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PREFACE

This report presents a developmental prototype knowledge-based expert

system (ES) RETAININGEARTH for the selection and design of earth retaining

structures. This study will provide guidance for the selection of an appro-

priate retaining structure, based on a given set of input conditions and

the subsequent detailed design of the selected structure. Funding for this

study was provided by Headquarters, US Army Corps of Engineers, and the study

was monitored by the Information Technology Laboratory (ITL), US Army Engineer

Waterways Experiment Station (WES), Vicksburg, Mississippi, Partial graduate

assistantships were provided by the Department of Ocean Engineering, Florida

Atlantic University, Boca Raton, Florida.

The report was written by Dr. M. Arockiasamy as Principal Investigator

with able assistance from graduate students. The computer code of the ES

was developed by Giri Sreenivasan and Keling Shen who worked in this project

as Graduate Research Assistants. Ms. Barbara Steinberg typed the report

coordinating the text and tables layout.

The work was monitored at WES by Mr. Michael E. Pace, under the

general supervision of Mr. H. Wayne Jones, Chief, Scientific and Engineering

Applications Center, and Dr. N. Radhakrishnan, Director, ITL.

At the time of publication of this report, Director of WES was

Dr. Robert W. Whalin. Commander and Deputy Director was COL Leonard G.

Hassell, EN.
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SECTION 1

EXECUTIVE SUMMARY

This final report describes research in optical neural networks performed at Hughes Aircraft

Company under a three-year DARPA sponsored contract. The objective of demonstrating a

programmable optical computer for flexible implementation of neural network models was

successfully achieved. The advantages of optics for neural network implementations include high
storage capacity, connectivity, and very fine-grained parallelism which results in high computation

rates. The optical neurocomputer developed under this program is based on a new type of
holography, cascaded grating holography, in which the neural network weights are distributed

among cascaded angularly- and spatially-multiplexed gratings. This approach reduces crosstalk
and improves the utilization of the optical input device. Successfully implemented neural networks

include the Perceptron, Bidirectional Associative Memory, and backpropagation neural networks.

Up to 104 neurons, 2x10 7 weights, and processing rates of 2x10 7 connection updates per second
were achieved on this program.

The organization of this final report is as follows. First, we briefly describe the nature of
neural network models and the types of problems they are meant to address. We describe real-time

holography and its advantages and disadvantages for neural network implementations in terms of

storage capacity, connectivity, and parallel processing. A new holographic technique, cascaded
grating holography (CGH), was developed by us to overcome an important source of distortion in
holographic neural networks. We demonstrated CGH in photorefractive BaTiO 3 crystals using

both visible light (514 nm) from an argon laser and infrared light (830 nm) from a laser diode. The
infrared experiments are especially significant because very compact systems can be built using

laser diode light sources.

We then discuss the design and construction of the optical neurocomputer based on CGH.

The number of neurons, number of layers, and the neuron activation function can all be

programmed without hardware adjustments. We believe ours is the first truly programmable

optical neurocomputer. In addition, the simple system design requires only a single crystal, input
spatial light modulator, and output detector regardless of the network configuration. The entire

system was built from presently available off-the-shelf components. Although the present research
system occupies a relatively large volume, we discuss packaging concepts in which the entire

system is contained within a volume smaller than a shoe box.
Three widely differing neural network algorithms (Perceptron, bidirectional associative

memory, and backpropagation) were successfully implemented on the neurocomputer. As of this

I



1
I

writing, up to 10,000 neurons, 2x10 7 weights, and learning rates of 2xl0 7 connection updates per

second have been achieved. The potential exists for improvement factors of 103 in the number of
weights and 106 in the processing rate. Finally, we discuss our experimental efforts in "fixing" or

permanently recording connection weights in the holographic medium. I
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SECTION 2

NEURAL NETWORK MODELS OF COMPUTATION

Computational problems can be described in terms of many attributes. One of the most

fundamental measures is the "randomness" or algorithmic complexity of the problem. It is

generally agreed that nonrandom highly structured problems with known algorithmic solutions are

best solved using traditional computer programs. In contrast, many problems involving natural

data have a high degree of randomness, especially pattern recognition problems involving noisy

data. These are problems that biological organisms excel at compared with classical rule-based

algorithms in which the rules are assumed a priori. Biologically inspired neural network models

are useful for solving such high entropy problems in which the underlying algorithm is unknown

and the required transformations must be learned from examples. They are more powerful than

standard statistical techniques because a larger range of solutions can be represented using their

multi-layer nonlinear structure. In fact, it has been shown that any function can be approximated

by a sufficiently large neural network. 1

Neural network models of computation consist of many simple processing nodes or

"neurons" which communicate with each other via interconnection weights. The nodes are

anthropomorphically called neurons here in acknowledgment of the vastly more sophisticated

biological neurons which inspire connectionist models of computing. (However, any resemblance

of the nodes to actual neurons is, at best, superficial and grossly simplified.) A diagram of the

logical structure of a multi-layer feed-forward neural network is shown in Fig. 1. Associated with

each neuron is ..n activation level which is calculated from a weighted sum of the activity levels of

other neurons.

•(n) -= IY(a )

J

Patterns which are input to the network through the bottom layer are transformed into patterns

which represent the answer to the problem the network is trained to solve. Many neural net

architectures have been designed and demonstrated for various computing tasks. Techniques such

as backpropagation as well as many others have been developed to "train" or adjust the

interconnection weights to solve problems in pattern recognition, vision, and robotic control.

Although the problem of learning an arbitrary transformation for a completely random problem has

3



I

been shown by Judd2 to be NP-complete (therefore probably requiring exponential increases in

learning time as the problem size increases), most if not all problems in pattern recognition involve 3
at least partially structured data for which the learning time will be a polynomial function of the

problem size.

Output Pattern a

L2

L w Yj iWk Yk(o

I
(o1

Yk(
0 )

Input Pattern I
Fig. 1. Structure of feed-forward neural networks. R

Two important parameters which characterize a neural network are the number of neurons,

N, and their connectivity, K, where K is the number of synapses or weights connected to a t
neuron. We argue that both N and K should be as large as possible in any general purpose

neurocomputer. Pattern recognition problems involving natural data, especially vision or target 3
recognition, require large numbers of input neurons to handle the large raw input data rate. In

addition, large numbers of neurons in the hidden layer are required in order to solve non-trivial 3
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problems. As for the connectivity, Abu-Mostafa 3 has shown that it must be large for at least two

reasons. First, since the neurons essentially implement K-input threshold functions, one K-input

neuron with K associated weights is equivalent to order K2 two-input neurons with 2K 2 associated

weights. Thus far fewer weights are required if the neurons have high fan-in and fan-out.

Second, Abu-Mostafa also showed that in order for a neural network to learn, the connectivity K
must exceed the entropy H of the environment where H is the log2 of the number of input patterns

typically generated by the environment. H increases as the randomness of the problem increases.

Since neural networks are most useful for partially random problems, we argue that both the

number of neurons and their connectivity should be as large as possible in a neuro-computer.

Increasing N and K while maintaining computational parallelism is a daunting task for electronic

architectures due to the 2-D nature of electronic interconnects. Most of the area on analog or digital

electronic neuro-chips is taken up by the interconnects while implementing only modest numbers

of neurons (N=O(10 2 )).

Optical implementations of neural networks are attractive because of the large storage

capacity and, most importantly, the parallel access and processing capabilities of optics. Optical

architectures can exploit 3-D free space interconnects, allowing the input and output planes to be

fully populated with highly interconnected neurons (N=O(10 5 )). Moreover, an entire weight layer

can be updated in one time step, unlike electronic approaches which must use some form of time

multiplexing when the number of neurons is large. Optical neural networks divide naturally into

two classes distinguished by the dimensionality of the weight storage medium, e.g. weights can be

stored in 2-D or 3-D formats. Example 2-D weight storage media include film, SLMs, and optical

disks while almost all of the 3-D formats use photorefractive crystals as the storage medium. The

optical processor described here uses 3-D weight storage based on volume holography. The

primary motivation for considering volume holograms as a storage medium for neural networks is

the potential for extremely high storage capacity and fully parallel processing of the weights during

both the learning arid reading phases.4 Motivation for maximizing these parameters can be found

in the potential application areas for neural networks.

Figure 2 is an adaptation of a figure which originally appeared in the final report of the 1988

DARPA Neural Network Study. It shows the potential application areas mapped onto a 2-D space

in which one axis is the storage required in terms of the number of weighted connections and the

other axis is the processing rate required in connections per second. The corresponding estimated

parameters of some biological systems are included. A variety of electronic implementations,

denoted by open squares, have also been added to Fig. 2. (These performance points were taken

from an article by Alspector.) The electronic implementations are, apart from the Sun and Cray

computers, specialized analog and digital chips. Some implement learning and some do not. For

those that don't, weight values must be learned off-chip and subsequently loaded into the chip.
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Finally, diagonal lines of constant network update time were added to the figure. The update time

is the time required for information to pass from the input of the network to the output. Such a plot

is necessarily a highly folded and simplified projection of a high dimensional reality onto a low

dimensional representation. For example, the degree of local vs global connectivity is ignored as
well as the algorithmic complexity of the application. Nevertheless, certain trends can be deduced. 3

1016 9229-06-03oR1 I
1015_ humans _

S1014- 1 jisec Update Time ISFuture ONN--1=

1013 Signal
ui 1012- ProcesIn I
U) 1011msMls bl- Vision Viion 2 Updatez• 1090 -Mi tsubiY" Time -

Z 106 Beecore
0 107HRL H ONN '92

106 I

105 10 104 105 106 107 108 109 10101011 10121013101410151

Fig. 2. Relative performance of present holographic neural network (HONN) compared toI
application requirements and other hardware implementations. II

Itisinteresting to note that potential application areas in robotics, speech, and vision cluster 3

Itis

around the 10 msec network update time line. These applications require large numbers of weights
in order to achieve the complexity required to solve the problem, but the problem does not need to1

be solved in less than a few milliseconds. The large number of weights, however, requires veryI

high processing rates to achieve this update time. Significantly, the biological systems also cluster

around the 10 msec update line, perhaps because they must also solve problems in speech and I
vision. With the exception of the general purpose computers, the electronic implementations have
relatively modest storage capacity, although their processing rates are high. (Ignoring the fact that !
many of the chips do not have on-chip learning.) This is due to the 2-D nature of VLSI which I
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limits the number of connections that are practical. They therefore appear most suited to the signal

processing applications in which fast update times and modest storage are required.

It is our opinion that optical neurocomputers are complementary to specialized electronics

in that the 3-D connectivity and parallelism of optics permits the implementation of very large

networks with high processing rates and relatively modest network update times suitable to

applications in vision. The projected future performance of our optical neurocomputer is indicated

by the large filled circle labeled ONN. The present performance of our optical neurocomputer is

also indicated by the filled square. Despite being a proof-of-principle first prototype system using

non-optimized components, its performance is quite good.

In order to fulfill a practical role complementary to the strengths of electronics, optical

neurocomputers should include, first, large numbers of neurons and weights; second, distortionless

software mapping of a variety of neural network algorithms onto the hardware with no hardware

reconfiguration; third, co-processor-type interfacing to a host computer; and fourth, hardware

simplicity for low cost and compact packaging. In this final report we describe an experimental

optical neurocomputer which serves as a testbed for meeting these requirements. The

neurocomputer is a nonlinear, highly interconnected, parallel, and analog opto-electronic computer

based on real time holography. In the next few sections we discuss some aspects of holography

relevant to neural network implementation.
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SECTION 3

REAL-TIME HOLOGRAPHY FOR NEURAL
NETWORKS 3

In holographic optical neural networks, neurons are represented by pixels on SLMs. The

brightness of a pixel corresponds to the activation level of the neuron. By placing the SLM in the

back focal plane of a lens and using coherent readout, as shown in Fig. 3, the pixels are converted

to coherent beams which illuminate a real-time holographic medium. Weights between neurons are I
formed when a pair of light beams interfere in the holographic medium, forming a volume

sinusoidal light intensity pattern. The photorefractive effect is a suitable physical mechanism for
converting this light intensity pattern into a semipermanent deformation of the optical properties of
the material, thereby recording the weight values. 3

Y x L1 9229-06-07

0I
/ I

PLANE

Fig. 3. Geometry for holographically recording connection weights between neurons. I

In the photorefractive effect incident light excites carriers (electrons and/or holes) from traps 3
into the conduction or valence band. These carriers then are transported by diffusion and drift until
they fall into empty traps, creating an internal space-charge field which in turn modulates the i
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birefringence of the material through the electro-optic effect. This results in a phase grating in the

material. Because of the long dark decay times of some of these materials, the phase gratings can

be stored with a time constant of many hours. (Storage for longer periods is also possible in some

materials using various fixing methods.) When one of the original two beams subsequently

addresses the grating, the other beam is reconstructed with a diffraction efficiency that represents

the weight value between those two neurons.

The diffraction efficiency of the semi-permanent phase grating represents the connection

weight formed between the neurons. It is proportional to the outer-product of the amplitudes of the

writing beams and has a fortuitous similarity to the Hebbian learning rules of many neural network

models. This equivalence between the outi!r-product form of the diffraction efficiency and Hebbian

learning forms the basis for implementing the weights directly using the analog laws of physics

rather than digital representations as in conventional computers. Learning can be implemented in

photorefractive optical neural networks since the weights can be selectively increased or decreased.

Reading out the grating partially erases it unless the readout beam is much weaker than the original

writing light or the crystal is fixed using special techniques.

The angular or Bragg selectivity of a volume photorefractive grating can be very high which

results in large storage capacities. (For example, 500 high quality images consisting of 70,000

pixels each have been stored in a single photorefractive crystal. 5) The Bragg condition states that a

beam will be reconstructed only if the angle of incidence of the incident beam relative to the grating

is equal to that of the original writing beam. The angular selectivity for reconstruction can be

calculated from coupled mode theory6 and is given by

A0=
nTz sin V

where Tz is the grating thickness, X is the optical wavelength, n is the index of refraction, and 0 is

the angle between the two writing beams. Note that the selectivity is greater for thicker crystals.

Each individual light beam can be represented by a momentum- or k-vector. (The direction of the k-

vector corresponds to the direction of propagation and the magnitude of the k-vector is the inverse

of the wavelength.) By using phase matching arguments, the Bragg condition can be described

geometrically as a vector sum: Kj + Kg = Ki, where Kj and Ki are the wavevectors of the

incident and diffracted beams, respectively, and Kg is the grating wavevector.

A geometrical construction for the theoretical storage capacity of a volume hologram can be

drawn in k-space, as shown in Fig. 4. If one writing beam varies over solid angle 0 o while the

second writing beam varies over angle 0r, then the vector difference between the two beams (the

grating wavevector Kg) will trace out a three-dimensional region in k-space (shaded gray in Fig. 4).
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This volume represents the region of k-space that is accessible for storage of information. It will be

further limited by the resolution or modulation transfer function (MTF) of the holographic medium.

This limit is represented by a sphere centered on the origin whose radius is equal to the largest

spatial frequency that can be resolved by the medium. The volume of the accessible region depends

on such geometrical factors as the focal lengths of the optics and the spacing of the neurons on the

SLMs. 3
Volume of possible
grating k-vectors: 3

. "0 O1 Accessable

/ - Not AccessableU. 1 U
KI* I

Spatial Frequency
Limit Due to "

Material MTF

Fig. 4. K-space diagram or grating k-vectors accessible using recording geometry of Fig. 2. 5
The grating wavevector Kg has an uncertainty volume associated with it due to the finite

physical size of the hologram and the nonzero size of the SLM pixels. Dividing the accessible

volume of k-space by the volume of the uncertainty volume results in the maximum theoretical

number of resolvable gratings which can be stored in the photorefractive crystal. Without going into !
details here it can he shown that the storage capacity is limited by two upper bounds due to the

hologram and neuron dimensions: 5

I
I
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where Vholo is the hologram volume, f is the lers focal length, dneuron is the SLM pixel diameter,

woO is the object solid angle, alR and a 2 R are tLe angular limits of excursion of the reference

beam, 0 is the mean object-reference beam angle, and n, is the crystal index of refraction. It was

assumed in the calculations that led to the above result that the hologram MTF limit is high enough
to be ignored. For an active crystal volume of a few cubic mm and reasonable optical parameters

the values of the two upper bounds range from 1010 to 1012 gratings. This is sufficient to form a

fully interconnected network of 105 to 106 neurons. Moreover, each grating can be read out or

updated in parallel without the time multiplexing, data contention, or bottleneck problems common

in electronic architectures.
The high theoretical storage capacity and parallel access to weights is a direct result of the

three-dimensional nature of optical holographic storage. However, other nonfundamental factors
also limit the practical performance. The challenge is to construct optical neurocomputers that

reduce the difference between actual performance and theoretical limits by attacking these factors.
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SECTION 4

LIMITATIONS OF CONVENTIONAL HOLOGRAPHY U
A variety of mechanisms limit the practical holographic storage capacity of photorefractive

crystals to values below the theoretical limit. They include hologram dynamic range, Bragg

degeneracy, beam coupling, and laser, hologram, and detector noise. In this section we discuss

limitations due to Bragg degeneracy and beam coupling, factors which can be alleviated using Ucascaded-grating holography.

4.1 BRAGG DEGENERACY m

One of the most important impediments to holographic neural networks is crosstalk which
arises from an effect known as "Bragg degeneracy." The Bragg condition states that the angle of

incidence of a light beam relative to a volume grating must match one of the original writing beams
in order to form an optical connection. However, even if the angular selectivity is high, crosstalk
can still occur. Given a particular grating, it is possible for many light beams to satisfy the Bragg
condition for that grating, in addition to the beams which originally wrote the grating. As shown in
the momentum space diagram of Fig. 5, a set of beam pairs which define the surfaces of two end- 3
to-end cones all form the same angle with respect to the grating. All of the neuron pairs defined by

the cones are connected by that grating even though it was written by only one grt.ng pair. 3
Therefore, a large set of beams other than the original writing beam can scatter constructively from

the grating, forming erroneous reconstructions and crosstalk. 3
9 RIt o.OI RK

THESE (KO,KR)
PAIRS CANNOT BE
USED BECAUSE OF
CROSSTALK 

KR+KG=KO

Fig. 5. K-space diagram of cross-talk resulting from Bragg degeneracy. 3
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An experimental demonstration of Bragg degeneracy is shown in Fig. 6. We recorded a
hologram in a c-cut BaTiO 3 crystal using a laser diode light source with a wavelength of 830 nm.

