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ABSTRACT

Perturbation methods and numerical methods were employed to study five problem areas. (1)
For viscous vortical flows, a complete account of the asymptotic analyses, numerical studies and
their physical meaning was presented in Springer-Verlag Lecture Notes in 1991. An extension
of the asymptotic analysis for the motion and diffusion of a slender vortex filament to allow for
the variation of the core structure along the filament was accomplished in 1992. This extension
was needed for the study of the vortex breakdown problem. (2) For shock wave interactions, the
locations and the types of singularities in the interaction of semilinear waves in three- and higher
dimensional space were identified. (3) For wave propagations in a bubbly liquid, a survey of the
linear and nonlinear theories and their limitations was presented in an article in Advances in Applied
Mechanics in 1991. A system of effective equations uniformly valid at small gas volume fraction
and large bubble number density was derived in 1992. (4) For free boundary problems, solutions
simulating the breaking up or merging of symmetric slender jets or thin sheets were obtained in
1990. The solution for drop formation after the breaking was formulated recently. (5) In the analysis
of structural/acoustic interactions, the solution for the panel oscillation was uncoupled from that
for the acoustic field by the recent formulation of the on surface conditions taking into account the
acoustic effect.

1. INTRODUCTION

We have been using perturbation and numerical methods in our investigations of fluid dynamics problems
for many years. Our investigations are centered on five problem areas. They are 1) viscous vortical flows, 2)
shock wave interaction 3) multiphase flows, 4) free boundary problems and 5) structural/acoustic interaction.
We shall describe briefly our earlier research activities leading to our current investigations in these areas.

The motion and diffusion of slender vortex filaments was analyzed by the method of matched asymptotics
in 1965 by Ting and Tung [1]* for two dimensional problems. The same method was employed later to study
slender circular vortex rings [2] and vortex filaments [3, 4], in particular to define the velocity of a filament
and established the dependence of the velocity on the vortical core structure. These results were needed
since the velocity was undefined in the inviscid theory and was unbounded in the limit of zero core size
(see for example Lamb [5]). In the analysis of Callegari and Ting [4], both large swirling and axial flows
are admitted in the vortical core but the core structure does not vary in the axial direction, i. e., along the
filament.

To study the evolution of a distributed vorticity field, i. e., not confined in a slender filament(s), we need
numerical solutions of Navier-Stokes (N-S) equations. Numerical simulations of merging of viscous vortices
in two-dimensional flows were initiated in 1976 with Lo [6]. To develop an efficient numerical scheme for the
solution in a finite computational domain, we need boundary data simulating the solution in an unbounded
domain. By making use of the invariants for the moments of vorticity of Truesdell and Moreau (see for
example [7]), formulas for the generation of the appropriete boundary data were presented by Ting in 1983
[8]. These formulas were employed to carry out numerical simulations of the interaction and merging of
filaments in space (see for example [9]).

In the far field, the velocity induced by an exponentially decaying vorticity field was identified as that
of a potential flow induced by doublets, quadrupoles and higher order singularities. The strengths of those
singularities were related to the moments of vorticity by Klein and Ting in 1990 [10]. An unified presentation
of the theoretical and numerical studies of viscous vortical flows were given in Springer-Verlag Lecture Notes
by Ting and Klein in 1991 [11]. There are vortical flows for which the core structure varies along the filament
(see for example [12] and [13]), consequently, generalization of the analysis of [4] was made by Klein and
Ting in 1992 [14]. Recently studies of the relationships between the moments of vorticity and the meaning

* The number inside square brackets denotes the reference number listed in 14
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of the relationships were carried out by Ting and Bauer [16]. Numerical investigations of the motion and
merging of vortices were also presented. The research reported in [10], [11], [14] and [15], supported under
this grant, will be elaborated in §2.1

The diffraction of weak shocks by structures in a two dimensional space was studied by Ting in 1953
[16] as an extension of the conical solutions of Keller and Blank in 1951 [17] for the diffraction by wedges and
corners. The analysis in [17] was later applied to study the wing-body interactions in supersonic flight in 1957
[18] and extended to study the diffraction and reflection of sonic booms by structures in a three-dimensional
space in 1968 [19] and in 1977 [20].

