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AFIT/GA/ENY/92D-15

Abstract

This study investigates earth satellite orbit estimation on a track of range, azimuth, and

elevation data from a single tracking station. The estimation routine is a least squares batch filter

based solely on two-body orbital motion. Using equinoctial elements for the reference orbit avoids

the numerical difficulties of the classical elements at eccentricities near zero and inclinations near

zero or 90 degrees. Orbits for Mir, DMSP, Explorer, Cosmos, and GPS are investigated. The goal

of this study is to reduce orbit information from observations (range, azimuth, and elevation) to an

element set and a covariance matrix without considering perturbation effects. The results indicate

that the lower orbiting earth satellites had large J2 perturbations on the equinoctial elements

causing the differential corrector to diverge. Higher orbiting satellites had minimal J2 effects and

the correction process sufficiently extracted all information from the data and successfully reduced

the observations to an element set and a covariance matrix.
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DATA REDUCTION WITH LEAST SQUARES DIFFERENTIAL

CORRECTION USING EQUINOCTIAL ELEMENTS

1. Orbit Estimation

1.1 Introduction

Modern space technology provides the means for tens of thousands of satellites to orbit the

earth. As a result, there is a basic need for tracking these satellites and for predicting the orbital

paths they follow. The military organization established to track and catalog orbiting space objects

is located within Cheyenne Mountain in Colorado Springs, Colorado. One of the primary missions

of the North American Aerospace Defense (NORAD) Command is to keep track of every orbiting

object, whether it is operationally functional or a piece of space debris. The Space Surveillance

(C'enter (SSC), located within NORAD, processes this positional information.

The data needed to estimate an object's orbit comes from one of several different methods:

direct radio link contact, echoing a radio signal off of the structure of the object, or via optical

observations. Various remote tracking stations located throughout the world gather the positional

information data described by a set of six orbital elements. Typically, the six elements consist of

a position and velocity vector (three elements are needed for each) or tracking station RAER data

(range, azimuth, elevation, and range rate).

Low-earth orbits, within a band of altitude from 100-1000 kilometers, represent a majority of

satellites. Low-orbiting satellites have much higher velocities and thus pass over tracking stations

in 10-30 minutes. These stations collect several "observations" (position and velocity information)

within this time and transmit the data to the SSC. For a particular orbiting object, there may be

10 to 15 passes over the same station in a day producing 10-1000 observations. The immense data
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processing load of tracking over 7000 objects inhibits NORAD's ability to accurately track each

one.

The number of observations collected for a particular object is not individually overwhelming.

However, it is the collection of observations for several different orbits over time that increases the

processing load. Independent orbit estimation at individual tracking stations gives flexibility in

prioritizing satellite contacts. The resources are then available for accurate tracking and location

of a greater number of objects.

1.2 General Issue

Data compression of the orbital position and velocity information into an element set and a

covariance matrix reduces processing time within the SSC. Current orbit estimation theory tech-

niques are available at the tracking stations for on-site estimation. It is possible for each site to

perform the bulk of the initial computations by extracting all information about the orbit along

with typical deviations from the theoretical path (perturbations). The site sends a single element

set describing the complete arc of data over the station along with a confidence level (how accu-

rately the station believes the element set describes the actual orbit) to the SSC. The processed

data is in the form of an element set instead of the actual position and velocity data (or the RAER

data).

By shifting the initial estimate responsibility to the tracking stations, it is possible to collect

an increased number of observations for each satellite pass. The greater data load occurs only

at each site, keeping the SSC free from the burden of initially estimating orbits for thousands of

objects. This leads to a more accurate estimate of each object in the catalog which, in turn, allows

for less frequent orbit updates on that object. The overall effect is a much more accurate catalog

of orbit information.
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1.3 Background

Orbit determination at the tracking sites uses currently available theories and methods. It

shifts the initial estimation responsibility from the SSC to the tracking stations. The goal is not to

accurately describe the whole orbit of the object, but to extract as much information as possible

out of the observations and reduce them into a more manageable element set and a covariance

matrix. With an increasing number of objects requiring orbit estimation, the SSC can not afford

to collect thousands or even hundreds of data points for each one. This would ultimately lead to

a sub-standard element set as a final product. Over time, either the object is going to need an

update to its element set more often, or it will degrade past the point of being able to be tracked

at all.

The equinoctial elements (see Appendix A) have desirable numerical stability properties.

Because all elements, except the mean anomaly term, are constant, it is theoretically easy to

determine an estimate of the state vector. The main challenge is to converge upon a solution

that will describe a whole orbit based on only a few minutes of data. The achieved orbit is not

operationally accurate as a stand-alone estimate and is combined with several other element sets to

give the best final orbit estimate possible. Constant equinoctial elements for the two-body problem

simplifies the original estimation and several element sets processed together provide the means for

identifying the perturbations.

1.4 Problem Statement

The future of accurate orbit estimation at NORAD depends on new data reduction techniques

to handle the 7000+ orbiting objects. Preliminary analysis at the data collection sites using a least

squares differential corrector based on two-body motion is one possible technique for reducing the

data into an element set and a covariance matrix. Stable equinoctial elements simplify the analytical

computations for building the estimation model.
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1.5 Research Objectives

Research into the data reduction problem involves three main objectives. The first step in-

volves building a truth model based on two-body orbital motion, the J 2 zonal harmonic, and air

drag producing accurate range, azimuth, and elevation observations for several tracking site loca-

tions. The truth model adds Gaussian random noise to the "perfect" data and then organizes the

output into separate passes. Secondly, a differential corrector propagates an equinoctial reference

state to the first observation time and then iteratively solves for a state correction and a covariance

matrix based on two-body equations of motion and least squares batch methodology. Finally, the

new differential corrector estimates a new state vector based on truth model data for five repre-

sentative orbits. Unique characteristics from each orbit case expose any possible deficiencies in the

model.

1.6 Research Questions

The least squares method is a proven technique for accurate differential correction. However,

because it is a batch estimator, large amounts of data are required to mathematically solve the

orbit problem. Low-earth orbiting satellites have periods near 90 minutes with passes of only 10-

30 minutes. The short arc of data may not contain enough observations to allow least squares to

converge to a solution. Included in the intent of this study is the examination of the differences

between low and high-orbiting satellites to determine if the pass length is a crucial factor in the

differential correction of data from one station.

When limited to the two-body problem, the only time-varying element is the mean anomaly -

all other elements remain constant. Only two-body element sets are derived through orbit estima-

tion at the sites because there are not enough observations on the low-earth satellites to determine

any perturbation effects. Therefore, actual perturbations in the data may cause problems with

convergence. Other element sets, such as the classical orbital elements, have numerical instabili-
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ties for earth-orbiting satellites, so the next step is to use the canonically transformed equinoctial

elements.

1.7 Assumptions

The following assumptions are critical to the development of the methods examined in this

thesis:

9 Because of the short interval time of data collection from the remote tracking sites, there

is not an adequate amount of data to accurately predict any perturbation effects on the

satellite. However, these perturbations do exist. There is an underlying assumption that

enough information about the orbital track can be extracted and placed into an element set

to accurately describe the track thAft it was taken from.

* In order to simplify the mathematics of the data linearization matrix, H, a two-body estimator

is used. H is still mathematically intense (see Appendix D), however, it does have a closed-

form solution when perturbation effects are left out. The model formulation assumes that

the two-body estimator is sufficiently accurate to obtain a solution.

* The truth model contains accurate ephemeris information for the input satellite reference

trajectory. This data is assumed to be "perfect" and made more realistic by applying Gaussian

random noise.

o Solutions to the orbital problem have errors associated with the dynamical system, the state

vector, and the observations. The foundation for the estimation routines developed here

assumes that the only source of uncertainty in the model lies in the observations.

1.8 Scope

The proposed study models the effects of applying a two-body least squares batch estimator

to a short arc of data to create an element set. This examination is being conducted solely on
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the perceived current procedures of Cheyenne Mountain and its dedicated ground stations and will

not address any scheduling changes or procedure changes other than sending an element set rather

than the actual observations to the SSC.

The main effort in this thesis is writing a truth model to generate earth tracking station

satellite observation data (ephemerides) and writing a least squares differential corrector based on

the equinoctial element set. Once completed, the analysis of the estimator performance is examined

for low and high-altitude earth orbits. This encompasses the intent of the study.

1.9 Summary

The orbit determination problem has evolved over many centuries. Throughout this time

there has been a common thread among orbital analysts to achieve the most accurate description

possible of an orbit using a wide variety of available techniques. For example, one technique

performs the initial estimation at the remote tracking site based on a single arc of data. This arc

describes only a small portion of the entire orbit for low-altitude satellites and larger portions for

higher altitude satellites. Extracting all the orbit information contained in the arc reduces several

observations into an element set and associated confidence matrix (the covariance matrix). The

equinoctial elements provide a solid basis for determining a two-body solution and reducing the

data into the desired element set. Allowing the individual tracking stations to reduce the data

establishes a more accurate catalog of orbits reducing the number of orbital updates per object

which, in turn, allows the pass scheduling of a greater number of objects. This study examines

the use of equinoctial elements as the basis for a two-body differential corrector for a single arc of

satellite observation data.
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II. Literature Review

2.1 Introduction

Making use of onboard payloads such as navigation, weather, or early warning, usually re-

quires accurate orbit prediction using orbit determination methods that solve for parameters which

completely specify the motion of the satellite. A differential correction process takes a theoretical

(or reference) orbit path as the starting point and makes adjustments to account for perturbations

and measurement noise. This process must be repeated periodically to determine the best possi-

ble "fit" of the observations. Two-body motion with constant classical elements of {a, e, i, 11,w}

and a time-varying mean anomaly, M, describe the principal reference trajectory. Both batch and

sequential filters, individually or in combination, accomplish orbit determination using probability

theory and matrix manipulation.

2.2 Batch versus Sequential Data Processing

Modern orbital estimation theory consists of batch and sequential processing methods. Batch

processing cannot begin until a group (or batch) of data arrives. A batch of data consists of

several observations (position and velocity values), possibly from several tracking stations. The

manipulation of a batch of data allows for trend analysis but requires a large amount of storage

space. Sequential estimation, as its name implies, processes individual observations sequentially as

they arrive. The advantages of sequential methods are speed and ease of data handling.

2.2.1 Batch Estimators. Batch estimation algorithms are the foundation for all orbit deter-

mination schemes available today. This estimation technique processes a large batch of observations

giving a new state vector as its product. By processing many data points at the same time, it is

possible to obtain an orbit that passes "close" to all data points. This classical estimation theory

centers on deterministic dynamics. However, with errors in the data due to imperfect instruments,
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the solution methods employ probabilistic methods. The method of least squares is a batch esti-

mation method and is discussed in Section 2.3.

2.2.2 Sequential Estimators. Sequential estimation replaces the deterministic dynamics of

the batch estimator with a stochastic process. Statistical behavior now characterizes both the

observations and the dynamics. The estimation algorithm extracts information about the initial

position of the object being tracked from observations with errors. The estimator is called a filter

and errors in the data are called noise.

A sequential filter, such as the minimum variance method, uses statistical filtering to de-

termine the best possible estimate of a state vector based on deviations of the observations from

the reference trajectory. Obtaining a good estimate of the orbit assumes and uses errors in the

observations and the state vector. So far, this describes both batch and sequential filters, but the

basic difference between the two is that the sequential method continuously updates the orbit with

each new observation whereas the batch method receives all data before processing (7:23-24).

A Bayes filter is a sequential estimator. This filter works almost identically to a batch

estimator except that the required inputs are an initial trajectory with covariance and new data.

Sequential estimators do not require all of the data points ever produced to extract a solution. It

is possible to use the estimate obtained in a sequential filter as data input to another estimator.

Instead of using the old data points, the old estimate holds all the important information about

the edited observations. Sequential filters allow for greater computational efficiency because of the

smaller data sets (15:90).

Kalman filters are mathematically identical to Bayes filters but expressed in a different form.

The estimation process of a Kalman filter works especially well for very small numbers of new data

points. The primary advantage is speed, but the tradeoff is the increased chance that the sequential

estimator will not accurately describe the trajectory. The ease of adding new data to the estimate

is a desirable quality of a Kalman filter (15:99).
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Both the Bayes and the Kalman filters have a definite advantage over batch methods when

inverting the covariance matrix. The number of parameters being estimated dictates the size of

the matrix inversion in a batch estimator such as least squares. Minimum variance, and other

sequential methods, invert a smaller matrix based on the number of observations processed at a

time. By processing each observation separately, the inversion is trivial. This process also allows

for greater flexibility because the process can be stopped at any point and the current state of the

estimation process is an estimate. Also, discarding each observation after processing reduces the

amount of required storage space (7:24).

2.2.3 Tradeoffs. Both batch and sequential methods are non-linear estimators. In each

case, the estimation process works by linearizing the equations of motion about a reference trajec-

tory. Keeping low-order terms (usually just first order) in a Taylor series expansion simplifies the

equations.

If the dynamics of predicting a satellite's position were purely stochastic, the methods of batch

and sequential estimators would be equivalent. Nevertheless, orbital systems are deterministic in

nature, creating differences in the two methods. A low-orbiting satellite that is affected by air drag

shows how the two estimators differ. Batch estimators locate possible errors in the data due to drag

because they have all of the data available over a given time span. Errors in the data mislead a

sequential estimator over short time periods, thus causing more difficulty in estimating the desired

air drag effect. This leads to uncertainty in the data and makes the air drag component effectively

unobservable (15:95-97).

Current Space Surveillance Center procedures take advantage of the speed of sequential esti-

mation methods to process the data. Yet, sequential estimation methods alone cannot be used to

accurately describe the orbital trajectories being estimated. A batch estimator gives a good overall

look at the trajectory but are not always used because they are extremely time consuming and

cannot handle thousands of objects.
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2.3 The Method of Least Squares

The method of least squares was devised by Karl Friedrich Gauss as early as 1795 (9:164).

The first publication of the least squares method, however, was by Legendre in 1806. Legendre used

least squares while trying to calculate the orbits of comets. Throughout the seventeenth century,

mathematicians such as Pascal, Fermat, and Bernoulli developed probability theory (11:102-103).

In 1809, Gauss used the probability theories as a basis for least squares and in 1810 published the

symbols and notation that are still associated with it today (6:14).

Lea.-+ squares is the foundation for estimation theory. This method assumes that the dynamics

contain no errors (deterministic), but the observations do contain errors. Therefore, information

on the dynamical system must be extracted from the imperfect data. Least squares tries to obtain

an orbit which passes as close as possible to all of the data points (observations) (15:56).

The estimation process is based on the Central Limit Theorom which states that all errors

associated with the data will be distributed following a normal, or Gaussian, distribution (see

Figure 1) (15:8). This curve was first described in 1733 by De Moivre but Gauss extensively used

the theory behind the curve while making astronomical observations and measurements in geodetic

surveying (11:104).

By examining the curve, larger errors occur with less frequency while smaller errors are more

likely to occur. The positive errors tend to cancel out the negative errors (11:104-105). The curve

is of the form

P(X) - exp (1)

where P(x) is the probability of a given x to occur. The value in the exponential term is the most

critical for maximizing the probability of a value of x to occur, because the leading terms in the
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Figure 1. Gaussian Distribution

equation are constant. The exponential term can be rewritten for all x as

N ((2 ))2

where i is the average estimate of x for all N observations and o is the standard deviation of

each measurement from the actual value. Maximum probabilities are achieved by minimizing the

positive exponential expression. This is a straightforward calculus minimization:

d N,(i )
_d (z .) 2 -0 (3)

Minimizing the squared numerator and denominator terms leads to the method title, Method of

Least Squares (15:16-17).

Least squares works by introducing a reference trajectory (orbit) that is "close" to the esti-

mated trajectory. An initial orbit determination method or a previous estimation run creates the

reference. The observation data is then used to compute residuals (observed value minus predicted

value) which correct the initial trajectory in an ite.ative fashion. Further iterations are calculated if
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the first correction does not eliminate all trends in the residuals. After convergence, the estimation

process is complete and the new state vector completely describes the orbital trajectory (15:68).

2.4 Matrix Background

2.4.1 The State Transition Matrix. Systems with non-linear equations of motion may be

described as

i = f(x,t) (4)

where x represents the reference state vector. By linearizing these equations through the use of a

Taylor series expansion, a solution can be obtained in the following form:

6;i =(5)
ax L

The linearization is about a reference trajectory retaining only the first order terms. This results

in a homogeneous equation with a fundamental solution called the state transition matrix, C. The

solution to the equations of variation in Equation 5 can be written as

6x(t) = $(t, to)6x(to) (6)

The 4 matrix possesses the following properties:

o(to,to) = I

,(t 2 ,to) = ,(t2, ),P(tIto)

0(to' t) = 4-'(tl,to)

The state transition matrix is found either through numerical methods by finding A = lf/ax with

= A4, or in closed form when the solution to the dynamical system is known (as in the two-body
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problem). The b matrix in the simplified least squares case for this study is solved in closed form

in Appendix C (7:25-26)(14:114-116).

2.4.2 The Data Linearization Matrix. The nonlinear relationship between the observations,

z, and the instantaneous orbital state vector, x, can also be linearized through a Taylor series

expansion. The equations can be written in matrix form as

bz(t) ;z/: Hx(t) (7)

where H holds the information about this linear relationship. H is the matrix of partial deriva-

tives of the observations with respect to the instantaneous orbital state and are evaluated at each

observation time. The data linearization matrix used in this study is also solved in closed form and

is found in Appendix D (7:26)(15:65).

2.4.3 The Covariance Matrix. At any point in the estimation process, the current reference

trajectory describes the best state of the system. The best state is subject to a performance measure

contained within the symmetric covariance matrix, P:

or2 C2 .. r2
U1 1 ~12 I1N

P 12 022N (8)

2 2 2IN C2N ... CNN

The estimates of the components of the state vector are not definitively known but can be quantified

with the individual elements of the covariance matrix. Random values of the state vector can have

an effect on each of the elements and this is described as correlation between the data. The diagonal

terms, a?,, are called variances and the off-diagonal terms, o'j, are covariances. Non-zero covariance
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terms describe the statistical dependence between the variables. Zeros in the off-diagonal terms

represent statistical independence of the variables (7:27)(15:22).

There are two covariance matrices associated with a dynamical solution to an orbit problem.

The first is the dynamics covariance, P, and the second is the data covariance, Q. If the dynamics

covariance is given at time to, the covariance, P, can be determined at any other time, t, with the

state transition matrix, 4:

P(t) = $(t, t0 )P(to)4T(t, t") (9)

The data covariance holds the statistical information about the accuracy of the individual observa-

tions. Each observation type has an associated standard deviation, a (the square root of the vari-

ance), which takes care of any possible differences in units between the data types. The Q matrix has

the individual variances positioned along the diagonal with zeros in the off-diagonal positions. This

means that the individual observation types are assumed to be independent (7:27)(15:22,30,59-60).

2.5 Conclusions

While it appears that a sequential orbit estimator is the superior choice for routine updates,

the batch filter has a suitable use for data reduction. Sequential filters are very useful for the

constant update of location information, but for reducing an entire arc of observation data into

an element set and a covariance matrix, a batch estimator is the proper choice for the initial

examination. If the batch estimaLion tcchniques prove to be inadequate, then the sequential routines

can be used for the initial estimation. Nonlinear least squares has a straightforward algorithm for

processing a batch of data such as that associated with an arc of observations from a remote tracking

station.
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2.6 Summary

Orbit determination is a centuries-old process, refined through the years into a state-of-the-

art method for determining the motion of orbiting objects. Batch or sequential data proce-ssing

provides a broad classification of techniques. Batch mode estimators work with large blocks of

data at one time and mulst have provisions for observation storage. This lends itself to analysis of

trends within the data and can be performed at any time after the data has arrived. Sequential

processing handles individual observations in real time. This means data storage requirements are

much less than with batch modes and the internal matrix inversions are less complicated. The

main disadvantage of sequential filters is detecting local trends in the data that might cause the

routine to diverge.

The most common batch mode estimator, called the Method of Least Squares, was &veloped

by Gauss in the late eighteenth century and is based on probability theory and the optimistic hope

that a reference trajectory is close to the actual trajectory. This gives a solution to the state of

a satellite that is the best possible as described by the Central Limit Theorem. Even though the

data contain errors, the linearized dynamics are a good enough mathematical model to iteratively

determine the orbital path.

There are several matrices associated with the differential correction process and they are

classified as linearization matrices and covariance matrices. The linearization matrices include the

dynamics linearization called the state transition matrix, 0, and the data linearization, H, and

they allow for an approximate solution to a non-linear dynamical system. The dynamics and the

data each have a corresponding covariance matrix. The dynamics covariance matrix is P, which is

symmetric, and the data covariance matrix, Q, is diagonal. Iterative calculation with each of these

matrices results in a correction to the reference state which is declared the new estimate when the

process has converged.
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III. Methodology

3.1 Introduction

The programming involved for this study involves two main parts: the truth model and

the differential corrector. The truth model generates observation values that represent an actual

orbit of an Earth satellite. The model outputs range, azimuth, and elevation points for several

tracking stations at a specified time interval. Building the model involves using mathematics based

on classical astrodynamic relationships. The differential corrector is much more math intensive.

Through probability theory and matrix manipulation it corrects a reference trajectory based on

the input observations from the truth model. The estimation routine iterates finding a solution

after convergence. This chapter includes a detailed discussion of the construction of both the truth

model and the differential corrector.

The accuracy of the theoretical methods used in the programs is checked through various

methods. The truth model is checked against a Pascal program written by Dr. Kelso which verifies

correctness in the observation values generated, as well as event times for each of several stations.

Elements of the differential corrector are checked through both numerical and closed-form solu-

tion methods. Also, several routines are checked through hand calculation and by using different

expressions for the calculations.