(The wavelength and crystal geometry were chosen for low two-wave mixing gain in order to

eliminate beam fanning which, as will be shown later in this report, can be used to eliminate Bragg

degeneracy.) The experimental configuration of Fig. 3 was used. During recording the object
plane consisted of a regular rectangular grid pattern and the reference plane was a uniformly filled

rectangle (all pixels on). When the hologram was read out using the uniform reference, the

reconstructed object was smeared in the vertical direction. No horizontal smearing can be observed.
This can be easily explained by considering the k-space diagram of Fig. 7. In Fig. 7(a). it can be

seen that the grating k-vector created by beams RI and 01 also connects all beams above and below

R I in the R plane. These beams, such as, for example, R2, reconstruct extraneous beams such as

02 which appear above and below the original beam 01. This results in vertical smearing. In
Fig. 7(b) we see that horizontally displaced beams are not connected by the same grating k-vector,

therefore horizontal smearing is much less. Note that Bragg degeneracy cannot be eliminated by

simply phase aberrating the reference beam since the above construction would still hold for the

individual plane wave components.

Possible approaches for avoiding Bragg degeneracy are subsampling of the SLMs 7 and spatial

multiplexing of holograms. 8 In the subsampling approach, neurons are arranged in sparse
nonredundant patterns on the SLMs, and output planes are similarly sparsely sampled; thus

although false reconstructions still occur, they occur at unused positions and do not contribute to the
output. The special patterns can consist of so-called "fractal" lattices or other sparse patterns. If the

SLMs are capable of displaying NxN neurons, then this approach can implement a total of N3/2

neurons and N3 weights. This has the pleasing quality that the storage capacity of the crystal and

the number of weights required to fully interconnect the neurons on the sampled SLMs have the

same dimensional scaling. In many practical cases, however, it also has the drawback that the
storage capacity may be limited by the number of neurons that can be displayed in sparse patterns

on the SLM, rather than by the potentially large capacity of the crystal. As discussed above, the
storage capacity of a 1 cm3 crystal should be sufficient to store the interconnections for a NxN

array of neurons where N=500, which matches the capabilities of present-day SLMs. However,

because of the subsampling, only N3/2 neurons can be implemented even though the SLM is

capable of displaying N2 neurons. Since N=500, the neuron and weight storage capacities are

reduced by factors of 22 and 500, respectively, from the theoretical maximums. The light

efficiency is also lowered because some of the light is diffracted to unused pixels as a result of the

Bragg degeneracy.
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Fig. 6. Experimental demonstration of Bragg degeneracy using infrared hologram recorded in I
c-cut BaTiO3 . Vertical smearing is a sign of Bragg degeneracy.
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The spatial multiplexing approach avoids the Bragg degeneracy problem by physically

dividing the crystal into separate volumes for each weight. However, this reduces the coupling
efficiency of gratings, reduces parallelism because sequential exposures must be used, and
increases hardware complexity.

9229-06-008R1

KG

0 *R

011 R1

(a) (b)
VERTICAL CROSSTALK HORIZONTAL CROSSTALK

(FRONT VIEW) (TOP VIEW)

Fig. 7. K-space diagram showing origin of vertical smearing effect in Bragg degeneracy.
Vertically-displaced pairs of reference-object points are all connected by the same
grating k-vector.

4.2 ANGULAR WIDTH BRAGG DEGENERACY

In this section we discuss a previously unidentified effect related to the Bragg degeneracy

that can occur in holographic interconnection systems. This effect results in further unintended
Bragg degeneracies due to the angular width of the Bragg diffraction responses of volume

holographic gratings. We hereafter refer to this effect as angular width Bragg degeneracy. We
define it more precisely in Section 1.3. The main practical result of our investigations is that one of
two design rules for developing fractal sampling grids (that are used to avoid the effects of Bragg
degeneracy) does not always work; i.e., while this rule can be used to avoid direct Bragg

degeneracy crosstalk, it does not necessarily eliminate angular width Bragg degeneracy and its
associated crosstalk. For holographic interconnection systems that utilize fractal sampling grids to
avoid Bragg degeneracy it is thus important to be aware of the conditions under which angular
width Bragg degeneracy occurs and to use the correct fractal sampling grid design rule to avoid its

presence in the desired interconnections.
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In Section 4.2.1 we briefly review Bragg degeneracy and its effects on interconnection

systems. We discuss the two design rules that have been proposed to develop fractal sampling

grids. In Section 4.2.2 we describe angular width Bragg degeneracy in more detail and illustrate

its effects using numerical modeling examples based on a three dimensional, multiple grating

version 9 of the optical beam propagation method (BPM). 10 Our findings are summarized in

Section 4.2.3, and the relationship of angular width Bragg degeneracy to the fundamental

interconnection capacity of holographic media is briefly addressed.

4.2.1 Bragg Degeneracy and Fractal Sampling Grids

As discussed in Section 4.1, Bragg degeneracy occurs when a grating that connects a

desired pair of pixels also inadvertently connects one or more additional pairs of pixels due to the

two cones of angles that are Bragg matched to that particular grating. 1  One method of visualizing 3
which pixels in the interconnection system's input and output planes have degenerate

interconnections is to project the cones of Bragg-matched angles onto the pixel planes. 12 As is 3
illustrated in Fig. 8, for a given grating this projection results in two lines, one on each pixel plane.

The two degeneracy lines shown in the figure correspond to the grating connecting the top-most

pixel pair (joined by a solid line). Due to Bragg degeneracy, this grating also connects the pair of

pixels joined by the dashed line since these pixels are on the degeneracy lines.

Output Input
Plane Plane

I

DegeneracyI
Lines

Fig. 8. Bragg degeneracy causes a desired interconnection (such as between the pixels joined by3
the solid line) to inadvertently connect other pixel pairs (such as the pixels joined by the
dashed line) that are om the degeneracy lines. Such pixel pairs, together with the original
pixel pair, form the vertices of a rectangle.3
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As has been generally recognized, Bragg degeneracy can be a significant source of

crosstalk in holographic interconnection systems that superimpose all of the desired interconnection

gratings within the same volume of material. Bragg degeneracy can seriously affect the fidelity of

holographic interconnections in at least two ways: 1) the recording of a desired grating
inadvertently connects undesired pairs of pixels, and 2) if several pairs of pixels are connected by

gratings that are degenerate then the actual weighted interconnection between each of the pairs is

the sum of the complex (magnitude and phase) grating amplitudes. In the first case, completely

undesired interconnections are formed, and in the second case desired interconnections have

incorrect weights. For holographic interconnection systems in which Bragg degeneracy can occur,

it is thus important to eliminate its effects. The use of so-called fractal sampling grids for the input

and output planes has often been suggested for this purpose.

The use of fractal sampling grids involves creating patterns of pixels on the input and
output planes that can be interconnected only by non-degenerate gratings. The direct crosstalk due

to Bragg degeneracy is thus avoided, but at the cost of reduced spatial sampling of the input and

output plane pixelation. For example, if an interconnection system is implemented using two-
dimensional pixel planes that are each composed of M2 pixels arranged as an evenly spaced M by

M array, the largest number of usable pixels in each plane is M3/2 for an N-to-N interconnection.

Several design rules have been proposed 13 to generate fractal sampling grids. These can be
summarized as the "no rectangle rule" and the "unequal row spacing rule." Each rule is claimed to

be a sufficient condition for avoiding undesired crosstalk due to Bragg degeneracy.

The rectangle rule can be understood as follows. Note in Fig. 8 that when two pairs of
pixels (each pixel pair consisting of one pixel in the input plane and one pixel in the output plane)

are connected by degenerate gratings, the pixel pairs form the vertices of a rectangle. Use of the no

rectangle rule consists of generating patterns of pixels for the input and output planes such that no

rectangles can be formed having two pixels in the input plane and two pixels in the output plane as
vertices. An example of a set of input and output plane grid patterns that satisfies the no rectangle

rule is shown in Fig. 9(a) for a 27-to-27 interconnection system utilizing)' by 9 pixel arrays. The
large and small dots refer to used and unused pixel sites, respectively.

An example set of grid patterns generated using the unequal row spacing rule is shown in
Fig. 9(b). The operating principle here is to select rows of pixels that are vertically separated by

unequal numbers of pixels in the input and output planes. In the example shown in Fig. 9(b), the

rows in the input plane are separated by either 4 or 8 pixels, while the row separation in the output

plane is 3 or 6 pixels. As we shall see below, fractal sampling grids generated with the unequal

row spacing rule automatically avoid angular width Bragg degeneracy as well as normal Bragg

degeneracy. This, however, is not true for grids generated with the no rectangle rule.
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Fig 9. Two possible fractal sampling grids for a 27-27 interconnection system. (a) A fractal3
sampling grid that satisfies the no rectangle rule, but not the unequal row separation
rule. (b) A fractal sampling grid designed using the unequal row separation rule.
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4.2.2 Definition of Angular Width Bragg Degeneracy

In this section we explain more clearly the nature of angular width Bragg degeneracy, how it

arises, its effect on weighted interconnections, and how it may be avoided. In the literature, Bragg

degeneracy is described only in terms of exact angular Bragg-alignment of undesired pixel pairs to
a degenerate grating. Such a description neglects an important point: the angular sensitivity of a
volume grating's diffraction response has a finite angular width about its Bragg angles. The

angular FWHM of this diffraction response, AO, is approximately AID (measured in the
holographic medium) in which A is the period of the grating and D is the optical path length of the

readout beam through the medium. The possibility therefore exists for an interconnection grating
to inadvertently connect an unintended pair of pixels if each pixel is within an angular range of
approximately A0 of the grating's Bragg angles. This is what we mean by angular width Bragg

degeneracy.

We illustrate this effect and compare it to normal (Bragg-matched) Bragg degeneracy using
the following pair of examples. Consider two columns of pixels as shown in Figs. 10(a) and

10(b). Let the right column in each figure be in the input plane of a holographic interconnection

system and the left column in the output plane. In each case, a single sinusoidal phase grating is
present. In Fig. 10a, the grating is intended to connect the pixels labeled (49,0) and (-49,0) in the

input and output planes, respectively. In Fig. 10(b), the grating connects pixels (49,1) and
(-49,0). By turning on the 63 pixels in the right hand column and monitoring the diffracted light at

each of the 63 pixels in the left hand column, we can evaluate the amount of crosstalk in each case
caused by the presence of a single grating.

In the case of Fig. lOa, we naturally expect each pixel in the input plane to be connected to its
opposite pixel in the output plane since the interconnection grating is degenerate to all of these

interconnections. This is illustrated in Fig. 11 (a) in which the expected diffracted outputs of the

output plane pixels are shown as a function of the pixel index [each diffracted output is assumed to
have 1% diffraction efficiency for consistency with the numerical simulation results discussed

below and shown in Fig. 1 (b)]. As shown in Fig. 1 (c), we expect the grating of Fig. 10(b) to

yield a diffracted output only at pixel (49,0) in the output plane when all 63 input plane pixels are
turned on. Since do other pairs of pixels lie on the lines of degeneracy for this interconnection
grating, no other diffracted outputs should be present.

We tested the above predictions by using a three dimensional version of BPM to propagate

the 63 readout beams through a holographic medium in which the desired interconnection grating

was recorded. We assumed an angular separation of 18 degrees between the pixel columns, a
readout wavelength of 514 nm, and a 5.0 mm thick holographic medium having a refractive index

of 2.48. The pixel separation in the input and output planes was taken to be 0.97 mm. The focal

length of the collimating lens between each pixel plane and the holographic medium was assumed
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Fig. 10. (a) Grating Interconnection between pixels (49,0) and (-49,0). (b) Grating
interconnection between pixels (49,1) and (-49,0).
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to be 300 mm. The grating strength of the interconnection grating was designed to yield I %

diffraction efficiency for a single input to a single output.

Simulation results are shown in Figs. 1 (b) and 1 (d). As seen in Fig. 11 (b), Bragg

degeneracy (the case of Fig. 10a) does indeed cause each input plane pixel to be connected to its

opposite output plane pixel, and the simulation matches our expected results [Fig. 11 (a)]:

However, as seen by comparing Figs. 11 (c) and 11 (d), there are more diffracted outputs in the

simulation results than expected for the interconnection grating shown in Fig. 10b. This is due to

angular width Bragg degeneracy, which causes pixel (49,i) in the input plane to be connected to

pixel (-49,i- 1) in the output plane. For example, even though pixels (49,0) and (-49,- 1) are not

exactly on the degeneracy lines of the interconnection grating, they are close enough to be well

within A9 of the corresponding Bragg angles of the grating and therefore are connected by the

grating. The efficiency of the interconnection depends on how angularly detuned a given pixel pair

is from the grating. This is seen in Fig. 11 (d) in which the light detected at the output pixels is

shaped like the angular sensitivity of the interconnection grating.

One can summarize angular width Bragg degeneracy by noting that the degeneracy lines

shown in Fig. 8 are not infinitesimally thin. Rather (as seen in Fig. 12), they have a finite

thickness that is dependent on the angular width of the interconnection grating to which they

correspond. This can result in undesired interconnections for fractal sampling grids designed with

the no rectangle rule. In the next section we illustrate the effects of angular width Bragg

degeneracy on the reconstruction fidelity of weighted interconnections.

4.2.3 Effects on Weighted Interconnections

Angular width Bragg degeneracy can have just as severe an effect on the reconstruction

fidelity of weighted interconnections as normal (Bragg-matched) Bragg degeneracy. In this section
we discuss a set of numerical simulations of 9-to-9 weighted interconnections performed using

BPM. By comparing the RMS error of the normalized diffracted outputs, we quantitatively

examine the fidelity performance of the 9-to-9 holographic interconnection system in the presence

(among the desired interconnections) of normal Bragg degeneracy (Case A), angular width Bragg

degeneracy (Case B), and no form of Bragg degeneracy (Case C).

In our BPM simulations, the same assumptions apply as for the simulations in Section 1.3.1

except for the following additions. First, the holographic medium is assumed to have a linear

recording characteristic relative to the incident write beam intensity. Second, only the desired

interconnection gratings are assumed to be present in the medium; no cross gratings exist between

pixels within the input or output planes (as would be created using a simultaneous recording

method, for example).
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Degeneracy
Lines

Fig. 12. Degeneracy lines have finite thickness, corresponding to the Bragg width of
a given interconnection grating. This results in additional degenerate
interconnections (compare dashed interconnection lines above with Fig. 1).

The pixel geometry for Case A is shown in Fig. 13(a). The pixels in both the input and

output planes are each arranged on a regular 3 by 3 grid, and thus significant Bragg degeneracy is

present in the interconnection system. The weights are the same between all of the input plane

pixels and a given pixel in the output plane. The relative weights for the top row of pixels in the

output plane (left to right) are 0.8, 0.5, and 0.2. Similarly, the relative weights for the second and

third rows are 0.9, 0.6, 0.3, and 1.0, 0.7, 0.4, respectively. All nine input plane pixels are used

during readout, each generating a unit intensity plane wave at the front face of the holographic

medium. In the absence of fidelity errors, the diffracted outputs at each pixel should therefore have

the same relative detected power as the weight corresponding to that pixel. The ideal diffracted

outputs for Case A are shown in Fig. 14(a).

Simulation results for Case A are shown in Fig. 14(b). Since presumably only the diffracted

outputs at the nine original output plane pixels are of interest, these are shown in Fig. 14(c). Fig.

14c therefore represents the actual detected outputs (assuming that detectors are placed only at the

desired output pixels), while Fig. 14(b) represents all of the diffracted outputs generated by the

interconnection system. Those outputs that are present in Fig. 14(b) but not in 14(c) (for example,
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Fig. 13. Fractal sampling grids used for weighted 9-to-9 interconnection simulations. The

grids for Cases A, B, and C, and shown in (a), (b), and (c), respectively. 3
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at pixels (-49, 2), (-50,3), and (-51,2)) are due to Bragg degeneracy. They naturally do not

directly affect the detected outputs.

As seen by comparing in Figs. 14(a) and 14(c), there are significant visible differences

between the ideal and actual outputs of the interconnection system. The relative magnitudes of the

detected outputs are obviously incorrect. One quantitative measure of the amount of error in the
detected outputs is the RMS error of the normalized outputs. If the ideal outputs are represented by

the vector y (each component of which is the ideal magnitude of one of the nine pixels in the output

plane) and the actual diffracted outputs by the vector y' (each component being the detected output

at the pixel corresponding to the same component in y), the RMS error of the normalized outputs, 3
E, is

I
in which N = 9. The maximum value of this error is ý/2. We have found that values of 0.1

correspond to large errors in the relative magnitude of individual outputs (up to 25% or more).

The RMS error for Case A is 0.173, which [as seen in Fig. 14(c)] represents a significant

deviation from the desired outputs. As will be seen upon examining Case C (in which there is no
Bragg degeneracy), most of the error in Case A is due to Bragg degeneracy.

The pixel geometry for Case B is shown in Fig. 13(b). Note that it is a subset of the fractal

sampling grid shown in Fig. 9(a) that was generated using the no rectangle rule. The same relative
weights and readout intensities as for Case A are assumed for the BPM simulation of Case B. The 5
ideal outputs are shown in Fig. 15(a), the diffracted outputs in Fig. 15(b), and the detected outputs

in Fig. 15(c). At first glance, the detected outputs appear to be similar to the ideal outputs. 5
However, closer examination reveals that the pixels having a y-axis index of 4 are nearly a factor

of two too small compared to the other pixels. Indeed, the RMS error for this case is

0.182-slightly larger than Case A's! 3
This poor fidelity performance is due to angular width Bragg degeneracy. As an example,

consider the two interconnections indicated by the dashed lines in Fig. 13(b). Although the four
pixels involved do not form the vertices of a rectangle, a simple calculation shows that the upper

set of pixels is well within AO of the grating connecting the lower set of pixels, and vice versa. 3
Thus, angular width Bragg degeneracy is present among these interconnections. Similarly, the

interconnections between each pixel in the middle row of the input plane to each pixel of the middle

row of the output plane are degenerate with the corresponding interconnections between pixels in

2
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the bottom rows. This angular width Bragg degeneracy is the reason that the detected outputs of

the pixels in Fig. 14(c) along rows I and -3 are nearly twice as large as those along row 4.

Note that angular width Bragg degeneracy occurs in a pixel geometry that satisfies the no

rectangle rule. This result indicates that the no rectangle rule is not a sufficient condition for the

complete avoidance of any form of Bragg degeneracy. This is in direct contradiction to References

12 and 13.

The pixel geometry for Case C is shown in Fig. 13(c). It is a subset of the fractal sampling

grid generated using the unequal row separation rule shown in Fig. 9(b). Again, the relative

weights and readout beam intensities are the same as above. The ideal outputs are shown in 3
Fig. 16(a). The diffracted actual outputs from the BPM simulation are shown in Fig. 16(b). Note

that extraneous diffraction outputs are visible in rows -4, -1, 1, and 4. Angular width Bragg

degeneracy alone is responsible for the outputs in rows -4 and 1, while a combination of angular

width and normal (Bragg-matched) Bragg degeneracy causes the outputs in rows -4 and 4. Since

the outputs in these rows are not detected they naturally do not directly affect the fidelity of the

detected outputs.

