AD-A258 633
MR RIRA

DTIC

P ELECTE
&, DEC1 51992,

Robert Leo'nard' Joseph R
August 24, 1992
CMU-CS-92-188

Knowledge Acquisition for
Visually Oriented Planning

School of Computer Science
Camegie Mellon University
Pittsburgh, PA 15213-3890

Submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy
. DISTRIBUTION JTATSMENT A
! Approved tor puniie rsiecIs
Du'zwuuon Unblimuted
© 1992 Robert L. Joseph

This research was sponsored in part by AT&T Bell Laboratories and in part by the Avionics
Laboratory, Wright Research and Development Center, Aeronautical Systems Division (AFSC), U. S.
Asi;’7 Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, ARPA Order No.
7

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of AT&T Bell
Laboratories or the U.S. Government.

92—3 1344

92 12 14 013

Keywords: Knowledge Acquisition, User Study, Artificial Intelligence, Planning Systems,
Graphical Input

DTIC GU. Ll v INEPROTRD 3

School of Computer Science

._Accusi'c;h;sr T

DOCTORAL THESIS i N B
in the field of 5 Udﬂ;a:‘:c ad 2
Computer Science ; Fuotifieatien L
| ,

}

Graphical Knowledge Acquisition for | Distrivatian/ o

Visually-Oriented Planning Domains {‘_J.‘L’,‘_ii‘fb’ ity Cedes |
b Avail amd/or '“ﬁ
ROBERT L. JOSEPH !g\‘\ Spec }m |

T ————
—— R

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED: '
A ,
,//'//a»{{vt’///é 9/21[42.
// THESIS COMMITTEE CHAIR T DATE
. 4/2.6/42.
—(]'I ! -DEPARTMENT HEAD) DATE
APPROVED:
T2, 2 a/28az
N DEAN 4 L DATE

Abstract

Many planning tasks can be represented using mental models in which an expert
manipulates objects from one state to another (delivery route planning - trucks, buildings,
packages, routes, etc.; part machining - parts, drill, mill, drill-bit, etc.). This suggests a
highly graphical knowledge acquisition tool where the expert is able to capture the visual
intuition of the problem solving to facilitate the encoding of a domain knowledge base. By
exploring knowledge acquisition for object manipulation domains, insight will be gained in
how knowledge is acquired and represented for such visually oriented tasks.

This thesis addresses graphical knowledge acquisition in visually oriented domains in the
context of Prodigy, a general problem solving and planning architecture. The prototype
system, called APPRENTICE, demonstrates the main ideas in the thesis. This system
establishes the feasibility of a graphical interface to enhance the ability of the expert to
develop factual domain knowledge (objects, relations, and operators) in multiple domains.

The system has been evaluated in four studies. In the first study, 32 Al students used the
system to build their own domains. In the second study, domains deveioped by different
types of users were completed faster using graphical input than using textual input. The
third study was a learning study in which a subject developed several domains in
APPRENTICE. Finally, the fourth study demonstrated the ability to develop a larger
domain in the system. APPRENTICE and its techniques proved to be usable, flexible and
extendable.

Acknowledgment

No man is an island. Although I assert that this research is my own work, I could not
have done it by myself. There are a lot of special people who helped make this work a
reality. Everybody who has touched my life has influenced this research and to all of you
I owe a sincere thank you. In particular:

This thesis is dedicated to my parents, Robert and Evelyn Joseph, who through their
guidance and support instilled in me a sense of drive to achieve my very best. They have
always been my foundation - making sacrifices, providing encouragement, and giving me
support. This work is as much a product of their support as it is of anything else. I owe
them so much.

I want to thank my advisor, Jaime G. Carbonell, who has been with me through thick
and thin. He has supported my research and helped me to grow as a person. Thanks to my
committee members, Herbert Simon, Dario Giuse, and Gary Kahn. Herbert Simon’s
calm assurance that I was traveling down a good path for research helped me to press on.
Dario Giuse’s practical programming knowledge and insight into the field of User
Interfaces and Knowledge Acquisition proved invaluable. Gary Kahn’s industrial point of
view has helped focus the research. :

I would like to thank the initial users of APPRENTICE: Jim Blythe, George Burroughs,
Franne McNeal, William Scott Reilly, and Angelika Zobel. Their patience was

appreciated.

Several programmers helped with the implementation of the system: Dan Kahn, Mike
Miller, and David Rager. I owe them my thanks.

I would also like to thank the 31 volunteer subjects from the 1991 Fall class of Artificial
Intelligence: Representation and Problem Solving: Dan Appelquist, Marcel Becker, Dina
Berkowitz, Brian Bresnahan, Barry Brumitt, Jason Burgess, Jon Carlstrom, Colleen
Duckett, Mike Gess, Jon Ghiloni, Melissa Goldman, Zach Hraber, John Jeng, Maki
Kato, Brian Kearney, Sanjay Khanna, Quan Le, Dave Leberknight, Mike Mantarro, Ben
McCurtain, Adam Miller, Dan Morrow, Norman Murray, Dave Nespoli, Christine Page,
Dave Park, David Poor, Kish Rao, Dan Schaffer, Jeremy Sechler, Anish Sirivasteva, and
Andrew Weller.

A thanks goes out to the volunteer subjects for Study 2: Sheila Anderson, Frank Berry,
Ruben Carbonell, Alicia Pérez, Linda Schmandt, Charles H. Taylor, Manuela Veloso,
José Garcl, and Richard Goodwin

There were many people who proof read portions of this thesis and helped me to improve
it. In addition to those previously mentioned I would like to also thank: Donna M.
Augusee, Yolanda Gil, Jacquelyn E. Joseph, James Kistler, and Lisa A. Payne.

A special thanks to the CS community at CMU. Many individuals in the community have
enriched my life.

And, finaily, thanks to AT&T Bell Laboratories for sponsoring my education through

the National Consortium for Graduate Degrees for Minorities in Engineering, Inc. (GEM)
program and Cooperative Research Fellowship Program (CRFP).

W&M

Dedicated to my parents,
Robert and Evelyn Joseph.
They gave me life, a thirst for
knowledge and the will to
persevere.

Table of Contents

Chapter 1 - Motivation. 1
1.1 Preview of Thesis 1

1.1.1 Example of a Domain Being Developed in APPRENTICE........... 2
6

1.2 Problem Outline
1.3 Significance of Research... 7
1.4 Results 8
1.5 Reader’s Guide 10
Chapter 2 - Related Work : 11
Chapter 3 - Appreatice Architecture 17
3.1 Prodigy 17
3.1.1 Operation of the Prodigy Planner 18
3.1.2 Prodigy Format 20
3.1.2.1 Defining Object Types 20
3.1.2.2 Defining Predicates and Operators 20
3.1.2.3 Defining a State 22
3.1.3 Example Trace 22
3.2 Domain Builder 24
3.2.1 High Level Window Description 24
3.2.1.1 Model Window 25
3.2.1.2 Relation Window 26
3.2.1.3 Operator Window 29
3.2.1.4 State Window 30
3.2.1.5 Problem Window : 32
3.2.1.6 Example Trace .33
3.2.2 Animation Algorithm ' 34
3.2.3 Primitive Elements for the Domain Builder 38
3.3 Framegraphics - Low Level Graphics 40
Chapter 4 - Empirical Analysis: User Studies ’ 45
4.1 Study 1: Coverage and Usability 45
4.1.1. Study 1: Hypothesis 46
4.1.2 Study 1: Procedure......... 46
4.1.3 Study 1: Results 47
4.1.3.1 Eight Puzzle Domain. 47
4.1.3.2 DNA Molecule Domain 51
4.1.3.3 Other Resuits 54
4.1.4 Study 1: Analysis 56
4.1.5 Study 1: Conclusion 58
4.2 Study 2: APPRENTICE Versus Emacs Study 58
4.2.1 Study 2: Hypothesis 58
4.2.2 Study 2: Procedure 58
42.2.1 Phase 1: Domain Building 59
4.2.1.1.1 Phase 1: Resuits 60
4.2.1.1.2 Phase 1: Analysis 61
4.2.2.2 Phase 2: Domain Understanding 62
42.1.2.1 Phase 2: Results 63
4.2.1.2.2 Phase 2: Analysis 64
4.2.3 Study 2: Analysis 65

4.2.4 Study 2: Conclusion 66

4.3 Leaming Study

66

4.4 Study 4: Medium Size Domain Building 66

4.4.1 Study 4: Hypothesis 67

4.4.2 Study 4: Procedure 67

4.4.3 Study 4: Results .67

4.4.4 Study 4: Conclusion 69

Chapter S - Domain Characteristics 71

5.1 Positive Domain Characteristics 71

5.2 APPRENTICE Limitations, 73

5.3 Techniques That Aid Large Domain Development 74

Chapter 6 - Conclusion 77

6.1 Summary of Findings : 77

6.2 Contributions of This Research 77

6.3 Future Work 78

6.3.1 APPRENTICE-assisted Search Control Rule Development........... 79

6.3.2 Seamless Environment: Visual and Textual Representation............ 81

6.3.3 Spatial Multidimensional Relations 82

6.3.4 Apprentice Techniques for Non-visual Domains 82

Chapter 7 - References 83
Appendix A - Resulits Chart from Study 1 A-1
Appendix B - DNA Domain Code. B-1
Appendix C - Selected Domains from Study 1 C-1
" Subject 1 C-2
Subject 12 C3
Subject 22 C-5
Subject 24 C-6
Subject 29 C-3
Appendix D - Information Given to Subjects in Study 2 Phase D-1
Prodigy and Domain Description D-2
Emacs/Prodigy Example Domain. d D-4
APPRENTICE Description D-7

Strips World Description D-10
Logistic World Description D-11

Appendix E - Questions from Study 2 Phase 2 E-1
Appendix F - Code for Medium Size Domain E-1
Appendix G - Learning Study Domains. E-1
Hiking World Description E-3
Robot Picking Tulip Description E-4

List of Figures

Figure 1.1 Several objects that are in a machining domain. 2
Figure 1.2 Some relations between objects in the machining domain. 2
Figure 1.3 State in the machining domain. 3
Figure 1.4 The put-part-in-vise operator in the machining domain 3
Figure 1.5 Other operators in the machining domain. 4
Figure 1.6 Sequence of operators in the machining domain to drill a hole in a part.......... 5
Figure 1.7 Diagram of typical knowledge acquisition process. 6
Figure 2.1 Table of differences among knowledge acquisition systems 15
Figure 3.1 Diagram of the APPRENTICE system. 17
Figure 3.2 Functional view of Prodigy. 19
Figure 3.3 IS-A Definitions for the blocks world. 20
Figure 3.4 Operator format. 21
Figure 3.5 Operators for the blocks world. 22
Figure 3.6 Problem Definition for the blocks world. 22
Figure 3.7 Partial solution trace in Prodigy for the blocks example domain 23
Figure 3.8 Model Window: editing the block-model object. 26
Figure 3.9 Relation Window: developing the On-Table relation 27
Figure 3.10 Relation Window: showing a negated connection. 28
Figure 3.11 Relation Window: showing a non-connection definition. 28
Figure 3.12 Pickup operator before code is generated. 30
Figure 3.13 Operator Window showing the Pickup operator with automatically

generated Prodigy code 30
Figure 3.14 State Window: defining Initial-State-1. 31
Figure 3.15 State Window: defining Goal-State-1 32

Figure 3.16 Problem Window: displaying the initial and goal state definitions................ 33

Figure 3.17 Visual animation showing blocks world problem being solved. These
are several snapshot views of state changes with applied operator or

backtrack command. 34
Figure 3.18 Animation diagram. 35
Figure 3.19 The Relation Window with the on relation 36
Figure 3.20 Adding the on relation to a state. The relative distance between the two
objects in the relation is used to determine object placement. 36
Figure 3.21 Framegraphics diagram. 41
Figure 4.1 Mlustration of eight puzzie game: Initial and final sme along with
intermediate moves, 43
Figure 4.2 Square and tile objects for the eight puzzie domain. 48
Figure 4.3 Relations for the eight puzzle domain 43
Figure 4.4 APPRENTICE definition of the move operator for the eight puzzie
domain. 49
Figure 4.5 Automatically generated Prodigy code from the graphically 49
Figure 4.6 An initial state for the three-puzzie in APPRENTICE and in Prodigy............ 50
Figure 4.7 A goal state for the three-puzzie in APPRENTICE and in Prodigy................ 50
Figure 4.8 Steps for solving the 3-puzzie. 51
Figure 4.9 Objects in the DNA molecule domain. 51
Figure 4.10 Relations in the DNA molecule domain. 52
Figure 4.11 Operators in the DNA molecule domain. 33
Figure 4.12 Initial problem state in the DNA molecule domain 54
Figure 4.13 Goal problem state in the DNA molecule domain. 54
Figure 4.14 Statistics for 32 and 29 subjects in study 1 56
Figure 4.15 Plot of subjects versus domain development times from study 1................. 57

Figure 4.16 Comparison plot of Study 1 domain elements with the 29 subjects............. 57

Figure 4.17 Phase 1 domain building time. The chart shows faster development
time for APPRENTICE than Emacs for all but the seasoned Prodigy

expert. 61
Figure 4.18 Ratio of domain building time (EM/AP)cccceveeecnnsererenensisnsusscsescesennaces 61
Figure 4.19 Graphical representations with a multiple-choice QUESHON.........ccocvevveencnnnnee 62
Figure 4.20 Textual representations with a multiple-choice question...........cccoevernecraneee 63
Figure 4.21 Results of Phase 2, showing much better undcrstandmg (fewer errors)

for APPRENTICE than Emacs. 64
Figure 4.22 Question 6 representing the move-block Operator...........ocoeveeenecrneevcccnenncne 65
Figure 4.23 Table of subject 2's domain building time. The domains were built in

order from left t0 FAZNLcuieinimriniisincstensrinecseiscsnsassicesssssssesccsraseras 66
Figure 4.24 Table of the elements that are impacted when an element is changed............ 68
Figure 5.1 Operator Window: machining domain organized at bottom of window......... 76
Figure 6.1 Example of a STRIPS world type domain.......ccccccccecrnnicacrerccrccennscescersanennnnnes 80
Figure 6.2 Example of possible control rule built with system assistance...........cccc....... 81
Figure 6.3 Currently APPRENTICE provides full data flow from the graphical

interface to Emacs, but only limited data flow from Emacs to the

graphical interface........ ettt b et sssasata ettt et st e s et et saenenaseasesnananes 81
Table A.1 Study 1 SUDJECEScccrecrerniiencninrinirisnisansesistsestssessssssssenssssssstnsensnsssasscrassansses A-2

Chapter 1 - Motivation

1.1 Preview of Thesis |

This thesis investigates the process of producing and exploiting graphically based
specifications of visual domains for a general purpose planning system. The central thesis
is that graphical specification helps both to reduce domain development time and to
improve the accuracy of knowledge capture. The knowledge acquisition (KA) problem is
presented and discussed in section 1.2.

This thesis sets out to:

« address the problems of ease, speed, and accuracy of knowledge
acquisition for highly visual planning domains;

* develop techhiques for providing knowledge acquisition access to
people with domain expertise but with no knowledge acquisition
skills;

« validate empirically these techniques across multiple domains and
with different user populations;

« incorporate new graphical knowledge acquisition methods into a
general purpose planning system without limiting its expressiveness.

A general paradigm has been developed for graphically defining a broad range of
planning domains that lend themselves to a visual represeatation. A system, called
APPRENTICE, has been developed, tested, and used to build many visual domains. Four
studies were done with APPRENTICE to evaluate its performance with multiple users and
numerous domains, as well as the evolution of the system's use over time. These studies
suggest that the APPRENTICE techniques help the user to decrease development time,
increase debugging efficiency, and comprehend existing domains faster.

