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Preface

The art of orbit estimation is a fairly new interest of mine. My initial assignment in the Air
Force as an orbital analyst spawned my interest in this subject. My background is primarily based
in math and computer programming, but the deeper I find myself in orbital mechanics and the

accompanying theories, the more I know that my future interests will be in the astrodynarmics field.

This study may not be overly complicated or all that difficult to the practiced orbital me-
chanic, but my personal knowledge gain is invaluable. I feel that the programming I completed
building the truth model and writing the differential corrector has given me a solid base of knowl-

edge for continuing my interests in this field.

I would like to recognize Dr. Wiesel for the challenges he presented while teaching the theories
of astrodynamics and orbit determination. This thesis is specifically derived from one of his ideas.
I appreciate his overwhelming patience as I ever so slowly gained confidence in my astrodynamic
abilities. Dr. Kelso was also invaluable with his guidance in programming and total emotional
support. I would also like to thank my fellow student, Capt Jeff Berger, for answering all of my

“stupid” questions and keeping me on the right track early in the theoretical development.
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Above all else, I thank my wife Amy for her undying patience and understanding. Her

constant encouragement allowed me to finish this project with a true sense of accomplishment.

Michael Scott Wasson
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AFIT/GA/ENY/92D-15

Abstract

This study investigates earth satellite orbit estimation on a track of range, azimuth, and
elevation data from a single tracking station. The estimation routine is a least squares batch filter
based solely on two-body orbital motion. Using equinoctial elements for the reference orbit avoids
the numerical difficulties of the classical elements at eccentricities near zero and inclinations near
zero or 90 degrees. Orbits for Mir, DMSP, Explorer, Cosmos, and GPS are investigated. The goal
of this study is to reduce orbit information from observations (range, azimuth, and elevation) to an
element set and a covariance matrix without considering perturbation effects. The results indicate
that the lower orbiting earth satellites had large J, perturbations on the equinoctial elements
causing the differential corrector to diverge. Higher orbiting satellites had minimal J, effects and
the correction process sufficiently extracted all information from the data and successfully reduced

the observations to an element set and a covariance matrix.
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DATA REDUCTION WITH LEAST SQUARES DIFFERENTIAL
CORRECTION USING EQUINOCTIAL ELEMENTS

[. Orbilt Estimation

1.1 Introduction

Modern space technology provides the means for tens of thousands of satellites to orbit the
earth. As a result, there is a basic need for tracking these satellites and for predicting the orbital
paths they follow. The military organization established to track and catalog orbiting space objects
is located within Cheyenne Mountain in Colorado Springs, Colorado. One of the primary missions
of the North American Aerospace Defense (NORAD) Command is to keep track of every orbiting
object, whether it is operationally functional or a piece of space debris. The Space Surveillance

Center (SSC), located within NORAD, processes this positional information.

The data needed to estimate an object’s orbit comes from one of several different methods:
direct radio link contact, echoing a radio signal off of the structure of the object, or via optical
observations. Various remote tracking stations located throughout the world gather the positional
information data described by a set of six orbital elements. Typically, the six elements consist of
a position and velocity vector (three elements are needed for each) or tracking station RAER data

(range, azimuth, elevation, and range rate).

Low-earth orbits, within a band of altitude from 100-1000 kilometers, represent a majority of
satellites. Low-orbiting satellites have much higher velocities and thus pass over tracking stations
in 10-30 minutes. These stations collect several “observations” (position and velocity information)
within this time and transmit the data to the SSC. For a particular orbiting object, there may be

10 to 15 passes over the same station in a day producing 10-1000 observations. The immense data




processing load of tracking over 7000 objects inhibits NORAD’s ability to accurately track each

one,

The number of observations collected for a particular object is not individually overwhelming.
However, it is the collection of observations for several different orbits over time that increases the
processing load. Independent orbit estimation at individual tracking stations gives flexibiliiy in
prioritizing satellite contacts. The resources are then available for accurate tracking and location

of a greater number of objects.

1.2 General Issue

Data compression of the orbital position and velocity information into an element set and a
covariance matrix reduces processing time within the SSC. Current orbit estimation theory tech-
niques are available at the tracking stations for on-site estimation. It is possible for each site to
perform the bulk of the initial computations by extracting all information about the orbit along
with typical deviations from the theoretical path (perturbations). The site sends a single element
set describing the complete arc of data over the station along with a confidence level (how accu-
rately the station believes the element set describes the actual orbit) to the SSC. The processed
data is in the form of an element set instead of the actual position and velocity data (or the RAER

data).

By shifting the initial estimate responsibility to the tracking stations, it is possible to collect
an increased number of observations for each satellite pass. The greater data load occurs only
at each site, keeping the SSC free from the burden of initially estimating orbits for thousands of
objects. This leads to a more accurate estimate of each object in the catalog which, in turn, allows
for less frequent orbit updates on that object. The overall effect is a much more accurate catalog

of orbit information.