The detected outputs are shown in Fig. 16(c). A visual comparison with the ideal outputs in 3
Fig. 16(a) shows significantly improved fidelity over the previous cases. This is verified by

comparing the RMS error of the normalized outputs, which for Case C is 0.0129. This is over an 3
order of magnitude lower than the errors obtained for Cases A and B. Selection of a pixel

geometry that eliminates all forms of Bragg degeneracy among the desired interconnections thus

significantly improves the holographic interconnection system's reconstruction fidelity. The

unequal row separation rule allows the design of such pixel sampling grids.

In summary, we have demonstrated a previously unrecognized form of Bragg degeneracy I
that is due to the angular width of the Bragg diffraction responses of volume holographic gratings.

As shown by numerical simulation, this angular width Bragg degeneracy can degrade 3
interconnection fidelity as much as normal (Bragg-matched) Bragg degeneracy. Use of the no

rectangle rule to design fractal sampling grids does not guarantee the avoidance of angular width 3
Bragg degeneracy among the desired interconnections when implementing a given interconnection

system. However, all forms of Bragg degeneracy among the desired interconnections can be

avoided if the unequal row separation rule is used in the design of the fractal sampling grids. This

is therefore the preferred design rule to use with holographic interconnection systems in which

Bragg degeneracy can occur.

Having explored some of the practical aspects of angular width Bragg degeneracy, we turn now to

a brief discussion of a more fundamental issue; namely, does this form of Bragg degeneracy 3
impose any additional limitations on the interconnection capacity of volume holograms? The

answer at this point appears to be no. As discussed in Section 3, one can calculate the amount of 3
28 3
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grating k-space that is accessible from two finite pixel planes. Based on the dimensions of the

holographic medium, a given grating occupies a fixed volume of this k-space. The size of each

grating's k-space volume corresponds inversely to the angular width of the grating's Bragg

response. One can calculate the number of interconnection gratings that can be stored in the

accessible volume of k-space by simply dividing by the volume occupied by an individual grating. I
Angular width Bragg degeneracy does not alter this fundamental fact. Rather, it relates to how

specific sampling grids are chosen such that the resultant interconnection gratings do not overlap in

the accessible grating k-space. Awareness of angular width Bragg degeneracy is thus important in

the implementation of an interconnection geometry, but does not affect the fundamental number of 3
interconnections that the geometry can intrinsically access.

4.3 BEAM COUPLING 3
A second major source of distortion in holograms is energy transfer between Bragg-

matched beams via two-wave mixing. This occurs because when an input beam is Bragg-matched 3
to a grating, the reconstructed beam is automatically Bragg-matched. This beam can then itself

read out the same grating and reconstruct the input beam. If the gain-length product of the grating 3
is sufficiently high, energy transfer or beam coupling can occur between the beams, resulting in

distortions. Several workers have analyzed the effects of beam coupling on holographic image

quality. 14,1 5 They found that distortion increases rapidly as the gain-length product of the grating

increases, as illustrated in Fig. 17. Therefore, a straightforward technique for reducing beam-

coupling distortion is to reduce the gain-length product. However, this also results in low I
diffraction efficiencies and low signal-to-noise ratios.

3
I
I
I
I
I
I
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SECTION 5

CASCADED-GRATING HOLOGRAPHY I
5.1 CASCADED-GRATING WEIGHT STORAGE

We have developed a holographic recording technique called cascaded grating holography I
(CGH) which greatly reduces the distortions discussed in the previous section. The essence of the
CGH idea is to use a set of angularly and spatially multiplexed gratings to store each weight rather 3
than a single grating. By forcing a light beam to match the Bragg condition at each of a cascaded
series of spatially and angularly distributed gratings (Fig. 18), crosstalk due to Bragg degeneracy 3
is greatly reduced. From the k-space construction of Fig. 19, it is clear that two gratings in series
will connect only a single input/output pair of beams via an intermediary diffracted beam. All other

beam triplets (input, intermediary, and output beams) will not be able to match the Bragg
conditions at both gratings because the intermediary diffracted beam will not lay on the Bragg
degeneracy cone of the second grating. An undesired beam on the Bragg degeneracy cone of one I
grating is therefore rejected by the remaining gratings. This allows the neurons to be arranged in
arbitrary patterns on the SLM, increasing the storage capacity (since all pixels can be used) and 3
throughput.

We have investigated two techniques for generating such multiple-grating connection 3
weights in photorefractive materials: the self-pumped phase conjugate mirror (PCM) and forward-
scattering beam fanning. A self-pumped PCM16 generates the "phase conjugate" or time-reversed
version of an image-bearing coherent input beam. 17 In the early stages of our research we
conjectured that the temporal evolution of the phase conjugation process in self-pumped
photorefractive PCMs, which include dynamic multiple-wave mixing terms, will be similar to the
single grating case in that the amplitude diffraction efficiency of the conjugate beams will increase
with the outer-product of the writing beam amplitudes, thereby emulating the Hebbian learning 3
rule. In addition. multiple cascaded gratings are generated which should eliminate Bragg
degeneracy. This fn turn implies that the multiple grating per weight approach can be implemented 3
using self-pumped PCMs and used to form neural networks which obey Hebbian learning rules.
Moreover, the observed distributions of beams within a self-pumped PCM, which are determined
by the high coupling gain of BaTiO 3, scattering centers, reflections from crystal faces, and the
geometry of the PCM configuration, 18 suggest that light beams from the entire input plane mix in

the crystal. This results in the global interconnection of input pixels by a self-pumped PCM,
especially if the PCM is in the Fourier plane of the input spatial light modulator. 19,20 Since a beam
from one pixel must diffract from a large set of spatially distributed gratings in order to form the 3

32 3



SINGLE-GRATING WEIGHTED
CONNECTION BETWEEN I AND J

(SUFFERS FROM BRAGG DEGENERACY)

II

MULTIPLE-GRATING WEIGHTED
CONNECTION BETWEEN BEAMS I AND J

(NO BRAGG DEGENERACY)

Fig. 18. Optical connections made by scattering from multiple cascaded gratings reduce
cross-talk due to Bragg degeneracy and allow full utilization of input and output
planes.
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Fig. 19. Three-dimensional k-space diagram for satisfaction of Bragg conditions at
two gratings simultaneously. Only one triplet of light beams (colored
white) satisfy the Bragg conditions of both gratings simultaneously.

conjugate of a second pixel, the Bragg degeneracy crosstalk should be low according to the I
arguments presented previously.

We performed a series of experiments to test these conjectures for the grating selectivity

and global connectivity of the PCM approach. The setup illustrated in Fig. 20 was used to test the

vertical and horizontal angular selectivity of a self-pumped PCM. A BaTiO 3 crystal was placed in 3
the back focal plane of a lens in the correct orientation for self-pumped phase conjugation. To

measure the horizontal selectivity, the input laser beam passed through a Ronchi ruling oriented

with the stripes vertical. The beam was focused into the PCM. The phase conjugate or "time-

reversed" beam was then reflected from a beam splitter and focused into a photodiode detector.
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After steady state was reached, the laser power was lowered to reduce the rate of formation of new

gratings and a recording was made of the conjugate signal as the Ronchi ruling was translated

horizontally. Assuming sufficient angular selectivity, the conjugate signal should oscillate as the I
ruling is translated. Specifically, for zero crosstalk the output vs time should be the autocorrelation

function of the Ronchi ruling. The smaller the depth of the oscillation, the greater the crosstalk. 3
Similarly, to measure vertical selectivity the Ronchi ruling was rotated 900 and translated vertically.

The experimental results are shown in Fig. 21. For this case the tested angular separation was

1.7x 10-3 radians, which is sufficient for 104 to 105 neurons assuming reasonable lens focal

lengths and SLM dimensions. As can be seen in the figure, the extinction in both directions is

complete, proving that Bragg degeneracy was eliminated.
Global connectivity was demonstrated by reading out a complete stored image using less

than 3% of the original image as input. In short we found that holograms with good image quality, l
minimal Bragg degeneracy, and global connectivity could be stored in the PCM configuration.

We repeated these experiments using a mutually-pumped PCM and obtained similar results.

Despite the positive results we obtained for the PCM method in terms of Bragg degeneracy

and global connectivity, we found that we could not implement neural networks. Investigating

further, we found that the dynamic characteristics of self- and mutually-pumped photorefractive

PCMs resulted in inter-hologram crosstalk when multiple exposures were recorded in the crystal.

In particular, we found that previously recorded holograms influenced the formation of new

holograms in such a way that extraneous connections were made. For example, if two orthogonal

images A and B (e.g., with no common pixels) were sequentially recorded in the PCM, I
subsequent readout with either image would recall the superposed phase conjugates of both

images.

This effect is illustrated in Fig. 22 which plots the conjugate signals for the two images as

the input was repeatedly switched between A and B. Note that when the input is switch to B from 3
A, both A* and B* appear. (As the exposure continues B* eventually decreases to zero as B's

gratings are erased.) This effect is analogous to the "hologram sharing" effect in mutually-pumped

PCMs in which one hologram formed by an input beam affects the formation of a second hologram

formed by a second mutually incoherent input beam.2 1 Gratings which can be "shared" between

two holograms have higher gains over other gratings and tend to be enhanced. This in fact is the I
principle behind mutually-pumped PCMs in which two mutually incoherent beams can read out

each other's conjugate beam. In the case considered here the exposures of the two holograms are 3
separated in time rather than simultaneous, but the principle is the same.

The hologram sharing effect results in very strong inter-hologram crosstalk and is i

detrimental to optical neural networks. This led us to consider a second non-phase-conjugate

method which uses the same multi-grating principle to avoid Bragg degeneracy but does not suffer i
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100 I
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SECONDS

Fig. 22. Time-sequenced exposure of self-pumped phase conjugate mirror with two
orthogonal inputs A and B. Presence of both conjugates A* and B simultaneously
is due to effects of hologram sharing and indicates inter-hologram crosstalk.

from hologram sharing. This method is based on the observed phenomena of beam fanning in I
photorefractive crystals.

"Beam fanning" is a well-known effect in high gain photorefractive crystals in which an

input beam is initially scattered by small inhomogeneities in the crystal, resulting in low amplitude

scattered optical noise. The noise beams then interfere with the original input beam and write

gratings. Scattering of the input beam by these gratings selectively amplifies some of the noise

beams by the process of energy transfer in photorefractive two-wave mixing. The amplified beams

then write new gratings and the process cascades. Which beams are amplified most is determined

by the electrooptic tensor of the crystal and the orientation of the input beam. The net effect is that

the input beam literally fans in the crystal as it writes a set of spatially and angularly distributed I
gratings.

As shown in Fig. 23, this fanned light can be used as a reference beam when it is interfered

with a second, unfanned object beam to form a holographic connection which suffers neither from

Bragg degeneracy (because multiple cascaded gratings store each connection) nor from hologram 3
sharing (because the conjugate beam is not used for readout). An unfanned object beam is used

because object beam fanning would degrade the quality of the reconstructed object image. Fanning

can be controlled so that the reference beam fans and the object beam doesn't by adjusting the

orientation of the beams relative to the crystal. The fanning process generates high gain-length
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Fig. 23. Recording of connection using fanned reference beam.
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product "fanning gratings" which divide each reference beam into a set of beams at different

orientations and locations. During recording the object beams form a set of "signal gratings" in
which the connection weights are stored. Both the signal and fanning gratings are angularly and I
spatially multiplexed. Upon readout each reference beam must match the Bragg condition at a
multitude of fanning gratings, which breaks the Bragg degeneracy. In addition, the beamlets 3
reconstructed by the signal gratings are all in phase and sum coherently, hence the aggregate
diffraction efficiency can be high even though the diffraction efficiency of any individual signal
grating is small. In addition, the low gain-length product of the individual signal gratings greatly I
reduces distortions due to beam coupling.

We have applied crosstalk tests to the fanning method as described above for the PCM
method and found that the Bragg degeneracy advantages of PCM are maintained but hologram
sharing is eliminated. Recordings of holograms in a fanning crystal of BaTiO 3 do not show Bragg
degeneracy, hologram sharing crosstalk, or distortions due to beam coupling. An example of I
holographic recording using an arbitrary 2-D gray-scale reference image is shown in Fig. 24.

9129-06-29 I

- I

0 R
(OBJECT) (REFERENCE) 3

(a)

Fig. 24. Experimental demonstration of recorded image quality using fanned reference beam i
and 2-D non-subsampled reference. (a) Object and reference used for recording.

I
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TRANSMITTED OBJECT
(b)

OBJECT RECONSTRUCTED
USING 50% OF ORIGINAL

REFERENCE

(C)

Fig. 24. Experimental demonstration of recorded image quality using fanned reference beam
and 2-D non-subsampled reference. (b) Original object for comparison.
(c) Hologram of object reconstructed using 50% of original gray-scale reference.
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The object and reference both consisted of combinations of Pentagon and woman images displayed n
on a LCTV with 30,000 gray-scale pixels (90,000 pixels if the individual red, green, and blue
pixels of the color LCTV are counted). The original object (showing the system's optical quality) n
and reconstructed hologram are shown in Figs. 24(b) and 24(c). Note that only 50% of the
original reference was used in reading out the hologram. The reconstructed image is virtually
identical to the original, as shown in Fig. 25 which is a 3-D plot of a detail in the original and
holographic images. Upon magnification of the reconstructed hologram, each of the 45,000 LCTV
pixels in the original object was clearly discernible. 5

A measurement of the holographic fan-out is illustrated in Fig. 26. In this experiment a
uniform (all pixels on) reference was used to record the hologram. During readout an opaque
screen with an adjustable small round aperture was translated in front of the reference plane, n
allowing us to measure the weight vector connected to that portion of the reference. In this
experiment the aperture area was 0.0091 of the reference, corresponding to a fanout of 110.
(Measurements of larger fanouts were limited by the sensitivity of our CCD camera.) It is evident
from the photograph that the entire object was reconstructed when read out with a small fraction of
the reference, demonstrating global connectivity. .3

We also measured the time required to write holograms to saturation using fanned reference
beams. We used a two slotted wheels on a common rotating shaft to periodically switch off the n
object beam in order to measure the buildup in diffraction efficiency as the hologram was being
written. The results are shown in Fig. 27 for a crystal of BaTiO3 which was cut at 450 to the

c-axis. This crystallographic orientation maximizes the effective electrooptic coefficient. In this
case the wavelength was in the green (514 nm) and the total optical power incident on the crystal
was 17.5 mw. The time required to write to saturation was 25 msec. Weights are typically
adjusted by small amounts during the learning phase, therefore all the weights connecting two
neuron layers can be adjusted in less than I msec. This would correspond to learning rates of
greater than 1011 connection updates per sec if each layer contained 104 neurons. Since the
photorefractive time constant is inversely proportional to the optical power, the update rate can be
further increased by raising the laser power. 3

Improvements in packaging size and cost would be obtained if a laser diode light source
could be used. Currently available BaTiO 3 is less sensitive at the infrared laser diode wavelengths 3
and the photorefractive gain is less. Nevertheless, we were successful in demonstrating cascaded-
grating holography in 450 BaTiO 3 using a laser diode light source operating at 830 nm. We used a

150 mw single mode laser diode from SpectraDiode Labs. The total optical power at the crystal
was 31 mw. As shown in Fig. 28, we could resolve a holographic image with exposure times as
short as 100 msec. Nevertheless, due to the much reduced sensitivity of BaTiO3 at 830 nm, the

time constant for hologram writing was much longer than at 514 nm. Referring to Fig. 29, we
measured a saturation time of 10 sec for an incident power of 45 mw at 830 nm. Thus more work 5
is needed to improve the infrared sensitivity of the recording medium for use with laser diodes.

I
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Fig. 25. 3-D plots showing detail of Pentagon images in Fig. 11. (a) Original object.
(b) Hologram of object reconstructed using $0% of original gray-scale reference.
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450-CUT BaTiO 3 (210-H), X- 514 nm, PR = 8.5 mW, P0 - 9.0 mW

25 ms

Fig. 27. Hologram writing time (fanned reference).

Alternatively, compact solid state lasers emitting in the green could be used instead. The impact of
these options on package design are discussed in the packaging section of this report.

5.2 HOLOGRAM SUPERPOSITION

The learning phase of neural network models involves many parallel weight adjustments in
response to an internally or externally generated error signal. In holographic optical neural
networks this function is performed through the superposition of many exposures of the
photorefractive crystal in which the strengths of individual gratings are strengthened or weakened.
Ideally, the holographic process should not distort the linear superposition of weight update
vectors. In the following we derive necessary conditions for linearity using a simple exponential

decay model. We also point out that weight erasure can distort the neural network learning rule if

precautions are not taken.
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Fig 28. IR hologram in 45*.cut BaTiO3 (210.H) (fanned uniform reference). ) = 830 nm,
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45°-CUT BaTiO 3 (210-H), 1= 830 nm, PR = 21 mW, Po = 24 mW

k- 10 sec - -

Fig. 29. Hologram writing time (fanned reference).

Following Valley 22 , we assume a quasi-CW approximation for the photorefractive

equations developed by Kukhtarev et al.. 23 The coupled equations describing the time and space

evolution of two plane waves with amplitudes Ap and As are then given by

dA -ik

dX p 2np

dAs = -ik reff ApE
dgxs 2np

dE E iESCA Ap

dt r TI0
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The quantities reff, E, ND, NA, a, gt, ns, np, and tR are material constants, k=2VX, and kg is

the wave number of the space charge field grating. The above equations are applicable to crystals 3
in which one charge carrier dominates. The effects of absorption on the spatial derivatives of Ap

and As are neglected.

In this simplified model the response time t is inversely proportional to the total light
intensity 10. Let us define a normalized response time t I =10 r which is independent of the total

light intensity. The equation for the time evolution of the grating space charge field then can be
written as

dE E I~iSAA A
di r, 1,

The saturation value of the space charge field is

Esat = iEsc PA

The incremental change to the space charge field is given by 3
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The second term is the desired Hebbian contribution to E. It is modified by the first term

which represents weight erasure. Weight erasure reduces the magnitude of a weight vector that is

not currently being updated (Ap and/or As equal to 0) but not its orientation because 8E is then

proportional to E. The orientation of a weight vector is affected by weight erasure if Ap and As are

nonzero. The erasure term distorts gradient descent neural network models such as

backpropagation which are sensitive to both orientation and magnitude of 8E, but has little effect

on other neural networks such as the Perceptron. If the output values of a Perceptron are (1,- 1)

and the threshold is 0, then weight decay will not affect the Perceptron output because the linear

discriminant depends only on the orientation of the weight vector.
The above equation can be rewritten using neural network nomenclature. Each weight wij

connecting neurons i and j is then described by an equation of the form

"dwi = w +nij
dt i E

where Tlij---iEscAiAj*/tW is the updating term proportional to the product of the amplitudes of

writing beams i and j. 'tW and 'tE are the writing and erasing time constants, respectively. The

weight saturation value is wsat=lijtW. In the following we will assume tE and tw are constant

(equivalent to assuming equal light intensities in all updates). We will also suppress the neuron

indices i and j.

