matrix using SVD is calculated as follows:

A- - V- ( al(1W) - Ur

The Determinant

Determinants are easily calculated using both Gauss-Jordan Elimination and LU Decomposition. In the

case of Gauss-Jordan Elimination, the determinant is simply the product of all elements along the main diagonal

of the upper triangular result. For LU Decomposition, it is the product of the determinants of both matrices;

however, since the diagonal elements of the lower triangular matrix are all one, the determinant of the lower

triangular matrix is equal to one. The overall determinant is thus the product of main diagonal elements of the

upper triangular matrix.

Another approach to solve for the determinant is to use Cramer's rule and solve for the determinants of

all of the minor matrices. This; however, is a slow and inefficient process, especially for large order matrices.

Eigenvalues

The eigenvalue problem is a difficult one, especially in the study of numerical math. Consequently,

most texts on the subject spend considerable time discussing very simple special cases such as real symmetric

matrices. Unfortunately, such cases are of little value to the control systems engineer whose task is control real

world, unsymmetrical devices. A control systems CAD package, like ICECAP-PC, requires a general solution

for the eigenvalues of an arbitrary non-symmetric complex matrix. Two techniques seem to offer the most

promise.
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The first technique is an iterative solution. We simply find the coefficients of the characteristic equation

for an arbitrary square matrix. We then find the roots of this equation using standard root finding techniques.

This is what previous versions of ICECAP-PC did.

The authors of Numerical Recipes, Cambridge University Press, state "Root searching in the

characteristic equation...is usually a very poor computational method for finding eigenvalues". (Press, 1989)

However, no other referenced source makes any verification, explicit or implicit, of this statement. Furthermore,

root finding packages for low order polynomials (less than 20) are quite good. With closed form solutions for

the characteristic equation, it is reasonable to expect accurate solutions using this technique. Therefore it remains

a viable option.

The second technique is to transform the operand matrix into Hessenberg Form and then compute the

eigenvalues using the QR Shift algorithm. This method is defined in several sources for arbitrary real non-

symmetric matrices; however, precious little is said about complex matrices.

An Upper Hessenberg matrix has the following form:

A11 A2 A13 A4 Al

A21 An2 Am3 Am 4A25

A = 0 A32 A33 Am4, A35 Eq. 2-12

o o A43 A44 A4
0 o 0 A54 Ass

It is upper triangular with the addition of a single sub-diagonal element set.

An arbitrary non-symmetric matrix A may be have eigenvalues that are extremely sensitive to changes

in element values. In such cases, small roundoff errors can cause large changes in the calculated eigenvalues.

Therefore, the first task in dealing with a general matrix is to prepare it for Hessenberg conversion by de-

sensitizing or balancing it. Balancing makes use of similarity transformations to make corresponding rows and

columns have similar norms while maintaining the original eigenvalues. Numerical Recipes lists subroutine

Banalc that uses diagonal matrices whose elements are multiples of 2 to balance an input matrix (Recipes, 366).
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While balancing is not a mandatory task in the process, it yields greater accuracy and stability and is therefore

considered an integral part of the eigenvalue process.

The second task in the process is the transformation of the balanced matrix A, into an Upper

Hessenberg form Ah as shown previously. There are two methods of doing this. The first method, Gaussian

Elimination, is the quicker of the two and, as mentioned earlier, it is quite stable. The second method,

Householder Reduction, uses a sequence of orthogonal similarity transformations and is even more stable than

Gaussian Elimination. Furthermore, it is of special interest because it forms the basis of the third step in the

numerical eigenvalue problem: The QR Shift Algorithm.

The Householder Matrix is a symmetric orthogonal matrix of the following form:

H 1 2 VVr

V=X +CZ
Eq. 2-13

X 2 A31 .. A,10 .. II

Z= 1000 ... IT

The Householder Matrix H is completely determined by the first column of the operand matrix Ab and

is of order one less than Av. The X vector is the second through nth elements of the first column of A. Z is a

vector of the same dimension as X with a I in the first position and zeros otherwise.

Householder transformation requires n operations for a mattix A of order n. For any k such that 1 < k

< n; A+,, - Uk' Ak Uk. The end result of this transformation is an Upper Hessenberg Matrix if the original

matrix A is non-symmetric and a tridiagonal matrix if the original matrix A is symmetric. Each successive

uranormation matrix Uk is formed as follows:
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1 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 Eq. 2-14U, - 0 H, U2" oo •- oo 0 H2 Uo

0 00 000H 3

The third and final task is to calculate the eigenvalues using a QR Shift algorithm. QR Shift is defined

by the following:

Q = H-1
R = H -A Eq. 2-15
A,., - R • Q = H -A • H-H

QR Shift is an iterative technique that places real eigenvalues along the main diagonal of the resultant matrix.

These eigenvalues are easily identified when the element just below the main diagonal approaches zero as the

diagonal element approaches the true eigenvalue. To test the validity of the approach, we developed a Matlab

macro file to perform QR Shift and display the result. An input matrix and resultant are shown below:

InMat -

1 1 -2
-1 2 1

0 1 -1

% This matrix has real eigenvalues at -1, 1, 2
% After just 10 Iterations the resulting matrix is

Result -

2.0517 1.2821 0.5691
-0.0442 -1.1936 2.2495
-0.0251 -0.1770 1.1420

% Note that the subdiagonal elements are approaching zero while the diagonal elements
are approaching the true eigenvalues.

Listing 2-5: QR Shift Algorithm Test

The element that is closest to an eigenvalue is element[l,1]. Its subdiagonal element[2,1] is also converging to

zero the fastest. Depending on the structure of the program, either the [1,1] element or the [nn] element will

converge rirst. When its sub-diagonal element shrinks below the floating point resolution of the machine, the

eigenvalue should be extracted and the matrix deflated to dimension n-1. Iteration continues on the deflated

matrix.
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Little is said in literature about the application of QR Shift to the general complex valued matrix. After

a great deal of experimentation, we found that complex conjugate eigenvalues appear in 2x2 blocks matrices

along the main diagonal rather than along the main diagonal itself! With this discovery, we were able to

successfully apply the QR Shift algorithm to the general complex-valued matrix.

Concluding Remarks on Numerical Methods

The meat of any CACSD program is its mathematical foundation. Without a solid math engine, one

cannot hope to design a good engineering program. The mistake made by many engineers is programming

numerical routines to match formulas taught in school. This often leads to excess error. This review covers

some alternative algorithms used in modem control systems analysis. The condition number calculation yields a

measure of expected error in future calculations and should be used as a stop light by the engineer. Several

good algorithms exist for the inversion of matrices including Gauss-Jordan Elimination, LU Decomposition,

Singular Value Decomposition, etc. We found LU decomposition to be a very useful and flexible algorithm

providing answer to the determinant problem as well as matrix inversion and the solution to the equation AX-B.

The eigenvalue problem, also basic to modem control systems, can be solved by either finding the roots of the

characteristic equation of a matrix or by the use of QR Shift. Through this investigation, we found a way to find

eigenvalues for the general complex valued matrix that is both accurate and stable.
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2.4 Literature Review of the Quantitative Feedback Theory

Consider designing a practical linear time invariant feedback controller for a plant model with

uncertainty in parameter and disturbance. Due to Plant Uncertainty, there is a set {P} of plants. Consider, for

example, a second-order plant model with the following variations:

DI D2

Fig. 2-1: MISO QFT System Model

k

As 2 + BS + C

A [1-41 Eq. 2-16
B- [2-MJ
C - [10-20]
k - [50-4]

The set {P} of plants consist of all possible combinations of plant variations which could be a very

large number of specific plants. The QFT method, developed by Dr Isaac Horowitz, quantitatively defines the

problem in the form of (1) sets {T3 } of acceptable command or tracking input/output relations and (2) sets {TD)

of acceptable disturbance input/output relations and (3) a set of {P) of possible plants. The design objective is

to guarantee that the control ratio, TR - Y/R, is a member of (T 3) for all P in {P}. Although this technique can

be used for a variety of system structures, this package only emphasizes structured uncertainty including

non-minimum phase models.

The QFF design (QFD) approach is a frequency domain technique that provides robust performance

despite plant uncertainties and disturbances. The general model has three inputs: a tracking input R(s), a plant

disturbwe D, and a measurement disturbance D2 as shown in Fig. 1-31. ICECAP-PC currently handles only
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the case of plant disturbance Dl. P is the symbol for the plant, G is the compensator to be designed and F is a

pre-filter that also requires design. L - GP is defined as the loop transmission (open-loop transfer function). If

t"Ay G as a design parameter is available, it called a single degree of freedom control loop. If F is added, two

degrees of freedom are available. Thus, the QFT method is a two degree of freedom design.

This approach has sufficient generality for modelling a variety of systems. The closed-loop transfer

function for a tracking input is by definition

FGP FL
)"1 +GP I + L Eq. 2-17

L = PG is Loop Thansnission

Specifications

To design a controller, various closed-loop performance bounds are specified which must be satisfied for

all plant variations. The various specifications are generally in terms of the frequency response of the following

tracking and disturbance response transfer functions.

Tracking Specification:

The closed loop tracking transfer function for plant Pj is given by

FGPj

1jI+ GPJ

- 6 JP} Eq. 2-18

where all Tj responses (one for each plant) must lie between the Bu and BL specifications and where the

maximum tracking error is defined as (D'Azzo, pg 429, 692)

axe) = DO(W) - BL(o) Eq. 2-19

There are two methods of deriving 8,. In the fiurt method, the time domain tracking specifications (lP-

max, M,-min, T,-max, T,-min, etc) lead to two transfer functions, T,, and T,, which describe the upper and lower
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bounds permitted in both time and frequency domains. 8, is then defined as the difference between the

frequency responses 5, - Bu(w) - BL(w) - Tru(w) - Trl(w). In the second method, BL(w) and Bu(w) are input

directly ia the frequency domain as a set of data points.

Successful QFT design is enhanced if 8R(w) monotonically increases with frequency. Using the

augmented model (D'Azzo, 693), this is accomplished for high frequencies by adding a zero to Tru and a pole to

Til at wh.

If the MISO tracking relationships are part of a larger MIMO problem, the tracking bounds B. and B,

must be constricted to account for the tracking responses of other plant element modeled as disturbance inputs to

the MISO loop. Currently, this is done manually off line and is not addressed in ICECAP-PC.

Stability Specifications (Phase Margin, Gain Margin)

The constraint on the distance from the -l+jO point is given by (Yaniv,-2; D'Azzo, 309)

II + GPjI a x Eq. 2-20

where x < 1 is a chosen parameter. A larger x for a given frequency results in a smaller steady state sinusoidal

error. Another parameter, chosen to reduce the ocsillatory nature of the design, is given by (D'Azzo, 312).

1 Ga' 14 Y Eq. 2-21
1 + GPj

For an equivalent second order system, larger values of y result in smaller values of zeta.

These equations relate to the desired gain margin, phase margin, peak overshoot and M, contour (nichols

plot) as given by the following.

1

1-x Eq. 2-22

"Y - 180" - 2o-'(2)

Given a set (P) of all possible plants, the stability specifications describe the region in the frequency

domain that none of the plants P in (P) should violate. In the QFT design technique, the set of (P) plants form

a frequency domain template, or a region of possible responses over the parameter variation range. All plants P
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in {P) must remain outside the stability margins in the QFT design. Phase margin (T), gain margin (gin) and

peak overshoot (Mp) are all mathematically related and each can be derived from the other for a second order or

equivalent second order system as folows:

gn - -2oLtWg 1 Mi, Eq. 2-23
Mp

M, =20Logi, 10 Eq. 2-24

1 +10 20

LA1OM, -0

Mp=e 20 10 Eq. 2-25

20

S10o m- 1 _10 - ML Eq. 2-26

Disturbance Specification

The disturbance transfer functions for the two disturbance inputs of figure 1 are given by the relations

of Eq. 2-27 and Eq. 2-28 (D'Azzo, 446). MD(w) is the upper disturbance bound detined in the specifications.

Recent QFT designers have begun to define MD(w) as a constant (Le -20db) rather than a transfer function.

Using a constant allows for both easier and more conservative design.

Plm ant D wuwxa D,

- 1 VP't PIP Eq. 2-27

-ý 1,- 3 6
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Measuremem Disturbance D2

T VPJ E {P} Eq. 2-28S l+.L,

1Tfi" < I Mo( ' J

The Design Process

As mentioned above, the objective of the QFT technique is to find a G & F to guarantee that the

closed-loop response is within prescribed limits of the various bounds despite plant uncertainty and disturbance

inputs as represented in the set notation. The ICECAP-PC QFT package closely follows the design procedure

specified by Dr Horowitz and Dr Houpis (D'Azzo, pg728). This procedure is summarized as follows:

1. Synthesize upper and lower tracking response transfer functions T. and Ti to meet

minimum and maximum specifications.

2. Synthesize T., the upper disturbance response transfer function.

3. Define a set of plants {P,) from all possible {P} such that the frequency response of the set

{Fý) defines the perimeter of all possible frequency responses of {P).

4. Select a representative nominal plant P, from the set {Pj). Normally, the best selection is

the lower-left plant as seen on a nichols chart template.

5. Determine the disturbance bounds BD(w) on the loop transmission Lo(w).

6. Determine the tracking bound B3(w).

7. Define the composite bounds as the most restrictive combination of the bounds determined

in steps 6 and 7.

8. Design the loop transmission L4(w) for the nominal plant Po(w) to meet, as closely as

possible, the composite bounds determined in step 7.

9. Synthesize the prefilter F(w).

10. Simulate system behavior to verify correct design.
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The MIMO QFT Theory

The QFT MIMO synthesis problem requires conversion into a number of MISO single-loop feedback

problems in which parameter uncertainly, external disturbances, and performance tolerances are derived from the

original MIMO problem. The combined solutions to these MISO single-loop problems achieve the desired

performance for the MIMO plant. The basic approach is a point-wise frequency domain MISO synthesis

technique. A 3x3 MIMO feedback structure is shown in Fig. 2-2.

Fig. 2-2: Three by three MIMO QFT Model

Plant models for figure 2 are developed in one of two formats: differential equation form and state

space form. The general state-space model is manipulated as follows:

The state-space model representation for a LTI MIMO system is given by

X'(t) •() + BU(t) Eq. 2-29

Y(t) - CX()

where X is an m vector, Y is an n vector and U is an r vector. A,B, and C are constant matrices of the proper

dimension.
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The plant transfer-function matrix P(s) is defined in state space form as

P(s) - C[sl - A] - B Eq. 2-30

When the system is defined in differential equation form, we start with the following relations:

al(s)yl(s) + b,(s)y2(s) + cA(s)y,(s) = ,AuA(s) + eCU2(s) ' fIu3(s)
a2(s)y1(S) + b2(s)y2($) + c2(i)y 3(S) = d2u1(S) + AC(s) + (S)Eq. 2-31
e3(s)y1(s) + b3(s)y,(s) * c3(s)y3(s) - d3u1(s) + eA(s) + Au3(s)

This set of differential equations can be represented in matrix notation as

a2(s) b,(s) c2(s) Y(s) - d2 e2 A U(s) Eq. 2-32

a3(s) b,(s) c3(s) d3 e A

which yields the following:

M(s) F(s) - NU(s)
Y(s) = M-'NU(s) Eq. 2-33
A(s) - P(s)U(s)
P(s) - M"N

This plant transfer function matrix P(s) - [p,(s)] is a member of the set P = {P(s)} of possible plant

matrices which are functions of the uncertain plant parameters. If the equivalent plant matrix P resulting from

the three matrices is not square, a weighing matrix W can be used to form an effective square plant.

In CACSD practice, one of three explicit methods can be used to define the region of plant uncertainty.

The first is based upon the physical modeling of various plants representing the variety of possible plants. The

second includes the selection of only a finite set of P matrices, representing the extreme boundaries of plant

pole/zero uncertainty. The third considers the variations in plant coefficients by considering a preselected

number of plants to represent the maximum variations. A convex hull is then closed around these plants to

derive the minimum number of plant models to represent the variation.

An mxm MIMO closed-loop system can be represented by three mxm transfer function matrices, F, G,

and P. There are m2 closed-loop system transfer functions tu(s) (transmissions) contained within its system
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transmission matrix or system tracking matrix. TR(S) = (tj(s)}, relates the outputs y1(s) to the inputs r,(s), that is,

Yi(s) - t,(s)r,(s). In a quantitative problem statemznt there dre tolerance bounds on each %(s), giving a set of m2

acceptable regions T4(s) which are to be specified in the design, thus t%(s) E T,(s) and T(s) = -Ti(-)}. These

regions may also be directly given in the frequency domain.

The following system equations define the input/output relation of Fig. 2-2:

Y = Pu
u= GE Eq. 2-34
E - FR-Y

In these equations G(s) is the matrix of compensator transfer functions and is often simplified so that it

is diagonal. F(s) is the matrix of refilter transfer functions which may also be a diagonal matrix. The

combination of these equations yields a 2 degree-of-freedom feedback structure

Y = [I + PG]-1 PGFr Eq. 2-35

where the system tracking control ratio relating r to y is

TR = [I + PGJ]-PGF Eq. 2-36

The disturbance model is given as

Ta [I + PG]'P={d* Eq. 2-37

The MIMO design objective is to determine a F and G for all plants in (P} such that

(1) the closed-loop control ratio is stable and

(2) the norm of t,(w) is bounded: aj(w) _< t,(w) < b,(w) for w < w.

(3) the disturbance, Eq. 2-37, is bounded (disturbance rejection).

A linear mapping from a MIMO system structure results in m2 MISO equivalent systems, each with two

inputs and one output. One input is designated as a "desired" tracking input and the other as a disturbance input.

To develop this mapping consider the inverse of the plant matrix represented by
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P*11 P* 12 " P'I.

p-1 = P*21 P-22  P,2 . Eq. 2-38
I i i i

P*.I P-. 2 " P',,=

The m2 effective plant transfer functions are formed by defining

q# I .1 Eq. 2-39

A Q matrix is defined as:

qI q2I - q P*11 P*12 -P 1.

p- q2  q22 - - = P 2 P ,2 P. Eq. 2-40
: I I i " I i

qw, q-. q• q-q P *.IP. 2  P

where P = [pij], p' = [p'ij] = [q1/%], and Q = [Q• - [1/pij].

the matrix V" is partitioned to form

p-1J= [= A + B Eq. 2-41
qq

where A - (k.) is the diagonal part and B - (bu) is the off-diagonal component of P'. Thus, X = lI/q - pu, bij

- -Iq• - po for i • j. Pre-multiplying Eq. 2-36 by P"[I+PG] yields

P-1[t + PF il' - P-1[t + PG][I + PG]-'PGF Eq. 2-42
[p- 1 + GI TA - GF

If we let P' - A + B, where A contains the diagonal terms and B contains the off diagonal terms, Eq.

2-42 becomes

[A+B + G]TA - GF

[A + G]TR - GF - BT Eq. 2-43
TI - [A + G]-J[GF - B51
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Each of the m2 matrix elements on the right side of Eq. 2-43 can be interpreted as a MISO problem. A

fixed point mapping based on Schauder's fixed point theorem (D'Azzo, pg 699) is defined by Y(T.) as:

Y(TA) = [A + G'I'[GF - BT] Eq. 2-44

where G = (gij} is assumed to be diagonal and each member of TR is from the acceptable set fTR }. If this

mapping has a fixed point, i.e., T. e (TR} such that Y(TR) = (JR), then this TR is a solution of Eq. 2-43.

The control ratios for the desired tracking of the inputs by the corresponding outputs for each feedback

loop of Eq. 2-44 have the form

y,, = w,,(v, + do = y,, + YEq. 2-45

where

Wi -I + g•qj Eq. 2-46

V# =Safi

The interaction between the loops has the form

qt

and appears as a "disturbance" input in each of the feedback loops.

There are many other aspects and intricate implementation details not covered here because they are

beyond the scope of this discussion. The interested reader is referred to other excellent sources for these

discussions (Houpis, 1987).

Concluding Remarks on Quantitative Feedback Theory

This review discussed the mathematical foundation of the Quantitative Feedback Theory by first

discussing the MISO problem and then briefly developing the MIMO problem. The MISO technique yields a

controller that is capable of compensating a single output system with bounded parameter variation. The MIMO
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technique is then a natural extension of the MISO technique in that a system is decomposed into a set of

equivalent MISO loops and design proceeds element by element in the MISO fashion.

2.5 Summary

In this chapter, we developed a general basis of knowledge in three critical areas. First, we discussed

the general concepts of object-oriented programming including the analysis, design, and implementation of

object-oriented program structures. We discussed object-oriented terminology, talked about Borland's Turbo

Vision object oriented fourth generation language, and discussed the advantages and disadvantages of object-

orientation. We found that from the standpoint of software engineering goals, reusability, extendibility, etc,

object-orientation is far superior to any other known construct. However, it does present a steep learning curve

as it requires both a different logic structure and a different implementation structure presenting the new

programmer unknowns in both the problem space and implementation space of a computer program.

The second general area of discussion was numerical methodology. We discovered the importance of

careful numerical algorithm design and how carelessness can easily lead to numerical inaccuracy. Additionally,

we researched several alternatives to problems common to CACSD programs such as determinants, matrix

inverses, and the eigenvalue problem. In each case, we seek the best algorithm for the most general problem.

Finally, we developed the general mathematical background for the Quantitative Feedback Theory. This

development provides a roadmap for future implementation of QFT toolboxes (a complete discussion on the

toolbox concept is given in chapter 4).

The general knowledge attained from the research outlined in this chapter forms the basis for the

specifications given in chapter 4 and for the actual implementation of ICECAP-PC as given in chapter 5. Our

next task is to develop the specifications for ICECAP-PC.
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3 Requirements and Specifications

3.1 Introduction

This chapter defines specific requirements of the ICECAP-PC program. First, we consider general

traits such as accessibility, portability, etc. While many of these traits seem obvious, they do bear on our final

platform selection and program structure. Second, we describe the human interface. Third, we develop a list of

desired mathematical capabilities that define the basic math engine of ICECAP-PC.

We do not develop an OOA model as described in chapter 2. While a complete OOA model would

certainly be expected in large government software contracts, experience tells us that future ICECAP-PC

programmers are unlikely to use it. We found little use for previous functional models. It would, therefore, be

an unneeded expense of valuable time. Instead, a basic object model of ICECAP-PC is given within chapter 4,

Design and Implementation, to aid in the discussion of the actual ICECAP-PC structure. In this way, we can

highlight the critical areas of the program design in an effective manner.

3.2 General Traits

Accessibility:

ICECAP-PC should be readily available to the widest audience possible. Ideally, ICECAP should be

available to every controls engineering student across the country. The best way of achieving this is to write the

program for the MS-DOS compatible platforms as this is by far the most popular computer platform available.

Additionally, the ICECAP-PC program should be a ".exe" file, rather than a macro of some other mathematical

program. In order to make the program accessible, we also need to provide it with as minimal cost. As

ICECAP-PC is a public domain program, we provide it free of charge to any interested party.

Accuracy

As discussed in chapter 2, Numerical accuracy is fundamental in any CACSD program. We want to

provide the best possible numerical support for control engineering calculations. This has several implications.

First, we must insure that we are using state of the art numerical techniques. Every major algorithm must

undergo through review to ensure this. Second, as a program that specifically addresses control systems
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engineering we can make certain assumptions. For instance, we can assume that a realizable transfer function

will have real coefficients in both numerator and denominator. This directly bears on our root finder as we can

implement a faster and more accurate algorithm by assuming exact conjugates for complex pairs. Third, this

impacts the range of expected values. Very few control systems, and certainly no educational systems, have

transfer functions with coefficients less than 1 x 10- or greater than 1 x 10s. Thus the range of numbers

where we desire best accuracy is quite achievable and reasonably defined. Fourth, the accuracy requirement

encourages the use of the highest precision floating point number available, the IEEE Std 754 80 bit extended

number for all calculations as discussed in chapter 2.

Graphics Presentation

Graphic representation of system response is basic to the study of control systems. ICECAP-PC has

always provided a rich set of graphic tools that are easy to use and understand. However, we desire

improvements in the graphics engine by (1) providing direct plots of graphic screens to printers, (2) providing

interactive graphics for educational purposes, and (3) providing multiple graphs. Interactive graphics allow the

user to modify a transfer function and watch the effect on a frequency or time response. Thus a user can see

directly the effect of added poles and zeros on a transfer function. This is especially important for the QFT

problem. Multiple graphics would allow the display of several graphs at once. For instance, the user should be

able to view both a time and frequency domain plot of a transfer function simultaneously. All of these would

greatly improve ICECAP-PC. However, we must emphasize that this is a relatively low priority in this project

being superseded by the structural redesign of the program itself

Reusability

ICECAP-PC is a two-way educational program. First it provides educational support for the control

systems student, the user. Second, it provides an educational experience for contributing authors who over the

years have developed the program. ICECAP-PC code should be structured in such a way as to provide support

to other engineering students in programming projects. For instance, the mathematical engine should be easily

ported to other programs in other disciplines. This is a matter of code design and placement.

Speed
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Finally, we desire ICECAP-PC to be very fast in interface and calculation. First, we seek a nimble

responsive interface that provides rapid command execution. This requires (1) concise interface code, (2) the

intelligent use of memory (a scarce resource in MS-DOS) and (3) an interface based on the fewest possible

keystrokes for command execution. Command line interfaces do not provide good execution speed and are often

quite frustrating. Menu based interfaces are often sluggish and present too much overhead. We need to combine

the best of both worlds providing rapid menus and single line data (matrix, polynomial, transfer function)

definitions. Second we seek rapid numerical solution wherever possible without risking accuracy.

Portability

ICECAP-PC need not be portable across different platforms because of the prevailing accessibility of

MS-DOS machines on which ICECAP was meant to run. However, ICECAP-PC should run independently and

not require the purchase of additional software or hardware other than a 80286 or better personal computer.

Because of the numerical sophistication required by ICECAP-PC algorithms, we made the arbitrary decision not

to support micro-processors lower than the 80286. Programs in an MS-DOS platform run faster if they are

compiled with 80286 code rather than 8088 code.

MS-DOS compatible computers come in a variety of configurations, and where possible we should

support advanced features such as expanded memory, math co-processors, high resolution graphics, etc. Many

high level languages specifically address these features as compiler options and our choice of platform includes

these considerations.

Intuitive Interface

In chapter 1, we stated that a major design goal was the development of a truly intuitive user interface.

We now state the general characteristics of this interface based on research conducted by Wayne Bell (Bell,

1992).

1. The interface should be based on a pull-down menu structure accessible via keyboard or

mouse for ease of use.

2. Keyboard commands should be executed with minimal keystrokes. The ideal number of

keystrokes for a given command execution is 1.
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3. The interface should be event-driven. An event driven interface is one that provides the

user maximum control rather than constraining user actions through a hierarchal menu structure.

4. The interface should be very fast and responsive. Command execution speed should be

limited only by the user.

5. The interface should display efficient use of memory and leave as much as possible for data

manipulation. This is of primary importance in a PC environment with limited memory.

6. Data entry for matrices, polynomials and transfer functions should be in a format common

to several commercial engineering programs such as MatLab and Matrixx thus providing a

smooth learning curve for new users. Direct entry of complex numbers should be allowed.

7. The interface should provide a log file capability so that work performed is saved to a

formatted ascii file that can be turned in as homework or examined by a practicing engineer.

8. Mathematical structures should appear in commonly accepted forms. Matrices should look

like matrices, polynomials should look like polynomials, etc.

9. Both scientific notation and fixed decimal numerical display should be available to provide

maximum control of numerical display to the user.

10. A pop-up context sensitive help facility should be provided and easily accessible.

11. All graphics data should be output to an ascii text file so that it can be imported to other

programs.

12. A user programmable macro language should be provided for educational purposes and

black box testing.

33 Human Interface Specification

The previous section lists a set of general goals for an intuitive interface. A set of specific

specifications are now given to meet these goals. Again the interface specification is the result of the study

conducted by Wayne Bell (Bell, 1992). They are defined as follows:

Menu System.
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The menu system should allow access to any command by two ways: (1) a hierarchical me.,u activated

by a mouse or by keyboard, (2) a toolbar icon activated by a mouse or by pressing a hot key on the keyboard.

The menu system should maintain the look and feel of Microsoft Windows. The menu should be a list of

command words displayed across the top line of the screen. The user selects the desired command by pointing

at the desired command word with the mouse pointer and pressing the mouse button. This produces a

"pop-down" menu that extends a new list of command words below the command just selected. If selected,

these commands should either produce the desired output or display a dialogue box prompting for further details

before producing the desired output. Under no circumstances will the menu levels exceed below the "pop-down"

menus (no layers of menus are allowed).

Commands that require a certain sequence in activation will not be available until the user completes the

prior commands. This should be conveyed to the user b~y displaying unavailable commands in a different color

in the menu listings and by making them insensitive to activation. Also these commands will appear in their

chronological order in the menu listing to assist the user in remembering.

The input of large collections of data should be represented in pictorial form whenever possible. One

example of this is a system build function where the user connects icons with input/output lines and then defines

what functions the icons represents. This system build function should be able to drive graphic displays allowing

the user easy interaction with the iterative design process.

On-Line Help.

Context sensitive help should be available down to the command and error message level. It should

allow activation either by a hot key or icon activation or by menu selection. Help will appear in a separate

window and always allow access to a list of keywords and topics. By selecting from these lists, the user should

be able to read all available help on every topic.

Data Display.

Multiple graphics windows should be allowed to be viewed and updated simultaneously. All command

executions should update all active windows and create new windows if appropriate. Menus and icons should be

accessible during graphics displays allowing a user to modify model parameters in one window and watch the
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effects on a display in another window. Different whidows should allow their data to be displayed in different

domains (time, frequency, etc.).

3.4 Mathematical Specification

The mathematical engine of ICECAP-PC will be based on complex arithmetic to provide maximum

numerical flexability. We decided on this format based on the requirements of state space analysis. While

realizable control systems are always represented by real valued plant matrices, a designer will often have the

system representation based on an a complex diagonal plant matrix readily available. This infers two things.

First, this means that the entire data structure of the previous versions of ICECAP-PC must be redefined as they

are based on real numbers rather than complex numbers. Second, this means that we must allow for the direct

entry of complex numbers for polynomial and transfer function factors (but not their coefficients) and for

matrices. While this seems like-a lot of labor, the effort produces a highly adaptive mathematical structure.

ICECAP-PC will perform the following operations:

Matrix operations Transfer Function Operations
Addition " Addition
Adjoint Domain Conversion (s,z,w")
Controllability Matrix L^Hospitals Rule
Determinant Multiplication
Eigenvalues Partial Fraction Expansion
Eigenvectors (Modal Matrix) Subtraction
*lermite Normal Form Time Domain Response
Inverse Time Domain Equation
Linear Quadratic Regulator Transfer Function to State Space
Multiplication
Observability Matrix Time Domain Analysis
Rank • Figures of Merit
Resolvent Matrix Impulse Response
Scaler Multiplication Ramp Response
State Space to Transfer Function Root Locus
Subtraction Step Response
Transpose

Polynomial Operations Frequency Domain Analysis

* Addition Bode Plots, Interactive
* Polynomial Curve Fitting Margins (gain and phase)
* Multiplication Nichols Charts, Interactive

S subtraction Polar Plots

Listing 3-1: Desired Mathematical Capabilities for ICECAP-PC
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3.5 Programming Standards

Programming standards are extremely important in any project involving groups. However, no previous

thesis developed a set of guidelines for program structure. Rather, the standards developed related to

decomposition and modeling methodology. We now present the following set of basic syntax rules to follow in

the development of ICECAP-PC. These rules are arbitrary and stated for the sake of continuity.

Program Code

- Make indents with three spaces. Don't use tab characters in the source code.

- Make all main procedures visible in the interface section of their prospective units, listed in

alphabetical order. Don't declare any hidden procedures.

- List all units in the uses clause of the main program file whether or not the main program file calls the

unit directly. Experience shows that some compilers (Borland Turbo Pascal) cause intermittent mathematical

errors in units not listed in the uses clause.

- Compile the program with full boolean evaluation turned off. Some numerical procedures require this.

- Denote internal procedures (procedures of procedures) as follows:

PROCEDURE ImAMainRoutine (Note- -Large Caps)

procedure ImAnInternalRoutine (Note--Small letters)
var

variables: variable
begin

Internal Routine Code
end;

begin
Main Routine Code

end;

Listing 3-2: Internal Procedure Format

Comments

- Dencte comments with ( and } to facilitate proper software maintenance.

- To temporarily comment out source code, place brackets placed on the left hand margin as shown in

listing 3-3.
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This is garbage code

Listing 3-3: Temporarily Commenting Out Code

- Comment out embedded debugging code as shown in listing 3-4.

Program Code Here

[Algorithm Test Code]

Debugging Code Here;
<-]

Program Code Here;

Listing 3-4: Embedded Debugging Code

From this listing, note that the debugging code is commented out with {-> and <-) placed at the left

hand margin. Also note that the debugging code is indented properly with the normal program code. Finally,

the debugging code is noted with a {Algorithm Test Code) header placed on the left hand margin. The

advantage to using this system is that debugging code is readily activated by completing the {->} and {<-}

symbols.

3.6 Sunmary

This chapter lays the foundation for the implementation of ICECAP-PC by giving a set of specifications

for the program. The specifications are first given in general form in section 3.2. Here we see a set of desired

characteristics for the ICECAP-PC program that are easily satisfied in an object-oriented format. Section 3.3

specifies the desired program interface. The interface itself is not specified because it is dependant on the choice

of platform given in chapter 4. However, the look, feel and behavior of the interface is clearly specified.