The perturbation solution for the diffraction of a shock wave of finite strength by a thin symmetric
airfoil of infinite span was obtained by Ting and Ludloff in 1951 [21] as a generalization of Lighthill's conical
solutions for the diffraction by thin wedges [22]. The extension to three-dimensional flows was done by Ting
and Gunzburger in 1970 [23] to study the diffraction by a moving thin wing at a small angle of attack.

The singular terms in the next order analysis due to the singularites of the derivatives of the leading
order solution, (the conical solution) near the sonic circle was studied and removed by Lighthill in 1949 [24]
except at a triple point where, a weak shock is tangent to the sonic circle. The removal of the singularity at
a triple point remains as a challenging problem. The singularities produced by the nonlinear interaction of
progressing waves in a two-dimensional space were studied by Ranch and Reed in 1982 [25] and by Melrose
and Ritter in 1985 [26]. Studies of the singularities of semilinear waves in three and higher dimensional space
were carried out under this grant in collaboration with Prof. J. B. Keller at Stanford [27]. The results of
the analysis will be presented in §2.2. Study of the singularity near a triple point is in progress.

In many engineering problems and problems in nature, the medium is inhomogeneous or multi-phase
in a microscopic length scale but the medium behaves as a homogeneous one in a macroscopic length scale,
which is much larger than the microscopic scale. The effective equations or the effective coefficients of the
equivalent homogeneous medium can often be derived systematically from the basic equations of the phases
by the method of multiple scale or the method of homogenization. We have been studying multi-phase flows,
in particular the wave propagation in a bubbly liquid, where the gas bubbles are randomly distributed in the
liquid. It is an interesting problem because a small gas volume fraction 0 can change significantly the speed of
propagation of the bubbly liquid. Effective equations for wave propagation in bubbly media without viscosity
and thermal diffusion were derived by the method of homogenization by Caflisch, Miksis, Papanicolaou and
Ting in 1985, [28] and [29] for different ranges of gas volume fraction 0 for linear and nonlinear theories. The
nonlinear theory was derived [28] for the case of very small volume fraction, 6 = O(N- 2 ). Here N stands
for the bubble number density. In the associated microscopic problem, the dominant mode is the symmetric
radial oscillation of bubbles accompanied with volume change. The effective equations are equivalent to those
suggested by van Wijngaarden [30]. The linear theory [29] is applicable when the amplitude of oscillation is
much smaller than the typical bubble radius and remains valid even for a finite gas volume fraction.

A different nonlinear theory was derived by Miksis and Ting in 1986 [31] for a bubbly media with a gas
volume fraction P - O(N- 1/3 ) which is not so small as the preceding case [28]. In the microscopic problem,
the dominant mode oscillation is asymmetric and volume preserving and is coupled with the drift of the
bubble center.

The above investigations on bubbly liquids and their extensions to include the thermal and viscous
effects were explained in detail in a review article in 1992 [32] by Miksis and Ting. Also under this grant, a
composite set of effective equations was derived from the basic equations governing the two phases and their
interfaces for N- 1  1 and 6 < 1 but is independent of the order of magnitude of 6 relative to N 1 [33].
The highlights of these two articles [32] and [33] will be given in §2.3.

The motion of an interface separating two media is a free surface problem. In general the problem
is nonlinear unless the interface is only slightly disturbed. For an interface separating a liquid from a gas
phase, e. g., the water wave, the inertia terms in the gas phase can be neglected and hence the pressure on
the interface from the gas phase can be considered as a constant. Analytical solutions are available for two
dimensional potential flows without surface tension or gravity. Analytical solutions have been obtained for
free boundary problems in elasticity and heat tranfer in 1977 [34] and 1983 [35]. An asymptotic method was
applied successfully to free surfaces problems, namely, the planing of a flat plate at high Froude number in
1974 by Ting and Keller [36], the buckling of a viscous column by Buckmaster, Nachman and Ting in 1975
[371, Buckmaster and Nachman in 1978 [38] and the surface wave induced by an impinging jet by Miksis and
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Ting in 1983 [39]. The drop formation in the breaking of a jet was studied by Taylor in [40] and by Keller
[41]. The asymptotic method was applied by Ting and Keller in 1990 [42] to study the similarity solutions
of slender jets and thin sheets with surface tension and the connection to drop formation. This result will
be enumerated in §2.4. The analysis of the flow field in the drop and its free surface is in progress.