1.3 Background

Orbit determination at the tracking sites uses currently available theories and methods. It
shifts the initial estimation responsibility from the SSC to the tracking stations. The goal is not to
accurately describe the whole orbit of the object, but to extract as much information as possible
out of the observations and reduce them into a more manageable element set and a covariance
matrix. With an increasing number of objects requiring orbit estimation, the SSC can not afford
to collect thousands or even hundreds of data points for each onc. This would ultimately lead to
a sub-standard element set as a final product. Over time, either the object is going to need an
update to its element set more often, or it will degrade past the point of being able to be tracked

at all.

The equinoctial elements (see Appendix A) have desirable numerical stability properties.
Because all elements, except the mean anomaly term, are constant, it is theoretically easy to
determine an estimate of the state vector. The main challenge is to converge upon a solution
that will describe a whole orbit based on only a few minutes of data. The achieved orbit is not
operationally accurate as a stand-alone estimate and is combined with several other element sets to
give the best final orbit estimate possible. Constant equinoctial elements for the two-body problem
simplifies the original estimation and several element sets processed together provide the means for

identifying the perturbations.

1.4 Problem Statement

The future of accurate orbit estimation at NORAD depends on new data reduction techniques
to handle the 7000+ orbiting objects. Preliminary analysis at the data collection sites using a least
squares differential corrector based on two-body motion is one possible technique for reducing the
data into an element set and a covariance matrix. Stable equinoctial elements simplify the analytical

computations for building the estimation model.




1.5 Research Objectives

Research into the data reduction problem involves three main objectives. The first step in-
volves building a truth model based on two-body orbital motion, the J; zonal harmonic, and air
drag producing accurate range, azimuth, and elevation observations for several tracking site loca-
tions. The truth model adds Gaussian random noise to the “perfect” data and then organizes the
output into separate passes. Secondly, a differential corrector propagates an equinoctial reference
state to the first observation time and then iteratively solves for a state correction and a covariance
matrix based on two-body equations of motion and least squares batch methodology. Finally, the
new differential corrector estimates a new state vector based on truth model data for five repre-
sentative orbits. Unique characteristics from each orbit case expose any possible deficiencies in the

model.

1.6 Research Questions

The least squares method is a proven technique for accurate differential correction. However,
because it is a batch estimator, large amounts of data are required to mathematically solve the
orbit problem. Low-earth orbiting satellites have periods near 90 minutes with passes of only 10-
30 minutes. The short arc of data may not contain enough observations to allow least squares to
converge to a solution. Included in the intent of this study is the examination of the differences
between low and high-orbiting satellites to determine if the pass length is a crucial factor in the

differential correction of data from one station.

When limited to the two-body problem, the only time-varying element is the mean anomaly —
all other elements remain constant. Only two-body element sets are derived through orbit estima-
tion at the sites because there are not enough observations on the low-earth satellites to determine
any perturbation effects. Therefore, actual perturbations in the data may cause problems with

convergence. Other element sets, such as the classical orbital elements, have numerical instabili-




ties for earth-orbiting satellites, so the next step is to use the canonically transformed equinoctial

elements.

1.7 Assumplions

The following assumptions are critical to the development of the methods examined in this

thesis:

e Because of the short interval time of data collection from the remote tracking sites, there
is not an adequate amount of data to accurately predict any perturbation effects on the
satellite. However, these perturbations do exist. There is an underlying assumption that
enough information about the orbital track can be extracted and placed into an element set

to accurately describe the track thdt it was taken from.

¢ In order to simplify the mathematics of the data linearization matrix, H, a two-body estimator
is used. H is still mathematically intense (see Appendix D), however, it does have a closed-
form solution when perturbation effects are left out. The model formulation assumes that

the two-body estimator is sufficiently accurate to obtain a solution.

e The truth model contains accurate ephemeris information for the input satellite reference
trajectory. This data is assumed to be “perfect” and made more realistic by applying Gaussian

random noise.

o Solutions to the orbital problem have errors associated with the dynamical system, the state
vector, and the observations. The foundation for the estimation routines developed here

assumes that the only source of uncertainty in the model lies in the observations.

1.8 Scope

The proposed study models the effects of applying a two-body least squares batch estimator

to a short arc of data to create an element set. This examination is being conducted solely on




the perceived current procedures of Cheyenne Mountain and its dedicated ground stations and will
not address any scheduling changes or procedure changes other than sending an element set rather

than the actual observations to the SSC.

The main effort in this thesis is writing a truth model to generate earth tracking station
satellite observation data (ephemerides) and writing a least squares differential corrector based on
the equinoctial element set. Once completed, the analysis of the estimator performance is examined

for low and high-altitude earth orbits. This encompasses the intent of the study.