The actual research itself is conducted through a Monte Carlo analysis based on five orbit

types. Individual runs are checked for a complete reduction of observations to element sets by

examining the resultant root-mean-square values. Several test cases are examined to check for

differences between one pass and several passes at the same site.

.9.2 Justification for Method Selected

The use of the truth model to generate the data needed for the differential corrector (DC) is

far superior to using actual data. Actual data contains unknown sigmas and biases that cannot be
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accurately modeled. Any discrepancies in the data make the debugging of the DC routine nearly

impossible. Using the truth model data eliminates one cause for uncertainty. The truth model also

lends itself to generating data of varying degrees of accuracy by including different perturbation

effects. At first, two-body data alone is used to check the accuracy of the differential correction

routine, and after validation with this data, more realistic data can be used for the actual analysis.

Use of the differential corrector with two-body dynamics alone simplifies the process of orbital

estimation. Estimating an orbit based on a short track of data does not lend itself to determining

all perturbing effects on the orbit. The simplification of using only two-body dynamics allows

for the closed-form solution of several matrices involved in the correction process. This means

accuracy is only limited by the precision of the machine running the program. Least squares is the

easiest dynamical model to initially program. All other estimators rely on the same mathematical

relationships as least squares but handle various elements in the correction process in a different

fashion. Once the least squares programs are working according to expectations, the other routines,

such as sequential estimators, can be explored.

3.3 Theoretical Background

This section is provided as a description of the FORTRAN programs used in the study. File

formats and program methodology are outlined to supplement the sometimes brief comments within

the programs themselves. The code assumes an understanding of the math and iteration processes

and comments are included only as specific identifiers to the mathematical formulas and intricacies

of FORTRAN. The following sections provide detailed theory development of the equations used

both in the truth model and in the differential corrector.

3.3.1 The Truth Model. The truth model is a data-creating program that generates satellite

positional information when given as an input an initial state vector, epoch time, and integration

step size. The use of a truth model helps eliminate programming errors in the differential corrector
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by supplying "perfect" data to the corrector routine. Actual data from the sites are subject to

errors and biases while truth model data can be controlled and regulated. The truth model data

is based on a two-body orbit with perturbations added and outputs range, azimuth, and elevation

observations for a set a -. mote sensor locations. In order to simulate actual tracking observations,

a Gaussian random number generator introduces noise to the data based on user input observation

sigmas.

The input file to the model, labeled 'input.t,' contains the start and stop time specified by

year, month, day, hour, minute, and second (reference the program listing in Appendix E). Next,

the file contains the integration step size in seconds. The last item in the file is the reference state

vector for the desired orbit specified as a position and velocity in kilometers and kilometers/second.

The time, as input, is not adequate for calculation purposes. The subroutine 'julday.for' converts

the input format to a Julian day (minus 2440000.0) which is then converted to seconds for the

numerical integration routine.

The numerical integration routine is a fourth-order predictor-corrector method called Ham-

ming. It is an ordinary differential equations integrator which carries the last four values of the

state vector which are extrapolated to obtain the next, or predicted, value along the polynomial

fit trajectory. After the the predictor part, the extrapolated data point is corrected based on a

high-order polynomial to obtain the new value for the state vector. Initially, the routine is supplied

with a single state vector from which three other values are obtained through a Picard iteration

(by polynomial extrapolation). Once the routine is up and running, four values are maintained

throughout the integration interval and the Picard iteration is bypassed.

While Hamming is the central looping routine for propagating a state vector to generate

ephemerides, a subroutine call is made within 'haming.for' requesting the evaluation of the equations

of motion (EOM). The equations are handled in the routine called 'rhs' for the right-hand side of

first-order differential equations. The dynamical terms are based on two-body orbital motion given
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by

r = X2 +y2 + Z2 (10)

- ., (11)

y = (12)

z = V (13)

V = Tx (14)V - r 3

= (15)ýy 0-- r

V = Tz (16)

where x, y, and z are the three values for the position of the satellite and v., vy, and v, are the

three values for the velocity of the satellite.

The next dimension of creating a truth model that closely resembles reality is to introduce

the dominant perturbation effects on the acceleration terms {bi,, iy, t) } above. The two largest

perturbations for lower-orbiting earth satellites are due to the J 2 term of the earth's zonal harmonic,

and air drag. To include J 2 , the gradient of the potential term must be subtracted from the

existing two-body acceleration solution. The infinite s•=-ies expansion of the geopotential in spherical

harmonics is

V(r,,¢) = E E ( ) r P(cos 0)(Cnrm cosm4o + Sn, sin mo) (17)r =--- )n----0

where Cnm and Snm specify the shape of the gravitational field. To extract the J 2 potential term,

set n = 2 and m = 0 and making the substitution that J 2 = -C 20 . Then,

lIR 2 J 2  2V2o = e-3 (3cos2O-1) (18)
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with J2 = 0.0010827 and Re = 6378.137 km (14:55-59).

Now, to convert this potential equation into a useful form, it must be converted into z, y, and

z coordinates and then the partial derivatives are subtracted from the two-body solution. From

Figure 2,

X2 + y2
cos(90 - 0) = sin 0 = x2 + y2 + z2

and
z 2 +.1 y2

cos
2 0 = 1 X 2 + Y2

X2 + y2 + z2

which is substituted directly giving

AR 2RJ2 (-x 2 
- y2 + 2z 2 )

2(x 2 + y2 + z2)5/2  (19)

r
0 z

Figure 2. Spherical Coordinates for Geopotential Harmonics
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The partial derivatives are derived from VV2o:

_- .3 [2 2( ))] (20)

V20  y4OV 2o (21)
ay x 8x

"v20  __Z 3 J2re52)]
_)2 - [2 ) 3 -;2]_ (22)

The p/r 3 terms out front are pulled out because they are identical to the two-body terms and make

programming easier.

Since this study will include lower earth-orbiting satellites, accelerations due to air drag

are also subtracted from the the two-body terms. Determining air drag through the changing

atmosphere is not exact, but the form of the acceleration is

ad 1-B*pvV (23)

where

B* CDA
m

with CD = 2, A = 7.5m 2, and m = 1000 kg (used as representative values for calculation purposes)

(14:65). The density of the atmosphere, p, is empirically determined and currently governed by the

1976 Standard Atmosphere (see Figure 3).

To determine the drag value, an appropriate density must be determined for the satellite's

orbit altitude:
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Figure 3. Density versus Geometric Height for the 1976 U.S. Standard Atmosphere (13:62)

where

z, = 246482.873 z4 = 19174788.0 Z7 = 56060.0780

Z2 = 537132.030 Z5 = 105.381650 zS = 160314.760

Z3 = 1536228.60 z6 = 4968.56120 z9 = 344944.780

and h is the altitude. This density model, as is the 1976 standard model, is valid for altitudes of

100-1000 km (3).

The next term, v = lvI, is the magnitude of the velocity of the vehicle relative to the atmo-

sphere. The rotating atmosphere velocity vector, 9 is defined as

VX + Wey

V V - WeX (24)
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where we is the rotation rate of the earth (1:423-424).

The air drag equation appears as a good deterministic model, however, the B* and p terms

can change drastically. B* depends on the rotation and orientation of the vehicle as it orbits the

earth and is highly time dependent. The density model also changes with time and is affected by

local wind variations, surface heating, the equatorial bulge, and solar flares (14:65).

With the equations of motion information available, the Hamming routine supplies a new po-

sition and velocity data point at each step-size increment. These state vectors need to be converted

into observations of range, azimuth, and elevation which are site dependent. The sites used are the

Air Force Satellite Control Network (AFSCN) remote tracking stations and are listed by name and

location in Table 1.

Table 1. Remote Tracking Stations of the AFSCN

Station Latitude (deg) Longitude (deg) Altitude (in)
Indi -4.671747860 55.477820590 560.500
Reef -7.270030560 72.369998600 -68.375
Guam 13.615187820 144.856049380 218.930
Hula 21.562265240 201.757894060 429.420
Cook 34.822598900 239.498147050 271.530
Pike 38.805943055 255.471532222 1899.420
Boss 42.947821440 288.373437430 203.370
Pogo 76.515364390 291.401141690 147.030
Lion 51.117583380 359.093654500 146.590

The conversion from ECI to topocentric elements is discussed in detail in Section B.5 of Appendix B.

Each site in 'sensors.loc' has a separate output file that will be written to if there is visibility

(elevation > 0).

The truth model data generates "perfect" data for use in the differential correction routine.

While this is an excellent source of data to debug any errors in the estimation process, it is not

a very good representation of reality. To simulate errors, or "noise", a Gaussian random number

is generated and multiplied by the sigma associated with the particular observation type. The
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Gaussian random number generator outputs a value that is distributed according the the curve in

Figure 1. This means that 99 percent of the time the number generated will be between -3.0 and

3.0 (see Figure 5). Each call to the observation calculation routine has a different seed value for

the random number generator which will produce a new random multiplier. The random number,

multiplied by the appropriate sigma value, is added to the observation. This process distributes

the errors according to the Central Limit Theorem as discussed in Chapter 2 and is typical for any

instrument.

3.3.2 The Differential Corrector. The least squares estimator, 'leastsq.for,' is a matrix in-

tensive looping routine to process observations and obtain an estimate of the satellite state vector.

Observations are handled together as a batch. An equinoctial element set is maintained as the

reference orbit which must be "close" to the orbit contained within the data. For each data point,

a predicted observation set of range, azimuth, and elevation is generated from the equinoctial state

equations of motion and is compared to the actual observation to get a residual value. By summing

up the correction terms for each calculated residual, the reference trajectory is adjusted. At the

same time, a covariance matrix is created in the same summing fashion for each observation. The

covariance matrix contains the confidence level for the estimation process. After the correction, if

the new equinoctial state is within tolerances, the process has converged upon a solution, but if the

correction is relatively large, the process is repeated for another iteration, giving another correction

to the reference state. The process either converges to a solution within the maximum number of

allowed iterations, diverges, or reaches the maximum iteration value without a definite solution.

The input file for the least squares routine, 'input.d,' controls the iteration process and

supplies the data (reference the program listing in Appendix F). The first entries are the epoch

time in year, month, day, hour, minute, and second which is converted to a Julian day format in

the subroutine 'julday.for,' and the reference state in kilometers and kilometers/second which is

converted into equinoctial elements in the subroutine 'equin.for.' Next, the maximum number of
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iterations is included along with the residual rejection criteria entered as a one-sigma multiplying

factor. The last entry in the input file is the data itself, with the date entered as above, the station

identifier associated with the observation point, and the observation data of range in kilometers,

and azimuth and elevation in degrees. The observations contained in the input file can be for a

single track of data or multiple tracks as long as the station identifier is maintained for each point.

To reduce the amount of error associated with propagating the equations of motion of the

equinoctial elements from the reference time to each observation time, the same Hamming rou-

tine from the truth model is used in the differential corrector before the data is processed. The

integrator works exactly the same as before including two-body effects along with J 2 and air drag

perturbations. The new reference point derived has an epoch time equal to the time of the first

observation. Because 'haming.for' works with units of kilometers, kilometers/second, and seconds,

the reference state is not converted to equinoctial elements (see Appendix B) and canonical units

until after it has been integrated forward.

Least squares is an iterative process. The iteration loop handles the program overhead of

reinitializing matrices, resetting counters, updating the reference trajectory, and checking for con-

vergence. Within each iteration, all of the observation data is processed including routines to

propagate the state vector, obtain the linearization matrices, and to create residuals, the state

correction, and the covariance matrix. A flowchart outlining the least squares algorithm is shown

in Figure 4.
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Figure 4. Non-Linear Least Squares Algorithm
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The observation processing loop controls the matrix summing routines needed to update the

satellite state. The matrices are built by accumulating residual values from single observation

sets. Each range, azimuth, and elevation observation contains information about the actual state

of the satellite and residuals are formed by subtracting the predicted observaticns. The actual

observations are contained in the input file and processed sequentially. The predicted observations

are based on the reference equinoctial element set, propagated forward with the equations of motion

described in Appendix C.

Section 2.3 outlines the basic mathematical foundation for least squares. Recall the mini-

mization problem of Equation 3:
d N - 2
d--- i = l ZYi -

For N independent observations, the probability density can be written as

P~,) = (21r) --N12 [ ] exp X, _ 2ý)2) (25)

and then in matrix form as

f(x) = (21r)-N/ 2 jQj-l/ 2 exp (X- Xo)TQ-I -XzO)] (26)

with the data covariance matrix, Q defined as

Or2 0 ... 0

0 a 2 .• 0
Q =(27)

0 0 ... aN

The zero off-diagonal elements in the Q-matrix represent the statistical independence of each ele-

ment in the data vector, zi, and N is the number of observations used in the estimate (15:17,22).
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With the state transition matrix available (see Appendix C), it is possible to write the lin-

earized equations of motion as

6z(t) = $(t, to)6z(to) (28)

hoping that the correction, 6x(t), is small. The linearization of the dynamics occurs about the ref-

erence trajectory contained in the initial element set (which was converted to equinoctial elements).

In order to form the residual vector, the observation relation G(xre f(ti), ti) must also be linearized.

This data linearization, H = OG/OX, is solvable in closed form for the equinoctial element problem

and is discussed in detail in Appendix D (15:65). The program that handles the computation of

the H matrix is 'obser.for.'

The matrix handling 'obser.for' controls three key elements for the least squares processing.

First, the data covariance elements are assigned to the diagonal elements of the Q matrix. Typical

sigma values for AFSCN tracking stations are 100 meters in range, and 0.025 degrees in azimuth

and elevation. To meet the format requirements of Q, each sigma is squared and inverted after being

converted to the proper canonical units. The second function in this subroutine is to calculate the

predicted observation vector of range, azimuth, and elevation from thc input equinrc*ial c!cment set.

This transformation is outlined in detail in Appendix B. The last routine is the aforementioned

calculation of the data linearization matrix H. The entirety of Appendix D is devoted to the

development of this matrix.

Least squares estimation assumes that the observation data at time ti is linearly related to

the state at the same time. By accepting the residual as an approximation to the true error, the

actual data is expressed as

z2(ti) = G(x(t.),1t) (29)

28



Now, the expression for r is

ri ;z Hibz(ti) = Hi, (ti, t0 )6z(t.)
(30)

= Tibz(to)

where 6x(t0 ) is the correction to the reference state. Substituting this into the exponent argument

of Equation 26 leads to a new minimization problem of

a
a- [(z - T6x)TQ-I(z - Tbx)] = 0 (31)

Solving this equation leads to the results

6x(to) = (TTQ-'T)-lTTQ-lr (32)

P6. = (TTQ-lT)-' (33)

and the desired estimate is

(t') = Xref (t') + 6x(t0 ) (34)

if the estimation process has converged to a solution (15:57-66).

The form of the solution is not efficient due to the large matrix computations. To simplify

the burden, an equivalent form is used when programming:

Ps' = (i= iTQ1T> 1  (35)

N

bx(t") = P6" ZTiTQ' 1 ri (36)
i=1
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This form lends itself to the iterative process mentioned throughout this study. Individual obser-

vations are processed one by one and the matrix sums accumulate the correction and covariance

values (15:60).

Along with each data point, a residual is calculated representing the error between the actual

observation and the predicted value. These residuals are printed out after the first and last pass to

give a second indication that the estimation process converges upon a good solution. The covariance

matrix, P, contains the confidence level of the estimate, but it alone cannot be trusted because it

does not depend on the residuals. The actual residual values must also be small.

Small residuals is a relative concept. The actual accuracy of the measurements is contained

in the data covariance matrix, Q. The test on whether a computed residual should be added

to the running sum of the correction and covariance matrix is done with each observation. The

rejection criteria is contained in the input file as a sigma multiplier and this, combined with the

sigma values in the Q matrix, specifies the rejection threshold. If the computed residual is higher

than the threshold, the observation point (range, azimuth, and elevation) is rejected. Because an

observation was rejected on one iteration should not exclude it from further consideration. If a

correction is made to the state, and the least squares routine has not yet converged, all data is

re-processed with new residuals computed and checked for rejection. This repetitive process keeps

the estimation routine from completely discarding potentially good data that caused large outliers

on an early iteration.

The diagoital elements of the dynamics covariance matrix contain the accuracy of the estimate

produced and they also hold the key for convergence. The six standard deviations, aii. form a six-

dimensional error ellipsoid describing the most probable location of the satellite. When the resulting

correction is within a small fraction (such as 1/100th in this program) of the one-sigma ellipsoid,

there is no need to continue updating the state. If convergence is not obtained, another iteration

is performed until the reaching maximum iteration number of 15.
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After convergence another check based on residual values is performed. The root-mean-square

values for each observation type is calculated by summing the squares of the residuals divided by

the number of data points and taking the square root of the division result. The data covariance

holds information on the accuracy of the data (15:67-68). If the estimation routine is doing an

adequate job, the RMS value should be about equal ýo the sigmas contained in the Q matrix. If

the RMS values are larger than the sigmas, the process has not removed all of the information

contained in the data resulting in a sub-standard estimate of the orbit.

Once least squares has converged, the new estimate with covariance are written to the output

file 'output.d.' The estimate is made by correcting the reference state as described in Equation 34.

The inverse of the covariance is accumulated throughout the least squares iterations and an IMSL

routine for symmetric matrices solves for P. The IMSL routine provides for an iterative refinement

on the solution to come up with the most accurate inverse available. This two-step routine to

determine an inverse helps avoid problems due to poorly conditioned matrices (widely varying

exponent values) and singularity problems.

The last function of the differential corrector is to output the covariance matrix, P, at the

time of the last observation. This is a useful step, particularly if the new estimate is going to be

used in a follow-on estimator. The state transition matrix provides the means for propagating the

P matrix and is specified in Equation 9 and handled by the subroutine 'phipphi.for.'

Divergence in the routine occurs when the least squares solution systematically adds larger

and larger corrections to the reference trajectory until it appears as a maximized solution rather

than a minimized solution. Divergence can also occur when corrections are added to the state on

one iteration and then subtracted on the next iteration. The pendulous motion makes it difficult

for the estimation routine to find an exact solution. The k and h elements are especially sensitive

to the size of the correction and can cause eccentricity values to quickly become greater than one.
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3.4 Research Methodology

The truth model data is based on two-body orbital motion perturbed by J2 and air drag.

Simulated noise alters the data by adding the product of a Gaussian random number multiplied by

standard deviation values for each observation type. Five separate truth model runs generate the

data for the desired sample orbits and store the range, azimuth, and elevation into separate station

files as individual passes. Elevations greater than zero indicate visibility for a particular station.

The five sample orbits have unique characteristics to expose any possible deficiencies in the

equinoctial element differential corrector. Good performance of the corrector is desirable for the

low altitude orbits because a majority of earth-orbiting objects are in low orbits. Testing begins

with the high orbits, however, because the higher orbits have fewer perturbations and longer pass

lengths. The highest orbit tested is for a Global Positioning System (GPS) satellite with an altitude

over 20,000 kilometers. The next orbit comes from the high eccentricity/critical inclination Cosmos

1305 rocket body followed by the third orbit investigated from Explorer debris in a high inclination

track. The two low-orbit satellites tested are the sun-synchronous Defense Meteorological Satellite

Program (DMSP) at 850 kilometers altitude and the Russian space station, Mir, at 350 kilometers

altitude.

Twenty Monte Carlo runs for each orbit with the differential corrector eliminate any one-time

biases in the truth model data. The same pass is repeatedly examined based on twenty different

sets of observations based on different seed values for the random number generator. A random

pass is selected from the observation sets to show a close-up view of individual residual values.

Overall performance is verified by comparing the resulting root-mean-square (RMS) values for each

run with the desired one sigma level. If the trend of the twenty RMS values is near the one-sigma

error, then the new estimate is a sufficient representation of the orbit contained in the original data.
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3.5 Equipment

The FORTRAN programming language is used in the coding of all routines for this analysis.

The only special requirement to run this code, is to have access to the IMSL library containing

the matrix factoring and solving routines. All other facets of this analysis are not specific to any

system and all results could be reproduced by running the programs on any system.

3.6 Validation of Method

The truth model data is generated from astrodynamic routines found in Reference (1) and

Reference (8). The output data is verified by comparing it to Pascal routines written and developed

by Dr. Kelso to compare visibility times at similar stations. Each orbit is tested against the Pascal

version with differences of less than 10 meters for range, differences of less than 1/10th of a degree

for azimuth, and 1/2 of a degree for elevation. The main elevation discrepancy comes from an

atmospheric refraction correction factor included in the Pascal program but not in the truth model.

The math-intensive data linearization matrix, H, can be validated using numerical derivative

techniques. H is solved in closed form and constructed through matrix multiplication. To check

the numbers produced in the resultant 3 x 6 matrix, the closed-form H = OG/OXequin is computed

numerically as

H AG (37)
A Xequin

Each of the equinoctial elements in Xequin is perturbed by a small amount (on the order of 10-5

to 10-7). Subtracting the original G = {p, Az, El} from the new perturbed value and dividing by

the perturbation amount gives an approximation to the H values:

H = -- ,-G--(38)
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As an example, to get the H11 element which represents Op/Ot, I is perturbed by 0.00001

and a new p value calculated. The old p value was 0.353920745 distance units, and the new p is

0.353911148 distance units giving

0.353911148 - 0.353920745
H,1 = 0.00001 = -0.959700 (39)

which is very close to the analytical calculation of H1 1 of -0.959707.

Verification of the equinoctial element equations of motion involved only the time varying

element, t = M. Checking consecutive data points based on the mean motion verified that the

element was being propagated correctly. The mean motion was calculated as n = V and when

multiplied by the time increment between data points the answer should equal the equations of

motion value.

The final check for an accurate estimator involves the covariance matrix and the RMS values.