1.1.1 Example of a Domain Being Developed in APPRENTICE

The APPRENTICE system tries to mimic some of the techniques that experts use to
convey domain knowledge to a student or an apprentice. When teaching a new domain the
expert first tries to systematically teach the student the objects, attributes, and relations in
the domain, thus establishing a common vocabulary. The expert and student can then
comfortably discuss this area of expertise. This technique can be used to develop many
different domains; but to illustrate this interaction, I will describe the development of a
portion of a machining task. This task is to d~velop a simple set of rules for drilling a hole
in a part. In Chapter 4, this domain will be expanded into a larger one.

When experts describe a domain they first start by defining the objects that exist in that
domain. Figure 1.1 shows different objects in the small machining domain. In this
example the expert uses these objects to talk about the domain.

ES H I .

Drill Part Vise Drill-bit Hole
Figure L.1: Several objects that are in a machining domain.

The pictures, along with the names of the objects, give the student a physical
representation. The drill, drill bit, vise, part, and hole are now part of the common
vocabulary between expert and student.

Once a subset of the objects is defined, the expert can describe how these objects relate to
oneanother InFigure 1.2 the relations between the objects in our machining domain are

L..L

Viss ona Dl Vi.lnﬂqsl’n Hole in Past Dril}-bit in drill
Figure 1.2: Some relations between objects in the machining domain.

Page 2

These relations allow the expert to discuss how objects interact with one another. Again,
the pictures and text allow the student to form a visual representation of relations. These are
similar to the way the expert thinks about the object interactions.

With the objects and relations defined, the expert can then discuss conjunctive sets of
relations or states. Figure 1.3 depicts a state in the machining domain. This figure
represents the set of relations: vise on a drill, vise holding a part, and drill-
bit in the drill.

Figure L3: State in the machining domain.

This representation makes it relatively easy to visualize what is actually done in a
machining shop. The expert is now able to discuss the machining domain based upon the
expert’s knowledge developed over time.

The expert can now discuss operations that, when applied, change the state. To describe
these operators the expert first defines a pre-state (a state that has to exist before the
operator can be applied), and then a post-state (a state that exists after the operator has been
applied). In Figure 1.4 a simple operator, put -part-in-vise, is developed. This operator
depicts the process of putting a part into a vise.

Pre-State Post-State
Figure 1.4: The put -part-in-vise operator in the machining domain.

Page 3

The pre-state defines the conditions which are necessary before the operator can be applied:
the vise must be on the drill and the drill bit must be in the drill. If these relations are true in
the state then the operator can be applied and the state changed to reflect that the part is in
the vise. These pre- and post-states represent the preconditions and the state transition for
the put-part-in-vise operator. Figure 1.5 shows some other operators that are defined
in a similar way (put-drill-bit-in-drill, put-vise-on-drill, drill-hole-in-
part).

- L LJL

Put-drill-bit-in-drill Put-vise-on-drill

Pro-Sum Pon-Sue
Drill-hole-~in-part
Figure LS: Other operators in the machining domain.

Finally, this information can be used by a planner to produce a sequence of operators that,
when applied, will transform an initial state into a final state. The planner does this by first
determining which operators achieve a goal and, if they are not applicable, which operators
establish the pre-state of the previously related operator. This continues recursively until a
sequence of operators is found that is both applicable to the initial state and achieves the
goal. This process, called Means-Ends Analysis [Newell 72] may mean that the system
has to try several alternative operator applications. Figure 1.6 illustrates one set of state
transitions that the planning system took to solve the machining domain problem earlier
defined.

el orsy | oy
Apply Op Apply Op
Iaitial Stase Put-vise-on-drill Put-drill-bit-in-drill
®
Apply Op: Apply O
Puc-parc-in-vise Drill-hole-in-part
Goal State Achieved

Figure L.6: Sequence of operators in the machining domain to drill a hole in a part.

Each square represents the current state of the problem after the operator under the picture
has been applied. Note that the initial state is composed of a part, a drill bit, a vise and the
drill unassembled; the goal state is to have the part with a hole in it. The sequence of
operators determined in Figure 1.6 to transform the initial state into the goal state is:

1) put-vise-on-drill

2) put-drill-bit-in-vise

3) put-part-in-vise

4) drill-hole-in-part

As the planner tries to find a solution, the expert can monitor the planner's progress. By
monitoring the planner the expert can detect erroneous or incomplete knowledge. This
helps with debugging domains, which is a significant part of domain development. The
expert can also verify a sequence of operators by applying the operators one at a time.

APPRENTICE allows the expert to specify domain information similar to the domain

description previously outlined. APPRENTICE, of course, handles significantly more
complex domains as well. Chapter 3 describes this process in detail.

Page §

1.2 Problem Qutline

Expert systems are increasingly being used in business and industry. The development of
these systems requires the acquisition of knowledge from experts, a very time-consuming
process for both domain experts and knowledge engineers. This knowledge acquisition
(KA) process has been characterized as "the transfer and transformation of problem-
solving expertise from some knowledge source to a program” [Buchanan 83). By making
the KA process faster and easier for experts, the domain development time and expense
will be reduced.

Machine learning methods are helping to automate knowledge base development and
improvement [Minton 88]. Nonetheless, initial domain development has heretofore been
manual, and humans are still needed for domain refinements. Developing domains can be
very difficult and time consuming, especially when the development tool does not reflect a
simpie mapping from the external domain to the system's user interface.

—Quostions
R
owledgel‘Expen
| Knowiedge
|
- ' 5
Knowledge | & : &
Base E
: | g v d
Inference s | A
__Engine l
*
Expert System '

Figure 1.7: Diagram of typical knowledge acquisition process.

Knowledge base development is an interactive process. This is depicted in Figure 1.7. The
role of the expert is to impart domain knowledge for the knowledge engineer to encode
into the knowledge base. The knowledge engineer and the expert may be the same person
or different people and they work towards developing the knowledge base. The knowledge

Page 6

engineer has the responsibility of translating the expert-knowledge into a representation for
the expert system. If this representation is very different from the expert’s representation
then there are opportunities to introduce and propagate errors. These errors and
misconceptions required diagnosis and correction, and thereby add to the development time
of a domain.

In order to make this human development process more efficient, tools are needed to
facilitate the initial domain specification, to aid in finding erroneous or incomplete
information in a domain, and to help in correcting that domain information. This should be
done within a paradigm that represents knowledge in a way experts can use and
understand. This thesis examines a restricted type of knowledge acquisition that non-
computer experts can use. I focus on the human interactive process involved when an
expert develops a knowledge base for a planning system where the domain is composed of
physical or mental objects being manipulated.

A graphical knowledge acquisition tool aids in domain development. The expert
communicates with the computer in a way similar to the way an expert understands a
domain, and the computer is responsible for transforming the information into a form that
it can use. Also, having the computer communicate back to the expert in terms that the
expert is more familiar with better enables the expert to debug and enhance the system's -
knowledge.

By focusing on the acquisition of knowledge for visual planning tasks in an
expert/apprentice interaction, I show how knowledge base development can be facilitated
graphically and improved for a range of users, including domain-knowiedgeable but
System-novice users.

1.3 Significance of Research
The research in this dissertation makes four significant contributions:
* a new knowledge acquisition methodology is developed for visual domains to
decrease development time,
« the techniques can be applied by users without knowledge acquisition skills,
* the methodology is implemented and tightly integrated with a planning system
(Prodigy), B ’

Page 7

« the methodology is tested by building multiple domains and using multiple subjects
with varying skills.

The new graphical approach to knowledge acquisition allows the expert to reason about
domain building in a way similar to how the expert thinks about the domain. These general
techniques can be separated into basic elements for developing domains for a general
expert system. With these techniques, the expert communicates with the system in a way
that is comfortable to the expert; therefore, knowledge acquisition takes less time to
complete. Also, the domain development can be done by experts that are not familiar with
planning systems. This is radically different from other knowledge acquisition systems
which provide detailed insight into the expert syswm, but in a way foreign to the actual
domain. In such systems the expert or knowledge engineer is responsible for translating
domain knowledge into the representation that the system expects.

The techniques developed in this thesis are used in building a working system that is tightly
coupled with a planning system. This development allows proof of concept, testing of
ideas, and enhancement of the methodology. Also, unlike knowledge acquisition tools that
require a separate program to run the domain, APPRENTICE allows interactive domain
development within a planning system. The system is tied directly with the planning
system so that the results of a developed domain can be run on the system instantaneously.
This is similar. to using an interpretive language like LISP for development.

Once the system was developed, several experiments were designed and conducted to
determine whether the ideas postulated in the thesis were true. These studies were done
with different types of users doing different tasks. Resuits from these studies showed that
different types of people were able to understand, build, and debug domains. The
productivity of subjects was shown to be higher, and the subjects also found
APPRENTICE more understandable than conventional methods.

1.4 Results

The primary contribution of these studies is to demonstrate the range of application and the
efficiency of APPRENTICE. Most domains were acquired fully with the graphical
interface, and acquisition speed proved faster for all types of users except Prodigy experts.

Page 8

To investigate the claim of the thesis, four studies were performed. These studies tested the
versatility, flexibility, and usability of the APPRENTICE system with multiple subjects in
the development of several domains.

In the first study, APPRENTICE was used to build a diverse set of user-defined domains
by 32 novice users. The users built domains of their own choosing. It took each user
between one and 4.5 hours to construct a simple domain. All users succeeded in building
functional domains, thereby proving the breadth, usability, and versatility of
APPRENTICE.

In the second study, the APPRENTICE system yielded faster development time than
conventional methods for several types of users. This was a comparison study with four
sets of subjects with varying computer skills. Their skills ranged from novice computer
users to advance planner experts. The development time of building a domain in
APPRENTICE was compared with the development time using a text editor (Emacs). All
but the most seasoned planner experts built domains significantly faster in APPRENTICE
than in Emacs. Another phase of this study tested the ability of subjects to understand
domains developed by others. This ability is important in domain development and system
maintenance. The subjects understood the graphical representation of a domain more
accurately (i.e., they answered a set of questions about the domain more correctly) than
they did for a comparable textual representation. This study proved the effectiveness of
APPRENTICE in actual usage and validated the graphical KA paradigm for some

important domains.

In the third study, APPRENTICE was used by one user to build a medium size domain
that had 33 objects, 77 relations, and 34 operators in it. For this domain the graphical
representation helped to earich the development process. The pictures acted as visual cues
in helping the subject develop the domain. For example, it was easy to recognize and
correct the situation that a drill did not have a drill bit when creating the drill operator.
Another advantage was that the graphics helped the user to remember the context in which
he was working when he came back to the work after an interruption.

Finally, the last study was done with one user building several similar domains over time.
In this study the user took longer to build the first domain but less time to build subsequent
domains. This indicates that, as users build domains in APPRENTICE, their productivity
increases.

Page 9

These studies provide an indication of the merits of the APPRENTICE system. The
system has been used:

* by multiple users

* to developed muitiple domains

* over a period of time

* to developed a medium size domain.
Overall APPRENTICE was successfully used by 41 different people and 41 distinct
domains were developed. These study results help to support the thesis of this dissertation.

1.5 Reader's Guide

Chapter 2 compares the research of this thesis with other, related work. Chapter 3 describes
the implementation of the system. In Chapter 4 the empirical studies are explained and the
results shown. Chapter 5 summarizes what I learned, and Chapter 6 draws some
conclusions. The Appendices contain supporting material and are not needed in the
understanding of the concepts reported in this thesis. Nevertheless, the information they
contain may be of interest to some people, such as those attempting to replicate or expand -
upon the APPRENTICE system. '

Page 10

Chapter 2 - Related Work

The design and implementation of APPRENTICE draws upon ideas from several
disciplines: user interfaces; visual programming and visual languages; machine learning;
and, the most obvious, knowledge acquisition. The first three disciplines complement my
work and have provided fertile ground from which to borrow many techniques. [will
discuss some of the techniques that I used. The last discipline, knowledge acquisition has
also provided many advantages to my work and helped me to explore new ideas. I will
contrast my work with others in the area of knowledge acquisition.

User Interface

Techniques from the field of user interfaces were used to develop the human computer
interaction for the APPRENTICE system. Direct manipulation was the basis for the
interface design. This gives users, both novice and expert, an intuitive feel for how to use
the system. User actions cause immediate reactions which are easy to relate to.

With the user interface several different types of interfaces were used. Techniques
supported by MacDraw [MacDraw 89] were adapted to develop the user-defined objects.
This provides users with an easily understood interface for creating simple graphical
objects. Icon manipulation enables production of other domain elements with these objects
as building blocks. This allows users shortcuts for developing relations between the objects
represented as icons [Macintosh 87]. The interface also strives for consistency, user
feedback, handling of user mistakes, a simple display and actions that have quick feedback.
These are important qualities of a good interface design. These and other techniques are
described in much of the literature (Goldberg 80] [Shneiderman 86] [Cardelli 88] [Myers
92].

Visual P . { Visual |
Visual programming and visual languages are orthogonal fields of study that benefited

APPRENTICE. The goals of Visual Programming are to create working programs [Cox
89), systems ({Ichikawa 87] {Fischer 88] or investigate ideas (Henderson 86] [Gutfreund
87]. These are different from the goal of APPRENTICE, which is to develop domains for

Page 11

a planning system. One difference in the way that APPRENTICE works is that most
visual programminy systems have a predefined set of icons, and therefore the users have to
conform their thinking about the system in the way that the software designers had in
mind. To aid in domain development, APPRENTICE provides the user with the ability to
define the objects of the domain in a visual representation that corresponds closely to the
physical world. This allows the user a comfortable environment to work in, where ideas
representing physical relations do not have to be transformed into an unrelated

representation.

The advantages of animation have been demonstrated by systems such as BALSA-I
(Brown 84], BALSA-II [Brown 88], Animus [Duisberg 86], and STEAMER [Hollan
84]. Animation is also used in APPRENTICE to give the user feedback when the system
is solving a problem.

Machine | .
Machine learning is another field of study which has had influence on my work. Currently,
machine learning research cannot create initial domain information without the aid of a
human. Automated learning methods allow knowledge that has already been encoded to be
refined. This can be achieved by decreasing the search space as with EBL [Minton 88], by
statically compiling knowledge [Entzio 90], by using abstraction techniques [Knoblock 90]
or analogous plan usage [Veloso 92] or by adding information to an already existing
knowledge base as with experimentation [Gil 92]. APPRENTICE is a tool that helps with
initial domain formulation, and therefore could be a useful complement to machine
learning systems.

Also, search control rules [Minton 89] (which can be learned by different methods [Minton
88] [Entzio 90]) could be directly used in APPRENTICE to decrease search time.
Currently, no matter how these search control rules are obtained they can be used with
APPRENTICE.

Koowledee Acquisiti
In the knowledge acquisition field several techniques have been used to try to elicit expert

knowledge, and map that knowledge into expert system primitives.

Page 12

Alexander et. al. [Alexander 87] have developed a technique called ontological analysis or
SUPE-SPOONS which aids in knowledge-level analysis of a problem space. The analysis
divides domain knowledge into three categories:

1) Static Ontology - physical objects or primitive objects in a problem space, their
properties and relations.

2) Dynamic Ontology - state space of the problem-solving domain and the actions that
transform the problem from one state to another state. '

3) Epistemic Ontology - constraints and methods that control the use of knowledge
applied to the static and dynamic ontologies.

Complex domain ontologies are constructed in a three-step process in the order that the
categorics are presented. The system ASTEK (Jacobson-90], based on the SUPE-
SPOONS research, provides multipie paradigms for knowledge editing while maintaining
a single consistent framework. This knowledge editing is in the form of natural language
and graph editing techniques.

The ontologies created with the system are very similar to the workings of APPRENTICE.
The static ontology parallels object and relation definitions. The dynamic ontology is like
the operator definition. The epistemic ontology is similar to search control rules. Like the
ontological analysis technique, APPRENTICE builds its knowledge base in similar stages.
APPRENTICE attempts to capture and exploit both the visual and semantic domain
knowledge.