Section 3.4 lists a set of mathematical capabilities that must be included in ICECAP-PC. Section 3.5 gives a set

of guidelines for the structure of the code. These specifications now form the basis for the development of the

program itself.
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4 Design and Implementation

4.1 Introduction

This chapter describes the design (both high and low level), structure and implementation specifics of

ICECAP-PC Version 10. Sections 4-1 through 4-4 cover the high level design aspects in which selection of

platform, selection of data structure, development of the object model and the basic user interface are developed.

The rest of the chapter is organized in object-oriented logic. We discuss the overall design of each critical object

class; class by class. This allows us to thoroughly review the crucial aspects of important object classes such as

algorithm selection, and individual object model. We do not include the complete object model description

either in discussion or appendix. Such an inclusion would require extensive documentation that would likely sit

unused by future developers of ICECAP-PC. Rather, we rely on highly self documenting code and use critical

object models to highlight the important design decisions and characteristics of each important class.

As in any large programming project, we went through several design iterations, some minor and some

quite extensive such as the change from simple objects to object families and actors. As we progressed, our

concept of the finished program evolved from a very simple model to a more complex modular model required

to meet the speed and memory limitations of a PC. The end product is a fast, efficient and accurate program

with inherent expansion capability.

Consideration of Platforms:

Various languages offer considerable capability and were seriously considered. Since Ada is the only

legally recognized language by the DOD (Department of Defense), it was given serious consideration. However,

as this is an educational project for the authors we were not constrained to the use of Ada. Furthermore, Ada

does not support object orientation because of its lack of inheritance and is extremely memory consumptive. It

is impossible to implement a full featured engineering program on the PC using Ada. The second language

considered was Borland's C++. This is an excellent language that supports object-orientation with its own

version of Turbo Vision. Furthermore, C code tends to be memory conservative and C compilers support a large

number of memory models (small, medium, large, huge). However, the existing version of ICECAP is written in
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Pascal and the use of C++ would entail the complete re-writing of all procedures, a task to be avoided in this

initial object oriented rehosting.

Selection of Platform:

After careful consideration of available platforms, we decided to use Borland Turbo Pascal V 6.0 and its

fourth generation extension, Turbo Vision, as the development environment for the object-oriented version of

ICECAP-PC. This allows maximum compatibility with previous ICECAP versions. Additionally, it enforces

sound software practices and supports IEEE Std 754 extended precision numbers.

4.2 The ICECAP-PC Object Model

The development of the object model, discussed in chpater 2, is given with Rumbaugh's modeling

syntax (Rumbaugh, 1991), as shown in Figures 4-1 through 4-3. Using this definition, hollow triangles indicate

generalization (inheritance), triangles with ellipses underneath indicate generalization of objects not shown on the

macro-model, and direct lines indicate association. The connection between the desktop and Lhe object controller

shows the relationship between the two (the desktop owns the object controller). The line between the Transfer

Function (Abstract) and the TFBinary Ops classes shows inheritance (TF Binary Ops is a child of Transfer

Function). Abstract objects, those denoted by the (abstract) designator are superclass objects that are never

instantiated directly. Objects shown with an oval instead of a box are objects rather than object classes and are

shown as such because there is never multiple instances of these.

The First Model

Our first object model is shown in Figure 4-1. From this figure, we see that ICECAP-PC is

decomposed into a set of simple objects all of which are owned by the desktop directly. The matrix object is

responsible for all matrix operations (see listing 4-1), the polynomial object responsible for all polynomial

operations and so forth. Conceptually, this is a very nice model to work from. Ideally, each object could reside

in memory at all times and simply respond to the events generated by the desktop. Note the inheritance

structure for the matrix, polynomial and transfer function objects. They are all children of a common Library

parent sharing a common data structure as discussed later in section 4.3.
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Fig. 4-1: First Object Model of ICECAP-PC

The problem with this model is its memory requirements. Each major object is actually quite large.

Remember, the matrix object contains all data and methods to perform all operations we want could ever want to

do to a matrix. With several of these large object residing in memory concurrently, we simply ran out of

memory on a PC. Therefore, we had to institute some sort of instantiation control as shown in Figure 4-2.

Fig. 4-2: Second Object Model of ICECAP-PC

The Second Model

Under this structure, an object controller handles the instantiation and disposal of each object. Thus in

order to calculate the inverse of a matrix, the desktop would pass a message to the object controller telling it to
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take the inverse, the object controller would instantiate a matrix object into memory and send it a message telling

it to take the inverse, the matrix would take the inverse and display the result, and finally the object controller

would dispose of the matrix object. We found this structure to fit quite well within the memory constraints of a

PC. However, we also found it to be VERY VERY SLOW. The instantiation of a complete matrix object took up

to 20 seconds on a 12MH 80286 based personal computer. Calculation and display time were added to the

instantiation time of the matrix object. We therefore had to break the matrix, polynomial, and transfer function

objects into smaller groups, each of which could be instantiated and disposed of quickly. This, in addition to

problems with the data structure discussed later in section 4-3 led to the development of the final object model

shown in Figure 4-3.

The Final Model

As seen in this model, the desktop owns the status bottom, the toolbar, the menu bar, the view window,

and the object controller. The object controller is an invisible object that controls all operational objects.

Operational objects are those that perform specific calculations or CACSD capability for ICECAP-PC rather than

simple interfacing. As shown previously, the purpose of the object controller is to preserve maximum memory

by instantiating and disposing of all operational objects at the specific time they are required. With few

exceptions, only one operational object resides in memory at any given time and the one(s) that do are very

small.
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Fig. 4-3: ICECAP-PC Object Model
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There are three classes of operational objects, two classes of graphics objects, and two classes of

toolbox objects in ICECAP-PC. The operational object classes consist of entire families and their family tree is

partially displayed in Figure 4-3. The matrix family consists of all matrix operational object classes. The

polynomial family consists of all polynomial operational object classes. The transfer function family consists of

all transfer function operational object classes. Currently, there are two toolbox object classes that implement

MISO QFT and MIMO QFT. Future ICECAP-PC research will, no doubt, spawn more toolbox classes. The

differences between toolbox object classes and standard ICECAP-PC operational object classes is discussed later.

From the macro-object model of Figure 4-3, we see immediate demonstration of the logical difference

between object-oriented decomposition and functional decomposition. Note that each of the three main

operational families have a "Define" object. These are three distinct code modules complete with data and

method to perform the definition operation for their respective families. They each reside in their own Pascal

file and are completely self contained. External action is limited to their simple instantiation; a simple process

requiring two lines of code. They do the rest. Under functional decomposition this would not be the

methodology used. Rather, some case statement would parse the "Define" command to a hierarchical tree of

subroutines. A subsequent tree would parse the 'Matrix" option and so forth to produce the required interface.

Under previous versions of ICECAP, this tree was quite deep. One immediate benefit from object-oriented

decomposition is the savings of stack space. Previous versions of ICECAP-PC would often fail because of stack

overflow with a 64KB stack (the maximum allowed for a PC). The object-oriented version of ICECAP-PC runs

reliably with a 16KB stack because the decomposition is more direct and few subroutine calls are placed on it.

43 The ICECAP-PC Data Structure

Basic Data Types

At the outset of this thesis effort, we attempted to unify all data under a single data structure as shown

in Figures 4-1 and 4-2. Thus the data used by the matrix, polynomial and transfer function objects is

represented as shown if listing 4-1. As seen in this listing, a complex number is defined as a record of extended

and the basic data structure for matrices, polynomials, and transfer functions are thereupon builL
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Extended complex = record
realpart : extended;
inagpart : extended;

end;

Matrix = record
name : string; [Holds Matrix/Poly/TF Name)
complex : boolean; [Used For Poly, TF and Matrices)
num rows: integer; (Used For Matrices and TF Degree)
num-cols: integer; (Used For Matrix/Poly/TF Degree)
element : array[ I..max rows, 0..maxFcolsj of extendedcomplex;

end;

Listing 4-1: First Data Structure

The advantage to this approach is immediately apparent when using object orientations. All operations

common to matrices, polynomials and transfer functions can be defined for a parent object type and simply

inherited in its children. For example, the data input line for each of these can be declared as a method in a

parent. The matrix, polynomial and transfer function objects would inherit this method as children of a common

parent.

As development progressed, however, we found that several subtleties made continued use of a unified

data structure undesirable. First, the maximum dimension for a matrix is 12x12; an arbitrary choice based on

educational needs. However, we wanted the capability to operate on polynomials of 20th or larger order (also an

arbitrary choice). A 20th order polynomial takes 12.8KB of memory when represented as a 20x20 square matrix

internally. This is an undesirable waste of memory. Second, we desire to restrict polynomial definitions to real

numbers when given in coefficient form and complex conjugates when given in factored form. However such

restriction is unwanted for matrix definitions. Third, the polynomial record needs some field for the normalized

polynomial gain whereas no such field is needed for matrices. Because of these conflicts we decided to use

three different record types for matrices, polynomials and transfer functions as shown in listing 4-2. Under this

data structure, we retain a pascal record as the basic number element and define matricies, polynomials and

transfer functions with their own unique record set. Note that a transfer function is merely a record of two

polynomial records.
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ExtendedComplex - record
realpart : extended;
imagpart : extended;

end;

Root-Poly Type - array[ 1..maxDegree] of extendedcomplex;
Coeff-PolyType - array[ 1..maxDegree] of extended;

Matrix - record
name : string;
complex : boolean;
domain : char;
samp per . extended;
nusrows t integer;
num cola : integer;
element : array[ 1..maxrows,O..aax cola) of extendedcomplex;

end;

Polynomial = record
name : string;
gain : extended;
degree : integer;
factored : Root Poly_Type;
polyform : CoeffPolyType;

end;

TransFunc = record
name : string;
domain : char;
samp_per : extended;
nun : Polynomial;
den : Polynomial;

end;

Listing 4-2: Final Data Structure

ICECAP-PC has, by arbitrary decision, ten predefined matrices, ten predefined polynomials, and ten

predefined transfer functions. This doubles the amount of data from the previous versions and should more than

adequately address educational needs. Matrices are names "Matrix A, Matrix B, and so on. Polynomials are

named 'Tolynomial A"... and transfer functions are named "Transfer Function A"... and so forth. ICECAP-PC

does not allow for user named matrices polynomials and transfer functions. Such capability would complicate

the data retrieval and storage problem in a way that is beyond the scope of this work.

Since Turbo Pascal does not provide a predefined complex number data type, it was necessary to defme

a complex number as shown in the first record. Currently, max jows and max_cols is set at 12. Max_Degree is

set at 20. Therefore, the maximum matrix dimension is 12 and the maximum polynomial order of 19. These are

not hard, fast values and can easily be increased by changing a single global variable defining their dimension.

The complex boolean element in the matrix record is set true if any of the matrix elements contain an

imaginary value. This is done for two reasons. First, if a matrix is known to contain only real numbers, the

entire imaginary side of the matrix can be set equal to 0.0 to avoid round off error. Second, the display of real
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matrices, polynomials and transfer functions uses a sufficiently different algorithm to warrant the use of such a

flag.

We decided against linked lists in the matrix record for three reasons. First, it was desirable to maintain

enough compatibility with the current ICECAP-PC data structure to minimize the modifications to the numerical

algorithm library. Second, since the data structures are never permanently stored in memory, heap space never

runs critically short. Data variables (matrices, polynomials, and transfer functions) are only stored in memory

during execution of manipulative routines. They are stored on disk at all other times. Thus, for example, to add

two polynomials, ICECAP retrieves two polynomials from disk placing them in the heap, allocates heap space

for the result, performs the operation, displays the result, stores the result to disk, and disposes of all the

variables. Finally, operations on arrays are faster than operations on linked lists. Bearing in mind the limitations

of a PC, it was desired to process numerical operations as quickly as possible.

Global Variables

In an object oriented program structure, there should be few if any global variables. Thus we

intentionally minimized the number of such variables. Global variables in ICECAP-PC are located in the

globals.pas file. This file contains global TYPE declarations, such as those shown in Figure 2, a few global

graphics variables required by Turbo Pascal, and a set of message definitions as required by Turbo Vision.

Message definitions are integer constants used for message passing between objects. As they must be available

to all objects, they are inherently global. Such constants are named with either a br- or cm- preft such as

brhnsertViewerData which is a message passed to the viewer object telling it to accept data into the screen

buffer. Command constants, those with a cm- prefix, are generated from either the main menu or from push

button objects such as those displayed on the toolbar at the right of the screen. No other object generates

command constants and all command constants are directed to the desktop object. Upon receipt of a command

constant, such as cmPolyAdd, the desktop generates a broadcast message to the appropriate object. In this case

the message brPolyAdd is passed to the Polynomial object family. In addition to the above variable types, the

global variable file also contains some commons sense variables such as ComplexZero and ComplexOne which

represent O+j0 and l+jO respectively. Their inclusion as global variables prevents their repeated declaration in
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every math routine that may need them. In comparison to the size of the ICECAP-PC program, the global

variable file is indeed small.

4.4 The ICECAP-PC Interface

The ICECAP-PC interface, designed to meet the specifications of chapter 2 and based on the user

interface research conducted by Wayne.Bell (Bell, 1992), is shown in Figure 4-4.

File Graph Matrix State Polynomial Tr Function Toolbox Help
ICECAP-PC Ver 10

Matrix A

1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250
0.2000 0.1667 0.1429 0.1250 0.1111

Polynomial B

4 3 2 API
3.0000 ( s + 10.0000s + 35.0000s + 50.0000s + 24.0000 )

CLTF

(s + 3.0000 ± j4.0000)(s + 1.0000)(s + 2.0000)

(s + 7.0000 + j8.0000)(a + 5.0000)(s + 6.0000)

Fl Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 239000

Fig. 4-4: ICECAP-PC Interface

The Interface, per the specification of chapter 2, is event-driven, mouse supportive, and based on the top

row of drop down menus. The top menu, known as the Menu Bar, consists of nouns which produce menus of

verbs. There is no second, level structure, that is, all selections are available from the main menu. On-line

context sensitive help is available by either the F1 key or the right mouse button. All menus are accessed with

one keystroke that corresponds to the highlightid letter. Matrix operations are given in the Matrix menu, state

space operations in the State menu, polynomial operations in the Polynomial menu and transfer function

operations in the Tr Function menu. Additionally, file operations, i.e. shelling to dos, exiting, and starting the

log file are accessed in the File menu. Each menu selection is accessible from either a single key stroke or via

mouse selection. Pressing "5" or selecting "State" with the mouse produces the state space drop down menu.
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Quick command access is provided by the Toolbar. This is the vertical column of buttons located on

the right hand side of the screen. These are available with mouse selection only. If the user does not have a

mouse, they may disable the toolbar with the File-View Options selection. Each button on the toolbar generates

a command to ICECAP. Buttons have the following definitions:

* DM - Define Matrix DT - Define Transfer Function

* VM - View Matrix VT - View Transfer Function

* MM - Modify Matrix • MT - Modify Transfer Function

• DP - Define Polynomial VO - View Options

* VP - View Polynomial CL - Clear Screen

* MM - Modify Polynomial

The heap viewer, located directly underneath the toolbar, displays the amount of available memory.

Typically, 200-300 KB of memory is available for data during an ICECAP-PC session. This is about four to

five times as much as was available with ICECAP 9A, the last functionally written version!.

The bottom row is the Status Line. The status line provides reference and quick access to several

interface functions. Pressing F1 provides context sensitive help. F2 provides a pop-up calculator. F3 provides a

comment line dialog box for users to inter comment lines into the screen directly. F4 provides a dialog box to

defime the header that can be placed at the top of the screen. F5 toggles the log file on or off.

The center of the screen is the View Window. The window provides a horizontally and vertically bi-

directional scrolling screen 230 lines long and 256 characters wide. Text data and comments are displayed in the

View Window. In Figure 4-4, the following items are displayed: A 5x5 hilbert matrix in 4 point fixed decimal

notation; A polynomial is in coefficient form and the same numerical format; and a transfer function in factored

form. Several display formats are available, but not shown. Numbers may be displayed in fixed decimal

notation with 1-17 decimal places for in scientific notation with 1-17 decimal places. Polynomials and transfer

functions may be displayed in polynomial (coefficient) form, factored form or in root list form.
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While the interface itself is quite interesting, the important concept here is that everything displayed on

the screen is itself an object with a specific place in the overall structure of ICECAP-PC. The desktop is the

object that contains and owns all other objects displayed. The desktop itself is invisible because it is completely

covered up. The menu bar is an object that generates commands to the desktop. The menu selection Matrix-

View generates the cmMatrixView command (an internal command) to the desktop. The toolbar is a aggregate

collection of button objects, each of which also generate commands to the desktop. Pressing the VM button also

generates the cmMatrixView command to the desktop. The v~ew window is itself another object that provides

several intricate functions discussed later.

We have fully discussed the high level design of ICECAP-PC and are ready to discuss specifics. The

rest of this chapter will now deal with design specifics on a class by class basis. First, we will review the lines

of inheritence and the relationship between ICECAP-PC objects and Turbo Vision objects. We will then discuss

the three main operation object families, each consisting of a lineage of object classes.

4.5 The Application Family

Another view of the object model is provided in listing Figure 4-5. This listing is similar to that found

in the Borland Turbo Vision Guide (pg 66). This specifically shows the inheritance relationship between

ICECAP-PC object classes and the Borland Turbo Vision object class set. The Turbo Vision object classes

shown in Figure 4-5 are not depicted in Figure 4-2. Also note that class names correlate, but do not match

identically, between the object model of Figures 4-2 and 4-5. This is because Figure 4-2 is a macro level

concept model while listing 4-5 is an inheritance chart. Object names in the actual pascal code match those

found in Figure 4-5.
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Interface Object Classes

ICECAP-PC object types are all children of types in Tuibo Vision. Figure 4-5 shows the object class

hierarchy of ICECAP-PC. All ICECAP specific object types are denoted with an asterisk.

TObject

I
TView- -TGrou Program----Applicaton---TIce~aixtakoo

.n kow- -ig T~atBasic -T~atBinaryop- T~atlkdd
--- Tewindow* TMatMultiply

--- Scroller----TViewInterior 1 '_ TMatSubtract

---- Cluster-T--- TeckBoxes TMatSoloOp TlatCondition
-Tý adioButtonsz TMatDeteru

T!atEdit
--- TInputLine £T4atEigen

~enuView-r---TMenuBar-- 1  r- TMatNora

"---T~enu~oz' HIMOMenuBar
TMatUnaTyOp THatAdjoint

--- Tacro * I TMatCopy
-- TControl * I THatlnverse
--- TMMOQFT * T~ateodal

I--TceGraphics * TMatDef TxatTranspose
I-TMatScalar

TMatView

L TPolyBasic TPolyBinary j-- TPolyAdd
TPolyCopy L TpolyMultiply
TpolyDefine- TPolySubtract
TPolyModify
TPolySMult
TPolyView

FigBasic 4 - E -CTTTFBInary TaFAde
I-TTYCopy TTYNultiply
I-TTlDefine ETTFSubtract
I-TTFSKult

TT~toSS
ITTSolo -,-TF~ormCLTF

W-TFig~erit

tTlLflospital

Fig. 4-5: ICECAP-PC Class Hierarchy

TlceMain is the main program object class. TlceMain is a child of TApplication which is predefmed

under Turbo Vision. Under the Turbo Vision standard, every program has one TApplication descendant which

acts as a task scheduler. As such, TApplication descendants automatically own a TDesktop object that performs

these tasks. This desktop object is depicted at the top level of Figure 4-5. The main job of TlceMain is to

process events such as user keystrokes, mouse movement or messages from other objects. Additionally, it

processes background tasks updating the screen buffer and the heap viewer, during idle periods. By defining a

child of TApplication, we inherit the basic program structure of Turbo Vision and add event handling for
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ICECAP-PC objects, single stroke menus (not defined in Turbo Vision), and help access using the right mouse

button. Furthermore, we define the specific appearance of the screen and user interface shown in Figure 4-4.

lceMain is the instance of TIceMain and owns all other objects through instantiation.

Here, as done in chapter 2, we must carefully distinguish between inheritance and instantiation.

Inheritance defines the structure and capabilities of an object class while instantiation defines lines of ownership

and control of actual data. The two concepts are quite different. MatDiag is an object, a specific instance of

TMatDiag type (class) that is instantiated into IceMain. IceMain owns all other objects by similar instantiation.

Specifically, it owns the objects MenuBar (an instance of TMenuBar), MainWindow (an instance of

TViewWindow) along with several others.

MenuBar is a child object type (class) of TMenuBar which is defined under Turbo Vision. The Turbo

Vision TMenuBar object type defines an empty generic drop down menu with capability of command generation

and context sensitive help. By defining the MenuBar child of TMenuBar, we fill in the empty menu, specify a

command set and develop an ICECAP-PC specific help system. Extra menu bars are added with each toolbox.

For instance, the MIMO QFT Toolbox object contains a MIMOMenuBar definition for use in MIMO problems.

TViewInterior is the object class responsible for data display. The object model for this class is shown

in Figure 4-6. This important object type (class) owns three 1/O devices. First, it owns the view screen and is

the sole object in ICECAP-PC that is allowed to write to it. The view screen is the information display area of

Figure 4-4. The second I/O device owned by 7ViewInterior is the log file which is a text file named Logfile.txt.

When the user elects to have a log file copy of screen writes, TViewInterior sends all subsequent screen writes

to the log file. The third I/O device owned by 7ViewInterior is a header file. The header file is a record of the

student's name, the course and the professor's name stored on disk. When the user elects to turn the log file on,

they may place the header at the beginning of the log. Thus, the student is provided a completely formatted

report including a standardized header containing student name, course number, professor, etc.
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Fig. 4-6: The TViewlntexior Object Model

All information displayed on screen is stored in a string array variable named ViewerData. ViewerData

is an array of 230 lines each 256 characters long. Thus the screen display reflects only a small portion of the

entire ViewerData array. ICECAP-PC supports lboth horizontal and vertical (forwards and backwards) scrolling

over the entire ViewerData array. Thus up to 10 previous screens worth of information can be viewed simply by

scrolling it. Vertical scrolling takes place on a line by line basis and horizontal scrolling on a character by

character basis.

Information is stored to ViewerData and subsequently written to screen via a single global string

variable named ViewString. When another object needs to send information to the screen it does so one line at a

time by first formatting View.S -ing and then requesting a screen write from the ViewInterior object. Strings

stored in ViewString are copied to the ViewerData array upon receipt of an brInsert ViewerData message.
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Fig. 4-7: TView-nterior Dynamic Model (State Diagram)

Figure 4-7 shows this as a change of state from WAITING to STORE DATA TO BUFFER.

ViewString is then written to screen upon receipt of a brDrawUserInput message. It is a two step process.

Defining screen writes as a two step process greatly increases the speed of the operation. An object can send

several formatted text strings to ViewerData very quickly because the process doesn't involve the relatively slow

screen write process. Afterwards, it can write all the information to the screen in a single write operation by

sending the brDrawUserlnput message. The latter operation is shown in Figure 4-5 as a change of state from

WAITING to DRAW DATA TO SCREEN.

When the ViewerData array is nearly full, a call to the TViewlnterior.Purge service deletes the top 1/4

of the array and shifts the rest of the array upwards. Normally, this takes place during idle periods and is

invisible to the user. TiceMain has an idle time processor that performs background tasks and sends a

brCheckDatafuffer message to TViewinterior. The br suffix indicates a broadcast message and is actually an

integer constant. The purge operation, however, is not restricted to idle times. If a large amount of text is sent

to ViewerData and it gets within one line of being full, a purge operation is automatically triggered to prevent

overflow. The purge operation is depicted in Figure 4-7 as a transition from the WAITING state to the PURGE
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BUFFER state. Note that both the idle time event and the overflow prevention event are shown. In the came of

overflow prevention, the next states after a purge operation are the STORE DATA TO BUFFER state and the

WRITE BUFFER TO LOG state if the log is active. When all purge and store actions are complete,

TViewinterior returns to the waiting state.

ViewInterior is the only instance of 7Viewlnterior as prescribed. However, it is a simple task to include

multiple instances of TViewlnterior. This may prove desirable in future developments of ICECAP-PC as

different planes (s,zw and w') could be represented in unique windows and operations performed in a pseudo-

multi tasking environment.

The Object Controller Object Class

TControl is a child of MView whose purpose is to instantiate operational objects and insuie their proper

disposal when their function is complete. We were able to develop a uniform method of instantiation and

disposal with the discovery that under Turbo Vision, any child object can be instantiated as an instance of a

superclass object type. Thus in TControl, a temporary variable of type TView (TempView := PView) , is

instantiated as instances of children of TDialog (the reader may need to refer to listing 4-4). For example, to

instantiate a transfer function multiplication object, we declare 'TempView := New(PTFAdd, Init('Transfer

Function Addition, '+'));". TempView, being a child of TView, is a great-grandparent class of TTFAdd, yet the

specific instance is of type TTFAdd. The parameters passed in the Init procedure appear in the dialog box as

text and are necessary because T/FAdd is a child of TTFBinary which is parent to all transfer function binary

math operational objects. With this capability, all instantiations can take place inside a single case statement

located in the TControl.HandleEvent method. Inclusion of the controller object greatly simplifies the chain of

command for future programmers of ICECAP-PC.

4.6 Operational Object Classes

ICECAP operational objects include the TMatBasic family, the TPolyBasicfamilythe TTFBasic (transfer

function) family, the TFreq family, and the TTime family. MIMO QFT and MISO QFT are classified as toolbox

objects and are discussed later. Operational objects are those used under the main menu and perform basic

calculations needed by the control systems engineer. These operations are matrix operations, transfer function
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operations, polynomial operations, and time and frequency domain simulations. However, in general terms,

toolbox objects are those that define their own menu system replacing the default IceCap menu bar.

The Matrix Family

TMatBasic is a child of TDialog. TDialog is a pre-defined object type (class) under Turbo Vision that

supports pop-up window dialog boxes for user 1/0. Under the Turbo Vision standard, all user 1/0 is done with

dialog boxes. Thus to add two matrices, the command is issued via pull-down menus and the matrix operands

and resultant chosen on a pop-up dialog box. Dialog boxes provide several kinds of 1/0 including check-boxes,

radio-buttons, inputlines, and pushbuttons. Check-boxes provide multiple item selection. For instance several

polynomials can be displayed at once by picking several check-boxes. Radio-buttons provide unique item

selection. For instance, the sum of two transfer functions can only be equal to a single transfer function.

Inputlines provide text entry. Matrix, transfer function and polynomial definitions are accomplished on an

inputline. Push-buttons issue commands. The toolbar on the ICECAP-PC screen is simply a dialog box with

several pushbuttons.

TMatBasic is the parent object class for all matrix objects. It adds the ability to read matrix data from

disk, load matrix data to disk, display matrices to screen, and perform numerical conditioning on matrices.

Children of TMatBasic include the TMatDef, the TMatBinaryOp family, the TMatUnaryOp family, TMatScaler,

the TMatSoloOp family and TMatView. TMatBasic is defined in Listing 4-4.

PMatBasic = ATMatBasic;
TMatBasic - Object(TDialog)

PROCEDURE ConditionMatrix (var SomeMatrix: Matrix; InitMat : Boolean);
PROCEDURE DisplayMatrix (var Mat: Matrix);
PROCEDURE RetrieveData (var Oldxatrix: Matrix; Stor Loc: Integer);
PROCEDURE StoreData (war NewMatrix: Matrix; StorLoc_: Integer);

end;

Listing 4-3: TMatBasic Object Class

"The ConditionMatrix method acts as a filter for mathematical operations to prevent illegal floating point

operations. Specifically, if a matrix is real valued, the entire complex plane is set to identically zero. Elements

of the matrix array beyond the Num. Rows and NumCols fields are also set to identically zero. Numbers less

than a predefined ZeroVal threshold (set at 1 x lO'°) are also redefined as zero. All matrix math operations in
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ICECAP-PC call ConditionMatrix to condition the operands before the operation takes place and then the

resultant after the operation. The input filter action is especially important because Turbo Pascal will

occasionally redefine a zero value passed in a parameter string as a number close to IxlO3'°° or smaller.

Operations on such numbers can cause program failure.

YMatDef provides an input line and the ParseLine method to read user matrix definition input. Matrices

are entered in much the same manner as with Matlal,, and Matrixxrm. The chief differences are 1) TMatDef

allows a 256 character input, 2) direct entry of complex numbers is specifically allowed, and 3) no brackets

surround the data. Elements are separated with either a space or comma and rows are separated with semi-

colons. Complex numbers are entered directly with either an i or j preceding the complex portion and no spaces

between real and complex parts. For instance ij2 or 1i2 defines 1 + 2j. The entry of 1 j2 (with a space)

results in two elements I and 0 + 2j. The entry of complex numbers does not produce complex conjugates as

happens during transfer function definition. TMatDef is defined as shown in listing 4-4.

PMatDef _ ATMatDef;
TMatDef - Object(TmatBasic)

Abortlt : Boolean;
NewMatrix : KatPtr;
InputLine : PlnputLine;
TheHistory: Pffistory;
Operand : PRadioButtona;
Format : PRadioButtons;
CONSTRUCTOR Init;
PROCEDURE HandleEvent(var Event: TEvent); virtual;
PROCEDURE MakeDiagonal (var Mat: Matrix; var Abort: Boolean);
PROCEDURE MakeHilbert (var Hat: matrix; var Abort: boolean);
PROCEDURE MakeIdentity (var Mat: Matrix; var Abort: boolean);
PROCEDURE ParseLine (TheInput: String; VAR OutJatrLx: Matrix; Abort: Boolean);
PROCEDURE InverseParseLine(var InputLine : String);
DESTRUCTOR Done; Virtual;

end;

Listing 4-4: TMatDef Object Class (Matrix Definition)

One of the most difficult tasks of this project was the develoment of ThfatDefParseline. The

Parseline method reads the user input matrix definition string and translates it into a numerical matrix. It has

several interesting features. Either a space or comma may be used as a delimiter between elements on the same

row. Furthermore any number of spaces or commas are allowed. Thus "1 2 3 4" and " 1 2 3,, 4" are

treated kientically and the result is the row vector [1 2 3 4]. Semicolons delimit the rows and my be surrounded

by any number of spaces. Thus "1 2 3;4 5 6", "1 2 3 ; 4 5 6", "1 2 3 ; 4 5 6;", and "1,2 3;4 5,6" are all
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treated identically resulting in a 2x3 matrix. Complex numbers are indicated with either a j or i and must

conform to the basic standard of no spacing between real and imaginary components. Thus "lj2", "1 -j2", and

"1j-2" all define the same complex number 1 + 2j. However the entry of "1 j 2" creates three numbers 1+0j,

O+lj, and 2+Oj and the result is a row vector. Exponential notation is specifically allowed and numbers may be

defined with either a small e or capital E. Thus "le2jlOO" is a perfectly valid number. The difficulty in coding

the parseline method was the inclusion of all the possible varieties of acceptable input. The result of our effort

is a very robust and stable method.

As seen previously, the TMatDef object also provides methods supporting the quick definition of identity

matrices, hilbert matrices and diagonal matrices. Hilbert and identity matrices are defined by simply entering a

single number to describe the dimension of the matrix. Define diagonal matrices by entering the diagonal

elements separated with either spaces or semicolons.

The TMatBmaryOp family performs all binary mathematical operations on matrices (addition,

subtraction, and multiplication). Since TMatBinayOp is a child of TMatBasic, the entire family tree spawned by

TMatBinaryOp inherits all methods and variables contained in TMatBasic. The object model of TMatBinaryOp

is shown in Figure 4-8. Note the addition of a diamond in Figure 4-8. Using Rumbaugh's syntax (Rumbaugh,

1991), the diamond shows aggregation. That is the binary operations class is an aggregate composition of three

radio button sets that specify the operands and resultant.
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Fig. 4-8: TMatBinary~p Class Model

The data flow diagram for TMatffinaryOp is shown in Figure 4-9.

Fig. 4-9: T~atBinary~p Data Flow Diagram

In this Figure, the two sets of horizontal lines indicate data stores (Rumbaugh, 1991). Note that the

matrix data is read off disk, the resultant calculated and stored back onI disk while also being displayed on

screen. The answer is not held in comnputer memory.
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The TMatUnaryOp family performs all unary mathematical operations (adjoint, copy, inverse, modal and

transpose). Since TMatUnaryOp is a child of TMatBasic, the entire family tree spawned by 7MatBinaryOp

inherits all methods and variables contained in TMatBasic. Matrix inversion is performed by the TMatlnverse

object, a child of TMatUnaryOp. Inverses are calculated for the general complex matrix via LU Decomposition

and Forward/Back Substitution as described in part H of this thesis. This algorithm is new to ICECAP-PC as

previous versions used the Adjoint/Determinant formula, an inaccurate if not downright unstable algorithm. The

object model of TMatUnaryOp is shown in Figure 4-10.
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•Umy• •! "'

1 I f

--

I I ImM Ia I~T~

Nb - U-64- -9=

Fig. 4-10: TMatUnaryOp Class Model

The TMatSolo family performs solo operations or those operations which do not have a matrix resultant.

These operations are the condition number calculation, the determinant calculation, eigenvalue calculation and

matrix norm calculation. Members if the 7MatSolo family include TMatConditionNWumber. TMaiDet,

TAatfigeinvlue, TMatwnverse, and TMatWorm. The object model Cf lMatSolo is shown in Figure 4-11.
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Fig. 4-11: TMatSolo Class Model

There are several ways of calculating the norm of a matrix including the euclidean norm, the row sum

norm, the column sum norm, and the 2-norm. ICECAP-PC calculates the Euclidean norm which is simply the

square root of the sum of all elements squared. Calculation of the norm is new to this version of ICECAP-PC.

The condition number is found by the simple multiplication of the norm of a matrix times the norm if

the inverse of the matrix. For ill conditioned matrices, this value will be quite high and possibly inaccurate.

