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1. INTRODUCTION

The electrothermal-chemical (ETC) propulsion concept is a technology that is believed to offer the

potential payoff of increased muzzle kinetic energy (increased velocity or launch mass) within the

constraints of current gun envelops (geometric configuration). Figure 1 illustrates the major components

of a generic ETC armament system. The propulsion portion of the ballistic cycle is initiated by the

discharge of a large electrical current from the power source into the plasma capillary; here, a fuse wire

is vaporized to create a high-temperature (10,000-20,000 K) plasma. As electrical current continues

flowing through the plasma capillary, the plasma temperature is maintained by ohmic heating, and wall

material (usually polyethylene) is ablated because of the high temperatures. The pressure gradient between

plasma capillary and combustion chamber forces the plasma to flow into the combustion chamber where

it reacts with a propellant, which may be endothermic or exothermic, and generates hot gas, which is the

working fluid that accelerates the projectile just as in a conventional solid propellant gun. In theory the

electrical energy input to the capillary should determine the nature of plasma discharge in the combustion

chamber and the resulting breech pressure. Thus, input of the optimal electrical energy pulse should result

in a gun pressure profile that can be tailored to produce maximum performance (i.e., maximum muzzle

kinetic energy).

As detailed elsewhere (Wren, Oberle, and Morrison, to be published; Oberle and White 1991;

Morrison et al. 1990), utilizing electrical energy to supplement the chemical energy or to supply a major

portion of the total energy is an inefficient use of the electrical energy. The major purpose of the

electrical eneigy should be to control the gas generation rate and hence the subsequent pressure history

in the gun. Also, to minimize the mass and volume of the electrical power subsystem, the total electrical

energy per round must be as small as possible. Therefore, if the potential performance benefits of ETC

propulsion are to be realized, the additional energy required for enhanced performance must be

predominately chemical. Fortunately, utilizing electrical energy permits the use of a broader range of

materials for propellants than in conventional solid propellant systems. The authors believe that propellant

materials with the required performance characteristics can be identified.

The overall objective of this report is to indicate goals for propellant energy content and to propose

a methodology to aid in the identification of ETC propellants having the desired ballistic characteristics.

Specific objectives of this report are:



Reaction/Combustion
Switching Chamber Projectile Barrel

Pulse Forming Intermediate
Network (PFN) Storage Prime Power
Capacitors Batteries

Figure 1. Schematic of Generic ETC Armament System.

(1) provide goals for propellant energy density required to obtain desired ballistic performance;

(2) provide a methodology for the calculation of candidate propellant thermochemical properties; and

(3) illustrate the methodology by the examination of several ETC candidate propellants proposed by

the authors.

2 ENERGY DENSITY GOALS

One objective of the Army's ETC propulsion program is to obtain approximately 18 MJ of projectile

muzzle kinetic energy in a 120-mm cannon. (Current performance in the M256, 120-amm cannon is

approximately 11 MJ. Also, due to the elastic strength profile of the M256 cannon, the maximum muzzle

kinetic energy which can be obtained is between 14 and 15 MJ [Oberle and White 19911. Thus, for this

report, calculations are for a generic 120-mm cannon.) In this report, propellant energy density goals will

be relative to obtaining this objective. Goals will also be provided for 15 MJ of muzzle kinetic energy,

a figure believed by the authors to be the minimum energy of interest in a 120-mm ETC system. First,

interior ballistic (IB) calculations using the CONPRESS code (Oberle and White 1991) will be performed.
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This code assumes a constant breech pressure to propellant burnout followed by adiabatic expansion. To

compensate for energy losses and nonconstant breech pressure profiles measured in actual gun firings, 95%

of the computed CONPRESS velocity will be used. Irish (1985) and Morrison (1990) have shown that

95% of the constant breech pressure velocity is a reasonable figure for a well-designed solid propellant

gun-

Table I provides those inputs for the 1B calculations that remain fixed for all calculations. The

propellant mass with the chamber volume adjusted for no ullage, the propellant volumetric energy density

and the propellant density are parametrically varied. Calculations are performed for a projectile travel of

4.75 m, the current M256 cannon, and for 6.0 m, the proposed travel for a new 120-mm tube.

