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PREFACE

This report presents a developmental prototype knowledge-based expert
system (ES) RETAININGEARTH for the selection and design of earth retaining
structures. This study will provide guidance for the selection of an appro=-
priate retaining structure, based on a given set of input conditions and
the subsequent detailed design of the selected structure. Funding for this
study was provided by Headquarters, US Army Corps of Engineers, and the study
was monitored by the Information Technology Laboratory (ITL), US Army Engineer
Waterways Experiment Station (WES), Vicksburg, Mississippi, Partial graduate
assistantships were provided by the Department of Ocean Engineering, Florida
Atlantic University, Boca Raton, Florida.

The report was written by Dr. M. Arockiasamy as Principal Investigator
with able assistance from graduate students. The computer code of the ES
was developed by Giri Sreenivasan and Keling Shen who worked in this project
as Graduate Research Assistants. Ms, Barbara Steinberg typed the report
coordinating the text and tables layout.

The work was monitored at WES by Mr. Michael E, Pace, under the
general supervision of Mr. H. Wayne Jones, Chief, Scientific and Engineering
Applications Center, and Dr. N. Radhakrishnan, Director, ITL.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander and Deputy Director was COL Leonard G.
Hassell, EN,
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SECTION 1
EXECUTIVE SUMMARY

This final report describes research in optical neural networks performed at Hughes Aircraft
Company under a three-year DARPA sponsored contract. The objective of demonstrating a
programmable optical computer for flexible implementation of neural network models was
successfully achieved. The advantages of optics for neural network implementations include high
storage capacity, connectivity, and very fine-grained parallelism which results in high computation
rates. The optical neurocomputer developed under this program is based on a new type of
holography, cascaded grating holography, in which the neural network weights are distributed
among cascaded angularly- and spatially-multiplexed gratings. This approach reduces crosstalk
and improves the utilization of the optical input device. Successfully implemented neural networks
include the Perceptron, Bidirectional Associative Memory, and backpropagation neural networks.
Up to 104 neurons, 2x107 weights, and processing rates of 2x107 connection updates per second
were achieved on this program.

The organization of this final report is as follows. First, we briefly describe the nature of
neural network models and the types of problems they are meant to address. We describe real-time
holography and its advantages and disadvantages for neural network implementations in terms of
storage capacity, connectivity, and parallel processing. A new holographic technique, cascaded
grating holography (CGH), was developed by us to overcome an important source of distortion in
holographic neural networks. We demonstrated CGH in photorefractive BaTiOj crystals using
both visible light (514 nm) from an argon laser and infrared light (830 nm) from a laser diode. The
infrared experiments are especially significant because very compact systems can be built using
laser diode light sources.

We then discuss the design and construction of the optical neurocomputer based on CGH.
The number of neurons, number of layers, and the neuron activation function can all be
programmed without hardware adjustments. We believe ours is the first truly programmable
optical neurocomputer. In addition, the simple system design requires only a single crystal, input
spatial light modulator, and output detector regardiess of the network configuration. The entire
system was built from presently available off-the-shelf components. Although the present research
system occupies a relatively large volume, we discuss packaging concepts in which the entire
system is contained within a volume smaller than a shoe box.

Three widely differing neural network algorithms (Perceptron, bidirectional associative
memory, and backpropagation) were successfully implemented on the neurocomputer. As of this




writing, up to 10,000 neurons, 2x107 weights, and learning rates of 2x107 connection updates per
second have been achieved. The potential exists for improvement factors of 103 in the number of
weights and 100 in the processing rate. Finally, we discuss our experimental efforts in "fixing" or
permanently recording connection weights in the holographic medium.
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SECTION 2
NEURAL NETWORK MODELS OF COMPUTATION

Computational problems can be described in terms of many attributes. One of the most
fundamental measures is the "randomness” or algorithmic complexity of the problem. It is
generally agreed that nonrandom highly structured problems with known algorithmic solutions are
best solved using traditional computer programs. In contrast, many problems involving natural
data have a high degree of randomness, especially pattern recognition problems involving noisy
data. These are problems that biological organisms excel at compared with classical rule-based
algorithms in which the rules are assumed a priori. Biologically inspired neural network models
are useful for solving such high entropy problems in which the underlying algorithm is unknown
and the required ransformations must be learned from examples. They are more powerful than
standard statistical techniques because a larger range of solutions can be represented using their
muiti-layer nonlinear structure. In fact, it has been shown that any function can be approximated
by a sufficiently large neural network. |

Neural network models of computation consist of many simple processing nodes or
"neurons” which communicate with each other via interconnection weights. The nodes are
anthropomorphically called neurons here in acknowledgment of the vastly more sophisticated
biological neurons which inspire connectionist models of computing. (However, any resemblance
of the nodes to actual neurons is, at best, superficial and grossly simplified.) A diagram of the
logical structure of a multi-layer feed-forward neural network is shown in Fig. 1. Associated with
each neuron is .n activation level which is calculated from a weighted sum of the activity levels of
other neurons.

y‘(n) - f(x‘(n))

T
J

Patterns which are input to the network through the bottom layer are transformed into patterns
which represent the answer to the problem the network is trained to solve. Many neural net
architectures have been designed and demonstrated for various computing tasks. Techniques such
as backpropagation as well as many others have been developed to "train" or adjust the
interconnection weights to solve problems in pattern recognition, vision, and robotic control.
Although the problem of learning an arbitrary ransformation for a completely random problem has




been shown by Judd? to be NP-complete (therefore probably requiring exponential increases in
learning time as the problem size increases), most if not all problems in pattern recognition involve
at least partially structured data for which the leamning time will be a polynomial function of the
problem size.

Output Pattern

(0)
Vi

Input Pattern

Fig. 1. Structure of feed-forward neural networks.

Two important parameters which characterize a neural network are the number of neurons,
N, and their connectivity, K, where K is the number of synapses or weights connected to a
neuron. We argue that both N and K should be as large as possible in any general purpose
neurocomputer. Pattern recognition problems involving natural data, especially vision or target
recognition, require large numbers of input neurons to handle the large raw input data rate. In
addition, large numbers of neurons in the hidden layer are required in order to solve non-trivial
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problems. As for the connectivity, Abu-Mostafa3 has shown that it must be large for at least two
reasons. First, since the neurons essentially implement K-input threshold functions, one K-input
neuron with K associated weights is equivalent to order K2 two-input neurons with 2K?2 associated
weights. Thus far fewer weights are required if the neurons have high fan-in and fan-out.

Second, Abu-Mostafa also showed that in order for a neural network to leamn, the connectivity K
must exceed the entropy H of the environment where H is the logs of the number of input patterns
typically generated by the environment. H increases as the randomness of the problem increases.
Since neural networks are most useful for partially random problems, we argue that both the
number of neurons and their connectivity should be as large as possible in a neuro-computer.
Increasing N and K while maintaining computational parallelism is a daunting task for electronic
architectures due to the 2-D nature of electronic interconnects. Most of the area on analog or digital
electronic neuro-chips is taken up by the interconnects while implementing only modest numbers
of neurons (N=0(102)).

Optical implementations of neural networks are attractive because of the large storage
capacity and, most importantly, the parallel access and processing capabilities of optics. Optical
architectures can exploit 3-D free space interconnects, allowing the input and output planes to be
fully populated with highly interconnected neurons (N=0(10%)). Moreover, an entire weight layer
can be updated in one time step, unlike electronic approaches which must use some form of time
multiplexing when the number of neurons is large. Optical neural networks divide naturally into
two classes distinguished by the dimensionality of the weight storage medium, e.g. weights can be
stored in 2-D or 3-D formats. Example 2-D weight storage media include film, SLMs, and optical
disks while almost all of the 3-D formats use photorefractive crystals as the storage medium. The
optical processor described here uses 3-D weight storage based on volume holography. The
primary motivation for considering volume holograms as a storage medium for neural networks is
the poiential for extremely high storage capacity and fully parallel processing of the weights during
both the learning and reading phases.4 Motivation for maximizing these parameters can be found
in the potential application areas for neural networks.

Figure 2 is an adaptation of a figure which originally appeared in the final report of the 1988
DARPA Neural Network Study. It shows the potential application areas mapped onto a 2-D space
in which one axis is the storage required in terms of the number of weighted connections and the
other axis is the processing rate required in connections per second. The corresponding estimated
parameters of some biological systems are included. A varety of electronic implementations,
denoted by open squares, have also been added to Fig. 2. (These performance points were taken
from an article by Alspector.) The electronic implementations are, apart from the Sun and Cray
computers, specialized analog and digital chips. Some implement learning and some do not. For
those that don't, weight values must be learned off-chip and subsequently loaded into the chip.




Finally, diagonal lines of constant network update time were added to the figure. The update time
is the ime required for information to pass from the input of the network to the output. Such a plot
is necessarily a highly folded and simplified projection of a high dimensional reality onto a low
dimensional representation. For example, the degree of local vs global connectivity is ignored as
well as the algorithmic complexity of the application. Nevertheless, certain trends can be deduced.
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Fig. 2. Relative performance of present holographic neural network (HONN) compared to
application requirements and other hardware implementations.

It is interesting to note that potential application areas in robotics, speech, and vision cluster
around the 10 msec network update time line. These applications require large numbers of weights
in order to achieve the complexity required to solve the problem, but the problem does not need to
be solved in less than a few milliseconds. The large number of weights, however, requires very
high processing rates to achieve this update time. Significantly, the biological systems also cluster
around the 10 msec update line, perhaps because they must also solve problems in speech and
vision. With the exception of the general purpose computers, the electronic implementations have
relatively modest storage capacity, although their processing rates are high. (Ignoring the fact that
many of the chips do not have on-chip learning.) This is due to the 2-D nature of VLSI which




limits the number of connections that are practical. They therefore appear most suited to the signal
processing applications in which fast update times and modest storage are required.

It is our opinion that optical neurocomputers are complementary to specialized electronics
in that the 3-D connectivity and parallelism of optics permits the implementation of very large
networks with high processing rates and relatively modest network update times suitable to
applications in vision. The projected future performance of our optical neurocomputer is indicated
by the large filled circle labeled ONN. The present performance of our optical neurocomputer is
also indicated by the filled square. Despite being a proof-of-principle first prototype system using
non-optimized components, its performance is quite good.

In order to fulfill a practical role complementary to the strengths of electronics, optical
neurocomputers should include, first, large numbers of neurons and weights; second, distortionless
software mapping of a variety of neural network algorithms onto the hardware with no hardware
reconfiguration; third, co-processor-type interfacing to a host computer; and fourth, hardware
simplicity for low cost and compact packaging. In this final report we describe an experimental
optical neurocomputer which serves as a testbed for meeting these requirements. The
neurocomputer is a nonlinear, highly interconnected, parallel, and analog opto-electronic computer
based on real time holography. In the next few sections we discuss some aspects of holography
relevant to neural network implementation.




SECTION 3

REAL-TIME HOLOGRAPHY FOR NEURAL
NETWORKS

In holographic optical neural networks, neurons are represented by pixels on SLMs. The
brightness of a pixel corresponds to the activation level of the neuron. By placing the SLM in the
back focal plane of a lens and using coherent readout, as shown in Fig. 3, the pixels are converted
to coherent beams which illuminate a real-time holographic medium. Weights between neurons are
formed when a pair of light beams interfere in the holographic medium, forming a volume
sinusoidal light intensity pattern. The photorefractive effect is a suitable physical mechanism for
converting this light intensity pattern into a semipermanent deformation of the optical properties of
the material, thereby recording the weight values.
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Fig. 3. Geometry for holographically recording connection weights between neurons.

In the photorefractive effect incident light excites carriers (electrons and/or holes) from traps
into the conduction or valence band. These carriers then are transported by diffusion and drift until
they fall into empty traps, creating an internal space-charge field which in wrn modulates the




birefringence of the material through the electro-opuc effect. This results in a phase grating in the
material. Because of the long dark decay times of some of these materials, the phase gratings can
be stored with a time constant of many hours. (Storage for longer periods is also possible in some
materials using various fixing methods.) When one of the original two beams subsequently
addresses the grating, the other beam is reconstructed with a diffraction efficiency that represents
the weight value between those two neurons.

The diffraction efficiency of the semi-permanent phase grating represents the connection
weight formed between the neurons. It is proportional fo the outer-product of the amplitudes of the
writing beams and has a fortuitous similarity to the Hebbian learning rules of many neural network
models. This equivalence between the ourer-product form of the diffraction efficiency and Hebbian
learning forms the basis for implementing the weights directly using the analog laws of physics
rather than digital representations as in conventional computers. Learning can be implemented in
photorefractive optical neural networks since the weights can be selectively increased or decreased.
Reading out the grating partially erases it unless the readout beam is much weaker than the original
writing light or the crystal is fixed using special techniques.

The angular or Bragg selectivity of a volume photorefractive grating can be very high which
results in large storage capacities. (For example, 500 high quality images consisting of 70,000
pixels each have been stored in a single photorefractive crystal.5) The Bragg condition states that a
beam will be reconstructed only if the angle of incidence of the incident beam relative to the grating
is equal to that of the original writing beam. The angular selectivity for reconstruction can be
calculated from coupled mode theory® and is given by

Y — -
nT,sing
where Tz is the grating thickness, A is the optical wavelength, n is the index of refraction, and ¢ is
the angle between the two writing beams. Note that the selectivity is greater for thicker crystals.
Each individual light beam can be represented by a momentum- or k-vector. (The direction of the k-
vector corresponds to the direction of propagation and the magnitude of the k-vector is the inverse
of the wavelength.) By using phase matching arguments, the Bragg condition can be described
geometrically as a vector sum: Kj + Kg = K, where Kj and Kj are the wavevectors of the
incident and diffracted beams, respectively, and Kg is the grating wavevector.

A geometrical construction for the theoretical storage capacity of a volume hologram can be
drawn in k-space, as shown in Fig. 4. If one writing beam varies over solid angle 8o while the
second writing beam varies over angle 6,, then the vector difference between the two beams (the
grating wavevector Kg) will race out a three-dimensional region in k-space (shaded gray in Fig. 4).




This volume represents the region of k-space that is accessible for storage of information. It will be
further limited by the resolution or modulation transfer function (MTF) of the holographic medium.
This limit is represented by a sphere centered on the origin whose radius is equal to the largest

spatial frequency that can be resolved by the medium. The volume of the accessible region depends

on such geometrical factors as the focal lengths of the optics and the spacing of the neurons on the
SLMs.

Volume of possible
grating k-vectors:

8, (Ko} & Accessable

Not Accessable

Spatial Frequency
Limit Due to A
Material MTF —

Fig. 4. K-space diagram of grating k-vectors accessible using recording geometry of Fig. 2.

The grating wavevector Kg has an uncertainty volume associated with it due to the finite
physical size of the hologram and the nonzero size of the SLM pixels. Dividing the accessible
volume of k-space by the volume of the uncertainty volume results in the maximum theoretical
number of resolvable gratings which can be stored in the photorefractive crystal. Without going into

details here it can he shown that the storage capacity is limited by two upper bounds due to the
hologram and neuron dimensions:
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where Voo is the hologram volume, f is the lers focal length, dpeyron is the SLM pixel diameter,
wQ is the object solid angle, 1R and aR are tne angular limits of excursion of the reference
beam, 6 is the mean object-reference beam angle, and n; is the crystal index of refraction. It was
assumed in the calculations that led to the above result that the hologram MTF limit is high enough
to be ignored. For an active crystal volume of a few cubic mm and reasonable optical parameters
the values of the two upper bounds range from 1010 to 1012 gratings. This is sufficient to form a
fully interconnected network of 105 to 106 neurons. Moreover, each grating can be read out or
updated in parallel without the time multiplexing, data contention, or bottleneck problems common
in electronic architectures.

The high theoretical storage capacity and parallel access to weights is a direct result of the
three-dimensional nature of optical holographic storage. However, other nonfundamental factors
also limit the practical performance. The challenge is to construct optical neurocomputers that
reduce the difference between actual performance and theoretical limits by attacking these factors.
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SECTION 4
LIMITATIONS OF CONVENTIONAL HOLOGRAPHY

A variety of mechanisms limit the practical holographic storage capacity of photorefractive
crystals to values below the theoretical limit. They include hologram dynamic range, Bragg
degeneracy, beam coupling, and laser, hologram, and detector noise. In this section we discuss
limitations due to Bragg degeneracy and beam coupling, factors which can be alleviated using
cascaded-grating holography.

4.1 BRAGG DEGENERACY

One of the most important impediments to holographic neural networks is crosstalk which
arises from an effect known as "Bragg degeneracy.” The Bragg condition states that the angle of
incidence of a light beam relative to a volume grating must match one of the original writing beams
in order to form an optical connection. However, even if the angular selectivity is high, crosstalk
can still occur. Given a particular grating, it is possible for many light beams to satisfy the Bragg
condition for that grating, in addition to the beams which originally wrote the grating. As shown in
the momentum space diagram of Fig. 5, a set of beam pairs which define the surfaces of two end-
to-end cones all form the same angle with respect to the grating. All of the neuron pairs defined by
the cones are connected by that grating even though it was written by only one grating pair.
Therefore, a large set of beams other than the original writing beam can scatter constructively from
the grating, forming erroneous reconstructions and crosstalk.

9229-06-018R1
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Fig. 5. K-space diagram of cross-talk resulting from Bragg degeneracy.
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An experimental demonstration of Bragg degeneracy is shown in Fig. 6. We recorded a
hologram in a c-cut BaTiO3 crystal using a laser diode light source with a wavelength of 830 nm.
(The wavelength and crystal geometry were chosen for low two-wave mixing gain in order to
eliminate beam fanning which, as will be shown later in this report, can be used to eliminate Bragg
degeneracy.) The experimental configuration of Fig. 3 was used. During recording the object
plane consisted of a regular rectangular grid pattern and the reference plane was a uniformly filled
rectangle (all pixels on). When the hologram was read out using the uniform reference, the
reconstructed object was smeared in the vertical direction. No horizontal smearing can be observed.
This can be easily explained by considering the k-space diagram of Fig. 7. In Fig. 7(a). it can be
seen that the grating k-vector created by beams R1 and O1 also connects all beams above and below
R1 in the R plane. These beams, such as, for example, R2, reconstruct extraneous beams such as
02 which appear above and below the original beam O1. This results in vertical smearing. In
Fig. 7(b) we see that horizontally displaced beams are not connected by the same grating k-vector,
therefore horizontal smearing is much less. Note that Bragg degeneracy cannot be eliminated by
simply phase aberrating the reference beam since the above construction would still hold for the
individual plane wave components.

