.‘

AD-A259 126 @

AFIT/GEO/ENG/92D-01

DTIC

ELECTE
JAN11 1993D

DESIGN OF A LABORATORY
COMPUTER INTERFACE

THESIS

AFIT/GEO/ENG/92D-01 Douglas L. Durand
Capt USAF

=93-90084

Approved for public release; distribution unlimited.

98 :1:» 4 054

AFIT/GEO/ENG/92D-01

DESIGN OF A LABORATORY

COMPUTER INTERFACE
THESIS

Presented to the Eaculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the

Requirements for the Degree of

. «qapBCTED 8
(LT NP

DTIC Qu /
_!ggg&sia- for
| 971S emaad

Master of Science

e tag a
Uuanaouneed Q
Justituatiﬁl_______.
By
Distribetien/

by Availability Codes

lAvail amd/or
Douglas L. Durand, B.E.E. Dist Speciallor

Capt USAF i?\)\]

Graduate Electro-Optics

June 1992

Approved for public release; distribution unlimited.

AFIT/GEO/ENG/92D-01

re e

The AFIT Physics Department has acquired an LSI-11
minicomputer system for use in their laser spectroscopy
laboratory. The computer is to be used for data
acquisition, data reduction, and equipment control. To
perform these tasks, interface hardware and software is
necessary. This thesis describes the design and

implementation of this interface.

ii

Contents

Page
PrefacCe@ . . « o ii
List Of FIQUYES . « ¢ « ¢ ¢ ¢ ¢ o o« o o s s o o o o o o 1iv
List of TablesS . . ¢ ¢ « ¢ ¢ ¢ ¢ o o o s o o o o o o & v
ADSEXact . ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ o e o o o o o o o s e o o Vi
1. Introduction . . .« ¢ ¢ ¢ ¢ « o « o s o o o o o o o 1l
1.1 Background © ¢ o s e e s e o e o o o o 1
1.2 State of the Art--1982 e e s e s e o e s o s+ e o 1
1.3 Problem e e o o e ® e o o e s o o o @ 3
1.4 Laboratory Equlpment e e s e s s e e e s e s e e 3
1.5 Design Requirements ¢« ¢« ¢« ¢ ¢« ¢ « & 5
1.6 Design Approach . . « « « « « o o o o o o s o o @ 6
1.7 SUMMATY « « o « o « o o o o o o o o o o « « « o o« 9
2. Interface Hardware . . . « + « « « s s o o« o« « « « 10
2.1 Introduction . . . ¢ ¢ ¢ ¢ i 4 e e e o e e« « « o « 10
2.2 Choice Of HarAware . . « « « o o « o o« o« o « o« « « 10
2.3 Serial Interface . . « ¢ ¢ ¢« o o o o o o ¢ e o+ 11
2.4 Parallel Interface . . . « ¢ « ¢ o o o« o« o o« o « « 11
2.4.1 Clock Module . . . +. « ¢ «v ¢« o« o « o o« o « o « « 13
2.4.2 Paper Tape Module . . e s o a e o o o e s+ e« o 19
2.4.3 Multichannel Analyzer Module e o o o s e s s o o 20
3. Interface SOftware . . ¢« ¢ «. ¢« + ¢ ¢ « s o o« s o o« 25
3.1 Introduction . .« ¢« ¢ ¢ ¢ ¢ ¢ ¢ 2 s e o o e o o 2 . 25
3.2 Choice Of SOftWare . . « ¢ « « ¢ o o o o o o « o« « 25
3.3 AddressSing ¢ ¢ ¢ 4 e e e 4 e s s e e o s o 26
3.4 Interrupts . . ¢ . ¢ ¢ ¢ o ¢ s o o o s e e o o o o 27
3.5 Prewritten Programs « « ¢« « o o ¢ o« o « o 28
3.5.1 CONNECT Utility . &« ¢ ¢ ¢ ¢ o ¢ o ¢ ¢ o o o o « 29
3.5.2 TAPEIN Utility . . ¢« v ¢ ¢ ¢ o ¢ o o « o o o« « « 30
3.5.3 MCAIN Utility . . . & ¢ ¢« ¢ ¢ ¢ ¢ ¢« ¢ o o o « « 31
3.5.4 IOPACK Subroutine Package « 31

4 L] Results L d L] L] L] . ® L] L] [] L] L] [] L] L] L] * [] L d - [] L] L] 3 5
4 ® 1 serial Interface * L] L] [] L] [] [] L] L] L] - L] L] L] » [] [] 35
4.2 Parallel Interface . . . ¢« ¢ ¢ ¢ o o o o« o« o o « « 35
5. Conclusions and Recommendations « « . 37
Bibl iography [] [] * * ® * L] [] o L] L] L] L] [] L] [] L] L] L] L] * [] 3 8

Appendix A: User's Manual ¢ ¢« ¢« ¢« « « « « 39
contents L] L] L] L] ® L] L] [] L] . L] * L] L] . L] L] L] L] e L] L] * 4 o

Appendix B: Software Flow Charts and Program Listings 57
contents * L] L] * - L] * L] L] L] L] * L] * * L - L] L] * L] * L] 5 8

Appendix C: Design Cycle for Current (1992) Technology 88
COntents L] L] [] . * L - . L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 8 9

iii

E‘

NONNDE
e & o o e+ o @

W WD

List of Fiqures

Computer/Interface System
Interface Hardware
Interface Software
Clock Module
Example Count Sequence . .
Paper Tape Module
Multichannel Analyzer Modul

e

iv

« o o e & s o
e e 8 o o s o
¢ o o o o s o
L[] L] L[] . L] . .
L] . . . L] * L]
e o & o ° o o
e o & o o o oo
® 5 * o ¢ 0 @
e & e 8 o o o

Table
3.1
3.2

st

ab

Register Address Allocation.

Vector Allocation

.

AFIT/GEO/ENG/92D~01

Abstract

An interface for the LSI-11 computer was designed and
implemented so that the computer supports data acquisition,
data reduction, and equipment control. The design includes
both hardware and software and addresses both parallel and
serial input/output (1/0).

The serial interface's hardware is simply a Serial Line
Unit card. This card plugs into the LSI-11 bus and
provides the signals necessary to interface EIA RS-232
compatible devices. A software utility was developed to
allow communication with the serial device and to allow
exchange of data files. Routines were written to allow
serial I/0 through a FORTRAN program.

The interface's parallel hardware includes the general
purpose laboratory interface system (GPLIS) architecture.
In addition, hardware modules were designed to convert
certain device's signal levels to TTL levels. Software
utilities were developed to acquire and store parallel data
and routines were written to allow parallel I/O through a

FORTRAN program.

vi

1. INTRODUCTION

1.1 pBackground
In 1982, the AFIT Physics Department was in the process

of setting up a laser spectroscopy laboratory to support
both faculty and student in-house research. The facility
was to provide the Air Force with a powerful set of
state-of-the-art diagnostic tools in the tunable laser
arena. One of the major pieces of equipment acquired for
this facility was an LSI-11 minicomputer which was to be
used for data acquisition, data reduction, and equipment
control. This led the Physics Department to sponsor a
thesis topic with the objective of developing the hardware
and software necessary to interface the LSI-11 with a
general class of laser spectroscopy experiments.

This thesis project was begun in 1982. During that
year, the author completed the research, design, and
implementation of the interface system. Completion of the
thesis document itself, however, was delayed until 1992.
This thesis document therefore is written from two time
perspectives. The bulk of this document, from the
remainder of this introduction through Appendix B, is
written from the perspective of 1982. Appendix C brings
the document up to date by addressing a design cycle from a
1992 perspective.

1.2 State of the Art--1982
Laboratory computer systems vary in cost and

complexity. Digital Equipment Corporation (DEC) produces a

line of “MINC" computef systems which are small, PDP-11l-
based laboratory computers. With their various plug-in
modules and powerful software, the MINC systems can perform
data input/output (I/0), data manipulation, and control.
The cost of such a system, however, can easily exceed
$30,000 (according to a technical representative from
Pioneer-Standard Electronics, Inc.).

IEEE Standard 583-1975, "Modular Instrumentation and
Digital Interface System," describes an interface system
which is sophisticated and complex. The Standard (Ref 1)
describes a "crate" of plug-in modules. These modules
allow various types of I/O undcr cortrol of a "crate
controller." The computer communicates with the modules
through the crate controller.

Jerry G. Black describes an architecture for a general
purpose laboratory interface system (GPLIS) (Ref 2). Like
the IEEE 583~1975 system, GPLIS is modular. GPLIS,
however, is much simpler and was designed specifically for
the LSI-11. 1Its simplicity leads to low cost.

In addition to these systems, there are many interface
cards manufactured for the 1SI-11 (Ref 3). These cards
plug into the LSI-11 bus and provide data lines and control
lines for parallel and serial interfacing. A plug-in card
alone may be all that is necessary to interface a certain
device with the computer or the card may be part of a more
complex interface.

The laboratory's existing LSI-11 computer system is a

DEC compatible version marketed by Heath. It includes a
WJ-11-UL computer, a WH-27 dual disk drive, and a Z-19
video terminal. Also included is a Micro Peripherals Inc.
Model 88G printer. Figure 1.1 shows a block diagram of the
computer system plus the required interface and
representative laboratory equipment (labelled Devices A
through D). The laboratory equipment is further described
in section 1.4 below.
1.3 Problem

The DEC MINC computer system and a system incorporating
all the features described in IEEE 583-1975 are both too
expensive for the laboratory to acquire. The problem is to
develop economical hardware and software necessary to

interface an LSI-11 with a general class of laser

spectroscopy experiments. The computer will perform data
acquisition, data reduction, and experiment control. 1In
addition, an instruction manual is needed to explain to the
users of the computer how to connect equipment to the
interface, what programs are necessary, and how to operate
the computer and interface. This manual must also explain
how future equipment might be interfaced with the computer.
1.4 Laboratory Equipment

The laboratory equipment represented by Devices A
through D in Figure 1.1 are of various types. The current
experiments call for the use of serial devices (such as a
cassette tape drive, a wave meter, and a modem), parallel

devices (such as a paper tape reader and a multichannel

DEVICE DEVICE DEVICE DEVICE
A B Cc D
INTERFACE
DISK COMPUTER TERMINAL
WH-27 WH-11-UL 2-19

LINE PRINTER

MPI MODEL 88G

Figure 1.1 Computer/Interface System

analyzer) plus analog voltage sampling. In addition,
future devices must also be considered.

The serial devices presently in use operate at various
baud rates. A modem will be used to communicate with the
on-base ASD CYBER at the currently available baud rate of
300 (although this rate could increase in the future). The
cassette drive and the wave meter have switch-selectable
baud rates. A future device could be expected to operate
at any of the standard baud rates.

The parallel devices presently in use are the Hewlett
Packard Model HP2737 paper tape reader and the Model 5400
multichannel analyzer. Their signal levels are not TTL
compatible and therefore require conversior of their eight
data lines and two control lines. Data transmission is
controlled by handshaking thus allowing the computer to
control the data rate. A future device could be expected
to require signal conversion and some type of controlling
signals.

Analog I/0 is also required. These signals will be
amplified external to the interface to levels suitable to
the interface and the device. The sampling rates are
expected to be slow--on the order of milliseconds.

1.5 Design Requirements

The interface must be flexible in that it must connect

with a variety of equipment--some with standard interfaces

and some without. It must also be adaptable to projected

future equipment.

The present experiments have the following

requirements:

1. Transfer of data via an RS-232 serial
interface to the computer's disk storage.

2. Transfer of data from paper tape to the
computer's disk storage.

3. Transfer »f data from the computer's disk
storage to a mainframe computer via a modem and phone

lines.

4. Acquisition of data from equipment controllers
and the transmission of control signals to these
controllers through an RS-232 serial interface.

5. Acquisition of data through analog-to-digital
(A/D) converters at timed intervals.

6. Transmission of signals through digital-to-
analog (D/A) converters to provide a means of implementing
a feedback loop of signal input, data processing, and
signal output for control of specialized experiments.

Since the LSI-11's operating system is a single-user
system and since it is expected that the computer will be
used by one person at a time, timesharing need not be

considered in this problemn.

1.6 Design Approach

The interface system is one which allows the computer
to communicate with devices which transfer data in serial,
parallel, and analog form. The computer must receive data

from these various devices, manipulate and store the data,

and transmit the data to the devices.

The first step to solving the interfacing problem was
the familiarization with the computer system. This
involved studying the reference manuals and operating the
computer itself. A working knowledge of the computer's
operating system, programming languages, architecture, and
bus organization was necessary to determine what was
possible and practical for an interface.

Next, it was necessary to determine what hardware and
software were necessary to design an interface which
satisfied the requirements listed earlier. The problem
falls into two catagories--serial I/O and parallel I/O.

The serial hardware must be RS-232 compatible and therefore
is of standard type. The parallel hardware is not of any
standard type. Each parallel device has signals which must
be converted to TTL levels. This breaks the parallel
interface design into modules--one for each device. Figure
1.2 shows a high-level block diagram of the hardware.