Table 1. Fixed Parameters for Constant Breech Pressure IB Calculations

Projectile Mass: 11A kg

Propellant Thermochemistry:

Gamma 1.22

Covolume 0.6 cm3/g

Constant Breech Pressure 574 MPa

Figures 2 and 3 provide potential performance curves for a generic 120-mm bore diameter cannon as

measured by muzzle kinetic energy for various charge masses and volumetric energy densities; both cases

assume a propellant density of 1.5 g/cm3. Figure 2 is for a travel of 4.75 m and Figure 3 for a travel of

6.0 m. The assumption of no ullage implies that the loading density (charge mass/chamber volume) is

identical to the propellant density, 1.5 g/cm 3. Current high performance solid propellant rounds have

loading densities between 0.9 g/cm 3 to 1.0 g/cm 3. Both graphs show that increasing propellant mass does

not result in continually increasing muzzle velocity-, rather, there is an optimal charge mass for each

propellant volumetric energy. Also, from Figure 2, for 4.75 m of travel, to obtain 15 MJ of muzzle

energy requires a propellant with a volumetric energy density of approximately 9.5 MJ/L, and 18 MJ of

muzzle energy requires well in excess of 12 MJ/L. From Figure 3, the volumetric energies in a cannon

with 6.0 m travel are approximately 6.5 MJ/L and 10 MJ/L to obtain 15 and 18 MJ of muzzle energy,

respectively.

3



18-

- - Performance
S16- VJLBn

>1 14 J/
0')

12-

B )/
C

- 4.5MJ/L120 mm
N 8 - Travel: 4.75 m

N - Density: 1.5 g/7cc

Charge Mass (kg)

Figure 2. Muzzle Kinetic Energy vs. Charge Mass, 4.75-rn Travel for Various Volumetric
Energy Densities.

20-
12 MJ/L

-7 18

10 MJ/LPerformance
>16 -Band

C"

14-

C:

10-

N 8-Density: 1 .5 g/cc

Charge Mass (kg)
Figure 3. Muzzle Kinetic Enerw vs. Charge Mass. 6.0-rn Travel for Various Volumetric

Enemfy Densities

4



Figures 4 and 5 summarize minimum total energy requirements (chemical + electrical) to obtain 15

and 18 MJ of muzzle energy as a function of the propellant density for projectile travels of 4.75 m and

6.0 m in a 120-mm gun. Volumetric energy (MJ/L) can be obtained by multiplying energy (vertical axis)

by propellant density (horizontal axis). The dimensions of energy per unit mass are chosen because

propellant energies are generally given gravimetrically, not volumetrically, and it is gravimetric energy

that is used in interior ballistic codes. In addition, the gravimetric energy is easily calculated from the

results of thermochemical codes by

Gravimetric Energy - Impetus (1)
(7-1)

Figures 4 and 5 can be used to determine both the gravimetric and volumetric energy required to

obtain a given muzzle energy as a function of the propellant density. For example, Figure 4 shows that

to obtain 18 MJ of muzzle kinetic energy requires a propellant with a combined chemical and electrical

energy content of between 11.1 MJ/kg and 10.6 MJ/kg, depending on density. Volumetric energies vary

from 11.1 MI/L to 15.9 MIAL as the propellant density varies from 1.0 g/cm 3 to 1.5 g/cm3. For a travel

of 6.0 m, Figure 5 indicates that the total energy to obtain 18 MJ of muzzle kinetic energy is between

7.3 MJ/kg and 6.8 MJ/kg, depending on density. Volumetric energies range from 7.3 MJ/L with a

propellant density of 1.0 g/cm3 to 10.2 MI/L with a propellant density of 1.5 g/cm3. Although the

volumetric energy density required to obtain a given muzzle energy increases as the density increases, this

does not imply that low density propellants are necessarily better than high density propellants. For a

given performance level, approximately the same amount of total energy will be required regardless of

the propellant density. Then, the higher the density the less volume required for the propellant, which will

have a positive impact on breech design. Although both the chemical and electrical energies are included,

practical applications will limit the electrical energy input to about 0.5 MJ/kg of propellant. Thus, the

propellant energy requirements will not be drastically reduced.

In summary, the goal required for candidate ETC propellants to produce 18 MJ of muzzle kinetic
energy in a 120-mm cannon is a propellant with a volumetric energy density of at least 11.1 MJ/L if

projectile travel is 4.75 m. Use of an extended travel tube lowers the volumetric energy density

requirement by about 34% (11.1 MJ/L for 4.75-m travel to 7.3 MI/L for 6.0-m travel). The actual value

for a specific propellant will depend upon the propellant density as shown above. Furthermore, these
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values are based on the assumption that propellant loading density is the same as the propellant density.