Possible approaches for avoiding Bragg degeneracy are subsampling of the SLMs7 and spatial
multiplexing of holograms.8 In the subsampling approach, neurons are arranged in sparse
nonredundant patterns on the SLMs, and output planes are similarly sparsely sampled; thus
although false reconstructions still occur, they occur at unused positions and do not contribute to the
output. The special patterns can consist of so-called "fractal” lattices or other sparse patterns. If the
SLM:s are capable of displaying NxN neurons, then this approach can implement a total of N3/2
neurons and N3 weights. This has the pleasing quality that the storage capacity of the crystal and
the number of weights required to fully interconnect the neurons on the sampled SLMs have the
same dimensional scaling. In many practical cases, however, it also has the drawback that the
storage capacity may be limited by the number of neurons that can be displayed in sparse patterns
on the SLM, rather than by the potentially large capacity of the crystal. As discussed above, the
storage capacity of a 1 cm3 crystal should be sufficient to store the interconnections for a NxN
array of neurons where N=500, which matches the capabilities of present-day SLMs. However,
because of the subsampling, only N3/2 neurons can be implemented even though the SLM is
capable of displaying N2 neurons. Since N=500, the neuron and weight storage capacities are
reduced by factors of 22 and 500, respectively, from the theoretical maximums. The light
efficiency is also lowered because some of the light is diffracted to unused pixels as a result of the
Bragg degeneracy.
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Fig. 6. Experimental demonstration of Bragg degeneracy using infrared hologram recorded in
c-cut BaTiOj3. Vertical smearing is a sign of Bragg degeneracy.
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The spatial multiplexing approach avoids the Bragg degeneracy problem by physically
dividing the crystal into separate volumes for each weight. However, this reduces the coupling
efficiency of gratings, reduces parallelism because sequential exposures must be used, and
increases hardware complexity.
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Fig. 7. K-space diagram showing origin of vertical smearing effect in Bragg degeneracy.
Vertically-displaced pairs of reference-object points are all connected by the same
grating k-vector.

4.2 ANGULAR WIDTH BRAGG DEGENERACY

In this section we discuss a previously unidentified effect related to the Bragg degeneracy
that can occur in holographic interconnection systems. This effect results in further unintended
Bragg degeneracies due to the angular width of the Bragg diffraction responses of volume
holographic gratings. We hereafter refer to this effect as angular width Bragg degeneracy. We
define it more precisely in Section 1.3. The main practical result of our investigations is that one of
two design rules for developing fractal sampling grids (that are used to avoid the effects of Bragg
degeneracy) does not always work; i.e., while this rule can be used to avoid direct Bragg
degeneracy crosstalk, it does not necessarily eliminate angular width Bragg degeneracy and its
associated crosstalk. For holographic interconnection systems that utilize fractal sampling grids to
avoid Bragg degeneracy it is thus important to be aware of the conditions under which angular
width Bragg degeneracy occurs and to use the correct fractal sampling grid design rule to avoid its
presence in the desired interconnections.
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In Section 4.2.1 we briefly review Bragg degeneracy and its effects on interconnection
systems. We discuss the two design rules that have been proposed to develop fractal sampling
grids. In Section 4.2.2 we describe angular width Bragg degeneracy in more detail and illustrate
its effects using numerical modeling examples based on a three dimensional, multiple grating
version? of the optical beam propagation method (BPM).10 Our findings are summarized in
Section 4.2.3, and the relationship of angular width Bragg degeneracy to the fundamental
interconnection capacity of holographic media is briefly addressed.

4.2.1 Bragg Degeneracy and Fractal Sampling Grids

As discussed in Section 4.1, Bragg degeneracy occurs when a grating that connects a
desired pair of pixels also inadvertently connects one or more additional pairs of pixels due to the
two cones of angles that are Bragg matched to that particular grating.!! One method of visualizing
which pixels in the interconnection system's input and output planes have degenerate
interconnections is to project the cones of Bragg-matched angles onto the pixel planes.1? As is
illustrated in Fig. 8, for a given grating this projection results in two lines, one on each pixel plane.
The two degeneracy lines shown in the figure correspond to the grating connecting the top-most
pixel pair (joined by a solid line). Due to Bragg degeneracy, this grating also connects the pair of
pixels joined by the dashed line since these pixels are on the degeneracy lines.

Output Input
Plane Plane

Degeneracy
Lines

Fig. 8. Bragg degeneracy causes a desired interconnection (such as between the pixels joined by
the solid line) to inadvertently connect other pixel pairs (such as the pixels joined by the
dashed line) that are on the degeneracy lines. Such pixel pairs, together with the original
pixel pair, form the vertices of a rectangle.
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As has been generally recognized, Bragg degeneracy can be a significant source of
crosstalk in holographic interconnection systems that superimpose all of the desired interconnection
gratings within the same volume of material. Bragg degeneracy can seriously affect the fidelity of
holographic interconnections in at least two ways: 1) the recording of a desired grating
inadvertently connects undesired pairs of pixels, and 2) if several pairs of pixels are connected by
gratings that are degenerate then the actual weighted interconnection between each of the pairs is
the sum of the complex (magnitude and phase) grating amplitudes. In the first case, completely
undesired interconnections are formed, and in the second case desired interconnections have
incorrect weights. For holographic interconnection systems in which Bragg degeneracy can occur,
it is thus important to eliminate its effects. The use of so-called fractal sampling grids for the input
and output planes has often been suggested for this purpose.

The use of fractal sampling grids involves creating patterns of pixels on the input and
output planes that can be interconnected only by non-degenerate gratings. The direct crosstalk due
to Bragg degeneracy is thus avoided, but at the cost of reduced spatial sampling of the input and
output plane pixelation. For example, if an interconnection system is implemented using two-
dimensional pixel planes that are each composed of M2 pixels arranged as an evenly spaced M by
M array, the largest number of usable pixels in each plane is M3/2 for an N-to-N interconnection.

Several design rules have been proposed!3 to generate fractal sampling grids. These can be
summarized as the "no rectangle rule” and the “unequal row spacing rule.” Each rule is claimed to
be a sufficient condition for avoiding undesired crosstalk due to Bragg degeneracy.

The rectangle rule can be understood as follows. Note in Fig. 8 that when two pairs of
pixels (each pixel pair consisting of one pixel in the input plane and one pixel in the output plane)
are connected by degenerate gratings, the pixel pairs form the vertices of a rectangle. Use of the no
rectangie rule consists of generating patterns of pixels for the input and output planes such that no
rectangles can be formed having two pixels in the input plane and two pixels in the output plane as
vertices. An example of a set of input and output plane grid patterns that satisfies the no rectangle
rule is shown in Fig. 9(a) for a 27-t0-27 interconnection system utilizing ? by 9 pixel arrays. The
large and small dots refer to used and unused pixel sites, respectively.

An example set of grid patterns generated using the unequal row spacing rule is shown in
Fig. 9(b). The operating principle here is to select rows of pixels that are vertically separated by
unequal numbers of pixels in the input and output planes. In the example shown in Fig. 9(b), the
rows in the input plane are separated by either 4 or 8 pixels, while the row separation in the output
plane is 3 or 6 pixels. As we shall see below, fractal sampling grids generated with the unequal
row spacing rule automatically avoid angular width Bragg degeneracy as well as normal Bragg
degeneracy. This, however, is not true for grids generated with the no rectangle rule.
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Fig 9. Two possible fractal sampling grids for a 27-27 interconnection system. (a) A fractal
sampling grid that satisfies the no rectangle rule, but not the unequal row separation
rule. (b) A fractal sampling grid designed using the unequal row separation rule.
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4.2.2 Definition of Angular Width Bragg Degeneracy

In this section we explain more clearly the nature of angular width Bragg degeneracy, how it
arises, its effect on weighted interconnections, and how it may be avoided. In the literature, Bragg
degeneracy is described only in terms of exact angular Bragg-alignment of undesired pixel pairs to
a degenerate grating. Such a description neglects an important point: the angular sensitivity of a
volume grating's diffraction response has a finite angular width about its Bragg angles. The
angular FWHM of this diffraction response, A6, is approximately A/D (measured in the
holographic medium) in which A is the period of the grating and D is the optical path length of the
readout beam through the medium. The possibility therefore exists for an interconnection grating
to inadvertently connect an unintended pair of pixels if each pixel is within an angular range of
approximately A6 of the grating's Bragg angles. This is what we mean by angular width Bragg
degeneracy.

We illustrate this effect and compare it to normal (Bragg-matched) Bragg degeneracy using
the following pair of examples. Consider two columns of pixels as shown in Figs. 10(a) and
10(b). Let the right column in each figure be in the input plane of a holographic interconnection
system and the left column in the output plane. In each case, a single sinusoidal phase grating is
present. In Fig. 10a, the grating is intended to connect the pixels labeled (49,0) and (-49,0) in the
input and output planes, respectively. In Fig. 10(b), the grating connects pixels (49,1) and
(-49.0). By turning on the 63 pixels in the right hand column and monitoring the diffracted light at
each of the 63 pixels in the left hand column, we can evaluate the amount of crosstalk in each case
caused by the presence of a single grating.

In the case of Fig. 10a, we naturally expect each pixel in the input plane to be connected to its
opposite pixel in the output plane since the interconnection grating is degenerate to all of these
interconnections. This is illustrated in Fig. 11(a) in which the expected diffracted outputs of the
output plane pixels are shown as a function of the pixel index [each diffracted output is assumed to
have 1% diffraction efficiency for consistency with the numerical simulation results discussed
below and shown in Fig. 11(b)]. As shown in Fig. 11(c), we expect the grating of Fig. 10(b) to
yield a diffracted output only at pixel (49,0) in the output plane when all 63 input plane pixels are
turned on. Since rio other pairs of pixels lie on the lines of degeneracy for this interconnection
grating, no other diffracted outputs should be present.

We tested the above predictions by using a three dimensional version of BPM to propagate
the 63 readout beams through a holographic medium in which the desired interconnection grating
was recorded. We assumed an angular separation of 18 degrees between the pixel columns, a
readout wavelength of 514 nm, and a 5.0 mm thick holographic medium having a refractive index
of 2.48. The pixel separation in the input and output planes was taken to be 0.97 mm. The focal
length of the collimating lens between each pixel plane and the holographic medium was assumed
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to be 300 mm. The grating strength of the interconnection grating was designed to yield 1%
diffraction efficiency for a single input to a single output.

Simulation results are shown in Figs. 11(b) and 11(d). As seen in Fig. 11(b), Bragg
degeneracy (the case of Fig. 10a) does indeed cause each input plane pixel to be connected to its
opposite output plane pixel, and the simulation matches our expected results [Fig. 11(a)].
However, as seen by comparing Figs. 11(c) and 11(d), there are more diffracted outputs in the
simulation results than expected for the interconnection grating shown in Fig. 10b. This is due to
angular width Bragg degeneracy, which causes pixel (49,1) in the input plane to be connected to
pixel (-49,i-1) in the output plane. For example, even though pixels (49,0) and (-49,-1) are not
exactly on the degeneracy lines of the interconnection grating, they are close enough to be well
within A6 of the corresponding Bragg angles of the grating and therefore are connected by the
grating. The efficiency of the interconnection depends on how angularly detuned a given pixel pair
is from the grating. This is seen in Fig. 11(d) in which the light detected at the output pixels is
shaped like the angular sensitivity of the interconnection grating.

One can summarize angular width Bragg degeneracy by noting that the degeneracy lines
shown in Fig. 8 are not infinitesimally thin. Rather (as seen in Fig. 12), they have a finite
thickness that is dependent on the angular width of the interconnection grating to which they
correspond. This can result in undesired interconnections for fractal sampling grids designed with
the no rectangle rule. In the next section we iliustrate the effects of angular width Bragg
degeneracy on the reconstruction fidelity of weighted interconnections.

4.2.3 Effects on Weighted Interconnections

Angular width Bragg degeneracy can have just as severe an effect on the reconstruction
fidelity of weighted interconnections as normal (Bragg-matched) Bragg degeneracy. In this section
we discuss a set of numerical simulations of 9-to-9 weighted interconnections performed using
BPM. By comparing the RMS error of the normalized diffracted outputs, we quantitatively
examine the fidelity performance of the 9-t0-9 holographic interconnection system in the presence
(among the desired interconnections) of normal Bragg degeneracy (Case A), angular width Bragg
degeneracy (Case B), and no form of Bragg degeneracy (Case C).

In our BPM simulations, the same assumptions apply as for the simulations in Section 1.3.1
except for the following additions. First, the holographic medium is assumed to have a linear
recording characteristic relative to the incident write beam intensity. Second, only the desired
interconnection gratings are assumed to be present in the medium; no cross gratings exist between
pixels within the input or output planes (as would be created using a simultaneous recording
method, for example).
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Degeneracy
Lines

Fig. 12. Degeneracy lines have finite thickness, corresponding to the Bragg width of
a given interconnection grating. This results in additional degenerate
interconnections (compare dashed interconnection lines above with Fig. 1).

The pixel geometry for Case A is shown in Fig. 13(a). The pixels in both the input and
output planes are each arranged on a regular 3 by 3 grid, and thus significant Bragg degeneracy is
present in the interconnection system. The weights are the same between all of the input plane
pixels and a given pixel in the output plane. The relative weights for the top row of pixels in the
output plane (left to right) are 0.8, 0.5, and 0.2. Similarly, the relative weights for the second and
third rows are 0.9, 0.6, 0.3, and 1.0, 0.7, 0.4, respectively. All nine input plane pixels are used
during readout, each generating a unit intensity plane wave at the front face of the holographic
medium. In the absence of fidelity errors, the diffracted outputs at each pixel should therefore have
the same relative detected power as the weight corresponding to that pixel. The ideal diffracted
outputs for Case A are shown in Fig. 14(a).

Simulation results for Case A are shown in Fig. 14(b). Since presumably only the diffracted
outputs at the nine original output plane pixels are of interest, these are shown in Fig. 14(c). Fig.
14¢ therefore represents the actual detected outputs (assuming that detectors are placed only at the
desired output pixels), while Fig. 14(b) represents all of the diffracted outputs generated by the
interconnection system. Those outputs that are present in Fig. 14(b) but not in 14(c) (for example,
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grids for Cases A, B, and C, and shown in (a), (b), and (c), respectively.
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Fig. 14. Simulation results for Case A (see text).




at pixels (-49, 2), (-50,3), and (-51,2)) are due to Bragg degeneracy. They naturally do not
directly affect the detected outputs.

As seen by comparing in Figs. 14(a) and 14(c), there are significant visible differences
between the ideal and actual outputs of the interconnection system. The relative magnitudes of the
detected outputs are obviously incorrect. One quantitative measure of the amount of error in the
detected outputs is the RMS error of the normalized outputs. If the ideal outputs are represented by
the vector y (each component of which is the ideal magnitude of one of the nine pixels in the output
plane) and the actual diffracted outputs by the vector y’ (each component being the detected output
at the pixel corresponding to the same component in y), the RMS error of the normalized outputs,

£, 1S
, 2
i)
<y vl

in which N =9. The maximum value of this error is ¥2. We have found that values of 0.1
correspond to large errors in the relative magnitude of individual outputs (up to 25% or more).
The RMS error for Case A is 0.173, which [as seen in Fig. 14(c)] represents a significant
deviation from the desired outputs. As will be seen upon examining Case C (in which there is no
Bragg degeneracy), most of the error in Case A is due to Bragg degeneracy.

The pixel geomertry for Case B is shown in Fig. 13(b). Note that it is a subset of the fractal
sampling grid shown in Fig. 9(a) that was generated using the no rectangle rule. The same relative
weights and readout intensities as for Case A are assumed for the BPM simulation of Case B. The
ideal outputs are shown in Fig. 15(a), the diffracted outputs in Fig. 15(b), and the detected outputs
in Fig. 15(c). At first glance, the detected outputs appear to be similar to the ideal outputs.
However, closer examination reveals that the pixels having a y-axis index of 4 are nearly a factor
of two too small compared to the other pixels. Indeed, the RMS error for this case is
0.182-slightly larger than Case A's!

M=

€=

This poor fidelity performance is due to angular width Bragg degeneracy. As an example,
consider the two interconnections indicated by the dashed lines in Fig. 13(b). Although the four
pixels involved do not form the vertices of a rectangle, a simple calculation shows that the upper
set of pixels is well within A6 of the grating connecting the lower set of pixels, and vice versa.
Thus, angular width Bragg degeneracy is present among these interconnections. Similarly, the
interconnections between each pixel in the middle row of the input plane to each pixel of the middie
row of the output plane are degenerate with the corresponding interconnections between pixels in
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the bottom rows. This angular width Bragg degeneracy is the reason that the detected outputs of
the pixels in Fig. 14(c) along rows 1 and -3 are nearly twice as large as those along row 4.

Note that angular width Bragg degeneracy occurs in a pixel geometry that satisfies the no
rectangle rule. This result indicates that the no rectangle rule is not a sufficient condition for the
complete avoidance of any form of Bragg degeneracy. This is in direct contradiction to References
12 and 13.

The pixel geometry for Case C is shown in Fig. 13(c). Itis a subset of the fractal sampling
grid generated using the unequal row separation rule shown in Fig. 9(b). Again, the relative
weights and readout beam intensities are the same as above. The ideal outputs are shown in
Fig. 16(a). The diffracted actual outputs from the BPM simulation are shown in Fig. 16(b). Note
that extraneous diffraction outputs are visible in rows -4, -1, 1, and 4. Angular width Bragg
degeneracy alone is responsible for the outputs in rows -1 and 1, while a combination of angular
width and normal (Bragg-matched) Bragg degeneracy causes the outputs in rows -4 and 4. Since
the outputs in these rows are not detected they naturally do not directly affect the fidelity of the
detected outputs.

The detected outputs are shown in Fig. 16(c). A visual comparison with the ideal outputs in
Fig. 16(a) shows significantly improved fidelity over the previous cases. This is verified by
comparing the RMS error of the normalized outputs, which for Case C is 0.0129. This is over an
order of magnitude lower than the errors obtained for Cases A and B. Selection of a pixel
geometry that eliminates all forms of Bragg degeneracy among the desired interconnections thus
significantly improves the holographic interconnection system's reconstruction fidelity. The
unequal row separation rule allows the design of such pixel sampling grids.

In summary, we have demonstrated a previously unrecognized form of Bragg degeneracy
that is due to the angular width of the Bragg diffraction responses of volume holographic gratings.
As shown by numerical simulation, this angular width Bragg degeneracy can degrade
interconnection fidelity as much as normal (Bragg-matched) Bragg degeneracy. Use of the no
rectangle rule to design fractal sampling grids does not guarantee the avoidance of angular width
Bragg degeneracy among the desired interconnections when implementing a given interconnection
system. However, all forms of Bragg degeneracy among the desired interconnections can be
avoided if the unequal row separation rule is used in the design of the fractal sampling grids. This
is therefore the preferred design rule to use with holographic interconnection systems in which
Bragg degeneracy can occur.