Systems that take different approaches include: KREME [Abrett 87] a knowledge
representation editing and modeling environment; KRITON [Diederich 90] a hybrid
systera that uses interview, protocol analysis, and incremental text analysis; and
AQUINAS [Boose 87] a system that interviews experts to build tables of distinctions or
repertory grids between elements. The systems fall into the following information
gathering techniques:

» Visual and Semantic Acquisition (APPRENTICE)

» Interviewing and Protocol (KRITON)

* Clustering or Scaling (AQUINAS)

* Natural Language Systems (ASTECK , KRITON)

* Visual Graphs of Underlying Data Structure (KREME)

Page 13

PROTEGE [Musen 88] has had success providing a graphical program for developing
graphical knowledge acquisition and editing tools. These knowledge acquisition tools elicit
knowledge for the domain independent planner e-ONCOCIN, which uses the method of
skeletal refinement for problem solving. PROTEGE has been used to create KA tools for
oncology protocols (p-OPAL) and hypertension protocols (HTN). With the KA tools,
doctors, without the aid of knowledge engineers, can create expert systems to advise in the
treatment of oncology and hypertension. The interface to these knowledge acquisition tools
uses form filling and graphical flow chart building to elicit the domain knowledge. Unlike
APPRENTICE, PROTEGE is not integrated with the target expert system. Also,
PROTEGE's domain is more limited, aithough the authors are currently expanding the
system into PROTEGE-II. Finally another important difference is that PROTEGE is not a
system for developing planning domains.

QMR-KAT [Giuse 90] is another system for knowledge acquisition in medicine which lets
experts build knowledge bases without a knowledge engineer to act as intermediary. The
QMR knowledge base is one of the most comprehensive knowledge bases in use for
medical decision support for diagnosis of internal medicine diseases. Knowledge base
information consists of textual descriptions of a disease called disease unit. This
representation is different than the visual approach of APPRENTICE, and of course the
QMR system is not a planning system.

There are other knowledge acquisition systems that take a different approach than
APPRENTICE. MORE [Kahn 85] is a system which automatically interviews experts for
the information they use to solve diagnostic problem. ASK [Gruber 89] is a system that
elicits justifications from experts and generates strategy rules. It is used with the system
MUM, which is a knowledge system that concentrates on the strategic aspects of diagnosis
of chest pain. DACRON [Mahling 89] is a visual knowledge acquisition tool for the
POLYMER planning system. SALT [Marcus 86] is a system that assists in knowledge
acquisition for incremental design tasks such as configuration. The system uses a propose-
and-revise problem solving strategy. ROGET [Bennet 85] is a program to assist
knowledge engineers and domain experts in developing EMYCIN-based expert systems.
KNACK ([Klinker 88] is a knowiedge acquisition tool for building knowledge bases to
generate reports. This system is interesting because it is sampie-based: the expert provides
a sample report, and the system analyzes and generalizes the sample.

Page 14

To help explain some differences between the above systems, six system characteristics are
outlined below. These characteristics are then shown in a chart for comparison.

Feedback Type - type of feedback the system gives (textual, animated, graphs).

Knowledge Developed - type of knowledge the system can acquire (static and/or dynamic
knowledge).

Domain Type - types of domains the system is used for.

Generate-Test Cycle - development done in generate and test mode in conjunction with the
target expert system.

Mode Type - system-directed acquisition or user-directed acquisition.

Knowledge Acquired - acquire incremental, factual and/or better performance knowledge.

APPRENTXCE | MORE ASK QOPAL DACRON §ALT ROGET
Feedback Animated | Text Text Form Fill Icons Text Text
[Type — __ Flowe? s - —
Knowledge | Static Dynamic Dynamic Bo1 Both Both Both
| Developed | - —
Domain Visual Diagnostics | Medical Medical Hierarchical | Constraint | Classificati
Type Planning Satisfaction | on Problem
Generate- Yes Yes Yes No Yes No No
Test Cycle
Mode User System System User* User System® System
Knowledge | Factual Incremental | Incremental | Factual Incremental | Incrementai | Incremental
LAcquired

QMR-KA‘I‘ KNACK
Feedback Text Text
| Type : :
Knowiedge | Static Static
Developed
Domain Medical Report
Im Diagnostics | Generation
Generate- Yes No
Test Cycle -
Mode Type | Both Both
Knowledge Incremental | Incremental
LAcquired

* No interaction with expert system
Figure 2.1: Table of differences among knowledge acquisition systems

Finally, knowlcdge base development environments such as KREME [Abrett 87],
ONTOS [Nirenburg 88], and CYC [Lenat 86] elicit mostly static or factual knowledge.
These systems investigate how to organize and maintain large knowledge based systems.
Handling large knowledge bases is a future direction of the APPRENTICE system.

Page 15

The major difference between APPRENTICE and other systems is that APPRENTICE
enables users to model the physical world with their own defined representations. Also, the
APPRENTICE system is interactive with the Prodigy planning system providing a closed
loop for development and utilization of a knowledge base. Although the planner and
acquisition tool are integrated the APPRENTICE techniques are also described
independent of a planning system. '

_Page 16

Chapter 3 - Apprentice Architecture

The APPRENTICE system can be subdivided into three components: the graphical
interface component, Framegraphics; the domain building component, Domain Builder,
and the pianning system, Prodigy. I built the Framegraphics system and the Domain
Builder for this research. Figure 3.1 depicts the relationships among the components in
more detail. In this chapter, I will discuss in some detail the varicus components of the

system.

prodjgy | The PRODIGY Planning System]
Figure 3.1: Diagram of the APPRENTICE system.

3.1 Prodigy

Prodigy [Minton 89] is a domain-independent problem-solver system used primarily as a
testbed for research in planning, machine learning, and knowledge acquisition. It uses basic
means-ends analysis in planning for high-level, symbolic domains. Since its inception, the
Prodigy system has continued to develop. The first version of the system, Prodigy 2.0,
was a linear planner (i.e., it did not allow interieaving of goals) [Minton 89]. The next

Page 17

version of Prodigy, Nolimit, was a non-linear planner which provided interleaving goals
[Veloso 92]. The syntax of the two systems is slightly different, with the biggest difference
being that Nolimit requires all objects used in a domain to be explicitly defined in the
syntax (see section 3.1.2).

The basic design of APPRENTICE was able to accommodate both planners.
APPRENTICE was first developed using Prodigy 2.0 but now works with Nolimit.
Porting APPRENTICE to the different problem solvers required very little modification.

The basic functioning of APPRENTICE with a problem solver will be discussed later.
This section will outline the Nolimit Prodigy planner. Then a simple trace of the planner
solving a problem will be described; and finally, an outline of the input language will be
presented. This is the planner which was used in the studies described later.

3.1.1 Operation of the Prodigy Planner

A domain theory in Prodigy consists of operators, inference rules, and search control rules.
These rules are essentiaily If-Then rules. The left-hand sides of these rules are represented
by a Prodigy Description Language (PDL). This language is a form of first-order predicate
logic. PDL allows conjunctions, disjunctions, negations, and existential and universal
quantifications. APPRENTICE automatically generates conjunctions and existential
quantification from its pictorial representation. A disjunction can be modelled as multiple
rules, and negations can be represented explicitly. Universal quantifications are not
automatically generated by the APPRENTICE system but can be added manually to the
generated code. Thus far, none of the domains that were built in APPRENTICE needed
universal quantification. Therefore a lot of resources were not devoted to developing a

simple way to generate and depict universal quantification graphically.

Operators and inference rules are factual knowiedge that modifies the state as the planner is
solving a problem. Although inference rules do not correspond to external actions, they can
be modelled as operators. On the other hand, search control rules are control knowledge
that directs the search for the solution. This thesis deals mainly with the creation of factual
knowledge. Developing search control knowledge is discussed in section 6.3.

Operators have three parts: the parameter list, the preconditions, and the effects. The effects
part of an operator either adds or deletes a predicate from the state. When given an initial
and goal state along with a domain definition, the Prodigy planner tries to determine a

Page 18

sequence of actions (in~tantiated operators) that when applied in a given order will change
the initial state to achieve the goal state. The search tree initially begins with a single node
representing a set of state predicates in the initial state and a set of goal predicates to be
achieved. To move from the initial state to the goal state, the tree is expanded by repeating
two phases: the decision phase and the expansion phase.

The first step during the decision phase is to choose a node. The second step is to choose a
goal to focus on, which becomes the current goal. The third step is to choose an operator to
achieve the current goal. The final step is to choose bindings for the variables in the
operator (this is called instantiating the operator). The default search strategy for this
decision process is depth-first search but can be guided by search control rules. These
search control rules are used to prune the search tree [Minton 89].

Initial State & Goal State
GOAL SET
Goal Set ST
&
State
. h 4
r h
Control Select Goal =
Rules No | Back-
— Operator? o 7
\. J
YES
. h
Satisfy Operator?
APPLY
LoPERATOR
Figure 3.2: Functional view of Prodigy.

During the expansion phase a new node is created. If the instantiated operator's
preconditions are satisfied by the state, then the operator is applied. Otherwise, the system

Page 19

subgoals (changing the current goal) on an unmatched precondition: adding the old current
goal to the set of goals that are pending; or subgoals on a previously unachieved goal.

When a state is achieved in which all of the top-level goals are satisfied, the problem is
solved. Figure 3.2 shows a high level flowchart of the Prodigy system.

3.1.2 Prodigy Format

Writing a domain in Prodigy requires several steps. The user must create object prototype
definitions, predicates representing relations among objects, operators, instances of objects,
start states, and goal states. An example of a domain being built will be shown using a
slight variation of the blocks world domain. The blocks world domain consists of a set of
blocks that can be stacked on/unstacked off each other or put-down on/picked-up off the
table. In this blocks world the table and the arm are represented explicitly.

3.1.2.1 Defining Obiect T
Object definitions for a domain are defined with the “is-a” function. These definition types
tell Prodigy the name of the objects in the domain. In the example blocks world, the user
will need block objects, table objects, and arm objects. An object definition has the
following format: (1S-A object-name TYPE). In this example, these objects are defined
as follows:

{IS-A Block-model TYPE)
(1S-A Table-model TYPR)
(IS-A Arm-model TYPE)

Figure 3.3: IS-A Definitions for the blocks world

3.1.2.2 Defining Predicates and Operators

The operator defines legal transitions between states. Each operator has a precondition that
must be satisfied before the operator can be applied and an effects-list that describes how
the application of the operator changes the state. Specifically, the effects-list indicates the
atomic formulas that are added to and/or deleted from the state when the operator is
applied. These preconditions and effects are represented by predicates. Predicates represent
relationships between objects. In order to allow an operator to work in a generic way, the
predicates use variables. These variables match different objects in the state definition. "<"
surrounding a name represents a variable. An operator format is shown below:

Page 20

(OPERATOR name-of-operator

(PARAMS
((<varl> typel)
{(<var3d> typel)
{<var3> typeld) ...)

(PRECONDS

' (AND (predl <varl> <varls)
(pred2 <var2> <varld»))..)

(RFPECTS

((DEL (predl <varl> <var>))
(ADD (pred3 <vari> <var3»))) ...)

Figure 3.4: Operator format.

Operators in the blocks world are defined in Figure 3.5. Consider the operator Pick-up. In
its PARAMS list the variable <ob> is of type block-model, <table> is of type table-
model, and <arm> is of type arm-model. In the precondition, the predicate (clear <obs)
checks that the block <ob> has nothing on top of it; the predicate (on-table <table>
<ob>) checks to see if the variable <ob> is on the <table>; and the predicate (empty
<arm>) checks that the <arm> is empty. Finally, if all of these predicates are true for a
particular block, table and arm in the current state, then the matching block is picked up off
the table by the arm. Also the predicates in the effect list update the state by deleting/adding
the relevant predicates.

(OPERATOR PICK-UP .
(params ((<ob> BLOCK-MODEL)
{<table> TABLE-MODEL)
(<arm> ARM-MODEL)))
(preconds (and (clear <ob>)
(on-table <table> <ob>)
(empty <arm>)})
(effects ((del (on-table <table> <ob>))
(del (clear <aob>))
{del (empty <arm>))
(add (holding <arm> <ob>)))))

(OPERATOR UNSTACK
(params ((<ob> BLOCK-MODEL)
{<underob> BLOCK-MODEL)
{(<arm> ARM~MODEL))))
(preconds (and (on <ob> <underob>)
(clear <ob>)
(empty <arm>)))
(effects ((del (on <ob> <underob>))
{del (clear <ob>))
{add (holding <arm> <ob>))
(add (clear <undercb>)))))

(OPERATOR PUT-DOWM

{paxams ((<ob> BLOCK-MODEL))
(<arm> ARM~MODEL)
{(<table> TABLE-MODEL)))

{preconds (holding <arm»> <ob>))

(effects ((del (holding <arm> <ob>))
(add (clear <ob>))
(add (empty <arm»))
(add (on-table <table> <ob>)))))

(OPERATOR I9TACK

{params ((«<ob> BLOCK-MODEL)
{<underob> BLOCK-MODEL)

Page 21

(<arm> ARM-MODEL))))
(preconds (and (clear <underob>)
(holding <arm> <ob>)))
(effects ((del (holding <arm> <ob>))
(del (clear <underob>))
{add (clear <ob>))
(add (on <ob> <undercb>)))))

Figure 3.5: Operators for the blocks world.
1.1.2.3 Defining a Siate
After the domain is developed, the problems that the user wants to solve must be defined.
A particular problem is defined by instances of objects, a start state, and a goal expression,
which is a subset of the entire goal state. Below is a problem in the blocks world. The
instances are A, B, C, A_Table, and An_Arm. The goal is to get A on A_Table, B on A,
and C on B. The start state has Blocks A, B, and C on A_Table and An_Arm empty.

(BAS~-INSTANCES Block-model A)
(HAS~-INSTANCES Block-model B)
(HAS-INSTANCES Block-model C)
(HAS-INSTANCES Table-model A_Tablae)
(HAS-INSTANCES Arm-model An_Arm)
(GOAL (On B A)
{om C B)
{On-table A))
(STATE (AND (On-Table A_Table A)
{On-Table A_Table B)
(On-Table A_Table C)
(Clear A)
(Clear B)
(Clear C)
(Ewpty An_Arm))))

Figure 3.6: Problem Definition for the blocks world.

3.1.3 Example Trace

Using the domain and problem definition from the previous section, Figure 3.7 depicts a
partial solution trace of the Prodigy planner. The planner uses means-ends analysis to solve
the problem. The planner first determines which operators achieve the final goal. If the
operators are not applicable, it then determines which operators establish t.:e pre-state of the
previously related operator. This continues recursively until a sequence of operators is
found that is applicable to the initial state and achieves the goal. |

The trace shows a segment of the solution path in which the system backtracks. Each litie
contains information about the step in the means-ends analysis being fried. The Tn#
displays the node name of the solver’s current position. The next part of tae line is either a
goal to be worked on, an instantiated operator to try and satisfy, or an operator to apply.

Page 22

The applied operators are capitalized. If there are additional choices available at a particular
node that information is displayed in the form of a list (e.g., goal-choices-left or ops-left).

The first part of the partial trace, starting with the *****, does not succeed because it cannot
satisfy the goal (on b a) with ¢ already stacked on b. This causes a condition where a state
would be repeated and the solution search would end up in an infinite loop, therefore the
system backtracks and reorders the top level goals. With this reordering, the second part of
the trace leads to a solution. The solution found is listed at the end of the trace.