1.9 Summary

The orbit determination problem has evolved over many centuries. Throughout this time
there has been a common thread among orbital analysts to achieve the most accurate description
possible of an orbit using a wide variety of available techniques. For example, one technique
performs the initial estimation at the remote tracking site based on a single arc of data. This arc
describes only a small portion of the entire orbit for low-altitude satellites and larger portions for
higher altitude satellites. Extracting all the orbit information contained in the arc reduces several
observations into an element set and associated confidence matrix (the covariance matrix). The
equinoctial elements provide a solid basis for determining a two-body solution and reducing the
data into the desired element set. Allowing the individual tracking stations to reduce the data
establishes a more accurate catalog of orbits reducing the number of orbital updates per object
which, in turn, allows the pass scheduling of a greater number of objects. This study examines
the use of equinoctial elements as the basis for a two-body differential corrector for a single arc of

satellite observation data.




Il. Literature Review

2.1 Introduction

Making use of onboard payloads such as navigation, weather, or early warning, usually re-
quires accurate orbit prediction using orbit determination methods that solve for parameters which
completely specify the motion of the satellite. A differential correction process takes a theoretical
{or reference) orbit path as the starting point and makes adjustments to account for perturbations
and measurement noise. This process must be repeated periodically to determine the best possi-
ble “fit” of the observations. Two-body motion with constant classical elements of {a,e,?,Q,w}
and a time-varying mean anomaly, M, describe the principal reference trajectory. Both batch and
sequential filters, individually or in combination, accomplish orbit determination using probability

theory and matrix manipulation.

2.2 Batch versus Sequential Data Processing

Modern orbital estimation theory consists of batch and sequential processing methods. Batch
processing cannot begin until a group (or batch) of data arrives. A batch of data consists of
several observations (position and velocity values), possibly from several tracking stations. The
manipulation of a batch of data allows for trend analysis but requires a large amount of storage
space. Sequential estimation, as its name implies, processes individual observations sequentially as

they arrive. The advantages of sequential methods are speed and ease of data handling.

2.2.1 Batch Estimators. Batch estimation algorithms are the foundation for all orbit deter-
mination schemes available today. This estimation technique processes a large batch of observations
giving a new state vector as its product. By processing many data points at the same time, it is
possible to obtain an orbit that passes “close” to all data points. This classical estimation theory

centers on deterministic dynamics. However, with errors in the data due to imperfect instruments,




the solution methods employ probabilistic methods. The method of least squares is a batch esti-

mation method and is discussed in Section 2.3.

2.2.2 Sequential Estimators. Sequential estimation replaces the deterministic dynamics of
the batch estimator with a stochastic process. Statistical behavior now characterizes both the
observations and the dynamics. The estimation algorithm extracts information about the initial
position of the object being tracked from observations with errors. The estimator is called a filter

and errors in the data are called noise.

A sequential filter, such as the minimum variance method, uses statistical filtering to de-
termine the best possible estimate of a state vector based on deviations of the observations from
the reference trajectory. Obtaining a good estimate of the orbit assumes and uses errors in the
observations and the state vector. So far, this describes both batch and sequential filters, but the
basic difference between the two is that the sequential method continuously updates the orbit with

each new observation whereas the batch method receives all data before processing (7:23-24).

A Bayes filter is a sequential estimator. This filter works almost identically to a batch
estimator except that the required inputs are an initial trajectory with covariance and new data.
Sequential estimators do not require all of the data points ever produced to extract a solution. It
is possible to use the estimate obtained in a sequential filter as data input to another estimator.
Instead of using the old data points, the old estimate holds all the important information about
the edited observations. Sequential filters allow for greater computational efficiency because of the

smaller data sets (15:90).

Kalman filters are mathematically identical to Bayes filters but expressed in a different form.
The estimation process of a Kalman filter works especially well for very small numbers of new data
points. The primary advantage is speed, but the tradeoff is the increased chance that the sequential
estimator will not accurately describe the trajectory. The ease of adding new data to the estimate

is a desirable quality of a Kalman filter (15:99).




Both the Bayes and the Kalman filters have a definite advantage over batch methods when
inverting the covariance matrix. The number of parameters being estimated dictates the size of
the matrix inversion in a batch estimator such as least squares. Minimum variance, and other
sequential methods, invert a smaller matrix based on the number of observations processed at a
time. By processing each observation separately, the inversion is trivial. This process also allows
for greater flexibility because the process can be stopped at any point and the current state of the
estimation process is an estimate. Also, discarding each observation after processing reduces the

amount of required storage space (7:24).

2.2.8 Tradeoffs. Both batch and sequential methods are non-linear estimators. In each
case, the estimation process works by linearizing the equations of motion about a reference trajec-
tory. Keeping low-order terms (usually just first order) in a Taylor series expansion simplifies the

equations.

If the dynamics of predicting a satellite’s position were purely stochastic, the methods of batch
and sequential estimators would be equivalent. Nevertheless, orbital systems are deterministic in
nature, creating differences in the two methods. A low-orbiting satellite that is affected by air drag
shows how the two estimators differ. Batch estimators locate possible errors in the data due to drag
because they have all of the data available over a given time span. Errors in the data mislead a
scquential estimator over short time periods, thus causing more difficulty in estimating the desired
air drag effect. This leads to uncertainty in the data and makes the air drag component effectively

unobservable (15:95-97).