The covariance matrix should be symmetric and the product of P with P` should return a matrix

very close to the identity matrix. The ultimate check on the differential correction process lies with

the RMS values. If the computed RMS values for each observation are less than the associated

sigmas for that observation type, then the correction process has exhumed all possible information

out of the data and further correction steps are no longer needed.

3.7 Historical Accuracy of Method

Least squares as a differential correction routine has been around for centuries. This method of

estimation was the first successful routine for estimating orbits of heavenly bodies through the solar

system with a minimal amount of data available. This method has been used operationally for years

at the Consolidated Space Operations Center (CSOC), the Consolidated Space Test Center (CSTC),

and at the Space Surveillance Center (SSC). The equinoctial element set is also the preferred element

set for earth-orbiting satellites to eliminate the difficulties discussed in Appendix A.

34



3.8 Statistical Procedures Review

The Gaussian random number generator is supposed to interject a dose of reality into the

truth model data. Figure 5 shows the random distribution of the data for 500 data points. As

shown in the figure, the data does appear random. The next verification step is to check if the

random numbers generated are distributed normally as advertised. Figure 6 shows the distribution

of the same 500 data points from Figure 5. These data points do appear to follow the Gaussian

distribution as expected.

3

0 50 16o 1o 260 25'0 360 3ý0 460 450 500
Sample Points

Figure 5. Verification of Random Number Generator

The performance of the differential corrector also shows differences when noise is added to

the data. The residual values are indicators of how the estimation routine is performing. First

pass residuals may be nowhere near the reference trajectory and it is the corrector's job to extract

the information from the data and determine a new estimate of the state. The last pass residuals

will then be within one standard deviation of zero. Figure 7 shows the residual values for each
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Figure 6. Histogram of Random Number Generation

observation type with no noise added to the data. Notice the much lower residuals after convergence,

especially in the range values.

The Gaussian random number generator applies noise to the data but the performance of the

differential corrector should still reduce the residuals to within one standard deviation. Notice in

Figure 8 that the range residuals are pulled within the one-sigma value of 1.57 x 10-' earth radii.

Both the azimuth and elevation residuals before correction are already near the one-sigma value of

4.36 x 10-4 radians, so the corrector cannot do much more than mirror the data.
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Range
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Figure 7. Residual Values with No Data Noise - GPS
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5.0e-04 Before Correction -4.0e-04-3.0f_0e. Convergence

Earth 2.0e-04-
Radii

O.Oe+O0j

-1.Oe-04 I

0 10 20 30 40 50 60 70 80 90
Observations

Azimuth
1.Oe-03-

5.0e-04-

Radians 0.0e+0

-5.0e-0t

Before Correction-
-1.0e-03 After Convergence a--

-1 0 -0 I I I I I
0 10 20 30 40 50 60 70 80 90

Observations

Elevation
2.0e-03-

Before Correction -
1.5e-03- After Convergence -o--

1.0e-03-

Radians 5.0e-04-

O.Oe+O0-

-5.0e-04-

-1.0e-03-f

0 10 20 30 40 50 60 70 80 90
Observations

Figure 8. Residual Values with Data Noise - GPS
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3.9 Summary

The mathematical development of the truth model is based on theoretical astrodynamic

relationships as shown in Reference (1). The truth model produces ephemerides from an initial

reference state vector which is propagated throughout an input time span using a fourth-order

predictor-corrector integrator called Hamming. The differential corrector then tries to find a new

estimate of the orbit through classical least squares batch methodology based on an equinoctial

element reference vector and two-body equations of motion. Once the routine has completed, the

root-mean-square values hold the accuracy information of the produced state vector.
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IV. Analysis and Results

4.1 Introduction

Five different cases of satellite orbits are used in this study to determine the performance

capabilities of the equinoctial differential corrector. The residuals from each estimation run are

examined to ensure that high initial root-mean-square values are corrected to values near one

sigma. Twenty individual Monte Carlo runs are also generated for each orbit to plot the overall

trend of the RMS correction. This process is used to make sure the added random noise does not

make it overly easy or difficult to converge for a single estimation.

4.2 Unit Considerations

Initially, the differential corrector performed all corrections in units of kilometers for distance

and seconds for time (the same as in the truth model). Due to wide variations in covariance element

magnitudes, there was difficulty inverting the 6 x 6 matrix to determine the covariance matrix, P.

The two errors that kept re-occurring in the inversion routine were an ill-conditioned matrix and

singular pivot entries or a singular matrix. In order to alleviate these difficulties, a unit change

to canonical distance units (6378.137 km) and time units (806.8188744 sec) was performed. This

solved most ill-conditioning problems but there were still singularity problems. The straightforward

inversion routine provided by the IMSL library was not adequate. Since all covariance matrices

are symmetric, a high-precision inversion algorithm solved the singularity problems. The first step

is to factor the matrix and determine pivot points which are then input into a symmetric matrix

solver routine. The covariance matrix is also improved through an iterative refinement procedure

provided by IMSL. After these modificaticns to the model were made, there was no longer any

problem with the inversion process.
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4.3 Orbit Cases

T'he five test cases for the equinoctial differential correction routine are chosen due to unique

orbital parameters in each case. The five orbits are listed in Table 2. Each case is fully examined

using the twenty Monte Carlo run approach mentioned above.

Table 2. Orbit Cases for Differential Corrector Study

Case I High Altitude, Low Eccentricity GPS
Case II High Eccentricity, Critical Inclination Cosmos
Case III Medium Altitude, High Inclination Explorer
Case IV Low Altitude, Sun Synchronous DMSP
Case V Low Altitude, Low Eccentricity Mir

4.3.1 Case I - High-Altitude/Low-Eccentricity Orbit. The first orbit tested has a high

altitude, therefore, it has relatively long pass lengths. The orbit used is from the Global Positioning

System (GPS). The passes considered in this analysis were approximately eight hours in duration

and used the remote tracking station site INDI. The advantages of using a high-altitude satell'P t

orbit first is the long pass length means that a large percentage of the orbit is described by the

observation data and there are minimal perturbation effects due to J 2 and air drag. Eccentricity

is low and the inclination is not at any critical values. This is a stable and well known orbit and is

useful for the initial analysis. The parameters of the GPS orbit are listed in Table 3.

Table 3. Orbit Elements - GPS

Cartesian Classical Equinoctial
Epoch 09 Sep 92 10:12:00 Per 717.900 min I
x pos -3031.911 km a 26558.482 km e 4.097408 rad
y pos -15025.844 km e 0.006257 k -0.004956
z pos 21806.489 km i 54.935 deg V, -0.503224
x vel 3.754356 km/sec £1 165.472 deg L 2.040589 DU 2/TU
y vel -0.889541 km/sec w 217.612 deg h -0.003819
z vel -0.114973 km/sec M 234.764 deg y 0.130406

alt 20180.345 km __ I

The INDI pass examined was on 17 September 1992 from 05:05-13:05, approximately one

week beyond the epoch time with data points spaced at five-minute increments. This results in
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a reference trajectory that is one week old - presumably the maximum amount of time that a

tracking station would use an estimate. Reference states are updated more frequently, but if the

differential corrector is able to converge upon a solution with an old reference, then this validates

the procedure with a more current reference. In Case I, a two-body-only integrator is used to

propagate the reference trajectory from the epoch time to the time of the first observation. The

perturbation effects are not needed to keep the reference "close." The rejection criteria is opened

to a sigma multiplier of 3.0 x 105 to allow all observations to have an effect on the correction from

the first iteration.

Figure 9 shows the overall corrector performance for the 98 data points in this pass. The

goal is to take large residual values and reduce them below one sigma upon convergence. The

overall view does show on a large scale that the residuals were reduced. In order to examine the

relative values compared to one sigma, Figure 10 shows the final residual values after convergence

in relation to the respective sigma values. While there are a few outliers, the overall trend in the

data shows the corrector's success at extracting the orbital information from the original data.

The trends indicated in the previous figures are for a single data set from the truth model.

To validate the effectiveness of the estimation process, the truth model provides twenty Monte

Carlo data sets. (The previous figures show the results for Run 20). Figure 11 shows the overall

performance of reducing the initial RMS values within one sigma. Figure 12 then shows the detailed

view of the final RMS values. Note that there are final RMS values that are both above and below

the one-sigma line but the overall average tends to follow the desired limit.

The twenty GPS runs show that the equinoctial differential corrector is effective for high-

altitude orbits with minimal perturbation effects. Additional analysis for this orbit included reduc-

ing the number of data points to test whether the corrector could still converge to a solution. The

number of data points was reduced finally to two values spaced 15 minutes apart and the corrector

converged.

42



Range
8.0e-03-
6.0e-03= Before Correction
4.0e-03- After Convergence

2.0e-03=

Earth 0.0e+00.Radii... "
Rdi -2.0e-03-

-4.0e-03-

-6.0e-O3-

-8.0e-03 , , i , ,

0 10 20 30 40 50 60 70 80 90
Observations

Azimuth
l.0e-02-

Radians 1002

Before Correction
-3 .0 e-02-j After Convergence a

0 10 20 30 40 50 60 70 80 90
Observations

Elevation
1.0e-02-

5.0e-03-

0.0e+00-

Radians
-5.0e-03-

-1.0e-02- Befre Correction
After Convergence

-1.5e-02 ,
0 10 20 30 40 50 60 70 80 90

Observations

Figure 9. Residual Values Before and After Differential Correction - GPS
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Figure 10. Residual Values versus 1-o, After Convergence - GPS
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.. X x x X - X
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Figure 11. RMS Values &-,fore and After Differential Correction - GPi
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Range
1.8e-05-

1.7e-05- 
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Earth 1.5e-05-
Radii

1.3e-05- One Sigma
RMS Values
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4.6e-04-
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Figure 12. Converged RMS Values versus I- - GPS
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4.3.2 Case II - High-Eccentricity/Critical-Inclination Orbit. The second orbit analyzed

has a medium altitude and the unique orbital characteristics of high eccentricity and a critical

inclination. The critical inclination is the orbit-specific value resulting in no apsidial rotation.

The medium-altitude orbits still have relatively long pass lengths. The orbit used is from the the

rocket body from Cosmos 1305 launched in 1981 by the USSR (NORAD Catalog Number 12827).

The pass considered in this analysis was 2 hours and 47 minutes in duration and used the remote

tracking station site REEF (Diego Garcia). There still is a large percentage of the orbit described

by the observation data and there also are minimal perturbation effects due to J2 and air drag.

Eccentricity is high, creating a different type of orbit for the equinoctial corrector to estimate. The

parameters of the COSMOS orbit are listed in Table 4.

Table 4. Orbit Elements -- Cosmos 1305 RB(2)

Cartesian Classical Equinoctial
Epoch 30 Mar 90 09:59:59.67 Per 262.690 min
x pos -5444.150 km a 13586.974 km e 0.171285 rad
y pos -5465.509 km e 0.453789 k 0.398574
z pos -0.205652 km i 63.363 deg V) -0.435544
x vel 1.769536 km/sec Q2 225.113 deg L 1.459538 DU 2/TU
y vel -3.623977 km/sec W 331.441 deg h -0.216942
z vel 7.598636 km/sec M 9.813919 deg X -0.437265

__ _ ___ alt 7208.837 kmmin

The REEF pass examined was on 01 April 1990 from 06:40-09:27, approximately two days

beyond the epoch time with the observations spaced at 60-second increments. Larger time incre-

ments were spaced too far apart, for the Hlamming routine in the truth model to initialize. This

is most likely due to the high eccentricity of the orbit. The two-day span of time from epoch is

still a reasonable time to expect a remote site to use a reference. As in Case 1, Case II uses only a

two-body only integrator to propagate the reference trajectory from the epoch time to the time of

the first observation.
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This estimation attempt used the same o multiplier as in Case I of 3.0 x 105 and achieved

adequate results. Figure 13 shows the overall corrector performance for the 168 data points in

this pass. The overall view once again shows on a large scale that the residuals were reduced.

The close-up view in Figure 14 shows the final residual values after convergence in relation to the

respective a values. The overall trend in the data shows that the residuals are near the one sigma

success criteria.

Figure 15 shows the overall performance of reducing the initial RMS values to near the desired

one-sigma level (the previous figures show the results for Run 9). Figure 16 then shows the detailed

view of the final RMS values. Note again that there are final RMS values that are both above and

below the one-sigma line but the overall average tends to follow the desired limit.

The twenty Cosmos runs show that the equinoctial differential corrector is effective for high-

eccentricity/critical-inclination orbits with perturbation effects. However, the data must be closely

monitored to ensure that the rejection criteria is set at an appropriate level to edit the large

residuals while passing the small residuals. The residual computation had to be modified to handle

the azimuth change from near 0 degrees to values near 360 degrees. Once this change was in effect,

the large azimuth residuals disappeared and normal results were output. As in Case I, this orbit

can be corrected with fewer than 10 data points and still converge.
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Figure 13. Residual Values Before and After Differential Correction - Cosmos
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Figure 14. Residual Values versus 1-ou After Convergence - Cosmos
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Figure 15. RMS Values Before and After Differential Correction - Cosmos
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Figure 16. Converged RMS Values versus 1-a - Cosmos
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4.3.3 Case III - Medium-Altitude/High-Inclination Orbit. The third orbit analyzed has a

medium altitude and a very high inclination of 120 degrees. This altitude orbit also has relatively

long pass durations. The orbit used is from the debris of the Explorer satellite launched in 1968

by the US (NORAD Catalog number 04841). The passes considered in this analysis were 39, 46,

and 42 minutes in duration and used the remote tracking station site GUAM. The J 2 perturbation

begins to have a significant effect on the orbit in this case. The nodal rotation at this altitude

and inclination is approximately 1.3 degrees per day. Air drag is not a factor yet with the altitude

greater than 1000 kilometers. The parameters of the Explorer orbit are listed in Table 5.

Table 5. Orbit Elements - Explorer Debris

Cartesian Classical Equinoctial

Epoch 15 Mar 90 02:37:30.63 Per 155.516 min I
x pos 8259.152 km a 9579.522 km f 1.024542 rad
y pos -2896.093 km e 0.271009 k 0.049183
z pos 1287.749 km i 120.737 deg k 1.703580

x vel -0.244773 km/sec 0 345.696 deg L 1.225535 DU 2/TU
y vel -3.595045 km/sec w 280.456 deg h -0.266508
z vel 5.960016 km/sec M 58.70197 deg X -0.434364

In alt 3201.385 km

The first GUAM pass analyzed spanned 40 points on 17 March 1990 from 01:05-01:44, which

is two days past epoch. The time increment of the data points is 60 seconds. A unique feature of

the observation data in this pass is a very high maximum elevation, near 85 degrees, which causes

rapid changes in azimuth as the satellite passes overhead. Figure 17 shows large discontinuities

in both the azimuth and elevation residuals. With these fluctuations in the residual values, the

differential correction process converged in six iterations with the usual initial a multiplier of

3.0 x 105. Attempts to remove the bad data by lowering the multiplier value to 3.0 x 103 resulted

in singular matrix inversion problems.

The large fluctuations in the residuals in Pass I can b-• eliminated. These errors are reduced

by including the full integrator with perturbations in the least squares routine. This generates a
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more accurate description of the orbit described by the data. Figure 18 shows the new before and

after correction residual values with the updated integrator. The estimator now easily converges

to the final values in three iterations, seen in detail in Figure 19. Using the full integrator for this

case is justified in order to eliminate the chance of a poor reference trajectory giving high residual

values.
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Figure 17. Residuals Before Correction, 2-Body Integrator - Explorer (Pass 1)
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Figure 18. Residual Values with Full Integrator (Pass 1)
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Figure 19. Residuals versus 1-a After Convergence - Explorer (Pass 1)
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The next GUAM pass looked at was one day past epoch on 16 March 1990 from 13:20-14:06

again at 60-second increments. The characteristics of this pass are tame compared to the previous

pass in this case. The maximum elevation is near 69 degrees and there are no rapid changes in either

the elevation or the azimuth observations. One day from epoch is a very realistic time frame in

which tracking stations would use a reference trajectory. The orbit is still sufficiently deterministic

to use only two-body propagation of the reference state to the time of the first observation. The

purpose of switching to a new pass is to prove the estimators capabilities at a lower altitude than in

previous cases without throwing the estimator off by handling a separate high elevation problem.

The estimator worked fine with an initial rejection criteria of 3.0 x 105. From Figure 20,

notice the typical patterns of large azimuth residual values. The peak error occurs once again at

the highest elevation values which cause the most rapid changes in azimuth. The elevation residual

curve also shows this point where the residual values change sign. This represents the transition

from rising elevation observations to falling values. The overall view of the 47 points from this pass,

shown in Figure 21, indicates that the residuals have been sufficiently reduced below the one-sigma

error value. Yet, as shown in subsequent figures, the overall performance for this pass is not as

good as in previous cases.

While Figure 22 shows the overall performance of reducing the initial RMS values to below

one sigma, Figure 23 shows the detailed view of the final RMS values which have a trend that is

greater than the sigma error level (The previous figures show the results for Run 13). It appears

that only the azimuth correction was performed to the desired standard. This may be due to the

lower altitude, shorter pass length data set, or possibly due to other factors that will be examined.

Now, as in Pass 1, it might be possible to improve the overall RMS values by including all

perturbation effects in the initial propagation of the reference state. Because the Explorer orbit

is affected by the J2 harmonic, including these effects in the integrator will make the reference

propagation a better approximation to the actual data and hopefully reduce the associated errors.
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From Figure 24, the initial values of the residuals are reduced by significant amounts from the

two-body integrator case and the number of iterations is reduced from five to three. Nevertheless,

the post correction values with full integrator are identical as before. Therefore, it provides no

advantage to change the integrator in Pass 2 when the correction is capable of being performed in

the first place.
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Figure 20. Residuals Before and After DC - Explorer (Pass 2)
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Figure 21. Residuals versus 1-u After Convergence - Explorer (Pass 2)
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Figure 22. RMS Values Before and After Differential Correction - Explorer
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Figure 23. Converged RMS Values versus 1-o, - Explorer
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Figure 24. RMS Values Before and After Differential Correction - Full Integrator
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Figure 25. Converged RMS Values versus 1-a - Full Integrator
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The next attempt at improving the overall converged RMS values is to tighten the rejection

criteria. Earlier attempts to lower the multiplier have been ineffective and this case is no different.

By lowering the rejection criteria, there wasn't any help at all in rejecting larger residuals for a

multiplier of 3.0 x 10' and smaller multipliers resulted in singular matrix inversions.

Most of the errors involved in this case center near high elevation data points within the pass.

Figure 26 shows the results from choosing a pass with a low maximum elevation of 28.7 degrees.

The pass is on 16 March 90 from 22:39-23:21 and has 43 points. As indicated in the figure, lower

elevations with a slower change in both azimuth and elevation observations allow the estimator

to make a better attempt at predicting the reference trajectory resulting in smaller residuals and

overall RMS values.

The last attempt to improve the converged RMS values combined two of the previous passes.

This increases the total number of points used in the correction and allows for slightly different

looks at the same arc of data. Unfortunately, the RMS values after convergence were a factor of

10 higher than the single pass case. The corrector was able to process the data and converge on a

solution, but it was no where near the one sigma error level desired.

The different Explorer runs show that the equinoctial differential corrector is effective for

medium-altitude/high-inclination orbits with perturbation effects only when the maximum eleva-

tion is low. Attempts to improve the converged RMS values by changing the initial integrator to

include perturbations improved the initial RMS values but did not help the converged values. Mul-

tiple passes and tighter a multiplier rejection criteria did not improve the estimator's performance.
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Figure 26. Converged RMS Values versus 1-u - Low Max Elevation
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4.3.4 Case IV - Low-Altitude/Sun-Synchronous Orbit. The fourth orbit analyzed has a

low altitude and is the sun-synchronous weather satellite, DMSP. This altitude orbit also has short

pass lengths. The pass considered in this case is 13.5 minutes in duration and uses the remote

tracking station site POGO (Thule). The J 2 perturbation has a significant effect on the orbit and

air drag also becomes a factor. The nodal rotation for a sun-synchronous orbit is approximately

0.985 degrees per day. The parameters of the DMSP orbit are listed in Table 6.

Table 6. Orbit Elements - DMSP

Cartesian Classical Equinoctial
Epoch 10 Sep 92 10:12:00 Per 101.808 min
x pos -156.876 km a 7222.392 km I 0.042902 rad
y pos -6476.819 km e 0.001076 k -0.000942
z pos 3174.432 km i 98.797 deg ip 0.116607
x vel -1.344282 km/sec Q 84.264 deg L 1.064129 DU 2/TU
y vel -3.193152 km/sec w 151.098 deg h 0.000520
z vel -6.580665 km/sec M 2.458131 deg X 1.160818

alt 844.255 km

The POGO pass tested has 27 points spaced 30 seconds apart on 10 September 1992 from

13:14:30-13:27:00. The corrector performance for this low altitude orbit was inadequate. Several

attempts to converge to a solution all resulted in failure. The first attempt used a pass very close to

the original epoch time to reduce the initial propagation. The corrector diverged by systematically

making corrections that were too large, maximizing the error rather than minimizing the error.

Although Figure 27 does not indicate any problem areas with the initial residuals, both the two-

body only and the full integrator failed.

The next attempt to coerce the corrector to converge was to simplify the problem by cor-

recting only the in-track elements of the mean anomaly term, t, and the mean motion term, L.

Theoretically, this would remove all of the initial in-track errors allowing the corrector to deal with

only the other, harder to determine, four terms remaining on a second loop through the corrector.

The process (lid make the initial correction to the two in-track terms, but the changes were small
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enough to be insignificant in helping the main iteration correction converge. It made no difference

to correct any two elements first and then enter into the full correction.