However, the inaccuracy is of little consequence for a control systems engineer because the very existence of an

ill conditioned system alerts the engineer that special design consideration is required. The exact amount of ill

conditioning isn't needed. Calculation of the condition number is also new to this version of ICECAP-PC.

The matrix determinant is calculated via LU Decomposition. This method is discussed extensively in

part 11 of this thesis. Under LU Decomposition, a matrix is decomposed into the product of two matrices, one

upper triangular and one lower triangular. ICECAP-PC uses Crout's algorithm which places 1.0 in each diagonal
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element of the lower triangular matrix. The matrix determinant is then simply the product of diagonal elements

of the upper triangular matrix.

Eigenvalues are calculated in a three part process involving balancing, conversion to upper Hessenberg

form and QR Shift application. The object class performing eigenvalue calculation is TMatEigen. TMatEigen is

shown if Figure 4-11. TMatEigen is a child of TMatSolo. The balance method performs an orthogonal

transformation on the operand matrix to reduce the condition number while maintaining the same eigenvalue set.

The Hessenberg method performs another orthogonal transformation to put the balanced matrix into Upper

Hessenberg form. The third method, QRShift performs the final transformation in which eigenvalues appear on

the main diagonal if real or as block diagonal 2x2 sub-matrices if complex.

As a final note on the matrix object, recall that in section 4-2 we discussed why we k'eliberately chose

not to define a single matrix object with all possible operations contained therein. Under the object oriented

paradigm, this would indeed be a logical structure. Such a structure could be described in Listing 4-5 with

ellipses indicating all possible matrix operations:

PXatriz - ATgatriz;
T~atrix - object(TDialog)

Constructor Init;
Procedure EandleEvent(var Event: TEvent); virtual;
Procedure Add;
Procedure Define;
Procedure Edit;
Procedure Eigenvalues;
Procedure Multiply;
Procedure Subtract;
Procedure Transpose;

Destructor Done; virtual;
end;

Listing 4-5: Original Matrix Object Class Definition

Our original design called for a single matrix object class, a single transer function object class and a

single polynomial object class. However, we simply could not fit all these objects into the limited memory

p'wided by the PC at the same time. Our next option was to instantiate the object only when an operation in

that class was needed and immediately dispose of it. However, we were instantiating and disposing of very large

objects (12-20 KB in size) and suffering a terrible price in speed. Our final, and most effective option was to
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make objects out of verbs, namely the mathematical operations themselves. Thus the matrix object became a

family of objects each contained in a separate pascal file and compiled in individual units. The average size of

the instantiated object for a given operation is now about 800 bytes of memory vs 12KB with the single matrix

object. Furthermore, we've experienced about a tenfold increase in interface speed making ICECAP quite

nimble.

The Polynomial Family

The polynomial family consists of a parent, TPoly, which like TMatrix is a child of 7Dialog. TPoly is

defined as follows:

PPolBasic . ATPolBasic;
TPolBasic - object(TDialog)

PROCEDURE ConditionPoly (var SomePoly : Polynomial);
PROCEDURE DisplayPoly (var Poly: Polynomial; Format: Integer;

var TopStr, PolyStZ: String);
PROCEDURE Foruatfoly (var NewPoly: Polynomial; PolyorFact- Char;

var AbortCode: Integer);
PROCEDURE RetrievePoly (var OldPoly : Polynomial; StorLoc: Integer);
PROCEDURE StorePoly (var NewPoly: Polynomial; StorLoc: Integer);

end;

Listing 4-6: TPoly Object Class Definition (Polynomials)

The DisplayPoly method of the TPolyBasic class returns two string variables for any input polynomial,

one for the coefficient string and one for the exponent string. Polynomials may be displayed in one of three

ways: polynomial coefficient form, factored form, and root form. Additionally, each form can be displayed in

either fixed decimal notation or scientific notation. Polynomial coefficient form and factored form displays are

self explanatory. Root form display is a simple vertical listing of the roots of a given polynomial. Since both

coefficient form and roots are stored internally inside the polynomial record, there is no loss of accuracy when

the same polynomial is alternatively displayed in different forms.

The FormatPoly method builds the factored portion of the polynomial record entered when entry is in

coefficient form and builds the coefficient form of a polynomial entered in factored form. Thus for a polynomial

defined in coefficient form, roots are calculated only once during the definition process. If a polynomial is

defined in factored form with complex roots, the FormatPoly method ensures the complex conjugate is also

entered. Thus polynomial definition is restricted to real coefficient values.
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Operations allowed on polynomials are addition, subtraction, multiplication and multiplication by a

scaler. Each operation is controlled by independent objects.

The Transfer Function Family

The transfer function family consists of a parent (TTFBasic) which like TMatBasic is a child of

TPolyBasic. The TTFBasic class is defined in listing 4-7.

PTFBaaic - ^TTFBasic;
TTFBa~ic = object(TPolBasic)

PROCEDURE ConditionTF (var SomeTF : Transnlunc);
PROCEDURE DisplayTF (var TF: TransFunc; Form: Integer);
PROCEDURE FormatTF (var NewTF: TranaFunc; PolyorFact: Char;

var AbortCode: Integer);
PROCEDURE RootCancel (var Ni, D1, NlSimplified, DlSimplified: Polynomial;

var AbortCode : Integer);
PROCEDURE RetrieveTF (var OldTF : TransFunc; Stor Loc: Integer);
PROCEDURE StoreTF (var NewTF : TransFunc; Stor Loc: Integer);

end;

Listing 4-7: TTF Object Class Definition (Transfer

Functions)

The TTFBasic object class, like the TMatBasic class, features methods to read, condition and store data.

These methods rely and call upon their inherited polynomial methods. For instance, FormatTF simply calls

FormatPoly twice, once for the numerator polynomial and once for the denominator polynomial. Additionally, a

method called RootCancel provides root cancellation between numerator and denominator polynomial elements.

The cancellation threshold is set at 1 x 10-.

Children of 77FBasic include the TTFBinary family, TFCopy, TFDefine, TFModify, TTFSMuhd,

7TFtoSS, the TTFUnary family, and 77FView. The TfFBinary family contains object classes to perform transfer

function addition, multiplication and subtraction. Additionally, TFLHospital, a child of 7TFBinary provides

application of L'Hospitals rule by symbolically reducing a transfer function to the form K/S" or S"/K where K

is some constant and Sa is some polynomial of degree n. While all practical control system transfer functions

reduce to the for K/Sn, ICECAP-PC nevertheless handles the other case as well. Transfer function addition,

subtraction and the application of L'Hospitals rule are new to this version, ver 10, of ICECAP.

Operations performed by children of T/FBasic are transfer function addition, subtraction and

multiplication; multiplication of a transfer function by a scaler, transformation to state space (matrix) format,
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calculation of figures of merit, formation of CLTF from conventional control elements GTF and HTF (the

forward end feedback transmittances), and symbolic reduction via L'Hospitals rule.

4.7 Summary

This section discussed both high level design and the object-oriented implementation of ICECAP-PC,

the problems that confronted us and the decisions that we made during the development. Decision making is an

important part of any design project and we had far more to make than could be enumerated herein. During this

project, we progressed through several structural changes, interface changes and numerical algorithm changes.

At every juncture, we sought the best solution based on the stated criterea of chapter 2; namely numerical

accuracy and utility for the most general problem case. One of the most challenging aspects of this project was

the problems posed by MS-DOS itself and its extremely limited memory capacity. This, in fact, drove most of

our fundamental structural development and forced us into many revisions. In the end, we solved the memory

riddle by making very small objects that performed a single task, such as transpobing a matrix. The existence of

an object representing a verb rather than a noun is a violation of object-oriented logic; however, it became a

survival tool that both saved ICECAP-PC and even made it quite nimble and fast even on a 286.
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5 The MIMO QFT Toolbox

5.1 Introduction

This section describes the MIMO QFT Toolbox of ICECAP-PC. Discussion covers the toolbox concept,

the interface, and the toolbox program structure including data structures and algorithms.

5.2 ICECAP-PC Toolboxes

The most difficult step in OOD is deciding what are the objects. When the viewpoint of the lowest level

of abstraction is taken, it would seem logical to the strictest 00 designer that each polynomial and matrix and

transfer function should be an object. Then when the user asks for a frequency response of the open loop

transfer function (OLTF), the OLTF object would draw a frequency response of itself on the screen. However,

when the viewpoint of the 00 software engineer (the person who must implement the design) is taken, it

becomes more logical to think of some nebulous transfer function object that owns each of the individual transfer

function data records. When the user asks for two transfer functions to be added together, the transfer function

object services carry out the task. How could two objects add themselves to each other? 'I•here would have to

be some owning object who could simultaneously access both their individual data records. The ICECAP-PC

data structure has been designed using the latter implementation viewpoint.

Toolboxes differ from standard ICECAP-PC objects discussed previously in two important ways. First,

toolboxes are children of TView rather than TDialog. Since MView is the parent of TDialog, it contains less

functionality and is leaner. However, it still retains message passing capability which is key to successful

implementation of object oriented programming under Turbo Vision. Second, toolboxes are packaged with their

own menu bar and tool bar. The menu bar appears at the top of the screen and presents drop down menu

selection. The tool bar appears at the right of the screen and provides rapid command selection. When

ICECAP-PC loads a toolbox, it must first dispose of its own menu bar and toolbar and then instantiate the menu

bar and tool bar of the desired toolbox. By convention, all tool box menu bars and tool bars are located in same

Pascal file as the toolbox itself.
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Two main toolboxes are implemented in this thesis cycle, one of which is part of this research. The

MISO QFT toolbox provides the tools necessary to perform Quantitative Feedback Analysis on Multiple Input,

Single Output (MISO) systems. The second toolbox, written for this thesis, is the MIMO QFT toolbox. This

toolbox provides the tools necessary for transformation of a Multiple Input Multiple Output (MIMO) system

description into an equivalent set of MISO problems. Upon decomposition and validation, the MISO toolbox is

then used to perform QFT design.

As indicated on the ICECAP-PC menu itself, other toolboxes are planned for future thesis projects.

These include a non-linear systems toolbox, an LQG toolbox, and an H-Infinity toolbox. Additionally, it may

prove desirable to implement the Multi-Porter method as well as a variety of others.

53 MISO QFT Toolbox

The QFT toolbox within ICECAP-PC provides the basic set of mathematical algorithms necessary to

design control systems using QFT control techniques. The toolbox, by design, is composed of one class called

TQFT. This object class contains all the services required to define tracking and disturbance specifications, enter

plant variations, enter disturbance models, generate plant templates, generate bounds, design a nominal loop

transmission, generate a controller, design a filter, simulate responses, and generate a comprehensive report. It

includes interactive graphics capability for the development of &R, the plant templates, the composite bounds, the

nominal loop transmission, and the prefilter. The MISO QFT Toolbox is discussed in detail in a thesis presented

by Wayne Bell (Bell, 1992), and in the QFT Users Manual included in the appendix.

5.4 MIMO QFT Toolbox

Introduction

The MIMO QFT (Multiple Input Multiple Output Quantitative Feedback Theory) is a natural extension

of the MISO technique of the previous section. The heart of the MIMO technique is the decomposition of a

MIMO problem into MISO equivalent loops as described in chapter 2. The strength of QFT is its recognition

that no two things are identical. Two motors off the same assembly line spin at some rpm ± some 8. An

airplane with ice on its wings flies differently than the same plane without ice. QFT defines these plants as a

region bounded by some predictable uncertainty. Because of its overwhelming success in MISO problems,
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further development brought its adaptation to MIMO design problems. MIMO QFT is a relative newcomer

among MIMO design methods and much of the control systems engineering community is still unaware of its

potential. However, some AFIT students have successfully used it to develop aircraft control systems.

(Wheaton, 1990; Kobylarz, 1988)

The effective utilization of MIMO QFT requires a robust CACSD (Computer Aided Control Systems

Design) program capable of solving problems defined as matrices of transfer funcuons. One program was

recently developed by an AFIT student (Sating, 1992). Sating's MlIMO QFT program (which is quite good) runs

oa a Sun workstation and requires Mathematica and Matrixx. Mathematica's rich programming language

provides the basis for this program. The deficiency of this program is its lack of portability. While AFIT and

Wright Laboratory at Wright Patterson Air Force Base are replete with Sun workstations, this is not the general

case in industry. Over the course of this-effort, I visited Armco Industries in Middletown OH, Western Power

Administration in Denver CO, Lawrence Livermore National Labs in Livermore CA, and the Federal Aviation

Administration in Seattle WA. None of these agencies had Sun Workstations available and fewer yet had

Mathematica and Matrixx installed. All of them had 80486 based PCs. Thus, there still exists a need for a good

MIMO QFT CACSD program based on a PC, especially one tailored to academic institutions.

The ICECAP-PC MIMO QFT toolbox addresses this problem by providing an object oriented CACSD

program for the solution of MIMO control systems problems. As far as we know, this is the first object oriented

MIMO QFT CACSD package. The objective under this thesis cycle is simply to allow the efficient description

of the uncertain plant set, validate its usability and realizability, perform matrix inversion to form the Q matrix

(the inverse of P), verify the inversion of Q, and test for diagonal dominance. The MIMO QFT toolbox does not

currently provide tools to perform loop shaping, bound generation, or prefilter design. These are provided with

the MISO QFT toolbox. Additionally, the MI4MO QFT toolbox does not contain any graphics capability. Again,

this is done with the MISO toolbox. However, future thesis students may wish to add these analysis capabilities

to the MIMO QFT toolbox. It would be a worthwhile project.
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The MIMO QFT Toolbox Interface

File Set Specs P Matrix Q Matrix Help
MIMO QFT

** MIMO-QFT Tool BOX Installed and Active ***

Fl Help Alt-X Exit r2 Calculator F3 Comment F4 Header F5 LogFile 227896

Fig. 5-1: MIMO QFT Toolbox Interface

The interface to the MJMO QFT toolbox is shown if figure 5-12. This interface resulted from several

that were developed using fast prototyping, most of which were modifications of the MISO QFT menu structure.

It is similar in function to the ICECAP-PC interface shown in figure 4-2. Operations involving the P matrix are

under the P Matrix drop-down menu and operations involving the Q matrix are under the Q matrix drop-down

menu. Stability specification operatiins ere under the Specs menu. The buttons on the right of the screen

perform the following actions:

Du - Define Tru Vp - View Plant p

DI - Define Trl VP - View Plant Matrix P

Dp - Define Plant p VO - View Options

Vu - View Tru SP - Select Current Plant

VI - View Trl CL - Clear Screen

Vd - View Td
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The MIAJO QFT Toolbox Interface

File Set Specs P Matrix Q Matrix Help
MIMO OFT

MIMO-,jFT Tool Box Ins.talled and Active •

F1 Help Alt-X Exit F2 Calculator r3 Corment P4 Header FS LogFile 227896

Fig. 5-1: MIMO QFT Toolbox Interface

The interface to the MIMO QFT toolbox is shown if figure 5-12. This interface resulted from several

that were developed using fast prototyping. most of which were modifications of the MISO QFT menu structure.

It is similar in function to the ICECAP-PC interface shown in figure 4-2. Operations involving the P matrix are

under the P Matrix drop-down menu and operations involving the Q matrix are under the Q matrix drop-down

menu. Stability specification operations are under the Specs menu. The buttons on the right of the screen

perfcrm the following actions:

Du - Define Tru Vp - View Plant p

DI - Define TrI VP - View Plant Matrix P

Dp - Define Plant p VO - View Options

Vu - View Tru SP - Select Current Plant

VI - View Trl CL -Clear Screen

Vd - View Td
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Use of the menus closely tracks the normal procedure for a MIMO QFT design process. However,

being an event driven program, the user is not constrained to a pre-determined sequential set of menu choices.

A short description of how the interface performs each task follows.

File Set Specs P Matrix Q Matrix Help

DISPLAY

*** M Clear Display e **u
Comment Line
Header
View Options

PARAMETERS
Select Current Plant
Select Frequency Range
Select Number of Plants

Fl Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 234872

Fig. 5-2: Set System Parameters Pull Down Menu

Set System Parameters

The Set (Set System Parameters) menu provides the user a way to (1) set the display characteristics such

as the view options and (2) set the system parameters. Three system parameters should be defined before the

design process begins.

First the user can set the current plant from among 20 cases. The MIMO QFT Toolbox provides up to

20 three by three plant matrices that conceptually form a three dimensional set of plants 20 levels deep. The

user is not constrained to three by three problems and can just as easily work two by two problems. Future

work may expand the dimension to higher levels.

Second, the user should set the number of plant cases defined. This determines the number of templates

to be developed. The user is not constrained to this choice after defining it. Analyzing additional plant merely

entails the resetting of this value at any time in the design process.
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File Set Specs P Matrix Q Matrix Help
MIMO OFT

*** MIMO-QFT Tool Box Installed and Active ***

(0]j Template Frequency Table D=

Frequency Range __

()Low 0.015 - 512
() Med 0.500 - 16,384

High 4,096.000 - 134,217,728Automatic Settings For All Plots

-- Log Frequency Scale
-- Rad/Sec Frequencies
-- Log Magnitudes
-- Angles in Degrees
Okmmm Quit

Fl Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 234064

Fig. 5-3: Set Frequency Range Menu

Third the user can choose one of three frequency ranges for the development of plant templates and all

frequency response calculations. In the low frequency range, 16 frequencies I octave apart from .015 - 512

Rad/Sec are defined. In the medium frequency range, 16 frequencies 1 octave apart from .5 - 16384 Rad/Sec are

defined. In the high frequency range, 16 frequencies 1 octave apart from 4,096 - 134,217,728 Rad/Sec are

defined. This frees the user from having to specify a set of frequencies for each plot and calculation performed

during the design process. Selection of the frequency range is shown in figure 5-3.

Define Stability Specifications

The definition of the stability specs includes the entry of the transfer functions Tr., T1 , Td and the

stability margins (phase margin, gain margin, and peak overshoot). The menu to perform these actions is shown

in figure 5-4. From this menu, the user can define, display or edit T,,, Td or Td. Stability margins are also

specified from this menu.

The dialog box defining T. is shown in figure 5-5. The dialog boxes for Td and Td are identical,

however definition of Trl for off diagonal elements is not allowed. There are several things to note in figure 5-

5. First, transfer function can be defined in one of two forms. Figure 5-5 shows a fictitious polynomial

(coefficient) entry of 1 2 3; 4 5 6 7 to define s2+2s+3/4s3+4s2+6s+7. Factored and root transfer function entry is
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identical, however they are displayed differently. Also note that we have defined every single off diagonal Tru

by the same transfer function. This is one of the great strengths of the ICECAP-PC MIMO QFT Toolbox. We

can define any number of transfer function elements in the plant set with a single entry.

rile Set Specs P Matrix Q Matrix Help

DEFINE
* MIMO-QF Define Tru

Define Trl
Define Td
Define Stability Specs lO

DISPLAY Dp
Display Tru
Display Trl
Display Td
Display Stability Specs

EDIT
Edit Tru
Edit Trl
Edit Td

Fl Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 227848

Fig. 5-4: Specs Pull-Down Menu

File Set Specs P Matrix Q Matrix Help
MIMO QFT

** MIMO-QFT Tool Box Installed and Active ***
['] Define Tru

Position Type
I 1,1 [Xl 1,2 [XI 1,3 P Polynomial
[X] 2,1 [ 1 2,2 [X] 2,3 ( ) Factored
[Xl 3,1 [Xl 3,2 [ ] 3,3 ( ) Roots

Gain
1 1
Transfer Function Entry Line
123; 4567 67

MAMM SU;quit.

Fl Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 224600

Fig. 5-5: Tni Definition Dialog Box
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File Set Specs P Matrix Q Matrix Help
MIMO OFT

'* MIMO-QFT Tool Box Installed and Active ***

-[U] Frequency Response Specs

Row Method
IX] 1 () Phase Margin (Degrees)
[X] 2 ( ) Peak Overshoot Mp
[13 () ML Contour

Entry
25 W
Ok. Gut

F1 Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 226832

Fig. 5-6: Stability Margins Dialog Box

File Set Specs P Matrix Q Matrix Help
MIMO OFT

* MIMO-QFT Tool Box Installed and Active ***

Stability Bounds for Row 1 d

Phase Margin: 25.0000'
Gain Margin: 3.0618 db
ML Contour: 7.4810 db
Mp : 2.3662

Stability Bounds for Row 2

Phase Margin: 25.0000"
Gain Margin: 3.0618 db
ML Contour: 7.4810 db
Mp : 2.3662

Fl Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 235142

Fig. 5-7: Display of Stability Margins

Figures 5-6 and 5-7 show the definition and display of stability margins using eq. 2-23 through 2-26.

Note fran figure 5-6 that again we can define the stability margins for as many rows as we desire at a single

time. The user can define the margins as either a phase margin, peak overshoot or M contour. The direct

definition of gain margins is not allowed for two reasons. First, the calculation of the other margins given the
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gain margin is quite awkward and prone to numerical error (see eq 2-23 - 2.26). Second, the sensitivity of the

calculated error for the other three margins for a small error in gain margin is quite high. This is easily seen on

any nichols chart. Note how any change in gain margin can produce a drastic change in the corresponding M1

contour and the accompanying phase margin. Figures 5-6 and 5-7 show the definition of a 250 phase margin for

rows 1 and 2 of the plant set. Note that all data in the MIMO-QFT Toolbox is held from session to session and

is static in nature. Therefore, exiting the toolbox doesn't erase the set of data built from previous sessions.

Define Plants

The definition of plant elements is identical to the process for defining Tru. Therefore, we shall not

loiter over this subject. The only difference is that there are 20 matrices of plant instead of just one matrix of

Tru, Trl, and Td. Plants are selected with the Set-Current Plant menu selection or the SP pushbutton.

Plant Checks

File Set Specs P Matrix Q Matrix Help

MIMO QFT

Determinant of Plant Matrix 1

-5.0000 (s - 30.0444)(s + 0.1235)(s + 0.7409)

(9 - 0.1000 ± jO.7000)(s - 0.1000 ± j0.7000)(s - 0.1000 ± j0.7000) WIN

CAUTION: D6.

Matrix Q will contain non-minimum phase elements upon P inversion

High Frequency Sign Check Of Diagonal Plant Elements

Plant Matrix
1 2 3 4 5 6 7 8 9 10

q(l,l1: + + + + + + + + + +
q[2,21: + + + + + + + + + +
qf3,3]: + + + + + + + + + +

F1 Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 227896

Fig. 5-8: Plant Determinant and HF Sign Check

After all plants have been defined, the designer normally performs two checks to ensure (1) the inverses

of the plants exist (2) the Q matrix will contain non-minimum phase elements and (3) the sign of the determinant

does not change over the entire set of plant cases. The MIMO QFT Toolbox allows these check.) as displayed in

figure 3-17. Note in figure 3-17 that (1) the P matrix is non-singular because of the existence of the determinant
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(2) the Q matrix will contain non-minimum phase terms because the numerator of the determinant has a right

half plane pole and (3) the sign of all diagonal elements (over the entire plant set) as w -> oo is, per application

of L'Hospitals rule, all positive. The reader should understand that while this figure only shows the determinant

of one plant in the entire set, it must in fact be taken for each of the 1-20 plants defined.

File Set Specs P Matrix Q Matrix Help

MIMO QFT

*** MIMO-OFT Tool Box Installed and Active **

Transfer Function Magnitudes at w -D

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

Diagonal Dominance Test Passed For Q Plant 1

1-4N

Fl Help Alt-X Exit F2 Calculator F3 Comment F4 Header F5 LogFile 278144

Fig. 5-9: Diagonal Dominance Check of Q Matrix Plant 1

Q Matrix Functions

All Q matrix functions are accessible under the Q Matrix menu. From this menu, the user is able to

define, edit or view q matrix elements or an entire plant matrix at one time. In some design cases, the user may

wish to define the Q matrix directly rather than inverting the P matrix. If the Q matrix is found by the standard

procedure of inverting the P matrix, then the user should verify the inverse as poorly conditioned plants can

always create numerical error. The Q Matrix menu provides an inversion check which multiplies the original P

matrix by its inverse and displays an identity transfer function matrix if the inversion is validated. Additionally,

the user may perform a diagonal dominance check as shown in figure 3-19. Again, the reader should understand

that the diagonal dominance check is performed for all plant cases and is a pre-requisite of successful QFT

design.
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Once the plant set is defined, inverted and validated for QFT design, the user then exits the QFT

toolbox and performs QFT design on each of the individual MISO loops. Currently this capability is provided in

the ICECAP-PC MISO QFr toolbox.

Program Structure of the MIMO QFT Toolbox

As with any ICECAP-PC toolbox, the MIMO QFT is build on the object-oriented paradigm under

Borland Turbo Vision. The toolbox object, TMIMO, is a child of MView, a predefined object type of Turbo

Vision containing message transmission capability. TMIMO is defined in Listing 5-1.

The first thing likely noted about the TMIMO object is its relatively large size. This size causes some

performance degradation on a PC, but unlike the original TMatrix and TTransFunc objects, it is not enough to

warrant its restructuring into actors.

The pascal text file that contains this object definition, MIMO.PAS, also contains a menu definition and

toolbar definition that replace the standard ICECAP-PC menu bar and toolbar as shown if figure 5-1. The menu

bar and toolbars are also object classes themselves that are instantiated by the TMIMO.InitMenuBar and

TMIMO.InitToolBar methods.

The TMIMO Data Structure

One of the fundamental questions confronting us at the outset of the project was whether or not it is

even possible to do MIMO QFT design on a PC. The MIMO problem is inherently memory intensive because a

system is described mathematically as a set of transfer function matrices, {Pij}, as described previously. Could a

personal computer, with its very limited memory configuration, handle several matrices whose elements

themselves were transfer function? Could you perform matrix inversion, critical to the MIMO process, on such a

matrix using a PC? Is a PC as accurate as other computers, say a Sun wotrkstation?

The answer to the accuracy problem is based on the very definition of floating point numbers as

discussed in Chapter 2. Yes, a PC is just as accurate as other computers because they are all using the same

numbering system. However, the memory issue takes some careful design. The M1MO QFT Toolbcx resolves

the problem by using the disk drive as an extension of memory and placing all transfer functions not under

operation in a set of riles. All operations occur one transfer function at a time and memory usage at any given
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PMIMO - ATMIMO;
TMIMO - object(TView)

(Variables]
Freq Array : FreqArrayType;
FreqRange : Integer;
MIMO FileNames : MIMONamesType;
MIMO-QFiles : MIMONamesType;
NumPlants : integer;
PlantDimension Integer; (Dimension of square plants P & Q 2-31
StabilityBounds: StabilityBoundsType;
CurrentPlant Word; [Current plant P. Used for plant entry
phmar : extended; (phase margin spec of current MISO loop)
mlm : extended; (Mp on U-Contour of current MISO loop I
nomplant integer; [Nominal Plant Matrix P of MIMO system)

(Administrative Routines]
CONSTRUCTOR Init;
PROCEDURE InitMIMOOFTDataFile;
PROCEDURE InitMIMOMenuBar;
PROCEDURE Init7MIMOToolBar;
PROCEDURE HandleEvent(var Event: TEvent); virtual;
PROCEDURE DisplayStabilityBounds (Row: Integer);
PROCEDURE DisplayUContour;

(OFT Math Routines)
FUNCTION IsDominant(Plant, Dimension: integer): Boolean;
PROCEDURE TFdeterminant (PlantMatrix: word; Dimension: integer;

var Det: Transfunc; var AbortCode: Integer);
PROCEDURE InvertP (Plant: Integer; Dimension: Integer; DispFormat: Integer);
PROCEDURE PlantMultiply (Stor Loc: integer; Dimension: integer;

Format: integer; var AbortCode: integer);

(MIMO OFT User Interface Routines)
PROCEDURE ChooseCurrentPlant;
PROCEDURE ChooseFreqRange;
PROCEDURE ChooseNumOfPlants;
PROCEDURE CopyPlants;
PROCEDURE Determinant Dialog;
PROCEDURE EditAPlant(Choice: integer; StorLoc: integer; Header: String);
PROCEDURE InvertPDialog;
PROCEDURE DefineStabilityBounds;
PROCEDURE DefineTF (Choice: Integer; Stor Loc: Integer; Header: String);
PROCEDURE DefineTFGuts(NewTF:TFPtr; MakeData: MakeTFDataType;

Choice: Integer; TFNum: Integer; Header: String);
PROCEDURE DisplayTFMatrix (Choice: Integer; Header: String);
PROCEDURE DominanceDialog;
PROCEDURE HFSignCheck;
PROCEDURE VerifyInverse;
PROCEDURE ViewStabilityBounds;
PROCEDURE ViewTFGuts (Choice: Integer; StorLoc: Integer; Header: String);

end.

Listing 5-1: The MIMO QFT Toolbox Class Definition

instant is quite conservative. In the case of matrix inversion for the transfer function matrix, the computer only

needs to load and use n2 transfer functions, about 50K worth of data. This is still well within the capabilities of

a PC.

The transfer function file set consists of 9 files for the P matrix and 9 files for the Q matrix; a total of

18 files. Each file contains the transfer function set for a given element in the plant matrix set. The P matrix

files are named MIMOXXDAT whem the XX is the element number. The transfer function set for element
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(2,21 is located in MIMO_22.DAT. Currently, each file can hold a set of 20 transfer functions with future

growth limited only by disk space. When the plant matrix P is inverted and reciprocated, the elements of Q are

stored in the file set MIMOQXX.DAT. Additionally, the MIMOQXX.DAT file set contains the transfer

functions describing the upper tracking response (Tru), lower tracking response(Trl), disturbance response(Td),

and controller design transfer functions (FCTF, FTF, etc). The MIMOQ_XX.DAT files are compatible with the

MISO data files and are used in the decomposed MISO solution of the MIMO system.

Conceptually, the user is presented with a 3x3 matrix of transfer function 20 levels deep in which to

describe a set of plant instances spanning the region of plant parameter uncertainty. The objectives of the

MIMO object is simply to allow the efficient description of the uncertain plant set, validate its usability and

realizability, perform matrix inversion to form the Q matrix (the inverse of P), verify the inversion of Q, and test

for diagonal dominance. The MIMO QFT object does not directly provide tools to perform loop shaping, bound

generation, or prefilter design. These are provided with the MISO QFT toolbox for each transfer function

element. Additionally, the MIMO QFT toolbox does not directly contain any graphics capability. Again, this is

done through the MISO toolbox.

TMIMO Methods

The TMIMO object contains several unique and interesting routines including IsDominant,

TFDeterminant, InvertP, HFSignCheck, and Wrifylnverse. We now turn our attention to discussing each of

these methods.

After the user fully defines a plant set spanning the region of plant parameter uncertainty to their

satisfaction, they must check each plant case (a single transfer function matrix) to see 1) if the plant is singular

having no inverse and 2) if the inverse will contain minimum phase elements (transfer function elements with

numerator factors in the right half plane of the s domain). This is done by taking the determinant of the plant.

The existence of a determinant proves non-singularity and the lack of positive zeros in the numerator of the

determinant proves the inverse will be non-minimum phase. Therefore, prior to inverting the P matrix, the

designer must calculate the determinant of the plant. The TMIMO.TFDeterminat method provides the

mathematical engine to find this determinant using LU Decomposition. The ICECAP-PC Toolbox is unique
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among emerging QFT programs in its use of LU Decomposition for the calculation of the determinant and the

inversion of the transfer function matrix P. Typically, MIMO QFT students are taught to find the determinant by

using the cofactor method with the admission that such determinant is of very high order and root finding is

quite difficult. Using the cofactor method, root cancellation cannot take place until the entire determinant is

formed. LU Decomposition has the inherent advantage that root cancellation is performed on an element by

element basis and the growth of an artificially large order polynomial with common numerator and denominator

factors is eliminated. The reader is encouraged to work an example by hand to see this process take place. As a

consequence, it is much faster, more accurate, and more stable than cofactor calculation. Furthermore, in

contrast to the cofactor method, there is no need to find a common denominator among transfer function

elements and then divide out the common denominator before finding the inverse (Houpis, Pg E-1). Again,

common denominator elements cancel out on an element by element basis. Upon completion of determinant

calculation, the determinant is displayed with a message declaring the passage or failure of the non-minimum

phase test in the format shown in figure 3-17. Note that transfer function display can be in coefficient, factored

or roots only form.

After inspection of determinants for the 1 to 20 plant cases, a check is normally made of the sign of

each diagonal transfer function element at high frequencies (w -> -0). The check ensures that for a given

diagonal transfer function element set (ps), the sign of the element does not change as w -> -. ICECAP-PC

implements this by using a symbolic manipulation of L'Hospitals rule. Transfer functions are reduced to the

form K/Se or SOIK where K is a constant and S" is a polynomial or order n. Physically realizable transfer

functions will reduce to the form K/Sn. The reduced transfer function are not displayed in this case. Rather,

only their sign is given as shown in figure 3-17. Figure 3-17 shows the calculation of only 10 plant cases;

however, up to 20 plants can be analyzed at one time this way.

After the above validations are made, the user normally inverts the plant matrices (P matrices) to form

the Q matrices. In some cases, the Q matrices will be known directly. The MIMO QFT Toolbox allows for the

direct entry of Q in such cases. Plant matrix inversion is the function of the InvertP method. This function

drives the LU Decomposition and Forward/Back Substitution processes to find the plant inverse. Standard LU
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Decomposition awid re-substitution involves two processes known as pivoting a scaling discussed in section II.