Current Space Surveillance Center procedures take advantage of the speed of sequential esti-
mation methods to process the data. Yet, sequential estimation methods alone cannot be used to
accurately describe the orbital trajectories being estimated. A batch estimator gives a good overall
look at the trajectory but are not always used because they are extremely time consuming and

cannot handle thousands of objects.




2.3 The Method of Least Squares

The method of least squares was devised by Karl Friedrich Gauss as early as 1795 (9:164).
The first publication of the least squares method, however, was by Legendre in 1806. Legendre used
least squares while trying to calculate the orbits of comets. Throughout the seventeenth century,
mathematicians such as Pascal, Fermat, and Bernoulli developed probability theory (11:102-103).
In 1809, Gauss used the probability theories as a basis for least squares and in 1810 published the

symbols and notation that are still associated with it today (6:14).

Least squares is the foundation for estimation theory. This method assumes that the dynamics
contain no errors (deterministic), but the observations do contain errors. Therefore, information
on the dynamical system must be extracted from the imperfect data. Least squares tries to obtain

an orbit which passes as close as possible to all of the data points (observations) (15:56).

The estimation process is based on the Central Limit Theorem which states that all errors
associated with the data will be distributed following a normal, or Gaussian, distribution (see
Figure 1) (15:8). This curve was first described in 1733 by De Moivre but Gauss extensively used
the théory behind the curve while making astronomical observations and measurements in geodetic

surveying (11:104).

By examining the curve, larger errors occur with less frequency while smaller errors are more
likely to occur. The positive errors tend to cancel out the negative errors (11:104-105). The curve

is of the form

Pe) = oo (- 25) 1)

where P(z) is the probability of a given & to occur. The value in the exponential term is the most

critical for maximizing the probability of a value of £ to occur, because the leading terms in the
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Figure 1. Gaussian Distribution

equation are constant. The exponential term can be rewritten for all z as

-2 '(xiz;gi“)z (2)

i=1

where Z is the average estimate of = for all N observations and o is the standard deviation of
each measurement from the actual value. Maximum probabilities are achieved by minimizing the

positive exponential expression. This is a straightforward calculus minimization:

N =2
d;‘; y —-—_(’”'2(,;’) =0 (3)
i=1 t

Minimizing the squared numerator and denominator terms leads to the method title, Method of

Least Squares (15:16-17).

Least squares works by introducing a reference trajectory (orbit) that is “close” to the esti-
mated trajectory. An initial orbit determination method or a previous estimation run creates the
reference. The observation data is then used to compute residuals (observed value minus predicted

value) which correct the initial trajectory in an ite:ative fashion. Further iterations are calculated if

11




the first correction does not eliminate all trends in the residuals. After convergence, the estimation

process is complete and the new state vector completely describes the orbital trajectory (15:68).

2.4 Matriz Background

2.4.1 The State Transition Matriz. Systems with non-linear equations of motion may be

described as

z = f(z,1) (4)

where z represents the reference state vector. By linearizing these equations through the use of a

Taylor series expansion, a solution can be obtained in the following form:

6'—g bz

r =
dx o

(5)

The linearization is about a reference trajectory retaining only the first order terms. This results
in a homogeneous equation with a fundamental solution called the state transition matrix, ®. The

solution to the equations of variation in Equation 5 can be written as
6z (t) = @(t,t,)6z(t,) (6)
The ® matrix possesses the following properties:

®(t,,t,) = I
D(ty,t,) = D(ta,11)P(t1,1,)

®(to 1) = O M(t1,t,)

The state transition matrix is found either through numerical methods by finding A = 8f/3z with

¢ = A®, or in closed form when the solution to the dynamical system is known (as in the two-body

12




problem). The & matrix in the simplified least squares case for this study is solved in closed form

in Appendix C (7:25-26)(14:114-116).

2.4.2 The Data Linearization Matriz. The nonlinear relationship between the observations,
z, and the instantaneous orbital state vector, z, can also be linearized through a Taylor series

expansion. The equations can be written in matrix form as

$2(t) ~ Héz(t) )

where H holds the information about this linear relationship. H is the matrix of partial deriva-
tives of the observations with respect to the instantaneous orbital state and are evaluated at each
observation time. The data linearization matrix used in this study is also solved in closed form and

is found in Appendix D (7:26)(15:65).

2.4.83 The Covariance Matriz. At any point in the estimation process, the current reference
trajectory describes the best state of the system. The best state is subject to a performance measure

contained within the symmetric covariance matrix, P:

2 2
13 %12 " OIN
2 2 2
Oia O3 ' 03N
P = (8)
2 2 2
\ OIN P3N " ONN }

The estimates of the components of the state vector are not definitively known but can be quantified
with the individual elements of the covariance matrix. Random values of the state vector can have
an effect on each of the elements and this is described as correlation between the data. The diagonal

terms, 0%, are called variances and the off-diagonal terms, a?j, are covariances. Non-zero covariance
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terms describe the statistical dependence between the variables. Zeros in the off-diagonal terms

represent statistical independence of the variables (7:27)(15:22).