Having explored some of the practical aspects of angular width Bragg degeneracy, we tum now to
a brief discussion of a more fundamental issue; namely, does this form of Bragg degeneracy
impose any additional limitations on the interconnection capacity of volume holograms? The
answer at this point appears to be no. As discussed in Section 3, one can calculate the amount of
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grating k-space that is accessible from two finite pixel planes. Based on the dimensions of the
holographic medium, a given grating occupies a fixed volume of this k-space. The size of each
grating's k-space volume corresponds inversely to the angular width of the grating's Bragg
response. One can calculate the number of interconnection gratings that can be stored in the
accessible volume of k-space by simply dividing by the volume occupied by an individual grating.
Angular width Bragg degeneracy does not alter this fundamental fact. Rather, it relates to how
specific sampling grids are chosen such that the resultant interconnection gratings do not overlap in
the accessible grating k-space. Awareness of angular width Bragg degeneracy is thus important in
the implementation of an interconnection geometry, but does not affect the fundamental number of
interconnections that the geometry can intrinsically access.

4.3 BEAM COUPLING

A second major source of distortion in holograms is energy transfer between Bragg-
matched beams via two-wave mixing. This occurs because when an input beam is Bragg-matched
to a grating, the reconstructed beam is automatically Bragg-matched. This beam can then itself
read out the same grating and reconstruct the input beam. If the gain-length product of the grating
is sufficiently high, energy transfer or beamn coupling can occur between the beams, resulting in
distortions. Several workers have analyzed the effects of beam coupling on holographic image
quality.14.15 They found that distortion increases rapidly as the gain-length product of the grating
increases, as illustrated in Fig. 17. Therefore, a straightforward technique for reducing beam-
coupling distortion is to reduce the gain-length product. However, this also results in low
diffraction efficiencies and low signal-to-noise ratios.
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SECTION 5
CASCADED-GRATING HOLOGRAPHY

5.1 CASCADED-GRATING WEIGHT STORAGE

We have developed a holographic recording technique called cascaded grating holography
(CGH) which greatly reduces the distortions discussed in the previous section. The essence of the
CGH idea is to use a set of angularly and spatially multiplexed gratings to store each weight rather
than a single grating. By forcing a light beam to match the Bragg condition at each of a cascaded
series of spatially and angularly distributed gratings (Fig. 18), crosstalk due to Bragg degeneracy
is greatly reduced. From the k-space construction of Fig. 19, it is clear that two gratings in series
will connect only a single input/output pair of beams via an intermediary diffracted beam. All other
beam wiplets (input, intermediary, and output beams) will not be able to match the Bragg
conditions at both gratings because the intermediary diffracted beam will not lay on the Bragg
degeneracy cone of the second grating. An undesired beam on the Bragg degeneracy cone of one
graung is therefore rejected by the remaining gratings. This allows the neurons to be arranged in
arbitrary patterns on the SLM, increasing the storage capacity (since all pixels can be used) and
throughput.

We have investigated two techniques for generating such multiple-grating connection
weights in photorefractive materials: the self-pumped phase conjugate mirror (PCM) and forward-
scattering beam fanning. A self-pumped PCM!6 generates the "phase conjugate” or time-reversed
version of an image-bearing coherent input beam.!7 In the early stages of our research we
conjectured that the temporal evolution of the phase conjugation process in self-pumped
photorefractive PCMs, which include dynamic multiple-wave mixing terms, will be similar to the
single grating case in that the amplitude diffraction efficiency of the conjugate beams will increase
with the outer-product of the writing beam amplitudes, thereby emulating the Hebbian learning
rule. In addition. multiple cascaded gratings are generated which should eliminate Bragg
degeneracy. This in tum implies that the multiple grating per weight approach can be implemented
using self-pumped PCMs and used to form neural networks which obey Hebbian learning rules.
Moreover, the observed distributions of beams within a self-pumped PCM, which are determined
by the high coupling gain of BaTiOj3, scattering centers, reflections from crystal faces, and the
geometry of the PCM configuration,!8 suggest that light beams from the entire input plane mix in
the crystal. This results in the global interconnection of input pixels by a self-pumped PCM,
especially if the PCM is in the Fourier plane of the input spatial light modulator. 19:2° Since a beam
from one pixel must diffract from a large set of spatially distributed gratings in order to form the
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Fig. 18. Optical connections made by scattering from multiple cascaded gratings reduce
cross-talk due to Bragg degeneracy and allow full utilization of input and output
planes.

33




9229-06-11

Fig. 19. Three-dimensional k-space diagram for satisfaction of Bragg conditions at
two gratings simultaneously. Only one triplet of light beams (colored
white) satisfy the Bragg conditions of both gratings simultaneously.

conjugate of a second pixel, the Bragg degeneracy crosstalk should be low according to the
arguments presented previously.

We perforfned a series of experiments to test these conjectures for the grating selectivity
and global connectivity of the PCM approach. The setup illustrated in Fig. 20 was used to test the
vertical and horizontal angular selectivity of a self-pumped PCM. A BaTiO; crystal was placed in
the back focal plane of a lens in the correct orientation for self-pumped phase conjugation. To
measure the horizontal selectivity, the input laser beam passed through a Ronchi ruling oriented
with the stripes vertical. The beam was focused into the PCM. The phase conjugate or “time-
reversed” beam was then reflected from a beam splitter and focused into a photodiode detector.
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After steady state was reached, the laser power was lowered to reduce the rate of formation of new
gratings and a recording was made of the conjugate signal as the Ronchi ruling was translated
horizontally. Assuming sufficient angular selectivity, the conjugate signal should oscillate as the
ruling is translated. Specifically, for zero crosstalk the output vs time should be the autocorrelation
function of the Ronchi ruling. The smaller the depth of the oscillation, the greater the crosstalk.
Similarly, to measure vertical selectivity the Ronchi ruling was rotated 90° and translated vertically.
The experimental results are shown in Fig. 21. For this case the tested angular separation was
1.7x10-3 radians, which is sufficient for 104 to 103 neurons assuming reasonable lens focal
lengths and SLM dimensions. As can be seen in the figure, the extinction in both directions is
complete, proving that Bragg degeneracy was eliminated.

Globai connectivity was demonstrated by reading out a complete stored image using less
than 3% of the original image as input. In short we found that holograms with good image quality,
minimal Bragg degeneracy, and global connectivity could be stored in the PCM configuration.

We repeated these experiments using a mutually-pumped PCM and obtained similar results.

Despite the positive results we obtained for the PCM method in terms of Bragg degeneracy
and global connectivity, we found that we could not implement neural networks. Investigating
further, we found that the dynamic characteristics of self- and mutually-pumped photorefractive
PCMs resulted in inter-hologram crosstalk when multiple exposures were recorded in the crystal.
In particular, we found that previously recorded holograms influenced the formation of new
holograms in such a way that extraneous connections were made. For example, if two orthogonal
images A and B (e.g., with no common pixels) were sequentially recorded in the PCM,
subsequent readout with either image would recall the superposed phase conjugates of both
images.

This effect is illustrated in Fig. 22 which plots the conjugate signals for the two images as
the input was repeatedly switched between A and B. Note that when the input is switch to B from
A, both A* and B* appear. (As the exposure continues B* eventually decreases to zero as B's
gratings are erased.) This effect is analogous to the "hologram sharing" effect in mutually-pumped
PCMs in which one hologram formed by an input beam affects the formation of a second hologram
formed by a second mutually incoherent input beam.2! Gratings which can be "shared" between
two holograms have higher gains over other gratings and tend to be enhanced. This in fact is the
principle behind mutually-pumped PCMs in which two mutually incoherent beams can read out
each other's conjugate beam. In the case considered here the exposures of the two holograms are
separated in ime rather than simultaneous, but the principle is the same.

The hologram sharing effect results in very strong inter-hologram crosstalk and is
detrimental to optical neural networks. This led us to consider a second non-phase-conjugate
method which uses the same multi-grating principle to avoid Bragg degeneracy but does not suffer
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Fig. 22. Time-sequenced exposure of self-pumped phase conjugate mirror with two

orthogonal inputs A and B. Presence of both conjugates A* and B'simulta'neously
is due to effects of hologram sharing and indicates inter-hologram crosstalk.

from hologram sharing. This method is based on the observed phenomena of beam fanning in
photorefractive crystals.

"Beam fanning" is a well-known effect in high gain photorefractive crystals in which an
input beam is initially scattered by small inhomogeneities in the crystal, resulting in low amplitude
scattered optical noise. The noise beams then interfere with the original input beam and write
gratngs. Scattering of the input beam by these gratings selectively amplifies some of the noise
beams by the process of energy transfer in photorefractive two-wave mixing. The amplified beams
then write new gratings and the process cascades. Which beams are amplified most is determined
by the electrooptic tensor of the crystal and the orientation of the input beam. The net effect is that
the input beam literally fans in the crystal as it writes a set of spatially and angularly dist:ibuted
gratings.

As shown in Fig. 23, this fanned light can be used as a reference beam when it is interfered
with a second, unfanned object beam to form a holographic connection which suffers neither from
Bragg degeneracy (because multiple cascaded gratings store each connection) nor from hologram
sharing (because the conjugate beam is not used for readout). An unfanned object beam is used
because object beam fanning would degrade the quality of the reconstructed object image. Fanning
can be contolled so that the reference beam fans and the object beam doesn't by adjusting the
orientation of the beams relative to the crystal. The fanning process generates high gain-length
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product “fanning graungs” which divide each reference beam into a set of beams at difterent
orientations and locations. Dunng recording the object beams form a set of "signal gratings” in
which the connection weights are stored. Both the signal and fanning gratings are angularly and
spatally mulaplexed. Upon readout each reference beam must match the Bragg condition at a
multtude of fanning gratings, which breaks the Bragg degeneracy. In addition, the beamlets
reconstructed by the signal gratings are all in phase and sum coherently, hence the aggregate
diffraction efficiency can be high even though the diffraction efficiency of any individual signal
grating is small. In addition, the low gain-length product of the individual signal gratings greatiy
reduces distortions due to beam coupling.

We have applied crosstalk tests to the fanning method as described above for the PCM
method and found that the Bragg degeneracy advantages of PCM are maintained but hologram
sharing is eliminated. Recordings of holograms in a fanning crystal of BaTiO3 do not show Bragg
degeneracy, hologram sharing crosstalk, or distortions due to beam coupling. An example of
holographic recording using an arbitrary 2-D gray-scale reference image is shown in Fig. 24.

9129-06-29

i
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(OBJECT) (REFERENCE)
(a)

Fig. 24. Experimental demonstration of recorded image quality using fanned reference beam
and 2-D non-subsampled reference. (a) Object and reference used for recording.
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REFERENCE

(c)

Fig. 24. Experimental demonstration of recorded image quality using fanned reference beam
and 2-D non-subsampled reference. (b) Original object for comparison.
(c) Hologram of object reconstructed using 50% of original gray-scale reference.
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The object and reference both consisted of combinations of Pentagon and woman images displaved
on a LCTV with 30,000 gray-scale pixels (90,000 pixels if the individual red, green, and blue
pixels of the color LCTV are counted). The original object (showing the system's optical quality)
and reconstructed hologram are shown in Figs. 24(b) and 24(c). Note that only 50% of the
original reference was used in reading out the hologram. The reconstructed image is virtually
identical to the original, as shown in Fig. 25 which is a 3-D plot of a detail in the original and
holographic images. Upon magnification of the reconstructed hologram, each of the 45,000 LCTV
pixels in the original object was clearly discernible.

A measurement of the holographic fan-out is illustrated in Fig. 26. In this experiment a
uniform (all pixels on) reference was used to record the hologram. During readout an opaque
screen with an adjustable small round aperture was translated in front of the reference plane,
allowing us to measure the weight vector connected to that portion of the reference. In this
experiment the aperture area was 0.0091 of the reference, corresponding to a fanout of 110.
(Measurements of larger fanouts were limited by the sensitivity of our CCD camera.) It is evident
from the photograph that the entire object was reconstructed when read out with a small fraction of
the reference, demonstrating global connectivity.

We also measured the time required to write holograms to saturation using fanned reference
beams. We used a two slotted wheels on a common rotating shaft to periodically switch off the
object beam in order to measure the buildup in diffraction efficiency as the hologram was being
wriiten. The results are shown in Fig. 27 for a crystal of BaTiO3 which was cut at 45° to the
c-axis. This crystallographic orientation maximizes the effective electrooptic coefficient. In this
case the wavelength was in the green (514 nm) and the total optical power incident on the crystal
was 17.5 mw. The time required to write to saturation was 25 msec. Weights are typically
adjusted by small amounts during the learning phase, therefore all the weights connecting two
neuron layers can be adjusted in less than 1 msec. This would correspond to learning rates of
greater than 1011 connection updates per sec if each layer contained 104 neurons. Since the
photorefractive time constant is inversely proportional to the optical power, the update rate can be
further increased by raising the laser power.

Improvements in packaging size and cost would be obtained if a laser diode light source
could be used. Currently available BaTiO1 is less sensitive at the infrared laser diode wavelengths

and the photorefractive gain is less. Nevertheless, we were successful in demonstrating cascaded-
grating holography in 45° BaTiO; using a laser diode light source operating at 830 nm. We used a
150 mw single mode laser diode from SpectraDiode Labs. The total optical power at the crystal

was 31 mw. As shown in Fig. 28, we could resolve a holographic image with exposure times as
short as 100 msec. Nevertheless, due to the much reduced sensitivity of BaTiO3 at 830 nm, the

time constant for hologram writing was much longer than at 514 nm. Referring to Fig. 29, we
measured a saturation time of 10 sec for an incident power of 45 mw at 830 nm. Thus more work
1s needed to improve the infrared sensitivity of the recording medium for use with laser diodes.
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Fig. 25. 3-D plots showing detail of Pentagon images in Fig. 11. (a) Original object.
(b) Hologram of object reconstructed using 50% of original gray-scale reference.
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45°-CUT BaTiOg (210-H), A = 514 nm, PR=8.5mW, Py =9.0mwW
==

25ms

Fig. 27. Hologram writing time (fanned reference).

Alternatively, compact solid state lasers emitting in the green could be used instead. The impact of
these options on package design are discussed in the packaging section of this report.

5.2 HOLOGRAM SUPERPOSITION

The learning phase of neural network models involves many parallel weight adjustments in
response to an internally or externally generated error signal. In holographic optical neural
networks this function is performed through the superposition of many exposures of the
photorefractive crystal in which the strengths of individual gratings are strengthened or weakened.
Ideally, the holographic process should not distort the linear superposition of weight update
vectors. In the following we derive necessary conditions for linearity using a simple exponential
decay model. We also point out that weight erasure can distort the neural network learning rule if
precautions are not taken.
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Fig 28. IR hologram in 45°-cut BaTiO3 (210-H) (fanned uniform reference). A = 830 nm,
PR = 21 mW, Pp = mW.
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45°-CUT BaTiOg (210-H), A = 830 nm, Pp =21 mW, Py =24 mW

je—— 10 sec ——

Fig. 29. Hologram writing time (fanned reference).

Following Valley?2, we assume a quasi-CW approximation for the photorefractive

equations developed by Kukhtarev et al..23 The coupled equations describing the time and space
evolution of two plane waves with amplitudes Ap and Aq are then given by

JA, —j
—L=——rAE
eff s
ox, 2n,
dA; _ —ik .
-2 = ——r,gA,E
ox; npreff P
9E E_ iESCA,_,AS'
o T g
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where

and

ED =kBTICg /e
o _eNa(l=Ng/Np)
9 880/(8
1
EM =
kg/“"R

The quantities reff, €, Np, NA, @, 1, ng, np, and TR are material constants, k=2m/A, and kg is
the wave number of the space charge field grating. The above equations are applicable to crystals
in which one charge carrier dominates. The effects of absorption on the spatial derivatives of Ap
and Ag are neglected.

In this simplified model the response time 1 is inversely proportional to the total light
intensity lg. Let us define a normalized response time T=Igt which is independent of the total

light intensity. The equation for the time evolution of the grating space charge field then can be
written as

3_5 195 . iEscApr
ot T T

The saturation value of the space charge field is

L ApAg
Egq =ik

The incremental change to the space charge field is given by
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The second term is the desired Hebbian contribution to E. It is modified by the first term
which represents weight erasure. Weight erasure reduces the magnitude of a weight vector that is
not currently being updated (Ap and/or Ag equal to 0) but not its orientation because OE is then
proportional to E. The orientation of a weight vector is affected by weight erasure if Ap and Ag are
nonzero. The erasure term distorts gradient descent neural network models such as
backpropagation which are sensitive to both orientation and magnitude of 3E, but has little effect
on other neural networks such as the Perceptron. If the output values of a Perceptron are (1,-1)
and the threshold is 0, then weight decay will not affect the Perceptron output because the linear
discriminant depends only on the orientation of the weight vector.

The above equation can be rewritten using neural network nomenclature. Each weight wj;

connecting neurons i and j is then described by an equation of the form

dw.. W..
L=——Ly Nij
dt 17

where Nj;=iEscAjA; */tyy is the updating term proportional to the product of the amplitudes of
writing beams i and j. Ty and tE are the writing and erasing time constants, respectively. The
weight saturation value is wga=njjtw. In the following we will assume T and Tyy are constant

(equivalent to assuming equal light intensities in all updates). We will also suppress the neuron
indices i and j.

We consider multi-epoch recording (sometimes called incremental recording) in which each
hologram is exposed for a short time and the set of holograms is cycled through many times.24
This recording method is appropriate for neural networks in which the number of required
exposures is not known bef~~ehand. We will also assume non-orthogonal holograms in which
each connection v\;cight may be updated an arbitrary number of times during learning. Our
objective is to derive conditions for the linear superposition of exposures in multi-epoch recording.

In the first epoch after the n-th exposure the solution to Eq. (1) is

Wy, = e_'/tEw,,_l +(1 —etw )
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in which subscripts now refer to exposures and t is the time elapsed since the start of the n-th
exposure. Equation (2) expresses the current weight values in terms of the weight value at the end
of the previous exposure. It can be solved recursively to yield

n-1
Wy = wOe-nTITE + ‘l’w(l _ e—T/tw ) Z nn_pe—pT/‘rE
p=0

where w() is the initial weight value and T is the exposure time for each update (assumed constant

in multi-epoch recording). Thus at the end of the first epoch the weight value is an exponentially
weighted sum of the updates 1,. Now assume w(=0 and sum over Q epochs, each of which

consists of N holographic exposures (one for each exemplar). After the Q-th epoch,

Q N-1

sa=sul= T8 S e
q=1p=0

where q is the epoch index. Now, if the order of exemplars is the same in each epoch, then by
definition MIN-p,q="IN-p and the summation over q can be done analytically:

nN-—pe_ pT/tg

wp = aw(1-e7'W )[—177‘7? .
o

In order to minimize distortions due to photorefractive erasure, w() should be forced to be
proportional to T averaged over the N exemplars. This is the case if T<<tg/N:

N
n= -}é/-nz-‘; n, ifNT<<tg

The value of the weight (light amplitude diffraction efficiency) is maximized if in addition the
number of epochs satisfies Q>>Tg/NT :

wo = L (1-¢T/™ |7 if NT<<tp<<QNT

where

- 1 &
T’=W’§-lnn
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Thus under these conditions the weight is simply proportional to the linear average of the update
values, which is desirable for neural network models. The diffraction efficiency, which is
proportional to Iwgl2, decreases as 1/N2.