The scattering of weak pulses or acoustic waves by scatterers or inhomogeneous media has been an
important practical problem. Asymptotic methods have been employed to study sound propagation through
jets in 1980 [43] and the jump conditions across thin bubbly layers with Ng in 1986 [44].

In general, numerical solutions are needed to simulate scattering problems. In order to improve the
accuracy of numerical solution of periodic waves in a finite computational domain, higher order radiation
conditions were formulated by Engquist and Majda in 1977 [45] and Bayliss and Turkel in 1980 [46]. Exact
boundary conditions for the scattering problem were presented by Ting and Miksis in 1986 [47]. In the
analysis of the scattering of a pulse by a membrane, it was found by Kriegsmann and Scandrett in 1989 [48]
that the solution of the acoustic field can be uncoupled from the solution of the membrane oscillation when
the higher order radiation conditions [46] are imposed on the membrane surface. The higher order terms
are needed when the incident wave is nearly in resonence with a natural frequency of the membrane and the
accuracy of the on surface conditions are demonstrated in the comparsion with the numerical solution of the
coupled problem. Using asymptotic analysis, higher order on surface conditions were derived systematically
by Miksis and Ting in 1989 [49] for the two dimensional problem when the acoustic speed is much smaller
than the surface wave speed. We have been able to derive systematically the on surface conditions to the
three dimensional problem of structural/panel interaction [50]. This is an important model problem which
simulates the transmission of sound through the fuselage. Description of this recent investigation [50] will
be described in §2.5

The investigations supported by this grant were carried out with the collaborations of Dr. Frances Bauer,
CIMS and Profs. Egon Krause and Rupert Klein, RWTH Aachen for problem area 1), with Prof. Joseph B.
Keller, Stanford University for 2) and 4) and with Prof. Michael J. Miksis, Northwestern University for 3)
and 5).

This grant supported the reseach effort of Ting and Bauer at CIMS and two visiting scholars, Prof. S.
C. Dai of Shanghai Institute of Applied Mathematics and Mechanics for four months and Dr. Rupert Klein
of RWTH Aachen for one and quarter months. A list of publications and presentations of research supported
by this grant is given in §3.

2. BRIEF DESCRIPTION OF THE INVESTIGATIONS

The five problem areas of our current research 1) viscous vortical flows, 2) shock wave interaction 3)
multiphase flows, 4) free boundary problems and 5) structural/ac'ustic interactions, are described in the
following five subsections §2.1 to §2.5, respectively. The investigations were carried out with the collabora-
tions of Dr. Frances Bauer, CIMS and Profs. Egon Krause and Rupert Klein, RWTH Aachen for problem
area 1), with Prof. Joseph B. Keller, Stanford University for 2) and 4) and with Prof. Michael J. Miksis,
Northwestern University for 3) and 5).

2.1 Viscous Vortical Flows

For a viscous flow field induced by an initial vorticity distribution of bounded support or decaying expo-
nentially in the far field, the problem in general requires numerical solution of unsteady N-S equations in
an unbounded domain. It is then necessary to impose approximate boundary conditions on the finite com-
putational domain which simulate the solution in an unbounded domain and estimate the accuracy of the
approximation. Hence, we need the far field behavior of the flow field. In the far field, the vector potential
A for the velocity can be represented by a power series in 1xl-1. The coefficient of Ix 1̀- is a homogeneous
vector polynomial of the direction cosines of x of degree n. The coefficients in the polynomial are linear
combinations of 3(n + 1)(n + 2)/2 nth moments of vorticity. This number is reduced to Jn = n(n + 2) on
account of Truesdell's consistency conditions on the nth moments [7]. In addition there are the integral
invariants of Moreau (see [7]), three for the first and three for the second moments. Using those results,
Ting presented the formulas for the approximate boundary data for A, the estimation of their accuracy
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and the numerical schemes for the solution of N-S equations [8]. These schemes were employed to study
the intersection or merging of vortex filaments with finite cores (See Chapter 3 of [11] and the references
therein).