There are two covariance matrices associated with a dynamical solution to an orbit problem.
The first is the dynamics covariance, P, and the second is the data covariance, Q. If the dynamics
covariance is given at time t,, the covariance, P, can be determined at any other time, ¢, with the

state transition matrix, ®:

P(t) = ®(t, to) P(to)®7 (¢, 8,) (9

The data covariance holds the statistical information about the accuracy of the individual observa-
tions. Each observation type has an associated standard deviation, o (the square root of the vari-
ance), which takes care of any possible differences in units between the data types. The Q matrix has
the individual variances positioned along the diagonal with zeros in the off-diagonal positions. This

means that the individual observation types are assumed to be independent (7:27)(15:22,30,59-60).

2.5 Conclusions

While it appears that a sequential orbit estimator is the superior choice for routine updates,
the batch filter has a suitable use for data reduction. Sequential filters are very useful for the
constant update of location information, but for reducing an entire arc of observation data into
an element set and a covariance matrix, a batch estimator is the proper choice for the initial
examination. If the batch estimation techniques prove to be inadequate, then the sequential routines
can be used for the initial estimation. Nonlinear least squares has a straightforward algorithm for
processing a batch of data such as that associated with an arc of observations from a remote tracking

station.
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2.6 Summary

Orbit determination is a centuries-old process, refined through the years into a state-of-the-
art method for determining the motion of orbiting objects. Batch or sequential data processing
provides a broad classification of techniques. Batch mode estimators work with large blocks of
data at one time and must have provisions for observation storage. This lends itself to analysis of
trends within the data and can be performed at any time after the data has arrived. Sequential
processing handles individual observations in real time. This means data storage requirements are
much less than with batch modes and the internal matrix inversions are less complicated. The
main disadvantage of sequential filters is detecting local trends in the data that might cause the

routine to diverge.

The most common batch mode estimator, called the Method of Least Squares, was developed
by Gauss in the late eighteenth century and is based on probability theory and the optimistic hope
that a reference trajectory is close to the actual trajectory. This gives a solution to the state of
a satellite that is the best possible as described by the Central Limit Theorem. Even though the
data contain errors, the linearized dynamics are a good enough mathematical model to iteratively

determine the orbital path.

There are several matrices associated with the differential correction process and they are
classified as linearization matrices and covariance matrices. The linearization matrices include the
dynamics linearization called the state transition matrix, ®, and the data linearization, H, and
they allow for an approximate solution to a non-linear dynamical system. The dynamics and the
data each have a corresponding covariance matrix. The dynamics covariance matrix is P, which is
symmetric, and the data covariance matrix, @, is diagonal. Iterative calculation with each of these
matrices results in a correction to the reference state which is declared the new estimate when the

process has converged.
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III. Methodology

3.1 Introduction

The programming involved for this study involves two main parts: the truth model and
the differential corrector. The truth model generates observation values that represent an actual
orbit of an Earth satellite. The model outputs range, azimuth, and elevation points for several
tracking stations at a specified time interval. Building the model involves using mathematics based
on classical astrodynamic relationships. The differential corrector is much more math intensive.
Through probability theory and matrix manipulation it corrects a reference trajectory based on
the input observations from the truth model. The estimation routine iterates finding a sclution
after convergence. This chapter includes a detailed discussion of the construction of both the truth

model and the differential corrector.

The accuracy of the theoretical methods used in the programs is checked through various
methods. The truth model is checked against a Pascal program written by Dr. Kelso which verifies
correctness in the observation values generated, as well as event times for each of several stations.
Elements of the differential corrector are checked through both numerical and closed-form solu-
tion methods. Also, several routines are checked through hand calculation and by using different

expressions for the calculations.

The actual research itself is conducted through a Monte Carlo analysis based on five orbit
types. Individual runs are checked for a complete reduction of observations to element sets by
examining the resultant root-mean-square values. Several test cases are examined to check for

differences between one pass and several passes at the same site.

3.2 Juslification for Method Selected

The use of the truth model to generate the data needed for the differential corrector (DC) is

far superior to using actual data. Actual data contains unknown sigmas and biases that cannot be
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accurately modeled. Any discrepancies in the data make the debugging of the DC routine nearly
impossible. Using the truth model data eliminates one cause for uncertainty. The truth model also
lends itself to generating data of varying degrees of accuracy by including different perturbation

effects. At first, two-body data alone is used to check the accuracy of the differential correction

routine, and after validation with this data, more realistic data can be used for the actual analysis.

Use of the differential corrector with two-body dynamics alone simplifies the process of orbital
estimation. Estimating an orbit based on a short track of data does not lend itself to determining
all perturbing effects on the orbit. The simplification of using only two-body dynamics allows
for the closed-form solution of several matrices involved in the correction process. This means
accuracy is only limited by the precision of the machine running the program. Least squares is the
easiest dynamical model to initially program. All other estimators rely on the same mathematical
relationships as least squares but handle various elements in the correction process in a different
fashion. Once the least squares programs are working according to expectations, the other routines,

such as sequential estimators, can be explored.