A demonstration of multi-epoch recording of superimposed holograms using fanned
reference beams is illustrated in Fig. 30. In this case the objects were rotated versions of a gray-
scale woman image and the references were orthogonal grid patterns. As shown in Figs. 30(b)
and 30(c), each of the superimposed holograms could be read out with very little crosstalk between
holograms and with approximately equal diffraction efficiencies. Fig. 31 is a 3-D plot of relative
diffraction efficiency measured for 30 superimposed holograms recorded using multi-epoch
exposures. The figure plots relative diffraction efficiency of each hologram when read out by each
of the references. The objects and references were non-orthogonal random patterns. Due to the
non-orthogonality of the patterns, one expects approximately 25% crosstalk, which agrees with
experiment. The variations in diffraction efficiency along the diagonal can also be attributed to the
random nature of the patterns.

9129-06-41

OBJECT (@) REFERENCE

Fig. 30. Experimental demonstration of hologram superposition using fanned reference
beams. (a) One of the object-reference pairs used for recording. References were
mutually orthogonal. Objects were rotated versions of the woman image.
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Fig. 30. Experimental demonstration of hologram supcrposition using fanned reference
beams. (b) and (c). Readout of two holograms.
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30 Holograms Superimposed Using Random Reference Patterns

Output Normalized by Transmitted
Object Intensity

Hologram Index

Fig. 31. Readout of 30 holograms exposed using multi-epoch recording and random reference
patterns.

An interesting result is obtained if we plot the mean hologram diffraction efficiency against
the number of recorded holograms on a log-lcg plot. If multiple holograms are recoru.
coherently in a single exposure then we would expect the diffraction efficiency per hologram to
decrease as 1/N, where N is the number of holograms. If the N holograms are recorued in N time-
sequenced exposures then we would expect the diffraction efficiency to decrease as 1/N 2dueto
grating erasure, as discussed above. Yet when we plot the experimental results for ime-sequenced
recording using fanned references, the data fall between he 1/N2 and 1/N lines, as shown in
Fig. 32. We conjecture that this may be due to the spatially-multiplexed nature of the fanning
gratings and the associated spreading and filamentation of the reference beam. Light from a
particular reference pixel is directed by the fanning gratings to the signal gratings which connect it
with object pixels. Reference and signal gratings which are not associated with that reference pixel
tend to be bypassed, therefore each grating iends to be erased only by light beams which are
connected by that grating. The gratings are therefore erased less than we would expect from the
above analysis which assumes complete overlap between all of the oeams. This improved
efficiency performance may be an additional advantage cf cascaded-grating holography.
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SECTION 6

OPTICAL NEUROCOMPUTER DESIGN
AND CONSTRUCTION

6.1 OPTICAL REPRESENTATION OF NEURAL NETWORKS

Most neural network models require weights, error signals, and neuron outputs to assume
both positive and negative values. Bipolar error signals and weights are necessary even if the
neuron response function saturates at 1 and 0 in order to both rectify wrong responses and
reinforce correct responses without saturating the outputs. Therefore, means must be provided in
an ONN for bipolar inputs and outputs. Holographic ONNSs can use coherent or incoherent
methods for representing negative numbers. In coherent approaches direct phase modulation of
light is used to shift the phase of written gratings. The phase of diffracted light beams is measured
by mixing with a reference beam and using interferometric detection. Interferometric detection has
potential benefits in terms of increased dynamic range, but it also has many practical difficulties.
The phase shifting of the input must be done with great uniformity across the entire SLM input.
(Although this can be accomplished using Stokes' principle.25) More problematic is the
interferometic detection at the output detector array. It is difficult to maintain phase uniformity
across the entire output detector array. The system also becomes very vibration sensitive. Finally,
many presently available SLMs have an amplitude-dependent phase response which makes
independent control of phase and amplitude impossible without using an additional compensating
phase-only SLM, which would greatly increase alignment difficulties and system complexity.

In order to avoid these problems, we represent bipolar inputs, weights, and outputs in our
SPONN system with spatial multiplexing and electronic subtraction. A bipolar input ¥j (which

could be an input from neuron j or an error signal) is divided into two nonnegative quantities yj"’
and ¥i where

yj*=y; and yj =0if yj>=0
yj"’:O and yj'=lyjl if yj<0

These operations are performed electronically in the host computer. yj* and yj are then written to
two spatially-separated SLM pixels in the reference half of the optical input plane. For the writing
or weight adjustment phase of a neural network algorithm, two similar nonnegative quantities are
written to two SLM pixels in the object section of the input plane which represent a bipolar error
signal in neuron i. The crystal is then exposed with the object and reference beams, forming four
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constant-phase weights wij"’*, wij"", wij"", and wj;™" in which a bipolar effective weight

connecting neurons i and j is encoded. The writing phase is further divided into two subphases in
which the weights are adjusted twice: once with the outer-product €;y; and once with (-€))(-yj)-

Although these two exposures are the same as far as the effective weight increment is concerned.
they serve to ensure that the cross-diagonal weights are equal, e.g. Wij++=Wij"=Wij+ and wij*"
=wj;j t=wjj". The significance of this will be evident below.

The bipolar algorithm in the readout phase is illustrated in Fig. 33. Input yj is again split

into positive and negative parts which read out the weights in the hologram. Square-law detection
of the diffracted light beams is performed at two CCD pixels, forming the two intermediate terms

Fig. 33.
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Algorithm for bipolar representatior. oi weights and neuron values.
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(In our actual system many CCD pixels are used for each output so that pixel averaging as well as
temporal averaging :an be used to reduce noise.) The square-root of each of these CCD outputs is
formed before subtracting them. Taking advantage of the forced equivalence of cross diagonal
weight values, the final output is given by ‘

o, NG AT

2 2

= |2wiyT + 2wiyi| = [ Wiy + Xy
j i j j
- 35 -3 -57)
J
=2w,-jyj
J

which represents a true bipolar output with bipolar weights and inputs. The electronic portions of
the algorithm are not bottlenecks. The square-root is performed at video rates on the entire video
frame using a lookup table in the output image processor card while integer subtraction is also
performed very quickly. Note that this method relies on the fact that all terms within each of the
magnitude-squared brackets have the same phase, namely that of the object beam at the respective
CCD pixel.

A diagram of the operation of a single neural network layer in the SPONN system during
readout and write phases is shown in Fig. 34. Shaded components denote the optical portion of
the system. The first step in the readout phase is the transfer of output from the previous neural
layer (stored in host memory) to SLM pixels in the R input plane. Each bipolar value is first
converted to two nonnegative components as described above. The R plane pixels then form the R
beam which reads out the hologram, performing an optical matrix-vector multiplication. The
output is detected by two CCD pixels resuiting in the raw outputs d* and d-. The square root of
each output is taken using lookup tables on the output frame grabber board before they are
subtracted and pas;sed through the neuron response function, resulting in the output for that layer.

The host computer then calculates an error signal € according to the particular neural
network model being implemented. The € is usually quantized to +1, 0, or -1 because the neural
algorithm requires it (as in the Perceptron or quantized backpropagation) or due to the limitations of
the input SLM, or both. In our experiments we have used both a Hughes liquid crystal light valve
(LCLYV) and a Sony active-matrix liquid crystal TV (LCTV). The LCLV has an amplitude-
dependent phase response which results in phase errors during learning. A simple way to avoid
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such errors is to restrict the SLM pixel values to 1 and 0. Our bipolar algorithm then allows us to
represent effective values of 1, 0, and -1.

Each quantized error value is then written to two SLM pixels in the O plane according to the
bipolar algorithm. The hologram is then exposed using the O and R beams (the original input
pattern is still on the R beam), implementing a weight matrix update equal to the outer-product
between the € and input pattern vectors. This sequence is repeated for each layer in the network,
each exemplar, and each training epoch.

6.2 EXPERIMENTAL SETUP

A diagram of our programmable optical neurocomputer (SPONN or Stimulated
Photorefractive Optical Neural Network) is shown in Fig. 35. In assembling this system our goals
were hardware simplicity and programmability. SPONN contains a single photorefractive crystal,
SLM, and CCD detector. Multi-layer networks are implemented by superimposing different
weight layers in the same crystal. A plane wave readout beam from an argon laser at 514 nm was
spatially modulated by the SLM. In the experiments described here the SLM was a Sony active-
matrix liquid crystal TV (LCTV) which we disassembled. It has 30,000 pixels and a contrast ratio
of 200 at 514 nm. We also used a Hughes Liquid Crystal Light Valve (LCLV) in our early
experiments. (Although the LCLYV is superior to the LCTV in terms of resolution, we took it out
of the system due to its more complicated and bulky addressing circuitry, its reflection mode of
operation, and the slow response time of the CdS LCLVs that were available to us.)

Hos-r 9229-06-001R1
m
[~T] OPTICAL
IB °l INPUT
PLANE

| READOUT
<= M‘- BEAM

SLM LC-1

. LC-2

HOLOGRAM {5 s1
(BaTiO3)

FANNED REFERENCE BEAM (R) READS OUT
UNFANNED OBJECT BEAM (O)

Fig. 35. Stimulated Photorefractive Optical Neural Network (SPONN) experimental
configuration.
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The input plane displayed on the SLM consisted of two portions: the reference (R) and
object (O) planes. A system of mirrors separated the O and R planes. The R beam entered the
BaTiOj3 crystal at an angle relative to the c-axis such that it experienced high two-wave mixing
gain, resulting in fanning. The O beam was directed at a low-gain angle and did not fan. (Fanning
of the object beam would have degraded the optical quality of reconstructed images since the
original O beam would be distorted.) Two image processing cards (VS100 and FG100 from
Imaging Technology, Inc.) were installed in the host computer (an 80386 PC). The input image
processor was dedicated to providing video input to the SLM. The output image processor
grabbed video from the CCD camera which detected the optical output of SPONN. Pixels in the O
and R planes represent neurons in the various network layers.

After a hologram was written, liquid crystal shutter S1 was closed by the host computer
and the R beam read out the hologram. (Closing S1 ensured that no light leakage due to the finite
contrast ratio of the SLM was passed through irom the O input plane to the detector during
readout.) The CCD camera detected the holographic reconstruction of the O plane. Bragg
degeneracy was greatly reduced due to the fanning of the R beam and the reconstructed image
quality was good, as explained in the previous sections.

Several measures were taken to reduce noise and distortions. In order to reduce spatial
aliasing, the "optical neurons” were oversampled by the CCD pixels. An automated alignment
program was used to pick an operator-selected number of CCD pixels to use tor each output
neuron. Coarse alignment was done using an affine coordinate transformation between the SLM
input and CCD output planes calculated from the positions of three points and their corresponding
images in the two planes. Final CCD pixel selections were made by sorting and picking the
brightest ones. The CCD pixel values were then summed in order to reduce detector noise.
Multipie video frames could also be summed to further reduce noise. In addition, nonlinearities in
the SLM transfer function were measured and compensated by modifying the output lookup tables
of the input image processor. This provided us with greater accuracy and control of the neuron
activation function. We found that system noise was dominated by fluctuations in the laser power.
In our experiments we used an old argon ion laser with relatively poor stability. Without pixel or
frame averaging we measured the output signal relative standard deviation to be 1.9%. By
spatially averaging 9 pixels and temporally averaging 9 frames, we reduced the relative standard
deviation of the noise to 0.74%. Future SPONN models will use more stable lasers and feedback
systems to reduce the noise level.

Computer-controlled liquid crystal cells LC-1 and LC-2 were used to control the optical
power during the hologram writing and reading phases. During writing, LC-1 and S1 were both
turned on (full ransmittance) for high power R and O beams and quick writing times.
Simultaneously, LC-2 was tumned off so that the CCD camera was not saturated by the O beam.
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During reading LC-1 was switched to low so that the gratings were not quickly erased by the R
beam. S1 was closed so that the input O beam did not interfere with the reconstructed O beam and
LC-2 was turned fully on for maximum detector sensitivity.

The topology of the network being implemented is determined by the organization of the
input plane. As shown in Fig. 36, a single layer network with only forward connections is
implemented by devoting the entire R plane to the input layer of the network, L. Likewise, the
output layer, L}, occupies the entire O plane. Turning pixels on in the R and O planes forms
connections between Lg and L. Ly, then reads out the weights connecting the R and O planes.
Multple layer neural networks are implemented by dividing the input plane into sectors. For
example, to implement a net with an input layer L, a hidden layer L;, and an output layer L,, the
input plane is divided into four sectors, as shown in Fig. 18. Connections between Ly and L; are
formed by writing values to the L and L sectors in the R and O planes, respectively. Similarly,
connections between L and L, are formed by writing values to the L, and L, sectors in the R and
O planes, respectively. The two weight layers are exposed separately to avoid unwanted links
between L and L. To read out the network, an input pattern is first written to L) in the R plane.
The optical matrix-vector product is then detected by the CCD camera at L, in the O plané and
electronically processed to form the neuron values in the hidden layer L. These values are then
written to the L; sector in the R portion of the optical input plane. Another optical matrix-vector
product is formed, detected at L, in the O plane, and processed to form the output neuron values in
L,.

9029-06-36R3
L1 L 2
NN L
TOPOLOGY 1
Lo Lo
OPTICAL o jo o Lq Lo
INPUT Ly =L .
PLANE P ) ° L 2 Ly
o R ol R

(UNFANNED" (FANNED
OBJECT REFERENCE
BEAM) BEAM)

<= = ELECTRONIC TRANSFER OF NEURON VALUES
<—— OPTICAL READOUT OF NEURON VALUES

Fig. 36. SPONN implementation of multi-layered neural networks by spatial organization of
optical input plane.
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If more complicated networks with additional features such as backward connections or
additonal layers are required, they can be implemented by simply dividing the optical input plane
into more sectors and changing the software. It is not necessary to adjust the hardware or add

!
more crystals. This easy reconfigurability is due to the capability of arranging neurons in arbitrary

t
i

patterns in the optical input plane, a feature made possible by thef elimination of Bragg degeneracy.
6.3 PACKAGING [

The prototype research model of SPONN described in the previous section was designed
for maximum flexibility using off-the-shelf components, includidg a bulky water-cooled argon ion
laser. No effort was made to package the system in a compact vdlume as the emphasis of this
program was the demonstration of working optical neural networks. However, we did investigate
packaging concepts for future versions of SPONN which would use custom components and
compact solid state laser sources which should become available at reasonable cost in the next few
years. In this section we describe two concepts, one using currently available components and the
other using components which should become available within the next five years.

Our near term packaging concept is shown in Fig. 37. The overall size of this package is
15" by 20" plus 10" by 15" for the laser power supply, or about the size of a desktop PC. It is
based on a diode-pumped YAG solid state laser available from Adlas, Inc. The laser is frequency
doubled using a nonlinear crystal to emit 140 mw at 532 nm. This wavelength is close to optimum
for typical undoped BaTiO3 holograms. Although greater optical power would be desirable, it is
enough for a demonstration system. We also assume a 3" LCTV as the SLM. The relatively large
size of the LCTYV sets the dimensions of the optical train. Note the use of a solid optics assembly
constructed from prisms and employing total internal reflection to form the R and O beams. By
attaching the photorefractive crystal to the optics assembly, the paths of the two beams are
completely contained within a single glass or plastic unit. This greatly reduces vibration sensitivity
and simplifies optical alignment. Solid optics techniques are used in laser gyroscopes for
navigation and guidance of commercial and military aircraft and missiles. Such gyroscopes, which
are also interferometric devices, are used successfully in high vibration, grueling environments.
As part of our packaging investigation, we constructed a Michaelson interferometer mounted in an
aluminum box with a laser diode light source. We found that the interference pattern was
unaffected by casual handling of the package or by dropping heavy objects next to it. This
increased our confidence that an inexpensive vibration-isolated package for SPONN can be
constructed.

By replacing the YAG laser with a laser diode and using a 1" SLM, the package size can be
dramatically reduced to less than 5.5" by 10", as shown in Fig. 38. Thanks to market demand
from other fields, CCD cameras and laser diodes are now available which would fit into such a
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Fig. 37. (a) Design layout for SPONN optical neural network using presently available green
solid state laser. (b) SPONN solid optics assembly for beam direction and improved
vibration resistance.

volume. Components which should become available in the next few years are the 1" by 1"
electrically-addressed SLM and doped BaTiO3 which is sufficiently sensitive at the laser diode

wavelength. One possibility for the SLM is the Hughes CCD-addressed LCLV.26 A number of
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other companies and universities are also working on electrically-addressed SLMs. An alternative
to doped BaTiOj; is to replace it with another photorefractive material which is sensitive in the

infrared, such as CdTe, GaAs, or multiple quantum well structures.

- 10"

L 4

Fig. 38. Design layout for SPONN optical neural network using laser diode and 1-inch SLM.




SECTION 7
IMPLEMENTATION OF NEURAL
NETWORK MODELS

7.1 PERCEPTRON

The Perceptron was one of the first neural networks to be invented. In its most commonly
implemented form it consists of a single layer of weights connecting a field of input neurons with
a single output neuron. (Some of the original Perceptron networks contained a "preprocessing”
layer with fixed weights which were not adjusted during learning.) A single output neuron can
dichotomize or separate the vector space of input patterns into two classes. The weight values
together with the threshold value of the output neuron determine a separating hyperplane for pattern
vectors. Therefore it can only distinguish between classes which are linearly separable. The
Perceptron 1s appealing as a first test -« neural hardware because of its simplicity and the fact that a
learning rule with guaranteed convergence is known (provided a solution can be represented in the
first place). Its main weakness is that as a single-layer network it is limited to linearly-separable
solutions and therefore cannot solve many problems of practical interest.