Very simply, in order to preserve stability during the inversion of a real valued matrix, the LU Decomposition

algorithm searches downward from the main diagonal to find the row with the largest value in the column under

operation. It then swaps the current row with the found row. This process is known as pivoting and prevents

numerical error by placing larger values in high locations. Scaling involves the row-wise search for the smallest

value and the di ision of all elements in a row by this value. The pivots are stored as a series of permutations in

a column vector and deciphered by the re-substitution algorithm. The question we encountered is how do we

implement pivoting and scaling when the matrix contains transfer function elements? Do we look for the largest

gain or the largest gain at a desired frequency? In ICECAP-PC, we simply took our best shot and implemented

scaling based on the value of the normalized gains of the transfer functiun elements. It seems to work well and

future students may wish to look into this further.

One of the last steps performed in the MIMO QFT Toolbox is the diagonal dominance check on the Q

matrix. Diagonal dominance is a prerequisite for successful QFT design. For a three by three matrix, diagonal

dominance is satisfied if as w -> -o

"Ji" *(' "**J "*J P * 1.5-1

In order to implement this check, ICECAP-PC uses the symbolic manipulation of LAHospitals rule for each

transfer function element in a given Q matrix. It then checks the sign of the gain of the manipulated functions

and builds the chart shown in figure 3-18. In building this table, it applies eq 3-17 to check the passage or

failure of the diagonal dominance condition.

As a final note, we pause to compare the ICECAP-PC MIMO-QFT Toolbox with two other programs

currently available. The first was developed by Prof. Oded Yaniv of Tel Aviv University, the second by Mr

Richard Sating of the Air Force Institute of Technology. Prof. Yaniv's program is designed to develop MISO

QFT systems only and is written in Clipper with links to C subroutines. It is a very functional program with

excellent graphics and is written for MS-DOS compatible computers. Mr Sating's MIMO QFT program is the

very first MIMO QFT program ever written and is also well written. Sating's MIMO QFT program is written in
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Mathematica's rich programming language and is specific to Sun Sparc Stations. Thus it remains unavailable to

a large engineering population. Program requirements are a Sun Workstation, Mathematica, and Matrixx, the

latter providing the graphics engine, the former providing the mathematical engine. The ICECAP-PC toolbox

cannot b'~ast the functionalk of the previous two programs because the purpose of its development was not a

full scale MIMO QFT design program but rather a feasibility proof that MIMO QFT could be accomplished in

an MS-DOS compatible platform. The ICECAP-PC MIMO QFT Toolbox allows for the definition of stability

specifications, the definition of plant matrices, the inversion of matrix P to form matrix Q and the performance

of all validity checks. It provides files compatible with the MISO QFT Toolbox. The ICECAP-PC MIMO QFT

Toolbox is the first object-oriented MIMO QFT program ever written and the first to use LU Decomposition for

the inversion of matrix P. Further development of the toolbox will provide full functionality.

5.5 Summary

In our discussion of the MIMO QFT Toolbox, we discussed the nature of ICECAP-PC toolboxes in

general, discussed the interface of the MIMO QFT Toolbox and finally discussed the mathematical algorithms

used. The toolbox concept lends easy integration of other control system design theories into the ICECAP-PC

program and future students should use the MIMO QFT Toolbox as a model. The many interface examples are

given with the hope that the reader takes interest in the new ICECAP format and object-oriented programming

for engineering solutions in general. Finally, we discussed the numerical algorithms used for the MIMO QFT

engine. Particularly important is our use of LU Decomposition for the inversion of the transfer function plant

matrix P. This, to our knowledge, has never been done successfully before, at least not in the halls of QFT

proponents.

Work performed during this research on this toolbox to date does two things. First, it proves that

MIMO QFT can indeed be implemented on a PC and proposes that there is a tremendous need for such a

package. Second, it lays the foundation, framework, plumbing and exterior cover to a promising development

for future AFIT students. Remaining is the finishing work ot adding graphics capabilities and interactive design

in the MIMO toolbox. Many of the tools are already available in the MISO Toolbox and need only to be ported

to the MIMO Toolbox.
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6 Testing and Validation

6.1 Introduction

This section covers the testing and validation of numerical algorithms used in ICECAP-PC as well as

the correct operation of the user interface. It does not contain code certification tests because the Turbo-Pascal

integrated environment contains several excellent debugging tools including the ability to allocate and de-allocate

break points on the fly, the ability to monitor and change variable values during program execution, and a watch

window where the software engineer can watch a complete range of variables while single stepping through the

code. Virtually all code used in this project was validated using this environment and very little was left in the

way of script files, text reports, etc.

We did perform extensive testing on algorithms to ensure the best possible numerical accuracy. The

results of several tests on numerical algorithms are contained in Appendix B. It was impossible to include all

these tests; therefore, this section contains a representative sample.

6.2 Black Box Testing

Black box testing treats a program as a black box that accepts an input, operates on it, and generates an

output. Using a large test set of previously solved exemplars, a program can be verified to work over a large

range of problems. Text books proved to be a source for examples, but not the best source for examples. Text

books tend to have problems worked on dated software packages that may not have the numerical precision of

ICECAP-PC. A better source tends to be MATRIXx and MATLAB. The best source, of course, are problems

worked by hand.

An important group of black box problems is to use zero transfer functions or zero matrices, etc. These

examples often uncover divide by zero errors and floating point overflows.

Another important group of exemplars were those for the transfer function, polynomial, or matrix

definition lines. Different users input the item definition in different ways. Spaces are put in different places,

commas are used instead of spaces, complex conjugate pairs may both be entered or not, the complex letter

could be put either before or after the sign of the complex value (i.e., 2 -j2 or 2 j-2), etc. The effort was made
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to keep as few rules as possible placed on the user. To do this, there was required a large number of exemplars

to try to cover every forseeable type of user input.

63 Macro File Object

The purpose of the macro files is to store all of the black box example pages for easy rerun after any

significant change to the ICECAP-PC package. The same examples can be used for tutorial purposes by new

users to watch the ICECAP-PC commands in execution. The macro file object operates on a simple principle: it

replicates the keystrokes the user would use. The macro files consist of a single keystroke per line. The macro

object simply reads the line and enters the keystroke directly into ICECAP-PC's GetEvent method simulating the

human keyboard input. There are also special commands for inserting comments and pauses and end of file.

Later work could easily add a macro recording function to allow users to record keystroke sequences

into a macro file for later rerun. This would be easy to implement by just reversing the code in the macro

object.

The difficulty of creating the macro object was in determining what event codes were generated when

the user pressed a key. The Event.What field is equal to evKeyDown. The Event.KeyCode field is equal to a

HEX value unique for each character. The Event.CharCode is equal to the ASCII character for the key. The

Event.ScanCode is equal to a HEX value unique for each key. ALT and CTRL key combinations follow the

same rules. Some special keys like the ENTER or ALT key combinations also have unique settings for the

Event.Buttons field and the Event.Command field.

If not for the IDE, it would have been impractical to trap these events during runtime and examine their

content. A single keystroke can generate several separate events (updating screen colors, updating what is

displayed, internal flags, etc), so several conditions must be checked on the trap you set. However, once every

possible keystroke was trapped and the event record examined, it was easy to recreate the keystroke from within

a macro file.

6.4 White Box Testing and the Integrated Development Environment

White box testing is like black box testing, but it does not ignore the internal code implementation of

the algorithm. To do white box testing, an example must be constructed to test every decision point in the code.
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If it were not for the IDE, this task would have been insurmountable to test a package as large as ICECAP-PC.

However, with the IDE each routine could be single stepped through while watching a window showing all the

variables. This is the single greatest contributor to the reliability of the new ICECAP-PC code. "Playing

computer" by watching the state transitions of the data allowed us to not only completely debug our code but

also to create better algorithms more suitable to a computer implementation. By watching all the variables, you

become aware of which very large numbers are being added to very small ones, which variables are being

divided by variables very close to zero, etc.

The highest contributor to the unreliability of the old ICECAP-PC code was that it used too much

memory to run within the IDE. Its only white box testing was accomplished using print statements inside the

code to dump variable values now and then. The IDE is infinitely more powerful than this antiquated method of

white box testing. Under this environment, the software engineer can develop a code module, specify a watch

window to monitor control variables, and then single step through the code while watching the specified

variables. Further capabilities provided by the IDE are the ability to set a break point and execute the code up to

that point, the ability to change control variable values on the fly during an interrupt in program execution, and

the ability to directly monitor the stack and available memory. The result is a much more efficient and effective

debugging process than can be achieved using classical methods. We've caught several types of program errors

that could not be detected using standard methods. Many of these errors were not the result of the program but

of the compiler itself' We must stress that virtually all compilers have internal bugs and a big lesson learned is

that even perfect code can fail due to compiler error. A synopsis of a few of these follows:

A Little Something is Always Wrong

Many times, after we developed the most beautiful and obviously perfect code module and even tested it

with several test cases, we would catch little errors in control variables when we simply single stepped through

the procedure. Yes it worked right but for the wrong reason!. The problem with these kinds of errors is that

sooner or later the procedure is doomed to fail because somebody somewhere came up with a case you didn't

plan on! We cannot over stress the importance of single stepping through every single procedure to validate that

it works for the right reason and that ALL control variables operate properly.
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Incorrect Evaluation Of Boolean Operators

Another problem that caused us no end of grief was the occasional incorrect evaluation of conditional

tests. When this occurred, it was a constant problem and easy to find under the IDE. Nevertheless it was at

times frustrating to evaluate something as simple as "if 1 < 2 then..." and find the evaluation to be false. The

remedy was often to place dummy code such as i := 1; j := 2; if (i < j) or (j > i) then...". Again, this type of

error would take days or even weeks to catch using classical debugging techniques because the software engineer

would rightfully pull all the hair out of his/her head while insisting that there was nothing wrong with their code!

Parameters Passed Incorrectly

One of the most grievous compiler errors we found was the occasional, unpredictable incorrect passing

of a extended parameter. Most often this occurred when the parameter passed was input as 0.0 and taken back

out as I x 10492 . The very next mathematical operation on this number is sure to produce an invalid floating

point operation (error 207). The remedy was often the rearrangement of the parameter set into a different order.

However, we found that often when a value of 0.0 is retrieved from a disk file, it becomes 1 x 10-032 in the

process! Obviously we needed a way to check all values for a very small number and set them to identically 0.0

if they were below a specified threshold. This was just the beginning of tribulation.

Intel Microprocessors, 0.0, and Excedrin Headaches

The most difficult number to work with in Turbo Pascal is 0.0. The problem is that Turbo Pascal

incorrectly evaluates some functions at 0.0 AND that different Intel microprocessors handle 0.0 differently.

While an 80286 microprocessor with an 8087 co-processor passes 0.0 as 0.0, an 80386 and 80486 passes 0.0 as

1 x 10-m. The result is often unpredictable, untraceable, spontaneous, unrepeatable chaos!

Naturally, one expects that if we compare a very small number, say 1 x 104m with 0.0 we will cause an

invalid floating point operation (error 207). Therefore, we defined a global variable named Zero and set it equal

to 1 x l0"1e°. The objective is that if a number was less than Zero, we would set it exactly equal to 0.0 and

prevent invalid floating point operations (error 207). It was a good idea. However, if the parameter is passed

incorrectly as discussed above, a 0.0 became I x 1O*02 and when this is compared to I x 1(0rt the computer

fails anyway. Yes, if fails with an error 207.
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We decided to get smart about this. If we compared the exponents rather than the numbers themselves

we could detect a small number before ever comparing two very small numbers--even if the parameter was

passed incorrectly. Based on this, we developed a special function called IsZero as shown in listing 7-1.

FUNCTION IsZero(A: extended): boolean;
begin

IsZero :_ True;
If trunc(loglO(abs(A))) <- trunc(loglO(abs(Zero))) then

IsZero :- true
else

IsZero :- false;
end;

end;

Listing 6-1: First Futile Effort at IsZero

In this procedure (we took great pride in trunc(loglO(absO))) the values of the exponents are compared. If the

exponent of A was less than or equal to the exponent of Zero then the function returned as true. The problem

here was the ABS call. The ABS function compares the original value of A to guess what: 0.0! The result is

again computer crashage with an invalid floating point operation (error 207). We hope the reader hates seeing

error 207 as much as we did!

FUNCTION IsZero(A: extended): boolean;
var

T : extended;
begin

IsZero :- True;
If (A <> 0.0) then begin

T :- trunc(logl0(abs(A)));
If T < trunc(loglO(Zero)) then

IsZero :- true
else

IsZero : false;
end;

end;

Listing 6-2: The Final Version of IsZero

Once again, we huddled and attempted to replace the ABS call with an ABSOL call of our making.

However, this effort was fruitless. Finally, we came up with a modified solution shown in listing 7-2. The

modifications first tested A to see if it is exactly 0.0. Then we declare a dummy variable T and set it equal to

the truncoogl0(abs(A))). Then we compare T with the trunc(ogl0(abs(Zero))). Note this comparison camnot
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take place properly without the dummy variable because of the problem of occasional incorrect boolean

evaluation discussed above. This seems to be the solution to fix our problems! We hope so because we are out

of ideas!

The 19th Decimal

Another problem that can often compound other problems is that if the 19th decimal position of an

extended number is 6, any mathematical operation on that number will fail with an invalid floating point

operation (error 207). Now consider the problem of developing a Logl0 routine needed to fix the 0.0 problem

listed above. Turbo Pascal does not have a build in Log,00 function so we had to make our own. Turbo Pascal

does have a built in Ln0 function so we proceed as shown in eq 7-1 (Kreyzsig, pg A-52).

LoS10(x) = .43429 44819 03251 92765 11289 18917 * Ln(x) Eq. 6-1

Now look at the 19th decimal number. Lo and behold, it's a 6! We found numerous errors caused by our initial

Log 10 function because of this. In fact, all we had to do was define a number as this constant and the program

would fail with an invalid floating point operation (error 207).

FUNCTION LoglO(x:ext.ended): extended;
(Original Icecap code replaced using Log(X) - Log(e) * Ln(X)
(Log(e) - 43429 44819 03251 82765 11289 18917
(Kreysig, Advanced Engineering Mathematics, 5th Ed, Pg A-52 I
begin

If X <- 0 then
begin

MessageBox(AC'Error: Log(Negative or Zero) Not Defined', nil, mfError+mfOKButton);
Loglo :- 0;

end
else

Log10 :- 0.4342944819032518277 * Ln(X);
end;

Listing 6-3: The Log10 Function
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Note that the Log,0 function is also used in the IsZeroO function call. We remedied this by rounding the

constant as shown in listing 7-3 so that we didn't have a 6 in the 19th decimal position. However, engineer

beware, any other extended number with a 6 in the 19th bit position that occurs anywhere in ICECAP-PC may

well cause an unexplained failure!

Incorrect Long Integer Division

On one occasion we found an incorrect long integer division. It only affected one isolated procedure

and did not cause the kind of system wide problem noted above. However, we found that if you have a long

integer x and perform (x * 65536)t2 you will get an invalid floating point operation (error 207).

This set of compiler errors is given for a simple reason. We want to demonstrate that certain classes of

errors occur even in perfectly coded programs. These kinds of errors can be impossible to trace using classical

debugging techniques that assume any mistakes to be the software engineers. Use of the IDE allowed us to find

these mistakes, develop some corrective action, and proceed with the coding process. Undoubtedly, previous

versions of ICECAP-PC suffered from these kinds of errors that were left undetected.

6.5 User Requests

Feedback from a large student user group has provided continued insight into how to improve the user

interface and required functions. The complaints and frustrations along with the compliments have been used to

adjust the user interface and scope of functions. The student group includes all the controls students who use

ICECAP-PC to do their homework.

6.6 Other Validation Tools

While the core of software validation consisted of the simple single stepping through each module, there

were some instances, i.e. numerical algorithms, that demanded different testing schemes. Here we were testing

not the operation of the code but the viability of a specified numerical algorithm. This was often done with

inserted debugging code to allow the observation of numerical variables rather than control variables. Appendix

B lists a representative sample of these tests.

For each given algorithm, we developed several test cases that we felt reasonably tested it. In the case

of the PaTseline procedure discussed in chapter 4 (sec 4-6, pg 17), we developed apprx. 50 different ways to
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input a matrix to exercise the algorithm. For the eigenvalue algorithm, we developed a Matlab test bench

program to aid in the development of QR Shift for the general complex matrix. In the case of matrix operations,

we pulled several matrices with known solutions from textbooks to test the algorithm. Each algorithm was tested

against a known solution set and against other programs. We compared ICECAP-PC's root finder to Matlab's to

find that ICECAP-PC consistently is 3-4 decimal places more accurate than Matlab! Furthermore, we handle the

case of repeated real roots much more accurately. We placed it in the ICECAP-PC code only after we had

tested each algorithm to our satisfaction.

The Root Finder

Appendix B shows listings of our tests comparing ICECAP-PC's root finder with that of PC-Matlab.

In all cases we exceed the accuracy attained in Matlab, often by several decimal places. However, in the process

we noticed something that forced us to modify our algorithm. The ICECAP-PC root finder first calls the

Laguerre method [ref #] to make the initial cut at the roots. The Laguerre method returns a set of values whose

error with the actual roots is symmetrical with the actual roots in the case of root multiplicity. Hence coefficient

reconstruction is extremely accurate after root finding with the Laguerre algorithm. The second step used by the

ICECAP-PC root finder is the polishing of the rough roots with either the Bairstow method [ref #1 in the case of

real pairs or with Brents method [ref #1 in the case of single real roots or high root multiplicity. We were able

to achieve extremely accurate roots with these two polishing methods. Improvements of 4-5 decimal places over

Laguerre's method was common. However this added accuracy came at a loss of error symmetry about the

actual values. Polynomial coefficient reconstruction is often degraded with the better roots found by the

polishing methods! We finally modified our algorithm as follows.

We modified the root finder to take the first cut using Laguerre, store the Laguerre roots, take the

second cut using Bairstow and Brent, and store the polished roots, reconstruct the polynomial coefficients with

the Laguerre roots and find a reconstruction error, reconstruct the polynomial coefficients with the polished roots

and rind the polished reconstruction error, and compare the two errors taking the root set yielding the least

reconstruction error. Very often ICECAP-PC settles on the less accurate set of roots because the coefficient

reconstruction error is minimized.
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6.7 Summary

The predominant software validation tool for this project was the IDE itself. The IDE provides all

necessary tools to perform in-depth debugging and catch both logical error in the ICECAP-PC code and errors

generated by the compiler itself. The testing of numerical algorithms, however, still proceeded along more

conventional lines, especially during the algorithm development phase. A set of these tests are included as

appendix B.
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7 Conclusions and Recommendations

7.1 Coyclusions

The purpose of this research project was the development of a CACSD (computer aided control system

design) program to meet the needs of an ever more sophisticated educational system. In a day when computer

analysis and simulation plays an increasingly important role, control systems engineers need a solid grasp of the

computer sciences. This project exercises the disciplines required by todays control systems engineer.

mathematically rigorous control systems engineering, numerical analysis proficiency, advanced object-oriented

programming skills and human interface engineering.

Fundamental control systems engineering is, of course, the heart of the ICECAP-PC program. While

engineers of other disciplines will undoubtedly find utility in the basic ICECAP-PC program, they are in fact

directed at the control systems engineer. Both classical and modem control capabilities are provided in the basic

ICECAP program. Furthermore, the advanced Quantitative Feedback Theory is fully implemented in both its

MISO (Multiple Input Single Output) and MISO (Multiple Input Multiple Output) incarnations. The addition of

interactive bounds generation and interactive L development provides an ideal education platform for QFT. Of

particular importance for this research was the development of plant matrix inversion using LU Decomposition, a

method that minimizes numerical error and provides root cancellation at low polynomial orders where it is most

effective.

Numerical analysis, an art often overlooked by line engineers, was fundamental to the success of this

project. Virtually every numerical algorithm in ICECAP-PC underwent some form of modification or outright

replacement. In the case of simple binomial operations on matrices, polynomials and transfer functions, we

added the concept of numerical conditioning to prevent numerical errors at the fringes of the floating point

definition. In the case of core algorithms, we put in a new engine. We replace cofactor manipulation with LU

Decomposition for finding the determinant of a matrix. We replaced the Adjoint/Determinant calculation with

LU Decomposition and re-substitution for matrix inversion. We added matrix condition number calculation

which was absent in prior versions. We replaced root finding on the characteristic polynomial with QR Shift for

eigenvalue computation. We replaced an inefficient root finder with a greatly improved version that utilizes the
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Laguerre method, the Bairstow method, and Brent's method to find the roots to the floating point accuracy of the

machine. Additionally, we have specific recommendations for further improvement on the root finder. Again.

the high point of this project was the inversion of a matrix of transfer functions using LU Decomposition.

Object-oriented development and programming, which involves not only a new code structure but an

entirely new logic and modeling process, is the software development basis of the future. Object oriented

decomposition provides software reusability, extendibility, and maintenance in a way functional decomposition

never could. This is why virtually all new commercial operating system development is taking place using

object orientation. The engineering disciplines are late comers to object-orientation and none of the more

respected programs are built on this paradigm as of yet. In this regard, ICECAP-PC is now a pioneer in the area

of placing a CACSD package in an object oriented format. Certainly, this should draw much attention.

At this point, we must emphasize that excellence in all of the above disciplines mean nothing if the

human interface is ignored. In todays business climate, intuitiveness is key rather than superfluous to software

design. An intuitive program is quickly learned saving expensive engineering time for the actual design process.

The adage that 'the utility of a program is inversely proportional to its interface" is absolute nonsense. There are

many excellent object-oriented interface development tools that remove much of the burden of interface

development such as mouse support, drop down menus, etc. ICECAP-PC uses one such tool, the Borland Turbo

Vision language extension.

The result of exercising the above disciplines is a CACSD program that challenges the state of the art in

CACSD program design in form, in use, and in utility. Furthermore, ICECAP-PC specifically addresses the

educational needs of engineering students by providing several features not available in other packages. First,

ICECAP-PC has a context sensitive help system not only for program operation, but for control theory as well.

The design guidelines and insights of AFIT professors could be easily incorporated into the ICECAP-PC help

system and indeed should be. This could be of more value than the program itself'. Second, the interface of

ICECAP-PC is quickly learned and students, who are notoriously short of time, can quickly grasp the concepts

of program operation and immediately proceed to control system design. Third, ICECAP-PC provides an
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educationally formatted log file producing well formatted, standardized reports for homework turn in. With these

qualities, ICECAP-PC makes an ideal platform to "spread the gospel" of the Quantitative Feedback Theory.

There is still much work to be done. We didn't provide conversion between the s, z and w' domains.

There is still work to be done restructuring the MISO QFT toolbox into actors and adding graphical capability to

the MIMO QFT toolbox. There is room for further toolbox development in the ares of LQR, LQG and H-o.

However, we laid complete, cohesive foundation paving the way for future development of ICECAP-PC.

7.2 Recommendations

A Scientific Calculator

ICECAP-PC includes a basic calculator courtesy of Borland Turbo Vision. This is a basic calculator

capable of addition, subtraction, multiplication, and division. The control systems engineer could use an

extended scientific calculator tailor made to control systems. This should include trigonometric functions,

exponential functions, and control calculations such as zeta for a given root location, etc. Improving the

calculator makes an excellent first step into object-orientation and Turbo Vision for future ICECAP-PC

programmers and would be a worthwhile project for a student in the first half of their AFIT studies.

Multiple Windows

From the outset of this project, we considered having multiple display windows, one for each domain (s,

z, w, and w'). Each window, being a different color and displaying data specific to their own domain would

provide an interesting and intuitive interface. We didn't implement this because we didn't implement the

different domains. Using object-orientation, this becomes an easy task. One merely creates multiple instances of

the same window. No modification of the window object is required.

Use of Actors

The last major breakthrough for this project was the use of actors, very small objects that performed one

specific mathematical function. This was a break from classical object-oriented logic that views a data item such

an a polynomial as an object that can do all of its own manipulations. Large objects are impractical and

cumbersome on a PC. However, there is virtually no limit to the number of very small specialized objects one

can declare. Using actors, we were able to make ICECAP-PC very fast and nimble. All future ICECAP-PC
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development should follow thi, jattem. In i.t, there still is much work to be done converting the current

object-oriented code into an actor format. Currently, only the matrix, polynomial, and transfer function families

are in this structure. One word of caution: The order of units in the uses clause of the main program effects the

success of this structure. This contradicts the Borland programming manuals. If the order of the units clause is

wrong, the actors will cause a constant hard disk access that is both annoying and very slow.

The Root Finder

The current root finder, crucial to MIMO QFT, reaches performs at the level of the floating point

resolution of the machine. This isn't good enough. ICECAP should guarantee root finding to 20 significant

decimal digits. In order to do this, calculations must be performed with far greater resolution, say 100-200

decimal digits. None of the IEEE 754 floating point number definitions provide for this. Therefore, the root

finder must declare its own data structure and operate this way. Defining a new data structure for a number

entails defining all the base mathematical routines such as addition, subtraction, etc. Several options are

available and should be studies. Consider the following definitions

Number - Record
Integerpart: extended;
Decimalpart: extended;

end;

Number - Record
IntegerPart: Array[1..10001 of integer;
DecimalPart: Array(1..2001 of integer;

end;

Number - Record
UpperlntegerPart: String;
LowerIntegerPart: String;
DrcimalPart: String;

end;

Listing 7-1: Possible Numerical Definitions

In the first example, a number is defined as a record of two extended numbers. Operations on this type

would be very fast, but may lack in other areas. The second example defines a number as two very large integer

arrays and the third defines a number as two string variables. Each of these definitions coulu yield advantages

and disadvantages and should be studied for possible use in the root finder.
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Extensions to the MIMO QFT Toolbox

The current MIMO QFT toolbox provides basic manipulations needed for the MIMO QFT problem.

However, it cannot be considered a full featured package in its present form. Several upgrades should be

considered for this toolbox.

1. With the root finder upgrade mentioned previously, it MIMO toolbox could be extended to handle

larger plant matrices with higher order transfer function elements. A reasonable goal is a 10 x 10 matrix of 6th

order transfer functions.

2. Graphics capabilities now present in the MISO QFT Toolbox should be ported to the MIMO QFT

toolbox. This includes the bounds generation, the L4 formulation and the simulation g'aphics.

3. The current MIMO QFT Toolbox does not allow the development of the plant matrix from the

actuator dynamic components and raw plant components. Nor does it allow the formation of a weighing matrix

or the use of the Binet-Cauchey theorem. Future modifications to the MIMO QFT Toolbox should include these.

4. The current MIMO QFT Toolbox does not allow design via the improved design method. The next

version of the toolbox should specifically allow this.

Future Tool Boxes

Finally, there is room for marty more toolboxes. Every conceivable control system theory should be

exploited in toolbox form using ICECAP-PC toolbox methodology. The MIMO QFT toolbox provides an

excellent structural example for future development.
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Appendix B: Testing and Validation

This appendix contains several test results for numerical algorithms used in ICECAP-PC. This is a

representative sample and not a complete list simply because there are far too many tests to include with any

meaning.

1. Matrix Condition Number Test (pg B-4)

This test of the matrix condition number algorithm first finds the condition number of a given matrix

per eq 2-2. It then finds the inverse of the matrix and determines the difference between the actual roundoff

error and the projected roundoff error (eq 2-3). We found that for matrix inversion, the actual roundoff error

sometimes exceeded the projected error. However, for other operations (not shown) the projected roundoff error

gave a good maximum error estimate. We performed this test because at one point in the project we considered

using the error anticipated by eq 2-2 to round off the resultant matrix elements. It remains an open option, but

one we did not implement.

2. QR Shift Algorithm Test (pg B-5)

Our development of the QR Shift algorithm is based on the code given in Numerical Recipes for Pascal

(Press, 1988). This source implements the QR Shift for the general real valued matrix that may contain complex

eigenvalues in conjugate pairs. It recommends a three part sequence of balancing, upper Hessenberg conversion,

and QR Shift (Sec II). However Numerical Recipes says nothing about a general complex valued matrix that

may have single complex eigenvalues. No other reference that handled this case either. We instead build a test

bench in Matlab to perform the QR Shift. The effort was a near failure until our discovery that after the QR

Shift algorithm, complex eigenvalues can be hidden as eigenvalues of a 2x2 block along the main diagonal!

With this discovery, we were able to modify the code from Numerical Recipes to handle the general complex

valued matrix. This algorithm now appears in ICECAP-PC replacing that of previous versions that used roots of

the characteristic equation. The listing for test 2 yielded this discovery!

3. QR Shift Code Modification Test (pg B-9)

Section 4.3 shows the testing performed on the final version of the ICECAP-PC QR Shift algorithm. It

is included as an example of setting test points inside a numerical method to watch variables under iterations.

Appendix B - 1



4. QR Shift Final Verification for multiple eigenvalues (pg B-29)

Section 4.4 shows some final validation tests for the QR Shift algorithm as implemented in ICECAP to

determine behavior in the presence in multiple real eigenvalues. We found that in the presence of multiple real

eigenvalues, the error associated with the calculated eigenvalues was symmetric about the actual eigenvalues.

Therefore, we gave careful consideration to using the eigenvalue algorithm to perform root finding for

polynomials via the fabrication of Jordan-Canonical matrices. However, as Jordan-Canonical matrices are

notoriously ill-conditioned and imbalanced, this process would yield considerable error for high order

polynomials. Therefore, standard root finding techniques are used for polynomials in ICECAP-PC.

5. LU Decomposition (pg B-30)

Section B-5 shows the final stage of testing for the LU Decomposition algorithm used for the general

complex matrix. The purpose of this test was simply to take several matrices, decompose them into their upper

and lower triangular components and then multiply these two components to see what error resulted. We did

this for several matrices. This section shows a real matrix, a poorly condition Hilbert matrix and a general

complex matrix.

6. Inversion of Plant Matrix (pg B-32)

This section shows the tests performed on the LU Decomposition algorithm for matrices of transfer

function as implemented in the MIMO QFT toolbox. During the process of testing this code, we worked out a

3x3 matrix inversion by hand and compared it step by step with the computer answers. In all cases of

discrepancy, the computer was right and I was wrong! The reader interested in LU Decomposition as a solution

to the inverse of plant matrix P should consider working out such an example by hand. It then becomes quite

interesting to watch root cancellation take place on a element by element basis.

7. The Root Finder (pg B-37)

Section B-7 shows our tests comparing our root Finder with that of PC-Matlab. In all cases we exceed

the accuracy attained in Matlab, often by several decimal places. However, in the process we noticed something

that forced us to modify our algorithm. The ICECAP-PC root finder first calls the Laguerre method to make the

initial cut at the roots. The Laguerre method returns a set of values whose error with the actual roots is
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symmetrical with the aciual roots in the case of root multiplicity. Hence coefficient reconstruction is extremely

accurate after root finding with the Laguerre algorithm. The second step used by the ICECAP root finder is the

polishing of the rough roots with either the Bairstow method in the case of real pairs or with Brents method in

the case of single real roots or high root multiplicity. We were able to achieve extremely accurate roots with

these two polishing methods. Improvements of 4-5 decimal places over Laguerre's method was common.

However this added accuracy came at a loss of error symmetry about the actual values. Polynomial coefficient

reconstruction is often degraded with the better roots found by the polishing methods! We finally modified our

algorithm as follows.