3.3 Theoretical Background

This section is provided as a description of the FORTRAN programs used in the study. File
formats and program methodology are outlined to supplement the sometimes brief comments within
the programs themselves. The code assumes an understanding of the math and iteration processes
and comments are included only as specific identifiers to the mathematical formulas and intricacies
of FORTRAN. The following sections provide detailed theory development of the equations used

both in the truth model and in the differential corrector.

3.3.1 The Truth Model. The truth model is a data-creating program that generates satellite
positional information when given as an input an initial state vector, epoch time, and integration

step size. The use of a truth model helps eliminate programming errors in the differential corrector
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by supplying “perfect” data to the corrector routine. Actual data from the sites are subject to
errors and biases while truth model data can be controlled and regulated. The truth model data
is based on a two-body orbit with perturbations added and outputs range, azimuth, and elevation
observations for a set gf ®mote sensor locations. In order to simulate actual tracking observations,
a Gaussian random number generator introduces noise to the data based on user input observation

sigmas.

The input file to the model, labeled ‘input.t,” contains the start and stop time specified by
year, month, day, hour, minute, and second (reference the program listing in Appendix E). Next,
the file contains the integration step size in seconds. The last item in the file is the reference state
vector for the desired orbit specified as a position and velocity in kilometers and kilometers/second.
The time, as input, is not adequate for calculation purposes. The subroutine ‘julday.for’ converts
the input format to a Julian day (minus 2440000.0) which is then converted to seconds for the

numerical integration routine.

The numerical integration routine is a fourth-order predictor-corrector method called Ham-
ming. It is an ordinary differential equations integrator which carries the last four values of the
state vector which are extrapolated to obtain the next, or predicted, value along the polynomial
fit trajectory. After the the predictor part, the extrapolated data point is corrected based on a
high-order polynomial to obtain the new value for the state vector. Initially, the routine is supplied
with a single state vector from which three other values are obtained through a Picard iteration
(by polynomial extrapolation). Once the routine is up and running, four values are maintained

throughout the integration interval and the Picard iteration is bypassed.

While Hamming is the central looping routine for propagating a state vector to generate
ephemerides, a subroutine call is made within ‘haming.for’ requesting the evaluation of the equations
of motion (EOM). The equations are handled in the routine called ‘rhs’ for the right-hand side of

first-order differential equations. The dynamical terms are based on two-body orbital motion given
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by

r o= z24y? 422 (10)

T = v (11)
Yy = vy (12)
zZ = v, (13)
i = -5 (14)
vy = ‘% (15)
o = -5 (16)

where z, y, and z are the three values for the position of the satellite and v, vy, and v, are the

three values for the velocity of the satellite.

The next dimension of creating a truth model that closely resembles reality is to introduce
the dominant perturbation effects on the acceleration terms {v,,7y,7.} above. The two largest
perturbations for lower-orbiting earth satellites are due to the J; term of the earth’s zonal harmonic,
and air drag. To include J, the gradient of the potential term must be subtracted from the
existing two-body acceleration solution. The infinite scc1es expansion of the geopotential in spherical

harmonics is

n

(r,0,¢) = _g Z Z ( )"" P (cos 8)(Crm cos me + Sy sin meg) (17)

where C,,,, and Sy, specify the shape of the gravitational field. To extract the J, potential term,

set n = 2 and m = 0 and making the substitution that J, = —Cyq. Then,

Vao = “Re Bre (3cos?0 - 1) (18)
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with J, = 0.0010827 and R, = 6378.137 km (14:55-59).

Now, to convert this potential equation into a useful form, it must be converted into z, y, and

z coordinates and then the partial derivatives are subtracted from the two-body solution. From

Figure 2,
2 4 2
cos(90 — ) = sind = Lt A
12+y2+22
and
2,2
29_q1__ %ty
cos™0 = 22 + y? + 22

which is substituted directly giving

R2Jy(—x% — y? 4+ 222
Vo = £ 22( 2 yzsz ) (19)
2(z2 + y? + 22)%/

Figure 2. Spherical Coordinates for Geopotential Harmonics
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The partial derivatives are derived from VVa:

8V20 nr -3 Re 2 522 ]

2% - = 22\F) 7w (20)
OVypo _ ydVao

dy ~ r Oz (21)
Ve  pz [3 R.\2 522\ |

= 1R (T) (% 22)

The u/r3 terms out front are pulled out because they are identical to the two-body terms and make

programming easier.