Software was likewise divided into two catagories--
serial and parallel I/0. As shown in Figure 1.3, the
hierarchy for software development for both serial and
parallel I/O0 includes utilities and routines which in turn
contain device drivers. The serial I/0 with its standard
hardwvare, requires development of only a single device
driver. Parallel software is more complex in that there
may be different device drivers for each device. Because

device drivers are specific to the hardware to be

COMPUTER

1 |
SERIAL PARALLEL INTERFACE
INTERFACE HARDWARE
HARDWARE
Device Modules
A B C D
Serial A B C D
Device Parallel Devices
Figure 1.2 Interface Hardware
SERIAL PARALLEL INTERFACE
INTERFACE SOFTWARE
SOFTWARE
UTILITIES UTILITIES & ROUTINES
&
ROUTINES
Device Drivers
Device
Driver A B c D

Figure 1.3 Interface Software

.

interfaced, they must be implemented in low level assembly
language routines. Since a typical laboratory user may not
have expertise in assembly language, however, any assembly
language utilities and routines must be accessable to the
user without the need to know their details. Actual
operation of the interface will be through high-level
language.

With the hardware and software thus broken into levels,
the detailed design followed.
1.7 Summary

This chapter described the basic problem addressed by
the thesis project (i.e., interfacing an LSI-11 computer to
a general class of experiments). The background leading to
the project was outlined and the laboratory equipment,
design requirements, and design approach were discussed.

Chapter 2 describes the hardware of the interface from
the plug-in cards to the different interface modules.
Chapter 3 describes the software--addressing and interrupts
along with a description of the utility programs and the
subroutine package. Chapter 4 summarizes the results and
conclusions. Appendix A is a User's Manual which has been
written to help users of the computer/interface system.
Appendix B contains a listing of the assembly language
programs written for the interface. Appendix C, as noted

earlier, addresses a design cycle from a 1992 perspective.

2. INTERFACE HARDWARE

2.1 Introduction

This chapter describes the hardware developed for the
interface. The choice of existing hardware and the design
of customized hardware depended not only on the design

requirements, but also on the need to keep costs down.

2.2 Choice of Hardware
DEC's MINC system is a very powerful system for data

acquisition, manipulation, and display. With its
prewritten software routines and plug-in modules, it is
extremely flexible and easy to use. 1Its $30,000 price tag,
however, makes it unaffordable for the laser spectroscopy
laboratory.

The GPLIS (Ref 2) is a simple, low cost interface
architecture designed for the LSI-11. It is much simpler
than the IEEE 583-1975 system which is mére complex than
required. The GPLIS provides exactly what is required--a
multichannel parallel I/0 interface. Using GPLIS as a
base, modules can be added to suit the specific
requirements of the devices to be used. This will be
discussed further in section 2.4.

For serial 1I/0, an off-the-shelf plug-in serial I/O
card was chosen. The card is the Heath WH-11-5 Serial.Line
Unit (SLU). It will be described in section 2.3 below.

Thus the hardware choice was composed of a combination
of existing off-the-shelf hardware which could economically

meet the requirements for standardized serial I/0 plus a

10

customized design based on the GPLIS architecture to meet
the requirements for the various parallel I/0 devices. The
GPLIS and the modules described below were breadboarded and
tested separately before final assembly.

2.3 Serjial Interface

To satisfy the requirement for an RS-232 serial I/0
port, an off-the-shelf plug-in serial line card was chosen
to economically interface with the serial devices which are
all standardized. The card is the Heath WH-11-5 SLU. This
SLU is compatible with the PDP-11 and LSI-11 (Ref 4:3).

The SLU card plugs into the LSI-11 bus and provides the
necessary interface lines for the RS-232 serial interface.
The card has jumper connections to select its memory
address and interrupt vector. These will be discussed
further in Chapter 3. The card has selectable baud rates
of 50, 75, 110, 134.5, 150, 200, 300, 600, 1200, 1800,
2400, 4800, or 9600 (Ref 4:2).

By using the appropriate plugs, the card can be
connected to data terminal equipment (DTE) such as
terminals of to data communication equipment (DCE) such as
modems or other computers.

Thus through this card, the computer can communicate
with any serial device conforming to RS-232.

2.4 Parallel Interface

A parallel interface is necessary for devices which

send and receive data more than one bit at a time. The

GPLIS architecture provides a simple and economical basis

11

for development of an interface to the various I/0 devices
required.

The GPLIS first requires a plug-in card for the LSI-11
bus. This card is an off-the-shelf DEC DRV1l1l Parallel Line
Unit (PLU). Like the SLU described above, the PLU is
PDP-11 and LSI-11 compatible and plugs into the LSI-11 bus
to provide the necessary interfacing lines (Ref 3:4-1). It
too has jumper connections for selecting memory address and
interrupt vector. These are described further in
Chapter 3.

The PLU has three important 16-bit registers: (1) the
input buffer (DRINBUF), (2) the output buffer (DROUTBUF),
and (3) the control/status register (DRCSR) (Ref 3:4-38).
The word formats for these registers are shown in
Appendix A, Table A.1l.

The PLU has four important control lines in addition to
CSR1 and CSRO from Table A.1. NEW DATA READY (NDR) and
DATA TRANSMITTED (DATA TRANS) are positive-going pulses.
NDR is used by GPLIS to latch data onto the output
latches. DATA TRANS signals completion of data input and
is used to acknowledge interrupt requests. INITIALIZE
(INIT) is generated on power-up and is used to clear
interrupt requests (Ref 3:4-39).

The PLU provides the connection from the computer bus
to the GPLIS-based design. Together, they provide a
multichannel 16-bit parallel interface. The following

sections describe the modules that were designed and

12

implemented to form this parallel interface.

2.4.1 Clock Module. Because the clock module
generates signals which can be used by other hardware
modules, it was the first hardware module designed for this
laboratory interface. It is used to generate interrupt
requests. These requests set request bits in DRCSR and if
the corresponding "enables" are set, the requests cause an
interrupt. The module also has "“acknowledge" outputs which
are used by a user's device to signal that the computer has
recognized the interrupt request.

The clock module can generate two different interrupt
requests: one from its internal clock and one from an
external clock. These are called, respectively, REQ A and
REQ B. The internal clock can be used to generate
interrupt requests at software-selectable, timed intervals
of an integral number of milliseconds from one to 32,767.
If a user requires interrupts either at intervals outside
this range or at non-uniform intervals, the module will
accept external clock signals. There are two external
clock inputs: one for positive-going pulses and one for
negative-going pulses. The user may choose either one
depending on the device he is using.

The clock module requires one GPLIS input and one
output channel. Currently, the input channel is only a
dummy--it is needed only because DATA TRANS is used as the
acknowledgment signal (DATA TRANS is generated when a GPLIS

channel is read). A possible future use for this input

13

channel would be to read a device number which would be
used by the input routine. In the following paragraphs, it
is assumed that the clock module uses GPLIS input channel
#0 and output channel #0.

As shown in Figure 2.1, the module is connected to the
GPLIS bus and the ROCLK line. It is also connected to the
PLU's REQ A, REQ B, INIT, and DATA TRANS lines. The module
consists of a 74LS13 Schmitt Trigger, four cascaded 74LS193
synchronous 4-bit up/down counters, two 74LS109A dual J-K
flip-flops, a 74LS27 tri 3-input NOR gate, two 74LS04 hex
inverters, and resistors and capacitors.

The Schmitt Trigger is used as a monostable
multivibrator set to 1000 Hz. With a 330 ohm resistor,
C+C'=1/(390)x(1000) (Ref 5:239). With C + C' = 2.564
microfarads, the output waveform was a 300 microsecond wide
pulse occurring once every millisecond. This waveform
provides the basic set of pulses to the module's counters
and flip-flops.

The 4-bit counters were cascaded to form a 16-bit
counter. This 16-bit counter's data lines were connected
in parallel to the output channel. This allows the counter
to be loaded from the output channel, thus providing
software-selectable interrupt intervals as explained in the
examples below.

Two flip-flops were used for the interrupt request
signals and one is necessary to produce the counter's LOAD

signal.

14

* 47K

8
47K +5v
—I'J\/\/\/. +5V 9 1
)][
ha PR 110
2[P ols 13] 12 39 ol REQA
4 oK IC14 BotrowCury 13>9(lCT4_L9_
1 s 7 ': o og L2 1K g @
T]Sics &3
‘ i 0 w2
- 1 1A Qa —
=] LOAD
CLEAR
arus Count Count
BUS Down Up
| vs 18 ic7 19 ‘
45 o0 a0
- 7im 70 P 13| 12
13 14| o ea |15
12 13 s0 sQ 12 Borrow Cany
11 8 9 9 7
10 7 1% 4 ¢ 0] ° Qe
9 et Q5 1161IC9 &1
: Py 20 8 =
2 Slo 10 P2 18 1A |
Clock _Clear] 14| LOAD
"I At s)
[e 4-5v
RO CLK 47K Mmmt W
L) E—{>c‘ ° 4 5
TR 13| 12
] Clock Clear B Boow Camy
7 18 19 8 7
o2 I DG KT 02 ale
51wl e |15 11g/C10 o [2
3 13 12 15 3
3 s @ 53 Tl iy Qe —
5 7 aQ -3 ¢ LoAD
2. 0 3Q ¢ CLEAR
3 4 5
o 3|2 25
Ay 10 Count Count
R IC13 Dowm U
arPus 4
BUS
330 13 12
Boow Cany (INVERTERS
Bic gy ot
Ic1 1 | 2 '
, e w8 @ swa
2 . 1| toaD |
1 ﬂ] 1 cLear
s
' Court Count
1 Down Up
=C ‘ ﬂ j
2 +5v
— AN
(INVERTERS e
| IC17) 3.4 81K QLOcK Ack —
(See Figure A.3 (Appendix A) for IC identification)

Figure 2.1 Clock Module

15

The sequence of a timed interrupt is as follows:

1. A 16-bit number is output to GPLIS channel #0.

2. The ROCLK latches this number on the output
latches and also clears (sets to zero) the counter.

3. The next pulse from the Schmitt Trigger causes
a "count down" which generates a BORROW because the count
was zero.

4. The borrow is used to clock two different
flip-flops:

a. One flip-flop generates the LOAD signal
causing the counter tc be loaded from the output iatches.
This flip-flop is cleared by the next trigger pulse.

b. The other flip-flop generates the REQ A
signal. This flip-flop is cleared by the INIT or DATA
TRANS or by the switch. While the switch is in the "off"
position, no REQ A is generated even though the trigger and
counter are still running.

5. The next count down pulse causes the newly
loaded number to be decremented by one. This continues
until the count is decremented to zero. Then the next
count down generates a BORROW and the sequence continues
from step 4.

As an example, assume the number 4 is output to channel
#0. The number is latched and the counters are cleared by
ROCLK. The next Schmitt Trigger pulse causes a BORROW
which causes the number 4 to be loaded into the counter and

also clocks the REQ A flip-flop. The next count down

16

decrements the count to 3; the next decrements the count to
2; then 1; then 0; and then BORROW--completing the cycle:
4, 3, 2,1, 0, 4, 3, 2, 1, 0, A REQ A is generated
every five counts. So to generate REQ A every T milli-
seconds, it is necessary to output (T-1) to channel #0.
Figure 2.2 shows the example sequence.

The external interrupt is simply a flip-flop with
inverters. The inverters allow the user to input either
positive-going or negative-going pulses to generate REQ B.

To acknowledge either REQ A or REQ B, the computer
performs a read from a GPLIS channel (dummy channel #0 or
any other channel). This generates a DATA TRANS pulse on
the PLU which is connected through NOR gates to the
flip-flops' CLEARs. This turns off REQ A or REQ B (or
both) .

The flip-flops are also cleared by the INIT signals
from the PLU. These signals are automatically generated on
power-up (Ref 3:4-39). As mentioned earlier, REQ A can be
disabled by a switch which forces the flip-flop to clear.

The external acknowledge is the DATA TRANS pulse. It
is available as a positive-going or negative-going three
microsecond pulse.

An example of a typical timed interrupt is the
following: Assume a user wishes to input data from GPLIS
channel #5 at 100 millisecond intervals. Meanwhile, the
computer is to perform some other task. Solution--The

clock module is set to generate interrupt requests at 100

17

S

aouanbag juno)) sjdwexy 7'z 2andiyg

St st

INNOJ

v O3

avonl

MOoHHO8

NMOQ INNOD

SNVHl Viva

gv3no

18

millisecond intervals (output 99 to channel #0) and its
interrupt enable is set (INT ENB A set to 1). Every 100
milliseconds, REQ A is generated which causes the computer
to jump to the interrupt routine which in this case inputs
data from channel #5. REQ A is turned off by DATA TRANS
and the computer returns to its other task until the next
REQ A.