8. Root Finder Coefficient Reconstruction Error Test (pg B-40)

After encountering the above mentioned problem we modified the root finder to take the first cut using

Laguerre, store the Laguerre roots, take the second cut using Bairstow and Brent, and store the polished roots,

reconstruct the polynomial coefficients with the Laguerre roots and find a reconstruction error, reconstruct the

polynomial coefficients with the polished roots and find the polished reconstruction error, and compare the two

errors taking the root set yielding the least reconstruction error. Very often ICECAP settles on the less accurate

set of roots because the coefficient reconstruction error is minimized.
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Matrix Condition Number Test

Fred L. Trevino, 1st Lt
EENG 799
Instructor: Prof Lamont

Commoent:

The following matrix is a Hilbert (badly conditioned matrix) for n - 3

Matrix A

1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

Matrix B - The Inverse Matrix Of Matrix A

Matrix B

9.0000 -36.0000 30.0000
-36.0000 192.0000 -180.0000
30.0000 -180.0000 180.0000

Matrix B

9.000000000000000020 -36.000000000000000100 30. 000000000000000100
-36. 000000000000000100 192.000000000000001000 -180. 000000000000001000

30.000000000000000100 -180.000000000000001000 180. 000000000000001000

Comment:
Note that error has crept into the 17th bit position as predicted by Chapra

Comnent:
Condition numbers can therefore be used to truncate error at known low bits

Comment:

The second test uses LU Decomposition to test the inverse of the 3x3 Hilbert Matrix

Matrix A

1.00000000000000 0.50000000000000 0. 33333333333333
0.50000000000000 0.33333333333333 0. 25000000000000
0.33333333333333 0.25000000000000 0.20000000000000

Matrix B - The Inverse Matrix Of Matrix A

Matrix B

8.999999999999999970 -35.999999999999999900 29.999999999999999900
-35.999999999999999900 191.999999999999999000 -179.999999999999999000
29.999999999999999900 -179.999999999999999000 179.999999999999999000

Comment:

it is only acurate to 15 significant bits

Matrix B

9.00000000000000 -36.00000000000000 30.00000000000000
-36.00000000000000 192.00000000000000 -180.00000000000000

30.00000000000000 -180.00000000000000 180.00000000000000

CoRmnt:
Here we see that the calculation of the inverse is only accurate to 15 significant bits
reguardleas of which method we use for a 3x3 matrix. Freda eq predicts rouding error
to the 19-3-16th bit. The fifteenth bit must be used for rounding, therefore
rounding to 14 sig digits will produce the exact correct answer.
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Eigenvalues using OR Shift

Fred L. Trevino
25 June 92
This is a test of Dr Jones OR Shift Algorithm for a general complex matrix
with single eigenvalues. This will validate the formation of the Householder
matrix by the method taught by Dr Jones.

a-

1.0000 + 1.0000i 4.0000 - 2.0000i 3.0000 - 1.0000i
4.0000 + 2.0000i 4.0000 6.0000 + 8.0000i

0 + 1.0000i 3.0000 1.0000 + 7.0000i

a InMat - balance(a)

InMat -

1.0000 + 1.0000i 4.0000 - 2.0000i 1.5000 - 0.50001
4.0000 + 2.0000i 4.0000 3.0000 + 4.0000i

0 + 2.00001 6.0000 1.0000 + 7.00001

• InMat - hess(InMat)

InMat -

1.0000 + 1.0000i 4.1079 - 1.3693i 1.3693 + 1.36931
4.3818 + 2.1909i 3.6667 + 0.83331 4.9333 + 6.3000i

0 3.0000 + 0.16671 1.3333 + 6.1667i

eigtst
M Undefined function or variable.
Symbol in question -- AP eigtst

eigentst

-Main Menu -----

1) Input Matrix
2) Specify Ctr
3) Run Test
4) Display Result
5) Quit

Select a menu number:
Enter Iteration Count:

Ctr -

25

Ctr -

25

Press Enter To Continue

- ---- Main Menu -----

1) Input Matrix
2) Specify Ctr
3) Run Test
4) Display Result
5) Quit

Select a menu number: Running .....
Iteration:

1
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Xmat -

1.0000 + 1.0000i
4.3818 + 2.1909i

0

Zmat -

1
0
0

Sigma -

4.4737 + 2.36941

VSquare -

65.0787

Hmat -

-0.2697 + 0.0000i -0.9640 - 0.0852i 0
-0.9640 + 0.0852i 0.2624 0

0 0 1.0000

Rmat -

-4.3069 - 2.75481 -4.5713 - 0.7464i -4.5882 - 6.8624i
0.1008 - 0.3038i -2.8810 + 1.88861 -0.1419 + 0.45001

0 3.0000 + 0.16671 1.3333 + 6.1667i

Qmat -

-0.2605 - 0.0000i -0.9570 - 0.08461 0
-0.9570 + 0.08461 0.2677 - 0.0000i 0

0 0 1.0000

y -

5.5601 + 1.04551 2.6650 + 2.80091 -4.5882 - 6.86241
2.5712 - 1.97191 -0.8935 + 0.7879i -0.1419 + 0.45001

-2.8852 + 0.09421 0.8032 + 0.0446i 1.3333 + 6.16671

Iteration:

I -

2

Xmat -

5.5601 + 1.04551
2.5712 - 1.97191

-2.8852 + 0.09421

Zmat -

1
0
0

Sigma -

6.3926 + 0.07371
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VSquare -

153.4983

Hmat -

-0.8778 + 0.00001 -0.3717 - 0.34461 0.4480 + 0.0567i
-0.3717 + 0.34461 0.8632 - 0.0000i 0.0991 - 0.0710i
0.4480 - 0.0567i 0.0991 + 0.0710i 0.8914 + 0.0000i

Rmat -

-7.8138 - 1.1923i -1.3785 - 2.37811 4.4828 + 8.7437i
-0.4866 + 0.03941 -2.6442 + 0.50481 4.5173 + 1.8744i
0.3728 + 0.22391 1.9243 + 1.1579i -1.3021 + 2.7179i

Qmat -

-0.6718 + 0.00001 -0.3309 - 0.3068i 0.3988 + 0.0505i
-0.3309 + 0.3068i 0.8782 - 0.0000i 0.0882 - 0.0632i

0.3988 - 0.0505i 0.0882 + 0.0632i 0.9033 + 0.0000i

y -

8.6650 + 4.42581 0.8522 + 1.75791 0.7215 + 6.9056i
2.9433 - 0.48541 -1.8690 + 1.0303i 3.6832 + 1.8959i

-1.6245 + 1.20651 1.3486 + 0.9858i -0.7960 + 2.5438i

Iteration:

i -

25

Xmat -

7.6043 + 4.14511
0.1410 + 0.3151i

-0.1389 - 0.18811

Zmat -

1
0
0

sigma -

-7.6043 - 4.1451i

Vsquare -

0.1704

Boat -

1.0000 0 0
0 -0.3988 + 0.00001 0.9256 + 0.20261
0 0.9256 - 0.20261 0.3581 - 0.0000i

Rmat -

7.6043 + 4.14511 -2.6219 - 6.29941 -0.4115 - 5.00331
-0.1467 - 0.32791 3.5471 - 1.21511 -0.4863 - 0.64141

0.1446 + 0.19571 0.0817 + 2.96071 1.7685 + 3.29641
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Qmat -

1.0000 0 0
0 -0.3441 - 0.0000i 0.8895 + 0.1947i
0 0.8895 - 0.1947i 0.3832 + 0.0000i

y -

7.6043 + 4.1451i -0.4380 - 2.2024i -1.2632 - 8.0309i
-0.1467 - 0.32791 -1.7781 - 0.0577i 3.2053 - 0.6359i

0.1446 + 0.19571 2.1868 + 1.5689i 0.1739 + 3.9125i

- Main Menu

1) Input Matrix
2) Specify Ctr
3) Run Test
4) Display Result
5) Quit

Select a menu number: The Final Result Is:

Result -

7.6043 + 4.1451i -0.4380 - 2.2024i -1.2632 - 8.0309i
-0.1467 - 0.32791 -1.7781 - 0.05771 3.2053 - 0.63591

0.1446 + 0.19571 2.1868 1.5689i 0.1739 + 3.9125i

%Now, the result of 25 iterations is as follows:

Result -

7.6043 + 4.14511 -0.4380 - 2.20241 -1.2632 - 8.0309i
-0.1467 - 0.3279i -1.7781 - 0.0577i 3.2053 - 0.6359i

0.1446 + 0.19571 2.1868 + 1.5689i 0.1739 + 3.9125i

eig(a)

ans -

-3.4786 + 0.5744i
1.8179 + 3.40371
7.6607 + 4.02191 <- Note that this is close to element (1,1) of the result

test - tResult(2,2) Result(2,3); Result(3,2) Result(3,3)]

test -

-1.7781 - 0.05771 3.2053 - 0.63591 -> This is the two by two matrix
2.1868 + 1.56891 0.1739 + 3.91251 in the lower right hand corner

eig(test)

mns -
SThese are the two elgenvalues of the matrix

-3.4530 + 0.51031 in the lower right hand corner. They are also
1.8487 + 3.34451[ elgenvalues of the original matrix.

* save

Saving to: matlab.mat

* quit

42652 flops.
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The OR Shift Algorithm Implemented in ICECAP

Fred L. Trevino
EENG 799
Prof Gary I Lamont

: QRShift Test

Matrix C

0.0000 1.0000 0.0000
0.0000 0.0000 1.0000
6.0000 -1.0000 -4.0000

Balanced Form of Matrix C

0.0000 2.0000 0.0000
0.0000 0.0000 1.0000
3.0000 -1.0000 -4.0000

Hessenberg Form of Balanced Matrix C

0.0000 0.0000 2.0000
3.0000 -4.0000 -1.0000
0.0000 1.0000 0.0000

TP 1
TP 2
TP 3
TP 3
TP 4
TP 6
TP 10
TP 12

its 1
nn: 3

: -- 0.2500
q: 0.0000
r: 0.7500
S: 1.3333
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 0.0000
y: -4.0000
z: 0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 20
TP 22
TP 23

its 1
nn: 3

p: 0.0000
q: 0.0000
r: 0.7208
8: 0.7906
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 1.3162
y: 0.0000
z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23
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its 1
nn: 3

p: 0.7208
q: 0.0000
r: 0.7208
s: 0.7906
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 1.3162
y: 0.0000
Z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 1
nn: 3

: -- 2.0000
q: 0.0000
r: 0.7208
s: 0.7906
t: 0.0000
u: 0.55637508958790268E+0105
v* 0.0000
x: 1.3162
y: 0.0000
Z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 1
nn: 3

P: -0.6000
q: 0.0000
r: 0.7208
s: 0.7906
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 1.3162
y: 0.0000
z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 1
nn: 3

p: 3.0000
q: 0.0000
r: 0.7208
8: 0.7906
t: 0.0000
U: 0.55637508958790268E+0105
v:, 0.0000
x: 1.3162
y: 0.0000
Z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25
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its 1
nn: 3

p: -1.8000
q: 0.0000
r: 0.7208
s: 0.7906
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 1.3162
y: 0.0000
z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 14

its 1
nn: 3

P: 0.0000
q: 1.8000
r: 0.7208
s: 0.7906
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 1.3162
y: 0.0000
z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 16

its 1
nn: 3

P: 0.0000
q: 1.8000
r: 0.0000
s: 0.7906
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 1.3162
y: 0.0000
z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 17

its 1
nn: 3

P: 0.0000
q: 1.0000
r: 0.0000
8: 0.7906
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 1.8000
y: 0.0000
z: 0.9487
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 21
TP 22
TP 22
TP 24
TP 24
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TP 24
TP 26
TP 3
TP 3
TP 4
TP 6
TP 10
TP 12

its 2
nn: 3

P: -0.3060
q: 0.4113
r:. -0.2827
a: 11.1845
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: -4.0000
y: -0.6000
z: 0.6000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 20
TP 22
TP 23

its 2
nn: 3

p: 1.4305
q: -0.4614
r: 0.3172
8: -0.5854
t. 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 1.5227
y: -0.7025
z: 0.4830
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Elgenvalue 3 0.0000 0.0000
TP 22
TP 23

its 2
nn: 3

P: -0.5262
q: -0.4614
r: 0.3172
s: -0.5854
t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: 1.5227
y: -0.7025
z: 0.4830
Elgenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 2
an: 3
-------- l-----------------------

p: -0.4660
q: -0.4614
r: 0.3172
6: -0.5854
t: 0.0000
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U: 0.55637508958790268E+0105
V: 0.0000
x: 1.5227
y: -0.7025
z: 0.4830
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 2
nn: 3
--------------------------------

p: -2.3056
q- -0.4614
r: 0.3172
s: -0.5854
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 1.5227
y: -0.7025
z: 0.4830
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0,0000 0.0000
TP 24
TP 25

its 2
nn: 3

P: -0.5347
q.. -0.4614
r: 0.3172
S: -0.5854
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
X: 1.5227
y: -0.7025
Z: 0.4830
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 2
nn: 3

p: -0.8321
q-. -0,4614
r: 0.3172
s: -0.5854
t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: 1.5227
y: -0.7025
z: 0.4830.
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Elgenvalue 3 0.0000 0.0000
TP 14

its 2
nn: 3

P: -0.2603
q: 0.1412
r: 0.3172
8: -0.5854
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
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X: 1.5227
y: -0.7025
z: 0.4830
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 16

its 2
nn: 3

P: -0.2603
q: 0.1412
r: 0.0000
8: -0.5854
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 1.5227
y: -0.7025
z: 0.4830
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 17

its 2
ann: 3

p: -0.6484
q: 0.3516
r: 0.0000
a: -0.5854
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 0.4015
y: -0.7025
z: 0.4830
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 21
TP 22
TP 22
TP 24
TP 24
TP 24
TP 26
TP 3
TP 3
TP 4
TP 6
TP 10
TP 12

its 3
nn: 3

P: 0.8223
q 0.1344

r: 0.0432
a: 37.4230
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: -4.3027
Y: -0.4247

0.7274
Eigenvalue 1 0.0000 0.0000
Elgenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 20
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TP 22
TP 23

its 3
nn: 3

P: 0.7514
q: 0.0811
r: 0.0261
s: 0.8344
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 1.9856
y: 0.1611
z: 0.0518
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 3
nn: 3

p: 1.2018
q: 0.0811
r: 0.0261
s: 0.8344
t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: 1.9856
y: 0.1611
z: 0.0518
Eigenvalue 1 0.0000 0.0000
Elgenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 3
nn: 3

p: 1.8097
q: 0.0811
r: 0.0261
s: 0.8344
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
X: 1.9856
y: 0.1611
z: 0.0518
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 3
nn: 3

p: -1.7892
q: 0.0811
r: 0.0261
a: 0.8344
t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: 1.9856
y: 0.1611
z: 0.0518
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
ligenvalue 3 0.0000 0.0000
TP 24
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TP 25

its 3
nn: 3

p: 0.1380
q: 0.0811
r: 0.0261
s: 0.8344
t: 0.0000
U: 0. 5 5637508958790268E+0105
V: 0.0000
x: 1.9856
y: 0.1611
z: 0.0518
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 3
nn: 3

P: -0.0545
q: 0.0811
r: 0.0261
s: 0.8344
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 1.9856
y: 0.1611
z: 0.0518
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 14

its 3
nn: 3

P: 0.0371
q: 0.0156
r: 0.0261
8: 0.8344
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 1.9856
y: 0.1611
z: 0.0518
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 16

its 3
nn: 3

p: 0.0371
q: 0.0156
r: 0.0000
5: 0.8344
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 1.9856
y: 0.1611
z: 0.0518
Elgenvalue 1 0.0000 0.0000
Elgenvalue 2 0.0000 0.0000
Sigenvalue 3 0.0000 0.0000
TP 17

its 3
nn: 3
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p: 0.7042
q: 0.2958
r :0.0000
s :0.8344
t :0.0000
U: 0.55637508958790268E+0105
V : 0.0000
x: 0.0527
y: 0.1611
z: .0.0518
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 21
TP 22
TP 22
TP 24
TP 24
TP 24
TP 26
TP 3
TP 3
TP 4
TP 6
TP 10
TP 12

its 4
an: 3

---- -0.9840

q: 0.0151
r: -0.0010
2: 308.7020
t : 0.0000
u: 0. 55637508958790268E+0205
V: 0.0000
x: -3.6282
y: -1.3963
Z: 1.0246
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 20
TP 22
TP 23

its 4
anf: 3

q: -0.0077
r: 0.0005
8: -0.9841
t* 0.0000
u: 0. 55637508958790268E+0105
V : 0.0000
x: 1.9999
y: -0.0153
z: 0.0010
ELigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eligenvalue 3 0.0000 0.0000
TP 22
TP 23

its 4
anf: 3
---------------- --

P: 1.5475
q: -0.0077
r: 0.0005
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s: -0.9841
t: 0.0000
U: 0.55637508958790268E÷0105
V. 0.0000
x: 1.9999
y: -0.0153
Z. 0.0010
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 4
an: 3
--------------------------------

P: -0.9831
q: -0.0077
r: 0.0005
s: -0.9841
t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
X: 1.9999
y: -0.0153
Z: 0.0010
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TI 25

its 4
nn: 3

P: -2.0252
q: -0.0077
r: 0.0005
s: -0.9841
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
X: 1.9999
y: -0.0153
Z: 0.0010
Eigenvalue 1 0.0000 0.0000
Eiqenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 4
an: 3

--: -0.0247
q: -0.0077
r:. 0.0005
8: -0.9841
t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: 1.9999
y: -0.0153
z: 0.0010
Eigenvalue 1 0.0000 0.0000
Etgenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 4
an: 3

p; -- 0.0010
q: -0.0077
r: 0.0005
a: -0.9841

Appendix B - 18



t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: 1.9999
y: -0.0153
Z: 0.0010
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 14

its 4
nn: 3

p: 0.0002
q: -0.0000
r: 0.0005
8: -0.9841
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
X: 1.9999
y: -0.0153
Z: 0.0010
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 16

its 4
nn: 3

p: 0.0002
q: -0.0000
r: 0.0000
s: -0.9841
t-. 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 1.9999
y: -0.0153
Z: 0.0010
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 17

its 4
nn: 3

p: 0.8760
q: -0.1240
r: 0.0000
s: -0.9841
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 0.0002
y: -0.0153
z: 0.0010
Eigenvalue 1 0.0000 0.0000
Elgenvalue 2 0.0000 0.0000
Elgenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 21
TP 22
TP 22
TP 24
TP 24
TP 24
TP 26
TP 3
TP 3
TP 4
TP 6
TP 10
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TP 12

its 5
nn: 3

p: -- 0.9999
q: 0.0001
r: 0.0000
s: 69288.8960
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
X: -3.1570
y: -1.8431
z: 1.0001
Eigenvalue 1 0.0000 0.0000
Eigenvalne 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 20
TP 22
TP 23

its 5
nn: 3

P: 1.0001
q: -0.0000
r: -0.0000
8: -0.9999
t: 0.0000
u: 0.55637508958790268E+0105

0.0000
2.0000

y: -0.0001
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 5
nn: 3

P: 1.6997
q: -0.0000
r: -0.0000
8: -0.9999
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
X: 2.0000
y: -0.0001
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 5
nn: 3

p: 0.7813

q: -0.0000
-0.0000

8: -0.9999
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
1: 2.0000

-0.0001
Z: -0.0000
Sigenvalue 1 0.0000 0.0000
Sigenvalue 2 0.0000 0.0000
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Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 5
nn: 3

p: -2.0001
q: -0.0000
r: -0.0000
s: -0.9999
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x, 2.0000
y: -0.0001
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 5
nn: 3

: -- -0.0001
q: -0.0000
r: -0.0000
s: -0.9999
t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: 2.0000
y: -0.0001
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 5
nn: 3

: - -0.0000
q: -0.0000
r: -0.0000
8: -0.9999
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0001
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 14

its 5
nn: 3

p: 0.0000

q: 0.0000
r: -0.0000
2: -0.9999
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0001
z: -0.0000
Eigenvalue 1 0.0000 0.0000
ELigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 16
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its 5
nn: 3

0.00
q : 0.0000

0.0000
-0.9999

t : 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 2.0000
y: -0.0001
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 17

its 5
nn: 3

p: 0.9625
q- 0.0375
r: 0.0000
S: -0.9999
t: 0.0000
U: 0. 55637508958790268E+0105
V: 0.0000
x : 0.0000
y: --0.0001
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 21
TP 22
TP 22
TP 24
TP 24
TP 24
TP 26
TP 3
TP 3
TP 4
TP 6
TP 10
TP 12

its 6
nn: 3

p: -1.0000
q: 0.0000
r: -0.0000
s: 6298606684.8862
t. 0.0000
u: 0. 55637508958790268E+0105
v: 0.0000
x: -3.0160
y: -1.9840
z: 1.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eiqenvalue 3 0.00O0 0.0000
TP 18
TP 19
TP 20
TP 22
TP 23

it. 6
nfl: 3

-- -1.000000
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q: -0.0000
r: 0.0000
s: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 2.0000
y: -0.0000
z: 0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 6
nn: 3

: - - 1.7290
q: -0.0000
r: 0.0000
s: -1.0000
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
X: 2.0000
y: -0.0000
z: 0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 6
nn: 3

P: -0.7146
q: -0.0000
r: 0.0000
s: -1.0000
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
z: 0.0000
Eigenvaiue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 6
nn: 3

p: -2.0000
q: -0.0000
r: 0.0000
8: -1.0000
t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: 2.0000
y: -0.0000
z: 0.0000
Eiqenvalue 1 0.0000 0.0000
Rigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 6
nf: 3

P: -0.0000
-0.0000

Appendix B - 23



r: 0.0000
s: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
z: 0.0000
Eigenvalue 1 0.00CO 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 6
nn: 3

p: -0.0000
r: 0.0000
r: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 2.0000
y: -0.0000
z: 0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 14

its 6
nn: 3

;: --- --- --0.0000 - - - - - -
q: -0.0000
r: -0.0000
8: -1.0000
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
z: 0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigevvalue 3 0.0000 0.0000
TP 16

its 6
nn: 3

p: -0.0000
q: -0.0000
r: 0.0000
0: -1.0000
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
z: 0.0000
Eigenvalue 1 0.0000 0.OOQO
Eigenvalue 2 0.0000 0.0000
Sigenvalue 3 0.0000 0.0000
TP 17

itr 6
nn: 3

P: 0.9957
q: -0.0043
r: 0.0000
8: -1.0000
t: 0.0000
u: 0.55637508958790268E+0105
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V: 0.0000
x: 0.0000
y: -0.0000
z: 0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 21
TP 22
TP 22
TP 24
TP 24
TP 24
TP 26
TP 3
TP 3
TP 4
TP 6
TP 10
TP 12

its 7
nn: 3

P: -1.0000
q: 0.0000
r: 0.0000
s: 66626453394759628100.0000
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: -3.0002
y: -1.9998
z: 1.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 20
TP 22
TP 23

its 7
nn: 3

P: 1.0000
q: -0.0000
r: -0.0000
8: -1.0000
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
Z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 7
nn: 3

P: 1.7320
q: -0.0000
r: -0.0000
8: -1.0000
t: 0.0000
u: 0.5R637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
z: -0.0000
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Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 22
TP 23

its 7
nn: 3

P: 0.7072
q: -0.0000
r: -0.0000
8: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
Z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 7
nn: 3

P: -2.0000
q: -0.0000
r: -0.0000
8: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 7
nn: 3

p: -0.0000
q: -0.0000
r: -0.0000
s: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
V: 0.0000
x: 2.0000
y: -0.0000
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 24
TP 25

its 7
nnf: 3

P: 0.0000
q: -0.0000
r: -0.0000
a: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 2.0000
y: -0.0000
z: -0.0000
Eigenvalue 1 0.0000 0.0000
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Eiqenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 14

its 7
nn: 3
--------------------------

P: 0.0000
q: -0.0000
r: -0.0000
s: -1.0000
t: 0.0000
U: 0. 55637508958790268E+0105
v : 0.0000
x: 2.0000
y: -0.0000
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 16

its 7
nn: 3
--------------------------

P : 0.0000
q: -0.0000
r: 0.0000
8: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
v., 0.0000
X: 2.0000
y: -0.0000
z,: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eiqenvalue 3 0.0000 0.0000
TP 17

its 7
nn: 3
-------------- ------------
p: 1.0000
q : -0.0000
r: 0.0000
s: -1.0000
t: 0.0000
U: 0.55637508958790268E+0105
v* 0.0000
X: 0.0000
y: -0.0000
z: -0.0000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 18
TP 19
TP 21
TP 22
TP 22
TP 24
TP 24
TP 24
TP 26
TP 3
TP 3
TP 6
TP 7

its 7
nn: 3
--------- --------------
P: 0.5003
q: 0.2500
r: 0.0000
s : 2.9997
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t: 0.0000
u: 0.55637508958790268E+0105
V: 0.0000
x: -3.0003
y: -1.9997
z: 0.5000
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 0.0000 0.0000
Eigenvalue 3 0.0000 0.0000
TP 8

its 7
no: 3

P: 0.5003
q: 0.2500
r: 0.0000
s: 2.9997
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
X: -3.0003
y: -1.9997
z: 1.0003
Eigenvalue 1 0.0000 0.0000
Eigenvalue 2 -2.0000 0.0000
Eigenvalue 3 -3.0000 0.0000
TP 2
TP 4
TP 5

its 0
nn: 0

P: 0.5003
q: 0.2500

0.0000
8: 2.9997
t: 0.0000
u: 0.55637508958790268E+0105
v: 0.0000
x: 1.0000
y: -1.9997
z: 1.0003
Eigenvalue 1 1.0000 0.0000
Eigenvalue 2 -2.0000 0.0000
Eigenvalue 3 -3.0000 0.0000

its 0
nf: 0

p: 0.5003
q: 0.2500
r: 0.0000
a: 2.9997
t: 0.0000
U: 0.55637508958790268E+0105
v: 0.0000
x: 1.0000
y: -1.9997
z: 1.0003
Eigenvalue 1 1.0000 0.0000
Eigenvalue 2 -2.0000 0.0000
Eigenvalue 3 -3.0000 0.0000

Eigenvalues of Matrix C

1.0000
-2.0000
-3.0000
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Final Test of QR Shift For ICECAP-PC

Fred L. Trevino
EENG 799
Prof Gary I Lamont

: This is the first test matrix in Jordan Canonical Form

Matrix C

0.0000 1.0000 0.0000
0.0000 0.0000 1.0000
6.0000 -1.0000 -4.0000

Eigenvalues of Matrix C

1.00000000000000000
-3.00000000000000000
-2.00000000000000000

t The second test matrix is given in Numerical Recipes

Matrix E

1.0000 2.0000 0.0000 0.0000 0.0000
-2.0000 3.0000 0.0000 0.0000 0.0000
3.0000 4.0000 50.0000 0.0000 0.0000

-4.0000 5.0000 -60.0000 7.0000 0.0000
-5.0000 6.0000 -70.0000 8.0000 -9.0000

Eigenvalues of Matrix E

50.00000000000000000
2.00000000000000000 - 1.73205080756887730j
2.00000000000000000 + 1.73205080756887730j

-9.00000000000000000
7.00000000000000000

The third matrix is a complex matrix with distinct complex eigenvalues

Matrix A

1.0000 + 1.0000j 4.0000 - 2.0000j 3.0000 - 1.0000j
4.0000 + 2.0000j 4.0000 6.0000 + 8.0000j
0.0000 + 1.0000j 3.0000 1.0000 + 7.0000j

Eigenvalues of Matrix A

-3.47855955887271427 + 0.57437430768745852J
1.81789299597115922 + 3.40373402863058531j
7.66066656290155505 + 4.02189166368195617J
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LU Decompsition

Fred L. Trevino
EENG 799
Prof Gary I Lamont

Comment:
This is a test of the LU Decomposition Method. I will Decompose three matricies, multiply them back

together and compare.

Matrix A

0.000000000000000 1.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 1.000000000000000
6.000000000000000 -1.000000000000000 -4.000000000000000

The LU Decomposition is Given By:

L Component

1.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 1.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 1.000000000000000

U Component

6.000000000000000 -1.000000000000000 -4.000000000000000
0.000000000000000 1.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 1.000000000000000

The L and U Components Multiplied Together Equal:

Matrix B

0.000000000000000 1.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 1.000000000000000
6.000000000000000 -1.000000000000000 -4.000000000000000

Matrix A

0.000000000000000 1.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 1.000000000000000
6.000000000000000 -1.000000000000000 -4.000000000000000

Comment:
This was a Jordan Canonical Form Matrix

Comment:

Comment:

The second test is to to a 5x5 Hilbert matrix

Matrix I

1.000000000000000 0.500000000000000 0.333333333333333 0.250000000000000 0.200000000000000
0.500000000000000 0.333333333333333 0.250000000000000 0.200000000000000 0.166666666666667
0.333333333333333 0.250000000000000 0.200000000000000 0.166666666666667 0.142857142857143
0.250000000000000 0.200000000000000 0.166666666666667 0.142857142857143 0.125000000000000
0.200000000000000 0.166666666666667 0.142857142857143 0.125000000000000 0.111111111111111

The WU Decomposition is Given By:

L Component

1.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.200000000000000 1.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.500000000000000 1.250000000000000 1.000000000000000 0.000000000000000 0.000000000000000
0.333333333333333 1.250000000000000 0.533333333333333 1.000000000000000 0.000000000000000
0.250000000000000 1.125000000000000 0.200000000000000 0.642957142857143 1.000000000000000

Appendix B - 30



U Component

1. 000000000000000 0.500000000000000 0.333333333333333 0.250000000000000 0.200000000000000
0.000000000000000 0.066666666666667 0.076190476190476 0.075000000000000 0.071111111111111
0.000000000000000 0.000000000000000 -0.011904761904762 -0.018750000000000 -0.022222222222222
0.000000000000000 0.000000000000000 0.000000000000000 -0.000416666666667 -0.000846560846561
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 -0.000011337868481

The L and U Components Multiplied Together Equal:

Matrix J

1.000000000000000 0.500000000000000 0.333333333333333 0.250000000000000 0.200000000000000
0.500000000000000 0.333333333333333 0.250000000000000 0.200000000000000 0.166666666666667
0.333333333333333 0.250000000000000 0.200000000000000 0.166666666666667 0.142857142857143
0.250000000000000 0.200000000000000 0.166666666666667 0.142857142857143 0.125000000000000
0.200000000000000 0.166666666666667 0.142857142857143 0.125000000000000 0.111111111111111

Matrix I

1.000000000000000 0.500000000000000 0.333333333333333 0.250000000000000 0.200000000000000
0.500000000000000 0.333333333333333 0.250000000000000 0.200000000000000 0.166666666666667
0.333333333333333 0.250000000000000 0.200000000000000 0.166666666666667 0.142857142857143
0.250000000000000 0.200000000000000 0.166666666666667 0.142857142857143 0.125000000000000
0.200000000000000 0.166666666666667 0.142857142857143 0.125000000000000 0.111111111111111

The Determinant Of Matrix I is 0.000000000003749

Comment:
Note how poorly conditioned this matrix is. Yet I did not loose even a single significant digit

Comment:

Comment:

The last test is with a complex matrix

Matrix C

1.0000000000 + 2.0000000000j 4.0000000000 + 5.OOOOOOOOOOj 7.0000000000 + 3.0000000000j
3.0000000000 + 4.0000000000j 7.0000000000 + 5.OOOOOOOOOOj 3.0000000000 + 5.OOOOOOOOOOj
9.0000000000 + 4.0000000000j 3.0000000000 + 1.0000000000j 3.0000000000 + 6.0000000000j

The LU Decomposition is Given By:

"L Component

1.000000000000000 0.000000000000000 0.000000000000000
0.443298969072165 + 0.247422680412371J 1.000000000000000 0.000000000000000
0.175257731958763 + 0.144329896907216j 0.769966722129784 + 0.245840266222962j 1.000000000000000

"L Component

9.0000000000 + 4.OOOOOOOOOOJ 3.0000000000 + 1.O000000000j 3.0000000000 + 6.OOOOOOOOOOJ
0.0000000000 5.9175257731 + 3.8144329896j 3.1546391752 + 1.5979381443J
0.0000000000 0.0000000000 5.3040765391 - 0.4904328125j

The L and U Components Multiplied Together Equal:

Matrix D

1.0000000000 + 2.OOOOOOOOOOJ 4.0000000000 + 5.0000000000j 7.0000000000 + 3.OOOOOOOOOOJ
3.0000000000 + 4.OOOOOOOOOOj 7.0000000000 + 5.0000000000J 3.0000000000 + 5.OOOOOOOOOOj
9.0000000000 + 4.0000000000J 3.0000000000 + 1.O000000000J 3.0000000000 + 6.OOOOOOOOOOJ

Matrix C

1.0000000000 + 2.OOOOOOOOOOJ 4.0000000000 + 5.OOOOOOOOOOJ 7.0000000000 + 3.0000000000J
3.0000000000 + 4.OOOOOOOOOOJ 7.0000000000 + 5.0000000000J 3.0000000000 + 5.OOOOOOOOOOJ
9.0000000000 + 4.0000000000J 3.0000000000 + 1.0000000000J 3.0000000000 + 6.OOOOOOOOOOJ

Comient:
Again, I did not loose any significant digits in the process.
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Inversion of Plant Matrix for MIMO OFT

Fred L. Trevino, Capt
EEE 799: Masters Thesis
Dr Gary I Lamont

The Matrix to be inverted is given by the following transfer functions:

MIM0 Plant f1,1i Plant Matrix 1

1.0000

s + 1.0000

MIMO Plant [1,21 Plant Matrix 1

0.2000

2
s + 3.0000 + 2.0000

MIMO Plant [2,11 Plant Matrix 1

0.5000

s + 1.0000

MIMO Plant [2,21 Plant Matrix 1

0.5000 ( s + 0.0000

2
a + 3.0000 + 2.0000

The Combined LU Decomposed Matrix is given by the following transfer functions:
Note that the diagonal ones of the Lower Triangular matrix are assumed

LUD Plant [1,1] L/U Matrix: 1

1.0000

6 + 1.0000

LUD Plant [1,2] L/U Matrix: 1

0.2000

2
s + 3.0000 + 2.0000

WUD Plant [2,11 L/U Matrix: 1

0.5000

1.0000

LUD Plant [2,2] L/U Matrix: 1

0.5000 ( s - 0.2000

2
a + 3.0000 + 2.0000

Now that the matrix is decomposed, we use forward and backsubstitution
to process the inverse. We input the columns of the identity matrix
one column at a time and get the inverse one column at a time. The following
text are the results of the internal multiplications, divisions, etc showing
how roots are internally cancelled and the growth of large order polynomials
is prevented.