Since this study will include lower earth-orbiting satellites, accelerations due to air drag
are also subtracted from the the two-body terms. Determining air drag through the changing

atmosphere is not exact, but the form of the acceleration is

1
ag = —EB*me (23)
where
B = CpA
m

with Cp = 2, A = 7.5m?, and m = 1000 kg (used as representative values for calculation purposes)

(14:65). The density of the atmosphere, p, is empirically determined and currently governed by the

1976 Standard Atmosphere (see Figure 3).

To determine the drag value, an appropriate density must be determined for the satellite’s

orbit altitude:

0 = e[ G- (1) () () +(2)
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Figure 3. Density versus Geometric Height for the 1976 U.S. Standard Atmosphere (13:62)

where
z; = 246482.873 zq4 = 19174788.0 z; = 56060.0780
2z = b37132.030 zs = 105.381650 zz3 = 160314.760
z3 = 1536228.60 26 = 4968.56120 29 = 344944.780

and h is the altitude. This density model, as is the 1976 standard model, is valid for altitudes of

100-1000 km (3).

The next term, v = |#], is the magnitude of the velocity of the vehicle relative to the atmo-

sphere. The rotating atmosphere velocity vector, ¥ is defined as

Ve + Wel

7-)‘= vy — Wel (24)

v,
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where w, is the rotation rate of the earth (1:423-424).

The air drag equation appears as a good deterministic model, however, the B* and p terms
can change drastically. B* depends on the rotation and orientation of the vehicle as it orbits the
earth and is highly time dependent. The density model also changes with time and is affected by

local wind variations, surface heating, the equatorial bulge, and solar flares (14:65).

With the equations of motion information available, the Hamming routine supplies a new po-
sition and velocity data point at each step-size increment. These state vectors need to be converted
into observations of range, azimuth, and elevation which are site dependent. The sites used are the
Air Force Satellite Control Network (AFSCN) remote tracking stations and are listed by name and

location in Table 1.

Table 1. Remote Tracking Stations of the AFSCN
[ Station | Latitude (deg) | Longitude (deg) | Altitude (m) [

Indi -4.671747860 55.477820590 560.500
Reef -7.270030560 72.369998600 -68.375
Guam 13.615187820 144.856049380 218.930
Hula 21.562265240 | 201.757894060 429.420
Cook 34.822598900 | 239.498147050 271.530
Pike 38.805943055 | 255.471532222 1899.420
Boss 42.947821440 | 288.373437430 203.370
Pogo 76.515364390 | 291.401141690 147.030
Lion 51.117583380 | 359.093654500 146.590

The conversion from ECI to topocentric elements is discussed in detail in Section B.5 of Appendix B.
Each site in ‘sensors.loc’ has a separate output file that will be written to if there is visibility

(elevation > 0).

The truth model data generates “perfect” data for use in the differential correction routine.
While this is an excellent source of data to debug any errors in the estimation process, it is not
a very good representation of reality. To simulate errors, or “noise”, a Gaussian random number

is generated and multiplied by the sigma associated with the particular observation type. The

23




.

Gaussian random number generator outputs a value that is distributed according the the curve in
Figure 1. This means that 99 percent of the time the number generated will be between —3.0 and
3.0 (see Figure 5). Each call to the observation calculation routine has a different seed value for
the random number generator which will produce a new random multiplier. The random number,
multiplied by the appropriate sigma value, is added to the observation. This process distributes
the errors according to the Central Limit Theorem as discussed in Chapter 2 and is typical for any

instrument.

3.3.2 The Differential Corrector. The least squares estimator, ‘leastsq.for,” is a matrix in-
tensive looping routine to process observations and obtain an estimate of the satellite state vector.
Observations are handled together as a batch. An equinoctial element set is maintained as the
reference orbit which must be “close” to the orbit contained within the data. For each data point,
a predicted obscrvation set of range, azimuth, and elevation is generated from the equinoctial state
equations of motion and is compared to the actual observation to get a residual value. By summing
up the correction terms for each calculated residual, the reference trajectory is adjusted. At the
same time, a covariance matrix is created in the same summing fashion for each observation. The
covariance matrix contains the confidence level for the estimation process. After the correction, if
the new equinoctial state is within tolerances, the process has converged upon a solution, but if the
correction is relatively large, the process is repeated for another iteration, giving another correction
to the reference state. The process either converges to a solution within the maximum number of

allowed iterations, diverges, or reaches the maximum iteration value without a definite solution.

The input file for the least squares routine, ‘input.d,” controls the iteration process and
supplies the data (reference the program listing in Appendix F). The first entries are the epoch
time in year, month, day, hour, minute, and second which is converted to a Julian day format in
the subroutine ‘julday.for,’ and the reference state in kilometers and kilometers/second which is

converted into cquinoctial elements in the subroutine ‘equin.for.” Next, the maximum number of
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iterations is included along with the residual rejection criteria entered as a one-sigma multiplying
factor. The last entry in the input file is the data itself, with the date entered as above, the station
identifier associated with the observation point, and the observation data of range in kilometers,
and azimuth and elevation in degrees. The observations contained in the input file can be for a

single track of data or multiple tracks as long as the station identifier is maintained for each point.