It is known that in the far field, the flow is irrotational and the scalar velocity potential can be expressed
as a power series in 1x1-1. The coefficient of Ix[-'-' can be represented by 2n + 1 spherical harmonics of
nth order. Therefore, only 2n + 1 linear combinations of the Jn vector potentials of nth order in [8] can
contribute to far field velocity. These 2n + 1 combinations are identified by Klein and Ting [10, 11] while
the remaining n2 

- 1 combinations are shown to be curl free.
For a viscous flow field induced by an initial vorticity distribution concentrated in a few spots or slender

tubular regions in two- or three-dimensional space, we say that the flow field is induced by vortices or vortex
filaments and note that the typical core size 6 is much smaller than the length scale I of the flow field. The
classical inviscid theory is not valid near a point vortex or a straight vortex line, as e = 6/f -- 0, because
the velocity becomes unbounded. For a curved vortex line, the velocity of the line is undefined. For a vortex
filament of finite core size, the velocity of its center line depends on the core structure in addition to the
geometry of the center line (See Lamb [5]). It was recognized by Ting and Tung in 1965 [1], that for a
filament with an 0(1) total strength or circulation the vorticity in the core has to be O(C- 2) and the velocity
O(e1). Hence the viscous terms have to be included in the analysis of the core structure as 6/1t - 0. With f
as the small parameter, matched asymptotic solutions of N-S equations were constructed so that the velocity
field is finite everywhere and the evolution of the core structure and the velocity of the center of the core are
defined. The analyses were carried out for the two dimensional case [1], for the axi-symmetric case by Tung
and Ting [2] in 1967 and for a vortex filament with only large swirling flow, O(c- 1 ), by Ting [3] in 1971 and
with the addition of large axial flow in the core by Callegari and Ting in 1978 [4]. In the three-dimensional
analyses, [2] - [4], the core structure does not vary along its centerline C (no axial variation) and the filament
is in the form of a slender torus of order one length S(t), i. e., S = 0(t).

A comprehensive review of the above numerical and theoretical investigations was given by Ting and
Klein in 1991 [11]. In particular, the analysis of Callegari and Ting [4] and its physical meaning and
restrictions are described in detail. Two generalizations of the analysis of Callegari and Ting are outlined
respectively in subsections 2.3.3.1 and 4.1.2 in [11]. The first one is to allow for axial variation of core
structure for a filament of order one length. The second one is to allow for multiple axial length scales, so
that the axial variation of the core structure of a long filament, S > t, remains small in the scale t but is
order one in a length scale L > t.

Recently Klein and Ting [14] carried out the asymptotic analysis for the first generalization using the
same expansion scheme in [4] which assumes only one time scale and two radial scales. For the inner region,
i. e., near the centerline C, which is x = X(t, a), the Cartesian coordinates are replaced by the radial,
circumferential and axial coordinates r, 0, s with x = X + rf and the radial variable r is then stretched to
F = r/c. For the velocity relative to the velocity X of C, its circumferential and axial components, v and
w, are large, 0(c I) while the radial component remains order one. The leading order governing equations
yield

i) The leading order core structure, v,w, is symmetric, i. e., independent of 0. But v and w are unknown
functions oft, f, s to be determined by the compatibility conditions on the higher order equations.
The higher order equations are linear equations for the higher order solutions, therefore, we can represent

the solutions by Fourier series in 0 or 0 and obtain the equations for their Fourier coefficients. The 9-averages
of these equations yield the equations for the symmetric parts and the differences of the equations from their
0-averages become the equations for the asymmetric parts.