Forward Substitution Process----------------

Forward Substitution Process----------------
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"* Multiplication **

First Operand: LUmat[ 2, 1]

0.5000

1.0000

Second Operand: BMat [ 1]

1.0000

1.0000

Result

0.5000

1.0000

*** Subtraction ***

First Operand

0.0000

1.0000

Second Operand

0.5000

1.0000

sum variable (sum - sum - a[i,j]*b[j])

-0.5000

1.0000

Back Substitution Process -

Division
First Operand: LUMat[ 2, 2]

sum variable (sum - sum - afi,j]*b[jJ)

-0.5000

1.0000

LUD Plant [2,2] L/U Matrix: 1

0.5000 ( a - 0.2000

2
a + 3.0000a + 2.0000

Answer: Element of Q

2
-1.0000 ( a + 3.0000s + 2.0000

a - 0.2000

Back Substitution Process

"** Multiplication ***

First Operand: LUmat[ 1, 2]

0.2000

2
a + 3.0000. + 2.0000
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Second Operand: BMat [ 2]

2
-1.0000 ( s + 3.0000s + 2.0000

s - 0.2000

Result

-0.2000

s - 0.2000

* Subtraction ***

First Operand

1.0000

1.0000

Second Operand

-0. 2000

a - 0.2000

sum variable (sum - sum - a[i,j]*b(j])

* + 0.0000

s - 0.2000

Division

First Operand: LUmat( 1, 1]

a + 0.0000

a - 0.2000

Second Operand:

1.0000

a + 1.0000

Answer: Element of Q

2
a + 1.0000s+ 0.0000

a - 0.2000

Forward Substitution Process ----------------

Forward Substitution Process,--------------

Back Substitution Process

Division
First Operand: Want[ 2, 2]

One

1.0000

1. 0000

LUD Plant [2,21 L/U Matrix: 1

0.5000 ( s - 0.2000

2
a + 3.0000a + 2.0000
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Answer: Element .-,f Q

2
2.0000 ( s + 3.0000s + 2.0000

s - 0.2000

Back Substitution Process----------------

*** Multiplication ***

First Operand: LUmat[ 1, 2]

0.2000

2
s + 3.0000s + 2.0000

Second Operand: BMat 1 2]

2

2.0000 ( s + 3.0000s + 2.0000

s - 0.2000

Result

0.4000

s - 0.2000

*** Subtraction ***

First Operand

0.0000

1.0000

Second Operand

0.4000

s - 0.2000

aum variable (sum - sum - a(i,jl*b[jJ)

-0.4000

a - 0.2000

Division
First Operand: LWmat[ 1, 1]

-0.4000

a - 0.2000

Second Operand:

1.0000

s + 1.0000

Answer: Element of Q

-0.4000 s s + 1.0000

a - 0.2000

The Inverted Matrix is given by the following transfer functions:

Answer: Element of 0

2
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s + 1.0000s+ 0.0000

s - 0.2000

Answer: Element of Q

-0.4000 ( s + 1.0000

s 0.2000

Second Operand: Bmat ( 2]

2
-1.0000 ( s + 3.0000s + 2.0000

s - 0.2000

Second Operand: BMat ( 2]

2
2.0000 ( s + 3.0000s + 2.0000

s - 0.2000

The following is the resulting Q Matrix Answer:

q-Plant [1,I] Q Matrix: 1

2
9 + 1.0000s+ 0.0000

s - 0.2000

q-Plant [1,2] Q Matrix: 1

-0.4000 ( s + 1.0000

s - 0.2000

q-Plant [2,1] 0 Matrix: 1

2
-1.0000 ( s + 3.0000s + 2.0000

s - 0.2000

q-Plant 12,2] Q Matrix: 1

2
2.0000 ( s + 3.0000s + 2.0000

a - 0.2000
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Root Finder Test

Fred L. Trevino
EENG 799
Root Finding Test of IceCap-PC
IceCap-PC vs Matlab 3.26

ICECAP-PC
Polynomial A

GAIN 1.00000000000000000
sA 6  SA 5  SA 4  SA 3  S^2 SAi SAO

POLY 1.0000 12.0000 58.00000 144.00000 193.00000 132.00000 36.00000
ROOTS -3.00000000000000000

-3.00000000000000000
-2.00000000000000000
-2.00000000000000000
-1.00000000000000000
-1.00000000000000000

Internal root representation accurate within: 3.40000000E-4932

MATLAB

1 12 58 144 193 132 36
* roots(e)

ans -
-3.00000000000005 + 0.00000028052156i
-3.00000000000005 - 0.00000028052156i
-1.99999999999996 + 0.00000023148497i
-1.99999999999996 - 0.00000023148497i
-0.99999999999999 + 0.00000006852833i
-0.99999999999999 - 0.00000006852833i

ICECAP-PC
Polynomial A
GAIN 1.00000000000000000

SA 7  SA 6  SA5 sA 4  s-3 SA 2  SA SAO

POLY 1.0000 13.0000 70.0000 202.0000 337.0300 325.0000 168.0000 36.0000
ROOTS -3.00000000000000000

-3.00000000000000000
-2.00000000000000000
-2.00000000000000000
-1.00004935264587402
-0.99972993915088197
-1.00022070820324401

Internal root representation accurate within: 2.23355772E-0006

ICECAP-Pr
Polynomial A
GAIN : 1.00000000000000000

SA6  SA 5  s 84 sA 3  8 A2  sAl SAO

POLY : 1.0000 18.0000 123.0000 396.0000 615.0000 450.0000 125.0000
ROOTS : -5.00000000000000000

-5.00000000000000000
-5.00000000000000000
-1.00035554842761348
-0.99964451789855957
-1.00000000000000000

Internal root representation accurate within: 7.50811614E-0006

MATLAB
a - [1 18 123 396 615 450 1251

' roote(a)
ans -

-5.00006006048980
-4.99996996975510 + 0.000052013708981
-4.99996996975510 - 0.000052013708981
-1.00000494009214 + 0.000008557997461
-1.00000494089214 - 0.000008557997461
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-0.99999011821573

ICECAP-PC
Polynomial A

GAIN 1.00000000000000000
SA 6  sA 5  sA4 s S3 sA2 sAl sA0

POLY 1.0000 10.0000 41.0000 88.0000 104.0000 64.0000 16.0000
ROOTS -2.00000000000000000

-2.00000000000000000
-2.00000000000000000
-2.00000000000000000
-1.00000000000000000
-1.00000000000000000

Internal root representation accurate within: 3.40000000E-4932

" b - [1 10 41 88 104 64 16]
" roots(b)
ans -

-2.00024785812781 + 0.00024789014765i
-2.00024785812781 - 0. 00024789014765i
-1.99975214187220 + 0.00024782611280i
-1.99975214187220 - 0.000247826112801
-1.00000000000000 + 0.00000004785137i
-1.00000000000000 - 0. 00000004785137i

ICECAP-PC
Polynomial A
GAIN 1.00000000000000000

sA 6  sA 5  SA4 SA3 SA2 SA1 SA
0

POLY : 1.0000 21.0000 175.0000 735.00000 1624.0000 1764.0000 720.0000
ROOTS : -6.00000000000000000

"-5.00000000000000000
-4.00000000000000000
-3.00000000000000000
-2.00000000000000000
-1.00000000000000000

Internal root representation accurate within: 3.40000000E-4932

" C - [1 21 175 735 1624 1764 7201
" roots(c)
ans -
"-5.99999999999991
-5.00000000000039
"-3.99999999999940
-3.00000000000039
-1.99999999999991
-1.00000000000001

ICECAP-PC
Polynomial A
GAIN : 1.00000000000000000

sA 6  8 A 5  sA 4  sA 3  aA
2  sAl SA 0

POLY : 1.0000 6.0000 15.0000 20.0000 15.0000 6.0000 1.0000
ROOTS : -1.00000000000000000

-1.00000000000000000
-1.00000000000000000
-1.00000000000000000
-1.00000000000000000
-1.00000000000000000

Internal root representation accurate within: 3.40000000E-4932
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MATLAB
" d - [1 6 15 20 15 6 1]

" roots (d)
ans -

-1.00331670554264
-1.00166155604821 + 0.00287235092887i
-1.00166155604821 - 0.002872350928871
-0.99834164733085 + 0.00287789988059i
-0.99834164733085 - 0.00287789988059i
-0.99667688769924

ICECAP-PC
Polynomial A

GAIN 1.00000000000000000
SA 3 S A2 S^I SAO

POLY : 1.00000000000000000 2.00000000000000000 3.00000000000000000 4.00000000000000000
ROOTS -0.17468540370464325-jl.54686890065397160

-0.17468540370464325+jl.54686890065397160
-1.65062919143938822

Internal root representation accurate within: 6.82119357E-0008

MATLAB
f = (1 2 3 4]
roots(f)

ans -

-1.65062919143939
-0.17468540428031 + 1.54686888723140i
-0.17468540428031 - 1.54686888723140i

ICECAP-PC
Polynomial A

GAIN : 1.00000000000000000
sA4 sA

3  sA2 sAl SAO

POLY : 1.0000 2.00000000000000000 3.OOOOOOOOOOOOOUOOO 4.00000000000000000 5.00000000000000000
ROOTS : -1.28781545162200928-jO.85789686668854613

-1.28781545162200928+jO.857896866S8854613
+0.28781548142433167-Jl.41609309864941254
+0.28781548142433167+jl.41609309864941254

Internal root representation accurate within: 3.65869539E-0007

MATLAB
g - [1 2 3 4 5]
roots(g)

ans -

0.28781547955765 + 1.41609308017191i
0.28781547955765 - 1.416093080171911

-1.28781547955765 + 0.85789675832849i
-1.28781547955765 - 0.85789675832849i
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Root Finder Coefficient Reconstruction Error Test
Fred L. Trevino, Capt, USAF
Electrical Engineer

Unpolished Polynomial

Polynomial A
GAIN : 1.0000

sA 6  SA5 S^4 s^3 sA2 s~ l SAO

POLYl 1.0000 12.0000 58.0000 144.0000 193.0000 132.0000 36.0000
ROOTS : -0.99999986114853990

-1.00000013885151794
-1.99999958484187777
-2.00000041515827876
-2.99999971614412451
-3.00000028385566112

Internal root representation accurate within: 2.40238385E-0013 %

Unpolished Accuracy: 2.40238384741076E-0013

Polished Polynomial

Polynomial A
GAIN : 1.0000

sA 6  sA 5  s^4 sA 3  sa2 S~l SAO

POLY : 1.0000 12.0000 58.0000 144.0000 193.0000 132.0000 36.0000
ROOTS : -1.00000000000000000

-1.00000000000000000
-2.00000000000000000
-2.00000000000000000
-3.00000000000000000
-3.00000000000000000

Internal root representation accurate within: 0.OOOOOOOOE+0000 %

Polished Accuracy: 0.OOOOOOOOOOOOOOE+0000

Choosing Polished Polynomial

Unpolished Polynomial

Polynomial A
GAIN : 1.0000

sA 7  sA 6  s^5 s^4 s^3 sA 2  s 8l SA0
POLY : 1.0000 13.0000 70.0000 202.0000 337.0000 325.0000 168.0000 36.0000
ROOTS : -0.99995061525371413

-1.00002469237289833
-1.00002469786131161
-1.99991445853344107
-2.00008554146667941
-2.99995722634657145
-3.00004276816538401

Internal root representation accurate within: 7.31758333E-0009 %

Unpolished Accuracy: 7.31758333094579E-0009

Polished Polynomial

Polynomial A
GAIN : 1.0000

sA 7  sA 6  BA5 s^4 s^3 B^2 sAl SAO

POLY : 1.0000 13.0000 70.0000 202.0000 337.0000 325.0000 168.0000 36.0000
ROOTS : -1.00000114885965188

-1.00000082939761701
-0.99999965957871331
-2.00000000000000000
-2.00000000000000000
-3.00000000000000000
-3.00000000000000000

Internal root represencation accurate within: 5.89621054E-0005 %

Polished Accuracy: 5.89621054182185E-0005
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Choosing Unpolished Polynomial

: ------------------------------------- m---m-m--------m----------mm--mm-

Unpolished Polynomial

Polynomial A
GAIN : 1.0000

SA 6  SA 5  SA 4  sA 3  SA 2  sAI sA0

POLY : 1.0000 18.0000 123.0000 396.0000 615.0000 450.0000 125.0000
ROOTS -0.99997979938543333

-1.00001010026207655
-1.00001010058202872
-4.99893003491269068
-5.00053498242888536
-5.00053498242888536

Internal root representation accurate within: 4.30870321E-0006 %

Unpolished Accuracy: 4.30870321250360E-0006

Polished Polynomial

Polynomial A
GAIN : 1.0000

aA
6  

SA 5  SA 4  SA3 SA 2  SA 1  sA0

POLY : 1.0000 18.0000 123.0000 396.0000 615.0000 450.0000 125.0000
ROOTS : -0.99999951613993230

-1.00000033103686999
-0.99999984246064752
-5.00000171802838821
-5.00000021689256729
-4.99999930827796170

Internal root representation accurate within: 7.71537733E-0006 I

Polished Accuracy: 7.71537733115779E-0006

Unpolished Polynomial

Polynomial A
GAIN : 1.0000

sA 6  sA 5  5
A4 sA 3  sA 2  sA 1  sAO

POLY : 1.0000 10.0000 41.0000 88.0000 104.0000 64.0000 16.0000
ROOTS : -0.99999959752956686

-1.00000040247108108
-1.99971085500699006
-1.99971085500699006
-2.00000024217795799
-2.00057804780741396

Internal root representation accurate within: 1.00259883E-0006 %

Unpolished Accuracy: 1.00259883497114E-0006

Polished Polynomial

Polynomial A
GAIN : 1.0000

sA 6  sA 5  sA 4  sA 3  sA 2  a sA1 AO

POLY : 1.0000 10.0000 41.0000 88.0000 104.0000 64.0000 16.0000
ROOTS : -1.00000000000000000

-1.00000000000000000
-2.00076234204481064
-1.99937451021959366
-2.00000000000000000
-2.00000000000000000

Internal root representation accurate within: 1.09291077E-0003 %

Polished Accuracy: 1.09291076660156E-0003

Choosing Unpolished Polynomial

Unpolished Polynomial
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Polynomial A
GAIN : 1.0000

sA 6  SA 5  SA 4  s^3 SA2 SAI SA 0
POLY : 1.0000 21.0000 175.0000 735.0000 1624.0000 1764.0000 720.0000
ROOTS -0.99999999999999868

-2.00000000000000659
-2.99999999999998685
-4.00000000000001295
-4.99999999999999379
-6.00000000000000114

Internal root representation accurate within: 1.59872116E-0013 %

Unpolished Accuracy: 1.59872115546023E-0013

Polished Polynomial

Polynomial A
GAIN : 1.0000

SA 6  SA 5  SA4 SA3 sA 2  SAI SA0
POLY : 1.0000 21.0000 175.0000 735.0000 1624.0000 1764.0000 720.0000
ROOTS : -2.00000000000000000

-1.00000000000000000
-4.00000000000000000
-3.00000000000000000
-6.00000000000000000
-5.00000000000000000

Internal root representation accurate within: 0.OOOOOOOOE+0000 %

Polished Accuracy: 0.OOOOOOOOOOOOOOE+0000

Unpolished Polynomial

Polynomial A
GAIN : 1.0000

SA6 SA 5  SA 4  SA 3  SA2 S^I SA 0
POLY : 1.0000 6.0000 15.0000 20.0000 15.0000 6.0000 1.0000
ROOTS : -1.00000000000000000

-1.00000000000000000
-1.00000000000000000
-1.00000000000000000
-1.00000000000000000
-1.00000000000000000

Internal root representation accurate within: 0.OOOOOOOOE+0000 %

Unpolished Accuracy: 0.OOOOOOOOOOOOOOE+0000

Polished Polynomial

Polynomial A
GAIN : 1.0000

sA 6  SA 5  SA4  sA 3  SA2  SA1  SA0
POLY : 1.0000 6.0000 15.0000 20.0000 15.0000 6.0000 1.0000
ROOTS : -1.00000000000000000

-1.00000000000000000
-1 00000000000000000
-1 00000000000000000
-1.00000000000000000
-1.00000000000000000

Internal root representation accurate within: 0.OOOOOOOOE+0000 %

Polished Accuracy: 0.OOOOOOOOOOOOOOE+0000

Choosing Polished Polynomial

Unpolished Polynomial

Polynomial A
GAIN : 1.0000

sA 3  sA 2  sAl SA 0

POLY : 1.0000 2.0000 3.0000 4.0000
ROOTS : -0.17468540428030588-jl.54686888723139627

-0.17468540428030589+jl.54686888723139628
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-1.65062919143938823

Internal root representation accurate within: 2.36419161E-0017 %

Unpolished Accuracy: 2.36419160587147E-0017

Polished Polynomial

Polynomial A
GAIN 1.0000

sA 3  SA 2  sAI SA 0
POLY : 1.0000 2.0000 3.0000 4.0000
ROOTS : -0.17468540428030588-jl.54686888723139624

-0.17468540428030588+ji.54686888723139624
-1.65062919143938822

Internal root representation accurate within: 2.19008839E-0016 %

Polished Accuracy: 2.19008838842072E-0016

Choosing Unpolished Polynomial

Unpolished Polynomial

Polynomial A
GAIN : 1.0000

sA 4  sA 3  SA2 sA 1  SA 0

POLY 1.0000 2.0000 3.0000 4.0000 5.0000
ROOTS : -1.28781547955764792+jO.85789675832849048

-1.28781547955764819-jO.85799675832849027
+0.28781547955764808+Jl.41609308017190785
+0.28781547955764803-ji.41609308017190806

Internal root representation accurate within: 1.61971028E-0015 %

Unpolished Accuracy: 1.61971028480621E-0015

Polished Polynomial

Polynomial A
GAIN : 1.0000

sA 4  sA 3  sA 2  sAl SA 0

POLY : 1.0000 2.0000 3.0000 4.0000 5.0000
ROOTS : -1.28781547955764797-J0.85789675832849028

-1.28781547955764797+JO.85789675832849028
+0.28781547955764797-jl.41609308017190794
+0.28781547955764797+jl.41609308017190794

Internal root representation accurate within: 1.58293526E-0016 %

Polished Accuracy: 1.58293526465436E-0016

Choosing Unpolished Polynomial
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PREFACE

WELCOME to the QFT Toolbox of ICECAP-PC. This Toolbox includes both multiple-input multiple-output
(MIMO) and multiple-input single output (MISO) models in both continuous and discrete domains. ICECAP-PC
is an ongoing development of a public domain computer-aided design (CAD) package for students, faculty and
practitioners of control engineering and digital signal processing with special emphasis on education. Source code
and executable files are available. If you are interested in adding additional code or have suggestions for
improvement please contact:

Professor Gary B. Lamont
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Air Force Institute of Technology

Wright-Patterson AFB OH 45433-6583
(513) 255-3450

(ARPANET lamont@afit.af.mil)
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C. Tarczynski, D. Gelopulos, Paul A. Moore, Wayne E. Bell, Vincent M. ParisL Fred Trevino, Mark W. Schiller,
Ken A. Crosby

This public domain QFT-CAD package is intended for the main purpose of education and thus the executable code
can be distributed freely. Any use of the package in support of written publications should be indicated as a
reference. Changes to the public domain source code that improve and extend its capabilities are appreciated,
however, all suggested changes should be communicated to the authors for updating and dissemination of the next
official ;;ision.

Permission to use., copy and distribute this software for educational purposes without fee is hereby granted provided
that the copyright notice and this permission notice appear on all copies. Permission to modify the software is
granted, but not the right to distribute the modified code. All modifications are to be distributed as changes to
released versions by AFIT.

ICECAP-PC is written in Borland's,, Turbo PASCAL 6.0 and TurboVision, both of which are registered trademarks
and copyrighted by Borland International, Inc. 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA
95067-0001. The .BGI files distributed with our package are released to public access by Borland.

All references to MS-DOS in this document refer to Microsoft-DOS which is a registered trademark and copyrighted
by MicroSoft,. Corporation.

QFT Notation as used in ICECAP-PC is consistent with D'Azzo & Houpis[#] and Houpis & Lamont[#].

SYSTEM REQUIREMENTS

ICECAP-PC is designed to work on MS-DOS,, 80286/80386/80486 computers with a minimum of 640 KB of RAM
and 5MB of hard disk space. ICECAP-PC supports all graphics terminals including Hercules, EGA and VGA.
Operation is greatly enhanced with expanded memory and a math co-processor. Installation of ICECAP-PC and its
QFT Toolbox is done automatically with a provided install procedure (see ICECAP-PC manual).

Edited By: Gary B. Lamont , Wayne E. Bell, and Fred Trevino; 1992
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A. Introduction

The environmental objective of ICECAP-PC along with its associated toolboxes is to provide a
4th generation language (4GL) interface for control engineering students and practioners. Thus
associated functions and operations used by this group do not have to be individually coded and
combined over-and-over again, but are integrated into a window based and object-oriented
implementation that is very user friendly as well as effective! The interface provides pull-down
menus, speed-buttons, mouse support, '"ot-keys" and on-line HELP.

ICECAP-PC and the QFT toolbox was developed using Borland'sm object-oriented TurboVision
language (a 4th generation language) under Turbo Pascal Ver 6.0. Top pull-down menu
selections produce dialog boxes from which the user defines an operation. The pull-down menu
is always accessible providing a truly "event driven" and nimble interface. System parameters
are quickly modified with recall of past inputs providing efficient interactive analysis and
synthesis of the controller. The QFT toolbox is invoked by selecting either the Toolbox - MIMO
QFT or Toolbox - MISO QFT menu options.

The overviews of the MIMO and MISO model QFT design techniques are presented in the
following sections. For supporting theoretical studies please consult references.
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B. The QFT MISO Design (QFD) Process

D1 D2

Figure 1: MISO QFT System

Consider designing a practical linear time invariant feedback controller for a plant model
with uncertainty in parameter and disturbance. Due to Plant Uncertainty, there is a set {P} of
plants. Consider, for example, a second-order plant model with the following variations:

p,, k

-As 2 + Ba + C

A = [1-4] (1)
B- [2-6]
C [10-20]
k-- [50-84]

The set {P) of plants consist of all possible combinations of plant variations which could
be a very large number of specific plants. The QFT method, developed by Dr Isaac Horowitz,
quantitatively defines the problem in the form of (1) sets {TR} of acceptable command or
tracking input/output relations and (2) sets {TD} of acceptable disturbance input/output relations
and (3) a set of {P} of possible plants. The design objective is to guarantee that the control ratio,
TR - Y/R, is a member of {'IVR for all P in {P}. Although this technique can be used for a
variety of system structures, this package only emphasizes structured uncertainty including
non-minimum phase models.

The QFT design (QFD) approach is a frequency domain technique that provides robust
performance despite plant uncertainties and disturbances. The general model has three inputs:
a tracking input R(s), a plant disturbance D, and a measurement disturbance D2 as shown in
figure 3-10. ICECAP-PC currently handles only the case of plant disturbance D1. P is the
symbol for the plant, G is the compensator to be designed and F is a pre-filter that also requires
design. L - GP is defined as the loop transmission (open-loop transfer function). If only G as

2
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a design parameter is available, it called a single degree of freedom control loop. If F is added,
two degrees of freedom are available. Thus, the QFT method is a two degree of freedom design.

This approach has sufficient generality fot modelling a variety of systems. The
closed-loop transfer function for a 'acking input is by definition

TR(s) - FGP - FL
1 +GP 1 + L (2)

L - PG is Loop Transmission

Specifications
To design a controller, various closed-loop performance bounds are specified which must

be satisfied for all plant variations. The various specifications are generally in terms of the
frequency response of the following tracking and disturbance response transfer functions.

Tracking Specification:
The closed loop tracking transfer function for plant P3 is given by

FGPJ1+GP3

= F VPE (] (3)

BL (wz) < ITaj (co) I < Bu (w)

where all TRj responses (one for each plant) must lie between the Bu and BL specifications and
where the maximum tracking error is deft:nd as (D'Azzo, pg 429, 692)

6 -(6) - B, M)- BL(co) (4)

There are two methods of deriving 8. In the first method, the time domain tracking
specifications (Mp-max, Mp-min, Ts-max, Tx-min, etc) lead to two transfer functions, Tru and
Trl, which describe the upper and lower bounds permitted in both time and frequency domains.
8, is then defined as the difference between the frequency responses 8, - Bu(w) - BL(w) "

Tru(w) - Trl(w). In the secord method, BL(w) and Bu(w) are input directly in the frequency
domain as a set of data points.

Successful QFT design is enhanced if 8R(w) monotonically increases with frequency.
Using the augmented model (D'Azzo, 693), this is accomplished for high frequencies by adding
a zero to Tr and a pole to Trl at wb.

3
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If the MISO tracking relationships are part of a larger MIMO problem, the tracking
bounds B. and B, must be constricted to account for the tracking responses of other plant element
modeled as disturbance inputs to the MISO loop. Currently, this is done manually off line and
is not addressed in ICECAP-PC.

4



QFT Toolbox User's Manual Ver 2.0

Stability Specifications (Phase Margin, Gain Margin)
The constraint on the distance from the -l+jO point is given by (Yaniv, 2; D'Azzo, 309)

Ii + a Žj I x (5)

where x < 1 is a chosen parameter. A larger x for a given frequency results in a smaller steady
state sinusoidal error. Another parameter, chosen to reduce the ocsillatory nature of the design,
is given by (D'Azzo, 312).

I, +GP H 
(6)

For an equivalent second order system, larger values of y result in smaller values of zeta.

These equations relate to the desired gain margin, phase margin, peak overshoot and M,
contour (nichols plot) as given by the following.

C. 1
gm= x(7)

y = 1808 - 2cos-"(-L)

2

Given a set <P} of all possible plants, the stability specifications describe the region in
the frequency domain that none of the plants P in {P) should violate. In the QFT design
technique, the set of {P} plants form a frequency domain template, or a region of possible
responses over the parameter variation range. All plants P in {P} must remain outside the
stability margins in the QFT design. Phase margin (T), gain margin (gin) and peak overshoot
(Mp) are all mathematically related and each can be derived from the other for a second order
or equivalent second order system as shown in eq 8.

5
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M- -20 OLo

MI 20L0g1 0  10 20

1 + 10 20 (8)
r.,,Jom, -Mo

e 20 = 20

20

y = 1800 - cos- -10 -1

Disturbance Specification
The disturbance transfer functions for the two disturbance inputs of figure 1 are given by

the relations of equations 9 and 10 (D'Azzo, 446). MD(w) is the upper disturbance bound defined
in the specifications. Recent QFT designers have begun to define MD(w) as a constant (i.e -20db)
rather than a transfer function. Using a constant allows for both easier and more conservative
design.

Plant Disturbance D,

--- v P, ( P) (9)

TA, (#,) I < I D(") I

Measurement Disturbance D2

1DJ- LJ P P (10)

I~~ 1%< I MD (6))I

The Design Process
As mentioned above, the objective of the QFT technique is to find a G & F to guarantee

that the closed-loop response is within prescribed limits of the various bounds despite plant
uncertainty and disturbance inputs as represented in the set notation. The ICECAP-PC QFT
package closely follows the design procedure specified by Dr Horowitz and Dr Houpis (D'Azzo,
pg728). This procedure is summarized as follows:

1. Synthesize upper and lower tracking response transfer functions Tru end Trl to meet
minimum and maximum specifications.
2. Synthesize T[, the upper disturbance response transfer function.

6
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3. Define a set of plants (Pj} from all possible (P} such that the frequency response of
the set (Ij) defines the perimeter of all possible frequency responses of {P}.
4. Select a representative nominal plant P. from the set {Pj}. Normally, the best
selection is the lower-left plant as seen on a nichols chart template.
5. Determine the disturbance bounds BD(w) on the loop transmission L4(w).
6. Determine the tracking bound BR(w).
7. Define the composite bounds as the most restrictive of the bounds determined in steps
6 and 7.
8. Design the loop transmission L4(w) for the nominal plant Po(w) to meet, as closely as
possible, the composite bounds determined in step 7.
9. Synthesize the prefilter F(w) that satisfies eq 3-3.
10. Simulate system behavior to verify correct design.

At the conclusion of the design process, a formatted report is available at this point upon
user request. This is a ascii text file containing all the design calculations that is easily edited
with any number of text editors.

This CAD program allows one to view the high level pull-down menu capabilities of
ICECAP-PC QFT for the various phases of design (File, Specs, Plant, Disturbance, Templates
Bounds, L-Zero, Filter, Simulation). The various menu items corresponding to the high-level
design steps are initiated by using the arrow keys, mouse or control keys. For example, the
introductory menu can be accessed by pressing the first letter of the desired menu selection. For
example, the "Specs" menu is pulled down by S. Fl displays a window with help information
at the selected level. Although a detailed step-by-step example could be provided, the use of the
keys or mouse is self-evident. The QFT MISO example in section B details each step of the
design process as implemented in the ICECAP-PC QFT Toolbox.

Note that during the design process, it is helpful to develop a commented log file of the
unfolding design. ICECAP-PC provides this capability allowing the user to open a text log file
and enter comments at any point of the design.

7
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Step 0. File Operations

ICECAP-PC data files are generated and stored in binary format allowing rapid access to large
amounts of data. On the other hand, all output files such as time and frequency response data,
etc are stored in ASCII form to allow easy interface to other graphics programs. Additionally,
ICECAP-PC can read ASCII files generated from other popular engineering programs. Such files
are checked for proper structure before the import process begins. ICECAP-PC sessions can be
saved and recalled by user defined names thus returning the engineer to the place he/she left off
during an interrupted design process. At the end of the design process, a printed report of the
file contents presents the complete design record.

Step 1. QFD Specifications

Three operational domains are available consisting of the continuous, discrete, or sampled data
domains (s, z or w). Specifications in each case are defined in either the time domain or
frequency domain.

A priori synthesized tracking specifications can either be input as s-plane transfer functions or
frequency domain data. For transfer function input, the upper tracking function bound (Tru) and
the lower tracking function bound (Trl) are interactively synthesized or manually entered using
the standard ICECAP-PC transfer function input. Transfer function, in general, are entered in
one of two forms: factored (gain, zeros and poles) or polynomial (gain and coefficients). The
time domain (Tru, Trl) or frequency domain specifications (8R(w)) can be presented in a table
or graphical form as requested. The frequency domain data can be directly entered as magnitude
limits (max and min) vs frequency.

Selection from the SPEC pull-down menu produces a palette of options, each of which result in
a dialog box that define specific actions. The options include system domain (s, z, or w), time-
domain or frequency domain tracking and disturbance specification input. A summary of the
time and frequency domain dialog commands are:

Time Domain Tracking Specs Dialog Box
(TF Specs, TRU and Trl; Display TF Specs; Table of Time-Domain Specs; Graph of
Time-Domain Specs)

Frequency Domain Specs
(Display TF Specs; Table of TF Frequency Specs; Graph of TF Frequency Specs; Delta_R
Frequency Specs and Graph; Phase Margin or ML Specs).

1.1. Time Domain Tracking Specifications

8
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Enter Tin(s) and Trl(s) bounds for step response tracking operations. Usually these
bounds are defined in terms of transfer functions that are synthesized from time domain
specifications such as rise time, settling time, overshoot (the conventional figures of
merit). Alternately, you may synthesize the bounds interactively with the QFT toolboxes.

1.2. Frequency Domain Tracking Specifications

Enter Tru(w) and Trl(w) bounds for the frequency range of interest. These usually are
generated in transfer function. br(W) is the difference between Tru(w) and Trl(w). It is
desirable that Tru and Trl be synthesized such that Sr increases with frequency after Tru
crosses the 0 db line. An increasing Sr permits an effective high frequency design
technique. Sr can also be found from a given set of lower, BL(w) and upper, Bu(w),
bounds which are given for a finite number of frequencies (See Eq 3). Two other values
that need consideration are the frequency at which Bu(w) is -12db (whR) and the frequency
at which Bu crosses the 0 db line (w,,R).

The discrete frequencies chosen are at the user's discretion. Normally the frequency
range of interest is defined by the region two octaves below wa and two octaves above
whR. Inside of this region, frequencies are normally chosen an octave apart. The
magnitudes are entered in db and frequencies in rad/sec. For ultra-high frequencies, see
section 4.2.

1.3. Stability Bound Specifications (Phase & Gain Margin)

Stability bounds are entered in one of three ways. Since stability bounds (phase margin,
gain margin, tangent ML contour, and peak overshoot) are mathematically related, entry
of any one initiates automatic computation of the others. Entry of phase margin, peak
overshoot, and tangent ML contour is allowed, however computation of these three from
a given gain margin is error prone since phase margin is very sensitive to changes in gain
margin. Therefore entry of gain margin is not provided.

1.4. Disturbance Specifications

The disturbance specifications can also be input as a synthesized transfer function but
usually are defined as a constant magnitude bound (db) or I MD(w) I in the frequency
domain for the plant disturbance and for the measurement disturbance. Entry of
disturbance bounds are done exactly as the tracking bounds.

9
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Step 2. Plant Model Descriptions

Plant model parameter variations can be entered in four ways:

1 Individual Models - plant tfs encompassing the variations are entered separately.

2) Variation Models -
(a) Nominal plant tf and parameter coefficient variations are entered.
(b) Nominal plant tf and parameter pole/zero/gain variations are

entered.

3) Plant Frequency Domain Models - frequency domain data is entered for each
specified plant. (in progress)

Currently the first two methods are available. With approach (1), the number of plants is first
defined and then each plant is entered separately by specifying the gain and the zeros and poles
in factored or unfactored form using the standard ICECAP-PC input dialogue (ordergain,
pole/zero-factored or coefficients-polynomial). Each plant transfer function can be displayed and
checked for proper entry. Although not yet implemented, the user will have the ability to import
plant models from external ASCII files in a future release.

Approach (2a) requests the entry of the maximum and minimum for each numerator and
denominator coefficient. Currently the number of possible parameter variations is limited to four
because of memory size.

Approach (2b) requests the variation (max,min) in each zero, in each pole and in the plant gain.
The user is requested to answer the following question concerning the polynomial form: 'Do you
desire the transfer function roots (zeros/poles) to be represented as [s/a +1] or [s+a] for real roots
or as [sY/(a 2 + w2) + 2as/(a2 + w2) + 1] or [s2 + 2as + a2 + w2]?"

Observe that a user of this package can build a program that uses symbols to characterize the
coefficients or roots of the transfer function as related to some physical model. These
symbols can then be instantiated with specific values to generate the specific plants. In this way,
the QFT toolbox or any toolbox for that manner, could be used to interactively design controllers
for a variety of models in a given application (automotive spring control, engine control, vehicle
control)."

10
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2.1. Plant Transfer Function Models

First enter the number of plants to be input (note that the 'tab' function highlights each
section of the window). The plants are then entered using the standard ICECAP-PC
transfer function input dialog (num order, denom order, num gain, zeros, denom gain,
poles) for each factored form.

2.2. Plant Parameter Variations

A nominal transfer function is entered with nominal parameters. The number of plant
variations is requested. Then the positive variation of each parameter (gain, zero, pole or
coefficient) is entered in turn. The variation could be thought of as a uniform or a normal
distribution. Depending upon the number of plants requested. a finite number (<= 625)
of plants are defined.