Examining the source of divergence can be accomplished by using the advantages of the truth

model. By removing the perturbation effects, the "perfect" data can indicate where the problem

lies. Removing both the J 2 and air drag perturbations made a dramatic effect - the corrector

converged in six iterations. Processing data with the J 2 perturbation alone caused divergence as

in the original case. Processing data with the air drag perturbation alone converged to a solution.

At an altitude very high in the air drag regime, this should have a minimal effect. Therefore, it

seems that the source of the problem at the lower altitude lies with the J 2 perturbation alone.

Another area of concern for the low altitude orbit is the lack of data points generated by such

a quick pass. Examining this area with the convergent cases of the corrector (with or without air

drag), there was no indication that the corrector could not handle just a few data points. This is

consistent with the other orbit cases in the study which had convergent solutions with as little as

two data points. The divergence is associated with the perturbation effects and not due to the lack

of data.
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Figure 27. Residual Values Before Differential Correction - DMSP
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4.3.5 Case V - Low-Altiiude/Low-Eccentricity Orbit. The last orbit analyzed has the low

altitude and low eccentricity of the Russian Mir space station. This altitude orbit has very short

pass lengths of approximately ten minutes. The pass considered in this case is 9.5 minutes in

duration and uses the remote tracking station site GUAM. The J2 perturbation has a significant

effect on the orbit and air drag is a significant factor. The parameters of the Mir orbit are listed

in Table 7.

Table 7. Orbit Elements - Mir

Cartesian Classical Equinoctial
Epoch 10 Sep 92 10:12:00 Per 92.699 min
x pos 5097.638 km a 6784.906 km e 0.660860 rad
y pos -2716.526 km e 0.001504 k -0.000266
z pos 3544.054 km i 51.625 deg 0b -0.483613
x vel 5.060657 km/sec 9 181.016 deg L 1.031397 DU2/TU
y vel 3.636431 km/sec w 100.188 deg h 0.001481
z vel -4.478165 km/sec M 37.86446 deg x -0.008574

alt 406.769 km

The GUAM pass tested has 39 points spaced 15 seconds apart on 10 September 1992 from

13:32:30-13:42:00. The corrector performance for this low-altitude orbit was also inadequate. As in

Case IV, several attempts to converge to a solution all resulted in failure. The first attempt used a

pass very close to the original epoch time to reduce the initial propagation. The corrector diverged

by making the wrong corrections, maximizing the error. The farther away from the initial epoch

time, the faster the corrector diverged. Once again, Figure 28 does not indicate any problem areas

with the initial residuals. Neither the two-body only nor the full integrator was able to converge

upon a solution with this orbit.

Correcting only the in-track elements of the mean anomaly term, f, and the mean motion

term, L, did not improve performance. As in Case IV, it took the same number of iterations to

diverge in the full correction run as in the original attempt. The process did make the initial

correction to the two in-track terms, but again the changes were too small to be significant in

71



helping the main iteration correction converge. It made no difference to correct any two elements

first and then enter into the full correction for this orbit case.

Removing the J 2 term alone allowed the corrector to converge in six iterations. The air

drag term was not large enough to keep the corrector from performing as expected. At such a low

altitude, the air drag term is near a maximum density value. However, even at this maximum value,

the air drag term is six orders of magnitude smaller than the J 2 term. Therefore, it is obvious that

the harmonic term has the dominant perturbation effect on the orbit.
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V. Conclusions and Recommendations

5.1 Introduction

The analysis of Chapter 4 shows the equinoctial element, two-body differential corrector is

not an adequate estimator for low-earth orbits. The unique parameters in each orbit case test

the performance of the corrector in varying situations to identify potential problem areas. Future

analysis of data reduction techniques must include additional factors during the model formulation

stage. A more complicated model is needed to successfully use an element set and covariance matrix

as an input to a new corrector which solves for perturbations.

5.2 Conclusions

The low-orbit cases analyzed exposed the greatest deficiency in the two-body differential

corrector. Large J2 zonal harmonic perturbations cause the estimator to systematically make

increasingly large updates to the reference state, maximizing the true error. After a few iterations,

the h and k terms become unreasonably large, causing the eccentricity to grow quadratically to

values larger than one. For closed earth orbits, this indicates the point of divergence. High-earth

orbits have minimal J2 effects and the estimator meets all standards.

Air drag perturbations in the truth model data are not large enough to inhibit the performance

of the estimator. Air drag affects only low-earth orbiting satellites within 100-1000 kilometers and

the perturbation is six orders of magnitude smaller than the dominant J 2 term. When the truth

model data is based on two-body and air drag effects alone, the estimator converges easily. The

higher altitude orbits tested in Cases U-111 have no air drag perturbations in this model.

The differential corrector converges independently of orbit altitude. Answering an original

research question, the length of the track of data does not affect convergence. With the significant

J2 perturbations removed, the corrector successfully updates the reference trajectory in all five

cases with ten data points or less. The correction is still (lone adequately using the two-body-only
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integrator to propagate the reference state vector. This also shows the lack of dependence on the

number of observations needed to perform an update.

Tracking data with high maximum elevations caused minor difficulties. Data tracks with

high elevations have fast-changing azimuth values causing jumps as high as 40 degrees between

observations. The equinoctial equations of motion only change the mean anomaly term between

observations and the change is at a constant rate. Therefore, the predicted azimuth values do not

rotate as rapidly, resulting in high residuals. This problem is alleviated, somewhat, when the initial

integration of the the reference state uses the full integrator. The equinoctial equations of n-.otion

work fine for passes with lower maximum elevations due to slower azimuth values change.

Two-step orbit estimation did not solve any of the previous difficulties. The two-step process

works by first solving for the in-track elements, f and L, to improve the reference trajectory before

solving for all six elements simultaneously. Nevertheless, the correction to t and L are inconse-

quential when compared to the larger full correction terms. The six element update has a poorly

conditioned covariance matrix due to the unobservability of the J 2 perturbation.

Increasing the number of observations by combining several passes does not improve data

reduction. As indicated earlier, the number of observations does not hinder the correction pro-

cess, therefore, combining several passes from the same station only increases the processing time.

Combining passes from several stations means that a larger portion of the orbit is described but

the corrector still does not converge when there is a significant J 2 perturbation. Larger numbers

of observations cause larger initial RMS values resulting in more iterations and larger final RMS

values.

5.2? Recommredations

'The equinoctial element set two-body least squares estimator is inadequate as a data reduction

procedure. The analysis indicates that the model will work if the J2 perturbation equations are
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included during the derivation of the equations of motion and the linearization matrices. Including

this perturbation effect when building the differential corrector might allow the process to converge

at the lower altitudes where the harmonic term is larger. Adding J2 equations to the problem

formulation eliminates the simplification of working only with two-body equations of motion and

greatly complicates the data linearization matrix, H. Finding H in closed form would then be

impractical and should now be analytically evaluated through numerical integration techniques.

5.4 Potential Areas of Study

Processing the observation data sequentially using a Kalman filter may eliminate the problems

associated with the large J 2 perturbations in low orbits. Least squares is a good starting point for

examining these data reduction techniques, but new points of view in estimation theory favor the

sequential approach of the Kalman filter. Switching to a new estimation technique may substitute

the need to add the J2 perturbation terms to the equations of motion during the model formulation.

The data reduction techniques studied here produce an element set and covariance matrix

without solving for perturbation effects. A follow-on analysis can examine the use of element sets

and covariance matrices as inputs to a batch estimation routine that solves for the perturbations.

This two-step process should be able to arrive at the same or better solution than from processing

the entire set of raw observations in one step.

5.5 Summary

The equinoctial element set greatly simplifies the formulation of the least squares differential

corrector. Five out of six equations of motion are trivial to solve, leaving only the mean anomaly

term that changes with time. Combining this numerically stable element set with the theory of

two-body orbital mechanics simplifies the model formulation and allows for a closed-form solution

of the linearization matrices. Yet, this simplification leads to difficulties when trying to correct
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orbits with large perturbation terms. The J2 zonal harmonic perturbation has the largest effect

on low-orbiting satellites and causes the estimation process to diverge at altitudes below 1000

kilometers.

Without the influence of the J2 perturbation affecting the data, the estimation process con-

verged to a solution, successfully reducing the observations to an element set and a covariance

matrix. There are non-catastrophic problems with high elevations, and other perturbations, such

as air drag, have minimal effects on convergence. Adding the J2 perturbation terms to the existing

model should improve performance to sufficiently handle any orbit type for data reduction. Multi-

ple passes of data provide no significant improvement for convergence and is outside the boundaries

of the scope of this investigation.

Data reduction at the tracking sites is a valid solution for handling the increasing number of

earth-orbiting objects. Further studies related to this research warrant close examination. These

include: adding J 2 to the equinoctial equations of motion, processing data sequentially with a

Kalman filter, or trying different element sets. Choosing the right combination of the tools currently

available will prove the value of reducing the data to keep an accurate catalog of all orbiting objects.
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Appendix A. Equinoctial Elements

The equinoctial element set has significant advantages for the orbit determination problem

of earth-orbiting satellites. There are numerical difficulties when the orbit has an eccentricity near

zero or an inclination near zero or 90 degrees. When the eccentricity approaches zero, the argument

of perigee becomes undefined and as the inclination approaches zero, the node becomes undefined.

A canonical transformation from classical elements to the equinoctial elements eliminates the zero

eccentricity problem and shifts the inclination difficulties to 180 degrees. This encompasses all

problem areas for earth orbits.

Common solution methodology for the two-body problem takes advantage of Hamilton-Jacobi

theories. The equations of motion are described by the system Hamiltonian which is based on a

set of coordinates, qj, and momenta, pi such that

aH . Hqj =- P = q (40)

where H(qi, pi, t) is the Hamiltonian as a function of q,, pi, and t. Hamilton proved that there exists

a new element set in which all coordinates and momenta are constant making the new Hamiltonian

equal to zero. Jacobi showed that any solution to the zero Hamiltonian problem is a solution to

the dynamical system (14:2).

Solving the two-body problem in polar coordinates r, 0, and k (see Figure 29) with Hamilton-

Jacobi theory yields a set of coordinates and momenta with the desired zero Hamiltonian. Com-

paring the polar solution to the planar solution yields canonical coordinates and momenta:

Coordinate Momenta

-To = -perigee passage time E = energy

) = argument of perigee h = angular momentum

S= node h cos i = z component of h
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r

Figure 29. Polar Coordinates for the Two-Body Problem

Because this is a two-body solution only, all six variables are constant. This set of coordinates

and momenta suffers difficulties at zero eccentricity and inclinations at zero and ninety degrees

(14:17-20).

These canonical coordinates are not the standard set of variables used when solving orbit

problems. The Delaunay elements contain new quantities for the first coordinate and momenta

values and simply rename the other four. The new elements are {f, g, h, L, G, H} with the coordi-

nates in small letters and the momenta in capital letters. The last four variables are the identity

transformations: g = w, h = 0, G = h, and H = h cos i. Using canonical transformation theory,

the complete set of Delaunay elements are:
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Coordinate Momenta

I=M L=/-a'

g =w G = LVY-7e

h =• H = Gcosi

The only time-dependent quantity in this element set is I which makes the new Hamiltonian no

longer zero. It is now equal to the total energy, -p/2a = _p
2/2L 2 . Because this was simply a

renaming of the original element set, there still are problems near zero eccentricity and inclination

(14:21).

The problems with the Delaunay elements stem from the use of polar coordinates. By shifting

to the rectangular coordinates h and k (see Figure 30), the only remaining problem exists at

inclinations near 90 degrees. The transformed Delaunay elements are:

Coordinate Momenta

e=M L= V-i-

k =ecosw h =esinw

q =tan icosfQ p =tan isinQ

This set of elements would be fine for non-polar orbits. However, to deal with all Earth orbits,

inclination problems near 90 degrees must be eliminated (14:21-22).

The last transformation, to the equinoctial elements, is a slight adjustment to the rectangular

form of the Delaunay elements. By replacing the {tan i} values with a half-angle {tan(i/2)}, the

numerical difficulty is shifted to 180 degrees. The elements are now completely defined:
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ee

(line of nodes) k

Figure 30. Polar/Rectangular Elements for Delaunay Variables

Coordinate Momenta

e=M L=fa

k = af = ecosw h= ag = esinw

0 = tan(i/2) cos X= tan(i/2) sing

This is the standard element set for the Space Surveillance Center at NORAD (with the exception

of the mean motion n instead of L) (14:22). This element set is also the standard for differential

correction at the Consolidated Space Operations Center located at Falcon AFB, CO.

The Hamiltonian for these elements is still a function of the total energy, therefore it is not

constant. The only time-dependent value in the equinoctial elements is f = M, the mean anomaly.

For differential correction of the two-body problem, all elements except the mean anomaly remain

constant. This greatly simplifies the data linearization matrix, H, shown in Appendix D. Without
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the simplifying assumption of working with the two-body problem alone, a closed-form solution is

not practical.

Examination of these elements gives an intuitive feel for why the numerical problems have

been eliminated. When the eccentricity approaches zero, the argument of perigee became undefined.

The new elements h and k are created as a combination of both of these elements so that they

are solved simultaneously rather than individually. The undefined node with zero inclination is

handled by ik and X which combines the problem elements in the same fashion as h and k. The

only remaining elements related to the classical set are the mean anomaly, M, and the mean motion

term, L, which can each be individually determined without problem (12:6.2- 3).
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Appendix B. Element Set Transformations

B.1 Earth Centered Inertial (ECI) to Classical Elements

There is a straightforward transformation between a satellite position, 9*, and velocity, iT, in

geocentric-equatorial coordinates to the classical Keplerian element set {a, e, i, QŽ, w, M}. The first

step is to calculate the magnitude of the position and velocity vectors, r = Irl and v = Iv-, and

then to form three fundamental vectors - h, i6, and F. The angular momentum vector is defined

as h x × which has components

h ry v, - rVy (41)

h = rzvx-r v, (42)

h3= r.vy - rYvl (43)

with h = (1:61).

Next, the nodal vector is defined as = k x h. The individual parts are related to h by

nj = -h 2  (44)

n2 = hi (45)

n 3  = 0 (46)

with n = Iiil-

The eccentricity vector is somewhat more complicated and is defined as

IF= 1 [(V2 _ J-) i;- _ (*. V-)6] (47)

with e = 191 defined as the eccentricity of the orbit and is the first classical element defined. The

eccentricity vector points from the center of the Earth to the direction of perigee (1:61-62).
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Inclination, the node, and the argument of perigee are easy to find (1:63):

=Cos- 1 (h3) (48)

Cos- (49)

W cos-1 e/(50)

The last element, the mean anomaly, is more difficult to determine. Both the true anomaly,

v, and the eccentric anomaly, E, must be found first. The relationship of the eccentric anomaly

and true anomaly is shown in Figure 31.

Figure 31. True and Eccentric Anomaly (1:183)
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The true anomaly is found in the same fashion as the other classical elements (1:63):

V = cs-1 (•1)• (51)

From the equation for a conic section and the geometry in Figure 31, a relationship between v and

E can be found based solely on ,he classical elements. Combining

S= a(1 - e2) (52)
1 +ecos v

and

ae + r cos v(cos E - (53)
a

gives

e + cos v(cos E - 1 o /(54)
1 + e cos v

Inverting this relationship gives

cos E - ecos v' = 1-ecsE(55)
1 - e cos E

This relationship and the double-angle identities, cos 2A = 1 - 2 sin 2 A and cos2A =2 cos 2 A - 1,

give the half-angle relationships:

sin2 () - a(+ e) sin 2 (E) (56)

Cos2 (v) a a1e)C, 2 ( E) (57)

By dividing these two equations and taking the square root, the equation for the tangent follows:

tana(nv 1+ (E) tn (58)
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This gives a good relationship between v and E that does not need to be adjusted for the correct

quadrant (2:158-159): •=• ~n•[•1- et° •1
E=2tan [V- : tan (D] (59)

Now that the eccentric anomaly has been found, it is easy to find the mean anomaly. The

mean anomaly is the mean angular position of the satellite as measured from the point of perigee.

It is defined by Kepler's equation:

M = E - e sin E (60)

This completes the conversion from the ECI values to the classical elements (1:185).

B.2 Classical to Equinoctial Elements

The conversion to equinoctial elements is defined by the relationships derived in Appendix A:

f= M

k = e cosw

0 tan(i/2)cos 0 (61)

L = Vrp

h esinw

X= tan(i/2) sin 0
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B.3 Equinoctial to Classical Elements

The first step in deriving the classical elements is to perform the reverse transformations of

the last section:
a = L2]/p

e h 2

i = 2tan- 1 ýb 2+ X2

0 = sin-' (X/ •p•-+(2)

wo = sin-' (h//--+h2)

M = e

Both Q and w need to be moved into the proper quadrant. The conditions for QŽ are

If V) < 0 then Subtract value from 7r

If Vb > 0 and X < 0 then Add 27r

If 0 > 0 and X > 0 then Value returned is okay

Likewise, the conditions for w are

If k < 0 then Subtract value from 7r

If k > 0 and h < 0 then Add 27r

If k > 0 and h > 0 then Value returned is okay

B.4 Classical to Earth Centered Inertial Elements (ECI)

The classical elements are easily described in the perifocal PQW frame with the orbit plane

as the fundamental plane and P pointing in the direction of perigee, Q rotated 90 degrees in the

direction of orbital motion, and W perpendicular to the orbit plane along the angular momentum

vector (1:57).

First, the mean anomaly, M, must be converted back to the true anomaly through the

eccentric anomaly. A Newton iteration scheme based on Kepler's equation, M = E - e sin E, finds

the eccentric anomaly (1:222):
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Step 1: Choose an initial guess for E. (like M,)

Step 2: Calculate E,+, = En + [M, - (E. - e sin Es)] / (1 - e cos En)

Step 3: If I(En+1 - E.)/En+1 j > Tolerance

then set En = En+, and go to Step 2

Step 4: Once below Tolerance, E = En+j

The next pieces needed are quantities specifically relating the classical elements to the perifocal

elements (1:187):

r = a(1-ecosE) (63)

e - cos E
cos v = (64)

e cos E - 1

sin v a vTW .sin E (65)
r

Now, the vectors in the PQW reference frame can be calculated as

= rcosvP+ rsin.'Q (66)

' = • P[-sin vP+ (e +cos .)c?] (67)

which completes the preparation for conversion into the ECI elements (1:72-73).

Converting to ECI elements involves a rotation from the perifocal coordinate system to the

Earth centered inertial reference frame. Both the position and velocity terms are rotated by the

same matrix, R (1:82-83):

cos~cosw-sinQsinwcosi -cosUsinw-sinQcoswcosi sin Qsin i

R= sinf2cosw+cosSsinwcosi -sinQsinw+cosUcoswcosi -cosusini (68)

sinw sin i cosw sin i cos i
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The transformations are

r"Ecd = R FpQw (69)

VEct = R VPQw (70)

B.5 Earth Centered Inertial (ECI) to Topocentric Elements

This transformation is especially useful in the differential corrector to determine the predicted

range, azimuth, and elevation observations from the updated equinoctial reference trajectory.

B.5.1 Derivation of 09. The first step in converting to topocentric observations is to deter-

mine the longitude of the Earth station relative to the inertial reference frame. Greenwich mean

sidereal time, O0, is calculated from the value at the epoch time of 1200 hrs on 1 January 2000.

Step 1: jd = (tob/86400.0)+ 2440000.0

Step 2 ut = mod(jd + 0.5,1)

Step3: jd = jd- ut

Step 4 tu = (jd - 2451545.0)/36525.0 (71)

Step 5 gmst = 24110.54841+

8640184.812866 tu + 0.093104 tu 2 - (6.2 x 10-6) tu 3

Step 6 gmst = mod(gmst + 86400.0ut (86400.0we/21r), 86400.0)

Step 7 09 = 27r(gmst)/86400.0

First, the Julian day of the observation time, jd, is converted back to standard Julian day format

(a simplified date, minus 2440000.0, is maintained within the program). The variable ut holds the

fraction of the day past 0000 hrs. The new jd is set to the normal 24 hour clock time. Continuing,

tu keeps track of the number of days away from 1 January 2000. The Greenwich Mean Sidereal

Time, gmst, is the desired rotational offset between the rotating topocentric reference frame and
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the inertial coordinate system. The main formula handles the offset of total days and then adjusts

the value due to the fraction into the day (ut) by multiplying by the rotation of the Earth, We.

Finally, 0g is calculated in radians (4, 8:B6).

B.5.2 Topocentric Elements. With 0, determined, the longitude at the observation time is

0 = mod(09 + A, 27r) (72)

based on the input station longitude, A (1:100). Next, the input geodetic latitude is converted to

geocentric latitude, 4, based on the flattening of the reference spheroid, f, and the new site location

is found from

f = (298.257)-l

C = [1+ (f 2 -2f)sin
2

o]-1/2 (73)

S = (1 f) 2C

Rý, (ReC + h) cos 0 cos 0

Ry (ReC + h) cos 0 sin 0 (74)

R, se (ReS + h) sin4€
s ite -

which is now in inertial coordinates (5).

The observations are determined by first computing the inertial range vector, Fj= f- i

This is related to the topocentric values by

PS sin 0 cos 0 sin 0 sin 0 - cos € p

Pe = -sinO cos 0 0 py (75)

pz cos 0 cos 0 cos 0 sin 0 sin € Pz
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The last step is to determine the observations -- the range, azimuth, and elevation associated with

this particular position vector and time:

p = p -+p2 + p? (76)

A = tan-1 (_Le) (77)

The Azimuth value must be shifted into the correct quadrant since the inverse tangent function

does not return values for all quadrants (1:79,85).

If p., > 0 then Add 7r

If p, < 0 and p, < 0 then Add 27r

Otherwise Value returned is okay
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Appendix C. Equinoctial Equations of Motion and the State Transition Matrix, 'D

The simplified dynamics using equinoctial elements makes the equations of motion and the

state transition matrix easy to solve in closed form. The advantage of using this model appears

when propagating the equations of motion for the equinoctial state vector, X = {e, k, 0, L, h, X}.