An example of a typical external interrupt is the
following: Assume a user wishes to input data from channel
#6 whenever a certain laboratory device sends a positive-
going pulse. Assume also that the user requires an
acknowledgment pulse which is negative-going. No other
tasks are required of the computer in this example.
Solution--In this case, the user will use a routine which
tests the interrupt request bit (REQ B) in DRCSR and
performs the input when the bit is set. 1In this simplified
example, rather than jumping to an interrupt routine, the
computer simply executes a wait-loop until REQ B is set.
The user's device can then request an interrupt, send data,
and when it receives an acknowledgment, it will send
further data; and so on until all data is sent.

The next two modules were also designed specifically
for this laboratory interface. They use signals from the
clock module just described and they provide the hardware
interface to specific laboratory devices.

2.4.2 Paper Tape Module., The paper tape module
converts the -12 volt signal levels from the HP2737 paper

19

tape reader to +5 volt signals used by the computer. The
module also provides a TAPEDRIVE signal to the tape reader.

The tape reader's signals are positive logic (-12 volts
= hole punched = logic 1 and 0 volts = no hole punched =
logic 0). The module diagram and its level conversion
circuit are shown in Figure 2.3. After level conversion,
bits 0 through 7 are connected to a GPLIS input channel.
The FEEDHOLE signal from the tape reader is connected to
the clock module's external interrupt and is used to signal
the computer to read the byte. The clock module's external
acknowledge is connected to the tape reader's TAPEDRIVE
signal which causes the tape to advance.

Data transfer is as follows:

1. The tape feeds through the tape reader until
the FEEDHOLE is under the read head. This signals the
computer to read the byte.

2. The computer reads the byte and sends
TAPEDRIVE causing the tape to advance until another
FEEDHOLE is under the feed head.

3. This cycle repeats until the entire tape has
run through the reader.

2.4.3 Multichannel Analyzer Module. Due to time
constraints, the multichannel analyzer (MCA) module was not
implemented as an interface. 1Its design is presented here
for consideration as a future upgrade to the system.

The MCA module converts the +12 volt signals from the

HP5400 multichannel analyzer to +5 volt signals used by the

20

Tape Reader -12v to Sv

Socket Converters
GPLIS
0 IN ouT BUS
1 iN ouT
L 17 IC 19 3 7
2 N OuUT 15| 2A4 2v4 3
o T3] 2A3 2Y3 — S
-3 IN ouT — 1M2a2 2v2 -] 2
8] 24" 2Y1 = 3
4 . N ouT 1 1A4 1ve 2 S
s [<] 1A3 1Y3 ¢ ;
iN ouT 1A2 1v2
o 2lia1 vy (A8 0
6 N ouT 18 28
7 IN ouT q 191
FEED Il INPUT 1
HOLE N our Pin 2, IC 3
to SW 3,
TAPEDRIVE Clock Module
o Switch
TAPE.
"DRIVE. ouT N trom Pin 7, IC 15
‘GND- -_—

-12vto Sv Converter

TAPEDRIVE Switch

Q1 = HP1853-0020 Q2 = HP1854-0071
(See Figures A.2 and A.3 (Appendix A) for IC identification)

Source: HP2737 User's Manual

Figure 2.3 Paper Tape Module

21

computer. The module also provides a +12 volt control
signal used by the MCA.

The signals from the MCA were intended to operate a
paper tape punch. They are negative logic (+12 volts =
logic 0 and 0 volts = logic 1). The module diagram and its
level conversion circuit are shown in Figure 2.4. After
level conversion, bits 0 through 7 are connected to a GPLIS
input channel. The MCA's PUNCH signal is connected to the
clock module's external interrupt and is used to signal the
computer to read the byte. The clock module's external
acknowledge is connected to the MCA's FLAG signal which is
used to signal for another byte.

With this module, the system emulates a paper tape
punch. Instead of storing data on tape, however, the
system stores the data on disk.

2.5 Summary.

This chapter described the interface hardware. Serial
I/0 is performed easily through a Serial Line Unit card.
The card generates the signals required by the serial
devices and by the LSI-11 bus. The Heath WH-11-5 SLU was
chosen because it satisfies the requirements for serial I/0
and because there was an unused WH-11-5 in the system. The
parallel interface, on the other hand, required a custom
design to provide for I/0 to the various nonstandard
devices to be used in the laboratory. The GPLIS
architecture was chosen as a design basis to perform

nmultichannel parallel I/0 because it was specifically

22

Multichanne! +12v to Sv

Analyzer Converters
1 IN ouT
2 N our 2
3 N OUT (— 2
4 IN ouT 4
5 N ouT !]
6 iN ouT
7 - IN ouT
P UNCH
N ourt To EXT
cLock!
5v to +12v
Converter
TAPE_
DRIVE" out N From
EXT Ack!
‘GND

Optical
isolator A

IN e AAA— AN\~e +5v
I,

ouT

v v

+12v to 5v Converter

AN~ +12v

Opticatl Ay
IN Isolator ¥ —e OVUT
5vto +12v Converter

Figure 2.4 Multichannel Analyzer (MCA) Module

23

designed for the LSI-11 and because it is simple and
inexpensive. The parallel interface design including its
modules was described in detail. The next chapter will

describe the software needed to run these components.

24

3. INTERFACE SOFTWARE

3.1 Introduction

This chapter describes the system's software from high
level language to assembly language. At the assembly
level, the addressing and interrupts are described. The
utilities and subroutines which were developed to become
the "prewritten programs" (from a future user's standpoint)
are also described. At the high level, the choice of
programming language is explained.

3.2 cChoice of Software

The existing laboratory computer has three available
programming languages: (1) assembly language, (2) BASIC,
and (3) FORTRAN (Ref 5). Since the operating system
recognizes only certain standard devices, software had to
be developed to perform I/0 for the laboratory interface.
Because this I/0 software had to manipulate low level
information (e.g., registers and memory addresses) which
depended on the detailed hardware design, a low level
programming language was required. Assembly language
programming was therefore selected as the available low
level software. However, because the typical laboratory
user may not have expertise in assembly language, operation
of the interface must be thorough one of the available high
level languages (BASIC or FORTRAN).

The requirement to use assembly language to manipulate
low level information while still allowing a user to

program through a high level language led to the need to

25

develop all assembly lénguage I/0 routines as prewritten
packages (from a future user's standpoint). These assembly
language routines would be available to the user through
high level language subroutine calls or through the
operating system. FORTRAN was chosen as the high level
programming language because it allows subroutine calls to
assembly language programs. The I/0 routines were
developed and compiled into a package which the user .can
link to his FORTRAN program. All a user needs to know are
the routine names and their arguments.

3.3 Addressing

Before data I/O can occur, the location of the data's
source or destination must be specified. The interface has
two types of addressing. First, the Serial Line Unit (SLU)
and Parallel Line Unit (PLU) have their addresses. Second,
each GPLIS input and output channel has an "address" or
channel number. GPLIS addressing is explained in Ref 2.
The addressing for the SLU and PLU is explained below.

As mentioned in Chapter 2, the SLU and PLU have jumper
connections for address selection. The SLU has four
accessible registers and the PLU has three accessible
registers. Each register is 16 bits (2 bytes) wide and has
its own address which is treated like a memory address by
the computer. Table 3.1 shows how the register addresses
are allocated (the x's denote the jumper selectable portion
of the address). (Ref 3:6-5, 6-13)

The allowable addresses for these registers can range

26

Table 3.1 Register Address Allocation

SERIAL LIN

Address (base 8) Register (16-bit, 2 byte)
1xxxx0 RCSR (Receiver control/status)
1xxxx2 RBUF (Receiver data buffer)
1xxxx4 XCSR (Transmitter control/status)
1xxxx6 XBUF (Transmitter data buffer)

PARALLEL LINE UNIT

Address (base 8) Register (16-bit, 2 byte)
1xxxx0 DRCSR (control/status)
Ixxxx2 DROUTBUF (output data buffer)
1xxxx4 DRINBUF (input data buffer)

Source: Ref 3:6-5, 6-13.

'from 160000 base 8 through 177777 base 8. Addresses were
chosen for the SLU and PLU which did not conflict with
reserved addresses as follows: S1LU, 175610 base 8; PLU,
167770 base 8.
3.4 Interrupts

Whenever there is an interrupt, the CPU saves its
current program address and program status word. It then
loads a new address and status word and proceeds (Ref 2).
In the ILSI-11, these addresses and status words are stored
in low memory and are pointed to by interrupt vectors.
Each vector points to a 2 word (4 byte) data block. The
low order word is the address of the interrupt routine and
the high order word is the processor status word. The
allowvable vectors can range from 0 through 377 base 8 and

are allocated as in Table 3.2. (Ref 3:6-6, 6-14)

27

Table 3.2 Vector Allocation

SERIAL LINE UNIT

Vector Description

000xx0 Receiver interrupt vector

000xx4 Transmitter interrupt vector
PARALLEL LINE UNIT

Vector Description

000xx0 Interrupt A

000xx4 Interrupt B

Source: Ref 3:6-6, 6-14.

One of the tasks of the prewritten initialization
program (described below) is to store the appropriate
addresses and status words in the locations pointed to by
the vectors. These vectors were arbitrarily chosen to be
110 and 114 base 8 for the SLU; and 300 and 304 for the
PLU.

3.5 Prewritten Programs

This section describes the prewritten assembly language
programs developed for the interface. Again, these
programs are "prewritten" from the standpoint of a future
user; they were developed specifically for this laboratory
interface. The programs include two utility progranms,
CONNECT and TAPEIN, and a package of subroutines, IOPACK.
IOPACK is linked to the user's FORTRAN program to allow him
to access the interface from his FORTRAN program. The
programs were written, debugged, and tested separately.

Appendix A has step-by~-step instructions for the use of

28

these programs and Appendix B contains the software flowh/
charts and program listings.

3.5.1 CONNECT Utiljty. The CONNECT utility is run
from the computer's monitor and is used to access serial
devices from the computer's terminal. While CONNECT is
running, the system behaves as if the terminal were
connected directly to the serial device. 1In addition,
CONNECT offers some useful tools to the user.

The first tool allows the user to record data from the
serial device on the computer's disk. To start recording,
the user enters CONTROL-R. After this, all data from the
serial device is stored on disk as it appears on the
screen. The user stops recording by entering CONTROL-T or
by exiting CONNECT (CONTROL-P). The record routine is
double buffered allowing the program to record data at
rates up to 1200 baud.

The second tool allows the user to transmit a file from
the computer's disk to the serial device. The user enters
CONTROL-E and a previously stored file is transmitted as it
appears on the screen.

In addition, if the user desires to perform other
operations with the computer, he may do so by exiting
CONNECT (CONTROL-P). This does not disturb the device and
the user may reenter CONNECT to pick up where he left off.
From the device's point of view, it is as if the user had

simply sat idle instead of having actually switched from

the device to the computer and back to the device.

29

One typical use for CONNECT would be for communication
with the on-base CYBER. In this case, the user plugs the
modem into the interface, runs CONNECT, and initiates
communication with the CYBER as if the terminal were
connected directly to the modem. The user may read a file
from the CYBER to his disk, switch attention to the
computer and perhaps edit that file, and then switch back
to the CYBER and replace the file with the updated version.

Another typical use for CONNECT would be for
communication with a cassette tape drive. The Canberra
tape drives can be operated from a terminal and therefore
can be operated through CONNECT. The user could read data
from the tape to disk or from disk to tape. Thus, CONNECT
is a general purpose utility for exchanging data with
serial devices.

3.5.2 TAPEIN Utjlity. The TAPEIN utility is run from
the computer's monitor and is used to read data from a
paper tape and store it on disk. To read a tape, the user
loads the tape in the tape reader, plugs the reader into
the interface, and then runs TAPEIN. The program reads the
data through the paper tape module of the interface and
stores the data on disk.

A typical use for the TAPEIN utility would be to read
paper tapes produced by the Hewlett Packard multichannel
analyzer (MCA). The-data from the tapes could be stored on
disk for later manipulation by a user-written program or

for transmission to the CYBER for high-quality plotting on

30

a CALCOMP plotter.

3.5.3 MCAIN Utjlity. Due to time constraints, the
multichannel analyzer (MCA) module was not implemented on
the interface. It is outlined here for consideration as a
future upgrade to the systen.

The MCAIN utility is run from the computer's monitor
and is used to read data from the HP5400 MCA and to store
the data on disk. To read data, the user plugs the MCA
into the interface, runs MCAIN, and operates the MCA as if
he were punching a tape. The computer program reads the
data through the MCA module and stores the data on disk.
The user can thus avoid the use of paper tape altogether if
he so desires.

3.5.4 JOPACK Subroutine Package. IOPACK is a set of
assembly language subroutines which may be called from a
user's FORTRAN program. The subroutines allow the user
access to the interface through FORTRAN without having to
know the details of how the subroutines work. The user
needs to know only the routine name and its arguments.

The simple I/0 routines are PARIN, PAROUT, SERIN, and
SEROUT. PARIN and PAROUT are used, respectively, to input
and output 16-bit words to a GPLIS channel. They have two
arguments--a GPLIS channel number and the 16-bit data
word. The arguments are both FORTRAN integers. An example
of a subroutine call is the following: CALL
PARIN(2,IVOLT). This would read GPLIS input channel #2
into the variable IVOLT where IVOLT might represent an

a1

analog voltage.