We consider multi-epoch recording (sometimes called incremental recording) in which each

hologram is exposed for a short time and the set of holograms is cycled through many times.24

This recording method is appropriate for neural networks in which the number of required

exposures is not known be,--ehand. We will also assume non-orthogonal holograms in which

each connection weight may be updated an arbitrary number of times during learning. Our

objective is to derive conditions for the linear superposition of exposures in multi-epoch recording.

In the first epoch after the n-th exposure the solution to Eq. (1) is

wn = e -t/E 1+4
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in which subscripts now refer to exposures and t is the time elapsed since the start of the n-th

exposure. Equation (2) expresses the current weight values in terms of the weight value at the end

of the previous exposure. It can be solved recursively to yield

S= Woe'-nTlE + TW(-e-T/)w ln-p1 PT/TE

p=O

where wo is the initial weight value and T is the exposure time for each update (assumed constant

in multi-epoch recording). Thus at the end of the first epoch the weight value is an exponentially 3
weighted sum of the updates 1n. Now assume w0=0 and sum over Q epochs, each of which

consists of N holographic exposures (one for each exemplar). After the Q-th epoch, 3
T QN-1I[q1NpTT

WQ = W(Ie-T/e w )I w 7N-p,'qe-(q-)N+PT/?E I
q= lp=O

where q is the epoch index. Now, if the order of exemplars is the same in each epoch, then by
definition lN-p,q=TN-p and the summation over q can be done analytically: 5

•WQ" I=e-QNT/rE N-1N pTI E 3WQ = 'rW(1 -e-Tw I[-e- rrTITE I ,7Orl-pe-T/tI

In order to minimize distortions due to photorefractive erasure, wQ should be forced to be
proportional to "il averaged over the N exemplars. This is the case if T<<'CE/N:

IN--= 1: 17,i if NT<<'(E
r= n=1I

The value of the iveight (light amplitude diffraction efficiency) is maximized if in addition the
number of epochs satisfies Q>>rE/NT• I

WQ 20 W- (I 1-- T/rw if NT<<,[E<<QNT i
where

n7 I
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Thus under these conditions the weight is simply proportional to the linear average of the update

values, which is desirable for neural network models. The diffraction efficiency, which is

proportional to IwQI2, decreases as 1/N2 .

A demonstration of multi-epoch recording of superimposed holograms using fanned

reference beams is illustrated in Fig. 30. In this case the objects were rotated versions of a gray-

scale woman image and the references were orthogonal grid patterns. As shown in Figs. 30(b)

and 30(c), each of the superimposed holograms could be read out with very little crosstalk between

holograms and with approximately equal diffraction efficiencies. Fig. 31 is a 3-D plot of relative

diffraction efficiency measured for 30 superimposed holograms recorded using multi-epoch

exposures. The figure plots relative diffraction efficiency of each hologram when read out by each

of the references. The objects and references were non-orthogonal random patterns. Due to the

non-orthogonality of the patterns, one expects approximately 25% crosstalk, which agrees with

experiment. The variations in diffraction efficiency along the diagonal can also be attributed to the

random nature of the patterns.

9129-06-41

OBJECT (a) REFERENCE

Fig. 30. Experimental demonstration of hologram superposition using fanned reference
beams. (a) One of the object-reference pairs used for recording. References were
mutually orthogonal. Objects were rotated versions of the woman image.
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Fig. 30. Experimental demonstration of hologram supsrposition using fanned reference
beams. (b) and (c). Readout of two holograms.

I
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30 Holograms Superimposed Using Random Reference Patterns

",• 0.025•

S 0.02

S-0.015

0 0.01

C- "5 0.005' S 29

CD0

C ,SS Readout Index

Hologram Index

Fig. 31. Readout of 30 holograms exposed using multi-epoch recording and random reference
patterns.

An interesting result is obtained if we plot the mean hologram diffraction efficiency against

the number of recorded holograms on a log-iog plot. If multiple holograms are record..J'

coherently in a single exposure then we would expect the diffraction efficiency per hologram to

decrease as I/N, where N is the number of holograms. If the N holograms are recoried in N time-

sequenced exposures then we would expect the diffraction efficiency to decrease as 1/N2 due to

grating erasure, as discussed above. Yet when we plot the experimental results for time-sequenced

recording using fanned references, the data fall between he l/N 2 and 1/N lines, as shown in

Fig. 32. We conjecture that this may be due to the spatially-multiplexed nature of the fanning

gratings and the associated spreading and filamentation of the reference beam. Light from a

particular reference pixel is directed by the fanning gratings to the signal gratings which connect it

with object pixels. Reference and signal gratings which are not associated with that reference pixel

tend to be bypassed, therefore each grating tends to be erased only by light beams which are

connected by that grating. The gratings are therefore erased less than we would expect from the

above analysis which assumes complete overlap between sl! of the )eams. This improved

efficiency performance may be an additional advantage of cascaded-grating holography.
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SECTION 6

OPTICAL NEUROCOMPUTER DESIGN
AND CONSTRUCTION

6.1 OPTICAL REPRESENTATION OF NEURAL NETWORKS

Most neural network models require weights, error signals, and neuron outputs to assume

both positive and negative values. Bipolar error signals and weights are necessary even if the
neuron response function saturates at I and 0 in order to both rectify wrong responses and
reinforce correct responses without saturating the outputs. Therefore, means must be provided in
an ONN for bipolar inputs and outputs. Holographic ONNs can use coherent or incoherent
methods for representing negative numbers. In coherent approaches direct phase modulation of
light is used to shift the phase of written gratings. The phase of diffracted light beams is measured

by mixing with a reference beam and using interferometric detection. Interferometric detection has
potential benefits in terms of increased dynamic range, but it also has many practical difficulties.
The phase shifting of the input must be done with great uniformity across the entire SLM input.
(Although this can be accomplished using Stokes' principle. 25 ) More problematic is the
interferometic detection at the output detector array. It is difficult to maintain phase uniformity
across the entire output detector array. The system also becomes very vibration sensitive. Finally,
many presently available SLMs have an amplitude-dependent phase response which makes
independent control of phase and amplitude impossible without using an additional compensating

phase-only SLM, which would greatly increase alignment difficulties and system complexity.
In order to avoid these problems, we represent bipolar inputs, weights, and outputs in our

SPONN system with spatial multiplexing and electronic subtraction. A bipolar input yj (which
could be an input from neuron j or an error signal) is divided into two nonnegative quantities yj+

and yj- where

yj+=yj and yj-=0 if yj>---

y+--0 and yj-=Iyjl if yj<0

These operations are performed electronically in the host computer. yj+ and yj" are then written to

two spatially-separated SLM pixels in the reference half of the optical input plane. For the writing
or weight adjustment phase of a neural network algorithm, two similar nonnegative quantities are
written to two SLM pixels in the object section of the input plane which represent a bipolar error

signal in neuron i. The crystal is then exposed with the object and reference beams, forming four
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constant-phase weights wij++, wij+-, wij-+, and wij-- in which a bipolar effective weight

connecting neurons i and j is encoded. The writing phase is further divided into two subphases in
which the weights are adjusted twice: once with the outer-product £iYj and once with (-Ei)(-yj).

Although these two exposures are the same as far as the effective weight increment is concerned,
they serve to ensure that the cross-diagonal weights are equal, e.g. wij++=wij-'=wij+ and wij+"

=wij-+=wij'. The significance of this will be evident below.

The bipolar algorithm in the readout phase is illustrated in Fig. 33. Input yj is again split 3
into positive and negative parts which read out the weights in the hologram. Square-law detection

of the diffracted light beams is performed at two CCD pixels, forming the two intermediate terms

d_= lwiY + E 2q Y

2

S229-M6.7H1
BIPOLAR OUT, 3

POS. PART -EPR

LUT

CCD PIXELS

SLM PIXELS5

POS. PART .•NEG. PART

* OPTncs BIPOLAR INPUT

[:]ELECTRONICSI

Fig. 33. Algorihmn for bipolar representatior. ut weights and neuron values.5
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(In our actual system many CCD pixels are used for each output so that pixel averaging as well as
temporal averaging 2an be used to reduce noise.) The square-root of each of these CCD outputs is

formed before subtracting them. Taking advantage of the forced equivalence of cross diagonal
weight values, the final output is given by

outi= Vd+ - V+-XwL-

+(wa+ -w-)(4 --Y+

= xwijYj

which represents a true bipolar output with bipolar weights and inputs. The electronic portions of

the algorithm are not bottlenecks. The square-root is performed at video rates on the entire video
frame using a lookup table in the output image processor card while integer subtraction is also
performed very quickly. Note that this method relies on the fact that all terms within each of the

magnitude-squared brackets have the same phase, namely that of the object beam at the respective

CCD pixel.

A diagram of the operation of a single neural network layer in the SPONN system during
readout and write phases is shown in Fig. 34. Shaded components denote the optical portion of
the system. The first step in the readout phase is the transfer of output from the previous neural

layer (stored in host memory) to SLM pixels in the R input plane. Each bipolar value is first

converted to two nonnegative components as described above. The R plane pixels then form the R

beam which reads out the hologram, performing an optical matrix-vector multiplication. The
output is detected by two CCD pixels resulting in the raw outputs d+ and d-. The square root of
each output is taken using lookup tables on the output frame grabber board before they are
subtracted and passed through the neuron response function, resulting in the output for that layer.

The host computer then calculates an error signal £ according to the particular neural
network model being implemented. The E is usually quantized to + 1, 0, or -1 because the neural

algorithm requires it (as in the Perceptron or quantized backpropagation) or due to the limitations of

the input SLM, or both. In our experiments we have used both a Hughes liquid crystal light valve
(LCLV) and a Sony active-matrix liquid crystal TV (LCTV). The LCLV has an amplitude-

dependent phase response which results in phase errors during learning. A simple way to avoid
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such errors is to restrict the SLM pixel values to 1 and 0. Our bipolar algorithm then allows us to

represent effective values of 1, 0, and -1.

Each quantized error value is then written to two SLM pixels in the 0 plane according to the

bipolar algorithm. The hologram is then exposed using the 0 and R beams (the original input

pattern is still on the R beam), implementing a weight matrix update equal to the outer-product

between the E and input pattern vectors. This sequence is repeated for each layer in the network,

each exemplar, and each training epoch.

6.2 EXPERIMENTAL SETUP

A diagram of our programmable optical neurocomputer (SPONN or Stimulated

Photorefractive Optical Neural Network) is shown in Fig. 35. In assembling this system our goals

were hardware simplicity and programmability. SPONN contains a single photorefractive crystal,

SLM, and CCD detector. Multi-layer networks are implemented by superimposing different

weight layers in the same crystal. A plane wave readout beam from an argon laser at 514 nm was

spatially modulated by the SLM. In the experiments described here the SLM was a Sony active-

matrix liquid crystal TV (LCTV) which we disassembled. It has 30,000 pixels and a contrast ratio

of 200 at 514 nm. We also used a Hughes Liquid Crystal Light Valve (LCLV) in our early

experiments. (Although the LCLV is superior to the LCTV in terms of resolution, we took it out

of the system due to its more complicated and bulky addressing circuitry, its reflection mode of

operation, and the slow response time of the CdS LCLVs that were available to us.)

mmq~g m • • • m9229'.6-001 R1

CAMERA PTICAL
INPUT
PLANE

LC-2 ,READOUT
BEAM

HOLOGRAM S1SLM LC-1(BaTrio3)r

FANNED REFERENCE BEAM (R) READS OUT
UNFANNED OBJECT BEAM (0)

Fig. 35. Stimulated Photorefractive Optical Neural Network (SPONN) experimental
configuration.
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The input plane displayed on the SLM consisted of two portions: the reference (R) and

object (0) planes. A system of mirrors separated the 0 and R planes. The R beam entered the
BaTiO3 crystal at an angle relative to the c-axis such that it experienced high two-wave mixing

gain, resulting in fanning. The 0 beam was directed at a low-gain angle and did not fan. (Fanning
of the object beam would have degraded the optical quality of reconstructed images since the
original 0 beam would be distorted.) Two image processing cards (VS100 and FGOO from
Imaging Technology, Inc.) were installed in the host computer (an 80386 PC). The input image 3
processor was dedicated to providing video input to the SLM. The output image processor
grabbed video from the CCD camera which detected the optical output of SPONN. Pixels in the 0 5
and R planes represent neurons in the various network layers.

After a hologram was written, liquid crystal shutter S 1 was closed by the host computer

and the R beam read out the hologram. (Closing S I ensured that no light leakage due to the finite
contrast ratio of the SLM was passed through from the 0 input plane to the detector during

readout.) The CCD camera detected the holographic reconstruction of the 0 plane. Bragg
degeneracy was greatly reduced due to the fanning of the R beam and the reconstructed image
quality was good, as explained in the previous sections. 3

Several measures were taken to reduce noise and distortions. In order to reduce spatial

aliasing, the "optical neurons" were oversampled by the CCD pixels. An automated alignment
program was used to pick an operator-selected number of CCD pixels to use tor each output
neuron. Coarse alignment was done using an affine coordinate transformation between the SLM

input and CCD output planes calculated from the positions of three points and their corresponding I
images in the two planes. Final CCD pixel selections were made by sorting and picking the
brightest ones. The CCD pixel values were then summed in order to reduce detector noise. I
Multiple video frames could also be summed to further reduce noise. In addition, nonlinearities in
the SLM transfer function were measured and compensated by modifying the output lookup tables 3
of the input image processor. This provided us with greater accuracy and control of the neuroni
activation function. We found that system noise was dominated by fluctuations in the laser power. 3
In our experiments we used an old argon ion laser with relatively poor stability. Without pixel or

frame averaging we measured the output signal relative standard deviation to be 1.9%. By

spatially averaging 9 pixels and temporally averaging 9 frames, we reduced the relative standard
deviation of the noise to 0.74%. Future SPONN models will use more stable lasers and feedback
systems to reduce the noise level. I

Computer-controlled liquid crystal cells LC- 1 and LC-2 were used to control the optical
power during the hologram writing and reading phases. During writing, LC- I and S I were both i

turned on (full transmittance) for high power R and 0 beams and quick writing times.

Simultaneously, LC-2 was turned off so that the CCD camera was not saturated by the 0 beam.
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During reading LC- I was switched to low so that the gratings were not quickly erased by the R

beam. S I was closed so that the input 0 beam did not interfere with the reconstructed 0 beam and

LC-2 was turned fully on for maximum detector sensitivity.
The topology of the network being implemented is determined by the organization of the

input plane. As shown in Fig. 36, a single layer network with only forward connections is

implemented by devoting the entire R plane to the input layer of the network, L0. Likewise, the

output layer, L1, occupies the entire 0 plane. Turning pixels on in the R and 0 planes forms

connections between L,0 and L1. L0 then reads out the weights connecting the R and 0 planes.

Multiple layer neural networks are implemented by dividing the input plane into sectors. For

example, to implement a net with an input layer L0, a hidden layer LI, and an output layer L2, the

input plane is divided into four sectors, as shown in Fig. 18. Connections between L0 and L, are

formed by writing values to the L0 and L1 sectors in the R and 0 planes, respectively. Similarly,

connections between L1 and L2 are formed by writing values to the L1 and L2 sectors in the R and

O planes, respectively. The two weight layers are exposed separately to avoid unwanted links
between L0 and L2 . To read out the network, an input pattern is first written to L0 in the R plane.

The optical matrix-vector product is then detected by the CCD camera at L1 in the 0 plane and

electronically processed to form the neuron values in the hidden layer L1. These values are then

written to the L1 sector in the R portion of the optical input plane. Another optical matrix-vector

product is formed, detected at L2 in the 0 plane, and processed to form the output neuron values in

L2 .

90MM06-36FU

NN LL ~
TOPOLOGY

OPTICAL
INPUT L1 L 0

PLANE 
L2 P

(UNFANNED" (FANNED
OBJECT REFERENCE
BEAM) BEAM)

4-- ELECTRONIC TRANSFER OF NEURON VALUES
4-OPTICAL READOUT OF NEURON VALUES

Fig. 36. SPONN implementation of multi-layered neural networks by spatial organization of
optical input plane.
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If more complicated networks with additional features such as backward connections or

additional layers are required, they can be implemented by simply dividing the optical input plane

into more sectors and changing the software. It is not necessary Ito adjust the hardware or add
more crystals. This easy reconfigurability is due to the capabilit? of arranging neurons in arbitrary

patterns in the optical input plane, a feature made possible by the elimination of Bragg degeneracy. 3
6.3 PACKAGING

The prototype research model of SPONN described in t previous section was designed i
for maximum flexibility using off-the-shelf components, includii:g a bulky water-cooled argon ion

laser. No effort was made to package the system in a compact v4lume as the emphasis of this I
program was the demonstration of working optical neural networks. However, we did investigate

packaging concepts for future versions of SPONN which would use custom components and 3
compact solid state laser sources which should become available at reasonable cost in the next few

years. In this section we describe two concepts, one using currently available components and the 3
other using components which should become available within the next five years.

Our near term packaging concept is shown in Fig. 37. The overall size of this package is

15" by 20" plus 10" by 15" for the laser power supply, or about the size of a desktop PC. It is

based on a diode-pumped YAG solid state laser available from Adlas, Inc. The laser is frequency

doubled using a nonlinear crystal to emit 140 mw at 532 nm. This wavelength is close to optimum I
for typical undoped BaTiO3 holograms. Although greater optical power would be desirable, it is

enough for a demonstration system. We also assume a 3" LCTV as the SLM. The relatively large 3
size of the LCTV sets the dimensions of the optical train. Note the use of a solid optics assembly

constructed from prisms and employing total internal reflection to form the R and 0 beams. By 3
attaching the photorefractive crystal to the optics assembly, the paths of the two beams are

completely contained within a single glass or plastic unit. This greatly reduces vibration sensitivity

and simplifies optical alignment. Solid optics techniques are used in laser gyroscopes for

navigation and guidance of commercial and military aircraft and missiles. Such gyroscopes, which

are also interferometric devices, are used successfully in high vibration, grueling environments.
As part of our packaging investigation, we constructed a Michaelson interferometer mounted in an

aluminum box with a laser diode light source. We found that the interference pattern was 3
unaffected by casual handling of the package or by dropping heavy objects next to it. This

increased our confidence that an inexpensive vibration-isolated package for SPONN can be 3
constructed.