The equations of motion themselves are simplified because only the mean anomaly term, f, changes:

e = f, + M = e, + n(t - T) = 1, + P-At (79)L3

The remaining equations of motion are

k = ko

4' = ¢

L = L, (80)

h = h

X Xo

The state transition matrix (equations of variation) is then found as

1 0 0 -3p 2 At 0 0L4o

0 1 0 0 0 0

2ý=OXt 0 0 1 0 0 0

X(t) 0 0 0 1 0 0 (81)

0 0 0 0 1 0

0 0 0 0 0 1

These equations of motion and variation are used in the differential corrector when propagat-

ing the equinoctial element reference state to determine the predicted observation values.
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Appendix D. The Data Linearization Matrix, H

The data linearization matrix, H, is the most math intensive portion of the equinoctial element

dynamics model. H is derived by 9G/1Xequin where G is the observation matrix consisting of the

observed range, azimuth, and elevation. Xequin is the reference trajectory state vector expressed

in the equinoctial elements.

Because this model has been simplified to estimate only two-body effects, H is obtainable in

closed form. Extensive use of the chain rule when building H makes the problem easier to maintain.

H is broken into three parts:

H OG _-9G OXci OXa 8

H Xequin - Xeci OXcla3s OXequin

Each of the parts is individually solved in closed form and then combined through matrix multipli-

cation.

The first relationship, OG/OXei, relates the observations G(X)T = {P, ez, Az, EI} to the ECI

state vector, Xi = {r.,", r r., v., vy, v•}. These partial derivatives result in a 3 x 6 matrix and

are found through

Psez = /, e ?(83)

Az = tan- (-P!e) (84)

El = sin- (PpS :) (85)

Ps sin qcosO sinosinO -cos 1 PX 1
P = - sin 0 cos 0 0 Pp (86)

PZ cos 0 cos 0 cos 0 sin 0 sin € PZ

Pec -- {Px, Pi, Pz}T ý rei -- Rsite (87)
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Notice that the ECI velocity relationships are not needed as long as range rate is not included in

the observation matrix. This makes the right 3 x 3 part of the aG/OXeci matrix all zeros.

The resulting partials are then given by

Hj(l, 1) = ops ez. /r, = [p8 sinq €cos 0- pe sin -+ Pz cos cos O]/p ez

H1(1,2) = 9p,,e,/8ry = [p. sinq0sin 0 + p, cos 0 + p, cosd'sin O]/pez

HI ( 1,3) = p9 ps../ 8 r, = [-p, cos + pzsin ]/pse,

Hi(2,1) = aAz/ar. = [psinkcosO + p, sinO]/ (p, +pe)

Hi(2,2) = aAz/8ry = [p, sin € sin 0 - p, cos 0]/(p.+2p) (88)

H1 (2, 3) = 9Az/ar, = [-Pe COS 0]/ (p2 + p2)

Hi(3,1) = 8El/,9r. = [po,,,cos cos0-p-Hl(1,1)]/ (p._/ -pae p?)

H,(3,2) = aEI/8ry = [Ps ez COSqsin 0- p-Hi(1,2)]/ (Pz P2,€ -p2

Hi(3,3) = aEll/r, = [pezsin0-pzHi(1,3)]I (PSezXPez-P)

This completes the first 1/3 of the H matrix.

The second partial, aXeei/8Xcta, 8 relates the ECI state vector, Xec = {r, rv, rz, vx , Vy, vz}

to the classical Keplerian elements, Xta88 = {a, e, i, 0, w, M}. These partial derivatives result in a

6 x 6 matrix. ECI elements are related to the classical elements by

r. r cos v

ry r sin v

r, 0

... = R ... (89)

V, - Vap/[a(1 - e2 )] sin v

VY Vlup/[a(l - e2 )](e + cos v)

Vz 0
PQW
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where R is

cos cosw -sinQsinwcosi -cosQsinw -sin coswcosi sin Q sin i

sin cosw+cos sinwcosi -sinf2sinw+cosQcoswcosi -cosQsini (90)

sinw sin i cos w sin i cos i

Note that the W elements of position and velocity are zero in the PQW reference frame so the

third column of the rotation matrix is unneeded. Now, r and v are not in the classical element set

so expressions relating these variables are

r = a(1 - e cos E) (91)

tal(V)~ 1+e tan (~ ~(92)

This expression is then solved for v:

v= 2tan- 1  :e tan - E) (93)

The equations for r and v each introduced yet another element that is not in the classical element

set, the eccentric anomaly, E. Kepler's equation relates E to the classical elements:

M = E - e sin E (94)

To determine the 6 x 6 matrix, it is best to begin at the lowest equation (Equation 94) and

work to the top. Each partial derivative in the lower equations can be used through the chain rule

in follow-on equations.
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Partial derivatives from Kepler's equation are solved implicitly:

OE OE OE OE

Oa - Oi O - -0 (95)

OE = sin E

0e I - e cos E

OE = 1M - 1-ecs (97)aM 1 - e cos E

The partial derivatives of the true anomaly are next:

- -0 (98)

_ 2 [bIa E 1+ :e (E)+ tan (E/2)1-e--- I l+ [(I+ e)/(1 -- e))]tan 2(E/2) [2--Oe 7 i--e se,(2 +F (l--e-e

O-a-m = V -- ev • kOM)

The position vector partial derivatives are

Or Or (r
=`Q= 0 (101)

tOi OQ• Ow

Or
1 (I- ccosE) (102)

Oa
ar aE

T aesinE-- acosE (103)Oe O

Or OE
m ae sin E (104)
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Next, it is useful to define the partial derivatives of the elements from the first two columns

of the rotation matrix:

OR11/8a = Rll&/Oe = R1,M = 0 Rl2/aa= aR 12/Oe = 0Rl 2/OM = 0

aRll/= sin 2sinw sin i MR1 2 /8i = sin 0 cosw sin i
(105)

Mll/.90 = -R 21  OR12/8 = -R22

MRil/aw = R12 9R121aW -Rl

aR 2u/Oa -R21/= e = aR 211/M = 0 OR22/aa = aR22/Oe = aR2210M = 0

aR 2 1/i = -cosQsinw sin i 9R 22 /8i = - coscosw sin i
(106)

OR 2 1/O12 = R,1 IR22/0Q = R12

OR21/OW = R22 aR 2 2/aw = -R21

aR3 1/aa = aR 3 1a/e = 9R 3 1/aM = 0 aRa2/aa = 8Ra2/3e aRa2/3M = 0

O R 3 1/09i = sinw cos i OR32/0i = cos w cos i (107)

0R31/aQ = 0 MR32/00 = 0

OR31/-W = R32 OR32/-w = -R 31

Finally, solve for the values of the second matrix:

H 2(0, 1) = 9r,/9a = Rllcosv(Dr/da) + Rl2 sinv(Or/aa)

H2 (1,2) = O9rl/e = -rRi1sinv(8v/Oe)+ R,1 cos v(ar/ae)

+rR12 cos v(av/Oe) + R1 2 sin v(Or/3e)

H2 (1,3) = O9r,/8i = r cos v(aR11/Oi) + rsin v(0R1 2 /i) (108)

H2 (1,4) = ar,/aQ = rcosv(8R, 1/9) + rsinv(0R12 /80 )

H2(1,5) = ar:/lw = rcosv(dRlI/lw) + rsinv(aRl2 1/w)

H2(1,6) = 8r./OM = -rR 1 sin v(&1/aM) + R,1 cosv(Or/8M)

+rRI2 COS v(Ov/3M) + R 12 sin v(8r/OM)
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H2 (2,1) = r11/Oa = R2 1cosv.(clr/aa)+R2 2 sinv-(o~r/O9a)

H2 (2, 2) = aye = -rR 2 1 sin v(4&/8e) + R2 1 cos v~(ar/a9e)

rR2cos v(8zi/8e) + R 22 sin v(ar/8e)

H2(2,3) = 89ry,/i = r COSi.(aR2 1 /8i) + r sin v(49R 2 2 /09i)(19

H2(2,4) = OyIQ =r cosz-(aR2 1I/8Qi) + r sini.'(aR22 /80)

H2 (2, 5) = .9ry/8w = r cos ii(8R21 /8w) + r sin v(0R 22/tMw

H 2 (2, 6) = erlM =-rR 2 1 sin v(O/t9M) + R21 cos v(ar/8A')

+rR22 COS V(a/'9M) + R2 2 sin v(ar/8M)

H2(3, 1) = ar~/8aa R31 cosi.'(ar/8a) + R 3 2 sin v(Or/ta)

H2(3, 2) = ar2 /cae =-rR 3 1 sin v(av/O9e) + R3 1 cos v(ar/ae)

rR2cos v(av/8e) + R3 2 sin v(Ear/le)

H2 (3,3) = 9r, 1.i =r COS v(,9R31 /i) + r sin v(aR32 /8i)

H12(3,4) = ar1Q = 0

H2 (3, 5) = drla/w = r cos v(,9R 3 , law) + r sin v(t9R 3 2 /3w)W

H12 (3, 6) = ar ,M = -rR 3 1 sin v~dvl/8M) + R31 CSvcs lM

+rR32 COS V(8V/t9M). F? 32 sin zi(arr/3M)

To simplify the remaining equations, it is convenient to define an intermediate variable:

aý(1 -e 2 )
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H12(4,1) = 9v,/,9a = RIIS(sinv/2a) -Ri 2 S(e +cos&')/2a

H12(4,2) = Ov.,/49e = -Ri1 Scosv(O9v/ae) -RiiS(e sin v)/(1 - 2)

+R 1 2S[1 - sin v(-9v/3e)] + R12 S[e(e + COS ')I/(1 - e2 )

H12(4,3) = Ov,,/,i = -S sin v(aR,1 1/i) +S(e +cos v)(aR12 1ai) (112)

H2(4, 4) = Ov.,/8Q = -S sin v(aR,11/8Q) + S(e + cos v)(aR12/89Q)

H12(4,5) = av.,/8w = -Ss i u(aRii/8w) +S(e +cos v)(aRl 2 /8W)

H12(4,6) = 89v,/8M = -RiiScosv(.9v/8M) -Ri 2 Ssinv(Oii/8M)

H12(5, 1) = o3vy /8a = R21S(sin v/2a) - R 22 S(e + cos 12

H12(5,2) = vy /8e = -R 2 1S COSv(avl3e) - R 21S(e sin v)1(1 - e 2 )

+R 2 2 S[1 - sin v,i9v/39e)] + R2 2S[e(e + cos v)]/(I - e2)

H-2(5,3) = avy/o8i = -S sin &'(.R 2 u/8ai) + S(e + COS v)(aR22 /3i) (113)

H12(5,4) = 89vy/8all = -S sin '(89R 2u/Q) + S(e + COSv)(aR2 2/3Q)

H2 (5,5) = v, law = -S sin v(aR2 1 /aw + S(e + cos v)(aR22/OW)

H12(5,6) = avy/8M = - R 2 1 CScoV(aV/9M) - R 2 2 S sin v(av/8M)

H2 (6, 1) = v /,9a = R 31 S(sin i/2a) - R32 S(e + cos v)/2a

H12(6,2) = av, /8e = - R31S COSv(av/8e) - R3,S(e sin L/)/(I - e 2 )

+R 3 2S[1 - sin v(O9v/8e)] + R3 2S[e(e + COS v)]/(1 - e2)

H2 (6,3) = av, /8i = -S sin v(aR3 1 /3ai) +S(e + COSv)(8R 3 2/8i) (114)

H2(6,4) = av,/8Q = 0

H2(6, 5) = av, /8w = -S sin v(aR31/10W) + S(e + cos v)(e9R 32 /OW)

112(6,6) = av,/8M = - R3 1 CScoV (aV/8M) - R 3 2 S sin v (Ov/M)
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aXa.,ss/OXequin completes the building of the H matrix. This 6 x 6 matrix is the easiest of

the thre- to construct and is based on previously defined relationships:

a = L2/- U

e = f_+ h2

i = 2tan-1 Vý, 2+X 2

S(115)
S= sin- 1 (X/ 12 -+X2)

S= sin-' (h/VUk h2 )

M = t

The partials are

H3 (1,4): Oa/8L = 2L/p

H/3(2, 2): 8e/ok =klr/-+ h2

H3 (2, 5): e = h/v/k2 + h2

f13(3, 3): Oil P = 2 t/ [(1 + V,2 + x2)V /0 -X]

H 3 (3, 6): O XIOX = 2x/ [(I + V,2 + x2)V/-X] (116)

H3(4, 3): OQ•/V = -X/(lk 2 
+ X2 )

H3(4, 6): X2/3QX = p/(,02 + X2 )

H3(5, 2): Ow/lk = -h/(k 2 + h 2)

H3(5, 5): Ow/8h = k/(k 2 + h2 )

H3(6, 1) :aMl = 1

All other partial derivatives for this matrix are zero.

H is now constructed by matri'- multiplication of each of the three parts outlined above. This

rigorous approach using partial derivatives is exact (dynamically) and there is no programming need

to show H in its final form. Use of the FORTRAN programming language to construct H is shown

in Appendix F ('obser.for').
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Appendix E. Truth Model Program Listing

E.1 The Truth Model

The truth model is the data generating program with subroutines used Cc, create the ob-

servation values range, azimuth, and elevation for each of nine remote tracking stations. Output

units are kilometers, seconds, and degrees. The subroutines 'haming,' 'julday,' and 'caldat' and the

functions 'rand' and 'randg' were written by Dr. Wiesel.

program truth
c

common /ham/ t,y(42,4) ,f(42,4) ,err(42) ,dt,mode,n

double precision t,y,f,err,dt
integer mode,n

c

double precision to,tf,ct,dt
integer iyr,imon,idayihr,imin,nstep,iy
real sec

C

common /elmnt/ per
double precision per

c
c iy is the seed value for the random number generator
C

open(31,FILE'all .dat')
iy = 851501

c
c read initial state vector and place in y

c
call open

c
c read in initial time - to

read (3,*) iyr,imon,iday,ihr,imin,sec

call julday(iyr,imon,iday,ihrimin,sec,to)
write (*,9020) iyr,imon,iday,ihr,imin,sec
write (4,9020) iyr,imon,iday,ihr,imin,sec

c
c read in final time = tf
c

read (3,*) iyr,imon,iday,ihr,imin,sec
call julday(iyr,imon,iday,ihr,imin,sec,tf)

c

c read in the stepsize = dt (in seconds)
c

read (3,*) dt
c
c read in initial r and v
c

read (3,*) (y(ii,1),ii-l,3)
read (3,*) (y(ii,1),ii=4,6)

c
c write initial point to output file a output.t
C

write (4,9010) (y(ii,l), ii*1,6)

c
c convert to,tf into seconds for haming routine
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c

to = to * 86400.0d+O
tf = tf * 86400.0d+0

C

c initialize haming
c mode - 0 means no phi matrix, soin only (n = 6 elements)
c dt = S points in an orbital period
C

call elemant (1)
t = to
mode = 0
n=6
nstep = (tf-to)/dt

C

c have to worry about possible truncation in calculation of ustep
C

if (dabs(to + dble(nstep)*dt -tf) .gt.
1 dabs(to + dble(nstep)*dt + dt - tf)) natep = nstep + 1

C

nxt = 0
call haming(nxt)
if (nxt .eq. 0) go to 100

c
"c write out every 10th position and velocity data point to 'output.t'
"c output of the range, azimuth, and elevation are in 'rts.for'
c

icount = 0
call rts(1,iy)
do 20 1 = 1,nstep

call haming(nxt)
call rts(nxt,iy)
if (mod(i,10) .eq. 0) then

ct = t/86400.0d+0
call caldat(ct,iyr,imon,iday,ihr,inin,sec)
write (4,9020) iyr,imon,iday,ihr,imin,sec
write (4,9010) (y(ii,nxt), iiml,6)

endif
20 continue

c
c check the last data pt against the first
c

ct = t/86400.Od+O
call caldat(ct,iyrimon,iday,ihr, in•,sec)
write (*,9020) iyr,imon,iday,ihr,imin,sec
call eleant (nxt)

c
100 call close

close(31)
c
C

9010 format(2x,3(fl3.6,lx),3(f9.6,lx),I)
9020 fornat(3x,i4,lx,4(i2,1x),fS.2)

c
c

end
C

include 2open.for'
include 'close.for'
include 'hazing. for'
include 'julian.for'
include 'lemant.for'
include Irts.forl
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subroutine hsaming(nxt)
c

"c haming is an ordinary differential equations integrator
"c it is a fourth order predictor-corrector algorithm which means
"c that it carries along the last four values of the state
"c vector, and extrapolates these values to obtain the next
"c value (the prediction part) and then corrects the extrapolated
"c value to find a new value for the state vector.
c
"c the value nxt in the call specifies which of the 4 values
"c of the state vector is the "next" one.
"c nxt is updated by haming automatically, and is zero on
"c the first call
C

"c the user supplies an external routine rhs(nxt) which
"c evaluates the equations of motion
c

common /ham/ t,y(42,4) ,f(42,4) ,errest(42) ,dt,mode,n
double precision t,y,f,errest,dt
integer mode,n
double precision dt2,to

c
c all of the good stuff is in this common block.
c t is the independent variable ( time )
c y(6,4) is the state vector- 4 copies of it, with nxt
c pointing at the next one
c f(6,4) are the equations of motion, again four copies
c a call to rhs(nxt) updates an entry in f
c errest is an estimate of the truncation error - normally not used
c n is the number of equations being integrated - 6 or 42 here
c h is the time step
c mode is 0 for just EON, I for both EON and EOV
c

tol = O.0000000001d+00
c switch on starting algorithm or normal propagation

if(nxt) 190,10,200
c
"c this is hamings starting algorithm .... a predictor - corrector
"c needs 4 values of the state vector, and you only have one- the
"c initial conditions.
"c haming uses a Picard iteration (slow and painfull) to get the
"c other three.
"c if it fails, nxt will still be zero upon exit, otherwise
"c nxt will be 1, and you are all set to go
c

10 to = t
dt2 - dt/2.0d+00
call rhs(l)
do 40 1 a 2,4
t -t + dt2
do 20 i 1,n

20 y(i,l) = y(i,l-1) + dt2*f(i,l-1)
call rhs(l)
t =t + dt2
do 30 i = 1,n

30 y(i,l) * y(i,l-1) + dtef(i,l)
40 call rha(l)

jsw a -10
50 isw a I

do 120 i = 1,n
dt2 = y(i,1) + dt*( 9.0d+OO*f(i,1) + 19.0d+OOef(i,2)

1 - 5.Od+00*f(i,3) + f(i,4) ) / 24.0d+00
if( dabs( dt2 - y(i,2)) .At. tol ) go to 70
isw = 0
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70 y(i,2) a dt2
dt2 - y(i,l) + dt*( fVi,1) + 4.0d+O0ef(i,2) + f(i,3))/3.Od+00
if( dabs( dt2-y(i,3)) .lt. tol ) go to 90
isw = 0

90 YUi,3) = dt2
dt2 = y(i,1) + dt*( 3.0d+00af(i,1) + 9.od+00*f(i,2)
1 + 9.0d+00*f(i.3) + 3.0d+00*f(i,4) ) / 8.0d+00
if( dabs(dt2-y(i,4)) Alt. tol )go to 110
isw - 0

110 y(i,4) = dt2
120 continue

t = to
do 130 1 - 2,4
t = t + dt

130 call rha~i)
if(iaw) 140,140,150

140 jsw = jsw + 1
if(jsw) 50,280,280

150 t = to
isw
jaw

do 160 i =1,n
160 errest(i) = .Od+0

nxt = I

go to 280
190 jaw = 2

nxt =iabs(nxt)
c
c this is hamings normal propagation loop
c

200 t = t + dt
npl - aaod(n~xt,4) + 1
go to (210,230),isu

c permute the index nxt modulo 4
210 go to (270,270,270,220) ,nxt
220 is, = 2
230 nm2 = mod(npl,4) + 1

nal = mod(nm2,4) + 1
npo = mod(nml,4) + 1

c
c this is the predictor part
c

do 240 i - 1,n
f(i,nm2) = y(i,npl) + 4.Od+00*dt*( 2.Od+00*1(i,npo) - fi,nml)
1 + 2.Od+00*f(i,nm2) ) / 3.0d+00
y(i,apl) = f(i,nmR2) - 0.925619835*errest(i)

240 continue
c
"c now the corrector - fix up the extrapolated state
"c based on the better value of the equations of notion
c

call rhs(npl)
do 250 i = 1,n
y(i,npl) =( 9.Od+00*y(i,np~o) - y(i,zm2) + 3.Od+00.dto( fVi,upl)

1 + 2.Od+00*f(i,npo) - f(i,nml) ))I8.0d+00
errest(i) =f(i,nm2) - y(i,npl)
y(i,npl) =y(i,npl) + 0.0743801653 *errest(i)