After several other attempted solutions during problem solving

.
A X2 AR 22222222 X)

tnl (done)
tn2 (*finish*)
I tnd (on ¢ b)

| goal-choices-left: ((on b a))
| tnd4d (stack b c an_arm)
! | tnS5 (holding c an_arm)
| | tné (pickup an_arm c a_table)
(| ops-left: ((unstack b ¢ an_arm) (unstack ¢ ¢ an_arm) (unstack a ¢
an_arm))
| | TN7 (PICXUP AN_ARM C A_TABLE)
| TN8 (STACK B C AN_ARM)
| tn9 (on b a)
| tnl0 (stack a b an_arm)
| tnll (holding b an_arm)
| tnd8 (unstack a b an_arm)
*o® STAT! mop '

(122422224 BACKTRACK T mng Tz LA 2222 ALl L]

tn2 (*finish*)

| tn56 {(on b a)

| tn57 (stack a b an_arm)

I | tn58 (holding b an_arm)

| 1 tnS9 (pickup an_arm b a_table)

(] ops-left: ((unstack b b an_arm) (unstack ¢ b an_arm) (unstack a b
an_arm)) .

| | TN60 (PICKUP AN_ARM B A_TABLE)

| TN61 (STACK A B AN_ARM)

| tné2 (on ¢ b)

| tné3 (stack b ¢ an_arm)

!} | tn64 (holding ¢ an_arm)

I | tn6éS (pickup an_arm ¢ a_table)

[ops-left: ((unstack b ¢ an_arm) (unstack ¢ ¢ an_arm) (unstack a c
an_arm}) :

| | TN66 (PICKUP AN_ARM C A_TABLE)

| TN67 (STACK B C AN_ARM)

TN68 (*PINISH*)

L AAAAAZ AL 222222222 22 2]]

This is the solution found:
{(pickup arm b table)
(stack a b arm)
{pickup arm ¢ table)
(stack b c arm)
(*finish*)

Figure 3.7: Partial solution trace in Prodigy for the blocks example domain.

Page 23

3.2 Domain Builder

The domain builder allows an expert to graphically represent and create a domain. This
graphical process resembles an expert's experience more closely than writing a domain in
textual form as described in the previous section. Once a graphical domain is defined, the
domain builder then automatically translates this graphical representation into PDL, which
is loaded and run in the Prodigy planner. The graphical system is tightly integrated with the
planner, providing intuitive domain development. This section outlines the implementation
of graphical knowledge acquisition, then discusses the primitives that are needed for the
process independent of the actu:: implementation.

3.2.1 High Level Window Description

In developing a domain using the domain builder, several things have to be defined:
objects, relationships between the objects, operators to change sets of relationships, and
initial and goal states for defining problems. In the domain builder, separate windows are
used to develop each particular element. The windows are:

Model Window - Allows objects in a domain to be defined.

Relation Window - Allows relationships between objects to be defined.

Operator Window - Allows state changes to be defined.

State Window - Allows the definition of a start state and a goal state.

Problem Window - Allows the setup and running of a problem to be
solved.

Apprentice Window - Allows the manipulation of a domain.

The four subcomponent windows (object, relation, operator, and state) are used to define a
domain. The Problem Window is used to create a problem that will be run in the Prodigy
planner. The Apprentice Window is used for domain manipulation: saving, deleting, and
loading domains.

All the windows have a similar MacDraw™[MacDraw 89] style interface, which is
mouse- and object-oriented. This similarity allows the user to interact with each window in
a consistent manner. A single mouse "click” selects an object; "click and drag" moves an
object; and "double-click” allows an object's name to be edited or a domain element to be
made available for editing. Windows are reconfigurable. All objects in the window can be
easily moved, and their locations saved, so that each window can be customized to a user's

preference.

Pags 24

Each window has a work area in which a particular domain clement type (objects,
relations, operators, and states) can be developed. This work area allows elements to be
developed one at a time. For example, in Figure 3.8 the Model Window's work area is
used for building a block object. To build or modify a different object, the block object is
iconified and another object can be manipulated. This iconifying process takes the sub-parts
of the current element from the work area and represents all of the information in a single
name that can be placed anywhere on the screen. An element can be edited again by double
clicking on its iconified name. This action places the original element in the window, and
the sub-parts of the double-clicked element are put into the work area ready to be modified.

3.2.1.1 Model Window

The Model Window is used to create prototype objects of the domain along with
connection points (i.e., location in which the objects will interact with one another). These
objects are then used in defining relations, operators, and states. The work area allows one
object at a time to be developed. The work area has a very simple object-oriented drawing
package type interface. /i: this work area lines, text, instance names, and connection points
can be added, deictad, or edited for an object. Each element in the work area can be
manipulated. To create a particular element type, the user selects the corresponding box
from the palette on the left of the work area. In Figure 3.8, the box element has been
selected.

Once all the modifications to an object are made, then the resuits can be saved, thus
incorporating the changes into the prototype object. Objects can also have attribute
information attached to them. Attributes are added to objects by double clicking on the
Attr: field. This brings up a popup editor which allows attribute information to be added.
This attribute information is specified by an attribute name and the variables with type
definitions that follow. In Figure 3.8 the attribute of the block is weight, and its value is
some number. During the generation of a state or operator this attribute will translate into
(weight <blockx> <lbs>). Each individual object can be edited to include or exclude
auributes.

Page 25

MODEL-WINDOW
Object: Block-Model
v Exototuns ChisS Agr: (weight <Ib<>:mmumber-type)

<

Hork Araea (inside boundary)

A

N
i

e |

S T
IR

[[] Delete 1net

.

Table-Modei

i - 2

SR R e
Fignre .82 Model Window: editing the block-model object.

R R

1.2.1.2 Relation Window

The Relation Window allows the user to build relations between objects and automatically

generates a predicate from the objects. These relations are used in the automatic code
generation during the operator and state definition. This allows users to define much of the

rule and state knowledge graphically, and the system is able to check and flag

inconsistencies in the definitions. Figure 3.9 is an example of the Relation Window.

In the Relation Window, object prototypes that the sysiem knows about are pictured
around the outside of the work area. These objects can be moved by the user to any
position outside the work area. Relations are defined by dragging prototype objects, one at
a time, into the work area. This produces instances of the objects. Instances are then
connected together by their connection points to represent the relation. This visual picture
transiates into a textual list of the relation name and the objects in the relation. This textual
representation is a predicate in PDL. These predicates are used in operator and state
efiniti

Figure 3.9 represents the relation on-Table between a block and a table. The block and

table are connected together at their connection points. This connection is designated by a
line joining them. During the state and operator definitions, whenever a block and a table

Page 26

are connected together in this fashion, the on-Table predicate will be automatically
generated.

To the left of the work area are the object prototypes that were created in the Model
Window. At the top of the window are two relations that have already been defined: on and
Holding. The machine-generated PDL predicate (on-table <block876> <table564>)
is in the window and can be directly edited by the user. The Dep-List in the window allows
the user to define a dependency order among the objects that is used for the solution
animation. The Dep-List will be discussed in section 3.2.2.

L e S R O
Figure 3.9: Relation Window: developing the On-Table relation.

The Relation Window also ailows a user to define a negated connection existing between
two objects (i.e., arm and block). A connection is negated by selecting the connection point
to be negated then clicking the Not Connected button. In Figure 3.10, when an arm is not
holding a block, the empty relation holds. The square around the arm connection point
signifies that the connection has been negated.

Page 27

I RELATION-WINDOW

; il RELATION-WINDOW St
D Delete Inst D Not Coanected On On-Table
Hoking Empty
DONE RELATION: Clear Dep-List
/ ; i
[<block:
6>
Cam—1
(Clear <block876>)
o I e e s

Figure 3.11: Relation Window: showing a non-connection definition.

Finally, there is a way to describe a relation when an object is not connected to any other
object. This is done by selecting a connection point on an object, then clicking the Not

Connected button. This signifies that when nothing is connected to that connection point,
the relation holds. In Figure 3.11 the clear relation is shown. This relation is applicable

Page 28

when there is nothing connected to the top of a block (i.e., no block is on top of the block,
and the block is not being held by an arm).

3.2.1.3 Operator Window

The Operator Window allows the graphical creation of operators or rules in the domain and
automatically generates Prodigy operator code. In this window the work area is divided
into two regions: before and after. When all the relations in the before region are true for a
particular state, then the operator transforms the matched objects into the relations in the
after region. Therefore, the before region defines the conditions that have to be true before
the operator is applied, and the after region imulicitly defines the transition between states
when the operator is applied.

An operator is defined by building a picture of its before and after states. This creation
process is similar to defining a relation. To create an operator, the relevant prototype objects
are dragged into the before region of the work area and connected together to represent the
before state. The user can then copy these objects to the after region by clicking the Copy
Pre State button. This will also link the similar objects together. Thus, if the name of an
object in the before state is changed, then the corresponding object's name in the after state
is also changed, and vice versa. Objects can also be added directly to a region with the drag
technique, but these objects are not linked with any other objects. To link two similar
objects in the before and after region, the user should select the desired objects and click the
Create Link button. Once the before and after states are defined, the system can
automatically compute the preconditions and the effects for the operator in PDL. This
computation is displayed so that the user can make modifications if needed. User
modifications made to the generated code are recorded and used when the system
automaticaily regenerates the operator due to graphical modifications the user makes.

In Figure 3.12 the operator Pickup is being defined. Similar to the relation window, the
prototype objects are positioned around the work area. Note that names of objects in tae
operator have <> around them. This represents a variable name. Figure 3.13 shows the

generated code for the Pickup operator.

Page 29

OPERATOR-WINDOW

[] Deleswlast [T] Copy Pre Stase Dmm—/w

Exatotyns - Pj
Name: Pickup

)

/7

Do Clemmom] omeins

e Conition. - Efen
(om-tubie <block> <table>) [VA: PICkUD (34 (0p-table <biceic> <table>)
(clear <block>) DONE (del (empty <arm>))

Figure3.13. Opemoerdow' sbowmgthchchxpopaawrwxm aunonmmlly generawd
Prodigy code.

2.2.1.4 State Window
The State Window allows the graphical description of a state and automatically generates
the Prodigy state code to reflect the depiction. The initial state is a description of the state at

Page 30

the beginning of planning. The definition procedure is similar to the other process. The
state is defined by instances of objects and their connections. The user drags prototype
objects into the work area and connects them together. From this visual representation the
system generates an initial state code definition automatically. Figure 3.14 is an initial state
that has three blocks on a table. The automatically generated state code is also part of the
State Window.

[] Deleto1nst [] Copy Stae

DONE Name: Initial-State-1

State

{on-table A A_Table)
(on-table B A_Table)
(on-table C A_Table)
(clear A)

(clear B)

(cloar C)

(empty An_Arm)

T LG T e
I"igure3.l4' State Window: defining Imual-Stame-l

The goal state is a little different from the initial state because the goal state can have a
subset of the objects in the initial state. Figure 3.15 shows a goal state, again with the
automatically generated state description. The state definition can also be directly edited by
the user. Again, changes made to this definition are remembered and are applied when the
system automatically regenerates the state description due to graphical changes.

Page 31

hLEELEC] e\
‘d‘A

Figure 3.15: State Window: defining Goal-State-1.

3.2.1.5 Probiem Window

In the Problem Window the user defines the problem that is to be solved and sees the
animation as the system plans the solution. In order to solve a problem, Prodigy needs to
be given: 1) the operators that are to be used, 2) the initial state for the problem and 3) the
goal state for the problem. These are specified separately, providing flexible probiem
specification. For example, one may specify several problems with the same initial state
but different goal states, or test only a subset of the available operators. Figure 3.16 shows
the Problem Window based on the information we previously defined. By selecting the
Execute Problem button, the current problem's code is loaded into Prodigy and executed.
As the planner solves the problem, the solution is graphically animated, as shown in the
next section.

Page 32

Figure 3.16: Problem Window: displaying the initial and goal state definitions.

1.2.L.6 Exampie Trace
Figure 3.17 is an example trace of the system solving the problem that we previously

defined. The domain and problem definition are the same as the textual domain that we
defined previously. The partial trace below shows the steps the system takes in order to
achieve the goal state. The system starts out by stacking the blocks in the wrong order.
Later on, the system backtracks and reorders the goals. The system then stacks the blocks
in the correct order and solves the problem.

The solution for the defined problem is to:
{(pickup arm b table)
(stack a b arm)
(pickup arm ¢ table)
(stack b ¢ arm)

Another debugging tool allows the user to apply instantiated operators one by one. When
applying an operator, if preconditions are not satisfied in the particular state, a message is
displayed containing the relations that were not matched in the precondition. This stepping
process helps the user verify that an operator is performing as believed. Of course, all
graphical animation is aiso updated when an operator is applied successfully.

Page 33

[S -

:\ :! : A ; A B ; c B
/ x /‘ 3 I — / n /]
-y A s g

Initial Stats PMokup Block C Stack Bloek C oa Block B Backtrack

B
= B B B
— = S S %
A c A c A A
; T - _” S i
—ATEe 1~ / é:mi:l7l éZ:rIl¢

Micksp Blosk B Stack Rlock B on Block A Plokup Klock C Stack Rlock C on Block B

Figure 3.17: Visual animation showing blocks world problem being solved. These are
several snapshot views of state changes with applied operator or backtrack command.

3.2.2 Animation Algorithm

The animation algorithm provides the ability to visually trace the progress of a solution
during planning. This is done systematically, as shown by Figure 3.18. Once 2 problem is
ready to be solved, then the animation routine begins. First the graphical object information
is initialized; the graphical representation of each object is displayed in the problem window
at a location based upon the initial state definition. A list of all the graphical objects with
supporting information is compiled and stored for animation. The graphical dependencies
and relative position for each object in all the relations are computed and stored. In the next
step, the PDL definition for the domain is collected and prepared to be loaded into the
Prodigy planner. Once the initialization is finished, the PDL code is loaded into the planner
and planning begins. During the planning phase, the planner will update the graphical
display as operators are applied. This update procedure will be explained later in more
detail. If the planner backtracks, then the screen flashes and the new state being worked on
is drawn.

Page .34

Load PDL Definition
into Planner

Execute ﬂ_’

Prodigy Planner

The key to this trace animation is getting the information about the object’s interaction from
the relation information. Whea an operator adds or deletes a set of relations in the current
state, the relation information is used to update the graphical display. Therefore, the initial
information needed from each relation is: 1) what are the object types in the relation; 2)
what are the dependencies between objects; and 3) what are the relative distances between
the objects. A short example illustrating the information needed and how it is used follows.

The objects in a relation are ordered according to the object's dependency with the other
objects. This order is user-defined and represented in the Dep-List of the relation window.
Figure 3.19 shows the relation window with the definition of the "on" relation. The bottom
object in the Dep-List is the most stable object during movement. Thus in Figure 3.20 the
top block is moved to a location relative to the bottom block. The graphical distance
between the two objects is used when the objects are animated in the solution trace.

Page 35

LA

R S
ﬂpn&mmkchanMowmmmeonmhnm

Figure 3.20 shows three snapshots of an animation trace. The first snapshot shows B right
before an operator is applied to add (on B A). Snapshot two shows the result of that
relation being added to the state. See how block B moved relative to the position of block
A. Further in the solution trace, snapshot three shows the after effects of adding the (on ¢
B) relation to the state. In this case block C moved relative to the position of block B.

Vs /—.ﬁ‘\m c /__;’;ﬁ\“
I
B B
. St __i__
A A
| 7 P
® @ -
< v <
in Plaz
Before Aftexr Later, After
{(omn B A) (on B A) (on C B)

Figure 3.20: Adding the on relation t a state. The relative distance between the two
objects in the relation is used to determine object placement.

Page 36

The above description gives an overview of the animation process, but the movement of
objects relative to each other is slightly more complicated. The previous dependencies of
objects are also used to compute an object’s new location. When an operator is applied, the
internal state of the planner is updated and ail the added and deleted relations are then used
to generate the animation. Deleted relations remove object dependencies and erase objects
on the screen; added relations create new dependencies among objects and move the
objects to a new location. Below is a description and example of the relation effects.

For each deleted relation:
« Each object in the relation is erased from the screen.
« Each object's dependency, based upon the particular relationship, is deleted.
For example, deleting the (holding B An_Arm) relation erases the objects from
the screen and breaks the dependencies of B and An_Arm.

For each added relation:
» New dependencies between objects are recorded based upon the relation. For
example, when the relation (on B A) is added, B is set to depend on A.
« The order of object movement (i.e., move an object before another object) is set
based upon the relation. For example, in the previous on relation, A is moved
before B.
* A relative displacement function is computed for each object. For example, the
function (move-rel 0 -30 A B) is stored for the object B’s move function relative
toA.
* A topological sort on the objects is done based upon its previous and present
dependencies. For example, in the states of Figure 3 20 sort all objects in the state
(A, B,C,An_Arm, A_Table).
* Move all the objects to their new locations in the order of the sort using the
displacement function. This is done by applying the displacement functions to the
objects in sorted order.
* Redraw all the objects in the domain.