To reduce the amount of error associated with propagating the equations of motion of the
equinoctial elements from the reference time to each observation time, the same Hamming rou-
tine from the truth model is used in the differential corrector before the data is processed. The
integrator works exactly the same as before including two-body effects along with J; and air drag
perturbations. The new reference point derived has an epoch time equal to the time of the first
observation. Because ‘haming.for’ works with units of kilometers, kilometers/second, and seconds,
the reference state is not converted to equinoctial elements (see Appendix B) and canonical units

until after it has been integrated forward.

Least squares is an iterative process. The iteration loop handles the program overhead of
reinitializing matrices, resetting counters, updating the reference trajectory, and checking for con-
vergence. Within each iteration, all of the observation data is processed including routines to
propagate the state vector, obtain the linearization matrices, and to create residuals, the state
correction, and the covariance matrix. A flowchart outlining the least squares algorithm is shown

in Figure 4.

25




K

Begin Least Squares

O

Initialize:
State
O Matrix
Summation matrices

l
- 7

Propagate state vector to
observation time
Obtain state transition matrix

|

Calculate H matrix

Obtain residual vector
r=z-G(x)

Calculate T=H @

'

Add terms to running sum:

Calculate the covariance:
P=(zTQ'T )

Calculate state correction:
3x)=PLTQ r

!

Correct reference trajectory:

x"f” t = x"!(l) +8x(t)

Converged? No Q

Yes

Declare x an estimate
ref+1

with covariance P

/

CHECK RESIDUALS

!

End Least Squares

Fallure to achieve an
estimate

!

Stop

Figure 4. Non-Linear Least Squares Algorithm
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The observation processing loop controls the matrix summing routines needed to update the
satellite state. The matrices are built by accumulating residual values from single observation
sets. Each range, azimuth, and elevation observation contains information about the actual state
of the satellite and residuals are formed by subtracting the predicted observaticns. The actual
observations are contained in the input file and processed sequentially. The predicted observations
are based on the reference equinoctial element set, propagated forward with the equations of motion

described in Appendix C.

Section 2.3 outlines the basic mathematical foundation for least squares. Recall the mini-

mization problem of Equation 3:
(:L‘. -z )
dz Z 207

For N independent observations, the probability density can be written as

1 (i 2)°
P(z;) = (2x)~N/? [H ]exp( Z x, z ) (25)

and then in matrix form as

1) = @0 M21QI M exp |32 - 2@ e — )| (26)

with the data covariance matrix, Q defined as

Q= | (27)

k 0 0 - 0% /
The zero off-diagonal elements in the Q-matrix represent the statistical independence of each ele- ‘

ment in the data vector, z;, and N is the number of observations used in the estimate (15:17,22).
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With the state transition matrix available (see Appendix C), it is possible to write the lin-

earized equations of motion as

dz(t) = ®(t,t,)6z(t,) (28)

hoping that the correction, 8z(t), is small. The linearization of the dynamics occurs about the ref-
erence trajectory contained in the initial element set (which was converted to equinoctial elements).
In order to form the residual vector, the observation relation G(z,.s(t;),%;) must also be linearized.
This data linearization, H = 3G/8X, is solvable in closed form for the equinoctial element problem
and is discussed in detail in Appendix D (15:65). The program that handles the computation of

the A matrix is ‘obser.for.’

The matrix handling ‘obser.for’ controls three key elements for the least squares processing.
First, the data covariance elements are assigned to the diagonal elements of the Q@ matrix. Typical
sigma values for AFSCN tracking stations are 100 meters in range, and 0.025 degrees in azimuth
and elevation. To meet the format requirements of @, each sigma is squared and inverted after being
converted to the proper canonical units. The second function in this subroutine is to calculate the
predicted observation vector of range, azimuth, and elevation from the input equinoctial clement set.
This transformation is outlined in detail in Appendix B. The last routine is the aforementioned

calculation of the data linearization matrix H. The entirety of Appendix D is devoted to the

development of this matrix.

Least squares estimation assumes that the observation data at time ; is linearly related to
the state at the same time. By accepting the residual as an approximation to the true error, the

actual data is expressed as

zi(t:) = G(z(t:), t:) (29)
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Now, the expression for r is

ri & Hibz(t;) = Hi®(ti,t,)éx(t,)
(30)
= T.-6:c(to)

where 6x(t,) is the correction to the reference state. Substituting this into the exponent argument

of Equation 26 leads to a new minimization problem of
— [(z = T62)TQ*(z — Téz)] = 0 31
5z [(z ) Q (2 z)] = (31)

Solving this equation leads to the results

sz(t,) = (TTQ7'T)'TTQ7'r (32)
P = (T7Q~'T)™! (33)

and the desired estimate is
Z(t,) = zrey(to) + 62(25) (34)

if the estimation process has converged to a solution (15:57-66).

The form of the solution is not efficient due to the large matrix computations. To simplify

the burden, an equivalent form is used when programming:

P&.w:

N -1
(Z :f:-“‘Q:‘T.-) (35)

i=1

N
be(to) = Por Y TIQi'mi (36)

i=1