250 continue
go to (260,270),Jsw

260 call rhs(npl)
270 nit = npi
280 return

end
C

include 2
yha*forl
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**********ee*eeeeee**e**e*****e**ee*ee*e*e****e***e*ee*e****e****e*eeee*eeeee*****

subroutine rhs(nxt)
c

c rho calculates the equations of notion for an earth orbiting satellite
C

c the state vector is stored as:
c y(1-3,nxt) are the x, y, z components of the position vector
c y(4-6,nxt) are the x, y, z components of the velocity vector
C

c hming colon

c
cOmon /ham/ t,y(42,4) ,f(42,4),err(42),dt,node,n

double precision t,y,f,err,dt
integer mode,n

c
c general double precision statements
c

double precision r,vuag,v(3) ,rcubecj ,cz
double precision omu,ejtuo,rearth,vearth
double precision rho,bstar,drag

c
"c the basic function of rhs is to calculate the equations of

"c motion (the f entries) from the given current state (stored in y)
"c and the time t
c
c earth emu value for units of kin, sec

c
elm = 3.986012d+5
ejtvo = 0.0010827d+0
rearth = 6378.137d+0

wearth = 7.2921158566d-
bstar = 2.0d+O * 7.5d+0 / 1000.0d+O

c
c CCC*C***CCCCC5*CCCCCCC****** C****eC**

c
c EVALUATE THE EQUATIONS OF NOTION

c

c
c position dot - velocity vector

c
f(1,nxt) = y(4,nxt)
f(2,nxt) a y(5,n•t)
f(3,nxt) = y(6,nxt)

c
c velocity dot = -two-body - J2 - air drag
C

c two-body terms first
c

r a dsqrt(y(l,nxt)*y(1,nxt)+y(2,nxt)*y(2,nxt)+y(3,nxt)*y(3,nxt))
rcube a r**3

f(4,nxt) - -emu * y(l,nxt) / rcube
f(5,nxt) = -emu * y(2,nxt) / rcube

f(6,nxt) = -enn * y(3,nxt) / rcube
c
c now the J2 terms

c
cj a 1.5d+0 * ejtwo * (rearth/r) * (rearth/r)
cz - 6.04dO * (y(3,nxt)Ir) * (y(3,unt)/r)
f(4,nxt) - f(4,nxt) * (1.0d+O + cj * (1.0d+0 - cz))
f(5,nxt) a y(2,nzt)sf(4,nxt)/y(1,nxt)
f(6,nxt) - f(6,nxt) * (1.040O + cj * (3.0d+O - cz))

c
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c now the air drag terms
c

"c bstar -C.A*A/m a2*7.5/1000 =m'2Ikg
"c rho - kg/m^3

call denaty(r,rho)
v()-f(1,nxt) + wearth*y(2,nxt)

v(2) a f(2,nxt) - wearth*y(1,nxt)
v(3) - f(3.nxt)
vnuag adsqrt(v(1)**2 + v(2)**2 + v(3)**2)
drag = 0.Sd+0 * bstar * rho *vmag
f(4,nxt) =f(4,nxt) - drag *v(1)
fC5,nxt) = f(5,nxt) - drag Y (2)
f(6,nxt) =f(6,nxt) - drag *v(3)

C

return
end

c

include 'density. for'

subroutine denstyCr ,rho)

c density calculates the atmospheric density for altitude 100-1000km
c density values are based on the 1976 U.S. Standard Atmosphere
c units are kg/m**3
C

double precision r,rho,alt,z(9)
C

c equation constants
c

z(1) - 246482.8T3d+0
z(2) - 37132.030d+0
z(3) = 1536228.60d+0
z(4) a 19174788.Od+0
z(5) - 106.381650d+0
z(6) = 4968.561204+0
z(7) - 56060.07804+0
z(8) - 160314.760440
z(9) =344944.780d40

C

c altitude is in meters
C

alt - (r - 6378.137d+0)*1000.Od+0
if (alt .1t. 100000.04+0) then

rho - 1.Od+50
elseif (alt .ge. 100000.04+0 .and. alt .1e. 1000000.04+0) then

rho = dexp( -(z(1)/alt)**4 + (z(2)/alt)**3 - (z(3)/alt)**2
I + (z(4)/alt) - (alt/z(9))**4 + (&ltlz(8))**3
2 - (alt/z(7))**2 + (altlz(6)) - Z(6))
else

rho = 0.0440
end if

c
icount a icount + 1
if (icount .eq. 1) then

urite(*,9000) alt/lOO0d+0
endif

9000 format (2x,'alt'.2x,fl9.13,3x.'km',/)
c

return
end
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subroutine rts(nxt ,iy)

"c This routine controls the output of range, azimuth, and elevation
"c observations to files associated with each input station.
"c Station information is read in as geodetic latitude(phi) and East
"c longitude~lon) in degrees (converted to radians), and altitude in km.
c

comon /ham/ t,y(42,4),f(42,4) ,err(42),dt,uode,n
double precision t,y,f,err,dt
integer mode,u

c
double precision rsite(3),rho(6)
double precision pi,degrad,ve,flat ,rearth
double precision ut ,jd,tu,gmst ,thetag
double precision phi,lon,h,theta,c,s,ct
double precision range,az,el
integer isite
character*4 ,site

c
integer iy
real randg,sigua(3)
external randg

c
c constants
c

pi - 3.141692653589d*0
degrad - 57.2957796131d40

1e ' T. 292115856d-6
flat - .Od+0/298.267d+0
rearth =6376.137d40

c
c observation sigmas - range(ka), azimuth(deg), elevation(deg)
c

sigma(1) =0.1
sigma(2) =0.025
sigma(3) - 0.025

c
"c read in site identifier, phi and lon in degrees (imediately
"c converted to radians), and altitude in meters
c

open(15 ,FILE'sxensor .loc')
c
c Reference: 1992 Astronomical Almanac, page 86
c

jd- t/86400 .0d40 + 2440000. Od+0
ut = dmod(Jd + 0.5d+0,1)
jd - jd - ut
tu - (jd-2451645.Od+0)/36525.0d40
gnst - 24110.54841d+0 + tu*(8640184.812866d+0 + tu*(0.093104d+0

* tu*6.2d-6))
gust = dmod(gmst + 86400.Od+0C(86400.Od+Oewe/(2.0d+Oepi))*ut,

* 86400.0d+0)
thetag - 2 .0d4.0*pi*gast/86400.0d+0

c
c control loop for each of nine stations
c Il=Indi 4-H ula 7 =Boass
c 2 -Reef 5-aCook 8 -Pogo
c 3 -Guam 6 -Pike 9 -Lion
c

do 100 i - 1,9
read (15,*) site,isite,phi,lon,h
phi - phi/degrad
lon - lon/degrad
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h - h/1000.0d40
c

c Convert longitude and time to Local Sidereal Time
c Reference: BN & V page 100
C

theta - dmod(lon + thetag,2.0d+Oepi)
C

c Convert Geodetic Latitude to Geocentric Latitude
c Reference: 1992 Astronautical. Almanac page Ill
c

c - I.Od+Oldsqrt(i.0d40 + flat*(flat - 2.0d40)*dsin(phi)**2)
a = (1.Od+0 - flat)**2 * c

c
c compute site position and geocentric latitude
c

rait4v(1) - (rearthec + h)edcos(phi)edcos(theta)
rsite(2) = (rearthec + h)edcoa(phi)edsin(theta)
reite(3) - (rearthes + h)edsin(phi)

c
c rho(I-3) are the components of range - inertial
c rho(4-6) are topocentric
c Reference: BN & V page 79
c

do 10 1 -1,3
rho(l) - y(l,nxt) - raite(l)

10 continue
c

rho(4) - dsin(phi)*dcos(theta)*rho(1) +
S dsin(phi)*dsin(theta)*rho(2) -

* dcos(phi)*rho(3)
rho(5) = -dsin(theta)*rho(i) + dcos(theta)*rho(2)
rho(6) =dcos(phi)*dcos(theta)*rho(1) +

* dcos(phi)edsin(theta)*rho(2) +
$ dsin(phi)*rho(3)

c
c calculate the range, azimuth, and elevation
c Reference: BN A V page 85
c

range - dsqrt(rho(4)**2 + rho(S)**2 4 rho(6)**2)
range - range + randg(iy)*sigama(1)

c
if (rho(4) .gt. 0.0d+0) then

az - 180.0d+0 + datan(-rho(S)/rho(4)) * degrad.
elseif (rho(S) Alt. 0.Od+O) then

ax - 360.0d40 + datan(-rho(S)/rho(4)) * degrad
else

az datan(-rho(S)/rho(4)) * degrad.
endif
az - ax + randg(iy)*signa(2)

c
el - dasin(rho(6)/range) * degrad
el - el + randg(iy)*sigma(3)

c
if (el .gt. 0.Od+O) then

ct - t/88400.Od+0
call caldat(ct,iyr,imon,iday,ihr,imln,sec)
write(i+15,900) iyr, imon,iday,ihr, imin,sec,i,range,az,el
write(31 .900) iyr,imon,iday,ihr,imin,aec,i~range,az,el

endif
c
100 continue
c
900 format(lz,i4,lx,4(i2,lx),f5.2,2x,i2,2x,f12.6,2z,fll.6,2x,fll.8)

c

close(15)
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return
end

function rand(iy)
c

"c pseudo random number generator on interval (0,1)
"c Collected Algorithms of the CRCK *266
"c assumes 2**31 integer math
"c iy is odd integer between 0 and 67108863
"c don't change it after first call
C

integer k(3),iy
data k/26,25,5/

c

do 10 i = 1,3
iy = k(i)*iy
iy = iy - (iy/67108864).67108864

10 continue
c

rand = real(iy)/67108864.0
c

return
end

function randg(iy)
c
"c gaussian pseudo random number generator
"c unit variance, zero mean
"c uses central limit theorem with 10 iterates,
"c empirical constant for sigma
c

real rand
external rand
integer iy

c
r -0.0
do 50 i = 1,10

r = r + rand(iy)
50 continue

c
randg - 1.0875.(r - 5.0)

c
return
end

******eeee**#eesee~eesee@ee* ee~ee**e~e~eiee&&eeee**ee***e**e.*eete~ee.**ese

subroutine elent (i)
c
c calculate orbital elements in kilometers and degrees
c
c haming common block
c

common /ham/ t,y(42,4) ,f(42,4) ,err(42) ,dt,mode,n
double precision ty,f,err,dt
integer mode,n

c
c orbital element common block
C

common /elmnt/ per
double precision per

c
c general double precision statements
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C

double precision axis~ecc,incl,node,pgee,true~eanom,mean
double precision emu,pi,r,v,h(3) ,hmag~vn(3),vnmag
double precision rdotv,fi,f2,e(3) 'p
double precision edotn,en~permin,degrad,edotr ,er

c

c constants
c

emu w3.986012d4'5
pi - 3.1416926535894.0
degrad - 67.2957796131d40

C

r = dsqrt(y(l,i)*y(l,i) + y(2,i)*y(2,i) + y(3,i)*y(3,i))
v - dsqrt(y(4,i)*y(4,i) 4' +(,~y5i y(6,i)*y(6,i))

c angular momentum vector, h -r x v, and magnitude, hmag

h(1) - y(2,i)*y(6,i) - y(3,i)*y(5,i)
h(2) = y(3,i)*y(4,i) - y(1,i)*y(6,i)
W() = y(1,i)*y(5,i) - y(2,i)*y(4,i)
hmag - dsqrt(h(1)eh(i) + h(2)*h(2) + h(3)*h(3))

C

c nodal vector, vn - k x h, and magnitude, vninag
C

vn(i) a -h(2)
vn(2) =(W)
vn(3) = 0.0440
vnmag 2 dsqrt(vn(1)*vn(l) + vn(2)evn(2) + vn(3)*vn(3))

C

c inclination = inci

inc = dacoa(h(3)/hnMg)

C right ascension of ascending node a node
c

if (Yumag eq. 0.0040) then
print *,'IEquatorial orbit -- RA of Ascending Node undef ined'
node - 0.04.0

elseif (vn(2) .gt. 0.00.0) then
node - dacos(vn(1)/vnwag)

eleo
node - 2.0400 * pi - dacos(vn(I)/vnmag)

endif
c
c eccentricity - ecc
c

rdotv a y(I,i)*y(4,i) + y(2,i)*y(S,i) + y(3,i)*y(6,i)
fl - v*v/emu - 1.Od4'0/r
f2 a rdotv/emu
e(1) - fiey(i,i) - f2*y(4,i)
e(2) a fley(2,i) - f2*y(S,i)
e(3) - fl*Y(3,i) - f2*y(6,i)
ecc -dsqrt(e(1)*e(1) +' e(2)e(2) + e(3)*e(3))

c
c semi-major axis 2 axis
c

p ahmag*hmag/emu
axis - p/(1.04.0 - occ*ecc)

C

c argument of perigee a pgee
c

edotn a vn~l)*e(l) +' ,n(2)0e(2) +' vn(3)**C3)
en - eccevlamag:
if (*cc eq. 0.0400) then

print *,'Circular orbit -- Argument of Perigee undefined'
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pg.. - 0.Od+O
eloifi Cvnmag .eq. 0.04+0) then

print *,'Equatorial orbit -- Argument of Perigee undefined'
pgee - 0.0d40

eloifi (edotn/en .gt. 1.Od+0) then
pgee - 0.04+0

elsici (e(3 .gt. 0.Od+O) then
pgee = dacos(edotnlen)

else
pgee= 2.0d+0 * pi - dacos(edotn/en)

endif
c

c true anomaly = true,* mean anomaly =mean
C

edotr - e(1)ey(1,i) + e(2)*y(2,i) + o(3)*y(3,i)
or - eccer
if (ecc eq. 0.04+0) then

print *, 'Circular orbit -- Mean Anomaly undefined'
true - 0.Od4O

elsifi (vumag eq. 0.0d40) then
print *, 'Equatorial orbit -- Mean Anomaly undefined'
true 0 .0440

eloici (edotr/er .gt. 1.0d4O) then
true - 0.04+0

elseif (rdotv .gt. 0.00.0) then
true -dacos(edotr/er)

else
true = 2.00+0 * pi - dacos(edotr/er)

endif
eanon - 2.00+0 * datan(dsqrt((i.Od+0 - acc)/(i.Od+0 + ecc))

S dtan(trus/2.0d+0))
"man - eanom - occsdsin(eanom)
mean - dmod(mean + 2.0d+O~pi,2.0d+Oepi)

c

c calculate period - per in seconds
c

per - (2.0d+0 * pi / deqrt(emu) e (daqrt(axis))*e3.0d+0)
permin - per /60.0+00

incl = incl Cdegrad

node - node Cdegrad

pgee -pgee degrad
"man - mean Cdegrad

c
write (e.900) permin,axia,ecc,incl,node,pgee,sman

c
900 format(/,2x,'Classical Elemonts:',I/,

1 2x,'Per 1,fi8.i3,3x,1miflutos),/,
2 2x,'a ',f19.13,3x,'km',/,
3 2x,'e ',f15.13,/,
4 2x,'incl ',f17.13,3x,'degrees',I,
5 2x,'node 1,f17.13,3x,1degtees1,/,
6 2x,'argp '.f17.13,3x,'degrees',/,
7 2x,'manuly ',f18.13,3x,'dogrseea,/)

c
return
end

subroutine julday(iyyy~mm,id,ih,im,sec, Julian)
c
"c year month day hour min sec to modified Julian day
"c (minus 2440000.) adapted from Numerical Recipes
c



double precision julian
integer*4 igreg, ijul,ick

c

igreg - 588829
c

c get integer part
c

if(iyyy At. 0) iYYY= iyyy + 1
if( -in.gt. 2) then

jy - iyYYY
jM = mm+1

else
jy = iyyy - 1
im- -m + 13

end if
ijul int(365.25*real(jy))+int(30.600lereal(jm))+id+1720995
ick =id + 31*(m + l2*iyyy)
ifick .ge. igreg) then

is = int(0.01*jy)
ijul = ijul + 2 - ja + int(0.26*real(ja))

endif
c correction to modified julian days

ijul -ijul - 2440000
c
c fractional part
c

julien = dble(ijul) -0.5dO + dble(ih)/24.dO + dble(im)/1440.dO
1 + dble(sec)/86400.dO

c
return
end

subroutine caldat( julian, iyyy, mm, id, ih, in, sec
c
"c convert modified julian day to date and time
"c adapted from numerical recipies
c

double precision julian, fract
integere4 ijul. igreg,ja,jb

c
igreg - 2299161

c
c separate integer and fractional part
c

ijul idint(julian+0.5) + 2440000
fract =julian +0.Sd0 - dble(ijul - 2440000)

c
c extract date
C

if(iiul .ge. igreg) then
jalpha = iat((ijul-1867216) - 0.25)/36524.25)
is ijul + 1 + ialpha - int(0.25*jalpha)

else
=a ijul

endif
jb - is + 1524
jc - int(6080.0 + ((jb-2439870)-122.1)/365.26)
jd - 366*jc + int(0.26*jc)
jo - int((Jb - jd)/30.6001)
id - lb - jd - int(30.600leje)
mm a je - 1
if(mm .gt 12) mm- mm - 12
iyyy - jc -4715
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if(m .gt. 2) iyyy - iyyy - I

if(iyyy .1*. 0) iyyy w jyjy

c extract tine

ih - idint( 24.dOefract)
fract -fract - dble( ih )/24.dO
in - idint( 1440.dO*fract )
frac~t ; fract - dble( in )/1440.dO
ae = racte8O400.dO

if -cgo. 60.dO) then
sac =sec - 60.do
in =in + 1

endif
if(in .ge. 60) then

in in - 60
iA Ai + 1

endif
if(ih .ge. 24) then

Ah - ih - 24
A - id + 1

end if
C

return

end

subroutine open

c open all files for truth nod4l use

c

open(3,FILE'linput.t')

open(4 ,FILE-'output. t')

open(16,FILE'liosa.dat')

open(17,FILE-'dgsc .dat')

open(18,FILE-'gtsa.dat')

open(19,FILE'Ihtsa.dat')
open(20,FILE'vytsa.dat')

open(21 ,FILE'Ictec.dat')

open(22,7FILE-nhsa.dat')

open(23,FILE-'ttab.dat')

open(24 ,FILE-'tcsc .dat')

return
end

subroutine close
c
c close all files used in truth model
c

close(3)
close(4)

c
do 100 i - 16,24

close(i)
100 continue
c

return
end
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Sensor Locations

Indi 1 -4.671747860 55.477820590 860.500
Reef 2 -7.270030560 72.369998600 -68.375
Guam 3 13.615187820 144.856049380 218.930
Hula 4 21.562265240 201.757894060 429.420
Cook 5 34.822598900 239.498147050 271.530
Pike 6 38.805943055 255.471532222 1899.420
Boss 7 42.947821440 288.373437430 203.370
Pogo 8 76.515364390 291.401141690 147.030
Lion 9 51.117583380 359.093654500 146.590

Typical Input File

1992 09 10 12 00 00
1992 09 10 13 45 00

15
5097.638 -2716.526 3544.054
5.060657 3.636431 -4.478165
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Appendix F. Differential Corrector Program Listing

F.1 The Differential Corrector

The differential corrector is a least squares algorithm estimating six orbital elements specified

by equinoctial elements. Only two-body orbital motion effects are solved for based on a single track

of observation data. The subroutine 'phipphi.for' was written by Dr. Wiesel. The initial reference

state is input in rectangular coordinates and converted to equinoctial elements in 'equin.for.' This

is after the initial state has been propagated forward using the same integrator subroutines used

in the truth model.

program lstsq
c
c nonlinear least squares algorithm
c
c least squares comon block
C

cosmon /lst/ x(42)
double precision x

c
c hading coon block
c

cosson /ham/ t,y(42,4),f(42,4) ,err(42),dt,mode,n
double precision ty,f,err,dt
integer mode,n,nstep

c
c constants co--on block
c

comon /const/ degrad,emuflatmu,pi,rearth,tunits,ve
double precision degrad,emu,flat,mu,pi,rearth,tunitsve

c
c observation storage buffers:
C

double precision tinaob(3000),allobs(3,3000)
integer iob,nob,idone,iter,irej ,ifail,isite(3000)

c
c internal buffers:
c
"c dtime - (tob-tepoch) in seconds tepoch - epoch of reference trajectory
"c dx - correction to the state tmat - product of hephi
"c h - linearization of data tob - time of current observation
"c p - covariance matrix ttql - T-transpose * Q-inverse
"c phi - linearization of state ttqlr - T.transeQ.inver
"c pinv - inverse covariance xref - reference trajectory
"c qi - inverse data covariance z - actual obs (rho,az,el)
"c r - residuals zpred - predicted observations
"c rms - root mean square of r's
c

double precision dt ,dtimedx(6) ,h(3,6) ,p(6,6) ,phi(6,6)
double precision pinv(6,6) ,q1(3,3) ,r(3) ,reftimsreject,ri=(3)
double precision tepoch,tmat(6,6) ,tob,ttql(6,3) ,ttqlr(6)
double precision xref(6) ,z(3),zpred(3)
integer maxit,iyr,imon,idayihr,imin,site
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real sec
c
c inverse computational matrices
C

double precision fac(6,6) ,b(6) ,res(6)
integer ipvt(6)

C

C
c e~eeeeeeeeeceseeeee~eeeeeeeeeeececeeeece~eeeee~eeceeceeeeee~eeeee
c
C

c READ IN INITIAL GUESSES FOR STATE VECTOR A CONTROL PARAMETERS
C

c
c constants

c
degrad = 57.2957795131d+0
emu = 3.986012d+5
flat = 1.Od+0/298.257d+O
pi = 3.141592653589d+0
rearth = 6378.137d+0
tunits - 806.8118744d+O
we = 7.292115856d-5
mu = emu*(tunitse*2/rearth**3)

c
open(3,FILE 'input .d')
open(4,FILE 'output .d')

c
c read: initial time, reference trajectory guess,
c max allowed iter, residual reject criteria (8 of sigmas)
c

read (3,*) iyr,imon,iday,ihr,ifin,sec
call julday(iyr,inon,iday,ihr,iain,sec,tepoch)
read (3,.) (x(ii),iiil,3)
read (3,*) (x(ii),ii=4,6)
read (3,*) maxit
read (3,*) reject

c

c
c READ IN SITE LOCATION AND OBSERVATIONS
c
c ************eee ********
c
c convert range to earth radii (er) and degrees to radians
c

do 100 iob = 1,3000

read (3,*,E1D=125) iyr,imon,iday,ihr,imin,sec,
8 isite(iob),(allobs(ii,iob) ,ii-1,3)

call julday(iyr,imon,iday,ihr,imin,sec,timeob(iob))
if (iob eq. 1) reftime = timeob(iob)
allobs(1 liob) = allobs(1,iob)/rearth
allobs(2,iob) = allobs(2,iob)/degrad
allobs(3,iob) = allobs(3,iob)/degrad

100 continue
c

write (0,9000)
9000 format(2x,/, 'observation buffer full ... truncated',)

c

125 nob- iob- 1
c
c set the reference trajectory as equinoctial elements at time of let ob
c use haming to propagate input reference to time of first ob
c

do 140 1 a 1,6
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y(i,1) - x(i)
140 continue

c
c convert t,reftime into seconds for haming routine

c
t a tepoch * 86400.0d+0
reftime = reftime * 86400.0d+0

C

c initialize haming
c mode - 0 means no phi matrix, EON only (n - 6 elements)

c dt = stepsize for haming in seconds
c

dt = 15.Od+0
mode = 0
na6

natep = (reftime - t)/dt
c

c have to worry about possible truncation in calculation of nstep
C

if (dabs(t + dble(nstep)*dt -reftine) .gt.