Inclusion of plasma capillaries or extender tubes or the requirement of ullage in the breech will generally

increase the volumetric energy density requirement.

3. PROPELLANT IDENTIFICATION METHODOLOGY

3.1 Outline of the Method. The method proposed by the authors comprises five steps:

(1) Selecting a figure of merit for ranking proposed compositions.

(2) Selecting a procedure for estimating the density of propellant mixtures.

(3) Assembling a set of programs that will compute the impetus of the propellant mix, estimate

the density of the starting composition, and produce a table containing estimated density and

volumetric ballistic energy as a function of composition.

(4) Restrcting the search.

(5) Evaluating candidate propellants; seeking compositions with maximum volumetric energies

(if these maxima exist).

3.2 Details.

3.2.1 The Figure of Merit. The figure of merit to be chosen must be appropriate to volume-limited

systems. There are two candidates. The first is the volumetric impetus, IV, defined as IC * p, where IG

is the familiar gravimetric impetus. The other is Ev, which in this report will be termed the volumetric

ballistic energy, defined as

I0 * P (2)yV- 1

where y is the frozen gamma (ratio of the two specific heats). For this repof, Ev is chosen as the figure

of merit. Although this choice is debatable, it was selected for several rasons. F'rst is the fact that

7



energy, not impetus, is the important quantity in ballistic performance codes. Next, the volumetric energy

takes into account the effect of propellant density, which may vary over a wide range for proposed ETC

propellants. Finally, this value can be computed based solely on propellant composition and

thermochemistry. As long as the density and ratio of specific heats stay within the ranges 1.0 g/cm 3 to

1.8 g/cm3 and 1.1 to 1.3, respectively, and only a small amount of solid particulates are formed in the

combustion products (White and Oberle 1992), the authors believe that the volumetric energy density is

an appropriate choice for a figure of merit. As will be seen later, this decision affects the selection of the

"best" composition.

3.2.2 Estimating the Final Density. The impetus and, thus, energy of any propellant is readily

computed by various thermodynamic programs; density, however, is not so readily obtained. The

estimation of the density, pf, of a solution of two or more ingredients from only a knowledge of the

densities of its components is no easy task. In the present case, however, it appears that almost all of the

candidate systems will be composed of components that are immiscible with each other. In such cases,

there is no interaction between the components (before combustion), and so their volumes are additive.

Consider a system of volume V and mass W containing w'(1) and w'(2) grams of immiscible

ingredients 1 and 2; w'(1)IW = w(l) and w'(2)/W = w(2) are the weight fractions of the ingredients.

The additivity assumption means that the final volume of this system is given by

V - [w(l)v(l) + w(2)v(2)]*W , (3)

where v(i) is the specific volume of ingredient i; hence, the density of ingredient i, p(i), is p(i) = lv(i).

Equation 3 can therefore be written as

V . w() 2)+ w . (4)

L p(-) p-•-2)

Since

If/f Uvw , (5)

8



substitution of Equation 4 into 5 produces

l- 10) + w(2) (6)

pf p(l) p(2)

or

pf p(l)p(2) (7)
w(l)p(2) + w(2)p(l)

It is readily shown that Equation 3 is exactly equivalent to assuming that the molar volume of the system

is the sum of the mole-fraction weighted sum of the molar volumes of the components.

3.2.3 Computational Procedure. AU of the thermodynamic computations are performed with a

modified version of the BLAKE code (Freedman 1982) run at a loading density of 0.2 glcm 3. In addition

to its usual output, this version also produced a summary file containing the title of the run and the usual

summary of the propellant gases' thermodynamic properties. This summary file is in turn used as input

to a post-processing program that combines composition and thermodynamic data to produce an estimate

of the composition's density and the volumetric impetus and energy. The output from this program is two

files--one labelled and formatted for reading and one that was for input to a graphics program.

3.2.4 Restricting the Search. Since not more than 0.5 MJ/kg of electrical energy will be available,

only exothermic propellant formulations need be considered. Fortunately, this still leaves a wide field.

- Mono- or Bipropellant? From the first it appears unlikely that any conventional monopropellant

can meet the requirements. For example, JA2, an energetic solid propellant, has a gravimetric ballistic

energy of 5.6 MJ/kg when augmented with 0.5 MJ/kg of electrical energy. If the gun loading density

equals the material density, 1.6 g/cm 3, the resulting volumetric energy is 8.96 MJ/L, but this assumption

is not realistic. A more realistic maximum gun loading density is 1.2 g/cm3 ; this leads to a value of

6.72 MJ/L, which is below the target values of approximately 7 and 11 MJ/L.

The energy of JA2 or similar propellants can be increased by increasing their oxidizer content.