By replacing the YAG laser with a laser diode and using a I" SLM, the package size can be

dramatically reduced to less than 5.5" by 10", as shown in Fig. 38. Thanks to market demand
from other fields, CCD cameras and laser diodes are now available which would fit into such a
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Fig. 37. (a) Design layout for SPONN optical neural network using presently available green
solid state laser. (b) SPONN solid optics assembly for beam direction and improved
vibration resistance.

volume. Components which should become available in the next few years are the 1" by I"
electrically-addressed SLM and doped BaTiO3 which is sufficiently sensitive at the laser diode

wavelength. One possibility for the SLM is the Hughes CCD-addressed LCLV.26 A number of
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other companies and universities are also working on electrically-addressed SLMs. An alternative
to doped BaTiO3 is to replace it with another photorefractive material which is sensitive in the

infrared, such as CdTe, GaAs, or multiple quantum well structures.

10" 1

LC1 5

5.5"
IrLC2 j I

Fig. 38. Design layout for SPONN optical neural network using laser diode and 1-inch SLM. U
I
I
I
U
i

I
I
I
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SECTION 7

IMPLEMENTATION OF NEURAL

NETWORK MODELS

7.1 PERCEPTRON

The Perceptron was one of the first neural networks to be invented. In its most commonly

implemented form it consists of a single layer of weights connecting a field of input neurons with
a single output neuron. (Some of the original Perceptron networks contained a "preprocessing"

layer with fixed weights which were not adjusted during learning.) A single output neuron can

dichotomize or separate the vector space of input patterns into two classes. The weight values

together with the threshold value of the output neuron determine a separating hyperplane for pattern
vectors. Therefore it can only distinguish between classes which are linearly separable. The

Perceptron is appealing as a first test ý- " neural hardware because of its simplicity and the fact that a
learning rule with guaranteed convergence is known (provided a solution can be represented in the

first place). Its main weakness is that as a single-layer network it is limited to linearly-separable

solutions and therefore cannot solve many problems of practical interest.

The output of a simple Perceptron is given by

where w is the weight vector connecting the input neurons x with the output neuron, 0 is the

output neuron threshold value, and h(z) is a hard-threshold response function with outputs 1 or -1

for z>O and z<--O, respectively. Input patterns are binary and normally assume values of 1 or 0. 0
can be learned by setting one of the input neurons to 1, although in our experiments we set 0=0.
The learning rule is simple and can be expressed in terms of the weight update vector as

Awj = -1(y - Dc )xj,c

where Dc is the desired output for exemplar c. If the output is correct, no change is made. If y=l

but Dc=- 1, a change proportional to the negative of the exemplar is made. Finally, if y=- 1 but

Dc= 1, a change proportional to the exemplar is made. A slight modification of this algorithm was
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made in the optical implementation. A "forbidden zone" centered on zero was defined for neural
outputs before thresholding: if the value of Xwjxj-0 was within this zone then a correction to the

weights was made even if the thresholded network output was correct. This made the system more

robust by penalizing small weight values.

A diagram of the SPONN optical input plane for implementation of a Perceptron network is I
shown in Fig. 39. The R plane contains the pattern in the input neuron layer L0 and the 0 plane

contains the output neuron layer L1. In our experiments we have used both a single output neuron 3
and many output neurons. The latter case is essentially many Perceptrons operating in parallel on

the same input patterns but with different classification goals. In all of the experimental examples 3
described here the problem to be solved was the transformation of a set of random binary

exemplars (2-D random patterns with pixel values of 1 and 0) into another set of random binary

patterns.

9229-06-1SR1 I

0 0 0 3
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4-- OPTICAL READOUT IOF NEURON VALUES

Fig. 39. Optical input plane for single layer Perceptron.

The first Perceptron experiment had a single output neuron, the goal was to separate or

dichotomize a set of random patterns into two classes. The results of this experiment is shown in 3
66 3
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Fig. 40 which is a plot of total error during learning vex zus epoch number. In this case th2 optical

neural network learned to dichotomize 96 random patterns after 29 epochs. Each pattern consisted

of 1920 pixels (60x32). Increasing the number of pixels tended to reduce the number of patterns

that could be learned although with 7680 pixels (120x64) the system could still learn 42 patterns.

In order to test the noise level in the system, we attempted to dichotomize two patterns. The

patteins were identical except for a prescribed number of differing pixels. We reduced the number

of diffcring pixels until the optical neural network could no longer distinguish them. As shown in

Fig. 41, the system could separate patterns containing as few as 0.5% differing pixels.
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Fig. 40. Optical Perceptron learning of 96 exemplar patterns with 1920 pixels.
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FlIii. 41. Optical Perceptron separation of two nearly identical patterns which have 1920
pixels and differ by 0.5%.
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We were also able to implement multiple-output-neuron Perceptron networks. The

networks learned to perform a one-to-one transformation of a given set of random binary patterns

(values I and 0) into another set of random patterns (values I and -1). The results of one

experiment are shown in Fig. 42 in which the input and output layers contained 1740 and 870

neurons, respectively. This network had a total of 1.5 million weights. We then scaled this !

network up to 10,260 neurons and 2x10 7 weights. The learnimg curve for this larger network is

shown in Fig. 43. The processing rate was 2x10 7 connections updated per second during 3
learning. This rate was limited by the PC host bus since we had to transfer neuron values back and

forth between the image processor cards and host memory. In the next phase of this project we 3
will install an accelerator card with a local bus connection to the image processor cards which

should greatly increase the processing rate. 3
U
I

870 2610 Neurons 3
1740

I
0.45o Learning Phase

0.35
0.3

UJ 0.25

0.05
0

M 3 0 40( '

Epoch I
iPig. 42. Multi-output-neuron single-layer optical Perceptron learning of 4 exemplars. The

network consisted of 1740 input ncrirons and 870 output neurons.
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Fig. 43. Multi-output-neuron single-layer optical Perceptron learning of 4 exemplars. The
network consisted of 6840 input neurons, 3420 output neurons, and 2x10 7

connection weights.

We also used this type of network in a handwritten digit recognition application.

Exemplars were extracted from a database of handwritten digits supplied by the U.S. Post Office.

Examples of the digits are shown in Fig. 44. The network was trained to label inputs as one of the

ten digits. The total error during learning of 80 exemplars is also shown in Fig. 44. We did not

expect good performance because this network contains a single layer of weights and the character

recognition problem is not linearly separable. The network achieved an 8% error rate on the

training set and a 25% error rate on 40 test digits it had not seen before. Although this was not

good enough for practical use, it did demonstrate generalization and learning since the expected

untrained error rate is 90%.

69



I
I

Handwritten Digit Recognition
Using Optical Neural Network
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Fig. 44. Handwritten digit recognition using optical Perceptron network. d i
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7.2 BIDIRECTIONAL ASSOCIATIVE MEMORY

The Bidirectional Associative Memory (BAM) neural network is a type of hetero-
associative memory with some generalization or iearning properties. Heteroassociative means that
when a partial or distorted version of a stored pattern is input to the network, the stable output is a

complete undistorted version of a stored output pattern that is "associated" or originally recorded
with the input pattern. The BAM is illustrated in Fig. 45. It consists of two neuron layers FA and

FB. The neuron activation functions are hard thresholds. Patterns activating layer FA are
thresholded, weighted, and transmitted to FB (bottom up). The resultant patterns are in turn
thresholded by FB and transmitted back down to FA via the same set of weights (top down). The

cycle then repeats. Kosko2 7 has shown that the function

E(a,fl) = -(pT H-0 Ti )a - (a T H T _ 6O:)I

always decreases as the system evolves. In the above expression (a,13) are column vectors
representing the patterns in (FA,FB) and (OA,OB) are the corresponding threshold levels. Since E

is bounded from below and it always decreases, it is an "energy" or Lyapunov function that is

minimized as the system evolves in time. The minima of E correspond to stable limit points. The

only condition on the connection matrix for this to be true is that the weights in the bottom up
direction are the same as in the top down direction. This corresponds to having the same weight
connecting neurons i and j in both directions (e.g., hij=hji or H=HT). Kosko showed that the limit

points correspond to stored associated pattern pairs am and bm if the connection weights are given

by a sum of outer products:
M

m=!

Kosko also showed that BAM is capable of limited learning or generalization from examples.
We implemented the BAM neural network on SPONN by modifying the Perceptron

software to divide each of the R and 0 planes into two sections. R was divided into subsections
R1 and R2 and 0 Into 01 and 02. During the readout phase layer FA for the bottom up direction
was represented in R1 and FB for the top down direction was in R2. In order to always use the

fanned R beam to read out the hologram, separate physical connections were used for the bottom

up and top down weights, although they were forced to be equal in value as reiuired by the BAM
model. During the writing or weight adjustment phase, FB was represented in 01 and FA in 02.

Thus the bottom up FA->FB weights were adjusted by turning on R1 and 01 while the top down

FB->FA weights were exposed by R2 and 02. The two sets of weights were exposed

simultaneously to ensure their equality.
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Typical experimental results are shown in Fig. 45 which illustrates the recall of two

associated pattern pairs. Addressing the system with a noisy version of stored pattern a resulted in
a stable state which cycled between a and its associated pattern 13.

7.3 BACKPROPAGATION

Although Perceptron and BAM networks are interesting and useful as tests of neural

hardware, their single-layer nature limits their usefulness to separable problems. Adding a layer

greatly increases the power of a single-layer network. In fact, it has been shown that a single-

hidden-layer network (input, hidden, and output neuron layers with two layers of weights) can

approximate any function to arbitrary accuracy provided a sufficient (but finite) number of neurons
is available.28 One of the most popular multi-layer learning algorithms in terms of applications is

backpropagation. 29 ,30 In this section we describe our optical implementation of the

backpropagation algorithm.

Backpropagation is based on steepest descent of an error surface defined by

E =11 (Yc W-Di,c )2

C i

where E is the total error, Di,c is the desired value for output neuron i given exemplar input c, and

y(n)i,c is the actual output for exemplar c. The weight adjustment rule during learning is based on

the steepest descent rule:

Aw(n) gdE

where the superscript (n) refers to the weight layer being updated. Assuming a two-layer network,

and without going into the details of the derivation here, the error gradient is given by the

following set of equations for the output layer (see ref. 22 for details):
dE -5

2)y(I)

,5(2) = (y(2) _Di)g(y

A~y) = .f[f- (yA] = yAl- y)

and by these equations for the hidden layer:
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dE = 6j(1) (o)

Sj ~k,

where f(x)=I/(l+e-x) is the neuron sigmoidal response function.

One possible issue in the optical implementation of backpropagation is its sensitivity to the

accuracy of representation of the functions fO and go. Due to inherent nonlinearities and

nonuniformity in present SLMs, fO and go may differ from the above form. We have performed

computer simulations of backpropagation with slightly different fOs and gos. We found that

although the network is robust with regard to changes in fo, performance degrades if go departs

from its proper dependence on fO. Therefore, in our optical implementations we measured the 3
SLM nonlinearity and electronically compensated for it so that go could be implemented

accurately. 3
In the optical system we actually implemented a variation of backpropagation in which the

input error signals were trinary quantized to + 1, 0, and -1 according to the algorithm reported by

Shoemaker et al.. 3 1 They found that trinary quantization improved the convergence speed of
backpropagation for a wide variety of problems. Our own computer simulations confirmed this.

However, our primary reason for trinary quantization was to avoid amplitude-dependent phase

errors in the LCLV.
The optical input plane for backpropagation is shown in Fig. 46. The network consisted of 3

three neuron layers (L0, L1, and L2) and two weight layers. Note that the L1-L2 weights are

actually implemented as two separate sets of weights, one for the forward pass L1 - > L2 and

another one for the backward pass L2 -> L1. As explained previously, this is done because the

fanned reference beam (R plane) is always used to read out the unfanned object beam (0 plane). In

order to implement forward and backward passes through the same set of effective weights, two

sets of photorefractive weights must be exposed. They are exposed so as to make the forward and
backward weights as nearly equal as possible (symmetric connections, wij=wji) although they can 3
also be made different (asymmetric connections) if required for certain networks. Although the L1

-> L2 and L2 -> L1 sections of the input plane are shown spatially separated for clarity, in actuality 3
they are spatially interleaved in order to make the connections as symmetric as possible. The solid

arrows indicate optical connections between neurons via the hologram. Dashed arrows denote 3
electronic transfer of detected outputs from one layer (0 plane) to the inputs of the next layer in the

R plane. This electronic operation is an order N operation while the optical connection is order N2,
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where N is the number of neurons. The speedup factor over a single electronic processor is

therefore proportional to N.

9229-06-016R1
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L1 L2 OPTICAL READOUT

0 OF NEURON V ALUES
R

(UNFANNED (FANNED ELECTRONIC TRANSFER
OBJECT REFERENCE - OF NEURON V ALUES
BEAM) BEAM)

Fig. 46. Optical input plane for optical backpropagation with a single hidden layer.

A flow diagram for the optical backpropagation algorithm is shown in Fig. 47. The

forward and backward weights between layers L, and L2 were adjusted simultaneously in order to

keep the weights as symmetric as possible. This also caused self-connections from each neuron to

itself to be formed. The self-connections do not, I-owever, affect the operation of the
backpropagation network. As described in the previous section on the bipolar algorithm, the L, to

L2 weights are exposed twice [(L1 )(L2) and (-L1 )(-L2)] in order to ensure that wij++=wij-y=wij+

and wij+'=wij'+=wij".

Experimental results for the problem of transforming one random binary pattern into

another using optical backpropagation are shown in Fig. 48 where we plot the total output error

versus epoch during learning of two pattern transformations. In this case the network contained

252 neurons arranged in three layers as 128-62-62. The output error decreased to 5% after 30

epochs and reached zero after 90 epochs. In order to track the evolution of the output pattern for

each of the two exemplar inputs, we also plotted the projection of the output pattern vector on the
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Fig. 47. Flow chart for optical backpropagation program.3
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Fig. 48. Optical backpropagation learning of two pattern transformations (see text).
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reference vector (1,l,1,....1). We can clearly see the buildup of the weights from small initial
values to saturation. In Fig. 49 we plot the total error versus epoch after learning is completed and

the network is continuously read out. Due to the weight decay discussed previously, the errors
began to increase dramatically after 200 readouts of the network. The weight decay is clearly seen
in the simultaneous plots of the output pattern vector projections. Note that the output error does 3
not increase until after the weights have decreased by a large amount, indicating the network has

learned a "safety margin" which makes it less sensitive to weight decay. Analogous results are

shown in Fig. 50 for the same network learning four pattern transformations.
Results for larger backpropagation networks are shown in Fig. 51, one with 320 neurons 5

distributed among three layers as 160-80-80 (20,000 weights) and another with 1140 neurons
distributed as 570-285-285 (244,000 weights). The first network converged to approximately 3%

error after 50 epochs while the second one reached 6% error after 100 epochs. In both cases the
exemplar set consisted of two patterns. In these initial backpropagation results the performance

degraded for eight or more exemplars. As of this writing we are still investigating why this is so. 3
Possible reasons include residual inaccuracy in representing gO and excessive laser noise.

I
I
I
I
I
I
I
1
I
I
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Fig. 49. Continuous readout of optical backpropagation network after learning has been completed.
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SECTION 8

PERMANENT RECORDING OF WEIGHTS IN
PHOTOREFRACTIVE CRYSTALS 1I

8.1 HOLOGRAM FIXING TECHNIQUES

The refractive index variations in photorefractive materials that are normally used for real-
time holography, phase conjugation and optical signal processing are produced by internal electric

field variations associated with charges trapped at mid-gap levels. These holograms are generally 5
not permanent under illumination with light at the wavelength used to write them because this light
continues the writing process. Thus illumination with an interference pattern of a new period both

erases the old grating and writes a new one, similarly illumination with uniform light erases the old

grating. In order to obtain a fixed hologram in a photorefractive material the internal space-charge

pattern must be transferred to a charged defect or dopant level that is not optically active at the
wavelength of interest. Two methods that can be used to do this in situ are thermal and electrical

activation. In this section we review the method we pursued to obtain fixed holograms. 3
From a systems point of view, the most attractive hologram fixing technique involved the

application of an external electric field in order to transfer a normal photorefractive hologram in the

photosensitive deep levels to a space charge hologram in an insensitive or non-sensitive levels.
The generic process involves the steps illustrated in Fig. 52. Initially, the crystal of BaTiO 3 is

polled with a field El, shown in the upper plot. At time t1-t2, lower plot, a hologram is written

with the usual photorefractive process. An electrical field -E2 is applied at t2. A mirror image

(1800 phase shifted) space-charge pattern that nearly cancels the photorefractive hologram is I
produced in charges that are immobile and optically insensitive at room temperature. At time t3, the

photorefractive hologram is erased leaving only the mirror image hologram that cannot be erased
with optical radiation alone. At time t4 a field E3 is used to reset the crystal to its initial condition,

erasing the fixed hblogram. Note: in some cases it may be advantageous to perform two or three 3
of these processes at the same time.

In materials with rather low coercive fields (on the order of I kV/cm) such as BaTiO 3 and

Sri.,BaxNb20 6 (SBN), electric fixing with domain reversal has been discussed in the literature.

The coercive field is the critical applied electrical field required to reverse the spontaneous
polarization of a ferroelectric crystal. It has been suggested that by applying a field with an
amplitude just below the coercive value and with an orientation opposed to the orientation of the

existing polarization, a spatial pattern of polarized clusters may be produced. If this operation is
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Fig. 52. Waveforms used in hologram fixing experiments.

performed after the recording of a hologram, the cluster pattern may mirror the recorded hologram.

Holograms fixed using domain reversal should not be erased optically, but application of a strong

poling field will restore the initial "blank" state in the crystal.

Demonstration of this electrical fixing technique at room temperature was discussed by

Micheron and Bismuth in BaTiO3. Several research groups have tried to reproduce the data,

however, at the time of this report, have not been able to observe the published results.
In order to explain the electrical fixing and erasing of holograms in BaTiO 3 and SBN,

Micheron and coworkers assumed that with an applied field E2 of reversed polarity, ions or

vacancies drift under the influence of the internal field Ei caused by the photoelectrons trapped

during the writing- step and clusters or domains of reversed polqrity are formed. The field E2,

however, is not large enough to excite photoelectrons. With E2 applied, fast ionic displacements

occur that cancel the spatial modulation of Ei. The diffraction efficiency drops to zero. Under

uniform illumination, photoelectrons are again photoexcited and diffuse uniformly, thus leaving

behind an uncompensated ionic pattern and revealing the original hologram. This pattern is stable

during readout and constitutes the fixed hologram. Erasure is achieved when the applied field is

high enough to restore uniform ionic distributions. This explanation has been based on the
hypothesis that domain patterns replicating the written hologram could be induced in both BaTiO3
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and SBN by application of the field E2. This hypothesis accounts for the erasure process. Their

theory was partially supported by two experimental observations. First, photoinduced clusters

could be written at temperatures above the Curie temperature in SBN and fixed by cooling the

crystal (Micheron and Trotier 1974), thus establishing a link between the occurrence of frozen

clusters and antiparallel domains. Moreover, holographic fixing in SBN is only observed when

the voltage E2d (where d is the electrode spacing) is larger than the coercive voltage Vc = 775 V.