SERIN and SEROUT are used, respectively, to input and
output serial data. These routines have only one
argument--the data byte which is a FORTRAN integer. An
example subroutine call is shown in the following program
segment:

DO 10 I=1,6

CALL SERIN(CHAR(I))
10 CONTINUE

In this segment, a six element array of ASCII
characters is read. These could be later converted into a
real number for further manipulation.

These first four routines allow simple I/O in either
parallel or serial form. The remaining routines allow the
user to take advantage of the interrupt capability of the
clock module developed for the interface.

The first of these routines, INIT, sets up the
interrupt vectors. INIT must be called from the user's
FORTRAN program to enable the user to run interrupt
routines. Two assembly language interrupt routines were
developed: AINT and BINT. Each time one of the interrupt
requests (REQ A or REQ B) is received, AINT or BINT
increments its respective counter which can be tested by
two other two subroutines, WAITA and WAITB. WAITA and
WAITB allow the user to bring his FORTRAN program to a
pause until either a REQ A or REQ B is received. Finally,
two assembly language subroutines were developed to allow

32

the user to enable and disable the interrupts from within
his FORTRAN program: INTON and INTOFF. The operation of
these routines will be made clear in the example below.

A typical use of the interrupt capability would be to
sample a GPLIS input channel at a timed interval. 1In this
example, assume the input channel is #5 and the timed
interval is 100 milliseconds. To accomplish this, the user
would write a FORTRAN program which contains the following
program segment:

PAROUT (0,99)

INIT

DO 10 I=1,1000
WAITA
PARIN (5, SAMPLE (1))

10 CONTINUE
INTOFF

In the above example, PAROUT is used to set the clock
module so that it generates a REQ A signal every
100 milliseconds (see section 2.4.1). 1INIT initializes the
interrupt capability and enables the interrupts. Each time
a REQ A signal is received, the assembly language interrupt
routine AINT increments a counter. WAITA checks that
counter and causes the program to pause until REQ A is
received. Then PARIN is used to input the sample data.
After the DO-loop, the interrupts are disabled with INTOFF.

A warning message is generated if either of the
following occurs: (1) two or more REQ A signals are
received before WAITA is called or (2) WAITA is called

after REQ A has been generated. These warning messages

33

alert the user to an error in his FORTRAN program which is
causing too much time to elapse between WAITA calls.
3.6 Summary

This chapter described the software aspects of the
interface. FORTRA’ was chosen as the high level
programming language for the user because it allows
subroutine calls to the assembly language programs
developed to operate the interface. These programs were
described in detail as were the two utility programs. The
goal of the software development was to allow the user to
stay at as high a level as possible so he need not worry
about the low level details. The next chapter summarizes

the results of the hardware and software system design.

34

4. RESULTS

This chapter summarizes the results of the system
design and of the test procedures.
4.1 Serial Interface

To satisfy the requirement for communication with
RS-232 compatible serial devices, an off-the-shelf plug-in
Serial Line Unit was used. The SLU allows communication
with DCEs or DTEs at baud rates of 50 to 9600. Through the
CONNECT utility developed for this interface, the user may
communicate with a device through the computer's terminal
and he may transmit and receive data files. Also, through
the SERIN and SEROUT routines developed for this interface,
the user may access a serial device through a FORTRAN
program.

The hardware and software was tested by actually
communicating with various serial devices. These devices
included a microcomputer, a terminal, a cassette tape -
drive, a wave meter, and a modem which was connected to the
on-base CYBER. Data was sent and received at the various
baud rates at which these devices were able to
communicate. With a microcomputer sending a continuous
stream of data, it was found that the CONNECT utility can
record data reliably at rates up to 1200 baud. Above that
rate, the computer could not empty its buffers fast enough
to avoid losing data.

4.2 Parallel Interface
The GPLIS architecture was used to proVide parallel

35

data communication. Connection of the developed hardware
to the computer's bus was through an off-the-shelf plug-in
Parallel Line Unit. The GPLIS implementation plus the
specific interface modules allowed parallel I/0 with the
various nonstandard laboratory devices. The clock module
was developed to generate interrupts--either timed or
external--and to send acknowledge signals. Two other
modules were developed to convert signals to TTL levels so
that the interface could accept data from a paper tape
reader or a multichannel analyzer (as noted earlier, the
MCA module was designed, but not implemented).

The software associated with the parallel interface
includes the TAPEIN utility and the PARIN and PAROUT
routines. The utility allows data input to disk and the
routines allow parallel I/O through a FORTRAN program.

The clock module was tested and adjusted by monitoring
its signals with an oscilloscope. By adjusting the
variable capacitor, the COUNTDOWN signal was set at a
frequency of 1000 Hz. Loading the timer with various
values via software produced interrupt requests at various
timed intervals as explained in section 2.4.1.

The software utility was tested through the actual
recording of data from the paper tape reader. The files
produced by this utility can be displayed on the terminal
or printer or they may be used as an input file to a
FORTRAN program.

Conclusions and recommendations are provided next.

36

5. CONCLUSIONS AND RECOMMENDATIONS

The interface system is a flexible, expandable system
for data acquisition, data manipulation, communication, and
control. It is flexible because it can be operated by a
user via FORTRAN subroutine calls or operating system
commands. The user can therefore customize operation to
suit his application. It is expandable because of its
modular architecture. Additional input or output channels
may be connected to the GPLIS bus (see Ref 2). As
presently configured, a total of 16 input and 16 output
channels are possible.

Users will need to become familiar with the system by
reading the reference manuals (Refs 6, 7, and 8) and the
User's Manual (Appendix A). In general, the users need not
know assembly language programming to use the system.

One member of the laboratory staff, however, should
become familiar with PDP-11 assembly language programming
(see Ref 9). This person would be designated the "System
Programmer."” The System Programmer would be the expert of
the syétem and would be responsible for maintenance and
modification of the system. He would also keep spare
copies of the system's software disks to restore the system
in case of accidental destruction of data on a system
disk. 1In general, the System Programmer would be
responsible for maintaining the system as a useful device

in the laser spectroscopy laboratory.

37

1.

10.

11.

12.

13.

BIBLIOGRAPHY

IEEE Std 583-1975. Modular Instrumentatjon and Digital
Interface System (CAMAC). New York: The Institute of

Electrical and Electronics Engineers, Inc. 1975.

Black, Jerry G. "Simple Laboratory Computer Interface

System," Review of Scientific Instrumentation, 51 (5):
pp 655-7, May 1980.

EK-LSI11-TM-003. LSI-l11, PDP-11/03 User's Manual.
Maynard, Mass., Digital Equipment Corp., 1976.

595-2158-01. j e e e 1-5
Operation/Service Manual. Benton Harbor, Mich.: Heath

Company, 1978.

Greenfield, Joseph D. Practical Digital Design Using
IC's. New York: John Wiley & Sons, Inc., 1977.

595-2225-04, Part A. Introductory Operations.

Part B. BASIC User's Guide.
Part D. Operating System.

Benton Harbor, Mich.:. Heath Company, 1978.

595-2235-01, Part A. FORTRAN IV Introduction.
Part B. FORTRAN]IV User's Guide.
Benton Harbor, Mich.: Heath Company, 1978.

DEC-11-LFLRA-C-D. PDP-11 FORTRAN Language Reference
Manual. Maynard Mass.: Digital Equipment Corp., 1975.
Singer, Michael. - e

. New York: John Wiley &
Sons, Inc., 1980.

Kocher, Carl A. "A Laboratory Course in Computer
Interfacing and Instrumentation," American Journal of
Physics, 60 (3): pp 246-51, March 1992.

Bok, J., Barvik, I., Praus, P., Herman, P., and
Cermakova, D. "Integrated Software Packages in the
Physical Laboratory," Computer Physics Communjcations,
61 (1 & 2): pp 219-24, November 1990.

Petrini, M. F., Dwyer, T. M., Wall, M. A., Mansel,
J. K., and Norman, J. R. "Communication Between the PC
and Laboratory Instruments,”

the Biosciences, 6 (3): pp 161-4, July 1990.
Hall, B. D. "A General-Purpose Interface System for

the Laboratory,"”
(1 & 2): pp 239-45, November 1990.

38

APPENDIX A

USER'S MANUAL

39

APPENDIX A

USER'S MANUAL

1. Introduction . . .
2. BOOTUP Procedure .
3. FORTRAN Programming
4. JOPACK . . « o o o
5. CONNECT Utility . .
6. TAPEIN Utility . .
7. Future Devices . .
Figures

A.1 Front Panel Drawing

A.2

A.3

A.4

A.5

Upper Board Drawing

Lower Board Drawing

o

.

"GPLIS Master Logic Board"

[] [] L]] . . L] [[

Detailed Drawing.

Typical GPLIS Channel Implementation Drawing

Tables

A.1 PLU Register Word Formats

40

41

42

42

44

46

47

49

50

51

52

53

54

USER'S MANUAL

1. Introduction

This User's Manual should be used as a supplement to
the Heath Reference Manuals and to the thesis text. This
manual does not describe all the details of the computer/
interface system, but it should serve as an aid to the
user. I1f additional information is desired regarding the
assembly language routines developed for the interface, the
user should refer to the thesis text (Chapter 3), the
software flow charts and program listings (Appendix B), and
an assembly language programming manual (e.g., Ref 9).
2. PBOOTUP Procedure

a. Set switches to DC OFF, RUN, and LTC OFF.

b. Turn on AC power switches.

c. Set switch to DC ON. The computer will respond
with "s*»,

d. Insert disks and close doors.

e. Enter "DX" (or "dx") on the keyboard. The
computer will respond as follows:
HT-11 HO1lA-5
.SET USR NOSWAP
.SET TTY SCOPE
THE PREVIOUS DATE WAS 17-DEC-82 (date will vary)
CHANGE?

f. Enter the correct date or hit RETURN. The

computer will respond as follows:

+ASSIGN DX1=DK

g. At this point, programs may be run.

41

3. FORTRAN Programming

a. Write a FORTRAN program through EDIT. Be sure it
has a .FOR extension.

b. Enter "R FORTRA" to run the FORTRAN compiler. The
computer responds with "*%,

c. (The following steps assume your FORTRAN program
is called UPROG.FOR.) Enter "UPROG,UPROG=UPROG" to compile
UPROG.FOR (produces UPROG.OBJ and a list file UPROG.LST).

d. Exit the compiler with a CONTROL-C.

e. Enter "R LINK" to link the program. The computer
responds with "*",

£. Enter "UPROG=UPROG,IOPACK/F". This links the
program with the IOPACK routines to allow access to the
interface.

g. Exit LINK with CONTROL-C.

h. Run the program by entering "RUN UPROG".

4. JIOPACK

IOPACK is a set of assembly language subroutines which
are linked to a user's FORTRAN program to allow the program
to use the interface. The routines are called just like
FORTRAN subroutines. Each is described below.

a. PARIN (argl,arg2)

PARIN is used to input data from a GPLIS input
channel. The first argument, argl, is the GPLIS input
channel number and must be an integer from 0 to 15. The
second argument is the input data word and must be an

integer from -32,768 to +32,767.

42

b. PAROUT(argl,arg2)

PAROUT is used to output data to a GPLIS output
channel. Its arguments are integers and are the channel
number (0 to 15) and output data word (-32,768 to +32,767)
respectively. PAROUT is used to set the timer.

Forexample, PAROUT(0,T) will set the timer to generate REQ
A once every T+1 milliseconds.
c. SERIN(argl)

SERIN is used to input a data byte from the serial
interface. 1Its argument is the input byte and will be an
integer from 0 to 255.

d. SEROUT (argl)

SEROUT is used to output a data byte to the serial
interface. 1Its argument is the data byte and must be an
integer from 0 to 255.

e. INIT

INIT sets up interrupt vectors. INIT must be
called before a program can use the interrupt capability of
the clock module. It should be called immediately before
the program segment(s) which use the WAITA or WAITB
subroutines described below. This routine has no
arguments.

£. INTOFF

INTOFF disables the interrupts. INTOFF should be
called immediately after the program segment(s) which use
the WAITA or WAITB subroutines described below. This

routine has no arguments.

43

g. INTON
INTON enables the interrupts. If desired, INTON
may be used after INTOFF is called to re-enable the
interrupts. It is not necessary to call INTON after
calling INIT, however, because INIT automatically enables
the interrupts.
h. WAITA
WAITA is used to pause a program until the
interrupt request REQ A is received. REQ A is generated by
the interface's internal clock ("Timer"). If two or more
REQ A signals are received before WAITA is called or if
WAITA is called after a single REQ A has been received, an
error message will be generated. This alerts the user to
an error in his FORTRAN program which is causing too much
time to elapse between WAITA calls. This routine has no
arguments.
i. WAITB
WAITB performs the same function as WAITA except
that it works with REQ B. REQ B is generated by using the
interface's external clock input.
5. CONNECT Utility
CONNECT is used to communicate with serial devices such
as a cassette drive or a modem.
a. Start Up
(1) Set the four baud rate selector switches to
the baud rate of the device. The chart on the side of the
computer shows how to set the switches. WARNING--If data

44

will be recorded from the device, the baud rate should be
no higher than 1200. If necessary, the baud rate of the
device should be changed to 1200 or below.