Step 3. Disturbance Models

Plant disturbance models are entered using the standard ICECAP-PC format. The measurement
disturbance model is not yet implemented. Gain is entered in real units not db.

Step 4. Plant Template Generation

Because of plant uncertainty there exists a set of complex numbers {P(w)} for any frequency w
which are defined as 'plant templates'. A Plant template then is a plot on the Nichols chart over
the range of plant uncertainty at a specific frequency w.

The commands are: Plant Frequency Responses; Frequency Data of Plants; Output Data of Plant
Templates; Graphs of Plant Templates; U-Contour Generation.

4.1 Low, Intermediate and High Frequencies

If individual plants are entered, then the package generates all the frequency domain
points for each plant at a given frequency. This data is then sorted by frequency to
develop templates of uncertain plant response. The graphical structure of each template
(one at each frequency) can also be displayed on the Nichols chart.

If the plant variation ranges were entered, then the package generates a "convex hull"
around all the freq domain points and selects only those point on the boundary of the hull
for generating the bounds B,(w). This process reduces the number of plants since the

11
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maximum number of possible plants using the variation method is 625. This hull or
template can also be displayed as a table or graphically on the Nichols chart.

The disturbance bounds are generated in a similar manner. However, in most cases, the
disturbance bounds are generated from the disturbance specification of a constant over all
frequencies. Various templates are usually generated for discrete values of frequency w
an octave apart. From the templates,the plant bound Br(W) and disturbance bound Bd(W)
are generated. From Br(w) and Bd(w), a combined or composite bound B,(w) is
generated.

4.2. U-Contours for Ultra-High Frequency

To help ensure that the synthesized loop transmission bo does not yield roots of the
closed loop system close to the imaginary axis, an additional constraint is imposed. This
constraint is expressed as I -/(I+L) I < Ml (the 82(w) constant) for all w and all plant
variations. In some cases this results in an "ash can" structure. The synthesized loop
transmission must not penetrate this region on the Nichols chart.

The U-Contour or ultra-high frequency bound (UHwB) which can be displayed in a table,
graph and Nichols chart for the desired frequency range. It is based upon the desired
phase angle and the maximum variation of magnitude at high frequencies.

Step 5. Tracking Bounds Generation

From the templates,the plant bound Br(w) and disturbance bound Bd(W) are generated using a
selection of two methods (manual, automatic). The manual process of graphically determining
the Br(w) bound on the loop transmission is accomplished using the following steps which
involve the movement of the various plant templates and the selection of a nominal plant:

1. Translate (do not rotate) the plant template for a specific frequency w to a major
angle division on the Nichols chart.

2. Using the constait M contours on the Nichols chart determine the max and min
values of Tr(w) corresponding to the max and min values of M covered by the
template, S(w).

3. Move the template vertically up and down the Nichols chart until the difference,
8M(w), is equal to 8,(w). At that point the position of the nominal plant is a point
on the bound B,(w). Usually the nominal plant is selected as the lower left point
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of the template for each frequency. Thus, for the specific frequency this point
position represents the bound of plant performance in order to meet the
specifications.

4. Translate the template to the next major angle division and repeat step 2 until the
template becomes tangent to the U-contour.

5. Draw a point through all points to construct Br(W), the tracking bound on Lo(w),
for the specific frequency w.

6. Repeat steps 1 to 5 for a discrete number of frequencies over the frequency band
of interest.

The above algorithm for generating Br(W) is basically that has been implemented in this QFD -
CAD package for the automated process (note that this is the same algorithm implemented in the
original VAX ICECAP QFT package).

An educational interactive Br(w) generation mode is also available using movable templates on
the Nichols Chart. Templates are entered for Nichols Chart display as tp#.dat. Template
movement is possible with the use of the arrow keys. 8r and Sm are displayed so that the student
can move the template to the point where 8 <5 8,. Points on the Br(w) curve at a given
frequency are stored with the press of the 'insert' key. The 'return' key provides exit from
interactive bounds generation.

The plant disturbance bound Bd(W) is determined by finding the minimum value of L4(w) that
satisfies the following relation:

_po__ _______ Eq 10
83(6)) P(W )L 0 (i.#)I

across the range of plant uncertainty embodied in P(w). The tracking bounds can be listed and
graphed.

For the measurement disturbance the associated disturbance bound is found from the inequality

83(() I #)

using basically the same method.
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The combined or composite bound B, is generated by comparing the tracking and disturbance
bounds and defining the highest boundary at each major angle division for a select number of
frequencies which are an octave apart. All bounds can be displayed on a Nichols chart for the
synthesis of Lo in the next step. See Section 4.2 for information on the U-Contour.

Step 6. Loop Transmission Design

In order to develop the loop transmission, the Loop transmission, LO, can be generated using a
variety of techniques. The "loop shaping" is accomplished by keeping the value of I4(w) above
the composite bound B, at each distinct frequency while not violating the U-contour.

Currently, no CAD algorithm for completely automated design has been implemented. The
controller designer can determine the form manually from the Nichols chart and enter the transfer
function as indicated. This is accomplished by fitting a curve between the composite bounds and
the specific 'ML' contour on the Nichols chart. An initial L4 is selected and then modified by
adding zeros and poles to meet the above criteria. A good initial Lo is the nominal plant P0 itself.
Using the nominal plant results in a minimum order controller. The nominal plant is normally
selected as the plant in the lower left comer of the templates on the Nichols chart. Although,
any plant even a different one from the set of plant variations transfer functions may be chosen.

If the designed controller satisfies the bounds, then the closed-loop system output should be
within the tracking tolerances as well as rejecting the disturbances within the required
specification. This performance requirement can be analyzed by doing a closed-loop time or
frequency domain analysis at this point in the design process. If not within specifications then
a filter (prefilter) must be designed (step 8).

6.1. Loop Transmission - Manual Design

The designer inputs the L,, the loop transmission transfer function from the manual design
process. The manual design process consists of starting with an initial form such as plant
P0. Then determining if it meets the bound specifications. This is easily accomplished by
either using a Nichols chart or a Bode diagram. In a Bode diagram, the composite
bounds, Bc(w), give the necessary magnitude and angle conditions for which Lo must be
designed. Overdesign is minimized by placing L4 as close as possible to the bound.
Zeros and poles are added to L4(w) in order to meet and approach the composite bound.
The U-contour corresponds to the phase margin bound on the Bode diagram while the
composite bound Be(w) on the Nichols chart defines the amplitude bound.

6.2 Loop Transmission - Interactive Design
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After entering an initial L4(w), additional poles and zeros are added interactively. After
each addition/subtraction of poles and zeros, an updated graph is generated. A
recommended process is to locate the frequency at which the worst violation of the Be(w)
bounds occurs. After finding this frequency, install one zero in Lo(w) for each 12 db of
violation at a frequency 1 octave (approx) below the violation frequency. An equal
number of poles also needs to be installed 1 octave below this frequency to offset the
zeros. Repeat this process until the B,(w) bounds are met while remaining outside and
in close proximity to the U-Contour to achieve minimum overdesign.

Poles are entered with 'shift p' and zeros are entered with 'shift z' commands. Entering
the 'return key' updates the Nichols chart with the new poles and zeros and stores the
data to file. Use of the 'esc key' exits the procedure.

6.3 Loop Transmission - Automated Design

An automated design of loop transmission is under current development. This process
will provide the necessary tools for the user to define a desired Lo(w) at a distinct set of
frequencies, a loop transmission order constraint, and a cost function such as a weighted
least squares solution. The optimization process generates the transfer function
coefficients that minimize the cost function.

Step 7. The Controller

From Lo and the nominal plant, the compensator G is generated from the equation Lo - G * Po.
This G is then employed as the robust controller. The CLTF time responses can be generated
for checking the design.

Step 8. Filter Generation
The design of the controller G only guarantees the frequency responses for any given p

in {P} lies within a SR without reguard to the acutal position of BR in the frequency domain. A
prefilter translates the magnitude progression to lie between Bu and BL frequency responses
(D'Azzo, 725).

In order to meet the original tracking frequency specifications for
T,(w)-F.o(w)/(l+Lo(w)), a filter is employed to position the frequency domain closed-loop
response within the desired envelope of Tru(w) and Trl(w). In some cases this is only a gain.

The process consists of the following 4 steps:
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1. Place the nominal point of the plant template P(w) on the point L4(w).
Determine tmax and tmin at that point using the M-contours. The entire perimeter
(each plant) of the template must be inspected in order to determine the true trai
and t. because the curvilinear nature of the ML Contour can be deceptive.

2. Obtain the values of Tru and Trl for various frequencies w.

3. From the values obtained in steps 1 and 2, plot [Tru-t,.] and [Trl-t,.] vs w.
These values are the upper and lower bounds on the filter (prefilter). The
command Calculate Filter Transfer function generates this table.

4. Synthesis a filter that lies within the frequency plots by the use of straight line
approximations. For a step forcing function, the following limit as s goes to zero
(or time goes to infinity) must be satisfied:

lim [F(s)] - 1
s -> infinity

Filter Input: The filter transfer function is entered based upon manual synthesized design. The
Filter can be Displayed and a Frequency Response generated.

Step 9. Complete Closed-Loop Simulation

The closed-loop system with the Filter, F, and the Controller, G, is simulated (step-input) for
each plant and each disturbance to ascertain if the system meets the original specifications. Table
and graphical data are presented as requested for the time and frequency domains. Non-linear
function will be added in the future as appropriate.

9.1. Simulation in the Time Domain

Again the ICECAP-PC simulated input type (step, impulse, sine wave, ramp, user defined,
random signal) is requested over the range of time entered for tracking and diturbances.
This data can then be displayed using a table or the graph selection for up to ten data
sets. They can also be compared to time domain specifications.

9.2. Simulation in the Frequency Domain

The frequency domain data (table and graph) is presented over the range of frequency
entered using standard ICECAP-PC deluge for tracking and disturbance models. This
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data can then be displayed using the graph selection for up to ten data sets. They can
also be compared to frequency domain delta specifications.

Step 10. The Report

A text file suitable for editing is generated using the various data files from each step as
appropriate to the selected process for identifying the plant variations. Graphical pres. itations
can be printed using screen dumps and then incnrtxorated into the printed report.
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C. QFT MISO Design Example

This discussion is based upon the QFT design approach (see qft tool box) and the report
file (QFT._REPORT.TXT) that contains the qft design datafiles that can be generated from the
qft toolbox.

Step 1. Specifications:

A second order plant is modeled as

Plant tf -ka / s(s+a) with variations 1 < k < 5, 2 < a < 10

The tracking response specifications are

for upper tracking bound Tru - Mp = 1.2 (1.58db - overshoot)
- ts - 1.65 sec (settling time)

for lower tracking bound Trl - ts - 1.65 sec (settling time)

The plant disturbance specification is

max output value to unit step - ITdI - 0.1 (-20 db);

For a Mp - 1.2, zeta - 0.4559 and for ts - 1.65, wn = 5.3169. Thus, a Ts was selected
as 1.75 with ts < Ts and zeta - 0.48 with wn - 4.7619 resulting in the following Tru (qfttru):

** Upper Tracking Transfer Function - qfttru *

Numerator: order = 1
constant/gain - 1.889600
polynomial roots
1.000000 -12.000000 j 0.000000

12.000000

Denominator. order - 2
constant/gain - 1.000000
polynomial roots
1.000000 -2.285700 j -4.177500
4.571400 -2.285700 j 4.177500
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22.675931

In a similar trail and error process, Trl evolved as

** Lower Tracking Transfer Function - qfttrl **

Numerator:. order = 1
constant/gain = 1.1600E4
polynomial roots
1.000000

Denominator: order = 4
constant/gain = 1.00000
polynomial roots
1.00000E+0000 -4.OOOOOE+0000 j 0.OOOOOE+0000

1.15250E+0002 -4.00000E+0000 j 0.00000E+0000
1.59900E+0003 -7.25000E+0000 j 0.00000E+0000
7.51600E+0003 -1.00000E+0002 j 0.OOOOOE+0000
1.16000E+0004

** Time domain tracking specifications - qfttrut

Time Magnitude
0.00 0.000000
1.00 1.060103
2.00 1.004076
3.00 0.998920
4.00 1.000034
5.00 0.999972
6.00 0.999967
7.00 0.999968
8.00 0.999968
9.00 0.999968

10.00 0.999968

The desired Tru model specifications are achieved as shown:

RISE TIME: TR- 2.99722818757E-0001
DUPLICATION TIME: TD- 3.98639562532E-0001
PEAK TIME: TP- 6.54828325989E-0001
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SETTLING TIME: TS- 1.65130077524E+0000
PEAK VALUE: MP-• 1.19723535520E+0000
FINAL VALUE: FV= 9.99967774642E-0001

Similarly, ts for Trl is 1.65.

The frequency domain specifications at the frequencies of interest (observe that selecting these
frequencies is an iterative process although octave values are suggested as a minimum):

** Freq domain tracking specifications - qfttruf

Frequency Magnitude Phase
0.50 0.058664 -3.433671
1.25 0.359712 -9.197165
2.50 1.270365 -23.060350
5.00 0.581211 -73.185940

10.00 -9.666784 -109.602844
20.00 -18.898683 -107.343144
30.00 -23.253644 -102.916918
35.00 -24.785234 -101.344557
40.00 -26.073534 -100.086578
80.00 -32.421198 -95.248695

** Freq domain tracking specifications - qfttrlf

Frequency Magnitude Phase
0.50 -0.155383 -18.481695
1.25 -0.937225 -45.206616
2.50 -3.354850 -84.468469
5.00 -9.873879 -140.135077

10.00 -21.877692 -196.165662
20.00 -37.819826 -238.764487
30.00 -48.111949 -257.923966
35.00 -52.151961 -264.547541
40.00 -55.705826 -270.106893
80.00 -75.101888 -297.756713

** Freq domain tracking error spec - qftdelr (8)

Frequency Magnitude Phase
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0.50 0.214047 15.048024
1.25 1.296937 36.009451
2.50 4.625216 61.408118
5.00 10.455090 66.949137

10.00 12.210908 86.562818
20.00 18.921143 131.421343
30.00 24.858305 155.007048
35.00 27.366726 163.202984
40.00 29.632293 170.020315
80.00 42.680690 202.508018

The magnitude values should always be increasing for increasing frequency.

Step 2. Plant model variations:

Six plants were chosen to represent the plant variation model. The coefficient variation
or pole/zero variation model could have been entered instead.

** QFT Plant Explicit Plant Models - 6

QFTrIF1

Numerator: order - 0
constant/gain - 2.000000
polynomial roots
1.000000

Denominator order - 2
constant/gain - 1.000000
polynomial roots
1.000000 0.000000 j 0.000000
2.000000 -2.000000 j 0.000000
0.000000

QF-rlF2

Numerator. order - 0
constant/gain - 10.000000
polynomial roots
1.000000
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Denominator: order - 2
constant/gain - 1.000000
polynomial roots
1.000000 0.000000 j 0.000000
2.000000 -2.000000 j 0.000000
0.000000

QFI•F3

Numerator- order = 0
constant/gain - 30.000000
polynomial roots
1.000000

Denominator. order - 2
constant/gain - 1.000000
polynomial roots
1.000000 0.000000 j 0.000000
6.000000 -6.000000 j 0.000000
0.000000

QFTrF4

Numerator: order - 0
constant/gain - 50.000000
polynomial roots
1.000000

Denominator order - 2
constant/gain - 1.000000
polynomial roots
1.000000 0.000000 j 0.000000

10.000000 -10.000000 j 0.000000
0.000000

QFTnF5

Numerator. order - 0
constant/gain - 10.000000
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polynomial roots
1.000000

Denominator: order = 2
constant/gain - 1.000000
polynomial roots

1.000000 0.000000 j 0.000000
10.000000 -10.000000 j 0.000000
0.000000

QFTrF6

Numerator: order - 0
constant/gain- 6.000000
polynomial roots
1.000000

Denominator: order - 2
constant/gain - 1.000000
polynomial roots

1.000000 0.000000 j 0.000000
6.000000 -6.000000 j 0.000000
0.000000

Step 3. Disturbance model:

** Disturbance Transfer Function Spec - distf **

Numerator: order - 0
constant/gain - 0.100000
polynomial roots
1.000000

Denominator: order - 0
constant/gain - 1.000000
polynomial roots
1.000000
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** Freq domain disturbance specifications - distff

Frequency Magnitude Phase
0.50 -20.000000 0.000000
1.25 -20.000000 0.000000
2.50 -20.000000 0.000000
5.00 -20.000000 0.000000

10.00 -20.000000 0.000000
20.00 -20.000000 0.000000
30.00 -20.000000 0.000000
35.00 -20.000000 0.000000
40.00 -20.000000 0.000000
80.00 -20.000000 0.000000

In order to generate the high frequency u-contour,
V - Pmax - Pmin is generated.

** QFT U-Contour Parameters **

frequency Pmax(db) Pmin(db) V(db)

0.50000 19.98916 5.75731 14.23185
1.25000 11.97387 -3.37030 15.34417
2.50000 5.75731 -12.04544 17.80275
5.00000 -0.96910 -22.58278 21.61368

10.00000 -9.03090 -34.14973 25.11883
20.00000 -19.03090 -46.06381 27.03291
30.00000 -25.56303 -53.08351 27.52048
35.00000 -28.12412 -55.75628 27.63216
40.00000 -30.36629 -58.07264 27.70635
80.00000 -42.21153 -70.10571 27.89418

U-Contour V Height - 27.894180 or 28 db

Mp U-Contour - 3.84 db for a phase margin of 40 degrees

Step 4. Plant template generation:

The plant templates are developed from the six plants. Figure B.1 depicts graphical the
10 templates.
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** Plant Templates for Specified Frequencies

tpl.dat

Frequency Magnitude Phase
0.50 5.757311 -104.036243
0.50 19.736711 -104.036243
0.50 19.969945 -94.763642
0.50 19.989156 -92.862405
0.50 6.009756 -92.862405
0.50 5.990545 -94.763642
0.50 5.757311 -104.036243

** Plant Templates for Specified Frequencies

tp2.dat

Frequency Magnitude Phase
1.25 -3.370301 -122.005383
1.25 10.609100 -122.005383
1.25 11.856680 -101.768289
1.25 11.973866 -97.125016
1.25 -2.005534 -97.125016
1.25 -2.122720 -101.768289
1.25 -3.370301 -122.005383
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Fig B.1
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** Plant Templates for Specified Frequencies

tp3.dat

Frequency Magnitude Phase
2.50 -12.045439 -141.340192
2.50 1.933961 -141.340192
2.50 5.325358 -112.619865
2.50 5.757311 -104.036243
2.50 -8.222090 -104.036243
2.50 -8.654042 -112.619865
2.50 -12.045439 -141.340192

** Plant Templates for Specified Frequencies

tp4.dat

Frequency Magnitude Phase
5.00 -22.582780 -158.198591
5.00 -8.603380 -158.198591
5.00 -2.290273 -129.805571
5.00 -0.969100 -116.565051
5.00 -14.948500 -116.565051
5.00 -16.269673 -129.805571
5.00 -22.582780 -158.198591

** Plant Templates for Specified Frequencies

tp5.dat

Frequency Magnitude Phase
10.00 -34.149733 -168.690068
10.00 -20.170333 -168.690068
10.00 -11.792964 -149.036243
10.00 -9.030900 -135.000000
10.00 -23.010300 -135.000000
10.00 -25.772364 -149.036243
10.00 -34.149733 -168.690068

** Plant Templates for Specified Frequencies
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tp6.dat

Frequency Magnitude Phase
20.00 -46.063814 -174.289407
20.00 -32.084414 -174.289407
20.00 -22.873040 -163.300756
20.00 -19.030900 -153.434949
20.00 -33.010300 -153.434949
20.00 -36.852440 -163.300756
20.00 -46.063814 -174.289407

** Plant Templates for Specified Frequencies

tp7.dat

Frequency Magnitude Phase
30.00 -53.083509 -176.185925
30.00 -39.104109 -176.185925
30.00 -29.712758 -168.690068
30.00. -25.563025 -161.565051
30.00 -39.542425 -161.565051
30.00 -43.692159 -168.690068
30.00 -53.083509 -176.185925

** Plant Templates for Specified Frequencies

tp8.dat

Frequency Magnitude Phase
35.00 -55.756280 -176.729512
35.00 -41.776880 -176.729512
35.00 -32.346087 -170.272421
35.00 -28.124120 -164.054604
35.00 -42.103520 -164.054604
35.00 -46.325487 -170.272421
35.00 -55.756280 -176.729512

** Plant Templates for Specified Frequencies
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tp9.dat

Frequency Magnitude Phase
40.00 -58.072644 -177.137595
40.00 -44.093243 -177.137595
40.00 -34.636608 -171.469234
40.00 -30.366289 -165.963757
40.00 -44.345689 -165.963757
40.00 -48.616008 -171.469234
40.00 -58.072644 -177.137595

** Plant Templates for Specified Frequencies

tplO.dat

Frequency Magnitude Phase
80.00 -70.105713 -178.567904
80.00 -56.126313 -178.567904
80.00 -46.605535 -175.710847
80.00 -42.211533 -172.874984
80.00 -56.190933 -172.874984
80.00 -60.584935 -175.710847
80.00 -70.105713 -178.567904

Step 5. Bounds (tracking, disturbance, composite):

The tracking bounds are achieved using the specified geometric approach which results
in the following frequency tables for the 10 frequencies of interest.

** Tracking Bounds for Specified Frequencies

trbl.dat

Frequency Magnitude Phase
0.50 30.366686 0.0000
0.50 30.366686 -10.000000
0.50 29.866686 -20.000000
0.50 29.866686 -30.000000
0.50 29.116686 -40.000000
0.50 28.116686 -50.000000
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0.50 27.116686 -60.000000
0.50 25.366686 -70.000000
0.50 22.866686 -80.000000
0.50 19.616686 -90.000000
0.50 18.116686 -100.000000
0.50 21.116686 -110.000000
0.50 24.866686 -120.000000
0.50 27.116686 -130. )00000
0.50 28.616686 -140.000000
0.50 29.616686 -150.000000
0.50 30.116686 -160.000000
0.50 30.616686 -170.000000
0.50 30.616686 -180.000000

** Tracking Bounds for Specified Frequencies

trb2.dat

Frequency Magnitude Phase
1.25 14.158996 0.000000
1.25 13.908996 -10.000000
1.25 13.408996 -20.000000
1.25 12.721496 -30.000000
1.25 12.158996 -40.000000
1.25 11.971496 -50.000000
1.25 11.533996 -60.000000
1.25 10.908996 -70.000000
1.25 10.033996 -80.000000
1.25 8.846496 -90.000000
1.25 7.471496 -100.000000
1.25 7.283996 -110.000000
1.25 8.971496 -120.000000

** Tracking Bounds for Specified Frequencies

trb3.dat

Frequency Magnitude Phase
2.50 1.357881 0.000000
2.50 1.076631 -10.000000
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2.50 0.670381 -20.000000
2.50 0.139131 -30.000000
2.50 -0.485869 -40.000000
2.50 -1.204619 -50.000000
2.50 -1.923369 -60.000000
2.50 -2.345244 -70.000000
2.50 -2.829619 -80.000000
2.50 -3.313994 -90.000000
2.50 -3.657744 -100.000000
2.50 -3.720244 -110.000000
2.50 -3.907744 -120.000000

** Tracking Bounds for Specified Frequencies

trb4.dat

Frequency Magnitude Phase
5.00 -9.496843 0.000000
5.00 -9.809343 -10.000000
5.00 -10.153093 -20.000000
5.00 -10.496843 -30.000000
5.00 -10.824968 -40.000000
5.00 -11.153093 -50.000000
5.00 -11.449968 -60.000000
5.00 -11.715593 -70.000000
5.00 -11.934343 -80.000000
5.00 -11.981218 -90.000000
5.00 -11.817155 -100.000000
5.00 -11.067155 -110.000000
5.00 -10.379655 -120.000000

** Tracking Bounds for Specified Frequencies

trb5.dat

Frequency Magnitude Phase
10.00 -11.639968 0.000000
10.00 -11.843093 -10.000000
10.00 -12.061843 -20.000000
10.00 -12.280593 -30.000000
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10.00 -12.499343 -40.000000
10.00 -12.702468 -50.000000
10.00 -12.905593 -60.000000
10.00 -13.061843 -70.000000
10.00 -13.202468 -80.000000
10.00 -13.311843 -90.000000
10.00 -13.272780 -100.000000
10.00 -13.147780 -110.000000
10.00 -12.444655 -120.000000

** Tracking Bounds for Specified Frequencies

trb6.dat

Frequency Magnitude Phase
20.00 -21.967134 0.000000
20.00 -22.154634 -10.000000
20.00 -22.264009 -20.000000
20.00 -22.295259 -30.000000
20.00 -22.248384 -40.000000
20.00 -22.123384 -50.000000
20.00 -21.920259 -60.000000
20.00 -21.639009 -70.000000
20.00 -21.310884 -80.000000
20.00 -20.912446 -90.000000
20.00 -20.474946 -100.000000
20.00 -20.014009 -110.000000
20.00 -19.326509 -120.000000

** Tracking Bounds for Specified Frequencies

trb7.dat

Frequency Magnitude Phase
30.00 -35.676283 0.000000
30.00 -35.863783 -10.000000
30.00 -35.895033 -20.000000
30.00 -35.707533 -30.000000
30.00 -35.363783 -40.000000
30.00 -34.801283 -50.000000
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30.00 -34.051283 -60.000000
30.00 -33.082533 -70.000000
30.00 -31.926283 -80.000000
30.00 -30.582533 -90.000000
30.00 -29.113783 -100.000000
30.00 -27.582533 -110.000000
30.00 -26.098158 -120.000000

** Tracking Bounds for Specified Frequencies

trb8.dat

Frequency Magnitude Phase
35.00 -56.928155 0.000000
35.00 -57.178155 -10.000000
35.00 -57.178155 -20.000000
35.00 -56.928155 -30.000000
35.00 -56.178155 -40.000000
35.00 -55.428155 -50.000000
35.00 -54.178155 -60.000000
35.00 -52.428155 -70.000000
35.00 -49.928155 -80.000000
35.00 -46.428155 -90.000000
35.00 -41.303155 -100.000000
35.00 -35.803155 -110.000000
35.00 -31.365655 -120.000000

The disturbance bounds are achieved using the specified geometric approach which results

in the following frequency tables for the 10 frequencies of interest.

** Disturbance Bounds for Specified Frequencies

dbl.dat

Frequency Magnitude Phase
0.50 4.841138 -10.000000
0.50 4.866419 -20.000000
0.50 4.932439 -30.000000
0.50 5.022113 -40.000000
0.50 5.132764 -50.000000
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0.50 5.261063 -60.000000
0.50 5.403127 -70.000000
0.50 5.554625 -80.000000
0.50 5.710920 -90.000000
0.50 5.867215 -100.000000
0.50 6.190783 -110.000000
0.50 6.990566 -120.000000
0.50 7.250768 -123.521237

** Disturbance Bounds for Specified Frequencies

db2.dat

Frequency Magnitude Phase
1.25 -5.818170 -10.000000
1.25 -5.883702 -20.000000
1.25 -5.882905 -30.000000
1.25 -5.799389 -40.000000
1.25 -5.476635 -50.000000
1.25 -5.099829 -60.000000
1.25 -4.680040 -70.000000
1.25 -4.230305 -80.000000
1.25 -3.765184 -90.000000
1.25 -3.300063 -100.000000
1.25 -2.850329 -110.000000
1.25 -2.430539 -120.000000
1.25 -2.292340 -123.521237

** Disturbance Bounds for Specified Frequencies

db3.dat

Frequency Magnitude Phase
2.50 -17.831487 -10.000000
2.50 -18.133736 -20.000000
2.50 -18.301196 -30.000000
2.50 -18.332603 -40.000000
2.50 -18.227750 -50.000000
2.50 -17.987368 -60.000000
2.50 -17.610768 -70.000000

34



QFT Toolbox User's Manual Ver 2.0

2.50 -16.966317 -80.000000
2.50 -16.202078 -90.000000
2.50 -14.493796 -100.000000
2.50 -12.649904 -110.000000
2.50 -11.053478 -120.000000
2.50 -10.557684 -123.521237

** Disturbance Bounds for Specified Frequencies

db4.dat

Frequency Magnitude Phase
0.50 -3.468183 -10.000000
0.50 -3.544164 -20.000000
0.50 -3.592646 -30.000000
0.50 -3.612203 -40.000000
0.50 -3.602262 -50.000000
0.50 -3.563115 -60.000000
0.50 -3.495909 -70.000000
0.50 -3.331169 -80.000000
0.50 -2.909641 -90.000000
0.50 -2.488113 -100.000000
0.50 -2.080328 -110.000000
0.50 -1.699344 -120.000000
0.50 -1.573820 -123.521237

** Disturbance Bounds for Specified Frequencies

db5.dat

Frequency Magnitude Phase
0.50 -16.829739 -10.000000
0.50 -16.967571 -20.000000
0.50 -17.032351 -30.000000
0.50 -17.022558 -40.000000
0.50 -16.938420 -50.000000
0.50 -16.781924 -60.000000
0.50 -16.556893 -70.000000
0.50 -16.269100 -80.000000
0.50 -15.926364 -90.000000
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0.50 -15.475263 -100.000000
0.50 -14.839083 -110.000000
0.50 -14.203693 -120.000000
0.50 -13.403941 -123.521237

** Disturbance Bounds for Specified Frequencies

db6.dat

Frequency Magnitude Phase
0.50 -45.452773 -10.000000
0.50 -45.591908 -20.000000
0.50 -45.493507 -30.000000
0.50 -45.153305 -40.000000
0.50 -44.556190 -50.000000
0.50 -43.674382 -60.000000
0.50 -42.464581 -70.000000
0.50 -40.865973 -80.000000
0.50 -38.807586 -90.000000
0.50 -36.2520b4 -100.000000
0.50 -33.312533 -110.000000
0.50 -30.336900 -120.000000
0.50 -29.356833 -123.521237

The composite bounds--the combination of the tracking and disturbance bounds--are as follows:

** Composite Bounds for Specified Frequencies

cbl.dat

Frequency Magnitude Phase
0.50 30.366686 -10.000000
0.50 30.366686 -20.000000
0.50 29.866686 -30.000000
0.50 29.866686 -40.000000
0.50 29.116686 -50.000000
0.50 28.116686 -60.000000
0.50 27.116686 -70.000000
0.50 25.366686 -80.000000
0.50 22.866686 -90.000000
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0.50 19.616686 -100.000000
0.50 18.116686 -110.000000
0.50 21.116686 -120.000000
0.50 24.866686 -123.521237

** Composite Bounds for Specified Frequencies

cb2.dat

Frequency Magnitude Phase
1.25 14.158996 -10.000000
1.25 13.908996 -20.000000
1.25 13.408996 -30.000000
1.25 12.721496 -40.000000
1.25 12.158996 -50.000000
1.25 11.971496 -60.000000
1.25 11.533996 -70.000000
1.25 10.908996 -80.000000
1.25 10.033996 -90.000000
1.25 8.846496 -100.000000
1.25 7.471496 -110.000000
1.25 7.283996 -120.000000
1.25 8.971496 -123.521237

** Composite Bounds for Specified Frequencies

cb3.dat

Frequency Magnitude Phase
2.50 1.357881 -10.000000
2.50 1.076631 -20.000000
2.50 0.670381 -30.000000
2.50 0.139131 -40.000000
2.50 -0.485869 -50.000000
2.50 -1.204619 -60.000000
2.50 -1.923369 -70.000000
2.50 -2.345244 -80.000000
2.50 -2.829619 -90.000000
2.50 -3.313994 -100.000000
2.50 -3.657744 -110.000000
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2.50 -3.720244 -120.000000
2.50 -3.907744 -123.521237

** Composite Bounds for Specified Frequencies

cb4.dat

Frequency Magnitude Phase
5.00 -3.468183 -10.000000
5.00 -3.544164 -20.000000
5.00 -3.592646 -30.000000
5.00 -3.612203 -40.000000
5.00 -3.602262 -50.000000
5.00 -3.563115 -60.000000
5.00 -3.495909 -70.000000
5.00 -3.331169 -80.000000
5.00 -2.909641 -90.000000
5.00 -2.488113 -100.000000
5.00 -2.080328 -110.000000
5.00 -1.699344 -120.000000
5.00 -1.573820 -123.521237
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** Composite Bounds for Specified Frequencies

cb5.dat

Frequency Magnitude Phase
10.00 -11.639968 -10.000000
10.00 -11.843093 -20.000000
10.00 -12.061843 -30.000000
10.00 -12.280593 -40.000000
10.00 -12.499343 -50.000000
10.00 -12.702468 -60.000000
10.00 -12.905593 -70.000000
10.00 -13.061843 -80.000000
10.00 -13.202468 -90.000000
10.00 -13.311843 -100.000000
10.00 -13.272780 -110.000000
10.00 -13.147780 -120.000000
10.00 -12.444655 -123.521237

** Composite Bounds for Specified Frequencies

cb6.dat

Frequency Magnitude Phase
20.00 -21.967134 -10.000000
20.00 -22.154634 -20.000000
20.00 -22.264009 -30.000000
20.00 -22.295259 -40.000000
20.00 -22.248384 -50.000000
20.00 -22.123384 -60.000000
20.00 -21.920259 -70.000000
20.00 -21.639009 -80.000000
20.00 -21.310884 -90.000000
20.00 -20.912446 -100.000000
20.00 -20.474946 -110.000000
20.00 -20.014009 -120.000000
20.00 -19.326509 -123.521237

** Composite Bounds for Specified Frequencies
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cb7.dat

Frequency Magnitude Phase
30.00 -35.676283 0.000000
30.00 -35.863783 -10.000000
30.00 -35.895033 -20.000000
30.00 -35.707533 -30.000000
30.00 -35.363783 -40.000000
30.00 -34.801283 -50.000000
30.00 -34.051283 -60.000000
30.00 -33.082533 -70.000000
30.00 -31.926283 -80.000000
30.00 -30.582533 -90.000000
30.00 -29.113783 -100.000000
30.00 -27.582533 -110.000000
30.00 -26.098158 -120.000000
30.00 -24.738783 -130.000000
30.00 -23.473158 -140.000000
30.00 -21.215345 -150.000000
30.00 -19.879408 -160.000000
30.00 -19.066908 -170.000000

** Composite Bounds for Specified Frequencies

cb8.dat

Frequency Magnitude Phase
35.00 -56.928155 0.000000
35.00 -57.178155 -10.000000
35.00 -57.178155 -20.000000
35.00 -56.928155 -30.000000
35.00 -56.178155 -40.000000
35.00 -55.428155 -50.000000
35.00 -54.178155 -60.000000
35.00 -52.428155 -70.000000
35.00 -49.928155 -80.000000
35.00 -46.428155 -90.000000
35.00 -41.303155 -100.000000
35.00 -35.803155 -110.000000
35.00 -31.365655 -120.000000
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35.00 -28.240655 -130.000000
35.00 -26.037530 -140.000000
35.00 -24.342217 -150.000000
35.00 -21.318780 -160.000000
35.00 -20.139092 -170.000000
35.00 -19.600030 -180.000000

Step 6. Loop transmission design:

The loop transmission is designed to have a phase angle above gamma - 180 - -140 over
the region of frequency 3 to 40 rad/sec which prohibits Lo from penetrating the u-contour. Also,
Lo was designed to have a magnitude greater than the bounds at the specified discrete
frequencies. The bode plot provided by the qft tool box reflects this characteristic. In addition,
the angle contributions are determined as each new pole or zero is add in the Lo design process
using the bode plot. An iterative design technique is employed starting with

Lo(s) - Po/s - 2/s(s+2)

The resulting Lo meeting the bounding criteria using the QFD approach is

** Loop Transmission - Lo **

Numerator: order - 4
constant/gain - 701766.000000
polynomial roots

1.00 -0.010000 j 0.000000
10562.0 -12.000000 j 0.000000

5626705.62 -550.000000 j 0.000000
66056266.00 -10000.000000 j 0.000000

660000.00

Denominator:. order - 7
constant/gain - 1.000000
polynomial roots

1.0 0.000000 j 0.000000
8727.00 0.000000 j 0.000000

51772450.00 -2.000000 j 0.000000
16238510000.00 -125.000000 j 0.000000

1257270000000.00 -200.000000 j 0.000000
2450000000000.00 -4200.000000 j -5600.000000
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0.000000 -4200.000000 j 5600.000000
0.000000

The zero at -10000 was added to decrease the gain. The complex pole has a zeta of 0.6
and a wn - 7000 rad/sec

The following frequency response can be check for achieving the desired bounds:

** Freq domain Loop Transmission - lof

Frequency Magnitude Phase
0.10 45.564071 -98.160021
1.10 23.592022 -114.803398
2.10 15.989122 -128.097662
3.10 10.663229 -134.869957
4.10 6.586885 -137.915513
5.10 3.339406 -138.960580
9.10 -5.072261 -136.351593

10.10 -6.499835 -135.269468
19.10 -14.389152 -128.424274
20.10 -14.963042 -128.047181
29.10 -18.955878 -126.971790
30.10 -19.310471 -127.041855
34.10 -20.614006 -127.574123
35.10 -20.915351 -127.760558
39.10 -22.041838 -128.673153
40.10 -22.306226 -128.936752

Figure B.2 presents the combined curves for the composite bounds, Lo and the U-contour

Step 7. Controller G generation:

Using Lo and the nominal plant Po, the controller is generated

** Controller - Gcontr **

Numerator- order - 4
constant/gain - 701766.000000
polynomial roots

1.000000 -0.010000 j 0.000000
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10562.010000 -12.000000 j 0.000000
5626705.620000 -550.000000 j 0.000000
66056266.000000 -10000.000000 j 0.000000
660000.000000
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Fig B.2
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Denominator: order = 5
constant/gain - 2.000000
polynomial roots

1.000000 0.000000 j 0.000000
8725.000000 -125.000000 j 0.000000

51755000.000000 -200.000000 j 0.000000
16135000000.000000 -4200.000000 j-5600.000000

1225000000000.000000 -4200.000000 j 5600.000000
0.000000

The CLTFs with G and each plant can be generated and analyzed for a unit step input.