The deletion of relations must be done before the addition of relations. Using the above

algorithm in all the domains that were developed in APPRENTICE, the solution trace
provided a realistic animation of the planner execution. In cases where there are circular

Page 37

dependencies this animation may break down but this did not become a factor in the
domains developed thus far.

3.2.3 Primitive Elements for the Domain Builder

APPRENTICE is just one implementation of domain developing techniques that aid in
knowledge acquisition. This section removes the implementation details and describes the
underlying set of primitives that are needed to develop a domain using the APPRENTICE
technique. Understanding these primitives will make the incorporation of newly developed
interface techniques easier. These primitives support the development of domain
definitions that have objects, operators, states, and instances. The primitives are defined
below, followed by examples from both the blocks world and a business organization chart
domain.

Object Creation - The ability to define a visual representation of the
domain objects. For example, visually represent a block or a business
fvision.

Object Variable Definitions - The ability to refer to a class of objects. This
is used in the definition of relations and operators. For example, be able
to make reference to any block or business division.

Object Connection Points - The ability to define a set of physical
locations, either explicitly or implicitly, on each object and allow the
objects to connect with one another. This will form relations between the
objects. For example, form connections at the top and bottom of a block
or connections at the top and bottom of a division icon.

Object Attributes - The ability to associate attributes with individual
objects. For example, the weight of a block, the number of workers in a
vision.

Relation Deflnition - The ability to define relationships between objects

types or instances by connecting their connection points. For example,
block on another block, subdivision under a division.

Page 38

Relation Graphical Relative Position - The ability to define the graphical
relative position of objects. This is important during animation to give a
realistic portrayal of the solution. For example, a block positioned on top
of a another block, a subdivision positioned underneath a division.

Relation Dependency - The ability during the graphical trace for objects to
be drawn relative to one another. The ability to define a dependency list
defining the drawing precedence of objects is also important. This can be
implicitly or explicitly controlled by the user. For example, use the
location of the bottom block to get the relative position of the top block,
use the division location to get the position of its subdivision.

Composition Element Creation - The ability to create a static description
or state using a set of relations. For example, block A on block B and
block B on a table, a business organizational chart.

Transition Element Creation - The ability to use the differences between
composition elemeants to describe a state transition. For example, pickup a
block, reassigning a subdivision.

Solution Tracing - The ability to inspect the problem solution as operators
are applied. For example, animate the robot arm moving or animate a
subdivision changing the division it reports to during a reorganization.

The above primitives can be combined together to create a system that allows users to
develop domains faster and more accurately (see Chapter 4). The development paradigm is
based on creating domain objects, relations, operators, and states. Below are the definitions
of these elements.

Prototype and Instance Definition - A prototype is a class of physical
objects defined. These prototypes are graphically defined, have ways of
expressing connection with other physical objects, and can represent
attributes about themselves. An instance is an actual physical object
copied from the prototype definitions.

Page 39

Relations Definition - Relations are definitions of how physicai objects
connect with one another. The definition should include the objects
forming the relation, the physical orieatation between the objects, and the
mmeonnecwddependencybetweenobjects.melamrtwocnmm
used for the animation of the domain.

State Definition - States are a set of objects and their relations with each
other. States are defined by creating composition elements previously
discussed.

Operator Deflnition - Operators are sets of objects and relations defining
when the operator is applicable to a situation and a set of effects that occur
when an operator has been applied. Therefore, the operator is a
combination of the composition element for the before part and a
transition element describing the difference between the before part and an
after state for the effects part.

Solutions Animation - Problem solving can be graphically traced as the
problem is being solved, providing visual feedback from the problem
solver by using the relation definitions. An algorithm for dynamically
tracing a solution was given in section 3.2.2,

Using APPRENTICE as the model, the domain eclements described above are shown to be
an effective model for doing knowledge acquisition of visual domains. It has also been
demonstrated that these elements can be translated into code that a planner can use to solve
a problem in the domain. With these primitives, other user interfaces can be built to be
effective in providing users with an intuitive system for KA.

3.3 Framegraphics - Low Level Graphics

A flexible graphical tool was needed to build an interactive system like APPRENTICE. I
developed a frame-based graphical system called Framegraphics for the development of
APPRENTICE. Because of its ease of use, flexibility, and extensibility, Framegraphics has
also been used as the interface for building a piano tutoring system [Joseph 91} and an
ontological graphical editor {Nirenburg 88].

Page 40

This object-oriented graphical toolkit was built using Framekit 2.0 [Nyberg 88], a frame-
based knowledge representation language. Framegraphics provides a machine-independent
graphical system for rapidly prototyping user interfaces in a Common Lisp environment. It
is currently running on the Macintosh under Allegro 1.2, on the IBM RT/PC under
CMULisp and X11, and on the Sparc workstation under Allegro and X11. Figure 3.21

shows a block diagram of Framegraphics organization.

LY

Framegaphlcs 1.0

:

it 2.0{[sew [muxr M- |
Fromet 2] B (o | e |

Figure 3.21: Framegraphics diagram.

In Framegraphics, graphical objects are represented by frames and stored in a is-a/instance-
of hierarchy. The parent frame of all graphical objects is the frame "graphic-object," but
only instance-of frames within the graphic-object hierarchy are displayable objects. The
graphic-object frame stores the default behavior for graphical objects. This default behavior
is in the form of functions, demons, and values stored in slots. This means that a graphical
object can be created with very little work, yet have default behavior. This default behavior
also helps users quickly learn how to use the application system by providing a consistent
interface.

The system's default behavior is modelled after the Macintosh interface. Objects can be
selected by a mouse click, they can be moved by click and drag, multiple selected objects
can be moved, etc.

Page 41

Most of this defanit behavior is implemented as function names stored as slot values. To
run a particular function, first the slot value is retrieved using inheritance. Then t5 . value is
executed with the current frame information as its parameters. The move-proc slot is an
example of this. When a screen item is moved, the move-proc slot is queried. If a value is
not found locally, which is usually the case, the inheritance mechanicz: returns a value
from the hierarchy. This value is then used as a function, and the arguments of the local
frame are the parameters. This is a very powerful method to share code among objects.

This defaunlt behavior can also be easily modified or extended for an individual object or a
class of objects. In APPRENTICE it was extremely easy to add a help facility. It took only
an hour to develop a functional help system so that objects on the screen could provide
information about themselves. This was accomplished by adding a help-proc slot with a
help function to the high level "apprentice-graphic-object” frame, the top display frame for
the apprentice interface. This function took the local frame name and retrieved information
from its help-msg slot. These strings were then displayed along with the frame name. By
adding a textual description to the selected help-msg slot, help information could be
tailored for individual screen objects or classes of objects. Currently the help system is
activated by an alt-click selection on a particular graphical object. Again, this activation was
caused by adding a function to the alt-click~-proc slot that called the help-proc slot
function of a frame. This activation could be ecasily changed to work another way. For
example, help could be activated by clicking a button that displays information about the
selected frames. Also note that the help function can be made different for each object just
by changing the help-proc slot function for the different frames.

In the same manner, I was able to add in a day the ability to generate a Postscript file from
a display screen. This was developed after most of the APPRENTICE system was already
built. I was able to modify the whole syst=m by adding a function slot ps-proc. In this slot
each frame or class of frames would have a function that wrote to a file the Postscript
commands for displaying the object. This function was much like the drawing routine for
the objects. To create a Postscript file of a window, all that was needed was to loop through
the display list and have each frame run its ps-proc function sending the output to a file.

As with any object-oriented syst=m, extending object types is a simple matter. The editor
for the model window was developed and integrated into the system in about a day. It is
selectable, moveable, and responds to help messages consistent with other objects, yet it

Page 42

also allows the building of graphical objects. Another new object type developed was an
object that displays graphs and allows interaction (selection, movement, and click
procedures) with the nodes ofthatgmph.'l'hcdevelopnmtandintegmﬁonofthwc objects
was effortless and straightforward.

Page 43

Page 44

Chapter 4 - Empirical Analysis: User
Studies

The APPRENTICE system was designed as a knowledge acquisition tool to facilitate the
construction of Prodigy domains. To be useful, the system needed to be usable by a wide
range of people and provide more functionality and understandability than other systems.
Four studies were done with APPRENTICE to evaluate its performance with multiple
users and multiple domains, as well as the evolution of the system use over time. The four
studies are comprised of a study of the system's coverage and usability, a study that
compares APPRENTICE and Emacs, a study of system usage over time, and a study to
build a medium size domain. This chapter will describe each of these studies in detail.

4.1 Study 1: Coverage and Usability

To test the coverage and usability of APPRENTICE, 32 students from an advanced Al
class participated in developing their own domains using APPRENTICE. The objective of
this study was to:

* Have multiple subjects use APPRENTICE. This provided insight on how users
interacted with the system. It helped to determine what is easy and what is difficuit
for others to understand. It also showed if individual conceptual models can be
incorporated into domain building in APPRENTICE.

* Get different types of domains built using APPRENTICE. This gave an indication of
what types of domains can be built using this tool. It also investigated whether the
domain building philosophy was sound.

* Determine what additional functionality is needed. This allowed me to more fully
debug and enhance the system, because other users invariably tried things that I had
not considered. It also pointed out additional functionality needed.

* Measure ease of building a working domain from a concept using APPRENTICE.
This allowed me to quantify the time it takes a person unfamiliar with
APPRENTICE to use the system productively.

Page 45

To reach the above objectives, each subject built in APPRENTICE a domain that they
specified. The time to build the domain and the final domain produced was recorded. What
follows is a description of the building process, examples of two different subjects’
domains, and the measured resuits and analysis for all subjects.

4.1.1. Study 1: Hypothesis
The majority of users in this study should be abie to use APPRENTICE successfully to
build new domains.

4.1.2 Study 1: Procedure

The participants were students enrolled in the class Artificial Intelligence:
Representation and Problem Solving. The class description from the University
catalogue is as follows:

Inteiligent computer programs can soive problems, understand natural language, reaso.: about
their actions, and learn from experience. They do these things by manipulating internal symbolic
representation. The course will cover the main types of symbolic knowledge representation and
the main techniques for planning and problem solving. LISP, a computer language designed for
symbolic programming, will be taught during the course, and there will be a required

programming project in LISP.

Each student was required to develop a simple domain on paper using a STRIPS type
syntax [Fikes 71] as part of their normal course work. The students knew notaing about
APPRENTICE while they were developing these domains. During the class after the
students finished the above assignment, I gave a forty-five minute lecture on
APPRENTICE. As an optional assignment, the students were asked to encode their
domain in APPRENTICE. Thirty-two people volunteered to do the assignment. Each

student individualily did the following procedure:

Prefiminary S
1) The student was given a three-page description of APPRENTICE to read. This
description is listed in the Appendix D - Apprentice Description.
2) I gave a short introduction describing domain elements (objects, relations, and
operators).
3) The student wrote down the objects, relations, and operators in their domain.
4) The student was given a brief demonstration of how to build a simple domain (the
blocks worid) in APPRENTICE.
This entire preliminary setup took approximately 40 minutes.

Page 46

Test Procedure
5) The students independently built their domains using APPRENTICE.

During the study, the students never referenced their previous paper-based assignment.

With only two exceptions, all students were able to build their domains in APPRENTICE.
One student (subject 3) needed an additional function for his domain that the system did
not support at the time; another student's paper domain (subject 4) contained no search, so
he built another domain.

The students’ domains fall into several categories: recipes (making carrot cake, Kool-Aid,
etc.), transportation (moving blocks outside the house, delivering pizza, etc.), games (eight
puzzie), controlling an appliance (playing a CD player, washing clothes, etc.), and Biology
(building DNA molecules). The students' domains ranged in complexity from the eight
puzzle domain (containing 2 objects, 3 relations, and 1 operator) to a domain to compose a
sub-part of a DNA molecule (containing 10 objects, 14 relations, and 11 operators). The
development time for the domains ranged from 1 hour to 4.5 hours. The mean time for
domain completion was 2 hours and 4 minutes. For a description of the entire subject
population and domains built, see Appendix A.

4.1.3 Study 1: Results
The next section describes two representative domains (the eight puzzle and the DNA
molecule domains) along with the students' visual representations and the system-

generated code.
(1.3.1 Eight Puzzle Domai

The eight puzzie domain consists of squares adjacent to one another and numbered tiles
that sit on top of the squares. This was the simplest domain built as part of study 1. The
playing board is composed of 3x3 squares and a set of tiles on all but one of the squares
(there is always a square without a tile on it). The tiles have unique identifiers (e.g.
numbers, letters, etc.). A tile can be moved to the empty square if the tiled square is
adjacent to the empty square. The tiles start out in one configuration; the goal is to get to a
final configuration through a series of tile moves. Figure 4.1 illustrates the eight puzzle

game. _

Page 47

Move 2 up to Sq2
Move 5 over to Sq5
Move 6 up to Sq6

Initial State Intermediate Moves Final/Goal 3tate

Figure 4.1: Nlustration of eight puzzie game: Initial and final state along with intermediate
moves.

Subject 8 encoded the eight puzzie domain in APPRENTICE as follows. The subject first
built two objects (a tile and a square) with connection points. The tile and the square are
pictured in Figure 4.2, '

<Square> %

<Tile>

Figure 4.2: Square and tile objects for the eight puzzle domain.

The nmAstep was to build relations. There ate three relations. They are "adjacent,” one
square connected to another; "on,” a square with a tile on it; and "square-empty," a square
without a tile on it. The three relations are shown in Figure 4.3. Note: the box on the square
connection point in the square-empty relation means that the relationship is true if the
connection does not exist (there is no connection between the square and any tile).

- ‘ hsennsdl
<Square23S>| |<Square236> <Square237> Ii'rilel?
on Adjacent Square-Empty

Figure 4.3: Relations for the eight puzzle domain.

The only operator is to move a tile. This operator is pictured in Figure 4.4. The
automatically generated code that the system produced is in Figure 4.5. The MOVE

Page 48

operator requires that there exist two squares that are adjacent to one another, and a tile is
on one square, and the adjacent square is empty. When the operator fires, the tile moves
from the initially tiled square to the other square, leaving the previously tiled square empty.

Name: Move

DONE

F
<Square238>]

Before After

Figure 4.4: APPRENTICE definition of the move operator for the eight puzzle domain.

(Operator MOVE
(prams ((<Square238> SQUARE)
(<Square239> SQUARE)
(<Tilel78> TILE)))
(preconds
(and (On <Tilel78> <SQuare238>) .
(Square-empty <Square239>)
(Adjacent <Square238> <Squarel39>)
(Adjacent <Square239> <Square238>)))
(effects ((del (On <Tilel78> <Square238>))
(del (Square-empty <Square239>))
(add (On <Tilel78> <Square239>))
(add (Square-empty <Square238>))))

Figure 4.5: Automatically generated Prodigy code from the graphically
defined MOVE operator.

Initial and goal states were also built. For brevity of explanation, a 2x2 puzzie will be used
in the following description. Figure 4.6 shows an initial state that the user defined using a
2x2 puzzle (this problem is also known as the three-puzzie).

Page 49

State

(On one Sq2)

(on three Sq3)

(On two Sq4d)
(Square-empty Sq2)
(Adjacent Sql sSq2)
(Adjacent Sq2 sql)
(Adjacent Sq2 sq4)
(Adjacent Sqd Sq2)
(Adjacent Sq4 Sq3)
(Mjacent Sq3 sq4d)
(Adjacent Sql sq3)
(Adjacent sSg3 Sql)

Automatically Generated
Prodigy State Deflnitioa

Figure 4.6: An initial state for the three-puzzie in APPRENTICE and in Prodigy.
A goal state for the three-puzzie is represented in Figure 4.7.