(2) Plug the device into the male or female "D"
connector.

(3) Turn on the device and enter "RUN CONNECT" on
the keyboard.

(4) The bottom line of the screen will show a
list of which CONTROL keys perform the following special
functions:

Set FULL DUPLEX
Set HALF DUPLEX
Turn on RECORD
Turn off RECORD
TRANSMIT file
EXIT

(5) Set FULL or HALF DUPLEX as required.

(6) Now use the terminal as if it were connected
directly to the device. The terminal will send all
characters except those six control characters and it will
receive all characters from the device.

b. Recording Data

To record data from a device, turn on RECORD. All data
from the device received after this will be stored in a
file called TAKEN.DAT. WARNING--Be sure to save any
previous files named TAKEN.DAT under a different file name
before turning on RECORD.

To stop recording data, either turn off RECORD or EXIT.

45

c. Transmitting Data

To transmit data, simply enter the TRANSMIT control
key. This causes the file GIVEN.DAT to be sent to the
device. WARNING--The file GIVEN.DAT must be created before
attempting to transmit data. The transmitted data will
appear on the screen as it is sent to the device.

SPECIAL NOTE--To transmit a file to the CYBER, enter
the following after "COMMAND-" is given:
COPYBF, INPUT, filename (where filename is any unused file
name). Now enter the TRANSMIT control key to transmit the
file. After the file is sent, enter "$EOF" to signal the
CYBER that this is the end of file. To confirm
transmission, first enter "REWIND,filename" and then
"COPYSBF,filename". This will cause the CYBER to print the
file on the screen.

d. EXIT

To leave CONNECT, simply enter the EXIT control key.
This transfers control back to the computer's monitor.
This will not disturb the device and it is possible to
reenter CONNECT by entering "RUN CONNECT" as before. The
terminal may thus be connected to the device or to the
computer as desired.
6. TAPEIN Utility

TAPEIN is used to read paper tapes. The procedure is
as follows:

a. Plug the paper tape plug into the socket marked
TAPE READER.

46

b. With the tape reader's RUN/LOAD switch in the LOAD
position, thread the tape into the reader.

c. If there is enough header on the tape, the take-up
reel should be used to reel in the tape. Otherwise, the
tape will simply feed through the reader and pile up on the
table.

d. Set the RUN/LOAD switch to RUN and turn the tape
reader on.

e. Enter "RUN TAPEIN" on the keyboard. The tape will
feed through the reader and the data will be stored in the
file TAPE.DAT. WARNING--Be sure to save any previous files
named TAPE.DAT under a different file name before running
TAPEIN.

7. e Devices

This interface was designed to be easily adaptable to
new devices. The assembly language programs have been
developed such that the user can take advantage of their
features without needing to know the details of assembly
language. However, if for some reason it becomes necessary
to modify or to add to the assembly language programs, an
excellent reference which can serve as a programmer's
manual is Ref 9.

The hardware is easily adaptable. Any serial device
which conforms to RS-232 can be plugged into the
interface. The available baud rates will almost surely
match one of the device's baud rates. The parallel

interface is also easily expandable. Additional input or

47

output channels may be connected to the GPLIS bus (see Ref
2). As presently configured, a total of 16 input and 16
output channels are possible.

The following drawing package (Figures A.l1 through A.5)
further documents the interface implementation and should
be used as a reference for use and future modifications.

Following the drawing package is Table A.1 which
provides the detailed description of the word formats for
the three important Parallel Line Unit (PLU) 16-bit
registers, DRINBUF, DROUTBUF, and DRCSR described in

section 2.3 of the thesis text.

48

Sumei(q joued yuoly 1°vy 21ndiy

bMe) EMD EMD (M)
1NdNI
¥0010 $ 3w w0
et obd b @
3503 TMONMIOV } sa wno
WNEIDE 30010 H3NIL

| u3av3d

3dvl

49

Sumei(g pieogq 1oddn 7'y 2n3iyg

+
n n
ol 1309 207 || TI0H) 9
+| [+ eS| aama
_ H h AG O) AZL- | AG 01 AZL- | AG O} AC}-
A2\ AZL+ AGH
G 14 €
#mwhmwwm AG O} AZ|- | AG 01 AZI- | AG 01 AZ -
¢ I 0
AG 01 AZ- | AG 01 AZI- | AG 01 AZL-

50

Sumea(q pieog Jomo ¢y 2In81g

YOSWL EISTEL
8L/ 210
YOS
210 €61SWL
LLOI
¥SIPL
12SWL
9L Dl £61SWL rol
oLl
601STVPL £61SWL cw%.
SLOI 60l
bp
601STVVL £61SWL €L2SWL 005
#L0l 8ol 90 2ol
20 eL2SWL £L2SWL YweSL YeSWL
eLOl 200 SOl

m—

51

GPLIS BUS
Ic1
9T 1 2A4 2v4fS 12 M N 1s
uT 1 2A3 2V3f— 3 p] IN 14
FHRGE E o
TAe Jyel L2 11 v_ 1 N3
ouT 1 14 10 w
1A3 1Y3—— ry v] 1N 10
OUT 0] 1A2 1Y2[—5 s z] INo09
1A1 1Y IN 08
16 286 ‘
. 1 19 S
u sy P
—L GPLIS BUS
,7116 28/ = .
ouT 07— 15 (2A4 2Y4rg 5 Eg IN 07
oUT 08 T3 (243 2v3F3 S b 1N oe
ouT 08— 12A2 2Y2pg 2 HH_{ y os
OUT 04] 2A1 2Y1 12 3 IN 04
1Y4 BB |y o3
_ 3] VKT 2 E IN.O2
4 172 —— 1 Ll w01
ouT- 2 1vqpL8 * 0 T in oo
' IC5 .
11 1} 1 + 5y
87438 74 I »
€ [cixk 87654321 = K.w
1 i .
11 DDODDDDD,,, K csHo
87654321 12 13
(NAND GATES @eeaacaa ClIvy
1] 1] 111 2|
IC2) 5 ouT/ .
IN T VV\e
9.1K
20 21 2:'24 20 21 22 23 1 n] =
G261 D C B8 A D C B AGtaz
IC4 IC3
11111 111111
0123450799 012345 0123456789012345
1 4 EEEEEE 1 EEEEEE
1 1
0123456789111111 0123456789111 111
0123458 012345

Rx CLK's (x = 0-15 above)
(To Output Modules)

INPUT x (x = 0-15 above)
{To Input Modules)

(See Figure A.3 (Appendix A) for IC identifications)

Figure A.4 "GPLIS Master Logic Board" Detailed Drawing
(As Implemented)

52

(so[npoJy 2aning 104)
Sumel(q voneyuowajdwy] puuey)) SO [edidL], ¢V 2andiy

leuueyQ Inding feaidAL leuueyd nduj readAL
a— £225WL . rresSmL :
2 T |0t o1 F o ... z]V LAV o 9
1 y 102 oz 5 ' ¥ 12ve ZAL D T
5 [e
e Y) S
< =as os [4 S 2 ive iz ua- —$
s vy1] a9 09 53 s s €1 | 2Ve 2AZ[3
9 Zr |9 (<3 91 9 ? TS RAL EAZ [¢ [}
) 81 109 o8 63 L ¢ e RAZ R Z S m 7
X0 ®1d oz o}
sng §1140 8NnA8 81140
b g t NS aAgs
%i0 X6 Ve 31naon X IndNi
T . LndNI
31naon|’ .. L
sng _2.:_0 9o 419 |inginol o 0z o1 sna .a_._._o
7 T ai ot z F3 (R A LA T s
L) v 02 02 [o MR N T)
"0t Z | 9¢ o€ 9 % 1ove sat S .
Tl 3 |O°* o 6 0 Z oY
bt lave zaz}-S 33
A% v nw ww St €t Jovz coazl -2 £l
i i o1 S S .
el 9 |08 08 g v |'Ye YAt
ks €22SMWL resSIe

53

Table A.1 PLU Register Word Formats

Word Bit(s) Function

DRCSR 15 REQUEST B--This bit is under control
of the user's device and may be used
to initiate an interrupt sequence or
to generate a flag that may be
tested by the program.

When used as an interrupt request,
it is asserted by the external
device and initiates an interrupt
provided the INT ENB B bit (bit 05)
is also set. When used as a flag,
this bit can be read by the program
to monitor external device status.

When the maintenance cable is used,
the state of this bit is dependent
on the state of CSR1 (bit 01). This
permits checking interface operation
by loading a 0 or 1 into CSR1 and
then verifying that REQUEST B is the
same value.

Read-only bit. Cleared by INIT when
in maintenance mode.

14-08 Not used. Read as O.

07 REQUEST A--Performs the same
function as REQUEST B (bit 15)
except that an interrupt is
generated only if INT ENB A (bit 06)
is also set.

When the maintenance cable is used,
the state of REQUEST A is identical
to that of CSR) (bit 00).

Read-only bit. Cleared by INIT when
in maintenance mode.

06 INT ENB A--Interrupt enable bit.
When set, allows an interrupt
request to be generated, provided
REQUEST A (bit 07) becomes set.

Can be loaded or read by the program
(read/write bit). Cleared by INIT.

54

Table A.1 (continued) PLU Register Word Formats

Word

Bit(s)

Function

DRCSR
(cont.)

DROUTBUF

05

04-02

01

00

15-00

INT ENB B--Interrupt enable bit.
When set, allows an interrupt
request to be generated, provided
REQUEST B (bit 15) becomes set.

Not used. Read as 0.

Can be loaded or read by the program
(read/write bit). Cleared by INIT.

CSR1--This bit can be loaded or read
(under program control) and can be
used for a user-defined command to
the device (appears only on
Connector No. 1).

When the maintenance cable is used,
setting or clearing this bit causes
an identical state in bit 15
(REQUEST B). This permits checking
operation of bit 15 which cannot be
loaded by the program.

Can be loaded or read by the program
(read/write bit). Cleared by INIT.

CSRO--Performs the same functions as
CSR1 (bit 01) but appears only on
Connector No. 2.

When the maintenance cable is used,
the state of this bit controls the
state of bit 07 (REQUEST A).

Read/write bit. Cleared by INIT.

Output Data Buffer--Contains a full
16-bit word or one or two 8-bit
bytes: High Byte = 15-8; Low Byte =
7-0.

Loading is accomplished under a
program-controlled DATO or DATOB bus
cycle. It can be read under a
program-controlled DATI cycle.

55

Table A.1 (continued) PLU Register Word Formats

Word Bit(s) Function
DRINBUF 15-~00 Inﬁut Data Buffer--Contains a full
16-bit word or one or two 8-bit
bytes. The entire 16-bit word is
read under a program-controlled DATI
bus cycle.
Source: Ref 3:6-15,6-16.

56

APPENDIX B

SOFTWARE FLOW CHARTS AND PROGRAM LISTINGS

57

APPENDIX B

SOFTWARE FLOW CHARTS AND PROGRAM LISTINGS

Contents

IOPACK Subroutine Package Top lLevel

Subroutine PARIN Flow Chart

Subroutine PAROUT Flow Chart

Subroutine SERIN Flow Chart .

Subroutine SEROUT Flow Chart

Subroutine INIT Flow Chart
Subroutine INTON Flow Chart .

Subroutine INTOFF Flow Chart

Interrupt Routine AINT Flow Chart
Interrupt Routine BINT Flow Chart
Subroutine WAITA Flow Chart .
Subroutine WAITB Flow Chart

IOPACK Subroutine Package Program

CONNECT Utility Flow Chart

CONNECT Utility Program Listing .

TAPEIN Utility Flow Chart .

TAPEIN Utility Program Listing

58

Listing

L] L] L[] L] * L] L L] L] L]

Flow Chart

59
60
61
62
63
64
65
65
66
67
68
69

70

74

77

83

85

IOPACK Subroutine Package Top Level Flow Chart

User links IOPACK to his
FORTRAN program

| Initializations & Definitions

l

Control returns to user program
until one of the following
subroutines is called:

PARIN(CHANNEL,NUMBER)
PAROUT(CHANNEL,NUMBER)
SERIN(NUMBER)
SEROUT(NUMBER)

INIT

INTON

INTOFF

WAITA

WAITB

(Individual flow charts for each of the above
are provided on the following pages)

59

Subroutine PARIN Flow Chart

User calls PARIN(CHANNEL,NUMBER)
from his FORTRAN program

Arguments
correct?