This is again consistent with the picture of domain reversal. It remains, however, to be explained
why the same authors did observe domain reversal in BaTiO 3 below the coercive voltage.

8.2 MEASUREMENTS OF BATIO 3 ELECTRICAL PROPERTIES

In this section we present an overview of some of the experiments we conducted with the

goal of electrically fixing photorefractive holograms. In order to characterize the state of our i
crystals prior to attempting to fix the holograms, we made measurements of the electrical

properties, including a determination of the coercive field for each sample.

BaTiO 3 and SBN are ferroelectric crystals because they have two orientational states of

spontaneous polarization in the absence of an electric field and can be shifted from one to another

of these states by applying an electric field. An as grown crystal can have different orientations of

these domains throughout the crystal. By applying first a mechanical and then a sufficiently large

electric field with the correct orientation, all of the domains can be made to align with one another.

In our holographic measurements, we initially start with a single domain crystal and write a grating

by interfering two optical beams. We then applied various electrical waveforms to the crystal in an

attempt to create a pattern of domains which mimic the distribution of the light intensity.

The most important characteristic of a ferroelectric crystal is that the relationship between P

and E is represented by a hysteresis loop. Ferroelectric hysteresis loops can be observed with the

circuit shown in Fig. 53, which is patterned after one first described by Sawyer and Towcr. An

a.c. field is generated by a frequency synthesizer or D/A board in a computer, and amplified by a

high voltage amplifier. The crystal is placed in series with a capacitor C1 which h-, a capacitance

significantly larger than that of the crystal. The applied field is monitored with a nigh voltage

probe. The voltage drop across the capacitor C1 is proportional to the charge which accumulates

on the crystal.

An ideal plot of the charge or polarization of the crystal versus the applied field is shown in

Fig. 54. This plot clearly displays a hysteresis loop. The polarization initially increase as a

function of increasing applied filed and reaches a saturated value, essentially independent of the

field. When the field is decreased, the value of the polarization does not re-traverses the initial

curve. Some of the domains remain aligned in the positive direction and the value for zero field is

I
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called the remnant polarization, Ps. The value of the spontaneous polarization, PS, can be

determined by extrapolating of the linear upper portion of the curve back to the polarization axis.

In order to remove the overall polarization of the crystal it is necessary to apply an electricI

field in the opposite or negative direction. From this graph, one can measure the coercive field,

Ec, the field required to reduce P to zero. Further increase of the negative field eventually causes
almost all of the dipoles to align in the direction opposite to that when the saturated positive field

was applied.I
Experimentally obtained hysteresis loops for one sample of BaTiO3 are shown in Fig. 55.

The graph is qualitatively representative of the different crystal samples, and shows two individual

hysteresis loops which essentially overlap each other. These loops were qualitatively similar to

graphs obtained for samples of SBN. We obtained close to two thousand hysteresis curves from

one of our samples of BaTiO3. The initial curves, yielded a value of 1.3 KVolts/cm for the
coercive field and 2.5x 10-5 coul/cm 2 for the spontaneous polarization.
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Fig. 55. Measured hysteresis loop of BaTiO3 crystal.
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However, we found that after cycling the same crystal through several thousand hysteresis

loops, the crystal could not attain the same degree of polarizability as when it was first grown and

thermally polled. This implied that some of the domains were being pinned in one orientation.

Also, after taking the hysteresis measurements we found that the crystal faces to which the

electrodes were attached had been damaged. The crystal positive c-face was crazed and this could

have impacted the magnitude and spatial un'formity of the applied field.

8.3 EXPERIMENTS IN ELECTRICAL FIXING OF BATIO 3 m

In this section we present a review of the experiments we conducted to determine the effect

of applying electrical fields on photorefractive crystals after a photorefractive grating was written in I
the crystal. These series of experiments were designed to fix the photorefractive holograms. A

summary of the parameter space we investigated is shown in tabular form in Table 1. Our group 5
and others, in particular at Stanford University and the University of Southern California, have not

been able to reproduce the room temperature electrical fixing results published by Micheron and 5
Bismuth.

The state of the photorefractive hologram can be determined by monitoring the two writing

beams and the diffraction efficiency of a probe beam. Typically, the probe beam is incident on the I
crystal at the Bragg angle, and two beams emerge from the other side of the crystal: the diffracted
and undiffracted beams. The absolute diffraction efficiency of a grating, flabs, is the ratio of the a
diffracted intensity to the incident intensity. The relative diffraction efficiency, tirel, is the ratio of

the diffracted intensity to the sum of the diffracted intensity plus the undiffracted intensity. One 3
can convert between the two efficiencies with the following formula: 1labs--rlrelt 2e'C L, where t is

the interface transmission and (x is the absorption coefficient. 5
The optical train that we used in our experiments is shown schematically in Figure 56. We

constructed our optical train in a manner which provided a high degree of mechanical and thermal

stability. The output of the argon ion laser passed through a half-wave plate/polarizer combination

as a means for controlling the overall beam intensity. The beam was spatially filtered and

collimated in order to produce a uniform intensity pattern at the crystal. A portion of the beam

transmitted through the first beam splitter (BS 1) was used to monitor the total power in the pump

and probe beams. The reflected beam was used to generate the two writing beams using a second 3
beam splitter (BS2). The two beams, designated as "A" the pump and "B", the probe, were

aligned to interfere in the crystal. The transmitted pump and probe beams were monitored by the 3
detectors labeled "A" and "B", respectively, in the figure. The detectors were used to monitor the

transfer of energy, or two-beam coupling gain, while the gratings were written in order to

determine the photorefractive grating strength and stability. These detectors had interference filters

(514 nm) in front of them to improve the signal to noise ratio. The probe and pump beams were 3
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Fig. 56. Apparatus used in hologram fixing experiments.

comparable in both transverse dimension and flux. An electronic shutter in the beam path was

used to control the crystal exposure time.

Mirror "A", located after the spatial filter, could be moved into the beam path to generate an

erase beam. This beam could be used to uniformly illuminate the crystal at an angle other than the
Bragg matched condition for erasing the photorefractive gratings. Note: if one of the writing

beams were used to erase the grating, new gratings could be written because the diffracted signal
would interfere with the original incident "erase" beam. A second electronic shutter was used to

control the illumination time of the crystal to the erase beam. In our system the crystal could also

be illuminated with an auxiliary incoherent source to erase the photorefractive gratings. The
advantage of using the incoherent source is that it produced a spectrum of wavelengths and cannot
produce any interference effects.

A HeNe laser operating at 0.6328 pm was used to generate a probe beam which allowed us
to monitor the evolution of the gratings in the crystal during the entire writing process. Note: the
longer 0.6328 pm wavelength in conjunction with a significantly reduced flux (-5 g.W) insured

that there was minimal erasure produced by this monitoring technique. In order to simplify the
Bragg matching condition, the HeNe laser was mounted on a rotatable platform which pivoted
about the center of the BaTiO3 crystal. The crystal was held in place by a custom support on the

end of a post holder which was bolted to the optical table. A bearing assembly around the post

holder allowed the HeNe laser platform to freely rotate parallel to the optical table centered about
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the crystal. The incident HeNe beam was monitored by detector "C" and the diffracted signal was

detected by detector "E" in the figure. Both detectors had 514 nm interference filters to improve

the signal to noise ratio.

The relative diffraction efficiency was determined by measuring the diffracted signal and

dividing it by the sum of the transmitted zero order and the diffracted signal. In order to convert U
these numbers to absolute diffraction efficiency absorption would have to be taken into account. In

addition, the diffraction efficiency at 0.5145 pmi is higher than at 0.6328 gm by approximately a

factor of 3/2 due to the X-2 dependency. During the experiment, we used an A/D board to acquire

up to eight channels of data simultaneously. The board had 12 bit resolution and could operate at 3
up to 250 KHz on a single channel.

The data we obtained from one typical experimental run is shown in Fig. 57. Figure 57(a)

is the diffracted probe beam as a funcdon of time. Figure 57(b) is the transmitted pump beam I
while Fig. 57c is the transmitted probe beam. Finally, Fig. 57(d) is the applied electrical

waveform versus time. The run starts by allowing the two write beams to fall on an erased crystal £
at time t= 1.1 seconds. A transfer of energy is seen to occur between the two writing beams. As

the transmitted probe beam, Fig. 57(c), grows in amplitude, the pump beam is depleted. The

signal proportional to the diffraction efficiency of the probe beam, Fig. 57(a), grows with time to a

peak value. At a time 41.6 seconds into the run, a square electrical pulse of one second duration

was applied with the waveform shown in Fig. 57(d).

At that point the photorefractive gratings are disrupted and the two wave mixing gain is

impacted. Therefore, the transmitted probe and pump intensities approach the initial condition

before the gratings were established. However, because the two writing beams continue to
illuminate the crystal, they begin to rewrite gratings which again causes an energy transfer. I

The diffracted HeNe signal monitoring the photorefractive hologram decreased in amplitude

at the occurrence of the leading edge of the electrical pulse. Then, because the writing beams were 3
still on, the diffracted signal grows slightly. At time 43.1 seconds into the run, the pump and

probe beams are blocked and the diffracted signal remains essentially constant in time. The crystal 3
was then illuminated with an incoherent light at a time equal to 49.6 seconds. The apparent slight

rise in the amplitude of the diffracted signal is due to a small percentage of scattered erase light

entering detector "E". This noise occurred even though we used a an aperture and interference I
filter in front of the detector to minimize the effect.

Using a generalized curve fitting routine, we determined the functional form of the in
diffracted signal in the presence of the erase beam. The diffracted signal decayed with a single

exponential time constant to the offset determined by the noise floor produced by the erase light. 3
The erase light was turned off at time 75.9 seconds. As can be seen, no residual fixed grating was

present in the crystal which would have diffracted the HeNe monitor beam. After the grating was

90



aE

24

94 0

F-I
0 14P,1C.,

C4Ua
41" 

-ADCL -'J- am UvC

.5

A-

CL

C3

0-

C ~ 91



I

completely erased, the crystal was "reset" close to its initial state before trying another run. This

was accomplished by re-polling, i.e., cycling through several hysteresis loops or applying half

sine waves with sufficient amplitude to realign the domains. I
To-date we have not been successful in electrically fixing gratings in BaTiO3 crystals.

However, on another contract we were successful in thermally fixing gratings in photorefractive 3
LiNbO 3 crystals. We achieved fixed diffraction efficiencies of up to 52%. Thermal fixing may

thus be a reasonable alternative to electrical fixing of BaTiO3. 3
An alternative to fixing weights is to continuously refresh the weights after the neural

network has learned the solution of a particular problem. This can be done by interleaving 3
occasional learning or refresh cycles into the readout phase. Once the network has learned a

solution, only occasional "reminders" are necessary to keep the network from 'forgetting" the

solution. This technique is analogous to refresh cycles in conventional DRAM.

Ii
I
N

I
I
I

I
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SECTION 9

CONCLUSIONS

During the course of this three year DARPA contract we demonstrated the application of

cascaded grating holography (CGH) in optical neural networks. By distributing each connection

weight among a plethora of cascaded gratings which vary in position and orientation, CGH

improves holographic optical neural networks in several ways. First, Bragg degeneracy is

eliminated which permits the placement of pixels in arbitrary 2-D patterns in the input and output

planes, leading to new flexibility in holographic recording. Second, CGH reduces distortions due

to beam coupling, resulting in undistorted weight vectors and good quality reconstructed images.

The flexibility of CGH allows the design of compact programmable holographic neurocomputers

which are composed of a single photorefractive crystal, SLM, and detector. The utilization of the

SLM is maximized because every pixel can be used without fear of crosstalk.

Under this contract we constructed an optical neurocomputer and showed its flexibility by

demonstrating several neural networks without adjustment of the optical components. The

networks were Perceptron, bidirectional associative memory, and backpropagation with a single

hidden layer. We also demonstrated CGH in the infrared using compact laser diode sources and

designed packaging concepts based on laser diodes.

In short, we have demonstrated the viability and potential of CGH-based optical neural

networks. Future work should include refinement of current algorithms and implementation of

new ones, improvement of storage capacity and processing speed, demonstration of compact

packages, and application of this technology to a real-world problem.
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APPENDIX A
OPTICAL BACKPROPAGATION PROGRAM

SOURCE CODE

P* laarn3n c Optical Badipropagation. November, 1992.I

This C language p aroga implements a tires-lyer. singl hidden-layer,

bipolar neuron bacipropagation neural network in
lonvward-scatterin SPONN which maps random input patlems
to random output painm0111s. In addti~on to tie host IBM-oompakile PC, it also
controls the FG100 input kmugs processor, tie VS10O output image processor.
and the LC cell which shutter the R and 0 beams. Rough output coordinates
ame mead from aign34n.dat. which is generated using a separate program. aligrivs6.c.
Final coordinates ame stored in algn34n.dat. Local search and sorling
are used to bind toe brightest output pixels. Neuron outpt are mepresented
using a balanced dual-r method. Li and L2 fields am spatially
interleaved and up and down weights are exposed simultaneously

to force eqluaklty between tie two sets of weights. Neuron pixel size is adjustable.I
Tninary quantization of weight updates isan option. Thresholded outputero
measures correcthess of output sign only. The FG1 00 input image processor must be
initialized at 8 MHz to work properly.5

This program was written by Yuri Owechko, Hughes Aircraft Company, 3011 Malibu
Canyon Rd., Malibu, CA 90265. E-mail: owec~hko@csfvax.dnet.hac.comn

310-317-55839.

V Copyright 1992. Hughes Aircraft Co.3

siriclude .cgraph.h>
Oinducle .Cclype.h>
*include <sdio.h>3

uinclude .-conorwh>
#mncludei odex10O.h>

Sinlud prnclude cld math h>I

#include clime h2.
Sinclude leat h>

#rnciude <cifs h>
*Include .csearch.h>
#wnclude, .cskib h>3

P Frst bit controls kase and detector LC cell.
second bit controls oblect LC cell, thid bit controls

detecto shutter .

#do**e WRITE 3
00196n READ 43
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Scdefine STANDBY 0
Odalme SPONN INPUT 0X340.OxdDOOOL,2,1
adefine SPONNOUTPUT Ox36O,0xd0000L.2,1

in! brando.getbite();
void contsaWples,madoutLLO,readoutkL2():
void change sign1 (LI,chaigesign 120);
void exemplarmradonlýLo(),daspoaelO).tansterLlO.;
void train WI 0),trinW2(),bmckwardO;
int roundO,compare),hsgnO,saturO;
float errorlem()errormad(),fimo()ghumpo;
float compamsignO,avgjrpixeIlO;

FILE *fopeno.steaui.

int xout32164116J.YOul32164116J,x41001.y4100J,
tnt xinobý[321,yin..obf 64J mxmax myfmax mmax,seed~seed2;
int xin req32J,yin mrq84J npixels size;
int affaydim.xmax~xmaxl ymax ~ymaxl ymiax2,arraydim2,basel ,base2;
int pxou432j64J,pyou432J164j,
long nt ontime off-tbme
float suimi 1321201,s=2n32120];
float yyl [161201,yy2t161201,deb (1161201.deltaAtl6I20I:
float kmerf500J2Jow[-WproLr4_500J[2 1.cterrmad[50OJ,1g ma;

Struct dosdate t dale:
strict dloshimei time 1;
struct dostimet dime2,

main()

int n~m,mx.my~i~j.k~nepoch,nepoch2.ntotal,
int err-value nframes~nxavg2,nyavgpixval;
int gain~offsevai~xbmeybase~zoomval~vl[256];
int Iil.i2,nx.ny~nxavg,nyavg,value,shMf,decqua1Ldedut~declut2,cWAign;

long int delay3l.imtbme,Ivul.Wlong;
"lg tnt lita,prevtimre;
float ftkne,loopim,gffn2,otimmeeoftuime~eiror.tl .12.
float intime~tnttme2jvai.epsl .eps2,
char commerfaoj oaniment~80J commwen~f50j,somn1(20Oj,b&.ch,

base I.5W2. P 592=250h PPI 1 base adckess
base2-696, P* 596.ý254h PPI 2 bowe ad 1essA
blk=2119; P Solid block~ ASCII character */

P Setm o DI)8 1/0card for Mode 0,alloutp"

ou4)(bme1 3.128);
wu~baw24. 128),

d ((strm, .fopen(leern34n.np",r*)).=NULL)
Ipnnrannot ope lam34mnmpW);
ex*tO)j,
dele
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prnnl("leamn3on mnp parameter file opened for readingwV),

fgets(comment2 80,stream);
Ilgets(cornment.8O stream) 3
tgels(oomment3,80.stream):
pnntf('Enter number of exempkai in x and y~n(mxmax<c.16 and mymaxc=15 for 64x64 display fields):)

tgets(Swemp,200,stream) I
fscanf(sleam,*%d %dvn",&mxmnax,&mymax);
pnnf("%d %d~n',mxmax.mymax).
mmaxamxmax-myinax;

pnintt(No. of exemplars= %d~n",mmax);

printfr'Enier zoom value for display field size (3-,84x60, 2-> 1 28x 120, 1 ->256x240, 0->.5 I2x480): )

*gts~somp.200.stean);
fscanf~sbeam.'%dhn.&zoornvaI);
pnntf("%dVV.zoomval):

arraydim-pow(2.9-zoomval);3
arraydlim2-afayclm/2;
pnntffrofsplay field dimension is %d~n",arraychm);

pnntf('Enter xmax andl ymax-lfor 64x64 arrays, xmax=30 & ymax=57): I
tgets(stamp,200,9stewri);
fsc~anf(strsam,'%d %dvI,&xmax.&ymax);

xmaxl~xmax/2;
ynntffed %dw,1m3; ma)

ymax2.2*ymaY/3;3

pnnffrEnbr subneuron edge dlimension: )

fgets(slemp.200.staff);
fscanif(strean,"%cvi.&size),

printl(Enrer I to realign, 0 olheiwise: )

fgetB(Swmip.20.sftean
Iscangslares %ft%&dweAbgn);
pnnvr(%M"dindeAlgn) 3
prnewf(Trnllr no. of epochs up lo 500: I;
fgets(almmp.200.sVeen);
bcanfsvwn,%ft*.&nepodi),
peintI(9%cnepoch),
a poadrhnepoch;

pmtff"Enher exemplar intgration time in sec:)

pnntf("sM"m %M mte e)

pnnd(*Elrir OuIput Frame Grabber gain from I to 4: )

gemsp.200.sesn2);