Practically, this means adding more nitroglycerin or diethyleneglycol dinitrate, which would in turn

increase both hazard potential and flame temperature. However, if instead of mixing the oxidizer with

9



the fuel, it is possible to keep them separate until the moment of combustion, potential hazards could be

reduced. Unfortunately, neither nitroglycerin or diethyleneglycol dinitrate are attractive choices for the

oxidizer because of their hazards and adverse physiological properties (Meyer 1987).

Accordingly, attention is focused on finding energetic bipropellant combinations of oxidizers and fuels

with high densities.

• Choice of Oxidizer. One choice for the oxidizer is a solution of 8 1.1 % hydroxylammonium nitrate

(HAN) in water (which is a 13-molar solution). This mixture has a density of 1.54 g/cm 3 (Sassd et al.

1988) which is attractive, and its safety and toxicity have been intensively studied in recent years. For

convenience, this solution will be referred to simply as HAN in the remainder of this report.

* Choice of Fuel. Here, too, high density (1.5 g/cm3 or greater) is a necessary but not a sufficient

condition-promising compounds must also be intrinsically energetic.

Densities above 2 g/cm 3 are more often found in metals or inorganic compounds, but these compounds

are not promising fuel ingredients. The principal reason is their generally low heats of combustion. There

are some exceptions; e.g., hydrides. Thus, titanium hydride (density = 3.75 g/cm3) has been briefly

considered. A mixture of 24% TiH2 + 76% HAN/H20 (which is not optimal) with 0.5 MJ/kg of added

electrical energy has a volumetric energy of 8.17 MJ/L. Even if this value were large enough, there is

the unsettled question of whether the large amount of solid product in the exhaust gases (about 23%

Ti20 3) would interfere with the proper operation of the gun (White and Oberle 1992). Such compounds

are not considered further in this report.

Organic compounds containing only C, H, N, and 0 almost always have densities less than 1.3 glcm3.

There are some interesting exceptions; e.g., 7-methyl uric acid has a density of 1.706 g/cm 3, but it is not

energetic. The principal exceptions are nitrates and nitro compounds.

3.2.5 Application. Application of the screening methodology is provided for several candidate

propellant formulations in the next section.
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4. EXAMPLES

No systematic search of the literature is undertaken; the present work is restricted to considering some

promising compounds from Meyer (1987). The performance level that a suitable ETC system must reach

is high; it is not immediately obvious that satisfactory propellants can be found that will achieve them.

Therefore, in investigating various possibilities, very little effort has been made at this time to screen them

for safety, toxicity, producibility, or other requirements that all propellants must meet before being fielded.

Additional details can be obtained in a report by Boggs et al. (1991).

4.1 Selected Fuels. Three fuels of interest are shown in Table 2.

Table 2. Three Illustrative Fuel Componentsa

Formation Ballistic
Chemical Name Abbreviation Densiy Enthalpy Energyb

(g/cm9) (kcal/mol) (M__/L)

Cyclo-1,3,4-
trimethylene-2,4,6- RDX 1.82 14.69 11.00
trinitramine

Trinitro-2,4,6- tetryl 1.73 8.08 8.00
phenylmethylnitramine

Trinitroaniline TNA 1.76 -13.66 6.18

All data are from Meyer (1987).
b Computed from BLAKE thermodynamic values.

4.2 Variation With Comntosition or Added Energy. Earlier in this report, it was stated that the

volumetric energy density was selected as a figure of merit instead of the volumetric impetus; several

reasons for this choice were given. In this section, the rationale for selecting the volumetric energy

density over the volumetric impetus will be further illustrated as the composition dependence of the results

are explored.

All three fuels are more energetic than 81.1% HAN (volumetric energy = 1.18 MJ/L). Consequently

both gravimetric and volumetric impetuses, considered as a function of composition, increase to the

maximum value of the pure fuel. Figure 6 illustrates this result for the gravimetric and volumetric

impetuses of HAN/tetryl and HAN/TNA. Figure 7 shows the composition dependence of the gravimetric

11
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impetus of HAN/cetryl for six different levels of added electrical energy. In all of these cases, the impetus

rises monotonically to the value of the pure fuel. Figure 7 also shows the composition dependence of the

estimated density, which is virtually linear. Thus, the dependence on composition of volumetric impetus

(density * gravimetric impetus) will exhibit the same behavior as the gravimetric impetus.