State
‘ ; ‘ (On one Sql)

1 2 (On three Sq3)
(On two Sq2)
(Square-empty Sq4)
one Lo (Adjacent sql sSq2)
F (Adjacent Sq2 sql)
(Adjacent sq2 Sq4)
(Adjacent Sqd4 Sqg2)
(Adjacent sq4 Sq3) ’
three (AdQjacent Sqg3 Sq4)

(Adjacent sql sqg3)
* (Adjacent Sq3 sql)

Appreatice Definition Automastically Gencrated
Prodigy State Definition

Figure 4.7: A goal state for the three-puzzie in APPRENTICE and in Prodigy.
By specifying the initial state, goal state, and operator(s), the problem can now be run with

animation. Figure 4.8 shows a set of snapshots along the solution path. Since this was an
easy problem, the solution was found right away.

Page 50

" Al il siliisi
] 1 4

Initial Goal Move cone to Sql Move two to Sq2
Goal State Achieved

Figure 4.8: Steps for solving the 3-puzzie.

4.1.3.2 DNA Molecule Domain

Another domain that a student built was a procedure for building sub-parts of a DNA
molecule with organic building blocks. This is one of the most complex domains build as a
part of study 1. This domain is a student's view of a very complex process and should not
be viewed as a valid description of a genetic process.

DNA is a double helical, long molecule structure composed of several building blocks. The
connections between the two parallel sides consist of pairs of organic base elements:
adenine, thymine, guanine, and cytosine. Adenine can only pair with thymine, and guanine
can only pair with cytosine. This domain deals with the construction of these nucleotide
pairs.

The basic elements in this domain are the organic building blocks (cytosine, guanine,
thymine, adenine), a chemical mediator (enzyme), a transport element (ribosome), and
nucleotide pairs (a-t-pairs and g-c-pairs). These objects are shown below.

i gl G g

GUAN THYM ADEN ENZY

AT T GC X
/S» ~opin Fopi
RIBO A-T-PAIR G~C-PAIR

Figure 4.9: Objects in the DNA molecule domain.

Page 51

The relations in this domain are depicted below and represent the interaction between the
and the organic building blocks, the enzyme and the organic bmldmg blocks, and the
composition elements of the nucleotide pairs.

TEE

tibo-holdinq ribo-holdinq ribo-holding ribo-holding
-cyto ~aden
‘@ @ﬂ . '
guan-next ~to-cyto adsn-next-~-to-thym enzy-next-to-aden

g-and-c-part-of-gc a-and-t-part-of-at enzy-next-to-guan
Figure 4.10: Relations in the DNA molecule domain.

Finally, the operators consists of the procedure to connect the organic building blocks into
the appropriate nucleotide pair. This consists of using the ribosome to transport the
building blocks to the correct location and allow the elements to be connected together.
Below are the visual representations of the operators. The generated code will be included

in Appendix B.

Page 52

As.

”
» :

-
enzy

EESNEIE

Pick-up~cyto Pick-up-guan Pick-up-

=& (=B

Pick-up-aden Pick-up-thym

Put -e-next-to-g Put-e-next-to-a Put-a-next-to-t

Make-g-c-pair Make-a-t-pair

Figure 4.11: Operators in the DNA molecule domain.

Finally the initial and goal state of a problem is shown. The system then figures out the
sequence of operators to apply to go from this initial state to the goal state.

Page 53

I =
5

Figure 4.12: Initial problem state in the DNA molecule domain

The solution for the above problem is:

.pick-up-guan guanl ribol

put-g-next-to-c guanl ribel cytol

pick-up-enzy ribel enzyl

put-e-next-to-g ribol guanl enzyl
make-g-c-pair g-c-pairl cytol guanl enzyl
pick-up-aden ribol adenl

put-a-next-to-t adeni thyml ribel

pick-up-enzy ribol enzy2

put-e-next-to-a ribol enzyl adenl
make-a-t-pair thyml adenl enzy2 a-t-pairl thymi

4.1.3.3 Other Resuits

After students finished their domains, they were asked to complete a questionnaire. Their
overall impressions were very favorable, and their comments helped me to improve the
system. On the following page is a representative sample of these comments.

Page 54

Excerpt of Quotes from Subjects for Study 1

1 had a nesd for muitiple subclasses but thers was 0o easy way

10 do this.

The ability to specify cbjects being a subciass of another

object is now available.’

‘The graphical interface is very straightforward to use and sim-
ply requires a brief session of just playing around with the

system to get used to it.
People Showering - 2

Such a system sesms necessary in order to deliver the power

of planniing engines to computer-laypeople. Certain functionality of the system and its use was
Robot Taking Customer’s Order - 1 underspecified in the system’s help feature and in
the hardcopy documentation.
. . . A maore thorough manual has been written and
The interactive nature of the Apprentice the help system has been updated.”
system made the development of the do- Killing Roack - 7
main and the solution generation of the
problems fin, Actually drawing the pictires and
Bicycling - 8 making connections between

them was easier than defining op-
erators, states and assertions on

For all the praise I offered in the above paragraph,
I must now urge you to maks the user interfacs even
easier, and more conforming to various standards
that have evolved in U L design. For example, a co-
herent and consistent way to navigate the program's
states is needed. Sometimes, [would have to click
on a word (o return, and others I would click on &
button. I really do feel like I am being nitpicky, how-
ever, because | was very pleased with all the less
trivial aspects of Apprentice, in particular how it rep-
resents the domain with objects, operstors and states.
More cousitency is added to how Appreatice
works.’
I am skeptical sbout the usefulness of Apprentice (or
even a more complex system of its nature) for a
more complicated domain than the sort we have
"besn looking at.
This problem is dealt with in the medium size
domajn,’

Robot Fetching - 10

[am not sure about the scalability issus — I think one of the

bigger problems would be the graphical display of a lot of

data and some sutomated methods for keeping the pictures

cohesive and understandiable.

This probiem is dealt with in the medium size domain.’

+ Add the ability to animate the plan solution.

+ Have ability to save other plan solution

+ Have the intermediate steps displayed in an out put
Passing Blocks - 13

Providing for muitiple objects of the same class, but with different attributes,
or snything involving attributes was not as obvious. It needs to provide aa
easier method for dealing with attyibutes, perhaps labeling objects in rels-

tions and operators with the attributes.

The sbility to bandie attributes better will either be discussed or im-

proved.

Playing CD Player - 20

* The Boid Text is my comments.

papez.
Cat Getting Fish - 14

I built the domain [intended. [
even ended up building more than
I intended.
Moveworld with Blocks - 6

the help of a ribosome and enzymes.

Apprentice was fun to use.] was abie to get
my domain, which was just ideas on paper

to actually run.
DNA World - 19

There was too much overlapping of graphics and text. Its was at times
difficuit to tell what was on the screen. The fact that all user-defined
objects and states automatically went to the same screen location (first
position on the left side) was confusing. The arbitrariness of the loca-
tion of verious pieces of information was noticeable and added to the
confusioa of a novice.
This is a confusing point but is just a programming fix. It was
ussful enough for an experimental system.’
I think that the state information (which was not printed in novice mode)
is quite helpful. However, once again, the screen clutter is a probiem.
Overall, [found it to be a great visual method for entering my domain,
and [agree this is a superior method for knowledge scquisition.
Playing CD Player - 12

I built the domain I started out with although I added a
- few more operators and states to make it more complicated.
It was genenully easy to use, and it was kind of fun. [liked
the fact that we had to draw owr operators and states, | think
' this makes it more interesting and easier to follow.
Fixing Kool-Aid - 17

Leaming whether to right click, left click, etc.

at each point took some getting used to, but

after time became easy o use.
Fegding the Cat - 21

Page 55

I was able to build my “DNA World” do-
main and it worked! It took adenine, cy-
made A-T and G-C pairs out of them with

4.1.4 Study 1: Analysis

APPRENTICE was used successfully by a varied set of people, over several types of
domains, in a relatively short time. All domains that the students tried to build in
APPRENTICE successfully lead to a running system. The students were diverse, ranging
from college sophomores to first year graduate students, and majors ranging from
Computer Science to Music. The system supported the development of several types of
domains like solving the eight puzzle, building a DNA molecule, cooking a carrot cake,
and delivering pizza.

The students also helped debug and enhance the system. Some developments that resulted
from this study were better consistency checking, increased functionality with class
specification and hierarchy of objects, and increased system-directed help and user
warnings. Finally, an intangible result was that the students enjoyed using the system. They
found it "easy and fun."

A closer analysis of the study 1 data provides more characterization of the domain
development process. The average time for domain development was two hours and four
min. In Figure 4.14 statistics from the data are shown. Figure 4.15 is a plot of the subjects
versus their development time. It also shows the development time median (120), quartiles
(100, 140) and whiskers (60, 200). Notice that in the chart there are three subject
development times that seemed to be inconsistent with the rest. A light gray box surrounds
these times. Analysis was done on the data with and without these subjects.

32 Subjects 29 Sybjects

Median Time 1200 1200

Mean Time 1244 114.5

Standard Deviation Time 40.7 249
" Mean Objects 5.7 59

Mean Relations 88 84

Mean Operators 6.1 6.0

* Figure 4.14: Statistics for 32 and 29 subjects in study 1.

Page 56

TIME

300

aso

200

150

100

SUBJECT ID NUM

L 1 L}
g ubiccts removed for
[B N]
)]
[] [] [] »
¢ -
[]
| 1 il
10 20 30

40

Figure 4.15: Plot of subjects versus domain development times from study 1.

I also analyz, *he relationships between the different elements of the domains. Figure 4.16
shows the comparison plots. The object and relation elements are strongly correlated,
where the operators are not correlated with either the objects or the relations.

Figure 4.16: Comparison plot of Study 1 domain elements with the 29 subjects.

Using the data from the study I did a muitiple regression on the 29 subjects. Time was the
dependent variable and objects, relations, and operators were the independent variables.
Also because of the close correlation between objects and relations, I did another multiple
regression using just objects and op-rators as the independent variables. For each
regression the squared muitiple R was .2 which means that other factors were dominating

Page 57

the time development (e.g., background of students, complexlty of graphical objects,
domain types being developed, etc.).

4.1.5 Study 1: Conclusion

The hypothesis was confirmed. All subjects were able to encode working domains using
APPRENTICE and none of the domains was preselected for its visually oriented
propertics. APPRENTICE showed a wide applicability to many domains.

4.2 Study 2: APPRENTICE Versus Emacs Study

This study compares the use of APPRENTICE to build a domain versus the use of
Emacs, a typical text editor commonly used by programmers, to build a domain. The
objective of this study was to:

* Test the productivity of users with APPRENTICE versus Emacs. This provides
quantitative results about users' productivity when building domains utilizing these
two methods.

* Test user's comprehension of new domains represented graphically versus domains
represented textually. This gives an indication of how well a domain is understood
when it is represented by pictures or by simple textual "if-then" rules.

* Test the usability of APPRENTICE with a variety of users from prodigy experts to
non-programmer users. This provides a diverse population of users for
APPRENTICE. The system was tested and enhanced similar to study 1.

This is a two-phase study. Phase 1 compares the time it takes different types of users to
build domains in APPRENTICE versus Emacs. Phase 2 measures each subject's ability to

understand already built domains, using muitiple choice questions.

4.2.1 Study 2: Hypothesis
Non-technical users will encode and understand domains faster and with more accuracy
with APPRENTICE than Emacs. '

4.2.2 Study 2: Procedure
In both phases four types of people were used:

ERODIGY EXPERTS are graduate students curreatly working on various projects
that use Prodigy. They have an in-depth understanding of Prodigy and its use and
have used Emacs as their primary tool for building domains.

Page 58

AL INDUSTRY EMPLOYEES are members of Camegie Group, Inc., an Al
company located primarily in Pittsburgh. These employees are familiar with Al
terminology and have worked with Emacs extensively. They knew nothing about
Prodigy before the experiment.

CMU Al EXPERTS are subjects who are working in Al at Carnegie Mellon
University. This group is very familiar with AI programming techniques and the
use of Emacs but had no prior knowledge of Prodigy.
NON-TECHNICAL USERS are subjects who were unfamiliar with the field of Al
and had only limited computer experience. Computer exposure for these
individuals has been limited to word processing software, drawing packages, and
simple database use.

2.2.1 Phase 1: Domain Builds
For Phase 1 each subject’s task was to build 2 domain in Apprentice and a different domain
in Emacs. The specified domains were a package delivery domain and a robot path
planning domain. The two domains were of equal complexity. They used a similar number
of objects, relations, and operators. To gain experience developing domains in both
systems, each subject used a small pizza-delivery domain for practice. A description of
each domain is in Appendix D. '

Emacs was chosen as the text editor for development comparison because it is currently
used to develop domains in Prodigy and is similar to other methods used to build domains
in typical planning systems. The Prodigy language syntax has an if-then syntax, indicative
of the syntax of a lot of expert systems. The instruction that each user was given for how to
use each system is in Appendix D. The instruction for using Emacs shows the PDL
without universal quantifiers.

Phase 1: PROCEDURE

Each subject was given an introductory page about Prodigy and Expert Systems (see
Appendix D). The page also presentr:i the very simple practice domain, a pizza-delivery
domain. Once subjects finished reading the introductory page, they used the following
procedure with each system. For example, a subject would do the following procedure in
Emacs, and then repeat the procedure using APPRENTICE.

Prelimi S
1) The subject read a two-page description of the system they were going to use.

Page 59 .

2) The subject was given a demonstration building a subset of the blocks world domain
in the current system.

3) The subject built the practice pizza-delivery domain in the current system.

Procedure

4) Finally, the subject built one of the experimental domains on their own using the

appropriate system.

After the first system was used, the subjects went back to the Preliminary Setup and
repeated the process with the other system.

While the subjects were building their domains, timing data was being recorded. Each
subject built one domain using APPRENTICE and the other domain using Emacs. Each
domain was built with each system being used by at least one person in a particular group.
For example, in the AI Employee group, Subject 1 built the Strips domain using
APPRENTICE and the Logistics domain using Emacs, whereas Subject 2 built the Strips
domain using Emacs and the Logistics domain using APPRENTICE. This information is
presented in Figure 4.17.

4.2.1L.1.1 Phase 1. Resuits

The charts in Figure 4.17 display the amount of time it took each subject to build a
particular domain with a specific system. Subjects are grouped together according to the
four types discussed earlier. Each subject's results are depicted in the boxes under S#. The
domain that was being built is shown along the left side of the box (except for the non-
technical users). The interior squares show the system that the subject used to build the
particular domain and the amount of time it took that person to do it. The order in which
the domains were built is represented from top to bottom. The shaded boxes are the
domains that were built using APPRENTICE, and the bold face type shows the faster time
for each subject. The XX represents an individual's inability to come close to task
completion within a two-hour period.

Page 60

XX - Domain could not be completed

Figure 4.17: Phase 1 domain building time. The chart shows faster development time for
APPRENTICE than Emacs for all but the seasoned Prodigy expert.

4.2.1.1.2 Phase 1: Analysis

Except for the Prodigy experts, all subjects were able to build domains faster by using
APPRENTICE than by using Emacs. Several people were unable to even build domains
using Emacs. As expected, the non-technical users had the biggest ratio difference between
domains built using APPRENTICE and domains built using Emacs, as seenin Figure4.18.

CMU AL Experts Allndustry Emplovees
St S2 S1 S2
1.14 1.97 1.97 XX
Non-Technical Users Prodigy Experts
S1 S2 S3 S1 S2
3.32 xx XX 44 .78

XX means that the Emacs domains were not successfully completed

Figure 4.18: Ratio of domain building time (EM/,p).

Page 61

This strong indication that visual domains are built faster in APPRENTICE than in Emacs
can be further analyzed. For this analysis let's ignore the Prodigy experts. They are well
versed in Prodigy and had built many domains in Emacs similar to the domains in the
study. Ignoring the Prodigy experts, all other subjects developed domains faster in
APPRENTICE. The probability of all seven subjects randomly developing domains in
APPRENTICE faster is 1/2’ or 0.78%. This gives a strong indication that people similar to
the ones in this study (excluding the Prodigy experts) will develop visual domains faster in
APPRENTICE than in Emacs.