The asymmetric first order equations, the boundary conditions at F = 0 and the matching conditions
with the outer solutions yield

ii) The leading order velocity of the centerline is given by the same set of equations (2.3.50) and (2.3.54)
in [11] where the global contribution of the core structure is now a function oft and s.
The symmetric first order equations are equivalent to the equations for a quasi-steady axi-symmetric

inviscid flow and hence yield two compatibility conditions on the core structure,
iii) The leading order circulation C around and the total head Nt on a stream tube should remain constant

along the tube. The temporal variations of G and ?K are yet to be defined by the compatibility conditions
for the symmetric second order equations using the periodicity condition of the solutions on S.
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Thus we obtain a closed system of equations for the motion of the centerline of the filament and the
evolution of the core structure. The derivation is presented in [14]. Studies on the numerical solution of this
system have been initiated.

Note that the analyses of a slender filament [3], [4] and [14] are based on the assumptions that the flow
field has only one time scale and two length scales, 6 and I while the length of the filament is 0(t) and that
the reference Reynolds number Re is of the order c 2 . Under those assumptions the time-derivative and the
viscous term will appear only in the second order equations. The compatibility conditions of the latter yield
the evolution equations of the leading order core structure while the initial velocity of C and the initial core
structure have to fulfill the compatibility conditions of the first order equations stated in ii) and iii). When
there are problems which do not fit these assumptions we need to introduce multi-scale in the axial variable
s and/or in time t. We mention three typical cases requiring multi-time scales:
Case A If the initial velocity of C prescribed is inconsistent with the equations quoted in ii) we have to admit
a very short time O(c-2) to account for the small effective inertia of the core, O(C2). A two-time coupled
with two length scales analysis is needed. The analysis was done for the two-dimensional and axi-symmetric
problems in [1] and [3]. The analysis for a curved filament is needed.
Case B If the initial core structure does not fulfill the two compatibility conditions in iii), we have to admit
a short time O(c) so that unsteady terms will appear in the first order equations.
Case C To study the dynamics of the filament for a long duration, we need a multiple time analysis to
account for the slowly varying core size due to diffusion. This was done only for a simple two dimensional
case [51].

There are cases requiring multiple length scales in the axial variable s, for example,
Case D There is a slow axial variation of core structure of length scale L > 1. The analysis for this case is
initiated in 4.1.2 of [11].
Case E There is an intermediate scale between 6 and I. See for example the case studied by Klein and
Majda [52] and outlined in 4.1.1 of [11].

By combining the above cases we have problems which have multiple scales in time and s in addition
to the radial variable r. Also we have to assume different velocity scales and time scales in case that the the
circulation is not order one, say O(c) and/or Re is much smaller than O(C-2 ), say O(f- 1 ). Consequently,
Lhe resultant system or equations will be different. There is an urgent need to study the above cases one
by one and identify the relevant physical problems, e. g., the vortex break-down problem (see for example
[12], [13]) and the interaction of propeller tip (spiral) vortices. We shall then derive the corresponding closed
system of equations and construct the solutions.

During his four month visit at the Courant Institute, S. C. Dai of the Shanghai Institute of Applied
Mathematics and Mechanics initiated the study of the the dynamics of three inviscid vortices outside a rigid
surface. The study is an extention of the analyses of Synge in 1949 [53] and Tavantzis and Ting in 1988 [541
on the configurations of three inviscid vortices in free space, the steady state solutions and their stability.

Analytical modeling and numerical simulation of the merging of viscous vortices or filaments are reported
in Chapter 3 of [11]. For two-dimensional cases, merging of vortices of the same sense, where the total strength
ýj, ri # 0, has been studied extensively. Rules for the final merging of the vortices to a single optimum

similarity vortex are formulated. For the special case that the total strength is zero, i. e., in the far field, the
flow resembles that induced by an equivalent inviscid doublet.

Studies of the intersection, merging, cancellation and reconnection of vortex filaments are in the early
stage. There are a few numerical and experimental results illustrating different types of merging process.
Physical understanding, theoretical modeling and numerical simulation of the local merging and reconnection
process are needed.