1 dabs(t + dble(nstep)*dt + dt - reftime)) nstep natep + 1

c
nxt = 0
call haming(nxt)
if (nxt .eq. 0) then

print *,'hamming not initializing'
stop

endif
c

c main propagation loop
c

do 150 i a 1,netep
call baming(nxt)

150 continue
c

c assign the new reference trajectory back to x

c
tepoch = t/86400.Od+0

c

do 160 1 1,6
x(i) a y(i,nxt)

160 continue
c
c convert reference trajectory to equinoctial elements
C

call equin

c

do 175 i = 1,6
xref(i) a x(i)

175 continue
c

c print out input
c

call caldat(tepoch,iyr,iuon,iday,ihr,inin,sec)
write (4,9010) iyr,iaon,iday,ihr, iin,sec,xref,maxit,reject

c
9010 format(/,251, 'IOILINEAR LEAST SQUIRES' ,II,2x,

* 'Epoch time:',3x,i4,lx,4(i2,lx),fS.2,//,2x,
* 'Initial state vector:',f18.9,2(2x,f12.9)
* ,/,23x,f1S.9,2(2x,f12.9)//,2x,

9 'Maximum iterations:',i3,8x,

0 'Reject if gt ',lp,e9.3,' siga')
c
c set last pass flag
c
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idone = 0
C
C ***********e****e*ee*ee****ee,***,eee e****ee*****

C

c BEGIN ITERATION LOOP - NONLINEAR LEAST SQUARES
C

C **ee~******e~*******e~e************e**eeee~ee*****ee

C

do 5000 iter = 1,maxit
C

C

c REINITIALIZE STATE AND PHI MATRIX

C

C

c new reference traj guess is x(1-6)
c phi ic's x(7-42)

C

do 200 i = 1,6
z(i) = xref(i)

200 continue

do 205 i = 7,42
x(i) = O.Od+O

205 continue
do 210 i =7,42,7

x(i) = 1.Od+O
210 continue

c

c INITIALIZE BUFFERS FOR MATRIX PRODUCT ACCUMULATION
c

C

c

do 225 i = 1,6

ttqlr(i) = 0.Od+0
do 220 j = 1,6

pinv(i,j) = O.Od+O
220 continue
225 continue

c

c reset root mean square value for this iteration
c

do 250 1 = 1,3
rms(i) = O.Od+O

250 continue

c

cc prnew rferenetorlast guess resida hedes hn essr

if(iter .eq. 1) write (4,9020)
if(idone .eq. 1) write (4,9030)

if((iter .eq. 1) .or. (idone esq. 1)) write (4,9040)

9040 for2at(30x,'Range (er)',4-,

I 'Azimuth (rad)',3x, 'Elevation (rad)')
c
c

c

C
c OBSERVATION PROCESSING LOOP

c

c
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C
do 1000 iob - 1,nob

C
c extract this observation
c

site - isite(iob)
tob timeob(iob)
do 300 i 1,3

z(i) = allobs(i,iob)
300 continue

C
C ****e*,,ee***e*******,*e*e*,*ee****ee**

C

c DETERMINE STATE AID PHI AT OB TIME
C
C **eee********e**ee************e****eeee

C

c the only time varying element is 1 = x(1)
c only phi(i,4) = x(10) element varies
c phi is stored row by row
c dtime in tunits
C

dtime = (tob - tepoch)*(86400.Od+O/tunits)
C

x(1) = dmod(xref(1) + mu**2*dtime/xref(4)**3,2.0d+O*pi)

x(10) - -3.0d+O*mu**2sdtime/xref(4)e*4
c
C **ee*eeeseeeeeeeeeeee*eeeeee*$e~e~ee*e**

C

c OBTAIN MATRICES FOR THIS OBSERVATION
c
c eeeee$eeee*seeeeeeeeeeeeee$*e*eeeseeeseeee
Cc

call obser(tob,site,ql,zpred,h,iter)
C
C *eeeeeeeeee*********e**€********
C
c MATRIX CALCULATIONS - THIS OBSERVATION
C
c e*eeee eeee*eee,$$$$e$ee eee,$,$$
c
c Form residual vector and test for rejection based on the
c appropriate sign value in the qi matrix and the rejection
c criteria entered (* of sigmas). Any rejected obs changes the
c reject flag for the entire set of obs.
c

irej = 0
do 310 i 1,3

r(i) = z(i) - zpred(i)
if(dabs(r(i)) *g. reject/dsqrt(ql(i,i))) irej = 1

310 continue
c

if (r(2) .It. -pi) then
r(2) - r(2) + 2.0d+O*pi

elseif (r(2) .gt. pi) then
r(2) = r(2) - 2.0d+O*pi

endif
c
c print residuals for first or last pass only

c

if (iter .eq. 1 .or. idone .eq. 1) then
call caldat(tobiyr,imon,iday,ihr,imin,sec)
if(irej .eq. 0) then

do 350 1 - 1,3
rus(i) = rms(i) + r(i)**2
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360 continue
write (4,9100) iyr,iuon,iday,

0 ihr,imin,sec,(r(ii),ii=1,3)
endif
if(irej .ne. 0) write (4,9110) iyr,iuon,iday,

ihr,inin,sec,(r(ii),ii=1,3)
endif

c
9100 format(2x,i4,ix,4(i2,lx),f5.2,3x,lp

8 e14.6,2x,e14.6,2x,e14.6)
9110 format(2x,i4,lx,4(i2,lx),fS.2,3x,lp

S e14.6,2x,e14.6,2x,e14.6,3x,' REJECTED')
C

c skip matrix calculations if this is the last pass
c (convergence has already been achieved)
C

if( idone .eq. 1 ) go to 1000
C

c WAS THIS OBSERVATION REJECTED ?
c

if(irej .no. 0) go to 1000
c
c extract phi matrix in normal form
c

do 365 i = 1,6
do 360 j = 1,6

phi(i,j) - x(6ei+j)
360 continue
365 continue

c
c form matrix product tmat = h * phi
c (3x6) - (3x6)e(6x6)
c

do 377 1 = 1,3
do 373 j = 1,6

tmat(i,j) = O.Od+O
do 370 k = 1,6

tmat(i,j) - tmat(ij) + h(i,k)*phi(k,j)
370 continue
373 continue
377 continue

c
c form matrix product T-transpose * Q-inverse
c (6x3) (6x3) (3x3)
c

do 387 i = 1,6
do 383 j = 1,3

ttql(i,j) = O.Od+O
do 380 k = 1,3

ttqi(i,j) = ttql(i,j) + tmat(k,i)eql(k,j)
380 continue
383 continue
387 continue

c
c running sum of product (T-trans) (Q-inv) ( T )
c (6xM) (6x3) (3x6)
c

do 397 i - 1,6
do 393 j = 1,6

do 390k = 1,3
pinv(i,j) = pinv(i,j)÷ttql(i,k)*tzat(k,j)

390 continue
393 continue
397 continue

c
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c running sum of product (T.trans) (Q-inv) ( r )
c (6xl) = (6x3) (3xl)
c

do 405 i w 1,6
do 400 j = 1,3

ttqlr(i) = ttqlr(i) + ttql(i,j)er(j)
400 continue
405 continue

c
c loop back for more data
c

c

c
c EID OF OBS PROCESSING LOOP
c

c

c
1000 continue

c
c write root mean square values after 1st and last pass
c

if(iter .eq. 1 .or. idone .eq. 1) then
do 1010 i = 1,3

rms(i) = dsqrt(rms(i)/dble(nob))
1010 continue

write (4,9150) (rms(ii),ii-l,3)
9150 format (/,'Root Mean Square',

S 1p,11x,e14.6,2x,e14.6,2x,e14.6)
endif

c
c have we just finished printing last pass residuals?
c

if (idone .eq. 1) goto 6000
C

c
c
c DITA IS PROCESSED ... IMPROVE ESTIMATE
c

c
c
c write(*,9845) ((pinv(ii,jj),jj-l,6),iil1,6)
c
c invert matrix (T_trans) (Q-inv) ( T ) to find covariance P
c
c INSL routine taken from Math/Library page 99.
c two-step routine to compute high accuracy inverse of a real-
c symmetric matrix by first computing the UDU-trans
c factorization and then solving the system
c
c b is the identity matrix - 1 column at a time
c

do 1050 1 = 1,6
b(l) = O.Od+O

1050 continue
c
c first factor pinv and determine the pivots

c
call dlftsf(6,pinv,6,fac,6,ipvt)

c
c next solve the system 1 column at a time and iteratively refine
c

do 1055 j = 1,6
b(j) = 1.0d÷O
call dlfisf(6,pinv,6,fac,6,ipvt,b,p(l,j),res)
b(j) = O.Od+O
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1056 continue
C

c multiply P by (T trans) (Q inv) ( r ) to got correction to state
c (6x6) (6x1)

c
do 1110 i - 1,6

dx(i) - O.Od+0
do 1100 j = 1,6

dx(i) = dx(i) + p(i,j) * ttqlr(j)
1100 continue
1110 continue

c
c
c
c CHECK FOR CONVERGENCE

c
C

c
c if the correction is smaller than 1/lOOth of the corresponding
c diagonal element of the covariance matrix, then stop
c

ifail = 0
do 1120 i = 1,6

if(dabs(dx(i)) .gt. O.01d+O*daqrt(dabs(p(i,i)))) ifailml
1120 continue

c
c print iteration
c

write (e,9200) iter,(dx(ii),ii-1,6)
9200 format(/,2x,'Iteration ',i3,

9 2x,'state corrections',1p,2(/,e14.6,2(2x,e14.6)))
c
c add in state corrections to the reference trajectory
c

do 1130 i = 1,6
xref(i) = xref(i) + dx(i)

1130 continue
xref(1) = dmod(xref(1),2.Od+O*pi)

c
c print current best guess
c

write (*,9210) (xref(ii),ii-l,6)
9210 format(/,2x,

I 'Current reference trajectory state vector at epoch:',

0 2(/,f14.9,2(2x,f14.9)))
c
c have we just converged?

c
if(ifail .eq. 0 ) idone = 1
if(idone .eq. 1 ) write (e,9220)

9220 format(//,2x,'COIVERGENCE ICHIEVED.',/,2x,

* 'In nominia Gaussiam trajectorum referentia ',

* 'declarium eat estiuatia.',/)
c
c failure, yet again ...
c

c
c
c EKD OF ITERATION LOOP

c

c
c

5000 continue
c
c failure processing ... max iterations exceeded
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C

write (e,9300)
9300 format(2x,/,'Naximum iteration limit exceeded.')

c
go to 8000

C
C le**e*e*e*eeeee**eeee **eeee **•e****eee$$$*ee*eee *e*e***e
c

c !!!: !:::!!:!!!! SUCCESS
C

C

c print covariance matrix

c
6000 write (4,9310) ((p(ii,jj) ,jj=1,6) ,ii-l,6)
9310 format(/,2x,'Covariance Natrix at epoch is:',/,1p,

* 6(1x,6(e12.5,lx),/) )
C

c print state at time of last observation
c

call caldat (tob, iyyy, imon, iday, ihr, imin,sec)
c

write (4,9320) iyyy,imon,iday,ihr,imin,sec,(x(ii),iiul,6)
9320 format(lx,'state at t = ',i4,ix,4(i2,1x),fS.2,

* 2(/,f13.9,2(2x,f12.9)))
C

c calc cove-iance at last observation time
c
c extract phi
c

do 6020 i-1,6
do 6010 j = 1,6

phi(ij) = x(6*i+j)
6010 continue
6020 continue

c
c move covariance (new covariance now stored in piny)
c

call phpph(p,phi ,pinv)
c

write (4,9340) ((pinv(ii,jj) ,jji ,6) ,iil1,6)
9340 format(/,2x,'Covariance at time of last observation: 2,/,lp,

* 6(lx,6(e12.5,1x),/) )
c

8000 end
c
c

include 'haning.for'

include 'equin.for'
include obaer.for'
include 'phipphi. for'
include 'julian.for'

subroutine equin
c
c calculate equinoctial elements (earth radii, radians, time units)
c from r and v (km and km/sec)
c this is the same routine as elemnt from truthmdl
c plus going from classical to equinoctial
c
c least squares comon block

c
common /let/ x(42)
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double precision x
c

c general double precision statements
c

double precision axis,ecc,incl,node,pgee,trae,esnom,mean
double precision r,v,h(3) ,hmag,vn(3) ,vnmag
double precision rdotv,fl,f2,e(3) 'p
double precision edotn,en,edotr,er

C

c constants
C

common /const/ degrad, emuflat nin, pi, re arthtunita, we
double precision degrad,emu,flat,mu,pi~rearth,tunits,we

C

r =dsqrt(x(I)ex(i) + x(2)*x(2) + x(3)*x(3))
v dsqrt(x(4)*x(4) + x(5)*x(5) + x(6)*x(6))

c
c angular momentum vector, h - r x v, and magnitude, haag
C

W() = x(2)*x(6) - x(3)*x(5)
h(2) = x(3)*:. '4) - x(1)*x(6)
h(3) = x(1)*x(S) - x(2)*x(4)
huag = dsqrt(h(1)*h(1) + h(2)*h(2) + h(3)*h(3))

c
c nodal vector, vnt - k x h, and magnitude, vnmag
c

vn(1) z -h(2)
vn(2) = h(i)
vn(3) - O.Od+O
vumag = dsqrt(vn(1)*vn(1) + vn(2)*vn(2) + vn(3)*vn(3))

c

c inclination = incl
C

incl dacos(h(W)hmag)
C

c right ascension of ascending node = node
C

if (vnmag .eq. O.Od+O) then
print *,)Equatorial orbit -- RIA of Ascending lode undefined'
node - O.Od+O

elseif (vn(2) .gt. O.Od+O) then
node - dacoo(vn(l)/vnmag)

else
node = 2.Od+O * pi - dacos(vn(1)/vmmag)

endif
c
c eccentricity - ecc
C

rdotv = x(1)ex(4) + x(2)*x(5) + x(3)*x(6)
fi - vev/emu - 1.Od+O/r
f2 = rdotv/emu
e(1) = fl~x(1) - f2*x(4)
e(2) - fiez(2) - f2*x(5)
e(3) - flex(3) - f2*x(6)
ecc - dsqrt(e(1)*e(i) + e(2)*e(2) + e(3)*e(3))

c
c semi-major axis - axis (kis)
c

p -hmagehmag/emu
axis - p/I(.OdoO - ecceecc)

c
c argument of perigee apgoe
c

edotn = vn(1)ee(1) + vn(2)*e(2) + vn(3)*e(3)
en = eccovumag
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if (ccc .eq. O.0d40) then
print *, 'Circular orbit -- Argument of Perigee undefined'
pg.. - 0.0d40

elseif (vnmag eq. 0.0d4O) then
print *,'Equatorial orbit -- Argument of Perigee undefined'
pgee - 0.Od+0

elseif (edotnlcn .gt. i.Od+0) then
pg.. - O.Od+0

elseif Wc3) .gt. O.Od+0) then
pg.. - dacos(edotn/en)

alse
pg.. - 2.Od+0 * pi - dacos(edotn/en)

endif
C

c true anomaly = true, mean anomaly = mean
C

edotr = e(1)x(l) + e(2)*x(2) + e(3)*x(3)
er = eccer
if (ccc .eq. 0.Od+0) then

print *,'Circular orbit -- Kean Anomaly undefined'
true = 0.Od+0

elseif (wnmag .eq. 0.Od.0) then
print *,'Equatorial orbit -- Mean Anomaly undefined'
true - 0.Od+0

elseif (edotr/er .gt. 1.Od+0) then
truc = 0.0d+0

elseif (rdotv .gt. 0.od+0) then
true = dacos(edotr/er)

clse
true = 2.Od4O * pi - dacos(edotr/er)

end if
eanom = 2.Od+0 * datan(dsqrt((I.0d40 - ecc)/(1.Od+0 + ccc))e
9 dtan(truc/2 .0d4O))

mean = canom - ecccdsin(eanom)
c
c calculate the equinoctial elements
c x(4) converted from km**2/sec to er**2/sec
c

x(i) =mean
x(2) e cc * dcos(pgec)
x(3) =dtan(incl/2.Od+O) * dcos(node)
x(4) dsqrt (emueaxis)*(tunits/rearth**2)
x(S) ccc * dsin(pgee)
x(6) -dtan(incl/2.0d+O) * dain(node)

c
write (*,900) (x(ii),iilI,6)

c
900 format(I,2x, 'Equinoctial Elements: 'l

1 2x,'1 ',f17.13,2x,'radians',/,
2 2xIk ',f17.13,/,
3 2x,'psi ',fl?.13,3x,l,
4 2x,'capl ',fl7.13,2x,2DU**2/fli',/,
5 2z,'h '.f17.13,3x,/,
6 2x,'chi ',f17.13,3x,I)

c
return
end

subroutine obser (tob,isite,ql .zpred,h,iter)
c
"c This routine establishes the data covariance, computes the
"c predicted range, azimuth, elevation for the current equinoctial
"c state vector (in call to antnna), and computes the data linearization
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c matrix h thru extensive use of partial derivatives and the chain rule.

c

common Ilst/ x(42)
double precision x

c

double precision tob,ql(3,3),zpred(3),h(3,6)

integer isite
c

c declarations for predicted data vector
c

double precision axis,ecc,incl,node,pgee,mean
double, precision error,anomO,anoml,eanom,cnu,snurag,p
double precision pqv(6) ,rho(6) ,rot(3,3) ,eci(6)

c
c declarations for h partial derivatives

c

double precision phi,theta,danom(6),dnu(6),druag(6)
double precision drotll(6),drotl2(6),drot2l(6),drot22(6)
double precision drot3l(6),drot32(6),dr(6,6),root,droot(6)
double precision equin(6,6),ecieqn(6,6),drhn•.(3,3),geci(3,6)

c

c constants
c

common /const/ degrad,emu,flat,ma,pi,rearth,tunits,ue
double precision degrad,emu,flat,mu,pi,rearth,tunits,ue

c

c eeeC*Ce**C*e*e*e**

c

c Q ISVERSE MATRIX
c

C

"c sigma = 100 m in range = 1.567856e-5 earth radii,
c .025 deg = .000436 radians in az and el