The output of a simple Perceptron is given by

y=h ijxj-—e
J

where w is the weight vector connecting the input neurons x with the output neuron, 6 is the
output neuron threshold value, and h(z) is a hard-threshold response function with outputs 1 or -1
for z>0 and z<=0, respectively. Input patterns are binary and normally assume values of 1 or 0. 6
can be learned by setting one of the input neurons to 1, although in our experiments we set 6=0.
The learning rule is simple and can be expressed in terms of the weight update vector as
Aw;=-n(y=D,)x;
where D is the desired output for exemplar c. If the output is correct, no change is made. If y=1
but D=-1, a change proportional to the negative of the exemplar is made. Finally, if y=-1 but
D¢=1, a change proportional to the exemplar is made. A slight modification of this algorithm was
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made in the optical implementation. A "forbidden zone" centered on zero was defined for neural
outputs before thresholding: if the value of Zw_ixj-() was within this zone then a correction to the
weights was made even if the thresholded network output was correct. This made the system more
robust by penalizing small weight values.

A diagram of the SPONN optical input plane for implementation of a Perceptron network is
shown in Fig. 39. The R plane contains the pattern in the input neuron layer L and the O plane
contains the output neuron layer L;. In our experiments we have used both a single output neuron
and many output neurons. The latter case is essentially many Perceptrons operating in parallel on
the same input patterns but with different classification goals. In all of the experimental examples
described here the problem to be solved was the transformation of a set of random binary
exemplars (2-D random patterns with pixel values of 1 and 0} into another set of random binary
patterns.
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Fig. 39. Optical input plane for single layer Perceptron.

The first Perceptron experiment had a single output neuron, the goal was to separate or
dichotomize a set of random patterns into two classes. The results of this experiment is shown in
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Fig. 40 which is a plot of total error during learning vercus epoch number. In this case the optical
neural network leamed to dichotomize 96 random patterns after 29 epochs. Each pattern consisted
of 1920 pixels (60x32). Increasing the number of pixels tended to reduce the number of patterns
that could be learned although with 7680 pixels (120x64) the system could still learn 42 patterns.
In order to test the noise level in the system, we attempted to dichotomize two patterns. The
patteins were identical except for a prescribed number of differing pixels. We reduced the number
of diffcring pixels until the optical neural network could no longer distinguish them. As shown in
Fig. 41, the system could separate patterns containing as few as 0.5% differing pixels.
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Fig. 40. Optical Perceptron learning of 96 exemplar patterns with 1920 pixels.
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Fig. 41. Optical Perceptron separation of two nearly identical patterns which have 1920
pixels and differ by 0.5%.
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We were also able to implement multiple-output-neuron Perceptron networks. The
networks learned to perform a one-to-one transformation of a given set of random binary patterns
(values 1 and 0) into another set of random patterns (values 1 and -1). The results of one
experiment are shown in Fig. 42 in which the input and output layers contained 1740 and 870
neurons, respectively. This network had a total of 1.5 million weights. We then scaled this
network up to 10,260 neurons and 2x107 weights. The learniug curve for this larger network is
shown in Fig. 43. The processing rate was 2x107 connections updated per second during
learning. This rate was limited by the PC host bus since we had to transfer neuron values back and
forth between the image processor cards and host memory. In the next phase of this project we
will install an accelerator card with a local bus connection to the image processor cards which
should greatly increase the processing rate.

87e 2610 Neurons

1740

0us Learning Phase
04
035
03
025

0.15

Total Error
:

rig. 42. Multi-output-neuron single-layer optical Perceptron learning of 4 exemplars. The
network consisted of 1740 input ne:irons and 870 output neurons.
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Fig. 43. Multi-output-neuron single-layer optical Perceptron learning of 4 exemplars. The
network consisted of 6840 input neurons, 3420 output neurons, and 2x107
connection weights.

We also used this type of network in a handwritten digit recognition application.
Exemplars were extracted from a database of handwritten digits supplied by the U.S. Post Office.
Examples of the digits are shown in Fig. 44. The network was trained to label inputs as one of the
ten digits. The total error during learning of 80 exemplars is also shown in Fig. 44. We did not
expect good performance because this network contains a single layer of weights and the character
recognition problem is not linearly separable. The network achieved an 8% error rate on the
training set and a 25% error rate on 40 test digits it had not seen before. Although this was not
good enough for practical use, it did demonstrate generalization and leamning since the expected

untrained error rate is 90%.
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Handwritten Digit Recognition
Using Optical Neural Network
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Fig. 44. Handwritten digit recognition using optical Perceptron network.
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7.2 BIDIRECTIONAL ASSOCIATIVE MEMORY

The Bidirectional Associative Memory (BAM) neural network is a type of hetero-
associative memory with some generalization or :earning properties. Heteroassociative means that
when a partial or distorted version of a stored pattern is input to the network, the stable output is a
complete undistorted version of a stored output pattern that is "associated” or originally recorded
with the input pattern. The BAM is illustrated in Fig. 45. It consists of two neuron layers F 4 and
Fg. The neuron activation functions are hard thresholds. Patterns activating layer F  are
thresholded, weighted, and transmitted to Fg (bottom up). The resultant patterns are in turn
thresholded by Fg and transmitted back down to F, via the same set of weights (top down). The
cycle then repeats. Kosko27 has shown that the function

E(a,B)=~(B"H -6} )a-(a"HT - 6} )B

always decreases as the system evolves. In the above expression (a,f) are column vectors
representing the patterns in (F5,Fg) and (8,,0p) are the corresponding threshold levels. Since E
is bounded from below and it always decreases, it is an "energy" or Lyapunov function that is
minimized as the system evolves in time. The minima of E correspond to stable limit points. The
only condition on the connection matrix for this to be true is that the weights in the bottom up
direction are the same as in the top down direction. This corresponds to having the same weight
connecting neurons i and j in both directions (e.g., hy=h;; or H=HT). Kosko showed that the limit
points correspond to stored associated pattern pairs a™ and b™ if the connection weights are given
by a sum of outer products:

M
hj = 30"
m=1

Kosko also showed that BAM is capable of limited leamning or generalization from examples.

We implemented the BAM neurai network on SPONN by modifying the Perceptron
software to divide each of the R and O planes into two sections. R was divided into subsections
R} and R; and O into O and O;. During the readout phase layer F 5 for the bottom up direction
was represented in R and Fpg for the top down direction was in Ry. In order to always use the
fanned R beam to read out the hologram, separate physical connections were used for the bottom
up and top down weights, although they were forced to be equal in value as required by the BAM
model. During the writing or weight adjustment phase, Fg was represented in O; and F in O,.
Thus the bottom up F 5->Fg weights were adjusted by turning on R} and O; while the top down
Fg->F 5 weights were exposed by R, and O,. The two sets of weights were exposed

simultancously to ensure their equality.
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Typical expenmental results are shown in Fig. 45 which illustrates the recall of two
associated pattern pairs. Addressing the system with a noisy version of stored pattern o resulted in
a stable state which cycled between a and its associated pattern P.

7.3 BACKPROPAGATION

Although Perceptron and BAM networks are interesting and useful as tests of neural
hardware, their single-layer nature limits their usefulness to separable problems. Adding a layer
greatly increases the power of a single-layer network. In fact, it has been shown that a single-
hidden-layer network (input, hidden, and output neuron layers with two layers of weights) can
approximate any function to arbitrary accuracy provided a sufficient (but finite) number of neurons
is available.28 One of the most popular multi-layer learning algorithms in terms of applications is
backpropagation.29,30 In this section we describe our optical implementation of the
backpropagation algorithm.

Backpropagation is based on steepest descent of an error surface defined by

E= ZZ()':(';)'D!C)

where E is the total error, Dj ( is the desired value for output neuron i given exemplar input c, and
Y(n)i,c is the actual output for exemplar ¢. The weight adjustment rule during learning is based on
the steepest descent rule:

(n) _ _ oFE
Aw'j = naw?;)

where the superscript (n) refers to the weight layer being updated. Assuming a two-layer network,
and without going into the details of the derivation here, the error gradient is given by the
following set of equations for the output layer (see ref. 22 for details):

OE
= 5@y,
ow;

5(2) - (y(z) D: )g( (2))

s =L W)=xa-y)

and by these equations for the hidden layer:
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where f(x)=1/(1+eX) is the neuron sigmoidal response function.

One possible issue in the optical implementation of backpropagation is its sensitivity to the
accuracy of representation of the functions f() and g(). Due to inherent nonlinearities and
nonuniformity in present SLMs, f() and g() may differ from the above form. We have performed
computer simulations of backpropagation with slightly different f()s and g()s. We found that
although the network is robust with regard to changes in f(), performance degrades if g() departs
from its proper dependence on f(). Therefore, in our optical implementations we measured the
SLM nonlinearity and electronically compensated for it so that g() could be implemented
accurately.

In the optical system we actually implemented a variation of backpropagation in which the
input error signals were trinary quantized to +1, 0, and -1 according to the algorithm reported by
Shoemaker et al..3! They found that trinary quantization improved the convergence speed of
backpropagation for a wide variety of problems. Our own computer simulations confirmed this.
However, our primary reason for trinary quantization was to avoid amplitude-dependent phase
errors in the LCLV.

The optical input plane for backpropagation is shown in Fig. 46. The network consisted of
three neuron layers (Lg, L;, and L) and two weight layers. Note that the L;-L, weights are
actually implemented as two separate sets of weights, one for the forward pass L} - > L, and
another one for the backward pass L, -> L. As explained previously, this is done because the
fanned reference beam (R plane) is always used to read out the unfanned object beam (O plane). In
order to implement forward and backward passes through the same set of effective weights, two
sets of photorefractive weights must be exposed. They are exposed so as to make the forward and
backward weights as nearly equal as possible (symmetric connections, wjj=wjj) although they can
also be made different (asymmetric connections) if required for certain networks. Although the L,
-> L, and L, -> L sections of the input plane are shown spatially separated for clarity, in actuality
they are spatially interleaved in order to make the connections as symmetric as possible. The solid
arrows indicate optical connections between neurons via the hologram. Dashed arrows denote

electronic transfer of detected outputs frorn one layer (O plane) to the inputs of the next layer in the
R plane. This electronic operation is an order N operation while the optical connection is order N2,
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where N is the number of neurons. The speedup factor over a single electronic processor is

therefore proportional to N.
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Fig. 46. Optical input plane for optical backpropagation with a single hidden layer.

A flow diagram for the optical backpropagation algorithm is shown in Fig. 47. The
forward and backward weights between layers L, and L, were adjusted simultaneously in order to
keep the weights as symmetric as possible. This also caused self-connections from each neuron to
itself to be formed. The self-connections do not, “owever, affect the operation of the
backpropagation network. As described in the previous section on the bipolar algorithm, the L to
L, weights are exposed twice [(L;)(L,) and {-L)(-L7)] in order to ensure that Wij++=Wij"=Wij+
and wijj*=wjj =wj".

Experimental results for the problem of transforming one random binary pattern into
another using optical backpropagation are shown in Fig. 48 where we plot the total output error
versus epoch during learning of two pattern transformations. In this case the network contained
252 neurons arranged in three layers as 128-62-62. The output error decreased to 5% after 30
epochs and reached zero after 90 epochs. In order to track the evolution of the output pattern for
cach of the two exemplar inputs, we also plotted the projection of the output pattern vector on the
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Fig. 47. Flow chart for optical backpropagation program.
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Fig. 48. Optical backpropagation learning of two pattern transformations (see text).
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reference vector (1,1,1,...,1). We can clearly see the buildup of the weights from small initial
values to saturation. In Fig. 49 we plot the total error versus epoch after learning is completed and
the network is continuously read out. Due to the weight decay discussed previously, the errors
began to increase dramatically after 200 readouts of the network. The weight decay is clearly seen
in the simultaneous plots of the output pattern vector projections. Note that the output error does
not increase until after the weights have decreased by a large amount, indicating the network has
learned a "safety margin" which makes it less sensitive to weight decay. Analogous results are
shown in Fig. 50 for the same network learning four pattern transformations.

Results for larger backpropagation networks are shown in Fig. 51, one with 320 neurons
distributed among three layers as 160-80-80 (20,000 weights) and another with 1140 neurons
distributed as 570-285-285 (244,000 weights). The first network converged to approximately 3%
error after 50 epochs while the second one reached 6% error after 100 epochs. In both cases the
exemplar set consisted of two patterns. In these initial backpropagation results the performance
degraded for eight or more exemplars. As of this writing we are still investigating why this is so.
Possible reasons include residual inaccuracy in representing g() and excessive laser noise.
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Fig. 49. Continuous readout of optical backpropagation network after learning has been completed.
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80




285
570
1140 Neurons
07 244,000 Weights
Eos (2-28-92d.xIs)

320 Neurons
20,000 Waeights
07 (2-27-92b.xls)

Normaltzed Total Ervor

Fig. 51. Optical backpropagation learning of two pattern transformations. Results for two
networks are shown, one with 320 neurons and the other with 1140 neurons.
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SECTION 8

PERMANENT RECORDING OF WEIGHTS IN
PHOTOREFRACTIVE CRYSTALS

8.1 HOLOGRAM FIXING TECHNIQUES

The refractive index variations in photorefractive materials that are normally used for real-
ume holography, phase conjugation and optical signal processing are produced by internal electric
field variations associated with charges trapped at mid-gap levels. These holograms are generally
not permanent under illumination with light at the wavelength used to write them because this light
continues the writing process. Thus illumination with an interference pattern of a new period both
erases the old grating and writes a new one, similarly illumination with uniform light erases the old
grating. In order to obtain a fixed hologram in a photorefractive material the internal space-charge
pattern must be transferred to a charged defect or dopant level that is not optically active at the
wavelength of interest. Two methods that can be used to do this in situ are thermal and electrical
activation. In this section we review the method we pursued to obtain fixed holograms.

From a systems point of view, the most attractive hologram fixing technique involved the
application of an external electric field in order to transfer a normal photorefractive hologram in the
photosensitive deep levels to a space charge hologram in an insensitive or non-sensitive levels.
The generic process involves the steps illustrated in Fig. 52. Initally, the crystal of BaTiO; is
polled with a field E;, shown in the upper plot. At time t;-t;, lower plot, a hologram is written
with the usual photorefractive process. An electrical field -E, is applied at t;. A mirror image
(180° phase shifted) space-charge pattern that nearly cancels the photorefractive hologram is
produced in charges that are immobile and optically insensitive at room temperature. At time t3, the
photorefractive hologram is erased leaving only the mirror image hologram that cannot be erased
with optical radiation alone. At time t, a field E3 is used to reset the crystal to its initial condition,
erasing the fixed hologram. Note: in some cases it may be advantageous to perform two or tliree
of these processes at the same time.

In materials with rather low coercive fields (on the order of 1 kV/cm) such as BaTiO3 and
Sry.xBa,NbyOg (SBN), electric fixing with domain reversal has been discussed in the literature.
The coercive field is the critical applied electrical field required to reverse the spontaneous
polarization of a ferroelectric crystal. It has been suggested that by applying a field with an
amplitude just below the coercive value and with an orientation opposed to the orientation of the
existing polarization, a spatial pattern of polarized clusters may be produced. If this operation is
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Fig. 52. Waveforms used in hologram fixing experiments.

performed after the recording of a hologram, the cluster pattern may mirror the recorded hologram.
Holograms fixed using domain reversal should not be erased optically, but application of a strong
poling field will restore the initial "blank” state in the crystal.

Demonstration of this electrical fixing technique at room temperature was discussed by
Micheron and Bismuth in BaTiO3. Several research groups have tried to reproduce the data,
however, at the time of this report, have not been able to observe the published results.

In order to explain the electrical fixing and erasing of holograms in BaTiO3 and SBN,
Micheron and coworkers assumed that with an applied field E, of reversed polarity, ions or
vacancies drift under the influence of the internal field E; caused by the photoelectrons trapped
during the writing step and clusters or domains of reversed polarity are formed. The field Ej,
however, is not large enough to excite photoelectrons. With E; applied, fast ionic displacements
occur that cancel the spatial modulation of E;. The diffraction efficiency drops to zero. Under
uniform illumination, photoelectrons are again photoexcited and diffuse uniformly, thus leaving
behind an uncompensated ionic pattern and revealing the original hologram. This pattern is stable
during readout and constitutes the fixed hologram. Erasure is achieved when the applied field is
high enough to restore uniform ionic distributions. This explanation has been based on the
hypothesis that domain patterns replicating the written hologram could be induced in both BaTiO3
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and SBN by application of the field E,. This hypothesis accounts for the erasure process. Their
theory was partially supported by two experimental observations. First, photoinduced clusters
could be written at temperatures above the Curie temperature in SBN and fixed by cooling the
crystal (Micheron and Trotier 1974), thus establishing a link between the occurrence of frozen
clusters and antiparallel domains. Moreover, holographic fixing in SBN is only observed when
the voltage E»d (where d is the electrode spacing) is larger than the coercive voltage Vc =775 V.
This is again consistent with the picture of domain reversal. It remains, however, to be explained
why the same authors did observe domain reversal in BaTiO3 below the coercive voltage.

8.2 MEASUREMENTS OF BATIO; ELECTRICAL PROPERTIES

In this section we present an overview of some of the experiments we conducted with the
goal of electrically fixing photorefractive holograms. In order to characterize the state of our
crystals prior to attempting to fix the holograms, we made measurements of the electrical
properties, including a determination of the coercive field for each sample.

BaTiO3 and SBN are ferroelectric crystals because they have two orientational states of
spontaneous polarization in the absence of an electric field and can be shifted from one to another
of these states by applying an electric field. An as grown crystal can have different orientations of
these domains throughout the crystal. By applying first a mechanical and then a sufficiently large
electric field with the correct orientation, all of the domains can be made to align with one another.
In our holographic measurements, we initially start with a single domain crystal and write a grating
by interfering two optical beams. We then applied various electrical waveforms to the crystal in an
attempt to create a pattern of domains which mimic the distribution of the light intensity.

The most important characteristic of a ferroelectric crystal is that the relationship between P
and E is represented by a hysteresis loop. Ferroelectric hysteresis loops can be observed with the
circuit shown in Fig. 53, which is patterned after one first described by Sawyer and Tower. An
a.c. field is generated by a frequency synthesizer or D/A board in a computer, and amplified by a
high volitage amplifier. The crystal is placed in series with a capacitor C; which hz , a capacitance
significantly larger than that of the crystal. The applied field is monitored with a nigh voltage
probe. The voltage drop across the capacitor C; is proportional to the charge which accumulates
on the crystal.

An ideal plot of the charge or polarization of the crystal versus the applied field is shown in
Fig. 54. This plot clearly displays a hysteresis loop. The polarization initially increase as a
function of increasing applied filed and reaches a saturated value, essentially independent of the
field. When the field is decreased, the value of the polarization does not re-traverses the initial
curve. Some of the domains remain aligned in the positive direction and the value for zero field is
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called the remnant polarization, Pg. The value of the spontaneous polarization, Pg, can be
determined by extrapolating of the linear upper portion of the curve back to the polarization axis.

In order to remove the overall polarization of the crystal it is necessary to apply an electric
field in the opposite or negative direction. From this graph, one can measure the coercive field,
E,. the field required to reduce P to zero. Further increase of the negative field eventually causes
almost all of the dipoles to align in the direction opposite to that when the saturated positive field
was applied.