For an exponentially decaying vorticity field, the total strength is zero and hence the far field behaves
as a doublet. Thus it is of interest to study the motion and evolution of a viscous doublet, which is a
vortical field with total strength zero. Note that the total strength of a two- or three-dimensional viscous
doublet is defined by the first moments of vorticity and is a time invariant vector E. In the inviscid theory,
stationary point doublets are employed as images to create flows around a closed body. An inviscid theory
for the motion of a free point doublet is not available. To begin the investigation of this basic problem
of the motion of a viscous doublet we study the long time behavior of the merging of a two-dimensional
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viscous vortex pair and of the self-merging of a vortex ring. The definitions of the center of a doublet
and its velocity in two-dimensional and axi-symmetric flows are given in [11]. Recently the equations for
the center of a three-dimensional viscous vortex and its velocity were formulated [15]. It is found that the
long time displacement of the center in two-dimensions differs from that in three-dimensions. In the former
the displacement increases as In t while in the latter it approaches a stationary point. These analyses and
numerical examples will be presented in a forth coming paper by Ting and Bauer [15]. Its title is "Viscous
vortices in two- and three-dimensional space" and its abstract is

Recent developments for the interaction, diffusion and merging of incompressible viscous vortices in
two and three dimensional space are reported. We study the motion and evolution of vorticity fields
fl(t, x) with total strength zero, < fl >= 0, which is true for a three-dimensional vorticity field
decaying exponentially in lxi and for a two-dimensional case if < 0 >= 0 initially. We called this
type of vorticity field a viscous doublet. The strength of the doublet is defined by the time invariant
first moments of vorticity. The equations defining the velocity of the center of the doublet in terms
of the second moments of vorticity are formulated for two- and three-dimensional problems. We
show that the long time behavior of the trajectory of a doublet center in three-dimensional space
is different from that in two-dimensional space. Examples are the motion and merging of a slender
vortex ring and a two-dimensional vortex pair. For the intersection of two slender filaments (the
merging of two segments in a short time interval), a simple model to simulate the merging process
and criteria for the reconnection of the filaments after the merging stage are proposed.

2.2 Shock Wave Interaction

In collaboration with Prof. J. B. Keller, Stanford University, we study shock wave interaction in unsteady
and/or supersonic flows. We identify the singularities in the interaction of weak shocks and the results are
presented in a paper entitled "Singularities in Semilinear Waves" [27] to appear in Comm. Pure Appl. Math.
The abstract of the paper is

New singularities of solutions of semilinear hyperbolic partial differential equations, or systems, may
be produced when previously existing singularities collide. Our goal is to exhibit the complicated
structure of these new singularities for the semilinear wave equation, (82 - A)u = f(u), in N
dimensions, N > 2. We assume that for t < 0 the solution u has identical jump discontinuities on
N + I characteristic hyperplanes which are travelling toward the origin and which meet there at
t = 0. For f > 0, these hyperplanes are travelling away from the origin carrying their discontinuities.
Inside the expanding simplex bounded by these N + 1 hyperplanes there are a number of new
singularities. For N = 2 Rauch and Reed [25] gave an example of an f(u) for which there is just
one new singularity. It is a 5/2 power singularity on the circle inscribed in the triangle bounded by
the three lines of jump discontinuities. Then Melrose and Ritter [26] showed that for any smooth
f(u) this circle is the only possible locus of new singularities.

We show that for N = 2 in general there is a 5/2 power singularity on this circle. In addition,
we will exhibit some f(u) for which there is no singularity on it. For N = 3 the four planes bearing
the initial singularities bound a tetrahedron which shrinks to a point when they collide, and then
expands. We shall show that in general the third derivative of u has a logarithmic singularity
on the sphere inscribed in the expanding tetrahedron. In addition there are stronger (5/2 power)
singularities on the four circular cones from the four vertices tangent to the inscribed sphere. We
shall exhibit special f(u) for which these are all the new singularities, and others for which there
are no new singularities at all. For any N and general f(u), the solution is singular on the sphere
inscribed in the expanding simplex, as well as on certain other conical hypersurfaces. Each of these
is a part of the product of a (cone of dimension k) x(Riv- 1 -k), for k = 2,.--, N - 1. The lower
the dimension k of the cone, the stronger the singularity.