12,22 Phase 2: Domain Understandi
Phase 2 tested the ability of a user to understand a new domain represented graphically
versus a domain represented textually. Each subject was asked ten questions about a
domain represented textually, and ten questions about a different domain represented
graphically. The two domains used for this experiment were the monkey and banana
domain and the blocks world domain. As with phase 1, each domain was studied using

both systems for each subject type.

Phase 2: PROCEDURE

This process was also automated. The user was presented with an operator or a set of initial
and goal states. The user was then asked several multiple-choice questions pertaining to the
representation. Below are typical graphical and textual displays, along with a sample
multiple-choice question. All questions for both representations are in Appendix E.

Name: Opl

— | ==

Is operator opd representing?
1) Grabbing the banana 3) Monkey moving the block
2) Monkey moving himself 4) Monkey getting on the block

Figure 4.19: Graphical representations with a multiple-choice question.

Page 62

opl
If

(monkey-at-loc <l1> <monk>)
(connected <1l1l> <12>)
(connected <12> <11>)))

Then
(del (monkey-at-loc <1ll> <monk>))
(add (monkey-at-loc <12> <monk>))

Is operator opd representing?
1) Grabbing the banana 3) Monkey moving the block
2) Monkey moving himself 4) Monkey getting on the block

Figure 4.20: Textual representations with a muitiple-choice question.

The time to complete all the questions and the subject's answers were automatically
recorded for each user.

4.2.1.2.1 Phase 2: Resuits

The resuits of the users' responses are shown in Figure 4.21. The highlighted areas depict
answe 3 about the graphical representation. Bold letters represent answers that were wrong.
Inside the squares are the domain and representation the subject used, the time it took the
subject to answer the questions, and the number of answers the subject got wrong. For a
comp. ste description of the questions and the wrong answers that were given see Appendix
E.

Page 63

CMU AI Experts Al Industry Employees
S1 S2 St S2

Figure 4.21: Resuits of Phase 2, showing much better understanding (fewer errors) for
APPRENTICE than Emacs.

4.2.1.2.2 Phase 2; Analvsis

The subjects understood domains presented graphically more accurately and more quickly
than domains preseated textually. The mean time for answering all ten questions for the
graphic representation was 238 seconds with a standard deviation of 87 seconds, but for
the textual representation the mean time was 320 seconds with a standard deviation of 200
seconds.

Also all the subjects got the answers correct for the graphical representation, except for one
answer by a non-technical subject. In question 6 of the monkey and banana domain, the
move block operator did not have the monkey connected to the block (see Figure 4.21).
The subject didn’t think the monkey was moving the block but just moving himseif. Also

Page 64

note that the same subject understood the graphical representation much better than the
textual representation, as seen by the eight wrong answers about the textnal representation.

Name: Op3

~ ~

5t ot

<i> <> <> <>

Is operator opd representing?
1) Grabbing the banana 3) Monkey moving the block
2) Monkey moving himself 4) Monkey getting on the block

Figure 4.22: Question 6 representing the move-block operator.

There were more wrong answers for the textual representation. Four subjects got a
combined total of 13 wrong answers for the textual representative questions. Although the
questions and the rules were very simple, the subjects still had difficulty quickly
understanding a totally new domain.

4.2.3 Study 2: Analysis
The resuits of study 2 were:

« Domains were built faster using APPRENTICE than Emacs for all but the most
seasoned Prodigy users. This study was done with users of different degrees of
computer experience. Even users who were proficient in Emacs were able to use
APPRENTICE faster.

« Users who had limited computer expertise were able to effectively build domains in
APPRENTICE, yet some where unable to do so in Emacs.

» When given unknown domain definitions, users understood the domains better in
APPRENTICE-type graphical descriptions than a textual STRIPS-type
methodology.

Page 65

« Again, users found the system to be "fun and easy.”

4.2.4 Study 2: Conclusion

The hypothesis was confirmed. Non-technical (and all non-Prodigy) users were more
productive with APPRENTICE than Emacs. Every user was able to build a successful
domain using APPRENTICE while some non-technical users could not build a domain
using Emacs.

4.3 Learning Study

In this study a subject built four domains over time. The goal of this study was to see the
speed in which productivity increased. The subject used for this was subject 2 from the
Prodigy expert group from Study 2. Three additional domains where built by the subject
over the course of one day. These domains were hiking world, loading truck world, and
robot picking tulip worid. They can be found in Appendix G. All domains were of similar
complexity to the strips domain that was previously built. The domains had three objects,
four relations, and two to four operators in them. The resuits are as follows.

Strips Hiking Load Truck | Picking Tulips
Subject 2 45 min 25 min 35 min 25 min
" Figure 4.23: Table of subject 2's domain building time. The domains were buiit in order
from left to right.

As Figure 4.23 shows, the user took less time to build the domains as experience
increased. This experiment is not meant as a scientific study but as an indication that
experience using APPRENTICE will improve development time.

4.4 Study 4: Medium Size Domain Building
A medium size domain with 34 operators was developed to test the scalability of
APPRENTICE. The objectives of this study were to: :
 Determine the APPRENTICE techniques useful in developing larger domains. As
domains get larger, how does the APPRENTICE system aid or hinder the
development process?
« Explore additional techniques needed for development of larger domains. What are
some of the requirements of domains as they get larger?

Page 66

o Investigate issues of developing a domain over time. In the other studies the
domains were developed in one sitting. What are some of the things that affect the
creation of a domain during muitiple development sessions?

In this study, I took an already established large machining domain and developed a sub-
portion of it in APPRENTICE over time. The domain is described in the next section,
followed by what I leamed from the experience.

4.4.1 Study 4: Hypothesis
APPRENTICE scales up to larger domains.

4.4.2 Study 4: Procedure
The domain I used had been previously developed and recorded in a technical report at
CMU [Gil 90]. An excerpt from the abstract of that report follows:

Much research is being done on the automation of manufacturing processes. The
planning component in the production stage is very significant, due to the variety of
alternative processes, their complexity, and their interactions. This document
describes a specification of some manufacturing processes, including the machining,
Joining, and finishing of parts. The aim of this specification is not to be comprehensive
or deailed, but to present the Al community with a model of a complex and realistic

application....[Gil 90]

Over a three-month period, working part time, I developed a sub-portion of the machining
domain in APPRENTICE. This required understanding the machining domain, debugging
and enhancing APPRENTICE, and understanding some subtle features about Nolimit. The
developed domain consists of 33 objects, 77 relations and 34 operators. The operators
consist of operations to drill, saw, plane, polish, and mill parts. The graphical and textual
representations of the domain are included in Appendix F.

4.4.3 Study 4: Results

Larger domains are very hard to build using any system. In developing the machining
domain there were three areas of results: 1) ways in which graphical techniques aided in the
domain development; 2) additional programming algorithms that aided in domain
development; and 3) techniques that were not programmed but could provide some
support for domain development.

The graphical representation of the domain provided several aids to the domain
development, the first being that visual images are very helpful in not forgetting relevant

Page 67

information. When building the operator to saw a part it was obvious that the band saw had
to have a blade in it and the part had to be on the band saw tabie. Also the graphical images
helped me to remember what state I left the domain in from the last session. This was very
useful because I was constantly going out of town during the development of this domain.

As the domain increased in size and complexity the knowledge base changed. These
changes were in the form of object name changes, object appearance changes, connection
points moved, relation definition changes, operator definition changes, and states definition
changes. Some of the consistency checking was already a part of the system; but as the
machining domain increased, more consistency checking and updating was needed. For
example, when an object name changed, the relation, operator, and state that used that
object had to be updated. Figure 4.24 shows the impact elements have on other elements

when they change.

Mﬁr@lauom operators states problem
objects X X X X

relations " X X

operators - X

states

Figure 4.24: Table of the elements that are impacted when an element is changed.

Another feature in the system that proved to be useful was being able to test sub-parts of
the domain. This was achieved by being able to define a problem with a subset of the
defined operators and being able to individually test an operator with user-selected

As the domain got bigger there were other features that I thought could aid in the domain
development. One feature was the ability to copy and paste objects. The second was the
ability to abstract the relation definition or at least automate the definition of relations for
objects in the same hierarchy. Currently a relation definition involving a machine would
also need to be explicitly defined for all different types machine (e.g., put-vise-on-machine
needs to be defined for the machine, drill, planner, and mill objects). It would be good if,

Page 68

when a relation was defined for a parent object (i.e., a machine object), the system defined
the other relations automatically, allowing the user to change any that were incorrect.
Finally, attributes need to be handled better. As the complexity of the domain increased
attributes became more and more important. The size of the part and the hole position are
some of these attributes. Allowing the attributes to be handled with a more graphical
methodology would help increase the user's domain understanding.

4.4.4 Study 4: Conclusion
The hypothesis was confirmed. APPRENTICE does scales up to larger domains. For
future work more investigation can be done on scaling up domains in APPRENTICE.

Page 69

Page 70

Chapter 5 - Domain Characteristics

This chapter discusses the domain characteristics that are conducive to efficient domain
development in APPRENTICE. Since APPRENTICE provides the ability to textually edit
any portion of a domain, any domain developed for Prodigy can be built using
APPRENTICE. There are, however some characteristics that are better suited for
APPRENTICE's graphical form of knowledge acquisition. In essence, APPRENTICE
performs best with domains in which the central part of the domain is represented by
objects, relations, and operators; with domains that are highly visual; and with domains that
involve procedural tasks. |

In Study 1, 30 of the 32 domains suggested by Al students prior to any knowledge of
APPRENTICE were casily acquired via APPRENTICE. Therefore, visual-orientation is a

very wide-ranging property for most domains.

It is my belief that knowledge acquisition should be done with multiple techniques, in
which the KA system strives to closely resemble the way the expert thinks about and
solves problems in the domain being developed. It is important for the designers of
knowledge acquisition system to understand different techniques to help develop versatile
"hybrid" KA systems. With such combined systems, the strengths of each technique can
be utilized by selecting the most appropriate one for each situation.

To help identify the strengths of the APPRENTICE techniques, this chapter addresses the
characteristics of a domain that makes the domain amenable to APPRENTICE. I will also
discuss the ability of APPRENTICE to develop medium size domains, as well as some

issues of expanding domain knowledge.

5.1 Positive Domain Characteristics

A set of domain characteristics emerged as multiple domains were built in APPRENTICE.
APPRENTICE-like techniques are useful with domains having the pri. .ary characteristics
of 1) objects central to the dornain's representation; 2) visual images corresponding to the
domain objects; and 3) modelling a procedural task. Other secondary domain

Page 71

characteristics that APPRENTICE can handle well are domains in which the objects are
grouped in a hierarchy and domains in which object attributes relate only to a particular
object.

Domains in which objects are central to the representation can be described in terms of the
objects, relations, and operators. This domain description parallels the development process
for building domains in APPRENTICE. This allows the expert to focus on the domain
information and not on the system representational language. This key characteristic has
been a predominant characteristic in all the domains that have been built thus far in
APPRENTICE.

Alternatively, in the absence of physical objects, the APPRENTICE approach works well
if a mental description of the domain with a highly visual representation can be formulated
(e.g. packet switching). This allows the expert to create visual images of a domain, similar
to the mental representation that the expert already has, and eliminates some of the mental
translation that the expert has to do in order to develop a domain.

Another characteristic that APPRENTICE supports well is domain modelling of a
procedural task that has a structured approach to planning problem solutions, such as
cooking a carrot cake or machining a metal part. These tasks follow the expert/apprentice
paradigm in which the expert demonstrates to an apprentice how to solve a problem in the
domain. The expert is first concerned about building a common language with the
apprentice; thus, object and relation descriptions are needed. Then the expert is concerned
about relaying to the apprentice the procedural or operational information in which the
objects and relations are used to describe the operational information. For domains that are
not solving a procedural task, such as text composition or unstructured troubleshooting, a
different set of techniques are needed, and an APPRENTICE-like approach would not
work well.

The other characteristics that have been shown to be supportec by APPRENT1CE are the

hierarchy relationship between objects (e.g., drill is-a machine), and the attribute description
of individual objects (e.g., weight of block, etc.).

Page 72

5.2 APPRENTICE Limitations

There are & ;o certain domain characteristics that do not seem to be conducive to the
APPRENTICE techniques. Of course, domains that are not visual prove to be difficult to
express with the system. Another limitation in the current system is the difficulty of
expressing multidimensional relations. These types of relations represent the relationship
between objects in two- or three- dimensional space. I briefly discuss the needs and
specifications for allowing this type of relations definition in section 6.3.3.

Another difficulty with APPRENTICE derives from the planning system itself. Nolimit
does not handle infinite type variables (i.e., numbers, time, etc.) very cleanly. Variables of
this type cannot be bound in an operator from the state definition during planning. This
requires custom Lisp code to be written to generate the appropriate instances of the
variables. This is handled by brute force in the APPRENTICE system, and none of the
domains observed made extensive use of infinite type variables. Because the difficulty in
dealing with infinite types is due to the underlying problem solver, APPRENTICE may
deal with infinite types better using another planner.

For the largest domains that were built in APPRENTICE, the limited screen real estate did
not cause a problem. But as domains get bigger and there is a high degree of interaction
among objects, I expect that there will not be enough room on the screen for all the
graphics. This limitation can be minimized by developing better techniques for allowing the
user to store and display needed information, such as techniques for creating abstract object
types that can graphically represent multiple objects as one. For example the strips domain
could be extended to have multiple buildings with several rooms. A plan consists of
moving packages from one location to another. This may mean moving packages between
buildings. To encode the operator to move packages between buildings only the buildings
need to be considered. To encode the operator to move packages between rooms only the
rooms i~ a particular building need to be considered. By allowing abstract object definitions
to handle this type of context sensitive usage screen real estate can be conserved and larger
domains can be better organized.

Finally, some information can be expressed more concisely and with greater ease in a non-
visual representation (e.g., mathematical formulas, programming, etc.). As discussed
previously, the expert should be allowed to use other methods to represented domain

Page 73

information, thus allowing maximum flexibility for the expert. APPRENTICE shows
some amount of this ability by allowing the generated code to be edited manually.

5.3 Techniques That Aid Large Domain Development
Large domains share certain characteristics that have to be addressed. With large domains
there are many things to keep track of, multiple interactions to coordinate, and many details
to incorporate into the knowledge base. Several APPRENTICE techniques aid in the
development of these large domains.

The ability to have the visual representation closely match the physical domain aids in
cueing the expert to needed information during domain development. For example, if the
expert is developing the operator to drill a hole in a part, it is obviously easy to graphically
identify the drill-bit not being in place. This error would be more difficult to find in a
textual representation. As the domain increases in size, this ability to detect obvious
inconsistences becomes more and more valuable.

The structure of APPRENTICE gives an expert a consistent paradigm for developing a
knowledge base, while also allowing the flexibility to build sub-parts one at a time.
Because the domain closely resembles the knowledge being encoded and the development
procedures are easily understood, the expert has a clear focus on what information needs to
be added and where that informztion should go. Also, the expert can develop different parts
of the domain as appropriate. This allows the expert to change focus and develop relevant
information. For example, the expert can develop a portion of the domain (e.g., relevant
objects, relations, and operators) to drill a hole in a part, and later develop the portion of the
domain to polish a part. This flexibility is very important in developing large domains in
segments.

Large domains are developed over time during many sessions. The expert may go for long
periods of time without using or reviewing certain information. The visualization helps the
expert quickly recall the previous work. The graphics also help experts at the beginning of a
new session determine where they ended from the last session.

With a shared visual representation, muitiple developers can easily communicate to

develop and maintain a large knowledge base. The demonstrated ease in domain
understanding indicates the feasibility of this coordinated effort.

Page 74

As a domain increases in size during development, some of the APPRENTICE techniques
can be used to help make this development more efficient. APPRENTICE has several
capabilities that aid in the expansion of a domain. These are consistency checking,
inheritance of objects, unknown relations warnings, and a customizable interface.

Consistency checking allows changes made to parts of a domain to be propagated to the
other relevant parts of the domain. For example, if the name or the appearance of an object
is changed, then all domain elements using the object are modified to reflect the change.
Changes to a relation also invoke the update of operators and states that use the relation.
This provides flexibility in domain development, as described earlier.