Experimentally obtained hysteresis loops for one sample of BaTiO3 are shown in Fig. S5.
The graph is qualitatively representative of the different crystal samples, and shows two individual
hysteresis loops which essentially overlap each other. These loops were qualitatively similar to
graphs obtained for samples of SBN. We obtained close to two thousand hysteresis curves from
one of our samples of BaTiO3. The initial curves, yielded a value of 1.3 KVolts/cm for the
coercive field and 2.5x10-5 coul/cm? for the spontaneous polarization.
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Fig. 55. Measured hysteresis loop of BaTiO; crystal.
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However, we found that after cycling the same crystal through several thousand hysteresis
loops, the crystal could not attain the same degree of polarizability as when it was first grown and
thermally polled. This implied that some of the domains were being pinned in one orientation.
Also, after taking the hysteresis measurements we found that the crystal faces to which the
electrodes were attached had been damaged. The crystal positive c-face was crazed and this could
have impacted the magnitude and spatial uniformity of the applied field.

8.3 EXPERIMENTS IN ELECTRICAL FIXING OF BATIO;

In this section we present a review of the cxperirhems we conducted to determine the effect
of applying electrical fields on photorefractive crystals after a photorefractive grating was written in
the crystal. These series of experiments were designed to fix the photorefractive holograms. A
summary of the parameter space we investigated is shown in tabular form in Table 1. Our group
and others, in particular at Stanford University and the University of Southern California, have not
been able to reproduce the room temperature electrical fixing results published by Micheron and
Bismuth. '

The state of the photorefractive hologram can be determined by monitoring the two writing
beams and the diffraction efficiency of a probe beam. Typically, the probe beam is incident on the

crystal at the Bragg angle, and two beams emerge from the other side of the crystal: the diffracted
and undiffracted beams. The absolute diffraction efficiency of a grating, N3, is the ratio of the

diffracted intensity to the incident intensity. The relative diffraction efficiency, Nre|. is the ratio of
the diffracted intensity to the sum of the diffracted intensity plus the undiffracted intensity. One
can convert between the two efficiencies with the following formula: Ngp =N t%-L, where t is
the interface transmission and . is the absorption coefficient.

The optical train that we used in our experiments is shown schematically in Figure 56. We
constructed our optical train in a manner which provided a high degree of mechanical and thermal
stability. The output of the argon ion laser passed through a half-wave plate/polarizer combination
as a means for controlling the overall beam intensity. The beam was spatially filtered and
collimated in order to produce a uniform intensity pattern at the crystal. A portion of the beam
ransmitted through the first beam splitter (BS1) was used to monitor the total power in the pump
and probe beams. The reflected beam was used to generate the two writing beams using a second
beam splitter (BS2). The two beams, designated as "A" the pump and "B", the probe, were
aligned to interfere in the crystal. The transmitted pump and probe beams were monitored by the
detectors labeled "A" and "B", respectively, in the figure. The detectors were used to monitor the
transfer of energy, or two-beam coupling gain, while the gratings were written in order to
determine the photorefractive grating strength and stability. These detectors had interference filters
(514 nm) in front of them to improve the signal to noise ratio. The probe and pump beams were
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ERASE 3 - DETECTOR
BEAM | A

Fig. 56. Apparatus used in hologram fixing experiments.

comparable in both transverse dimension and flux. An electronic shutter in the beam path was
used to control the crystal exposure time.

Mirror "A", located after the spatial filter, could be moved into the beam path to generate an
erase beam. This beam could be used to uniformly illuminate the crystal at an angle other than the
Bragg matched condition for erasing the photorefractive gratings. Note: if one of the writing
beams were used to erase the grating, new gratings could be written because the diffracted signal
would interfere with the original incident "erase” beam. A second electronic shutter was used to
control the illumination time of the crystal to the erase beam. In our system the crystal could also
be illuminated with an auxiliary incoherent source to erase the photorefractive gratings. The
advantage of using the incoherent source is that it produced a spectrum of wavelengths and cannot
produce any interference effects.

A HeNe laser operating at 0.6328 um was used to generate a probe beam which allowed us
to monitor the evolution of the gratings in the crystal during the entire writing process. Note: the
longer 0.6328 um wavelength in conjunction with a significantly reduced flux (~5 uW) insured
that there was minimal erasure produced by this monitoring technique. In order to simplify the
Bragg matching condition, the HeNe laser was mounted on a rotatable platform which pivoted
about the center of the BaTiO; crystal. The crystal was held in place by a custom support on the
end of a post holder which was bolted to the optical table. A bearing assembly around the post
holder allowed the HeNe laser platform to freely rotate parallel to the optical table centered about
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the crystal. The incident HeNe beam was monitored by detector "C" and the diffracted signal was
detected by detector "E" in the figure. Both detectors had 514 nm interference filters to improve
the signal to noise ratio.

The relative diffraction efficiency was determined by measuring the diffracted signal and
dividing it by the sum of the ransmitted zero order and the diffracted signal. In order to convert
these numbers to absolute diffraction efficiency absorption would have to be taken into account. In
addition, the diffraction efficiency at 0.5145 um is higher than at 0.6328 pum by approximately a
factor of 3/2 due to the A-2 dependency. During the experiment, we used an A/D board to acquire
up to eight channels of data simultaneously. The board had 12 bit resolution and could operate at
up to 250 KHz on a single channel.

The data we obtained from one typical experimental run is shown in Fig. 57. Figure 57(a)
is the diffracted probe beam as a funcdon of time. Figure 57(b) is the transmitted pump beam
while Fig. 57c is the transmitted probe beam. Finally, Fig. 57(d) is the applied electrical
waveform versus time. The run starts by allowing the two write beams to fall on an erased crystal
at time t=1.1 seconds. A transfer of energy is seen to occur between the two writing beams. As
the transmitted probe beam, Fig. 57(c), grows in amplitude, the pump beam is depleted. The
signal proportional to the diffraction efficiency of the probe beam, Fig. 57(a), grows with time to a
peak value. At a time 41.6 seconds into the run, a square electrical pulse of one second duration
was applied with the waveform shown in Fig. 57(d).

At that point the photorefractive gratings are disrupted and the two wave mixing gain is
impacted. Therefore, the transmitted probe and pump intensities approach the initial condition
before the gratings were established. However, because the two writing beams continue to
illuminate the crystal, they begin to rewrite gratings which again causes an energy transfer.

The diffracted HeNe signal monitoring the photorefractive hologram decreased in amplitude
at the occurrence of the leading edge of the electrical pulse. Then, because the writing beams were
still on, the diffracted signal grows slightly. At time 43.1 seconds into the run, the pump and
probe beams are blocked and the diffracted signal remains essentially constant in time. The crystal
was then illuminated with an incoherent light at a time equal to 49.6 seconds. The apparent slight
rise in the amplitude of the diffracted signal is due to a small percentage of scattered erase light
entering detector "E". This noise occurred even though we used a an aperture and interference
filter in front of the detector to minimize the effect.

Using a generalized curve fitting routine, we determined the functional form of the
diffracted signal in the presence of the erase beam. The diffracted signal decayed with a single
exponential time constant to the offset determined by the noise floor produced by the erase light.
The erase light was tumed off at time 75.9 seconds. As can be seen, no residual fixed grating was
present in the crystal which would have diffracted the HeNe monitor beam. After the grating was
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completely erased, the crystal was "reset” close to its initial state before trying another run. This
was accomplished by re-polling, i.e., cycling through several hysteresis loops or applying half
sine waves with sufficient amplitude to realign the domains.

To-date we have not been successful in electrically fixing gratings in BaTiOj5 crystals.
However, on another contract we were successful in thermally fixing gratings in photorefractive
LiNbO; crystals. We achieved fixed diffraction efficiencies of up to 52%. Thermal fixing may
thus be a reasonable alternative to electrical fixing of BaTiOj.

An alternative to fixing weights is to continuously refresh the weights after the neural
network has learned the solution of a particular problem. This can be done by interleaving
occasional learning or refresh cycles into the readout phase. Once the network has learned a
solution, only occasional "reminders” are necessary to keep the network from ‘forgetting” the
solution. This technique is analogous to refresh cycles in conventional DRAM.
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SECTION 9
CONCLUSIONS

During the course of this three year DARPA contract we demonstrated the application of
cascaded grating holography (CGH) in optical neural networks. By distributing each connection
weight among a plethora of cascaded gratings which vary in position and orientation, CGH
improves holographic optical neural networks in several ways. First, Bragg degeneracy is
eliminated which permits the placement of pixels in arbitrary 2-D patterns in the input and output
planes, leading to new flexibility in holographic recording. Second, CGH reduces distortions due
to beam coupling, resulting in undistorted weight vectors and good quality reconstructed images.
The flexibility of CGH allows the design of compact programmable holographic neurocomputers
which are composed of a single photorefractive crystal, SLM, and detector. The utilization of the
SLM is maximized because every pixel can be used without fear of crosstalk.

Under this contract we constructed an optical neurocomputer and showed its flexibility by
demonstrating several neural networks without adjustment of the optical components. The
networks were Perceptron, bidirectional associative memory, and backpropagation with a single
hidden layer. We also demonstrated CGH in the infrared using compact laser diode sources and
designed packaging concepts based on laser diodes.

In short, we have demonstrated the viability and potential of CGH-based optical neural
networks. Future work should include refinement of current algorithms and implementation of
new ones, improvement of storage capacity and processing speed, demonstration of compact
packages, and application of this technology to a real-world problem.
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APPENDIX A

OPTICAL BACKPROPAGATION PROGRAM
SOURCE CODE

* leam34n.c Optical Backpropagation, November, 1992.

This C languege program implements a three-layer, single hidden-layer,

bipoiar neuron backpropagation neural network in
forward-scatiering SPONN which maps random input pattems

to random output patiems. in addition 10 the host [BM-compatible PC, it also
contois the FG100 input image processor, the VS 100 output image processor,

and the LC celis which shutier the R and O beams. Rough output coordinates

are read from align34n.dat, which is generated using a separate program, alignvs6.c.
Final coordinates are swred in algn34n.dat. Local search and sorting

are used t find the brightest output pixels. Neuron outputs are represented

using a balanced duai-rail method. L1 and L2 fields are spatally
nierleaved and up and down weights are exposed simultaneously

to force equality between the two sets of weights. Neuron pixel size is adjustable.
Tnnary quantization of weight updates is an option. Thresholded output error
measures cofrectness of output sign only. The FG 100 input image processor must be
initalized at 8 MHz to work properly.

This program was written by Yuri Owechko, Hughes Aircraft Company, 3011 Malibu
Canyon Rd., Malibu, CA 90265. E-mail: owechko@csivax.dnet hac.com
310-317-5839.

© Copyright 1992, Hughes Aircraft Co.
*/

#include <graph.h>
#nclude <ctype.h>
#nclude <skho.h>
#nclude <conio.h>
snclude <ex100.h>
#nclude <math h>
#inciude <process.h>
#include <time.h>
#include <float h>
#include <dos h>
#include <search.h>
#include <sidiib h>

* First bit controis laser and detector LC cells,
second bit controis object LC cell, third bit controls
detector shutter °/

#define WRITE 3
#define READ 4
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#define STANDBY 0
#define SPONN_INPUT 0x340,0xd0000L,2,1
#define SPONN_OUTPUT 0x360,0x0000L.,2, 1

int brand),getbits();

void conf_samples(},readout_L 1(),readout_L2();

void change_sign_L 1().change_sign_L2();

void exemplar_random_L(X).disp_cell().ransfer_L1();
void train_W1(),train_W2(),backward();

int round(),compare(),hsgn().satur();

float error_leam(),error_read(),fsigmo(),ghump();
fioat compare_sign().avg_rpixel();

FILE *topen(),*stream;

int xout{32J(64) 16].yout{32jj64] 16),xq 100},y4 100];

int xin_obj[32],yin_obj[64),mxmax,mymax,mmax.seed.seed2;

int xin_ref{32],yin_ref{64],npixels.size;

int arraydim, xmax,xmax 1, ymax,ymax 1,ymax2,arraydim2, base1,base?2;
nt pxout32]64), pyoutf32i64);

long int on_time,off_time;

float sum1[32j{20), sum2{32][20};

float yy 1[16§20].yy2{ 16]{20).delta1{16}{20}.delta2{ 16} 20];

float toterr{ 500}, proj_w{S00]{2],proj_r{500][2).toterr_read}500).igamma;

struct dosdate_t date;
struct dostime_t ime1;
struct dostime_t time2;

main()

{

int nm,mx,my.i,j,k,nepoch,nepoch2 ntotal;

it err_value,nframes,nxavg2, nyavg2,pixval;
int gain,offsetval, xbase,ybase zoomval v 1{256);

int i1,i2,nx,ny,nxavg,nyavg, value shift decquant dedlut deciut2 decAlign;

long int delay3,int_time Ival klong:

long int lime, previime,;

float fime looptime  gain2,ontime, offtime, error.11,12;

float intime inttime2 fval eps1,eps2;

char comment{80),comment2{80j.comment3{80].s1emp{200)] bik ch;

base1=582; /* 5822250h PP! 1 base address */
base2=586; /* 596=264h PPI 2 base address */
bik=219; / Solid block ASCII character */

I Setmode of DIO48 VO card for Mode 0, all outputs */

outp(base1+3,128);
outp(base2+3,128),

il ({stream=fopen(“leam34n.inp™,"r"))==NULL)
{prnti"cannot open leam34n.inp\n”);

axit(0);}

olse
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printf("leam34n.inp parameter file opened for reading\n”);

fgets(comment2,80, sveam);
fgets{comment,80,sream);
fgets(comment3,80.steam);

printf("Enter number of exemplars in x and y\y{mxmax<= 16 and mymax<=15 for 64x64 display fields): *);

fgets(semp,200 stream);

fscani(swream,“%d %d\n" 8mxmax.&mymax);
prntf("%d %d\n",mxmax.mymax);
mmax=mxmax mymax;

printf("No. of exemplars= %d\n",mmax);

printf("Enter zoom value for display field 8ize (3->64x60, 2->128x120, 1->256x240, 0->512x480): *);
fgets(stemp,200,stream);

fscanf{stream, “%d\n",&zoomval);

printf{("%d\n".zoomval);

arraydim=pow(2.9-zoomval);

amaydim2=arraydim/2;

printf("Display field dimension is %d\n" arraydim);

printf("Enter xmax and ymax(for 64x64 arrays, xmax=30 & ymax=57): *);
tgets(siemp,200.sream),

fscanf(stream,"%d %d\n" &xmax,&ymax);

printf(*%d %d\n" xmax,ymax);

xmax 1=xmax/2;

ymaxisymax/3,

ymax2=2'ymax/3;

pnnti{"Enter subnsuron edge dimension: °);
fgets(stemp,200 stream);
fscanf(stream,“%d\n" &size).

printl("%d\n" size);

printf{"Enter 1 to realign, O otherwise: °);
fgets({semp.200 stream),
fscanf(steam, “%d\n",&decAlign);
printl{"%dn”.decAlign),

printf("Enter no. of epochs up 1 500: *):
fgets(s®emp,200 sveam),
fscanf(stream,%d\n" &nepoch),
prntl(*%d\n".nepoch),
nepoch2snepoch; .

printi("Enter exemplar integration time in sec: °);
fgets(stemp,200 sveam);

fscani(syeam, “%6An", dintime),
prntt(~%An",ntime);

printf{("Erter Output Frame Grabber gain from 1 to 4: ),
fgets(sternp 200 sream);
fscani(stream, “%N\n" 4gain2).

printf(™%n" gain2),

gan=255'gain2/4,
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pnntf(“Enter Output Frame Grabber oftset from 010 255: °),
fgets(semp,200 stream),

fscanf(sveam,“%d\n" 8offsetval),

pnntf(*%d\n".offsetval);

prntf("Output Frame Grabber input LUT: O for unmodified, 1 for sqrt \n®);
fgets(siemp,200 sream),

fscani(stream, "%d\n*, &declut);

pnnti(“%d\n",deciut);

printf(“input Frame Grabber output LUT: 0 for unmodified, 1 for linearized output\n®);
fgets{stemp,200.stream);

fscanf(stream, “%d\n", &declut2);

printf{*%d\n" declut2);

printf("Enter fsigmo gamma value: *);
fgets{semp,200 stream);
fscanf(stream, ™ %Mn" &igamma);
printf("%An" fgamma);

printi("Enter 1 for tinary quantization of weight updates, 0 otherwise \n");
fgets{semp,200 sream);

fscanf(stream, “%c\n" &decquant);

printf(“%d\n" decquant);

prntf{"Enter eps 1 for y1 quantization and eps2 for deita’ and delta2 quantization\n®);
fgets(stemp.200 sream),

fscanf(stream, “%f %\n", &eps1,8eps2);

pnntf(*%{ %Mn".eps1,eps2);

printf("Enter SLM tum-on and turn-off imes in sec: ),
fgets{stemp, 200 sream);

fscanf(stream,"%! %Mn" &ontime, &offtime);

printt("%! %A\n" ontime, offtime);

printf("Enter x and y dimensions of averaging regions (odd numbers<=9): *).
fgets{stemp,200 stream);

scant(syeam,“%d %d\n", &nxavg.&nyavg):

pntl(“ed %d\n”.nxavg,nyavg).

nxavg2=(nxavg-1y2;

nyavg2s(nyavg-1y2,

printf("Enter no. ot 3;""9‘95 per subnewron (<=16). ).
fgets(stemp 200 stream);

fscanf{sveam,*%d\n", &npixels);

printf("%d\n", npixels).

printi “Enter no. of video frames to average (<=100). 7);
fgets(semp 200 stream).
fscani(stream, %d\n" &nframes);

printi("%d\n", nframes);

prntK “Ervor seed intager for random number generator: )
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foets(semp,200,sream),
scani(stream,"%d\n", &seed);
pnt{"%d\n" seed);
sead2=geod;

fclose(stream);

7 Tum oft Input Frame Grabber */

sethdw(SPONN_INPUT):;
sewim(1024,1024,12);
fgofk();

* Set up Output Frame Grabber */

sethdw{SPONN_OUTPUT);
nitalize();

extsync(),

sexcamera(0);

static_lus();

segain(gain);
setoffset(offsetval);

Modify INPUT LUT of Output Frame Grabber */

if(deciut){
for(j=0j<=255j++) {
vi[jj=round(sart(255.)"sari(j)); }
walut{INPUT,0,0,256.v1);
Setul(INPUT.0); |