It is well known that the next order regular perturbation solutions for the diffraction of weak shocks are not
valid near the sonic circle or Mach circle. Uniformly valid solutions near the sonic circle can be constructed
by the Lighthill technique [24] but the solutions break down near the "triple point" where the plane pulse is
tangent to the sonic circle. We note that in the studies of the diffraction of shock waves of finite strengths
by weak disturbances by Lighthill [22] and Ting et al [21] [23], the solutions near a sonic circle can be made
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uniformly valid by the Lighthill technique [24] and remain valid in the neighborhood of the point where the
shock wave cuts off the sonic circle. Recently we began our attempt to incorporate the analyses for weakly
disturbed shocks of finite strengths into the solution for the diffraction of weak shocks so that the singularity
near the "triple point" can be avoided.

2.3 Wave Propagations in Multiphase Flows

In collaboration with Prof. M. J. Miksis of Northwestern University, we continue our study of wave propa-
gations in bubbly liquids which was initiated in 1984 [28]. Effective equations, or equations in macroscopic
scale, for wave propagation in bubbly media without viscosity and thermal diffusion were derived by the
method of homogenization by Caflisch, Miksis, Papanicolaou and Ting [28] [29] for different ranges of gas
volume fraction for linear and nonlinear theories. The nonlinear theory was derived [28] for the case of
very small volume fraction, P = O(N 2 ). In the associated microscopic problem, the dominant mode is the
symmetric radial oscillation of bubbles accompanied with volume change. A different nonlinear theory was
derived by Miksis and Ting [31] for a bubbly media with a gas volume fraction 6 = O(N?- 1/ 3 ) which is not
so small as the preceding case. In the microscopic problem, the dominant mode oscillation is asymmetric
and volume preserving coupled with drift of bubble center. The viscous effects were included in the effective
equations later [55].

The canonical microscopic problem for the case of a very small gas volume fraction [28] is that of the
radial oscillation of a single bubble driven by external pressure fluctuation. The effect of thermal diffusion
across the interface was included by Miksis and Ting [56] and was shown to be of 0(1). By using asymptotic
analysis the original system of partial differential equations with a free interface was reduced to a system
of ordinary integro-differential equations. This reduced system contains three time scales, the short time
during resonance, the normal time scale of the forcing period and the long time scale due to the slow
diffusion process. An efficient numerical scheme for this system and numerical results showing the long time
accumulative effect of diffusion were presented in [57].

The above investigations on bubbly liquids were explained in detail in a review article [32] by Miksis
and Ting in 1992. Also in the review article [32] a composite set of effective equations was proposed. This
composite set was assumed to be valid for both ranges of f, i. e., independent of its relationship to N- 1 .
This composite set was derived from the basic equations governing the two phases and their interfaces for
I,6 - 1 in addition to N- • 1 in a paper [33] in 1992 by Miksis and Ting. Thus the preceding proposition
in [32] is verified. The abstract of the paper [33] is

A system of effective equations for wave propagation in a bubbly liquid with a small gas volume
fraction is obtained. The derivation consists of averaging the basic equations of the two-phase flow
and then using the method of matched asymptotic expansions in order to define the microscop-
ic problem. The resulting system consists of an effective continuity equation with a source term
and momentum equations with forcing terms. These terms are coupled to a canonical microscopic
problem for the motion of a single bubble. The system accounts for the nonlinear effects of the
translations of the bubble centers and the oscillations of the bubble interfaces including the spher-
ically symmetric mode and all the asymmetric modes. The system remains valid independent of
the order of magnitude of the gas volume fraction relative to the reciprocal of the bubble number
density.

Many problems related to nonlinear wave propagation in bubbly media remain to be analyzed. In
particular, the properties of the effective equations derived in [33] and their solutions have not been studied
carefully. Also the solutions of the associated canonical microscopic problems remain to be constructed.
These statements apply equally well to the set of effective equations derived in [31] for a bubbly media with
a not too small gas volume fraction.