MpgkdWgmn2);
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pnntt('Enier Output Frame Grabber offset from 010o255:)
fgets(slemp,200.srearn);
ftanf~sVteni,9%dg,&offselval);
pnntf(*%~.offsetal).

pnnlf(OCuW Frurne Grabber input LUT: 0 for wimodied. I for uqit Wn);
fgets(utmp.200Arean);
fscanfqsteam,"%cd,&dacfut):
pnntl('%d~aV.dmclut);

prindflrnu Frane Grabber output LUT: 0 for wcimodilied, I for linearized Outpu~n');
fges(sb~mp.200.sftwa);
fscanl(stream,"Yd~n,&dedut2);
prmttr"%dw'.dedut2);

pnntf(Entsr lisigmn gammna value: )
tgets(sarnp.200,strearn);
fscanf~stream.,%tWi.fgarnma):
pnnttf"%M*,fgamma).

prutlREnter 1 for Vinery quantization of weighit updates. 0 otherwiseMn")
fgets(slemp,200,swearn);
lscanflsVeam.'%dwvn,&decquuant);
pnnf("%dln,deoqiuant);

nUt(*Enar eps I for y I quentizaton and eps2 for defteI and dm13 qiinntization~n");
tgetB(slmmp,200,stear);
fscant(stmam,'%f %M',&epsl ,&eps2);
pnintf('%f %tv'epsl eps2);

pnntf(*Enier SIM turn-on and turn-off tires in sec:)
fgets~somp.200.su'eam);
Iscanf(streaam.%f %M".&ontimne,&olffbm);
printf(%t %An"onbme,offtrne);

printltEnlmr x and y dwnenwins of averaging regions (odd numbers<4a): )

Igets(sumnp.200.su'ar);
fscanf"stm,'%d %dln,&nxavg.&nyavg).
pnntf%d %din.nxavg,nyavg).
nx&vg2.(nxag-1 )2:
nyavg2-(nyav-1 Y2,

prmtkT~nwa no. of samples per subneuron (<= 16): )

fsomp.200steam).
fsmnlsW'eam.%dM*,&npsxels),
prinurdivA,rpixsfs);

pr*AmtlWn no. of video frame to average (.c.100): )

shWWM.2000&wn)ý
ftmwwaiwsea,"%dwV £n*'nes);
plwlgftnh -
peirWEnow seed ineager for iwidom numnber geeaora: )
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fgtsgoWSmp,200,sream),
fsmd(sfeam,"%din.&seed);
pnmtlf(%dwr'.sd);

/I Tton off Iniput Froms Grabber

sethdN(SPONN INPUT):3
seklin(1024,1024,12)

/* Set up 04Ka Ffimy Grabber.

aethdw(SPONISLOUTPUT);

sewamra(0):

se~am(gain);

r Moify INPUT LLIT of OutputX Frwne Grabber .

if(dedut)(
forsomj-c-255jo+)

vlw-round(wKt255.)scimj);
wauWINPUT,0,O,256.v 1):
sedut(iNPUT,O); I

P Set outputLWTsoCfOutpt rwieGmbber or dsWa.

loro-j-=Oa2554++fl
v1W-n~powo.2Y2S5). I

vWaARED,0,0,256,v1);

vli0Ja255;
vlt255J..O;
wmuEBLUE,O,0,25B,v1).

V1(OjuO;U

nslutGREENO); L.

oft ftro-j-cn25j++U
vlIj).; I

wmlut(RED,.O.,256.vl),
vlpj=.255;
0125614o;
wWuf9LUE.O,O,256,vl):

wou"GREEN,0.0,256,O );
ssMWOREEN.O); I
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grab(O),

I' Set up Input Frarne GrMabbrw

swi~dedlut2)

cas 0:
"fo~-Oj~c-255~j++)i

if((sb'emn-open(hIner.kut*."r')).=NULL)
(pntfr"cannot open fineer.kft')

else
priro(vninear-lu Wie opened for rmaalg'A);

"to~-O~j<c255j..)f

klosealtrsani);
breakl.

Igoff 0.
sethkv(SPONN INPUT);

wa&A(GREEN,0,O,256.v 1); r Adjust Input Frame Grabber output WT1
waluXRD,O,0.256,vl),
vl(254J..0;
v11255]=0;

wiakiEBLUE,0.0.2S6.v 1):

zoornizoornval);

r Calibrate timw base

time(tMe);
Prev~le=Itome,
I0M~ongO~hiong<200D000;kkxVn+.),

tlmpi(WltarmQe), 0.0

r Genrate SPONN ~inpu coordnami vocra 1

"tor-O:iaymaxJ+..X
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fo~iOi.0xmax~i++)[

tor(i=.iJcymax.J+.)(
yin -Obi)=ilsazel

P* Skear ur pafsm in (0.0); ret-on in (1,0); object subsel A and B
in (3.0) and (4,0), Iuspecbvel.

ybose-0

toroj-Oj~cymaxj.++fl
for(iw0.kxmax;ie.)l
blOdS.4~e+)xLn4efQ ybme+yin~r9MD1.saz.si255);

1)1

torO.04j<ymax~j++)J
shiftscol(frnvdRJ,2.0)),
for(iwO;k~xmaxJi..2fl
bIodqxtmhmxan o~gi~shaftJ.ybas..yirn obfjJ,Size size 255);

ybawoO;

toro.0j-cymaxJ+e)(
shift. I-ceil~fmod(j.2.0)),
torQi.0:iamax;i~u2)1
bMod~xbme~wotlinhit.4ybe+yA1~oij~e~esz255);

I )I

/* CWMalcl WW~u nearcbism anW &we4i by .emrchmgI

iI(dscAlagn)I

if ((st wpn 13KOV4n-darr))-.NULL)
lprnWNvIwn~ov ope egn34n~dW).
ernt(O)j U
Gies

"tor-OJkxcyax,,.+)f

bcriksaesn~ -%d d-Axou "ipJjjOJyoi4IWJ)j
tecmnf(*~,wnl)J I
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cisp~oe(3,O); r Turn on all object *A* pixels .

Jgoff 0.
seth~(SPONNOUJTPUT),

pmtf(IaAdpast brighutass #we hit any key to save output coordkmoin'~);

outpbow.READ);
nxavg2u(nxavg-1 y2.
nytVg2.(%wag- 1 ),2.

for(myuO~my~cymax;my++fl
for(mx.Omx~xrnaxmx.+)(
Pxoe4mxjmyjlxouqrn~nyjj~l
pyouqmxjmnyj-youqmxlmyl~j:))

IOr(J;)
for(my=O~my~cyrax;my++){
shift.ceil(fmnodmy.2.0)); -

tor(mx.O:mx.cxrnax ;mx+=2fl
redanglepxou~hiftmxjmvynxavg2.pyouqshift+mxlmy).nyavg2,nxavg~nyavg.255);
rectang(pxou4sh~mxmyj-nxavg2.pyoulshit+rnxljmy)-nfavg2,nxavg.nyavg.255);JJ

snap( WAIT);
if(kbhiOmak:

ch-getcI'(); P* Ernplhs key bufter/

pnmtf(InConiguring oulput pixel coordnwAass please waLt..w);

fgoff 0.

sedthv(SPONN INPUT).
f~on0.
dispoeallOO),
1190110;
settidw(.5PONN OUTPUT).

for~my-O;my~cymax;my++)f
shillt-eail~fmrod(my.2.O));
"fomrx*O:mx~czrax~rnx.=2)f
confauIIIIII.~shif.nix~my,nxavg2.nyavg2)j)

sethw(MSPONN INPUT), P* Turn anamil ob~ec 9'pixlmft

".3on0 *m

trkwiang.Oldng~dval;khong+e).

will *4SPONN OUTPUT).
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IgonoI

snap(WAIT),

Igoff 0.
sefthd(SPONN INPUT);
fgono.
disp...celO.O);

selfMAN(SPONNCOUTPUT);
tgono.

Wo(my-O;my~cymax~my++fl
shitt-l--ed(tmod(my.2.O));
for(mx=O~mx~xmax;mx+.2fl
coit~samples(st~ft+mx~my,nxavg2,nyavg2)j)

for(my.O~my~cyrmaxmy++)l
for(mx=O~mx~xmax;mx++)f

torQ.-O~i~cnpixels:++)I

bbodxou4mxJ~myJWg.youIgmxiimyIliI.saze.saze,255);)))

pwttf(~Nvu~ut pixels rmarked in red on monimM*i):

WvaI3.OAooplma:
tor(kiong.O;Idng~dval;kion++);

r Write ou~pW coordinates to Me aign34n.dat 'I

if ((strea-fop(snn34n.dar"w'))-..NULL)
jpnndr(ncnot open Mign.34n dall) I

inVf('Mign34n dat coordinate file opened for wrbngnW);

tormy=O~mycyfmax~my++)l
formxsO:mx~xmax~mx..)f

for(i=O:i~npixels~i.+fl
fpMrsunE~a.'%d %d'.xou~mxI[my1[iIYoutf4mxlYJ[iJ)J

Winnf~svearn."AW);)I

Iclose(sWvewn);
greb(O);

if ((Sbm.ewf.open(algnn.dmr.Y))=.NULL)3
IpmlrVicwwiet open aVOgn~dn W);
exit(O);)

pW (w "dmt eoweewft M opened lor weedingW).

fOr~myuO;my4CymmE:my-+4.
forfmx=O~mx.cmmax~nx++)f3
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tof(i=0~i~flpieEls~i+i.){

fscanf(strem,*%d %d ',&xou4mxl(mylij,&you4mxlmyJ(iJ)))
fscant~sbeam.-An);))

fckw~stearm);
igoff 0.
sethctw(SPONN,.9UTPUT),

grab(0);

P Store LO exemplars in (0, 1) lo (mxmax- 1,mymax) .

lgoff0;
sethidv(SPOWN NPUT);
tgono;

for(mx.0:mx~cmxmax;mx++)f
for(my=0:my-cmymax:my++)l
exemplar random_LO(mx.my);))

r. initialize weights using sam of randlom outsr-pmo&Jca

printfCInInifiauizing weighis wfth swrn of random ouler-products.. .V*Hit any key to begin Iewning~n).
tval=4nt Uime;

outp(binel WRITE);

P (LOXL1) Wogt initializabon vactorsin (5,0). .

ybase-0;
n-5:
xbase-A'an'aydwm;
srand(a99d+1600O4.n),

tor(my=O;m~y~cymaxl ;my++fl
for(mx=0;mx~xmaz :mx+42fl

bkl*Odreqmxj+xbmse,yin~refmy).ybase~size~saZe255);
blocxkýxinjmx.1J+xbae,yinjeffmyJ~ybmste.size.ieO);)

else (
bMoclk4xinmfre¶xj+xbam~yin~reqmyJ+ybme.sae~size.O);
blokx(Xinreqmx.Ij+xbme,Yuijqmyj+ybaae~size~size.255).J

"frmy-O;my~cymax1 ;my.+)j
"trmx=0;mx~xmax;mx+.2)(
if(bm*io.--1Il
Wdkmna)-bimx)+xb~m.yinabjfmyJ+ybeAe~ize*.ze.255).
blad)tqdnabfmx.1).Xbme.yinob~(myJ~ybme w,sazesae.):)

elseI
blacktmnobimxI+xbm,yinaobfmyJ~ybmesAze,sue.O);
bodiNimobmx+ I +xbm.e,ymobjmyI q~bmseazO~uus.25),)
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P(Li )(L2) vectors for weight Mr~aization in (7,0). .

xbase-n~arraychil;
srand(seed+20000..4);

tor(my-0:my~cymax1 ;my++)(
tor(mxi=O:mx~cxmax~mx+.2fl
if(brando=-1 )l
bkxdi()drnmqmxl+xbme,ynMf2*my+ymnax1J+ybase,sazoesize,255);I
b~okx*xinmqmx+1)+xbme,yinrmq2*my+yfmlx1+ybease~ize,size.0);
bkxocixlnobifmxj+xbase,ymnobjrmy~ymaxI +1 I+ybms,size~siz..255);
bkxfXiodbn(mx+1J+xbase~yin~obf2*my~ymaxl .1J+ybase~size~size.0);

beock4xmnjstlmxj+xbaso,yinrole2*my+ymaxl I +ybase,size.size,0).
bkxck4xinjefmx.1 J+xbmymmfq2'my~ymiaxl+ybase,size.size,255);
bkock(xinobimxj+xbase,yuinobj[2*my+ymaxl + I'J+ybase,size.sizo,0);
bkxd(xkobimx+ 1)+xbase~yinobi12*my+ymawx 1 + I ]+ybas.,size~size.255);

for(my.O~my~ymax 1:my+ +)I
Wo(mx.O;mx~xmax;mx+.2)f
if(brando.-lfl
block(xinjrefmxJ~xbasee~yi~rsff2my+ymax 1 + I +ybase~saze~saze.255);
block~xinu,,qmx+ 1 Jxbas..yinrfre2*my+ymax+1 +I+ybase~size,size,0);
bfod~xmob~mxJ+xbma,ymnobj(2rmy+ymaxl)+ybas.sae,uize.255);
bkoci(xir!obfmx. 1 j+xbmseymn_obi[2*my+ymaxl J+ybase~sz.,size.0),

else I
bMocIkxinjeqmxJ+xbase,yinrq2*myeymiax1 + 1J+ybmasesze,size,O);
bnckdxkmroqmx.1I Ixbm.,yinjeqZ~my+ymaxi +1 J+ybase~size~size, 255);
bloc abI4mxI~xbme,yn~obf2*my~ymajc1I+ybase,size,s~ze.O);
bock)xinobjdmx+1 I+xme,ymnotf2*my~ymaxlJ~ybmse,size~size,255);

dap~ceK5.0);
foaeigm0.hOng~c-lvalUlang+.);

tor(kiongaO~ldoflg-intu*Mekong..);I

see&+.
uf~kbhil())brsmk;)

dlspadl0,0);
oulp~ba9l READ);
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ch--getch()

P Lwrw1 LOOP
........ n.n.. ............ ..... ... n . ..

fl z2.0/(mmax~xmax*ymaxI);

torqn=O~n~nepoch~n++)f
error=-O;

for(my=O~my~myrrax;my++)(
for(mx=O~mx~cmxmax;mx++)f
dispooell(mx.my+ 1); P* Input LO exemplar (mx,my) /1

redowtl. I(nframes),
transfer-Ll0;
reado.AL.2(nkames);
err-value=errorjleam(mx,my,n).
error-Orro 4rr value,
backward(ntrames),
ftanW2(intwnm~eosquantepsl ,eps2).
ainW WI (int-tme, dacuant~eps2, mx,my);))

totetnfnj~l *error;

prnnU("\nLeaming Epoch= 0/03W Error. O/5.31 ,n~toIDn]n);
value-lolnfnJ'40;

If(kbhitO)j
ch=gefch.
nepocti-n.

Imk.

_dos...etUme(&6ame2);

P RGeaIDW Loop

punnwNaRsadott qf rwwork.nn) ,

for(n-O~n~cnepoch2;n++){
error.C,

tor(my-O~my-cmymax:my++fl
torlmx.O;mx~mxmax ;mx++)f
dispods~mx,my. 1).
reedout I (nrikaree)
IIWvftbLIC);
m~dotAL2(abnmw),
9fTrvvusuerorreadmmmmy,n).
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HI
totenrread~n]-f 1 error;

pnntro~Readout Epoch- %3d Error. %5.3f * n lte~rrema~nj);
value-frr_eanr4Om;3
torQ=-O;ikvalue:i++)(
pnntt('%c,blk),)

if(kbhi()( 3
nepoch2=n;
breaKj

outp(basel .STANDBY);

sethdw(SPONN OUTPUT):
fgono;
grab(0);

if((stream-topen('Iearn34n.csv",W"))==NULL)
lpnntf("cannot open leamn34n.csvW);
exit(0);)

pnntf('Veamn34n.csv file opened for wrtngbngW).

tprintf(stream,"Ieam34n.c Two-Layer Optical Baclkprop. with Symmetric Dual-Rail Levels (Random Mapping Problem)\nV);
_dos~geldate(&dale);
fpnntf(sfteam,*Da~e %d-%d-%d".date.month,date.day,date.year);
fprnnff(stream,"Crystat: %s",comment2),
tpnintf(stream.'%s',ommient);
fpr~ntf(strean,~'O/s',oomment3);

fpnntf(stream,"Enter number at exemplars in x and y:\n*) I
lpnntf(steam.'%d. %/dnr,mxmax~mymax);
fprmnff(stream,"zoomval= 0/dt",zoonrival);
fpnntf (stream ,Display field dimension is \n%ft',arraydimy)

fp~nntf(streamxmax and ymax= \n%d, %dvV,xmax,ymax),
tval=xmax~ymaxl +2'xmaxl ymaxl;
fprintf(streamNo. of neuronis= \n%eVV",tvaI):
fval=xmaxI~yma~xl,
tval=(xmax~ymax 1 )*(val)+(tval)*(tvaI),
fpnntf(susam,*No. at weighis= 'd%e~n".fvat);

fprnnff(streang"Enter subneuron edge dimenswon~nOA~n"size);
fpiintf(stiuam.*No. of epochs: )

fphnnf(sVeam,"%dvrnepoch);
fpnntl(stream,"Exermplar integration time in sec )

fpnntf(stream.'%NV'n~time),
lprintf(stmam *Ou~ut Frame Grabber gain:)
fprnntf(stream "%M~gain2).