7 Set oustput LUTs of Output Frame Grabber for display. */

if(deciut){
for(j=0;j<=255j+ + )}{
vijjeround(pow(j.2)/255.). }

walut{RED,0,0,256 v1).
v1j0}=255;

v1[255}«0;
walufBLUE 00,256 v1),
v1[0j=0;
waluGREEN,0,0,256,v1);
setut(GREEN0); |

else |
for(j=0;j<=255j++}
vifil=i; }

walut{RED 0,0, 256 v1).
v1{0]=255;

v1[{255}=0;
wals(BLUE 0,0, 286 v1);
v1{0}=0;
walWGREEN,0,0.256,v1),
seU{GREEN0); }
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grab(0).
7 Set up Input Frame Grabber */

swich{deciut?)
{
case 0.
tor(j=0;j<=255 j++){
V(i)
break;
case 1:
if((stream=fopen(“linear.lut”,"r"))=aNULL)
{printf{"cannot open kinear.lutv’);
exit(0) }
eise
printl{ “nlinear ut file opened for reading\n”);
for(j=0;j<=255:j++){
fscanf(stream, “%d\n",&v1(jl);}
fclose(stream);
break
}

fgoff().
sethdw(SPONN_INPUT);

fgory).

wallt{GREEN,0,0,256,v1),  Adjust input Frame Grabber output LUT ¢/
walut{RED 0,0,256 v1);

v1{254}=0;

v1[255}=0;

walut(BLUE 0,0,256 v1);

aclear(0,0,1023,1023.0);

zoom{zoomval).
disp_cel(0.0);

* Calibrate time base */

tme(&ltme);

v me;
for{klong=0;kong<2000000:kiong ++);
tme(&itime); -
fime-lt ime.
looptime=Hime/2000000.0;
nt_tme-intimeAooptime;
on_tme=ontimafooptime;
off_time=offtime/icoptime;

 Generate SPONN input coordinate vectors */
for(i=0icxmax;i++)

xin_ref{ijearraydim2.+i‘size;}
for(i=0'icymax;i++)




yin_ref{i}=i*size;)

for(i=0jicxmax;i++){
xin_obfi}=i"size;}
for(i=0;i<ymax;i++){
yin_obilij=i"size;}

* Store 2er0 pattern in (0,0); ref-on in (1,0); object subsets A and B
in (3,0) and (4,0), espectively. */

xbase=amaydim;,
ybasesQ;

for(j=0;j<cymax;j++){
for(i=0icxmax;i++){
block(xbase+xin_reffi] ybase+yin_reffj] size size,255);
i

xbase=3"arraydim;
ybase=0;

tor(j=0 j<ymax;j++){
shift=ceil(tmod(j,2.0)),
for(i=0 icxmax;i+=2){
block(xbase-+xin_objfi+shift].ybase+yin_obifj]size size.255);
]

xbase=4"araydim;
ybase=0;

for(j=0;j<ymax;j++)}
shift=1-ceil(tmodyj,2.0));
tor(i=0 icxmax;i+=2){
block(xbase-+xin_obifi+shift],ybase+yin_obi[j).size size 255);
]

/* Calcuiate output coordinates and fine-tune by searching
local neighborhoods. */

i{decAlign)
{
if ((sweam=fopen(“align34n dar",’r"))==NULL)
{printi("ncannot apen align34n datn”),
exit(0)}
olse
prnti(“nalign34n. dat coordinate file opened for reading\n®);
for(j=0;j<cymax j++)}{
for(i=0 icxmax i+ +){
iscanisveam, “%d %d * &xou(i}j)i0).8 youiiNo)))
facani(stream,“n");)

iciose(stream):

100




disp_celi(3,0); ~ Turn on all object “A” pixels */

fgott().
sethdw(SPONN_OUTPUT);

fgon();

prnt(\nAdiust brightness then hit any key to save output coordinates\n”);

outp(base1 READ);
nxavg2=(nxavg-1)2;
nyavg2=(nyavg-1)2;

for(my=0;my<ymax;my++)|
for(mx=0;mx<xmax:mx++){
prout{mxmy]=xoufmx}imy}{0}:
pyoutimxjimyj=youtimx}imy)0].}}

for(;:{
tor(my=0.my<ymax;my++){
shift=ceil(fmod(my.2.0)); -
for(mx=0;mx<xmax;mx+=2){
rectangie{pxoutishift+mxjmy}-nxavg2 pyoutishift+mx)lmy}-nyavg2 nxavg,nyavg,255),
rectangle(pxoushift+mx}imy}-nxavg2,pyoutshift«mx|imy}-nyavg2.nxavg.nyavg.255) )}
snap(WAIT);
it(kbhit())break;
)

ch=getch(); /” Empties key buffer */
printi("nConfiguring output pixel coordinates, please wait..\n");

fgot().
sethow(SPONN_INPUT):
fgon().

disp_cei0,0);

fgoff();
sethdw(SPONN_OUTPUT),
fgon();

for(my=0:my<ymax.my++){
shift=ceil(fmod(my,2.0))
for{mx=0:mx<xmax;mx+=2){
cont_samples(shift+mx my.nxavg2 nyavg2);}}

igoti().

sethdw(SPONN_INPUT); /* Tum on all object "B" pixets */
fgony).

disp_cei4.,0);

Mai=3'on_tme:

for(kiong=0;kiong<ival kiong++),

fgoti().
sethdw(SPONN_OUTPUT).
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tgon(),
snap(WAIT);

fgott();
sethaw(SPONN_INPUT),
fgon().

disp_cei0,0);

igotk).
sethdw(SPONN_OUTPUT);
tgon().

tor(my=0;my<ymax:my++){
shift=1-ceil(fmod(my,2.0));
for(mx=0;mx<xmax;mx+=2){
cont_samples(shift+mx,my,nxavg2,nyavg2)}}

for(my=0;my<ymax;my++){
for(mx=0:mx<xmax;mx++)
for(i=0i<npixels;i++ )

block(xoutimx}imy][i]. youtfmx}{my]li].size size,255) }}}

printf("\nOutput pixels marked in red on monitonAn®);

val=3.0Mooptime;
for(kiong=0;kiong<ival;kiong++);

I Wrie output coordinates 1o file algn34n.dat */

it (streamsfopen("aign34n.dat” 'W*))==NULL)
{prnti("ncannot open align34n.dat\n”);

oxit(0);}

oise

prnt("nalign34n.dat coordinate file opened for writing\n®);

for(my=0;my<ymax;my++){
for(mx=0:mx<xmax;mx++){
for(i=0:i<npixels;i++){

fprnti(stream.“%d %d " xoufmxjimy]{i].youtfmxjimyJi)).}

fprinti(stream," "))

fclose(stream),
grabl{0); -
}
else
{
if ((streamsfopen(“aign34n.dat".7"))==NULL)
{printt("ncannot open aign34n.datn®);
exit(0):}
oise
printi{("naign34n.dat coordinate file opened for reading\n™);

tor(my«0;my<ymax:my++}{
for{mx=0mx<xmax;mx++)
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tor(1=0;1<npPixels i++ ){
fscanf(stream,“%d %d ", &xoutimx}imyJi).&youtmxEmy][i));}
fscanf(stream,"\n")}}

fciose(stream),
fgott();
sethdw(SPONN_OUTPUT);
fgon();
grab(0);

}

I Store LO exemplars in (0,1) © (mxmax-1,mymax) */

fgoft():
sethdw(SPONN_INPUT);

fgon();

for(mx=0:mx<mxmax;mx++){
tor{my=0;my<mymax;my++}{
exemplar_random_LO(mx,my):}}

/* Inttialize weights using sum of random outer-products */

printf{"\ninitializing weights with sum of random outer-products...\n\nHit any key 0 begin leaming\n®);
ival=4"int_time;

outp(base 1, WRITE);
for(.:){

7 (LOXL1) Weight initialization vectors in (5,0). */

ybase=0;

n=5;
xbase=n"araydim;
srand(zeed+ 16000+n);

for(my=0;my<ymaxt.my++){
for(mx=0;mx<xmax.mx+=2){
i(brand()==-1){

block(xin_refimx]+xbase,yin_refimy}+ybase size.size,255),
block(xin_ref{mx+ 1}+xbase yin_refimyj+ybase size size.0);)

sise
block(xin_refimx}+xbaseyin_refimy}+ybase size size,0);
block(xin_refimx+ 1}+xbase.yin_refimy}+ybase size size,255);)

h

for(my=0;my<ymax1,my++)}{

tor(mx=0;mx<xmax;mx+=2){

if{brand()==-1)}{
block(xin_objimx]+xbase yin_objimyl+ybase size size 255);
block(xin_objimx+ 1]+ xbase,yin_objimy}+ybase size size0);}

oise {
block(xin_objimx]+xbase.yin_abjimy]+ybase size size 0);
block(xin_objimx+ 1}+xbase.yin_obimy] sybase size size 255))

103




I (L1)(L2) vectors for weight initialization in (7,0). */

ybase=0;

n=7;
xbase=n"arraydim,
srand(seed+20000+n);

tor(my=0:my<ymax1my++){
for(mx=0.mx<xmax;mx+=2){
il{brand()==-1){
block(xin_refimx}+xbase,yin_ref[2* my+ymax1}+ybase size size,255);
block(xin_refimx+1}+xbase,yin_ref{2°'my+ymax1}+ybase size,size.0);
block(xin_obj[mx}+xbase,yin_obj2°my+ymax1+1]+ybase,size size,255);
block(xin_obj[mx+ 1}+xbase,yin_obj{2*my+ymax1.1]+ybase size size.0);
)
eise {
block(xin_refimx]+xbase.yin_ref{2°my+ymax1]+ybase size,size 0);
block(xin_refimx+1]+xbase,yin_ref[2°my+ymax1]+ybase size.size,255);
block(xin_objimx}+xbase,yin_obj[2°my+ymax1+1])+ybase sizesize,0);
block(xin_objmx+ 1}+xbase.yin_obj[2°my+ymax1+1]+ybase size size,255);
}
h

for(my=0;my<ymax 1:my++){
for(mx=0;mx<xmax;mx+=2){
i(brand()==-1){
block(xin_ref{mx]+xbase yin_ref{2°my+ymax1+1]+ybase size,size,255);
block(xin_refimx+1]+xbase,yin_ref{2°my+ymax1+1]+ybase size size,0);
block(xin_objimx]+xbase,yin_obj[2*my+ymax1}+ybase.size,size,255);
block(xin_objimx+1]+xbase yin_obj{2*my+ymax1]+ybase size size.0);
}
eise {
block(xin_refimx)+xbase.yin_ref{2°'my+ymax1+1)+ybase size size,0),
black(xin_refimx+ 1}+xbase yin_ref|2*my+ymax1+1)+ybase size size,255);
block(xin_objimx}+xbase.yin_obj[2*my+ymax1]+ybase size size,0);
block(xin_objimx+ 1)+xbase,yin_obj{2°my+ymax1]+ybase,size size,255);
)
]

diep_cell(5.0);
for(kiong=0;Mong<aival klong++).
disp_cel(7.0);
for(kiong=0:klong<=int_imekiong++).

86€0++;
i(kbhi())break;}

disp_cel(0,0);
outp(base 1 READ);
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ch=getch();

Learming Loop ¢/

_dos_gettime(atme);
11=2.0/(mmax*xmax"ymax1);

for(n=0:n<nepoch;n++){
ermor=0;
for(my =0;my<mymax;my++){

for(mx=0;mx<mxmax;mx++){
disp_cellimx,my+1); /* input LO exemplar (mx,my) */
readout_L 1(nframes),
transfer_L1();
readout_L2(nframes),
err_value=error_leam(mx,my n);
emror=emor+en_value;
backward(nframes);
train_W2(int_time,decquant.eps 1,eps2);
rain_W1(int_time,decquant,eps2,mx,my);}}

toterr{nj=f1"error;

prntf("\nLeaming Epoch= %3d Error= %5.3f * n toterr{n]),
value=toten{n]"40;
for(i=0icvalue;i++){

printi(*%c" bik);}

it(kbhit(}){
ch=getch().
nepoch=n;
break; }

}

_dos_gettime(&time2):

Readout Loop *f

print{"n\nReadout gf network \n\n");

for(n=0:n<nepoch2;n++){
error=0,
for(my =0;my<mymax:my ++){
for(mxa0:mx<mxmax.mx++){
disp_celi(mx.my+1);
readout_L 1({nframes):
transfer_L1();
readout_L2(nframes);
e_valueserror_read(mx.my.n);
Tor=eor+err_value .
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]
toterr_read{n}=f1"eror;

printi("\nReadout Epoch= %3d Error= %5.3f *,n,toterr_read(n]);
value=toterr_read[n]'40;
for(i=0ii<vaiue;i++){

printt(*%c" bik)}

if(kbhit()){
nepoch2=n;
break; )

)

outp(base1,STANDBY);

dsp_cel1,0);

fgoff();

sethdw(SPONN_OUTPUT);

tgon();

grab(0);
if{(stream=fopen(“learn34n.csv","w"))==NULL)
{pnntf("cannot open leam34n.csv\in®);

exit(0);}

else

printf{“\nleam34n.csv file opened for writing\n®),

fprintf(stream,"leam34n.c Two-Layer Optical Backprop. with Symmetric Dual-Rail Levels (Random Mapping Problem)\n”);

_dos_getdate(&date),

fprintt{stream, "Date: %d-%d-%d *,date.month,date.day date.year);
fprinti(stream,"Crystal: %s".comment2),
fprintt{stream, “%s” comment);
fprint(stream,*%s",comment3);

fprinti(stream,"Enter number of exemplars in x and y:\n");
fprintf(stream,“%d, %d\n" mxmax,mymax);
fprnti(stream,"zoomval= %d\n",zoomval);
tprintf(stream."Display field dimension is \n%d\n" arraydim);
fprintf(stream,"xmax and ymax= \n%4d, %d\n",xmax,ymax);
fval=xmax"ymax1+2°xmax1‘ymax1;

fprinti(stream,"No. of neurons= \n%e\n" fval);
fval=xmax1°*ymax1;

fval=(xmax"ymax1)*(fval)+(fval)*(ival),

fpnnti{stream,"No. af weights= \n%e\n" fval);
fonnti(stream,"Enter subneuron edge dimension \n%d\n" size):
fprintf(stream, "No. of epochs: °):

fprinti(stream, “%d\n",nepoch);

fonnti(stream,“Exemplar integration time in sec. °);
forinti(stream,*%M\n" inttime);

fprinti(stream, "Output Frame Grabber gain: *);
fprintf(stream, "% An" gain2),

fporinti(stream,"Output Frame Grabber offset: °);
fprinti{sream, “%dn" offsetval);

tprinti(stream, "Output Frame Grabber input LUT: 1 for square root; O for linear\n®);

fprinti{ stream, ~%d\n® deciut);




fpnnti{stream, “Iinput Frame Grabber output LUT: 0 for unmodified; 1 for ineanzed SLM intensity\n”);

tpnntf(stream, “%d\n" deciut2);

fpnnti(stream, “Enter fsigmo gamma value\n®);

fpnnti(stream,"%A\n" fgamma);

fprintf(stream,“"Enter 1 for tnary quantization of weight updates; 0 otherwise\n®);

fprintf{stream, “%d\n",decquant);

fpnnti{sream,"Enter eps 1 for y1 quantization and eps2 for deltat and delta2 quanizaton\n’);

fprint(stream, %!, %An".eps1.eps2);

fpnnti(stream,"LCLV tum-on and um-off delays in sec= \n%f, %An".ontime,offtme);

tprnti{stream,"Enter x and y dmensions of averaging regions (odd numbers)\n®);

fprintf(stream, “%d, %d\n" nxavg,nyavg);

fprinti(stream,"Enter no. of samples per subneuron\n%d\n", npixels);

fprinti(stream, "Enter no. of video frames to average (<=100)\n");

fprintf(stream, “%d\n",nframes);

fprintf{stream,“Enter starting seed for random number generator\n”);

tpnntf{stream, “%d\n",seed2);

fprintf(stream, "Leaming start time: %d%d%d Stop time: %d%d%d\n" ime1.hour,
tme1.mnue,time1.second time2.hour,ime2.minute, ime2.second);

fpnntf{stream, \n\nLeaming Efror and 2 Output Projections vs. Epoch \n\n®);
for{n=0;n<nepoch;n++){ -
fpantf(stream,“%d, %f, ,.%d, %f, %hn"n,oterrn},n.proj win}fo].proi_winl(1]);}

fprint(stream, \n\nReading Error and 2 Output Projections vs. Epoch\n\n®);
for(n=0;n<nepoch2;n++){
fprnti(stream, "%d, %, .%d, %f, %M\n".n.1oterr_read{n],n,pro_rin}[0}.prof_rin}{1])}

tclose(stream),

}
™ This function rounds a floating point number to the nearest integer */

nt round(fval)
float fval;
{

intval,
float remam;

remain=tval-fioor(fval);
ifremain>=0.5)
val=cetl(fval).

else

val=floor(tval):

return{val);
!