Send error message

I Set GPLIS Channel #]

|

L input paraliel NUMBER I

(Return to user’s program)

60

Subroutine PAROUT Flow Chart

User calls PAROUT(CHANNEL,NUMBER)
frorn his FORTRAN program

Arguments

correct? Send error message

I Set GPLIS Channel # I

|

I Output parallel NUMBER I

(Return to user’s program)

61

Subroutine SERIN Flow Chart

User calls SERIN(NUMBER)
from his FORTRAN program

l

Arguments
correct?

Send error message

I Input serial NUMBER

|

(Return to user’s program)

62

Subroutine SEROUT Flow Chart

User calls SEROUT(NUMBER)
from his FORTRAN program

(Return to user’s program)

Arguments

correct?

Send error message

I Output serial NUMBER l

|

63

GD

Subroutine INIT Flow Chart

User calis INIT
from his FORTRAN program

|

I Set A vector to point to AINT l

|

I Set B vector to point to BINT |

|

I Clear A & B counters I

|

I Enable A & B interrupts I

|

(Return to user’s program)

64

Subroutine INTON Flow Chart

User calls INTON
from his FORTRAN program

l

I Enable A & B interrupts I
(Return to user’s program)

Subroutine INTOFF Flow Chart

User calis INTOFF
from his FORTRAN program

L

I Disable A & B interrupts I

< Retumn to user’s program)

65

Interrupt Routine AINT Flow Chart

C REQ A signal is received)

!

I Increment A-counter |

A 4

I Send acknowledge signal J

!

Return from
interrupt

Is A-counter
at 2 or more?

Send error message
(REQ A occurred before
WAITA called)

>

66

Interrupt Routine BINT Flow Chart

C REQ B signal is received)

!

I increment B-counter I

!

I Send acknowledge signal I

!

Is B-counter
at 2 or more?

Return from
interrupt

Send error message
(REQ B occurred before
WAITB called)

S

67

Subroutine WAITA Flow Chart

User calls WAITA
from his FORTRAN program

No Send error message

Is A-counter (REQ A occurred before
still at zero? WAITA called)

l
C>

Is A-counter
still at zero?

No (REQ A occurred)

L Clear A-counter

68

Subroutine WAITB Flow Chart

User calls WAITB
from his FORTRAN program

!

No Send error message
- (REQ B occurred before
WAITB called)

Is B-counter
still at zero?

l
CD

Is B-counter
still at zero?

No (REQ B occurred)

I Clear B-counter

69

IOPACK Subrontine Package

Program Listing

70

START!
PARIN:

PAROUT:

CHKARSG?

.
1
ERARG!®
HSARG:

ERCHAN:
HSCHAN:

!
INIT

.TITLE IOPACK

.NCall .PRINT..EXIT

~GLOEL PARIN: PAROUT. SERIN, SEROQUT

«GLOBL HAITA, WAITE. INIT, INTON. INTOFF

DRCSE=1467770

DROUTB=147772

DRINBU=167774

RECSR=17%5410

MRBUF=175¢612

MXCSR=175¢414

BXBUF=17%¢14

Ri=%9)

R1s%1

R2=4%2

RS=4%

PC=y7

NOP

PARIN{CHANNEL. NUMBER)

JSR PC. CHKARG

BIS #1,DRCSE $OUT/IN=1

BIC 42, DRCSR I DATA/CHAN=0 (SET CHANNEL!
nov RO, DROUTB tURITE CHANNEL

BIC #1,DRCSR 1 OUT/IN=0 (INPUT!

nov DRINBU, 8{RS)+ t INPUT DATA

RTS PC

PAROUT (CHANNEL, NUMBER)

JSK PC. CHKARG

BIS #1,DRCSR $OUT/IN=1

BIC 42, DRCSR ! DATA/CHAN=0 (SET CHAN)
ASL RO ¢ SHIFT CHAN FOUR BITS
ASL RO ? LEFT S0 THE NUMBER
ASL RO + IS INTERPRETED AS
ASL RO ¢ AN OUTPUT CHAN
Hov R0, DROUTB $URITE CHANNEL

B1S 43, DRCSR $OUT/IN=1, DATA/CHARs]
Hov @(R5)+, DROUTE 1 OUTPUT DATA

RTS PC

cHp (RS)+: 82 $tARE THERE 2 ARGS?
BNE ERARG ¢IF NO THEN ERROR
MOV @(RS)+. RO $ RO=CHANNEL

TST RO $CHANNEL < 0 *

BLT ERCHAN $IF YES THEN ERROR
cHp RO, 817 SCHANNEL > 13 DECINAL?
BGT ERCHAN $IF YES THEN ERROR
RTS PC

-PRINT #MSARG

<EXIT

.ASCI1 /WRONG WNUMBER OF ARGUNMENTS/

+ASCIZ 7/IN CALL TO PARIK OR PAROUT/<07>

.EVENR

+PRINT &NMSCHAN

-EXIT

«ASZ11 /CHANNEL RUMBER OUT CF THE/

«ASCIZ /RANGE OF 9 TO 15/407>

.EVEN

nov SAINT,: 300 $SET A VECTOR TO AINT
nov 40, 302

71

MISSA!
ACOUNT!
BINT:

B1
HAITB!

B2:
RISSB:

BCOUNT:
ACK:

unny:
H

SERIN:
s1:

SEROUT:

NGV

nov #0.304
CLR ACOUNT
CLR BLZOUNT
BIS #140, DECSR
RTS PC
INTERRUPT SERVICE RCOUTINES
INZ ACDUNT
JSR PC/ACK
CNP ACOUNT, #2
BGE Al

RTI

LPRINT SMISS:
JEXIT

TST ACOUNT
BEG A2

-PRINT @NISSA
<EXIT

TST ACOUNT
BEQ A2

CLR ACQUNT
RTS PC

+ASCII

-ASCIZ

<EVEN

-HORD 0

INC BCCOUNT
JSR PC. ACK
CHp BCOUNT. #2
BGE Bl

RTI

«PRINT @MISSB
<EXIT

TST BCOUNT
BEQ B2

-PRINT @#MISSE
-EXIT

TST BCOUNT
BEQ B2

CLE BCOUNT
RTS PC

.ASCII

.ASCIZ

+EVEN

+HORD 0

B1S #1.DRCSR
BIC #2,DRCSR
MOV 80, DROUTS
BIC #1,DRCSR
nov DRINBU, DUNMNY
BTS PC

.HORD 0
SERIN!NUMBER)

JSR PC: ARGCHK
TSTE HRCSR

BPL §1

MOVE MRBUF, @(RS)+
RTS PC
SEROUT(NUMBER)
JSR PC, ARGCHK

SBINT: 304

*SET B VETT2R T2 BINT

*TLEAR INTEIREUPT ZCURTER &
CLEAR INTERRUPT COUNTER P
*ENABLE & AND B INTERRUPTS

*INZ INT COUNTER 2
¢ RCENDWLEDSBE RED 2
tHAVE TED REZ &°S Z0ONE BY"
IF YES THEN WE MISSED ONE

HAS RE2 A OCCURBELD ALREADY?
IF NO GCTO A2
IF YES THEN WE MISSED IT

¢
$

fWAIT FOR REQ A

{RESET
¢t RETURN

/REG A OCCUBRRED BEFCRE YOU CALLED WAITA/Z1SMC12>
/CORRECT YOUR PROGRAM/C07>C15><12>

? INTERRUPT A COUNTER

$INC INT COUNTER B

$ ACKNOHLEDGE RES B

HAVE THO RE2 B'S GONE BY®
*+IF YES THEN WE MISSED ONE

$HAS REG B OCCURRED ALREADY?
+IF N0 GOTO B2

t+IF YES THEN WE MISSED IT
$HAIT FOR REZ F

? RESET

/REQ B- OCCURRED BEFORE YOU CALLED HAITB/<153412>
/CORRECT YOUR PROGRAM/<O07D{153<12>

¢ INTERRUPT B COUNTER
¢+ READ GPLIS CHAN 0
$TO ACK INTEREUPT

$HAIT FOR INPUT
$ INPUT DATA

72

(1]
[3)
.o

ARGCHK!

INTON!

INTOFF?

TSTB
BPL
MOVE
RTS

cnp
BNE
RTS

<PRINT
.EXIT
.ASCII
JASCIZ
.EVEN
INTON
BIS

INTOFF
BIC
RTS
<END

HXCSR tNAIT FGR READY

S§2

@(RS)+,. MXBUF tOUTPUT DATA

PC

(RS)+, 81 $1S THERE ONE ARG?
ERSAR t IF NO THEN ERRCR
PC .

#MSSAER

/MRONG NUMBER OF ARGUMENTS/
/IN CALL TO SERIN OR SEROUT/Z97>

TURNE INTERRUPT ENABLES ON

#3140. DRCSR ¢ ENABLE & AND B INTEZERUFTS
FC

TURNS INTERRUPT ENABLES OFF

#140. DRCSR $DISABLE A AND B IKTERRUPTS
PC

START

73

D User enters "RUN CONNECT" O o ey
from operating system prompt

(Chart 1)

3

Add character to buffer

No Buffer
filed
?

Yes

Empty buffer to file

74

0

* CONNECT Utility

5 Flow Chart C
(Chart 2)
Isit Yes
CNTL-N Clear CYBER flag
?
.A
No
isit Yes
CNTL-A | Set FULL flag
?
-p>
No |
Isit Yes
CNTL-B Clear FULL flag
?
4‘
No
Isit Yes
CNTL-E @
?
No
| Send character to modem |
—p
is Restore interrupts
RECORD \ N° |
on
2 Remove Control-commands
from 25th line of monitor
Yes
Close file

75

CONNECT Utility Flow Chart
(Chart 3)

P

Save registers

4

Read block of data file
*GIVEN.DAT" into buffer

]

Get character from buffer

fie
?

No

Send character to modem

76

CONNECT Utility

Program Listing

77

e e

TART!

LABELS!

e se e

INCHK:

- s te

TERNIN:

LTITLE CONNEZIT
Ta#ie PRCGEAM WILL WORF RELIRBLY AT 128 EBa8D 2R LESS

.M2sLL ENTER. (FETTH. KRITE- ,ILOCEZ. ,E¥IT. (FRINT

JMZALL JLOCKUP. (EESDK. (WEITH

MEISR={7S%:10 *MIDEM BZSE
MRBUF=175412 *MOLGEM EBUF
HXCSR=175614 $MODEM XCSR
HXBUF=17361¢ 3 1 MODEM XBUF
TRCSR=1775460 $ TERMINAL RCSR
TRBUF=177%5¢2 :TERMINAL RBUF
TYXCSR=177364 *TEEMINAL XCSR
TYBUF=17756¢4 tTERMINAL XBUF

RO=%0 tUSED BY MACRO

Ri1=%1 ¢CHARACTER STORAGE
R2=%2 ¢ COUNTER

R3=%3 : ADDRESS POINTER

R4=%4 ¢ COUNTER

RS=%S ¢ COUNTER

SP=%4 ¢ STACK POINTER

PC=%7 !PROGEAN COUNTER
INITIALIZATIONS

BRIC #100. TRCSR ¢DISABLE TERM INTERRUPT
BIC #100: MRCSR $DISABLE MODEM INTERRUPT
MoV #INBUF2, HEAD1 tPOINT HEAD! TO INBUFZ
nov #INBUF1.HEAD2 POINT HEADRZ TC INBUF!
CLR FULFLG tSET FOR HALF DUPLEX
CLR RECFLG ¢ SET RECORD OFF

Nov #1.CYBFLG ¢SET FOR CYBER

+PRINT &LABELS tDISPLAY COMMANDS

BR INCHK

LASCITI C33IdUSDH 1 SAVE CURSOR POSITION
LASCII <£3354170>4813 ¢ENABLE 2%TH LINE
SASCITI £233341313(7054302 ¢tMCVE TO 25TH LINE

+ASCII /CNTL- A(FUL) B:HAF) RIREC ON: ~

+ASCII /T(REC OFF) E(TRNS FILE) P(EX})/

.ASCII / O(CYBER) N(NOT CYBR)/

LASCIZ {334 SRETUEN TO SAVED POSITION
.EVEN

TERM/MODEM INPUT CHECK LOOF

TSTB TRCER $ TERMINAL INPUT?
BNI TERNIN

TSTPR HRCSR $ MODEM INPUT?
Bnl NODIN

BR INCHK

TERMINAL INPUT HANDLER

KOVE TRBUF. R1 $1CHAR TO R1

cnp R1.820 tCATL-P EXIT

BEQ FINISH

CH? R1,822 $CNTL-R REZORL ON
BEQ RECON

cnp Ri-824 ' $CATL-T RECORD OFF
BEQ RECOF1

78

TER1®

TER2:

REZQF1:
TRANS1?

e 10 we

NODIN:
nOD1:

FULSET!
HAFSET:

$
FINISH!