fprintf(sVeam.*Ou~Iut Frame Grabber offset:)
fpeintI(8tM~i,ift',oketvai);
fpnnU(sV9@m,'nOu4u Frame Grabber input LUT: I for square root; 0 for kneuVV);

fptnnt~steam,%dwi,declu);
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tprnnt(sti'eam,lInput Frame Grabber output LUT: 0 for unmodified; 1 for lineanized SLM interlsily'ýn),

tpnntf(sVeam,.%dvVdedut2):
tprnnt(stream,.Entr Isigmo gamma valueVV"):
fprintf(sb'am,*%tVVgamma);
tprnnt(stream,*Enter 1 for timary quantization of weight updates; 0 otiewwsen'r);
fpmf~f(stream"%din,decquant);
tpnrint(stean,'Enter eps I for y I quentizaticn and eps2 for delteI and delte quantizationW),
fprntf(stream.%f. %tMn.eps1 eps2);
fprnnd(stemanitCLV tun-on and torn-off delas in see. \n%f. %Mri.ontime~offtme),
fpinnt(s'ean.'Enter x and y dimensions of averaging regions (odd nuxnbers)\n");
fpnntf(sti'earn,,%d, %d~n',nxavg,nyavg);
tprnnt(stream,'Enar no. of samples per subneurcn~ffid~nrpixdls);
fpnntflstrean,'Enter no. of video frames to average (,c- l0)'n*);
tphnnt(sfream,"%din*,nframes);
fprintf(st'eam.*Enter starting seed for random number generator~aV);
fprintf(stieam,%dwi",seedl2);
"tinf(strean Learning sunr tirme: %d:%d,%d Stop tkime: %dl d%dwt*time1 hour,

timel .minute~tmel .secondbtime2.hour,umfe2.minute~time2.second);

fpnntffstream."NMnLeaming Error and 2 Ouput Progocbons vs. Epoch ýnVV");
for(n=O;ncnepoch;n++)( -

fpnartf(steam,*%d. %f, ,%d, %t, %tvV.n~toterntn,n.proLw[nIOI.p.'oLwlnhll];I

fprnnf(stream."Vnkeading Error and 2 Output Projections; vs. EpochVIni:*)
lor(n-.0:n~nepoch2;n.+)I
fprintf(sti'eam,%5d, %f. .0/d, %f, %PaV.n~toterrýreadln],n,protj4nJ!0J,projrfnllIJ:

fclose(stream),

"f This function rounds a floating point number to the nearest inteerW

int round~fvai)
float fval;

int val
float remain,

remain~tval-floor~fval).
if(remain>=0.5)
vat rceitftvaI);
dele
val-floorffval).

retunval),

r This function kxbd tOe sample pomnts for neuron (mx,my)

void oonf swnpmsmx~my~nxavg2.nyavg2)
int mx~my~nxavg2Mnavg2
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int ount~xts,y~s,ij,nurm(10OJ;

xis=pxouqmxjimyJ;3
y~s-pyoutfmxJ(myj;

P Find brighlest pixel by sorting 3
tor(i.O~i<1OO;i+.flnum[iJ-O;)

count=O.

foro=-nyavg2+1 j<-nyavg2,j++)(
forQ=--nxavg2+ I ;i<=nxavg2;i+...f

ritncounti-xW un I
ytcountj+yWIj

qsortgnum.100 sizeof(int) compare);

for(i=O;i~cnpixets~m.+fl -U

xoutfmxxmyIi1-xgtnumlifl;
youtqmxjmyjfi]-yt~num(ijj;)3

r Descending order comparison functim far qsorto. It compares3
sampled pixel values .

int compare~ij)

int *i,*j;

intvalia~b

a-rpixeI(xtrjl,yqrjj).
b=rp~xeI(xqril,yt(*ij).
vaiwa-b;

retwnval),

r Thi luniclo calc:LaiateL1 values .

void readout Ll1(nframes)
int ntruss

int it .i2,mx2.my2,val,

flowfa W3

SOMMSPOINN.OUTPUT),
fgon()
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for(my2=O;my2<cymaA1 :my2++)(
for(mx2=O;mx2<xmax;mx2++)(
sumllmx2Imy2I=O;fl

oupbel ,READ);
for(kiang=O;klongon<mekOMong+.);
tor(i2=O,i2.cnftames;i2++)f
snWpWAIT);
tor~my2.O:my2.cymax1 ;my2-e+)f
tor(mx2-0;mx2<xmax;mx2+.fl
sumi Imx2jfmy2J.sumljmx2jfmy2j+avg..rpixel(mx2,my2)j))

outpbase1 'READ);
fvai=.0(Irames;
tor(my2=O;my2cymaxl ;,my2++fl

for(mx2=O;mx2.cxmax;mx2++)f
sum 1 Imx2)Hmy2J-tvar~sum Itlmx2ltmy2I:H)

for(my2-O;my2.cymaxl :my2++Ml
forqmx2.O~mx2<xmax 1 ;mx2++)l
yyl fmx2Jfmy2j-fsigmo(sum I 12mx2jfmy2)-sum I[2*mx2+ I Jjmy2J):))

P*Trarafers Ll mOUnio~L1 input /i

void haisferLiC

int mx2.my2,pixval;

fgoffO;
setdid(SPONN!INPUT);
fgono;

dispceIKOO);

tor(my2=O;my2<ymaxl ;my2.+)l
torlmx2=O;mx2.cxmaxl ;mx2++)f
pixval=127'yyl(mx2Imy2j;
blokxxinmrq2mx2j.yinrsq2*my2+ymaxlJ,size.seze. 127.pexval).
bkock(xin-req2*mx2+1 Jyin mrf!2*my2+ymaxlJ,size,saze. 127-pxvai).

P* Thss tuncio ciciAfts L2 v~ues .

void readoutLL2(nftaies.)
Eint ntranus.

in! 0i .e2mx2.my2.val.
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sfwSONOUTPUT) U
Igono;

tor(my2-0;my2qymaxl ;my2++)fI
for(mx2.O:mx2.cxmax:mx2++Hf
sum 1(mx2jlmy2 jaO;

sum2lmx2Imy2J-O;))

outpbas1 .READ);
torkkxVngO:kong~ornjfme;kbn++):

for(i2=O;i2<nframes;i2++fl
snap( WART);

torlmy2-O~my2<ymax1 ;my2++)(I
for(mx2.O;mx2.cxmax;mx2++)i
sumi (mx2Ilmy2J-suml (mx2llmy2]+avgjrpixeI(mx2.ymaxl +2*my2);fl

cago~sign..L1 0;I
tork"IOngO:kWgonV ekor lgre;w++),

igoffO;-I
sedx*N(SPONN OUJTPUT);
fgono;

tor(i2.O~i2<nframes;i2++fl
snWpWAIT);
tor~my2=nO;my2.cymax1 :my2.+)(

for(mx2=O~mx2cxmax;mx2++)i

sumn2lmx2lfmy2j.sum2(mx2I~my2J+avg__pixel(mx2,ymfax 1 +2*my2);j)

outp(basel .READ);

for(mx2.O:mx2-cxw~ax~mx2++)(
sum I (mx2Jjmy2Jafvar~sumi Imx2Xmy2i;

sum2tmx2Xmy2j=(var~sum2tmx2j[my2J:lJ

for(my2-O;my2.cymaz1 ;my2++fl

forlmx2.O;mx2.cxmax1 ;mx2.++fl
YY2fmxi2JmY2J]tigoXSuml(2*mx2Jlmy2j-sum j2*mx2+ lflmy2j sum2I2*mx2][my2J+sum2!2*mx2+1 J(my2]);

/* This roswns p"*I~ avemges bright pixsek

"foat .vgjrpexemx.my)3
Of mx~my,

imt j.,,vW;I
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todrj=O;j.cnpoxels-,j++)(
val-vai.erpexelqxoutfmxlmylfjJ~yougmxJ~myl));)

tvaI=(floatYvAlnpixeis,
retumfqlva).

P* Calcutlates L2 output error for exemplar (mx.my)
in Waening phase -/

float efrorleamr~mx~my,n)
in? mx~my,n.

mt mx2.my2.iex.c;
float e2.erorwval

efror=O;
c-my~mxmax+mx;
srand~seed~c);
tval=O;
for(my2=O;my2qymaxl ;my2++)l
tor(mx2.O:mx2.cxmaxl ;mx2++)i
tex-brando.
e2=O.5*(iex-yy2Jmx2J~my2J))
error~error+compare~sign(iex,yy2fmx2jimy2J);;
dela2Imx2Imy2Je2*ghump(yy2fmx2Imy2]);
fval-fval+yy2fmx2Jlmy2lJ;J

tval=lval/(xmaxl ymaxl);
pnintl(InExemplar (%d.%d) error- %f projection= %f",mx~fmy..rror~fvaI);

il(c<2)
proj~wfnj[cj-tval,

retum(error),

P* Calculates L2 output error for exemplar (mx.my) in reading phase

float error-read~mx~my,n)
int mx,my~n;

mnt mx2.my2.iex,c;
float e2.ro,wwval;

error-O;
c-my~mxmax+mx:
srand(seed~c).

hval.O.
"trmy2wO~rmy2cymaxl .my2.+)I
I~mx2.O.mx2cxmax1;mx2.)fl

iex-bran111



erl~rmerro+oompal'esagn~isx.yy2[mx2Jimy2I);
tvaJ-fvaI~yy2fmx2)jmy2j;))3

tvai-t~va/(xmax I ymax 1);
pnntf(*nExemplar (%d,%d) error. %f projection. %f",mx,my,error,fval);

ol(Cc<2)
projj~njcJ-fvai;

P* Bac1kpropagate tou am, signal .

voidbcwadnams
int nframes,

kxng mt kuong
mnt mx2.my2.i2.pixvai. -

sedidm(SPONN INPUT).

P*EraeL1 wi / U
bloc14affaydmn2,ymax 1 *size~xrnaxcsue,ymax2*size,O);

1. Write dem to 12 relevance */

for(my2-O;my2cymax1 ;my2++fl

tor(mx2oO~mx2.cxmaxl1;mx2++fl
poxval.127*ds~kamx2Jmy2j.
bkxd~xin-q2*mx21,yin~reff2*my2+ymaxi 1 + ),zsa,size, 127.pixvai);3
blokxxmnrsj2'mx2+ 1),ymn rsq2*my2+ymax 1 + I ),size,size, 127-pxval);

PRead Li ou§u arid Calculate dltal 'I5

sethdw(SPONN. OUTPUT),

for(my2*O;my2<ymaxl ;my2++)f

"trmx2wmOmx2<wrtax-,mx2.+)j
sum ljmx2Jfmy2)uO.
sumrfmx2jmy2J;j.OJJ

- RbeialFEAO);
fM"luog.OkWongwon..ms Idn.),
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tor(i2=-O~i2.cntrames;i2.+fl(
snap(WArT);
for~my2=O;my2.cymax1 ;my2.+){

for(mx2=O;mx2<xniax;mx2++fl
surnlI mx2Mmy2I.4umtI mx2limy2).avgj~pixel(mx2.ymaxl +I +2rny2);))

dwigs sinL20);
"trkiong-O;kdong-cMn..me:kiong-e.);

tooftO;
sedxidw(SPONN OUJTPUT).
tgono;

tor(i2=O~i2<nframes;i2.+)j
snap(WAIT).
tor(my2.O~my2cymaxl :my2+)fl
formx2.O~mx2<xmax ;mx2++fl
sum2fmx2Jifmy2j.sutm2[mx2)fmy2i+avgjrpixeI(mx2.ymaxI + I +2*my2);)l

outp~baselREAD);
tvaI0 5Atkames;

tor(my2=O;my2.cymaxl ;my2+.)f
tor(mx2-O~mx2<xmax ;mx2.+)f
sum ljmx2]jimy2j.tvalrsuml1 (mx2j(my2);
sum2fmx2jlmy2j~fvalrsum2tmx2lfmy2);JI

for(my2.O~my2.cymax1 :my2++)(
for(mx2*0;mx2.cxmax1 ;mx2+)fl
01 .O.00392*(suml [2mx2Jmy2J-eum 1(2'mx2+1j(my2)-sum2t2*mx2J(my2J+sum212*mx2+lJmy2J);
deftal(mx2Rrny2I..l *ghump(yyl[mx2lmy2I)I1

/* Thes kun~on updalls Ohw wughts between L2 and Li

void trunW2itmtume,decuanteps1 .eps2)

N= qx leps2:

int mx2,my2,psxval;

sedxkv(SPONNjINPUT),

/*Wnbtyl toL1 obtect/

"timy2-O;my2.cymax1 ;my2..f
bqmx2=O:mx2,xmax1 ;mx2..fl
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pixval=127hsgn(yy 1(mx2Jmy2J..ps 1),

pixvaI=127'yyl1mx2Jlmy21.I
bkoxm(inobj2*mx2).ylný_ob#2rmy2+ymaxI + 1j,sazsize, 127+pixvai);
bodkx*4inýobf2'mx2+IJ.yfiobj(2*my2+ynmx1 +1 Jxize,size,1 27-pixvai),

I- Wnw dslta2 to L2 obged

for(my2.O~my2<cymax1 ;my2+.)fl
tor~mx2=O;mx2<xmaxl1:mx2++)f

pivl127gnsdeIt2(mx2jmy2J)eps);I
else
pixvai=1 27*dsftR~mx2Imy2I;

bn*4výob2T m x2J.ymnobf2rmy2+ymtax1 I~sze~size, 127+pixvai);

blod~xkmobj2*mx2+ I lym ~obj(2*my2.ymax IJIsize~size, 1 27-pixval);

/* iWWyl lo Llre~rmnc./

$or(my2=O;my2cymaxl :my2++fl

for(mx2.O;mx2.cxmax1 ;mx2++)fl
rf~dacEqut)

pexvai.127*hsgn(yylfmx2Imny2Jeps1);

ptxvai-127*yylfmx2Jfmy2).
bbock~iQn-rq2*mx2J,yiný_uf2*my2+yfmax1 Jsize size, 127+pixval),
blocWidn,njq2*mx2+ 1 ].yin..rej2*my2+yfmax 1 J~size.size,1I 27-pixvai);

r Wnte dseW iD L2 mrseenco .

for(my2.O;my2.cymaxl ;my2++)f
for(mx2-O;mx2.cxmax1 :mx2+.)f

idodmxuat)

pexvaM-27Iugnd~flmWmx2jmy2jeps),

pixvaI. I 27dhIUtamx2Imy2J,

biockwr4xm.2*mx2).yin~ref2*my2+yrnax I + I l~size,size. 1 27+poxval),
bokx*mmjsI42*mx2+ .1yinro2'my2+yrmx 1 +1),siz..size, 1 27-poxval),

P Adtst L I-L2 wWLUl ef

outp(bm1.WRflE).

for(kiag-O;kbng<-int -6ne~kiong.+);
outp(bmel,REAO).

bhodk(O,ymax1 szeazswaychm,ymaii2uze.O).3
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This hirwcom updales 1he weights between LO and LI 1

void train W1(int bme,dscquanteps2.mx,my)

int mx,my~dacquant,

int mx2,my2.xbmo,ybase,pixvaI;
long mnt kkxig.~aI,

fgott 0:
sedh~kv(SPONN INPUT).
tgono,

/P Diaploy LO exemplar1

disp_cell(mx.my+1);

P' Wro dettal to Ll obgsd

xbase-mx~arraydim;
ybase-(my+ 1 Yaraydim.

tor(my2mO;my2<ymax1 ;my2++)(
forqmx2=O:mx2,cxmaxI :mx2..fl

if(doojtt)
pixval-12rhsgn(defta1 (mx2jmy2),eps2);

else
pixvai=127'doli1 (mx2Imy2I,

blocl(xbse~xmn~obi2*mx2),ybase+yinobpfmy2J,saze~saze.127+pixval);
bboI~xbwoe~xm~obj2*mx2+1 J,ybese+yin ot4fmy2).size,size. 1 27-pexyal);

/* Axut LO-L I weights/

Jvat=2mnthme,

woupbnalWRITE),
for("lngO~kiong.=tval;kion.),

outp(baselREAD).

bkxcl4xbme ybose.arraydm2.ymax: 1 *sze,O),

/* Functon lo dog sao of Li1 rot. during readeut .

void dmwWesWiL1()

wit mnx~y2.psxva;

seUftwSPONNJtNPUT);
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tor(my2w0:my2<ymax 1;my2++)(
forqmx2=0;~mx2<xmaxl :mx2e+M)
pixva1=- I 2ryy I mx2Imy2j,
bkoci~xin-rq2*mx2],yinje42*my24ymaixlJ,sazexsize, 1 27+pixval);

bhock(xin-Ij42*mx2+1J,yinmq92*my2.ymaxl),saze,size, 127-pixval);

/, Function lo dwWg sign of L2 ref. during readout

voed dwWge..s~gnj2()

int mx2,my2.pmxval;

IgoltO;
sethc*dq(SPONN INPUT);

for(my2=0;my2qymaxl ;my2++)(
for(mx2.O~mx2<xrnax1 ,mx2++fl
pqxvii=-l27*du~tammx2jmy2];
block~xin-.mff2*mx21,yinjseq2*my2+ymaxI +1],size~size, I 27+pixval);

block(xmn~rej2*mx2+1 ),ymnjreq2*my2+ymaxl + I Jsize~size, 1 27-pixval);I

P Neuron sigmoida activation func-bon .

float bigmo(fsum)

float faum,

float lvii,
tval=2.0/(l oxp(-fgamma~fsum))-1 .0;
retum(tval),

PBacldpopagabon function1

float ghwmp~bm)5
float bum,

PANoatlvi
".vl(1 o-fsumr(i o+fsum);
ratumn~val).

P* Satuamaon kmoon .1

mnt satW(Ium)
fotburn II
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ifi(Isurn>=255)
ivaI=255.

else
ival-tsum,

retum(ival);

/* Tninary quiantization function/

int hsgn(net,eps)
float net..ps,

ent ival,

ival.-1 
'

else dt(net>eps)
ival=1.

else
ival=0,

retum~ival),

P* This subroutine genierales a (1.0) LO random exemplar and stores
it in a subregion of frame memor.y

void exemplar~jandomnLO(m,n)
int m~n.

int mx2.my2,xbase~ybaso~pixval:

fgoff 0.
setdid(SPONN INPUT);
fgono)

xbase-m~arraydim,
ybase=(n+ 1)*arraydwnm,

srand(seed~n~mxrnax~m~mmax).

for(my2=O:my2.cymaxl :my2++)l
Wo(mx2.0;mx2.cxmax~mx2.+)l
it(brando--- I)(
bkxcl(xmjsft~mx2J+xbese~yinreqmy2J+ybmse,sazes~ze.255)j)

bok~njefjmx2j+xbee,ymn~refmy2).ybase.aazesuze.0);)
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/* RIIIffS 1 or -i randomly

int brandoI

rtm(2'ge9us(randO,O, 1)-i);

/* Thislan getsn bft iD d* igtoand r~idg posion p
inin~gr x. */ I

getbi(x,p,n)
unlsigned xp.pn:

I I
PThis subroutine dispays call (m~n)/

void desp_cell(m,n)
int m~n,

int xbaseybose.

lgoff().
se#tdN(SPCNN INPUT);
Igono;3

xbase~m~arraydim,
ybase=n'am'aydim.3

scrol(ybase).

/* Returns Oil arguments have same sign, 1 oUtewwse

fioat compre~slgnm.tn)
int m,

float fn,

float tval,3

it(m~fn:,O)

tval-1.

mI ~val). I
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