2.4 Free Boundary Problems

In collaboration with Keller, the mass flux variation in an axi-symmetric slender jet or sheet and the
motion of the free surface with surface tension was studied [42]. The solution can be used to model the break
up or merging of jets or thin sheets. The analysis was published. The abstract of the paper [42] is
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Simplified equations governing the potential flow and the shape of the slender jets and thin sheet
of liquid are derived, taking into account surface tension. Families of similarity solutions of these
equations are introduced. For jets and for symmetric sheets they satisfy ordinary differential equa-
tions. The properties of these similarity solutions are examined analytically and numerically. They
can be used to describe the motion of a liquid sheet on a solid, the thickening and flow following
the breaking of jets, the merging of two jets, the formation or closing of holes or slits in sheets, etc.
Some applications to such problems are given.

We are now studying the drop formation after the breaking and the flow in the neck connecting the drop to
the jet.

We are generalizing the analysis to a slender jet in space, i. e., to study the motion of of the jet
surface and its centerline. The slenderness ratio c is employed as the expansion parameter. The the leading
order solutions give the variations of the axial mass flux vector and the cross sectional area in a quasi one-
dimensional flow and the motion of the centerline. We shall examine one by one the effects of the viscosity,
surface tension and gravity on the leading order equations and their solutions by changing the orders of
magnitude of the Reynolds number, Weber number and/or Froude number relative to c. Also we shall
derive the next order equations and try to identify them as equations for the moment of momentum over a
cross-section area. For example, when the mass flux is of higher order the next order equations become the
leading ones, which can be identified as the equations employed by Buckmaster and Nachman to study the
buckling and stretching of a viscida in two-dimensional space [37, 38]. Analysis for the buckling problem in
three-dimensional space has been initiated.

2.5 Structural/Acoustic Interaction

The scattering of an incident pulse from an interface separating two fluids in two-dimensional
space was studied by Miksis and Ting in 1989 [49]. The interface can be either a plain interface
with surface tension or a membrane. We have completed a generalization of the above analysis
[491 to a three dimensional problem, the transmission and reflection of acoustic waves by a flexible
panel. In the limit where the ratio of the acoustic wave length to surface wave length is small, we
derive a condition on the panel, a on surface condition, which accounts for the interaction of the
acoustic wave and the panel oscillation. With this condition, the solution of the panel oscillation is
uncoupled from that of the acoustic field. The solution of the panel oscillation in turn defines the
transmitted and reflected waves. The investigation will be reported in a paper entilted "On surface
condition in acoustic wave and flexible panel interaction" [50]. The proposed abstract is:

The scattering of an incident wave by a flexible panel with fixed edges serves as a model problem
to study the transmission of incident waves through an airframe. The panel oscillation r1(t, z, z) is
governed by the partial differential equation for a vibrating plate while the loading, the pressure
difference across the plate, depends on the incident and reflected waves above the panel, y > 0,
and the transmitted wave below, y < 0. Thus the solution of the plate equation is coupled with
the solutions of the wave equation in the half space above and below the panel subject to the
far field radiation condition. We express the loading as a double integral of the panel oscillation
in retarded time. Thus we have an ezact on surface condition. The interaction problem is then
governed by an integro-differential equation for r7(t, z, z) over the panel. When the acoustic wave
length is much smaller than the size of the panel, we employ the method of asymptotic expansion
to derive the first and second order approximations to tCie double integral for the loading and
obtain the first order and second order on surface conditions. The integro-differential equation
for rl is then reduced to partial differential equations with the first and second order corrections.
Earlier studies of the interaction of acoustic waves with a membrane showed that the second order
correction is needed when the incident wave is nearly in resonance with a natural frequency of the
panel. Numerical solutions of the acoustic/panel interaction using these approximate on surface
conditions are constructed and compared with the solution using the exact condition to establish
the accuracy of these approximate on surface conditions.

We intend to extend this analysis [50] to account for the effects of semi-linear surface waves when the
amplitude of the plate oscillation is not very small relative to the plate thickness and the effects of a flow
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field on one side of the surface. Thus the solution can be used to simulate the noise transmitted inside a
fuselage due to the coupling of the noise in the external flow with the fuselage panel oscillation.
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