FIN1:

OFFLAR:

e e

MCDEM INPUT HANDLER

MOVE
TSTB
BPL
nova
TST
BEG
JHP

CYBER FLAG ROUTINES

HOV
BR
CLR
B8R

Ri1,#17
CYBER
R1.#14
NOTCYR
Ei-#t
FULSET
Ri-#2
HAFSET
R1.8%
TRANS1
HXCSR
TER!
Ri. MYBUF
FULFLG
INCHYE
TXCER
TER2
R1.TXBUF
INCHK
RECOFF
TRANS

MRBUF.R1
TXCEER
HOD1

R1, TYBUF
RECFLG
INCHK
RECORD

#1,CYBFLG
INCHK
CYBFLG
INCHK

DUPLEX ROUTINES

nov
BR
CLR
BR

&1, FULFLS
INCHK
FULFLG
INCHY

EXIT ROUTINE

TST
BEQ
JSR
BIS
B1S
SPRINT
LEXIT
«-ASCIZ
.EVEN

RECFLSG
FINi

PC. CFF
€100, TRCSR
#100, MRCSE
SOFFLAB

€3334171)¢41)

S8ECORD ON ROUTINE

*CNTL-Q CYBER

tINTL-K NOT CVYRER
tCNTL-A SET FULL DUPLEY
SCNTL-B SET HALF DUPLEYX
$CNTL-E TRANSMIT FILE
*NAIT FOR MODEM READY

*SEND ZHAR TO TERM
D = HALF DUPLEY

$HAIT FOR TERM READY
1ECHO TO TERM

sCHAR TO Rt
tNAIT FOR TERNM READY

$SEND TO TERNM
$RECORD ON?

$IF RO, BR INCHFK
tIF YES, RECORD

$1SET FOR CYBER
$SET FOR ROT CYBER

$SET FULL DUPLEX
$SET HALF DUPLEX

$RECORD ON?

tCLOSE FILE

$ REENABLE TERM INTERRUPT
¢ REENABLE MODEN INTERRUPT
$TURN OFF LABELS

$DISABLE 23TH LINE

79

RECON: TST RECFLG +18 REZORD ALREADY CON?

BNE ALOK
Mo #i{-RETFLZ *TUEN REILED CH
.ENTEE #IDBLKS.#0.8FILNAN-#-4
BCE ERENRT tERRCE IN ENTER
BOV #INBUF1: R3 tPOINT B3 TC INPUT BUFFEER |
CLlR RS tSET BLOCY NUMEEE TD TERD
Nov R%, R4 ¢POINT E& TD INFUT BUFFEER
CLR R2 ¢tSET CHER COUNT T2 ZERZ
Inp INCHY

ALON: .PRINT #aLON1
JHuP INCHE

ALON1: .ASCIZ /RECORD IS ALREADY ON!/<07)
.EVEN

ERENT: .PRINT 4ERENT!
BR FINISH

ERENTI: .ASCIZ /FATAL--ERROR IN ENTER/<07>
.EVEN

FILNAN:! .RADSO /DK/
«RADSC0 /TAKEN DAT/

RECORD OFF ROUTINE

. 1o %o

RECOFF! TST RECFLG $1S RECORD ALREADY OFF?

BE% ALOFF
CLR RECFLG : TURN RECORD OFF
JSE PC. OFF
JMP INCHK
OFF! INC B2
ROR B2 tRZ 18 NOW HORD COUNT
.HRITH #&JOBLKO-#9.R3:R2-ES
BCS ERHRI
.CLOSE %0
RTS PC
ALOFF: .PRINT #ALOFFI
JNP INCHK
ALOFF1: .ASCIZ /RECORD IS ALREADY OFF!/<077
.EVEN
: RECORD CHARACTER
RECORD: TSTB R1 F NULL?
BNE REC! ¢IF NO, THEN RECORD IT
JHP INCHK tIF YES- THER SKIP IT
REC1: HOVB R1.(R4)+ tPUT CHAR IN BUFFEE
INC R2 ¢ INC CHAR COUNT
£up R2. 410090 ¢ BUFFEE FILLED?
EGE WRIBUF $IF YES- THEN WRITE BUFFER
Jnp INCHYK $IF NO. GET NORE CHARS
WRIBUF: .WRITE &IOBLKO,#0.R3,8400:R5
BCS ERNRI $ERROR IN WRITE
INC RS $ INC BLOCK NUMBER
MOV -2(R3),R3 $ PCINT R? TO CTHER BUFFER
nov R3: R4 $POINT R4 TO OTHER BUFFER
cLR RZ $SET CHAR CCUNT TO ZERC
JMP INCHF. ¢GET NORE CHARS
ERWRI:! .PRINT SERNRII
JNP FINISH
EEKEI1* .ASCIZ /FATAL--ERROR IK MRIT(E) (W3 /072
+EVEN

80

ISELKO! (BLKH 10
TRANSMIT ROUTINE

]

TRANS: NOV

tMACRO’S STRATCH SPACE

$ SAVE REGISTERS

: SET BLOCY. NUMEER TO ZERO

$ERROR IN LOOKUP
tR1= & BLOCKS IN FILE
¢t IF R1<¢0 THEN EMPTY FILE

¢+ ERROR IN READ

$ INC BLOCK NUMBER
$POINT R4 TO INBUF1
$SET CHAR COUNT TO ZERO
$NULL?

$NULL? (RITH PARITY)

$ LINEFEED?

$ LINEFEED? (HITH PARITY)
$SKIP OVER LF ONLY IF CYBER
$HAS LAST CHAR CR?

4+ IF NO DON'T SKIP OVER

$1F YES SKIP OVER THIS LF

$ UAIT FOR MODEM READY

$SEND CHAR TO MODEM
t0 = HALF DUPLEX

$WAIT FOR ECHO

R1-R1STC
KOV R2-R28TO
nev R2-R23STO
nov R4.RAST?D
MoV RS.R58TO
CLE RS
.LOOKUP $IOBLK1.,#1,8FILOUT
BCS ERLOO
nov RO, R1
BPL READ
Jnp EMPTY
BREAD: .BEADH #IOBLK1,#1,8INBUF1.#400,RS
BCC TRA1
JNP ERBEA
TRAL: INC RS
nov S#INBUF1, R4
CLR R2
KRITE! CHMPE (R4), 80
BEQ EOF
CMPB (R4).8200
BEQ EOF
CHPB (R4). 812
BEQ LF
CHMPE (R4). 8212
BNE TRA2
LF: TST CYRFLG
BEQ TRA2
TST CRFLG
BEG TRA2
BR TEST
TRA2? TSTB MXCSR
BPL TRA2
HOVE (R4) . NXBUF
TST FULFLG
BEQ TRA4
TRA3: TSTB MRCSR
BPL TRA3

MOVE MRBUF, (R4)
TRAS: gSTB TXCSR

PL TRAS
NOVE (R4), TXBUF
CRTST: CHKPB (R4)-819
BEQ WAITPR
CHPB (R4). 8215
REQ WAITPR
CLR CRFLG
TEST? INC R4
INC R2
cny R2, 41000
BLT WRITE
CHP RS, R
BLT READ
EOF* .CLOSE #1
Hov R1§TO. R1
nov R28TO. K2
nov R3ISTO.R3

$PUT ECHO IN (RM)
$HAIT FOR TERM READY

tECHO TO TERY
t CARRIAGE RETURN?

$CR? (MITH PARITY)

$NOT A CB. SO CLEAR FLAG
$ POINT TO MEXT CHAR

$+INC CHAR COUN

$BUFFER EMPTIED?

$ALL BLOCKS DONE?

tRESTCRE REZISTERS

81

Mov R4STD. R&

nov RSSTC. RS
JMF IHTHY
WAITPR: TST ZYBFLG $HAIT FOR PROMPT ONLY IF CVEER
BEQ TEST
nov #1.CRFLEG $SET CRFLG
TRAS! TSTE MRLCSR tHAIT FOR PECMFT
BPL TRAS
NOVZ2 MREUF:R? $ PROMPT TD R?2
TRAS? TSTB TXCSE tWAIT FOR TERM READY
BPL TRAS
nov R3, TXBUF $ SEND PROMPT TO TERM
: BR TEST
ERLOO: .PRINT 4ERLOO!
JHP FINISH

ERLOO1: .ASCII /FATAL--ERROR IN LOOKUP/C(15><12>
.ASCIZ /BE SURE FILE "GIVEN.DAT® EXISTS/407>

.EVEN
EMPTY! .PRINT &ENPTY1
JUP INCHK
ENPTY1: .ASCIZ /FILE °GIVEN.DAT" IS EMPTY/L07)
.EVEN
ERREA! .PRINT #ERREAL
JNP FINISH
ERREA1: .ASCIZ /FATAL--ERROR IN READH/Z07>
~EVEN
I0BLK1: .BLKH 10 $MACRO’S SCEATCH SPACE

FILOUT: .EADS0 /DK/
.RADS0 /GIVEK DAT/)
tREGISTER TEMPORARIES

R1STO! .HWORD [
R2STO: .WORD 0
R3ST0! JRORD 0

. R4STO: .WORD 0
RSS8TO! .WORD 0
HEADi: .HORD 0
INBUF1: .BLKH 400
HEAD2! .HORD L
INBUF2! .BLKK 400
FULFLG: .WORD 0
RECFLG: .WORD 0
CYBFLG: .HORD 0
CRFLG: .HORD 2

.END START

82

TAPEIN Utility Flow Chart

(Chart 1)

User enters "RUN TAPEIN"
from operating system prompt
!

Initializations & Definitions
$
‘Set to GPUS Channel #1

83

TAPEIN Utility Flow Chart
(Chart 2)

%

Write block of data from
buffer to disk (‘TAPE.DATY)

84

TAPEIN Utility

Program Listing

85

L1

L11e

L2:

DONEIN:

.TITLE TAPFEIN

.MCALL .ENTER..FETCH. .WHRITH, .CLOSE. .EXIT: .PRINT
DRCSR=147770

DROUTB=1467772

DRINBU=1£7774

T¥S=177520 ! TERMINAL XEVBOARD STATUS
TKE=177562 * TERMINAL KEYBOARD BUFFER
TPS=177564 t TERNINAL PRINT STATUS
TPB=177566 $ TERMINAL PRINT BUFFER
Ri=%1 $ INPUT ADDRESS PQINTER
R2=%2 t COUNTER

R3=N2 ¢ COUNTER

R4=%4 P TEMP STORAGE

RS=%5 $ NULL FLAG

FIRST FILL INPUT BUFFER

BIC
Mov
nov
BIC
BIS
BIC
MOV
BIC
CLE
INC
TSTE
BMI
TST
BPL
nov
BIC
TSTB
BRE
TST
BEG
BR
CLR
INC
NOVE
TSTB
BPL
ROVB
BR
nov
CHPB
BNRE
HOVE
INC
HOVE
INC
ROR

#140, DRCSR
S INPUT.R1
#1,8S
%100, TXS
#1,DRCSE
#2,DRCSR
41, DROUTS
#1,DRCSR
R2

R2

TKS
DOREIN
DRCSR

Li
DRINBU. R4
#177600.R4
R4

(R1)+,TPB
L
DRINBU. R4
R4, $377
DONEIN
12, (R1)+
R2

813, (R1)¢
R2

R2

$ENSURE INTERRUPTS DISABLED
$POINT Rl TO INPUT BUFFER

¢ SET NULL FLAG ON

tDISABLE TERMINAL INTERRUPT
{QUT/IN=¢

$DATA/CHAN=0 (SET CHAN)
$NRITE CHAN #1

$QUT/IN=0 (INPUT)

$SET CHAR COUNTER TO 1ERO
$SET TO ONE

{KEY PRESSED ON TTY?

$IF YES THEN DONE WITH INPUT
{HAIT FOR INPUT

{ READ INPUT

$REMOVE HIGH & BITS AND PARITY

$NULL?

$IF MOT THEN IT’S A CHAR

$NULL FLAG OFF?

$IF YES THEN THIS IS A TRAILING NULL (END!
$IF NO THEN LEADING NULL--SKIP & CONTINUE
$CLR NULL FLAG (CHAR HAS READ)

3 CHARACTER COUNT

${READ CHAR INTO BUFFER

$NAIT FOR TERMINAL READY

$ECHO TO TERMINAL

$READ NEXT CHAR

$EXD OF TAPE?

$IF NO THEN DO AGAIN

$ INSERT LINE FEED

$ INSERT CARRIAGE RETURN

$R2 IS NON WORD COUNT

NOM WRITE INPUT BUFFER TO DISK

.EKTER OIOBLK.#0,8FILNAN, 8~1

BCS
Nov
INC

ERENT
¢INPUT.R1
R1

tERROR IN ENTER
$POINT Ri TO INPUT BUFFER
$SKIP OVER LEADING LF.CR

86

PART:

FINISH!

“e e e

ERENT!?
ERHRI?
ERENT1¢
EEKRI1:
DK:
FILNAM:

I0BLK!
INPUT!