* This function finds the sample points for neuron (mx.my) */
void conf_samples(mx,my nxavge nyavg2)

Nt mx,my nxavg2 nyavg2;
{
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nt count,xts, yts,i,j,num{ 100},

xts=pxoutimx}jmy};
yts=pyoutimx}{my];

7 Find brighest pixels by sorting */
tor(i=0;i< 100;i++){num(i}=0;}
count=0;

for(j=-nyavg2+1 j<=nyavg2;j++)
for(i=-nxavg2+ 1 ic=nxavg2;i++)|
xtjcount]=xts+i;
yticount]=yts+j;
numjcountj=count;

count++3}}
gsort(num, 100,sizeof(int),compare);

for(i=0i<npixels;i++){
xoutimximy](i}=xtinumfi]};
youtimxjmy](i}=yt{numfi))}

}

" Descending order comparison function for gsort(). It compares
sampled pixel values. */

int compare(i,j)
int *i,%);

{

ntvalab;

a=rpixei(xt]"j).y{"j}):
b=rpixel(xt{*i),yt{*i})
val=a-b,

returm(val);
}
7 This function caiculates L1 values */

void readout_L_1(nframes)
nt nframes;

{

ntiti2mx2my2,val,
long nt kiong;

float fval;

fgofk().
sethdw(SPONN_QUTPUT),
fgon().
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for(my2=0:my2<ymax1:my2++){
for(mx2=0:mx2<xmax;mx2++){
sumiimx2)my2}=0}}

outp(base1, READ);
for(klong=0:kiong<on_time;kiong++);
for(i2=0;i2<nframes;i2++){
snap(WAIT),
for(my2=0;my2<ymaxt.my2++){
for{mx2=0;mx2<xmax;mx2++){
sum1[mx2]imy2j=sum1jmx2}imy2}+avg_rpixel(mx2,my2)}}
}
outp{base1,READ);
fvai=1.0/nframes;
for(my2=0;my2<ymax1;my2++){
for(mx2=0;mx2<xmax;mx2++){
sum1[mx2)imy2]=tval*sum 1|jmx2}imy2];}}

for(my2=0:my2<ymax1t,my2++){
for(mx2=0;mx2<xmax i :mx2++){
yy 1[mx2]my2}=fsigmo(sum 1}2°mx2]jmy2}-sum1[2°mx2+ 1}imy2]}).}}
}

I Transfers L1 output o L1 input */

void ransfer_L1()

{
int mx2,my2, pixval;

fgoft();
sethdw(SPONN_INPUT);
tgony().

disp_celK0,0),

for(my2=0;my2<ymax1;my2++}{
forimx2=0;mx2<xmax1;mx2++){
pixvai=127"yy1[mx2)my2);
. block(xin_ref[2°'mx2},yin_ref{2° my2+ymax1),size size, 127 +pixval);
block(xin_ref{2*mx2+1),yin_ref{2°my2+ymax1) size size, 127-pixval),
h
}

I This function caiculates L2 values */

void readout_L2(nframes)
int nframes;

{

M it,j2,mx2,my2.val,
long nt kdong:

float fval;

fgoft(),
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sethdw(SPONN_OUTPUT).
tgon();

for(my2=0;my2<ymax1;my2++){
for(mx2=0;mx2<cxmax;mx2++){
sum1[mx2}imy2j=0;
sum2{mx2)my2]=0;}}

outp(base1,READ),
for(klong=0;klong<on_time kiong++);

for(i2=0;i2<nframes;i2++){

snap(WAIT);

for{imy2=0;my2<ymax1;my2++){

for(mx2=0,mx2<xmax;mx2++)
sum1mx2]imy2l=sum1[mx2}imy2]+avg_mpixei(mx2 ymax1+2°my2);}}
}

change_sign_L1();
tor(klong=0;klong<on_time;klong++);

fgoff(). : -
sethdw(SPONN_OUTPUT);
fgon().

for(i2=0;i2<nframes;i2++){
snap(WAIT);
formy2=0;my2<ymax1;my2++){
for{mx2=0;mx2<xmax;mx2++){
sum2[mx2]imy2]=sum2{mx2}imy2}+avg_rpixel(mx2 ymax1+2°my2);}}
)

outp(base1,READ);

fval=0.5/nframes
for(my2s=0;:my2~ ~axtmy2++){
for(mx2=0;mx2<xinvax:mx2++){
sum1{mx2){my2}=tval*sum1{mx2){my2);
sum2{mx2limy2]=fval*sum2{mx2jimy2};})

for(my2=0;my2<ymax1;my2++){
forimx220;mx2<xmax1;mx2++){
yy2imx2}imy2]=tsigmo(sum1[2* mx2)[my2]-sum 1[2°mx2+ 1]jmy2]-sum2{2°mx2][my2]+sum2[2* mx2+1}jmy2));
] -
}

/* This routine spatially averages bright pixels */
fioat avg_rpixel(mx,my)
int mx,my;
{
intjival
float ival;

val=0;
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for(j=0:j<npixels;j++){
val=val+rpixel(xoutimx)my][i].youtimx}{my)i}):}

tval=(fioatval/npixels

retumy(ival);

}

7 Caiculates L2 output efror for exempiar (mx,my)
in leaming phase */

float error_leam{mx,my,n)
int mx,my.n;

{

int mx2,my2,iex.c;

float 2 error.ival;

efror=0;

c=my*mxmax+mx;

srand(seed+c);

fval=0;

for(my2=0.my2<ymax1 ;my2++){

forimx2=0;mx2<xmax1 .mx2++){

iex=brand().
@2=0.5°(iex-yy 2{mx2]{my2)).
error=error+compare_sign(iex,yy2imx2)(my2});.
deltaZ{mx2jjmy2}=e2°ghump(yy2{mx2}my2));
tval=tval+yy2mx2jimy2]}}

fval=tval/(xmax1°ymaxt);

prntfi(\nExemplar (%d,%d) error= %t projection= %f",mx,my error ival);

it{c<?)
proj_win]c]=tval,

retumyerror);

}

I Cakulates L2 output error for exemplar (mx,my) in reading phase */

fioat error_read(mx,my n)
int mx,my.n;

{ -

int mx2,my2,iex,c;

float e2,error ival;

error=0;
C=mMmy mxmax+mx;

srand(seed+c);

fval=0;
for(my2s0;my2<ymaxi . my2++){
forimx2=0:mx2<xmax1 ;mx2++){
rex=brand().




e2=ex-yy2imx2)my2);
error=error+compare_sign(iex,yy2imx2)my2));
tval=tval+yy2{mx2jimy2};}}

fval=ival/(xmax1*ymaxt);

pantf("\nExemplar (%d,%d) efror= %! projaction= %f* mx,my,error fval);

(c<2)
proj_rinfcl=tval;

retum(error);

}

* Backpropagate the error signal. °/

void backward(nframes)
nt nframes;

{

long nt kiong,

int mx2,my2.i2.pixval;
fioat 1 fval;

igoff():
sethdw(SPONN_INPUT).
fgony();

I Erase L1 input */
block(arraydim2,ymax 1*size, xmax*size,ymax2°size,0);
" Wrte deita2 1o L2 reference */
for(my2=0;my2<ymax1.my2++){
forimx2=0mx2<xmax1;mx2++){

pixvai=127°delta2{mx2){my2).
block(xin_ref{2°'mx2],yin_ref[2'my2+ymax1+1) size size,127+pixval);

block{xin_refl2'mx2+ 1) yin_ref[2°*my2+ymax1+ 1) size size, 127-pixval);

h

/" Read L1 output and caiculate deltat */

fgofte). -
sethdw(SPONN_ OUTPUT);

fgon(),

for(my2=0.my2<ymax1.my2++){
for(mx2=0:mx2<xmaxmx2++}){
sum1mx2)imy?2]=0.
sum2imx2jimy2}=0;))

outp{base 1 READ);
for(kiong=0 kiong<on_time kiong++),
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tor(i2=0.i2<nframes;i2++ )
snap(WAIT);
for(my2=0;my2<ymax1.my2++){
for{mx2=0;mx2<xmax;mx2++){
sum {{mx2){my2]=sum 1[mx2]imy2}+avg_rpixel{mx2 ymaxi+1+2°my2)}}
}

change_sign_L2(}:
tor(klong=0;klong<on_time kiong++);

fgoft();
sethdw(SPONN_OUTPUT);

tgon();

for(i2=0.i2<nframes,;i2++){
snap(WAIT);
for{my2=0;my2<ymax1.my2++){
for(mx2=0;mx2<xmax;mx2++)
sum2mx2]{imy2]J=sum2{mx2}imy2}+avg_rpixel(mx2 ymax1+1+2°my2).}}
}

outp{baset,READ),
fval=0.5/nframes;

for(my2=0:my2<ymax1;my2++)}
for(mx2=0:mx2<xmax;mx2++){
sum H{mx2){my2]=tval’sum1{mx2}(my2);
sum2{mx2}imy2]=tvai*sum2{mx2}{my2]:}}

for(my2=0,my2<ymax1.my2++){
forimx2=0;mx2<xmax?;mx2++){
01=0.00392"(sum 1[2° mx2]my2}-sum 1[2°*mx2+1}{my2} sum2{2°mx2]{my2}+sum2{2°mx2+1)[my2});
defta 1{mx2]{my2j=e1°ghump(yy 1imx2}imy2]).}}

}

7 This function updates the weights between L2 and L1 °*/

vod train_W2(int_tme decquant.eps) eps2)
nt decquant,

float epe 1,.6ps2;

long intint_me,

{ .

int mx2,my2,pixval;

long nt kiong;

fgoft().
sethdw(SPONN_INPUT).
fgony),

I Write y1 10 L1 object */

for(my2=0.my2<yman’ my2++)}{
for(mx2=0.mx2<xmax i mx2++){
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idecquant)
pixval=127"hsgn{yy 1[mx2my2].eps1);
olse
pixval=127"yy t{{mx2][my2].
block(xin_obj[2*mx2).yin_objl2' my2+ymax1+1),size size,127+pixval);

block(xin_obj[2"'mx2+1),yin_obj[2°my2+ymax1+1} size size, 127-pixval);

]
7 Write delta2 to L2 object */

for(my2=0;my2<ymax1;my2++){
forimx2=0:mx2<xmax1;mx2++){
if{decquant)
pixval=127"hsgn(delta2{mx2)my2).epe2);
else
pixval=127"delta2{mx2]my?],
block(xin_obj[2°mx2] yin_obj{2*'my2+ymax 1},size,size, 127 +pixval);
block(xin_obj[2°'mx2+1).yin_obj{2°'my2+ymax 1) size size, 127-pixval);
N

7 Write y1 o L1 reference */ -

for(my2=0my2<ymaxt;my2++){
for(mx2=0;mx2<xmax1;mx2++){
i{decquant)
pixval=127"hsgn(yy {mx2)my2).eps1);
eise
pixval=127"yy 1{mx2}{my2];
block(xin_ref{2°mx2},yin_ref[2°my2+ymax 1] size size, 127 +pixval),
block(xin_reff2°mx2+1].yin_ref{2°my2+ymax 1) size size,127-pixval);
W

" Write deita2 10 L2 reference */

for(my2=0;my2<ymax 1 ;my2++){
for(mx2=0;mx2<xmax? ;mx2++){
i{decquant)
pixval=127"hsgn(deta2{mx2]my2) eps2);
else
pixval=127"deita2{mx2)my2].
block(on_ref[2°'mx2],yin_ref{2°'my2+ymax1+1).s12e.size, 127 +pixval),

block({xin_refl2° mx2+ 1].yin_ref|2°my2+ymax1+1} size size,127-pixval);

n .
7 Adqust L1-12 and L2-L1 weights */
outp(base 1 WRITE);
for(klong=0:idong<=int_time kiong++);
outp(base 1, READ);
block(0,ymax1°size arraydim, ymax2°si2e.0);
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7 This funcson updales the wesghts between LOand Lt °/

void train_W 1(int_time decquant,epe2,mx my)
long intint_sme;

nt mx,my,decquant,

Hoat eps2;

{

int mx2,my?2, xbase,ybase,pixval;

tong int kiong. val;

fgot().
sethdw({SPONN_INPUT),

fgon():

" Display LO exempiar */
disp_cell(mx,my+1);

I Wre deltat to L1 object */

xbase=mx"arraydim;
ybase=(my+ 1) arraydim;

for(my2=0;my2<ymaxi;my2++){
forimx2x=0;mx2<xmax1;mx2++){
ildecquant)
pixval=127"hsegn(deita1|{mx2)my2] eps2);
eise
pixval=127"delta 1[mx2)my2];

block(xbase-+xin_objf2°'mx2} ybase+yin_objimy2),size size, 127 +pixval);
block(xbase-+xin_obj{2°'mx2+ 1] ybase+yin_obj{imy?2).size size, 1 27-pixval);

]
I Adwust LO-L1 weights °/
val=2°int_time;

outp(base t WRITE);
for(kiong=0;klong <=lval klong++),
outp(base 1 READ);

block(xbase, ybase arraydm2, ymax1°size.0),

}
7 Function 1o change sign of L1 ref. during readout */

void change_sign_L 1()
{
"t mx2,my2,pixval;

fgofk).
sethdw({SPONN_INPUT),
fgony).




for(my2=0:my2<ymaxt;my2++){
tor(mx2=0:mx2<xmax1:mx2++){
pixval=-127"yy 1|mx2§my2);
block(xin_ref[2°mx2],yin_ref{2*my2+ymax1) size size, 127 +pixval);
block(xin_ref[2'mx2+1}.yin_ref[2°my2+ymax1),size,size, 127-pixval);
]
}

7 Function to change sign of L2 ref. during readout */

void change_sign_L()
{
int mx2,my2,pixval;

fgott().
sethdw(SPONN_INPUT);

tgon(),

for(my2=0,my2<ymax1;my2++){
for(mx2=0;mx2<xmax1;mx2++){
pixvals-127"deita2{mx2)my?2];
block(xin_ref{2°'mx2],yin_ref{2°my2+ymax1+1},size,size,127+pixval);
block(xin_refl2*mx2+1)},yin_ref2°my2+ymax1+ 1} size size, 127-pixval);
N
}

7 Neuron sigmoidal activation function °*/

float fsigmo(fsum)
fioat tsum;

{

fioat tval;
fval=2.0/(1+exp(-igamma‘fsum))-1.0;
retum(fval);

}

/* Backpropagation function */

fioat ghump(fsum)

fioat tsum;

{ .

float ival;
fval=(1.0-fsum)’(1.0+fsum);
retumn(ival),

)

/* Saturaton function */

nt satur(fsum)
float fsum;

ntival;
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if(tsum>=255)
wval=255;

else
ival=tsum;

returmn(val);

}
7 Trinary quantization function */

nt hsgn(net eps)
float net.eps;
{

ntival;

inet<-eps)
ival=-1 .

eise if(net>eps)
wal=1;

eise
val=0;

return(ival);
!

 This subroutine generaes a (1,0) LO random exemplar and stores
it in a subregion of frame memory. */

void exempiar_random_LO(m,n)
intm.n;

{

int mx2,my2,xbase ybase,pixval.

fgoft().
sethaw(SPONN_INPUT);
tgon().

xbase=m‘arraydim,
ybase=(n+1)"arraydim,

srand({seed+n°mxmax+m+mmax);

for(my2=0.my2<ymax1;my2++){
for(mx2=0mx2<xmax.mx2++){
HH(brand()==-1){
block(xin_refimx2]+xbase yin_refimy2)+ybase size size,255);}
eise |
block(xin_refimx2)+xbase,yin_refimy2}+ybase.size,size.0)}
)
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7 Returns 1 or -1 randomly */

int brand()

{

retum(2* getbits(rand().0,1)-1).
}

7 This function gets n bits 1o the right of and including position p
n integer x. */

getbits(x,p.n)

unsigned x.p.n;

{
return{(x>>(p+1-n))&~(~0<<n));

1
7~ This subroutine displays cell (m,n) */

void disp_cell{m,n)
ntm,n;

{

nt xbase,ybase,

fgoft().
sethow(SPONN_INPUT);

tgon(),

xbase=m‘arraydim
ybase=n"arraydim;

pan(xbase);
scroli(ybase);

)

" Returns 0 it arguments have same sign, 1 otherwise */

fioat compare_sign{m.in)
ntm,
float in;

{

float fval,

itfm*fn>0)
fval=0;
oise
fvai=1;
retum(ival);

}

118




Appendix B: Publications and Presentations
Publicati

Y. Owechko, "Cascaded-Grating Holography for Artificial Neural Networks," accepted for
publication in Applied Optics, 1992.

Y. Owechko, "Optical Implementation of Backpropagation Neural Network Using
Cascaded-Grating Holography," to be submitted to International Journal of Optical
Computing in 1992 (Invited Paper).

Y. Owechko and B. H. Soffer, "A Programmable Optical Neuro-Computer Based on
Photorefractive Holograms," Proceedings of Government Microcircuit Applications
Conference, Las Vegas, 1992.

Y. Owechko and B. H. Soffer, "Multi-Layer Optical Neural Networks," SPIE Proceedings
Vol 1773, 1992.

Y. Owechko and B. H. Soffer, "An Optical Interconnection Method for Neural Networks
Using Self-Pumped Phase Conjugate Mirrors,"” Optics Letters 16, 675-677 (1991).

G. J. Dunning, Y. Owechko, and B.H. Soffer, "Hybrid Opto-Electronic Neural Networks
Using a Mutually-Pumped Phase Conjugate Mirror," Optics Letters 16, 928-930(1991).

Y. Owechko and B. H. Soffer, "Optical Neural Networks Based on Liquid Crystal Light
Valves and Photorefractive Crystals," Proceedings of SPIE/SPSE Symposium on Electronic
Imaging Science and Technology, San Jose, Feb. 1991, Vol. 1455, 136-144. (Invited Paper)

B.H. Soffer, Y. Owechko, and G.J. Dunning, "A Photorefractive Optical Neural Network,"
SPIE Proceedings Vol. 1347, 1, (1990). (Invited Paper)

B.H. Soffer, Y. Owechko, and G.J. Dunning, "A Photorefractive Optical Neural Network,"

Proceedings of 15th Congress of International Commission for Optics, Aug. 1990,
Garmish, Germany.

Presentations
Y. Owechko, "Programmable Optical Neural Networks," OSA 1992 Annual Meeting,
Albuquerque, 1992. (Invited Talk)

Y. Owechko and ‘B. H. Soffer, "A Programmable Optical Neurn-Computer Based on
Photorefractive Holograms,"” Government Microcircuit Applications Conference, Las
Vegas, 1992.

Y. Owechko, Lake Louis conference on electronic and optical implementatiens of neural
networks, 1992.
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Y. Owechko and B. H. Soffer, "Multi-Layer Optical Neural Networks," SPIE Conference
1773 on Photonics for Computers, Neural Networks, and Memories, San Diego, 1992.

Y. Owechko and B. H. Soffer, "Recent Advances in Optical Neural Networks Using Beam
Fanning in Photorefractive Crystals,” LEOS ‘91, San Jose, Nov. 1991. (Invited Talk)

Y. Owechko and B. H. Soffer, "Optical Neural Networks Based on Liquid Crystal Light
Valves and Photorefractive Crystals,” SPIE/SPSE Symposium on Electronic Imaging
Science and Technology, San Jose, Feb. 1991. (Invited Talk)

Y. Owechko, G. Dunning, and B. Soffer, "Optical Neural Networks Based on Stimulated
Photorefractive Effects,” OSA 1990 Annual Meeting, Boston. (Invited Talk)

Y. Owechko, "Holographic Neural Networks,"” 1990 International Topical Meeting on
Optical Computing, Kobe, Japan. (Invited Talk)

Y. Owechko, B.H. Soffer, and G.J. Dunning, "Photorefractive Optical Neural Networks,"
International Joint Conference on Neural Networks, Washington, D.C., 1990. (Invited
Talk)

G.J. Dunning and Y. Owechko, "Multi-Port Optical Neural Network Using a Mutually
Pumped Phase Conjugate Mirror,” IEEE Meeting on Nonlinear Optics: Materials,
Phenomena, and Devices, Kuau, 1990.

G.J. Dunning, Y. Owechko, and B.H. Soffer, "Optical Neural Network Using a Mutually
Pumped Phase Conjugate Mirror," OSA Annual Meeting, Orlando, 1989.

Y. Owechko, "Self-Pumped Optical Neural Networks," OSA Topical Meeting on Optical
Computing, Salt Lake City, 1989.

Y. Owechko, "Stimulated Photorefractive Optical Neural Networks," Third Annual Parallel
Processing Symposium, Cal. State Fullerton, 1989. (Invited Talk)
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