"c diagonal elements are 1/sigma**2
c

ql(1,1) = 4.0681d+9
ql(2,2) = 5.2525d+6
ql(3,3) = 5.2525d+6
ql(1,2) = O.Od+O

qi(1,3) = O.Od+O
ql(2,1) - O.Od+0

ql(2,3) w O.Od+0
ql(3,1) a O.Od+0
ql(3,2) a O.Od+O

c

c
c
c PREDICTED DATA VECTOR - ZPRED

c

c

"c predicted data comes from the current equinoctial element set
"c converted to range, azimuth, elevation

c

c first determine the classical elements:

c axis(in DU),ecc,incl,node,pgee,mean
c

axis = x(4)**2/au

ecc - dsqrt(x(2)*x(2) + x(S)ex(6))
incl = 2.Od+0 * datan(dsqrt(x(3)*x(3)+x(6)*x(6)))

if (x(3) .Jt. O.Od+O) then
node - pi - dasin(x(6)/dsqrt(x(3)*x(3)+x(6)*x(6)))

else
if (x(6) .gt. O.Od+O) then
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node dasin(x(6)/dsqrt(X(3)*x(3)+x(6)ex(6)))
else

node a2.Od4O*pi +
# dasin(x(6)/dsqrt(x(3)*x(3)+x(6)*x(6)))

end if
endif
if Ux(2) Alt. 0.Od+0) then

pgee= pi - dasin(x(5)Idsqrt(x(2)*x(2)+x(5)*x(5)))
else

if WiS) .gt. 0.Od4O) then
pgee = dasin(x(5)/dsqrt(x(2)*x(2)+x(5)*x(5)))

else
pgee = 2.0d40*pi +

* dasin(x(5)/dsqrt(x(2)*x(2)+x(5)*x(S)))
endif

endif
mean = x(l)

c

c error check
C

if (ecc .ge, 1.Od+0) then
print *

print *,'Diverged'
print*
stop

endif
C

c iterate to find eccentric anomaly (DR&W page 222)
c

error = 1.Od+0
anomi - mean

100 anomO = anomi
anoint- anomO + (mean- (anomO-eccedsin(auom0) ))/

S (1 .Od+0-ecc*dcos(anomO))
if (anomi .eq. 0.Gd+0) then

error - 0.Od+0
else

error = dabs((anoml-anom0)/anoml)
endif
if (error .gt. 1.0d-16) go to 100
eanon = anoui

c
c now need cos(nn) and sin(nn) (DRAW page 187)
c

cnu - (ecc-dcos(eanom))/(eccedcoa(eanom)-1 .Od+0)
rinag - axis*(1.Od+0 - ecc * dcos(eanom))
ann = (axisedsqrt (1 0d+0-ecceecc) edsin~eanam) )/rmag

c
c next find r and v in the PQV frame (EXAM page 72-3)
c

p = axis*(1.Od+0 - ecc*ecc)
pqu(1) - rmagecnn
pqv(2) - ruag*snu
pqw(3) - 0.0d40
pqw(4) - -dsqrt(an/p)*snn
pqu(5) - dsqrt(an/p)*(ecc+cnn)
pqw(6) - 0.Od+0

c
c rotate to ECI (rotation matrix from DRAW page 82-3)
c

rotO, .) - dcoa(node)*dco.(pgee)-duin(node)*dsin(pgee)edcos(incl)
rot(1 .2) - -dcos(node)*dsin(pgee)-dain(node)*dco.(pgee)4.dcos(incl)
rot(2,1) - dain(node)*dcom(pgee)+dcos(node)*dsin(pgee)*dcos(incl)
rot(2,2) * -dain(node)edsin(pgse)+dcoa(node)cdcos(pgee)*dcos(incl)
rot(3,1) - dsin(pgee)*dsin(incl)
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rot(3,2) - dcos(pgee)*dsin(incl)
c

eci(I) - rot(1,1)*pqw(1) + rot(1,2)*pqw(2)
eci(2) - rot(2,1)*pqw(1) + rot(2,2)*pqv(2)
eci(3) = rot(3,1)*pqw(l) + rot(3.2)*pqu(2)
eci(4) = rot(i,1)epqw(4) + rot(1.2)*pqw(5)
eci(S) = rot(2,i)spqw(4) + rot(2,2)*pqs(5)
eci(6) = rot(3,1)*pqw(4) + rot(3,2)*pqw(5)

c

call antnna(isite,tob,eci,zpred~rho,phi,theta)
c

C ***********

c

c CALCULATE RNMATRIX
c

C ***********

c

c Step I - Define partials of Eccentric Anomaly from N =E -e*sin(E)

c with respect to the classical elements (a,e,i,node,pgee,mean).
c

danom(1) = 0.Od+0
danom(2) - dsin(eanom)/(1.0d+0 - ecc*dcos(eanom))
danom(3) =0.04+0
danom(4) - 0.04+0
danom(5) = 0.04+0
danom(6) = 1.0d+0/(l.0d+0 - ecc*dcos(eanom))

c
c Step 2 -Define partials of True Anomaly from
c nlu = 2*atan(sqrt((1+e)/(1-e))*tan(eaiiom/2))
c with respect to the classical elements.
C

dnn(1) 0.04+0
dnu(2) =2.Od+0*(danom(2)*dsqrt((1.0d+0 + ecc)/
0 (1.0d+0 - ecc))/(2.0d+0*dcos(eanom/2.od+0)**2) +
9 dtan(eanom/2.0d+0)/((1.Od+0 - ecc)**2
9 *dsqrt((1.0d+0 + ecc)I(1.0d+0 - ec))

S(1.04+0 + (1.04+0 + ecc)*dtan(eanom/2.0d+0)ee2/
8(1.04+0 - ecc))

dnn(3) - 0.04+0
dnu(4) - 0.04+0
dnu(5) - 0.04+0
dnu(6) = danom(6)**2 * (1 .04+0 - ecc)*
8 dsqrt((1.0d+0 +ecc)/I(.04+0 ecc))

c
c Step 3 - Define partials of rmag from rmag a (1-eecos(E))
c with respect to the classical elements.
c

druag(1) - (1.04+0 - eccedcos(eanom))
drmag(2) = axis*(eccedsin(eanom)*adnom(2)-dcos(eanom))
drsag(3) - 0.0+00
drmag(4) = 0.0400
drmag(S) - 0.0+00
druag(6) = axis*eccedsin(eanom)*danom(6)

c
c Step 4 - Define partials of the rotation matrix -rot(3,3)

c with respect to the classical elements.
c

drotill() - 0.04+0
drotll(2) - 0.04+0
drotli (3) - dsin(node)*dsin(pgee)*dsin(incl)
drotll(4) a -rot(2,1)
drotll(5) - rot(1,2)
drotll(6) - 0.0+00

c
droti2(I) - 0.0+00
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drotl2(2) = O.0d40
drot12(3) = dsin(node)*dcou(pgee)*dsin(incl)
drot12(4) =-rot(2,2)
drotl2(6) a -rot(1,1)
drotl2(6) =O.0d40

c

drot21(I) - O.0d40
drot2l(2) - O.0d40
drot2l (3) - -dcoe(node) *dsin(pgee)*dsin(incl)
drot2l(4) - rot(1,1)
drot2l(S) * rot(2,2)
drot2l(6) - O.0d40

c

drot22(l) - O.0d40
drot22(2) - O.0d40
drot22(3) =-dcos(node) *dcos(pgee) *dsjn(jncl)
drot22(4) = rot(1,2)
drot22(5) -- rot(2,1)
drot22(6) = O.0d40

c

drot3l(1) = O.0d40
drot3l(2) = O.0d40
drot3i(3) -dsin(pgee)*dcos(in~cl)
drot3l(4) -O.0d40
drot31(S) = rot(3,2)
drot3l (6) = O.0d40

C

drot32(1) = O.0d40
drot32(2) = O.OdeO
drot32(3) = dcos(pgee)*dcos(incl)
drot32(4) = O.0d40
drot32(5) =-rot(3,I)
d~rot32(6) - O.0d40

c

c Step 5 - Define partials of position end velocity from
c r..eci - rot * r..pqw = rot * (recos(nn) + r*sin(nu))

c v-.eci - rot * (-sin(nu)*sqrt(uu/a(1-e-2)) + (e~cos(nu)) *sqrt)
c with respect to the classical elements.
c Completion of this step achieves the partia~ls of the eci position and
c and velocity vectors with respect to the classical elements.
c

dr(1,1) -rot(1,1)*cnn*druag(1) + rot(1,2)*snuedrmag(l)
dr(1,2) = -rot(1,1)*rmag*snu*dnu(2) + rot(1,1)ecnuedrmag(2) +
* ~rot(i,2)*rmag~cnuednu(2) + rot(i,2)*snusdruagC2)

dr(1,3) - rsag*cnu*drotll(3) + rmag*snu*drotl2(3)
dr(1,4) - ruagecnuedrotll(4) + rmagcsn~usdrotl2(4)
dr(1,5) - ruag*cnuedrotll(5) + ruag*snu*drotl2(6)
dr(1,6) a -rot(1,1)*ruagsnu*dnu(6) + rot(1,1)ecnucdrmag(6) +
* ~rot(1,2)*rmagcnu*dnu(6) + rot(1,2)*snusdrma~g(6)

c
dr(2,1) - rot (2, 1)*cnu*drmkag(1) 4 rot (2,2) *szkuedrmag(1)

tir(2,2) - -rot(2,1)*rmagesnu*dnu(2) + rot(2,1).cnuedrmag(2) +

9 rot(2,2)*rm age cnuednu(2) + rot(2,2)*snu~drmag(2)

dr(2,3) - ruag*cnu*drot21 (3) + rukag*snu*drot22(3)
dr(2,4) - ruag*cn~uedrot2l(4) + ruag*snu*drot22(4)
dr(2,5) - rutag*cnu*drot2l(S) + ruag*snu*drot22(6)
dr(2,6) - -rot(2,1)*rxa5*nu*dnu(6) + rot(2.1)*cnusdrmag(6) +

0 rot(2,2)*zuag*cnn*dnu(6) + rot(2,2)*snu~drmag(6)
c

dr(3,1) arot(3,1)*cnn*druag(1) + rot(3,2)*snn*druag(1)
dr(3,2) a-rot (3,1I)*rsmagenu*dxnu(2) + rot(3,i)*cnuedrmag(2) +

8 rot(3,2)*rmagcnu*dnu(2) + rot(3,2)*snu*drwag(2)
dr(3,3) = rmag*cnu*drot3l(3) + ruag*snu*drot32(3)
dr(3,4) a O.0d40
dr(3,S) a rmag*cuu*drot3i(5) + rmag*snuudrot32(5)
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dr(3,6) - -rot(3,1)*rmagsnuednu(6) + rot(3,1)*cnuedruag(6) 4
S ~rot (3,2) *rzmaecnuednu(6) 4 rot(3,2)*snuedrmag(6)

c

"c Intermediate step to define partiala of the square root term in each
"c velocity component equation. Root = sqrt(mu/ae(I-e**2)).
c

root - dsqrt(am/(axis*(1.0d40 - ecc*ecc)))
droot(i) - -rootl(2.Od4O * axis)
droot(2) - eccerootl(l.0d40 - ecceecc)
droot(3) = 0.0d40
droot(4) = 0.0d40
droot(S) = O.0d40
droot(6) -0.0440

c

dr(4.1) = -rot(1,1)esnuedroot(1) + rot(1,2)*(ecc~cnu)*droot(1)
dr(4,2) = -rot(1,1)*rootecnuednu(2) - rot(i,1)*snu*droot(2) +
* rot(1,2)*root*(I.0d40 - snu*dnu(2)) +

9 rot(1 ,2)*(ecc~cnu)*droot(2)
dr(4,3) = -root*snuedrotii(3) + root*eacc~cnu)*drotl2(3)
dr(4,4) = -root*snuedrotll(4) + root*(ecc~cnu)*drotl2(4)
dr(4,S) = -rootesnuedrotli(5) + root*(ecc~cnu)*drotl2(5)
dr(4,6) = -rot(1,1)*rootecnuednu(6) - rot(1,2)*rootesnuednu(6)

C

dr(5,1) = -rot(2,1)*snuedroot(1) + rot(2,2)*(ecc~cnu)*droot(1)
dr(5,2) = -rot(2,1)*rootecnusdnu(2) - rot(2,1)*snnedroot(2) +

* rot(2,2)*root*(1.0d40 - snu*dnu(2)) +
* rot(2,2)*(ecc~cnu)*droot(2)

dr(6,3) = -rootesnu*drot2l(3) + root*(ecc~cnu)*drot22(3)
dr(5,4) - -rootesnuedrot2l(4) + root*(ecc~cnu)*drot22(4)
dr(5,5) = -root*snuedrot2l (5) + root*(ecc~cnu)*drot22(6)
dr(5,6) - -rot(2,1)*rootecnuednu(6) - rot(2,2)*rootesnuednu(6)

c

dr(6,1) -- rot(3,1)*snuedroot(1) + rot(3.2)*(ecc~cnu)*droot(1)
dr(6,2) - -rot(3,1)*rootecnuednu(2) - rot(3,1)*snuedroot(2) +

* rot(3,2)*root*(1.0d40 - snuednu(2)) +
S ~rot (3.2)*(ecc~cnu)*droot(2)

d~r(6,3) = -rootesnu*drot3l(3) 4 root*(ecc~citn)*drot32(3)
dr(6,4) - .0d40
dr(6,6) - -root*snuedrot3l(5) + root*(ecc~cnu)edirot32(5)
dr(6,6) - -rot(3,1)*rootecnuednu(6) - rot(3,2)*rootasnuednu(6)

c
c Step 6 -Define partials of classical elements with respect to
c the equinoctial elements using the relationships between
c the elements as defined in the predicted data vector section
c above.
c

equin(i,i) - 0.0d40
equin(1,2) - 0.0d40
equin(1,3) -0.0d40
equin(1,4) - 2.0d40 * x(4)/em
equin(1,5) = 0.0440
equin(1,6) = 0.0d40

c

equin(2,1) - 0.0440
equin(2,2) - x(2)/ecc
equin(2,3) a 0.0440
equin(2,4) =0.0440
equin(2,5) = x(5)/ecc
equin(2,8) - 0.0440

c
equin(3,I) - 0.0440
equin(3,2) - 0.0440
equ~in(3,3) - (2.0d4Osx(3))/(dsqrt(x(3)*x(3)4x(6)*x(6))e

# (1.0440 + x(3)*x(3) + x(6)*x(6)))
eqain(3,4) - 0.0440
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equin(3,5) 0 .04+0
equin(3,8) - (2.0d+oez(6))/(dsqrt(x(3)*x(3)+x(6)*x(6))*

8 (1.04+0 + x(3)*x(3) + x(6)*x(8)))
c

equin(4,1) a .Od+0
equint(4.2) a 0.04+0
equin(4,3) - -x(6)/(x(3)ex(3) + x(6)*x(6))
equin(4,4) - 0.0440
equin(4,5) a 0.04+0
equin(4.6) - x(3)/(x(3)*x(3) + x(6)*x(6))

c

equin(5,1) = 0.Od+0
eqnin(5,2) = -x(5)/(eccsecc)
equin(5,3) = 0.Od+0
equin(5,4) = 0.0d+0
equin(5,5) =x(2)I(ecceecc)
equin(6,6) =0.04+0

C

equin(6,1) = 1.04+0
equin(6,2) = 0.04+O
equin(6,3) = 0.Od+0
equin(6,4) = 0.04+0
equin(6,5) = 0.04+0
equin(6,6) = 0.04+0

c

c Step 7 - Multiply two matrices together. The matrices are
c partial x-ecilpartial x-class I partial x..class/partial x-equin
c giving partial x-eci/partial x..equinoctial as a 6 X 6 matrix.
c Completion of this stop give. 2/3 of the h matrix.
c

do 530 i = 1,6
do 520 j = 1,6

ecieqn(i~j) - 0.04+0
do 610 k = 1,6

ecieqn(i~j) - ecieqn(i~j) + dr(i,k)eequin(k,j)
510 continue
520 continue
530 continue

C

C

c Step 8 - Compute partials of the data vector (range, azimuth, elevation)
c with respect to the cci position vector. Multiplying this 3 X 6
c matrix with the 6 I 6 ecieqn matrix gives the h matrix.
C

"c First need the partial. of the topocentric range with respect to the
"c ad position.
c

drhor(1,I) = dsin(phi) * dcos(thieta)
drhor(1,2) adsin(phi) * dsin(theta)
drhor(1,3) = -dcos(phi)
drhor(2,1) = -dsin(theta)
drhor(2,2) -dcoa(theta)
drhor(2,3) - 0.04+0
drhor(3,1) - cos(phi) * coa(theta)
drhor(3,2) - cos(phi) * sin(theta)
drhor(3,3) - sin(phi)

c
geci(1,1) - (rhoC4)*drhor(1,1) + rho(5)edrhor(2,1) +

8 ~rho(6)*drhor(3,1))/zpred(1
geci(1,2) -(rho(4)*drhor(1,2) + rho(6)edrhor(2,2) +

8 ~rho(6) edrhor(3,2) )/zpred(1)
geci(1,3) a (rho(4)*drhor(1,3) + rho(5)*drhor(2,3) +

8 rho(6)edrhor(3,3))/zpred(1)
goci(1,4) a 0.04+0
goci(1,6) - 0.04+0
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geci(1,6) - 0.Od+0
c

geci(2,1) - (rho(S)*drhor(1,1) - rho(4)*drhor(2,1))/
* (rho(4)*rho(4) + rho(6)*rho(S))
geci(2,2) -(rho(6)*drhor(1,2) - rho(4)*drhor(2,2))/
0 (rho(4)*rho(4) + rho(5)*rho(6))
geci(2,3) - (rho(5)*drhor(1,3) - rho(4)*drhor(2,3))/

* (rho(4)*rho(4) + rho(5)*rho(S))
geci(2,4) = 0.Od+0
geci(2,5) = 0.Od+O
geci(2,6) = 0.Od+0

c

geci(3.1) = (zpred(1)*drhor(3,1) - rho(6)*geci(1,1))/
* (zpred(1)*dsqrt(zpred(1)**2 - rho(6)**2))

geci(3.2) -(zpred(1)edrhor(3,2) - rho(6)*geci(1,2))/
* (zpred(1)*dsqrt(zpred(1)es2 - rho(6)**2))

geci(3,3) = (zpred(l)*drhor(3,3) - rho(6)*geci(1,3))/
9 (zpred(l)*dsqrt(zpred(1)**2 - rho(6)**2))
geci(3,4) - 0.Od+0
geci(3,5) = 0.0d+0
geci(3,6) - 0.Od+0

C

c And finally, h
C

do 630 i -1,3
do 620 j = 1,6

h(i~j) = 0.0d+0
do 610 k = 1,6
h(i~j) = h(i~j) + geci(i,k)*ecieqn(k,j)

810 continue
620 continue
630 continue

c

return
end

C

include 'antnna .for'

subroutine antnna(isite,tob,eci,zpred,rho,phi,theta)
c

c This routine calculates the predicted range, azimuth, elevation
c in topocentric coordinate frame from a given eci position
c vector and stores in zpred. This is for a specific station location
c rsite, phi, and theta.
c

double precision tob,eci(3) ,zpred(3) ,rho(6) ,rsite(3)
double precision ut ,jd,tu,gmt ,thetag
double precision phi,lon,h,theta,c,s
integer isite,iloc
character*4,site

c
c constants
c

comon /const/ degrad,emu,flat,am,pi,rearth,tumits,ve
double precision degrad,emu,flat,mu,pi,rearth,tunits,we

c
"c read in site identifier, phi and lon in degrees (imediately
"c converted to radians), and altitude in meters (converted to a
"c fraction of rearth - DO)
c

open(15,FILE-'sensor.loc' ,STATIJS'OLD')
c
c Reference: 1992 Astronomical Almanac,* page 86
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c

id - tob + 2440000.Od+0
ut - dwod(jd + 0.Sd40,1)
jd - jd - ut
tu - (jd-246I546.dOd~.)/36526.0d4'0
gost - 24110.54841d+0 + tu*(8640184.812866d+0 + tue(0.093104d+o -

* tu*6.2d-6))
guat - dmod(gmst + 86400 .0d+0e(88400.Od")eue/(2 .Od+oepi))*ut,

* 86400.04+0)
thetag - 2. Od+0*pi*gustI8O400 .04+0

c

c control loop for each of nine stations
c Il-Indi 4 - ula 7 m oas
c 2=-Reef 5=-Cook 8 =Pogo
c 3 =Guam 6 =Pike 9 -Lion
c

"c input file contains phi and ion in degrees and h in meters
"c degrees converted to radians and meters to earth radii
c

do 100 i - 1,9
read (15,*) site,iloc,phi,lon,h
if Ciloc .eq. isite) then

phi - phi/degrad
Ion = lon/degrad
h - h/(1000.Od+Oerearth)
goto 110

endif
100 continue

c
"c Convert longitude and time to Local Sidereal Time
"c Reference: BR & V page 100
c
110 theta = dmod(lon + thetag,2.Od+Oepi)

C

"c Convert Geodetic Latitude to Geocentric Latitude
"c Reference: 1992 Astronautical Almanac page III
c

c - 1.Od+0/dsqrt(1.Od4O + flat*(flat - 2.Od+0)edsin(phi)**2)
9 = (1.Od+0 - flat)ee2 * c

c
c compute site position
c

rsite(1) - (c + h)edcos(phi)edcoo(theta)
tsite(2) - (c + h)*dcos(phi)*dsin(theta)
rsite(3) = (a + h)*dsin(phi)

c
"c rho(1-3) are the components of range - inertial
"c rho(4-6) are topocentric
"c Reference: BN & V page 79
c

do 10 1 - 1,3
rho(l) - eci(l) - rsite(l)

10 continue
c

rho(4) - dsin(phi)*dcos(theta)*rho(1) +
*dsin(phi)edsin(theta)*rho(2) -

*dcos(phi)*rho(3)
rho(5) - -dain(theta)*rho(1) + dcoa~theta)*rho(2)
rho(6) - dcoa(phi)*dcos(theta)*rho(1) +

*dcos(phi)*dsin(theta)*rho(2)+
*dain(phi)*rho(3)

c
"c calculate the range, azimuth, and elevation
"c Reference: BM & V page 88
c
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zpred(1) = dsqrt(rho(4)**2 + rho(S)**2 + rho(6)**2)

C

if (rho(4) .gt. O.Od+O) then

zpred(2) - pi + datan(-rho(5)/rho(4))
elseif (rho(S) .At. O.Od+O) then

zpred(2) = 2.Od+O*pi + datan(-rho(5)/rho(4))

else

zpred(2) = datan(-rho(5)/rho(4))
endif

C

zpred(3) = dasin(rho(6)/zpred(1))
C

close(15)
C

return

end

*eee$ee* ee~e ee~eeeeeeeeeeee~eeee~ee~eee~e$•e~eeee~e~e$•ee*e***eee$ee~e~e~e•

subroutine phpph(pin, phi, pout)
c

c performs covariance propagation phi e p C phi transpose
c
c dimensions
c

double precision pin(6,6),phi(6,6),pout(6,6),phip(6,6)

C

c matrix product phi C p
c

do 420 i = 1,6
do 410 j - 1,6

phip(ij) = O.Od+O
do 400 k S 1,6

phip(i,j) = phip(i,j) + phi(i,k)*pin(k,j)
400 continue
410 continue

420 continue
C

C matrix product p(tf) = phi p phi transpose
c

do 520 i = 1,6
do 510 j = 1,6

pout(ij) = O.Od+O
do 500 k a 1,6

pout(ij) - pout(ij) + phip(i,k)*phi(j,k)
500 continue
510 continue
520 continue

c
return
end

Typical Input File

1992 09 10 12 00 00
5097.638 -2716.526 3544.054

5.060657 3.636431 -4.478165
15
3.0d+5

1992 9 10 13 32 30.00 3 2236.466802 342.941839 0.578254
1992 9 10 13 32 45.00 3 2142.764210 344.154938 1.483839
1992 9 10 13 33 0.00 3 2049.936963 345.521691 2.424606
1992 9 10 13 33 15.00 3 1958.161107 346.984290 3.354736
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