INC
DEC
CLR
CMP
BLT
HRITH
BCS
INC
ADD
SUB

BR
~HRITH
BCS
.CLOSE
BIS
<EXIT

R1

R2 :

R3 *SET BLOCK NUMBER T0O ZERO

R2, #4090 + ENOUGH WORDS TG FILL BUFFER?
PART $IF NO, THEN PART

#IOBLK, #0,R1.#400,R3

ERNWRI {ERROR IN HRITH

R3 tSET FOE NEXT BLOZK NUMBER
#1000, R1 tPOINT 70 NEXT BLOCK OF INPUT
#400,R2 { DECREASE WORD COUNT BY ONE BLOCK
L3

ERHWRI {ERROR IN HNRITE

#0

%100, TKS $ REENABLE TERMINAL INTERRUPT

ERROR ROUTINES

PRINT

SERENT1
FINISH
#ERNRI1
FINISH
/ERROR IN ENTER/

/ERROR IN HWRITE/

/DK/

/DK/

/TAPE DAT/

10 $ SCRATCH SPACE
0 ¢+ INPUT BUFFER
START

87

APPENDIX C

DESIGN CYCLE FOR CURRENT (1992) TECHNOLOGY

APPENDIX C

DESIGN CYCLE FOR CURRENT (1992) TECHNOLOGY

onte

Page

Introduction . . ¢ ¢ ¢ ¢ ¢ ¢ c e 4 e o e e s e o - 90
Current Technology . « « « ¢ « o « « « o« o « « « o« 90
Background . . . e e o s e e s = s e o o o o <« 90
The State of the Art e o o o s a4 s e s s e e 2 o o 91
summary L] . L] L L] L] - L] - L] L] L] - L] L] . L] L] - L] - 9 2
Design Cycle . . ¢ ¢ ¢ ¢ ¢ o o« o ¢ o o o o o o« o « 93
Background L] L] ' L] L] - L] . L] L] * L] . L] . L] L] L] - - - 9 3
Design Cycle Details + « ¢ ¢« ¢« « « « « 93
.1 Requirements Analysis. e e s o o s = « 93
.2 Detailed Design and Implementatlon e s o o o s« o« 95
summary L] * L] L] * L] L] L] - L] L] . L] L] L] . - . - L] L] 9 6
CONCIUSION . &« ¢ ¢ o s o o o o s s o s s o o o« « o« 9€

89

DESIGN CYCLE FOR CURRENT (1992) TECHNOLOGY
1. Introductijon

Since the time this project was begun (1982), the state
of the art has advanced and the author's understanding of a
formal design cycle has matured. This appendix describes
(1) how recent advances in computer technology would affect
this project and (2) a design process which would provide a
disciplined, well-documented approach to requirements
analysis, design, implementation, and testing.

2. Current Technology

2.1 Background. When this project was begun, an
LSI-11 minicomputer had already been acquired for use in
the laser spectroscopy laboratory. The Physics Department
had decided to use this computer to perform data
acquisition, data reduction, and experiment control. The
required task was to design and implement an interface
system for that computer. If this project were begun
today, however, newer technology might lead the Physics
Department to choose a different computer.

According to Kocher (Ref 10:246), "Advances in
integrated~-circuit electronics have revolutionized the
possibilities for laboratory applications of small
computers.” He also notes that the IBM PC "has become a de
facto standard . . . [and that] an abundance of inexpensive
softwvare is available for it." (Ref 10:246) Bok et al (Ref
11:219) describe IBM PC's as having "been accepted as

industrial standards for the automation of experiments."

90

Various built-in cards and the standard RS-232C and HP-IB
interfaces allow one to "build a powerful measurement and
control unit." (Ref 11:219) Furthermore, computer software
is now on the market which is directly applicable to a
laboratory application (Ref 11:219).

If this thesis project were to be started today, the
Physics Department might select an IBM PC instead of an
1SI-11 for use in their laser spectroscopy laboratory.
Furthermore, according to Petrini et al (Ref 12:161), "Many
manufacturers now make available instruments already
packaged with hardware and software that allow personal
computers to control the machines, and to collect, store,
analyze and display data without burdening the investigator
with the computer details." Thus, technology advances in
computers as well as in the laboratory instruments
themselves would affect an interface design.

2.2 The State of the Art. An interface project, if
started today, would need to consider the current state of
the art. A sampling of the current literature uncovered
several recent articles which would have potential
application to an IBM-PC-based laser spectroscopy
laboratory interface systen.

For example, serial communication using RS-232 devices
is described by Petrini et al (Ref 12). He addresses
general laboratory applications for data I/O and equipment
control. In addition, Hall (Ref 13) notes that IEEE-488 is

a widely used, well known standard for computer

91

peripherals. He describes an interface system based on the
IEEE-488 bus and provides two laboratory interfacing
examples. Two other recent articles, highlighted below,
would also have potential application to the project.

Bok et al (Ref 11) describe the automation of an
ultraviolet-visible spectrometer and a single-proton
counting apparatus. The hardware configuration employed
used standard RS-232C and HP-IB interfaces plus MetraByte
CTM-05 and PIOC-12 cards to provide TTL levels for data I/0
and device control. ASYST was the commercially-available
software package selected.

Kocher (Ref 10) describes an instructional laboratory
at the Oregon State University's Physics Department. A
standard IBM serial/parallel I/O interface board was
modified (see Ref 10 for details) and incorporated into an
IBM PC-AT laboratory setup. The setup also included a
60-MHz general-purpose oscilloscope, digital multimeter,
function generator, multi-output power supply, and
prototyping breadboard. Microsoft QuickBASIC was selected
as the programming language. The laboratory course covered
the following topics: parallel I/0, serial I/0, digital-
to-analog conversion, analog-to-digital conversion,
closed-loop experiments, fast data sampling, and signal
averaging.

2.3 Summary. If the laser spectroscopy laboratory
were being established today, the AFIT Physics Department
might select an IBM PC instead of an LSI-11 as one of the

92

major pieces of laboratory equipment. With today's
technology, many of the remaining pieces of laboratory
equipment could be selected which were manufactured to be
compatible with the IBM PC. The equipment selection would,
of course, affect the design of an interface system. 1In
fact, a custom-built interface might not be needed at all.

If a custom-built interface was required, however, a
sampling of the current literature indicates that several
articles exist which could potentially relate to a laser
spectroscopy application. The next section describes the
process to analyze both the interface requirements of the
actual laboratory equipment and the applicable literature
as part of the overall formal design cycle.
3. Design Cycle

3.1 Background. Since this project was begun, the
author's experience with the Air Force acquisition process
has led to a maturing of his understanding of a formal
design cycle. If this project were begun today, a more
disciplined and better documented approach would be used as
outlined below.

3.2 Design Cycle Details.

3.2.1 Requirements Analysis. The first step of the

design cycle would be to document the user's top-level
requirements. These requirements would be obtained either
by interviewing Physics Department personnel or by
reviewing any existing documentation relating to the

anticipated use of the laser spectroscopy laboratory--or

93

both. The following information would need to be
obtained: types of experiments anticipated; types of
computers and laboratory equipment anticipated; specifics
regarding interfaces, timing, purposes, data rates and
volume, and experiment durations. The anticipated
constraints on the project would also have to be obtained:;
particularly maximum cost and desired schedule.

Once obtained, these requirements would be organized
into a system requirements document. A system requirements
review would then be conducted to obtain concurrence from
the user (and thesis advisor) of the validity of the
requirements. The review could be either a formal meeting
or simply a review of the requirements document by the
individuals involved. 1In either case, written concurrence
by the user and thesis advisor would be obtained.

The next step would be to analyze the system
requirements to derive lower-level hardware and software
requirements. The current state of the art would need to
be examined to determine if commercially-available products
could satisfy some or all of the requirements. 1If
commercially-available products could not meet all the
requirements or if they exceeded the stated cost
constraints, then a literature search would be conducted to
collect applicable information for a custom-designed
system. A preliminary design would then be prepared and
presented to the user in a design review. Design options

might also be presented to the user for a system which

94

might not meet all his requirements, but which could be
completed more quickly or for less cost. Again, written
concurrence would be obtained.

3.2.2 Dpetailed Design and Implementation. Assuming
that commercially-available products alone would not meet
all the user's requirements, the next step would be to
develop a detailed design. The preliminary design would be
decomposed into hardware and software modules which could
be individually tested. The requirements would be refined
into a set of specifications for the system. Test
procedures would be written to document how the system
would be tested to ensure it meets its specifications. A
detailed design review would be conducted to again obtain
user concurrence.

Following detailed design, hardware modules would be
breadboarded and individually tested. Tests would be
conducted using the test procedures noted above and the
results would be documented in test logs. Likewise,
software modules would be written and individually tested.

Integration of the hardware and software modules would
then follow with testing as noted above as modules are
incrementally added. Finally, an overall system test would
be performed to ensure all user requirements are met.

Once a working breadboard had been demonstrated,
implementation of the final hardware configuration could
begin. Assuming that a wire-wrapped implementation is

acceptable, individual modules would be constructed and

95

tested as they were in the breadboarding phase. Test
results would be compared to the breadboard tests to ensure
defects were not introduced. Integration and testing of
modules would proceed until a completed, functioning system
successfully passed all tests.

Before the system could be turned over to the user, a
user's manual would have to be written which documented the
operation and maintenance of the system.

The final step would be to perform a comprehensive
acceptance test to demonstrate to the user that the system
met all his stated requirements.

3.3 Summary. The design cycle outlined above provides
a structured approach to requirements analysis, design,
implementation, and testing. The approach ensures that
each step is well documented and provides for frequent
feedback opportunities to ensure the project is on track.
The focus is on strong interaction with the user from the
beginning, when his requirements are first determined, to
the end, when the system that meets those requirements is
ultimately delivered.

4. conclusion

If this project were begun today, the design approach
and the design itself would both be different. Advancing
technology has made personal computers and compatible
equipment a routine part of the laboratory environment.
Existing off-the-shelf hardware and software might be

adequate to meet the needs of a laser spectroscopy

96

laboratory. 1If, however, a custom-designed interface
system was still required, the author's current
understanding of a formal design cycle would allow him to

use a more structured, better documented approach for the

project.

97

VITA

Duuglas Letson Durand was born on 28 October 1958 at
Wright-Patterson AFB, Ohio. He graduated from high school
in Dunwoody, Georgia in 1977. He attended Georgia
Institute of Technology with an ROTC scholarship and
received the degree of Bachelor of Electrical Engineering
in June 1981. Upon graduation, he received a commission in
the USAF and immediately entered the School of Engineering,
Air Force Institute of Technology.

After his period of residence at AFIT, he was assigned
to Air Force Systems Command, Space Systems Division, Los
Angeles AFB, California, from January 1983 to July 1989.

At Space Systems Division, he began his systems acquisition
career first as a project engineer for the NATO III-D
communications satellite and later as a program manager for
a highly-classified advanced space-related system.

He continued his systems acquisition career with an
assignment to Headquarters Air Force Systems Command,
Andrews AFB, Maryland, from July 1989 to the present. He
is currently serving as Manager, Advanced Space Systems,
where he focuses headquarters support functions to a broad

array of classified space-related programs.

Permanent address: 4912 Olde Village Court
Dunwoody, Georgia 30338

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

the data

gatherning and

Public reporting burden for this collection of information 1s estimated to average ! hour per response, including the time for reviewing instructions, searching existing data sources,
. and compieting and rev ewing the collection of u;‘ovmanor;eknd <&mmenu r
collection of infosmation, inchudi wggestnons tor reducing this burden. 10 Washington Headquarters Services, Directorate
Davis Highway, Suite 1204, Afldng':gon VA 22202-4302, and to the Otfice of Management and Budget, Paperwork Reduction Project (0704-0 188), washington, DC 20503

rding this burden estimate or any other aspect of this
ot information Operations and Reports, 1215 Jetterson

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 1992

MS Thesis

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

DESIGN OF A LABORATORY COMPUTER INTERFACE

6. AUTHOR(S)
Douglas L. Durand

Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)
Air Force Institidte of Technology (AFIT-EN)

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GEO/ENG/92D-01

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

input/output (I/0).

RS-232 compatible devices.

interface system (GPLIS) architecture.
designed to convert certain device'’s signal levels to TTL levels.
utilities were developed to acquire and store parallel data and routines were
written to allow parallel I/O through a FORTRAN program.

13. ABSTRACT (Maximum 200 words)
An interface for the LSI-1ll computer was designed and implemented so that the

computer supports data acquisition, data reduction, and equipment control.
design includes both hardware and software and addresses both parallel and serial

The serial incerface’s hardware is simply a Serial Line Unit card.
plugs into the LSI-1l bus and provides the signals necessary to interface EIA
A software utility was developed to allow
communication with the serial device and to allow exchange of data files.
Routines were written to allow serial I/O through a FORTRAN program.

The interface’s parallel hardware includes the general purpose laboratory
In addition, hardware modules were

The

This card

Software

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE
UNCLASSIFIED

Computer Interface, General Purpose Laboratory
Interface System, GPLIS

19. SECURITY CLASSIFICATION

OF ABSTRACT
UNCLASSIFIED

15. NUMBER OF PAGES
105

16. PRICE CODE
YT Ay
20. LIMITATION OF ABSTRACT

UL

'NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
;9'2‘1%.2’“ by ANSI Std Z239-18