Step 8. Filter generation:

** QFT Data for Filter Generation **

frequency Tmax Tmin Tru Trn Tru-Tmax Trl-Tmin

0.50 0.05 0.00 0.06 -0.16 0.01 -0.16
1.25 0.29 0.00 0.36 -0.94 0.07 -0.94
2.50 1.14 0.01 1.27 -3.35 0.13 -3.36
5.00 3.56 -0.02 0.58 -9.87 -2.97 -9.85

10.00 2.36 -3.74 -9.67 -21.88 -12.03 -18.13
20.00 0.98 -14.00 -18.90 -37.82 -19.88 -23.82
30.00 1.11 -18.72 -23.25 -48.11 -24.37 -29.39
35.00 1.06 -20.42 -24.79 -52.15 -25.85 -31.74
40.00 1.03 -21.87 -26.07 -55.71 -27.11 -33.84
80.00 1.31 -29.82 -32.42 -75.10 -33.73 -45.28

The filter was design to "fit" between the values of the last two columns of the previous
table. Using a trail and error procedure, the following filter tf was developed:

** Prefilter - filter **

Numerator. order - 1
constant/gain - 116.667000
polynomial roots
1.000000 -8.000000 j 0.000000

18.000000
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Denominator, order = 3
constant/gain - 1.000000
polynomial roots
1.000000 -3.000000 j 0.000000

83.000000 -10.000000 j 0.000000
940.000000 -70.000000 j 0.000000
2100.000000

Observe that filter frequency data at the specified frequencies is within the desired
magnitude band.

** Freq domain Filter Data - filterd

Frequency Magnitude Phase
2.50 1.142266 0.005701
5.00 3.555355 -0.023358

10.00 2.359959 -3.743955
20.00 0.982747 -13.995255
30.00 1.111816 -18.724763
35.00 1.064837 -20.416449
40.00 1.033052 -21.867131
80.00 1.306490 -29.822368

Step 9. Simulation (time and frequency domains):

*** Tracking Simulation ***

Observe that frequency domain responses are within the desired tracking tolerances
specified by Tru and TrI. Figure B.3 presents the 6 variations. The simulations for Plant 1 are
shown in the following tables:

** Frequency Domain Tracking Simulations - simf#

simfl.dat

Frequency Magnitude Phase
0.00 0.004601 0.000000
1.00 -0.299118 -24.962418
2.00 -0.979253 -47.659076
3.00 -1.653054 -68-522305
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4.00 -2.186886 -90.022440
5.00 -2.885382 -114.795202

10.00 -16.505601 -205.594432
20.00 -34.408601 -231.877907
30.00 -43.727907 -241.745678
40.00 -50.185303 -250.958689
50.00 -55.297283 -260.066176
60.00 -59.636560 -268.824671
70.00 -63.468612 -277.061248
80.00 -66.934951 -284.701878
90.00 -70.119377 -291.733938

100.00 -73.075825 -298.177534

* Disturbance Simulation ***

Observe that time domain unit step responses are within the desired disturbance tolerance
specified by td. Figure B.4 depicts the six variations. The following list is for plant 1 time
domain simulation.
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Fig B.3
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Fig B.4
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** Time Domain Disturbance Simulation - dsimt#

dsimtl.dat

Time Magnitude
0.00 -0.000000
1.00 0.049418
2.00 0.051887
3.00 0.051440
4.00 0.050916
5.00 0.050407
6.00 0.049905
7.00 0.049408
8.00 0.048917
9.00 0.048430

10.00 0.047948

Observe that frequency domain responses are within the desired disturbance tolerance

specified by td.

** Frequency Domain Disturbance Simulations - dsimf#

dsimnfl.dat

Frequency Magnitude Phase
0.10 -25.568491 4.995521
1.10 -25.339810 -7.540779
2.10 -24.848301 -16.181341
3.10 -24.084997 -26.969107
4.10 -23.199018 -41.781977
5.10 -22.642605 -62.204749

10.10 -31.735471 -142.160328
20.10 -45.244328 -165.337401
30.10 -52.592365 -170.916968
40.10 -57.703980 -173.558937
50.10 -61.641599 -175.130722
60.10 -64.850193 -176.178110
70.10 -67.560114 -176.923008
80.10 -69.906538 -177.474652
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90.10 -71.975765 -177.894259

Conclusions - Thus a robust controller has been designed, analyzed and simulated for the
given second-order system with plant coefficient variation and plant disturbances.

(ibis example was based upon the work of Dennis Trosen in the AFRT course EENG660 as
taught by Professor Houpis)
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D. Overview of QFT MIMO Design Process

The QFT MIMO synthesis problem requires conversion into a number of MISO single-
loop feedback problems in which parameter uncertainly, external disturbances, and performance
tolerances are derived from the original MIMO problem. The combined solutions to these MISO
single-loop problems achieve the desired performance for the MIMO plant. The basic approach
is a point-wise frequency domain MISO synthesis technique. A 3x3 MIMO feedback structure
is shown in figure 2.

F Pf
-!W

Figure 2: Three by three MIMO Design Structure

Plant models for figure 2 are developed in one of two formats: differential equation form
and state space form. The general state-space model is manipulated as follows:

The state-space model representation for a LTI MIMO system is given by

Xz(t) -A(t) + BU(t) (13)

r(t) - (t)

where X is an m vector, Y is an n vector and U is an r vector. A,B, and C are constant matrices
of the proper dimension.
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The plant transfer-function matrix P(s) is defined in state space form as

P(s) = C[sZ-A] - B (14)

When the system of figure 2 is defined in differential equation form, we start with the
following relations:

a,(s)y1 (s) + b1 (s)y 2 (s) + c1 (s(s)y3 s) = duu1 (s) + eu 2 (s) + fu 3 (s)
a2 (s)y 1 (s) + b2 (s)y 2 (s) + c.(s)y3 (s) = d2 u1 (s) + esu2 (s) + f2u3 (s) (15)
a3 (s) y 1 (s) + b3 (s) y2 (s) * c3 (s) y3 (s) = d3uI (s) + e3u2 (s) + f3u3 (s)

This set of differential equations can be represented in matrix notation as

a,(s) bl,(s) c,(s) d, e l f 1

a2 (s) b 2 (s) c2(s) Y(s) - d2 e2 4f2 U(s) (16)

a3(s) b3 (s) c3 (s) d3 e3 f3

which yields the following:

K(s) r(s) -E(s)
Y(s) - M 1-RU(s) (17)
Y(s) - P(s) U(s)
F(s) = M-IN

This plant transfer function matrix P(s) - [pij(s)] is a member of the set P - {P(s)} of
possible plant matrices which are functions of the uncertain plant parameters. If the equivalent
plant matrix P resulting from the three matrices is not square, a weighing matrix W can be used
to form an effective square plant; however, the use of a weighing matrix is not implemented in
the ICECAP-PC MIMO QFT toolbox.

In CACSD practice, one of three explicit methods can be used to define the region of
plant uncertainty. The first is based upon the physical modeling of various plants representing
the variety of possible plants. The second includes the selection of only a finite set of P
matrices, representing the extreme boundaries of plant pole/zero uncertainty. The third considers
the variations in plant coefficients by considering a preselected number of plants to represent the
maximum variations. A convex hull is then closed around these plants to derive the minimum
number of plant models to represent the variation.

An mxm MIMO closed-loop system can be represented by three mxm transfer function
matrices, F, G, and P. There are m2 closed-loop system transfer functions t%(s) (transmissions)
contained within its system transmission matrix or system tracking matrix. TR(s) - {t%(s)), relates
the outputs y,(s) to the inputs rj(s), that is, YI(s) - t%(s)r,(s). In a quantitative problem statement
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there are tolerance bounds on each t%(s), giving a set of m2 acceptable regions T1J(s) which are
to be specified in the design, thus tij(s) £ TJ(s) and T(s) - {Tij(s)}. These regions may also be
directly given in the frequency domain.

The following system equations define the input/output relation of Fig 2:

Y M Pz
X = OU (18)
U = FR - r

In these equations G(s) is the matrix of compensator transfer functions and is often
simplified so that it is diagonal. F(s) is the matrix of refilter transfer functions which may also
be a diagonal matrix. The combination of these equations yields a 2 degree-of-freedom feedback
structure

Y = [. + PG] -1 Papr (19)

where the system tracking control ratio relating r to y is

r', - [z + Ja] -1 •,' (20)

The disturbance model is given as
r, a [X + Pal e-IP - Idl.; (21)

The MIMO design objective is to determine a F and G for all plants in (P } such that
(1) the closed-loop control ratio is stable and
(2) the norm of tj(w) is bounded: ij(w) < t%(w) : b.(w) for w _ w.
(3) the disturbance, eq 3-16, is bounded (disturbance rejection).

A linear mapping from a MIMO system structure results in mn2 MISO equivalent systems,
each with two inputs and one output. One input is designated as a "desired" tracking input and
the other as a disturbance input. To develop this mapping consider the inverse of the plant
matrix represented by

JP-ll P*12 - P*i.

Pp- * 2 1. P -2 P 2 . (22)
P O a I
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The m2 effective plant transfer functions are formed by defining

9. -1 a,1 (23)

A Q matrix is defined as:

q1 I q 21 - q1 - P' 1 1 P*1 2 " P-1
,p-= _ Q2 1 q 2 2 - 72M . P* 2 1 P* 2 2 " P*2w (24)

q-, q-, qA3 q, Pm0P'm " P.-

where P = [p~j], PF' = [P*ij =- [1/%], and Q = [qj] - [1/p*].
the matrix P' is partitioned to form

P- [p'] = [-.--J A+J (25)

where A - {fk,} is the diagonal part and B - {b},) is the off-diagonal component of p-. Thus,
= i -/q. - pu, bij - 1/qj - pj for i * j. Pre-multiplying eq 20 by P-[I+PG] yields

jP-IL 1z + FM Tit - F3. [I + FM [IX + IVG] "xpm (26Pi~IPG1Tpl!4PGM~pG~PGF(26)
[jP-J + G] r'a = or"

If we let P' - A + B where A contains the diagonal terms and B contains the off diagonal
terms, eq 26 becomes

[A + B + 0] Fz - ar
[A + a] r'a -=0 - D (27)
ra - (A + a]J-1 [,F - BMI

Each of the m2 matrix elements on the right side of eq 27 can be interpreted as a MISO
problem. A fixed point mapping based on Schauder's fixed point theorem (D'Azzo, pg 699) is
defined by Y(TR) as:

r(L.) A + ao]-Lr - B] (28)

where G - {gij} is assumed to be diagonal and each member of TR is from the acceptable set
{T9}. If this mapping has a fixed point, i.e., TR e {TR} such that Y(TR) - {TR}, then this TR is
a solution of eq 27.
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The control ratios for the desired tracking of the inputs by the corresponding outputs for
each feedback loop of eq 28 have the form

yjj = wi,(vij + dij) =Yr, + Yd. (29)

where

wi W gqil ,30)

The interaction between the loops has the form

S- -; - M k - 1,2,-,m (31 )
Sqj

and appears as a "disturbance" input in each of the feedback loops.
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E. The MIMO QFT CAD Toolbox

The heart of the MIMO-QFT toolbox interface is the dialog box which is a pop-up window
containing input lines, radio buttons, and check boxes. Input lines allow text entry such as
comment lines and transfer function definitions. ICECAP-PC input lines contain history windows
by which past inputs are recalled and edited with mouse or the down arrow. Checkboxes are a
multiple selection tools consisting of brackets that are checked when selected ( [X][ ][XJ ). For
example, if the user desires to see or define any number of transfer functions at the same time
he/she may do so by selecting from among a 5x5 array of checkboxes. Radiobuttons are singular
selection tools consisting of parenthesis that are dotted when selected [ ( )(-( ) ]. For example,
when the user is allowed to select from one and only one frequency range, he/she makes his/her
selection on a checkbox.

The MIMO QFT toolbox allows the design of systems up to 5x5 in dimension. It provides up
to 20 plant cases of the P matrix. Thus, the file structure is conceptually a 5x5 pj transfer
function matrix 20 levels deep with each level containing a plant case P. The toolbox stores a
Tru, Trl, Td, Lo, G, and FCTF for each transfer function element.

There are two ways to define transfer function elements and matrices: polynomial format and
factored format. Transfer function entry is done on an input line very similar to the most popular
matrix/engineering programs with the exceptions that 1) complex factors may be entered directly
and 2) brackets are not used to enclose the entry. Differentiation between the two forms is
simply a matter of radio button selection. To enter a transfer function (12.02s 2 + 4.32s + 5) / (4s
+ 2) one would enter the following line:

12.02 4.32 5; 4 2

Note that the numbers are not encased by right and left brackets like other popular programs.
After such entry, the transfer function is displayed on a scrollable screen in standard coefficient
form. To enter a transfer function with 3 zeros at -2, -5, and -7 and four poles -3±2j, -8, -1 and -
9 with a gain of 1, one would enter the following:

-2 -5 -7; -3j2 -8 -1 -9

Note the direct entry of the single complex variable. The entry of complex is always done with
an i or j preceding the complex element with no spaces allowed. The entry of spaces i a
complex number is taken to be a second root at an imaginary location. The entry of the complex
conjugate is done automatically by the computer. Manual entry of the complex conjugate is an
error and results in an extra undesired root. After such entry, the transfer function is displayed
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on a scrolable screen in either factored form 000/000 or in list form showing the gain and root
locations of the numerator and denominator as selected by the user.

Several p1j (in fact all of the P matrix) can be defined at one time by simple checkbox selection
from among a 5x5 array of elements that indicate which p1j is to be defined.

The heart of the MIMO process is the accurate calculation of P-1 and its decomposition into
MISO equivalent loops. The MIMO QFT toolbox uses the LU Decomposition process to find
P1 and Q. LU Decomposition offers several advantages over the classical Adj/Det technique.

1. It provides a single general method for the inversion of all P

2. Root cancellation occurs at very low orders preventing the growth of
unnecessarily large order polynomials.

3. Because of this, root finding is much simpler and more accurate and root
cancellation can be done with far tighter constraints than any other technique.

4. There is no need to factor out common denominators and numerators in P.
These are canceled internally with no loss of accuracy.

LU Decomposition also provides quick and accurate calculation of P matrix determinant so that
the engineer can inspect the P matrix for singularity and for non-minimum phase conditions.

The MIMO QFT process as implemented in ICECAP-PC follows the following menu and process

structure:

1. File

Log File On: Activates the ICECAP-PC log file. All subsequent information displayed
to screen is also sent to the log file. The log file is a text file named LOGFILE.TXT and
as such can be viewed, printed or edited with any good text editor.

Log File Off: Turns log file off.

DOS Shell: Provides Temporary exit to DOS. Once in the DOS environment, return to
the ICECAP-PC MIMO QFT program is initiated with the 'Exit' DOS command.
Caution: Do not attempt to edit an active log file by using this option.

Exit: Exits the ICECAP-PC MIMO QFT toolbox.
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2. Set

Clear Display: Clears the screen.

CommentLine: Presents direct entry of comments into the design session. Comments can
be up to 132 characters long. If the log file is active, comments are also sent to it.

Header: Provides a dialog box to record the user/student name, title and other header
information that should appear on top of log files. The header information is saved to
disk and recalled each time the log file is turned on with the header option enabled.

View Options: Allows user to customize the session including the selection of high
resolutior screens, Number of decimal places displayed, fixed decimals or scientific
notation display selection, and complex letter (i or j) selection.

Select Current Plant: Provides selection of the current plant and plant dimension. The
MIMO-QFT toolbox allows up to 20 plant matrix definitions for both P and Q matricies.
Each plant is a transfer function matrix. The complete plant set of 1-20 plants defines
the region of plant paramater uncertainty.

20

2
"1--

TF[1,1] TF[1,2] TF[1,3]

TF[1,2] TF[2,2] TF[2,3]

TF[3,1] TF[3,2] TF[3,3]

Select Frequency Range: The MIMO-QFP toolbox provides three frequency ranges each
containing 16 frequencies 1 octave apart. Plant templates are generated over the selected
frequency range. The three ranges are:

1) .015- 512 Rad/Sec
2) .500 - 16,000 Rad/Sec
3) 4096.000 - 134,000,000 Rad/Sec
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Select Number Of Plants: Provides selection of the number of plants used in the MIMO
QFT design process. The user can select from 1-20 plants used. Plant template
generation depends on the proper setting of this option.

3. Specs

Define Tru: Define the upper tracking response transfer function (Tru) for transfer
function elements of the plant matrix. Tr is normally defined element by element on
an individual basis, however, several transfer function elements may have the same Tru.
Therefore, Tru can be defined for several elements at a time by simply checking the
appropriate boxes. Transfer function input can be in either polynomial or factored form
as shown below.

To enter this: s2+3s+5 / s3+6s2+7s+8
Check Poly :
And Type This: 135; 1678

To enter this : (s+4)(s+6) / (s+8)(s-4+j2)(s-4+j2)
Check Factored:
Type this : -4 -6; -8 4j2
Note that the complex conjugate is automatically entered

Display Tru: Display Tru for any Pl, element/elements desired.

Edit Tru: Edit Tm for any transfer function element of the plant matrix.

Define Trl: Define the lower tracking response transfer function (Trl) for transfer
function elements of the plant matrix. Trl cannot be defined for off-diagonal elements.
Trl is normally defined element by element on an individual basis, however, several
transfer function elements may have the same Trl. Therefore, Trl can be defined for
several diagonal elements at a time by simply checking the appropriate boxes. Transfer
function input can be in either polynomial or factored form as shown below.

To enter this: s2+3s+5 / s3+6s 2+7s+8
Check Poly :
And Type This: 135; 1678

To enter this : (s+4)(s+6) / (s+8)(s-4+j2)(s-4+j2)
Check Factored:
Type this : -4 -6; -8 4j2
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Note that the complex conjugate is automatically entered

Display Trl: Display Trl for any pij element(s) desired. Since Trl is undefined for off-

diagonal elements, the dislay of such Trl is disallowed.

Edit Trl: Edit Trl for any transfer function element of the plant matrix.

Define Td: Define the disturbance tracking response transfer function (Td) for transfer
function elements of the plant matrix. Td is normally defined element by element on an
individual basis, however, several transfer function elements may have the same Td.
Therefore, Td can be defined for several elements at a time by simply checking the
appropriate boxes. Transfer function input can be in either polynomial or factored form
as shown below. However, it is common practice to simply define Td as some constant
(ie .1 for -20db)

To enter this: s2+3s+5 / s3+6s2+7s+8
Check Poly :
And Type This: 1 3 5; 1 6 7 8

To enter this : (s+4)(s+6) / (s+8)(s-4+j2)(s-4+j2)
Check Factored:
Type this : -4 -6; -8 4j2
Note that the complex conjugate is automatically entered

Display Td: Display Td for any p41 element(s) desired.

Edit Td: Edit Td for any transfer function element in the plant matrix.

Define Stability Specs: Stability specifications may be defined as either a phase margin
(c), a ML contour, or a peak overshoot(Mp). Specifications are entered one for each row
in the design and multiple rows may be define simultaneously. The entry of gain margin
is specifically disallowed because 1) the sensitivity of phase margin with respect to gain
margin and 2) the ill conditioned nature of calculating the phase margin given a gain
margin which is error prone. Using any definition provided results in the printing of all
specs.

Display Stability Specs: Display stability specifications for any number of row(s) of the
P matrix. The display will show phase margin, peak overshoot, MI contour, and gain
margin.
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4. Plants

Define Plant Elements p: Define the plant transfer function p, for transfer function
elements of the plant matrix P. pij is normally defined element by element on an
individual basis, however, several transfer function elements may have the same
definition. Therefore, pij can be defined for several elements at a time by simply
checking the appropriate boxes. Transfer function input can be in either polynomial or
factored form as shown below. The current P is indicated in the dialog box and may be
set using the Select Current Plant option.

To enter this: s2+3s+5 / s3+6s2+7s+8
Check Poly :
And Type This: 1 35;1678

To enter this : (s+4)(s+6) / (s+8)(s-4+j2)(s-4+j2)
Check Factored:
Type this : -4 -6; -8 4j2
Note that the complex conjugate is automatically entered

Define Plant Variation: Provides an automated method for generating 20 plant cases.
The user defines two transfer functions at the minima and maxima in variation for any
given plant p,,. Entry is allowed in polynomial or factored form by selection. The
MIMO-QFT toolbox will automatically generate 125 plant cases for each plant element
ptj, envelop these plants (pj) with a convex hull, and choose 20 plants on its perimeter.

Copy Plant Matrix P:

Display Plant Elements p: Provides for the display of 1-25 plants p,, in a given plant P
as selected in Select Current Plant (described above).

Display Plant Matrix P: Allows the rapid display of all p, in a given plant case P. This
is a separate menu item from the Display Plants option because the selection of several
pij in a matrix can be a time consuming task. Radio button selection allows selection of
the desired plant case and P dimension.

Edit Plant Elements p:

Find Plant Determinant: Calculates and displays the determinant for a selected P. P is
chosen via radiobutton selection. In the QFT design process, all P must be checked for
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non-singularity and for minimum phase conditions. Calculation of the determinant is via
LU Decomposition.

High Freq Sign Checki Calculates and displays the sign of diagonal elements p11 of P for
all plant P cases.

5. Q Matrix

Define Plant Elements q: Define the plant transfer function q, for transfer function
elements of the plant matrix Q. THE DIRECT DEFINITION OF Q IS AN
ALTERNATIVE TO THE NORMAL INVERSION OF P. q1J is normally defined element
by element on an individual basis, however, several transfer function elements may have
the same definition. Therefore, qJ can be defined for several elements at a time by
simply checking the appropriate boxes. Transfer function input can be in either
polynomial or factored form as shown below. The current P is indicated in the dialog
box and may be set using the Select Current Plant option.

To enter this: s2+3s+5 / s3+6s2+7s+8
Check Poly :
And Type This: 1 3 5; 16 7 8

To enter this : (s+4)(s+6) / (s+8)(s-4+j2)(s-4+j2)
Check Factored:
Type this : -4 -6; -8 4j2
Note that the complex conjugate is automatically entered

Form Q Matrix Inverts the selected matrix P via LU decomposition and then
reciprocates the elements of P- to form the matrix Q.

Verify Plant Inversion: Multiplies P x P` in order to verify the accuracy of the inversion
process. Ideally in the absence of zero roundoff error, the result will be an identity
matrix. In practice, finite roundoff error is detected via this process. Scientific notation
display should be used with this option to detect low levels of roundoff.

Check Diagonal Dominance: Calculates the magnitude of each pk-in a selected P via
LAHospitals rule and displays the result along with an analysis as to the diagonal
dominance of the plant Q. A dialog box provides radiobutton selection among 20 Q.
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Display Plant Elements q: Provides a dialog box with checkbox input for the display of
1-25 plants qij in a given plant Q as selected in Select Current Plant (described above).

Display Plant Matrix Q: Allows the rapid display of all qj in a given plant case Q. This
is a separate menu item from the Display Plants option because the selection of several
qi, in a matrix can be a time consuming task. Radio button selection allows selection of
the desired plant case and Q dimension.

Edit Plant Elements q:
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E. MIMO Design Example

Students Name
Teachers Name
Class

I This log provides demonstration of the entry modes and operation of
: MIMO-QFT toolbox functions and operation.

: Step 1: Define Tru, Tr, and Tdfor plant P. Only plant PI is shown below:
: Note that in this example, Tru and Trl are the same for all rows.

MIMO Tru [1,1]

1.8896 (s + 12.0000)

(s + 2.2857 ± j4.1775)

MIMO Tru [2,2]

1.8896 (s + 12.0000)

(s + 2.2857 ± j4.1775)

MIMO Tru [3,3]

1.8896 (s + 12.0000)

(s + 2.2857 ± j4.1775)
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: Tru for off diagonal elements is defined for all off diagonal plants as:

MIMO Tru [1,2]

0.1000

1.0000

MIMO Thu [1,3]

0.1000

1.0000

MIMO Tru [2,1]

0.1000

1.0000

MIMO Tm [2,3]

0.1000

1.0000

MIMO Tm [3,1]

0.1000

1.0000

MIMO Tm [3,2]

0.1000

1.0000
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: Tr is only defined for diagonal elements:

MIMO Trl [3,31

11600.0000

(s + 4.0000)(s + 4.0000)(s + 7.2500)(s + 100.0000)

MIMO Trl [3,3]

11600.0000

(s + 4.0000)(s + 4.0000)(s + 7.2500)(s + 100.0000)

MIMO Trl [3,3]

11600.0000

(s + 4.0000)(s + 4.0000)(s + 7.2500)(s + 100.0000)

: If definition of Tr for off diagonal is attempted, the following results:

Trl Undefined for Off Diagonal Transfer Function Element [1, 2]
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: Td is defined at .1 for all plants p(ij)

MIMO Td [1,1]

0.1000

1.0000

MIMO Td [1,21

0.1000

1.0000

MIMO Td [1,3]

0.1000

1.0000

MIMO Td [2,1]

0.1000

1.0000

MIMO Td [2,2]

0.1000

1.0000

MIMO Td [2,3]

0.1000

1.0000
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: Stability bounds are defined as followed:

Stability Bounds for Row 1

Phase Margin: 40.00000
Gain Margin: 4.3116 db
ML Contour: 3.8387 db
Mp: 1.5557

Stability Bounds for Row 2

Phase Margin: 35.00000
Gain Margin: 3.9378 db
ML Contour:. 4.8282 db
Mp: 1.7434

Stability Bounds for Row 3

Phase Margin: 35.0000*
Gain Margin: 3.9378 db
ML Contour:. 4.8282 db
Mp: 1.7434

: Plant Case P1 is defined as follows:

MIMO Plant [1,1] Plant Matrix 1

2.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)

MIMO Plant [1,2] Plant Matrix 1

-10.1961 (s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)

MIMO Plant [1,3] Plant Matrix 1
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5.4902 (s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)

MIMO Plant [2,1] Plant Matrix 1

-10.1961 (s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)

MIMO Plant [2,2] Plant Matrix 1

-2.3529 (s - 17.0000)(s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)

MIMO Plant [2,3] Plant Matrix 1

5.8824 (s + 0.3333)(s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)

MIMO Plant [3,1] Plant Matrix 1

5.4902 (s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)

MIMO Plant [3,2] Plant Matrix 1

5.8824 (s + 0.3333)(s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)

MIMO Plant [3,3] Plant Matrix 1

-4.7059 (s + 1.8889)(s + 3.0000)

(s + 2.0000)(s + 0.0000)(s + 5.0915)
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: Inspection of the Determinant of P1 reveals it is non-singular and minimum phase

Determinant of Plant Matrix 1

-47.0588 (s + 3.0000)(s + 3.0000)(s + 3.0000)

(s + 2.0000)(s + 2.0000)(s + 2.0000)(s + 0.0000)(s + 0.0000)(s + 0.0000)(s + 5.0915)

Matrix Q will contain minimum phase elements upon P inversion

: The Q matrix is formed via LU Decomposition and is:

q-Plant [1,1] Q Matrix: 1

2.0000

(s + 2.0000)(s + 0.0000)

q-Plant [1,2] Q Matrix: 1

3.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)

q-Plant [1,3] Q Matrix: I

1.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)

q-Plant [2,1] Q Matrix: I

3.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)

q-Plant [2,2] Q Matrix: 1
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5.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)

q-Piant [2,31 Q Matrix: 1

4.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)

q-Plant [3,1] Q Matrix: 1

1.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)

q-Plant [3,2] Q Matrix: 1

4.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)

q-Plant [3,3] Q Matrix: 1

10.0000 (s + 3.0000)

(s + 2.0000)(s + 0.0000)

: The inversion process can be checked by multiplying P x inv P

Identity[ 1, 1]

1.0000E+0000

1.OOOOE+0000
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Identity[ 1, 2]

O.OOOOE+0000

1.OOOOE+0000

Identity[ 1, 3]

1.6263E-0019

(s + 5.0915E+0000)

Identity[ 2, 1]

-4.3368E-0019 (s + 4.7624E+0008)

(s + 5.0915E+O000)

Identity[ 2, 2]

1.OOOOE+0000

1.OOOOE+0000

Identity[ 2, 3]

7.281OE-0011

(s + 5.0915E+0000)

Identity[ 3, 1]

4.6623E-001 1

(s + 5.0915E+00O)
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Identity[ 3, 2]

-2.9216E-001 1

(s + 5.0915E+0000)

Identity[ 3, 3]

1.0000E+000

1.0000E+0000

: This accuracy will be improved with more sophistication in the algorithm but is
acceptable for now

The next step is to check the diagonal dominance of the Q matrix

Transfer Function Magnitudes at w - -o

O.OE+0000 O.OE+0(O O.OE+0000

O.OE+O000 O.OE-+O000 O.OE+O000

O.OE+0000 O.OE+0000 O.OE+0000

Diagonal Dominance Test Passed For Q Plant 1

Since Q is diagonally dominant, this Q is ready for MISO manipulation.

Qi (1,1) is now shown to be

q-Plant [1,1] Q Matrix: 1

2.OOOOE+0000

(s + 2.OOOOE+0000)(s + O.OOOOE+0000)

Solution of this MISO problem is shown in the MISO QFT handbook
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