The volumetric and gravimetric energies, however, sometimes behave differently. Figure 8 shows the

composition dependence of the volumetric energy of these same two systems. Perhaps surprisingly, there

is now a maximum. The reason for this is the concentration dependence of gamma, which is shown in

Figure 9 for the HAN/tetryl mixture. It has a pronounced minimum, so that I/(y -1), in turn, has a

maximum, which produces maxima in the gravimetric and volumetric energies. In general, these maxima

occur at different concentrations.

Figure 10 shows the volumetric energy for the same system on a larger scale. The maximum is quite

evident. The location of this maximum occurs at higher fuel concentrations as the electrical energy

increases. This point is emphasized by the sloping line drawn through the maxima.

Since the effective electrical energy consumed per gram varies throughout the discharge cycle, this

dependence of the maximum total energy on the amount of added electricity means that, theoretically,

there cannot be a truly optimum mixture in this system. This may have implications for charge design.

However, Figure 10 indicates the actual shift is not large and should not constitute a problem.

Such a maximum in the volumetric (gravimetric) energy does not occur in every HAN-fuel system;

for example, Figure 11 shows that it does not occur in HAN-RDX. The explanation is the same: the

change (or lack of it) in the gamma of the product gases with the initial propellant composition.

5. ADDITIONAL DISCUSSION

5.1 The System HAN + RDX. Perhaps the most interesting system of the four considered here is

81.1% HAN and RDX. The volumetric energy of this system increases up to neat RDX as the weight-

percent of fuel approaches 100%. For a weight-percent of fuel above 65%, the system with 0.5 MI/kg

of added electrical energy has a volumetric energy greater than 10 MI/L. This suggests the possibility

of a fuel composed of RDX and a high-density binder. Another possibility is based on the well-known

13
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insensitivity of triamino-trinitrobenzene (the so-called "wooden explosive"), so that mixtures of it with

RDX may have promise as an ETC fuel component.

5.2 Flame Temperatures. The systems discussed here have been chosen primarily for illustrative

purposes. Nevertheless, we must point out a potential drawback to some of them--they have flame

temperatures greater than that of JA2 (3,430 K), which has been suggested as an upper limit (Wren and

Oberle 1991).

Table 3 shows the properties, including the flame temperatures, for the systems that have been

discussed here.

Table 3. Thermodynamic Properties of Selected HAN-Fuel ETC Systems
0.5 MJ/kg of Electricity Added in All Cases

Flame Gray Estd Volumetric
Name Fuel Temp Imp Co-Vol Gamma Dens Energy

(M) (K) (J/g) (cmi3 g) (g/cm3) (MI/L)

RDX 70 3,912 1,308.9 0.949 1.2107 1.662 10.3

"75 3,981 1,337.5 0.966 1.2133 1.680 10.5

"80 4,047 1,365.5 0.983 1.2162 1.700 10.7

"85 4,110 1,393.5 0.999 1.2194 1.723 10.9

"90 4,173 1,421.6 1.015 1.2228 1.750 11.2

Tetryl 54 3,666 1,204.4 0.937 1.2094 1.586 9.1b

TNA 41 3,423 1,124.2 0.886 1.2047 1.582 8 .7 b

TATNEa 38 3,362 1,092.1 0.868 1.2063 1.595 8A4b

a Triamno-uiniftnene

b Maximuw value for this system

6. SUMMARY

The goal for candidate ETC propellants should be to identify a propellant with a volumetric energy

of at least I I MJ/L in order to obtain 18 MJ of muzzle kinetic energy in a generic 120-mm cannon.

16



Volumetric energy is the most appropriate figure of merit for comparing candidate propellants due to the

wide range of proposed ETC propellant densities and the effect of the ratio of specific heats. The density

of mixtures of immiscible components can be estimated by assuming volume additivity. Useful ETC

propellants will have to be both energetic and have a high density. A concentrated (13-molar) solution

of HAN is a promising oxidizer for such propellants. Possible high-density fuels include nitro compounds,

some of which have already been characterized as explosives. The volumetric impetus of systems of HAN

plus more energetic fuels increases monotonically with fuel concentration; but the volumetric and

gravimetric ballistic energy of some of these systems exhibit a maximum due to the composition

dependence of the ratio of specific heats. Fuels containing RDX and a less-energetic fuel or a

high-density binder deserve further consideration.
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