The ability to define operators using objects high in the hierarchy allows for a more general
operator definition, thereby consolidating information and making the domain better
organized. This is demonstrated in the cooking carrot cake domain in Appendix C. The
operators get and put-in-bowl are defined using the super class object ingr. This means that
separate definitions are not needed for carrots, spices, sugar, oil, and flour. This makes the
domain easier to understand and maintain.

As operators or states are being developed, sometimes the expert will describe object
connections that have not yet been defined as a relation. When the system detects an
undefined connection, a warning message is produced, giving the expert an opportunity to
add the needed relation knowledge. An expert would create an undefined connection
between objects because during operator development the expert has visual cues of the
needed information for the operator. Thus when the expert thinks of a needed relation the
connection is made. The system then uses this new information to solicit the missing
relation definition from the expert. For example, in the machining domain, a relation
between the drill machine and the drill-bit may not have been initially defined. During the
building of the drill operator, the drill machine and drill-bit are connected together. It is
visually obvious to have the drill holding a drill-bit in order to drill a hole in a part. The
system recognizes that no relation definition exists between the drill machine and the drill-
bit and warns the user of this. The user can then define the holding-tool relation between
the drill machine and the drill-bit

The final issue that aids in the development of large domains is to provide the expert a
direct manipulation interface for organizing the workspace. Because the interface is easily

Page 75

modifiable, the expert can organize the graphical objects according to personal preference
and for productive development. Figure 5.1 depicts the bottom half of the operator window
with the medium size machining domain loaded. Notice that I have grouped prototype
objects together by types (e.g., row of drill bits, row of machines, etc.). Also, the operators
are group by functionality (e.g., operators to do drilling are in the left corner, operators to
mill parts are grouped together, etc.). This ability to manipulate the workspace helped to
create an organized environmeat for rapid domain development.

e | Ariant i

L 380832 280824

Wi w1 e g
o T

— =

P

|

&%
N
e

J

i

v e— —
dupgat
[]
rmew-al-ten-gings e ol
L] Pobsdngdasisrirall hlbuihvie
aBevip renmhtidngdaderin-on relagan-Sun-vien
aRatived sutapal-tu-aiing
obuieos ssvupmi-lormiling
Shathvrane
poasaiodrbandany wi-puet wibpant
et ctnbems ni-tinan
L] PUSpmtententeaw POy Putaiiing-evir- vl
SBwiiretuight-fueg-ait uogatelitumdenn ramove-wdiing-ovin-bem
puteiec-inml
L] pelabutb-handeny [—
bttt TNt ten-at

Page 76

Chapter 6 - Conclusion

This chapter highlights the technical accomplishments of this dissertation and illuminates

6.1 Summary of Findings
The ability to model real world information with metaphors similar to the visual aspects of
the domain has been shown to aid domain development. This is because:

* Objects are based on the physical world. The objects in APPRENTICE occupy
space on the screen similar to the space that objects occupy in the real world. Also
similar to the physical world APPRENTICE objects are only at a single location at
a time. These similarities help the expert understand and describe a domain using
already developed intuitions.

* In using already lecarned intuitions to develop domains in APPRENTICE the
experts do not have to mentally translate the physical domain into a foreign
machine representation.

» When the system is developing a solution to a problem, the expert can quickly
understand what the system is doing by observing the animation. This allows the
expert confidence in the system and provides a faster indicator when some
knowledge is incomplete.

6.2 Contributions of This Research

In this research, a method for graphical knowledge acquisition for visual planning domains
was developed, described, implemented, and tested. A strong visual intuition for physical
and conceptual domains maps very well with the conceptual representation of the domain.
With these methods, the expert is able to express domain information similar to the way
the information is thought about. These techniques were shown to increase the ease, speed,
and accuracy of knowledge acquisition through a set of user studies.

Page 77

The APPRENTICE system is tightly integrated into the Prodigy planning system.
Although APPRENTICE is easy to use, it does not keep the expert from using the
expressive power of the underlying planning system if needed. APPRENTICE allows the
building of a domain using a graphical representation to create the information. Domain
eclements such as objects, relations, and operators are defined graphically. This allows the
expert a straightforward mapping between the physical domain and the encoded

representation.

Several studies were done with the APPRENTICE system to evaluate the ease, speed, and
accuracy of the new techniques. Study 1 had 32 subjects developing their individual
domains in APPRENTICE. This study showed the ease of use and the flexibility of the
system with multiple subjects. Study 2 was a comparison between the productivity of
developing domains in a text editor versus developing domains in APPRENTICE, using
different types of users. The APPRENTICE system produced quicker development time
and better domain understanding for all but the most seasoned Prodigy users. In Study 3,
the system was used by a subject to develop four similar domains over time. This study
indicates that domain development efficiency increases over time as the subject becomes
more familiar with the system. Finally, in Study 4 the system was used to develop a
machining domain. This study verified the ability of APPRENTICE to work with a larger
domain,

An important contribution is that APPRENTICE demonstrated the soundness of the
techniques even with users with very little prior computer knowledge. In Study 2 the non-
technical computer users were able to develop working domains using the APPRENTICE
system, but most of them were not able to develop similar domains using Emacs. Even
with the non-technical subject who was able to build a domain in both systems, there was
still about a 300% improvement in the development time for the APPRENTICE system.

6.3 Future Work ,

As I developed the core techniques for APPRENTICE, more ideas emerged than I had
time to investigate. Some of these ideas would help make the system more usable, while
others could be used to extend the system capabilities. 1 will describe the ideas in the
following sections.

Page 78

6.3.1 APPRENTICE-assisted Search Control Rule Development

In this dissertation I have only discussed the creation of factual knowledge for 2 dornain.
Search control knowledge is also important in encoding information to better guide the
planning system. Future work should be done to aid the expert in developing these search
control rules. This section outlines possible techniques that could be incorporated into the
system.

The goal of a planning system is to find a set of operators that, when applied sequentially,
will transform the initial state into the goal state. The search sequence is determined by the
accuracy of the operators, the correct specification of the initial and goal states, and the set
of defined search control rules. Thus, the efficiency of the planner is dependent on the
selection of goals, operators, and objects in exploring the problem space. This selection can
be directly controlled by search control rules. Search control rules can be developed by both
the user and system, by directly observing and correcting search path mistakes.

There are three phases of development in creating search control rules. These phases are: 1)
determining if the system is solving the problem correctly; 2) if the system is not solving
the problem correctly, determining why and where the knowledge base is incomplete; and
3) creating search control rules to enhance the knowledge base.

To automate the development process the expert needs to determine where the planner
made a wrong move and to show the planner the correct move that should have been
made. The system could ask directed questions that would allow it to automatically
formulate a control rule for current and future use.

To demonstrate a possible scenario I will use a STRIPS world type domain. The domain is
as follows:
object: package, robot, and rooms
relation: in-room-package, package-on-robot, in-room-robot, rooms-
connected
operator: pickup-package, put-down-package, move-robot
initial state: (in-room-package pkl RoomA), {in-room-robot Robotl RocmA),
(room-connected RoomA RoomB, (room-connected RoomB RoomA)
goal state: (in-rocm-robot Robotl PoomB), (in-rocm-package pkl RoomB)

Page 79

Note: pickup-package removes the package from the room that the package is in, and
put -down-package places the package in the same room as the robot.

Roljotl
[
RocmA RoomB

Figure 6.1: Example of a STRIPS world type domain.

When running the above problem the expert sees the robot move to RoomB, thea come
back to pick up pkl, and then move to RoomB with the package. This is because the first
goal is to get (in-room-robot Robotl RoomB). By watching this solution the expert
notices that the robot should have picked up the pk1 first, then tried to move to the next
room.

The expert then demonstrates to the system that the robot should pick up the package first
before moving the robot. The system then notes that there is a discrepancy between what it
did versus what it should have done. The system then sets about obtaining additional
information it needs to avoid similar mistakes like this in the future.

Control rules take the form of selecting, deleting, or preferring some information. Much
could be done to help the expert write these ruies. The important information to determine
is what kind of search control rule needs to be written and what state information is needed
in order to use the control rule. The system could ask focus questions of the expert. These
questions help develop control rules such as the fouowing: if the goal of getting a package
to a room has not yet been achieved and the robot is in the same room as the package, then
prefer working on the in-room-package goal first. This control rule could be written as
follows.

Page 80

{REORDER-CANDIDATE-GOAL-RULE-1
(lhs (and (current-node <«<n>)
(candidate-goal <n> (in-room <Robby> <room>))
(candidate-goal <n> (in-room-package <pkl> <room>))
(known <n> (and (in-room-package <pkl> <RoomA>)
(not-equal <room> <RoomA>)))))
(rhs (prefer goal (in-room-package <pkl> <room>)
{in-room <Robby> <room>))))

Figure 6.2: Example of possible control rule built with system assistance.

The above example has outlined a technique for possibly adding a search control rule to a
knowledge base. This has been achieved by first noting that the planned solution was not
optimal, next demonstrating to the system the correct sequence, and finally getting system-
directed help to determine the relevant information that was needed to build a new search
control rule. A deeper understanding of how a system can interactively aid an expert in
developing search control rules will improve domain development.

6.3.2 Seamless Environment: Visual and Textual Representation

One of the things that Study 2 revealed was that Prodigy experts built domains taster in
Emacs than in APPRENTICE. This suggests that the ability to build domains in Emacs
should be incorporated into the APPRENTICE system. Providing a seamless bridge
between the power of the graphical interface along with the ability to use Emacs to build
domains could prove to be a dynamic combination.

Currently APPRENTICE supports full data flow from the graphical system to Emacs.
APPRENTICE creates the Prodigy code automatically from the graphical description of
the domain. This created code can be edited in Emacs. However, the Emacs-edited code
does not automatically invoke a graphical representation in the graphical system. Thus, the
graphical interface cannot be used to edit the Emacs code. Figure 6.3 shows this

l Graphical H E
Interface acs j

Figure 6.3: Currently APPRENTICE provides full data flow from the graphical interface
to Emacs, but only limited data flow from Emacs to the graphical interface.

Page 81

Further research could explore having text that corresponds to graphical relations developed
with a text editor automatically update the graphical display. This would allow editing of
the textual code with the graphical system.[Glinert 90].

6.3.3 Spatial Multidimensional Relations

During the course of exploring domains in APPRENTICE, it became apparent that for
development of some domains two- and three-dimensional spatial :=formation needs to be
casily represented. This would be needed in a CAD/CAM domain, for example. In these
types of domains, information is thought of as spatial positioning between objects. More
work needs to be done into how to allow the expert an easy and intuitive way to represent
and define this spatial positioning [Chang 90].

6.3.4 Apprentice Techniques for Non-visual Domains

The APPRENTICE techniques have proven to enhance the domain development process
for visual planning domains. This is partially due to the ability of experts to understand the
domain development process in respect to how they describe the domain. It may be
possible to develop techniques similar to the ones used in APPRENTICE for non-visual

Page 82

Chapter 7 - References

{1] Abrett, G. & Burstein, M. H. (1987). The KREME knowledge editing environment. Knowledge
Acquisition Tools for Expert Systems. San Diego: Academic Press, pp. 1-24.

(2] Adobe Systems, Inc. (1985). Postscript Language Reference Manual. Reading, Massachusetts:
Addison-Wesley.

(3] Alexander, J.H., Freiling, M. J., Shuiman, SJ., Rehfuss, S. & Messick, S. L. (1987). Ontological
analysis: an ongoing experiment. Knowledge Acquisition Tools for Expert Systems. San Diego:
Academic Press, pp. 25-38.

[4] Anzai, Y. & Simon, H. (1979). The theory of leaming by doing. Psychological Review. 16(2), pp.
124-140.

(5] Aoyama, M., Miyamoto, K., Murakami, N., Nagano, H. & Oki, Y. (1989). Design specification in
Japan: Tree-structured charts. [EEE Software, 6(2), pp. 31-37.

(6] Baker, B.R. (1986). Using images o generate speech. Byre, 11(3), pp. 160-168.

[71 Barichella, E., Beretta, M., Dioguardi, N., Mussio, P., Padula, M., Piewogrande, M. & Protti, M.
(1990) A visual environment for liver simulation studies. In T. Ichikawa, E. Jungert & R.
Korfhage (Eds.), Visual Languages an Application. New York: Plenum Press,.pp. 255-275.

(8] Beach, R. & Stone, M. (1983). Graphical style: Towards high quality illustrations. ACM Computer
Graphics. Proceedings of SIGGRAPH'83, Detroit, Michigan, 17(3), pp. 127-135.

[9] Bennet, J.S. (1985) ROGET: A knowledge-based system for acquiring conceptual structure of a
diagnostic expert system. J Automated Reasoning, 1(1).

(10] Beretta, M., Mussio, P. & Protti. (1986). Icons: Interpretation and use. Proceedings Workshop on
Visual Languages. Dallas, Texas. Los Alamitos, California: [IEEE Computer Society Press, pp.
149-158.

{11] Birmingham, W. & Klinker, G. (1989). Building knowledge-acquisition tools. Ann Arbor,
Michigan: The University of Michigan.

{12] Blattner, M., Sumikawa, D. & Greenberg, R. (1989). Earcons and icons: Their structure and
common design principles. Human-Computer Interaction, 4(1), pp. 11-44,

{13] Boose, J. & Bradshaw, J. (1987). Expertise transfer and complex problems: Using AQUINAS as a
knowledge-acquisition workbench for knowledge-based systems. Knowledge Acquisition Tools
Jor Expert Systems. San Diego: Academic Press, pp 39-64.

[14] Boming, A. (1979). Thinglab: A constraint-oriented simulation laboratory, XEROX PARC, 79(3).

[15] Bommg. . (1981). The programming language aspects of Thinglab: A constraint-oriented
simulation laboratory. ACM Transactions on Programming Languages and Systems, 3(4), pp.
33.387.

{16] Bridgeland, D. (1990). Simulacrum: A system behavior example editor. In T. Ichikawa, E. Jungert
& R. Korthage (Eds.), Visual Languages an Application. New York: Plenum Press..pp. 191-202.

Page 83

{17] Brown, M.H. & Sedgewick, R. (1984). A system for algorithm animation. ACM Computer
- Graphics. In Proceedings of SIGGRAPH'84, Minneapolis, Minnesota, 18(3), pp. 177-186.

(18] Brown, M.H. & Sedgewick, R. (1985). Techniques for algorithm animation. /EEE Software, 2(1),
pp. 28-39.

[19) Brown, M.H. (1988). Exploring algorithms using BALSA-II. [EEE Computer, 21(5), pp.14-36.

[20] Brown, M.H. (1988). Perspectives on algorithm animation. In Conference Proceedings,
CHI'88:Human Factors in Computing Systems, Washington, D.C., New York: ACM Press, pp.
33-38.

[21] Brown, M.L., Newsome, S.L. & Glinert, EP. (1989). An experiment into the use of auditory cues
10 reduce visual workload. In Conference Proceedings, CHI'89: Human Factors in Computing
Systems, Austin, Texas, New York: ACM Press, pp. 339-346.

{22] Buchanan, G., Barstow, D., Bechtal, R. Bennett, J., Clancey, W., Kulikowski, C.. Mitchell, T., &
Waterman, D. (1983). Construction of an expert system. In F. Hayes-Roth, D. Waterman, &
D. Lenat (Eds.), Building Expert Systems, Reading, Massachusetts: Addison-Wesley, pp 127 -
167.

(23] Carbonell, J., Gil, Y., Joseph, R., Knoblock, C., Minton, S., & Veloso, M. (1990). Designing an
integrated architecture: The PRODIGY view. In Proceedings from The 12th Annual Conference
of the Cognitive Science Society.

{24] Cardelli, L. (1988). Building user interfaces by direct manipulation. In Proceedings UIST'88, ACM
SIGGRAPH Symposium on User Interface Software and Technology. Banff, Alberta, Canada, pp
152-166.

[25] Chang, S. & Jungert, E. (1990). A spatial knowiedge structure for visual information systems. In T.
Ichikawa, E. Jungert & R. Korfhage (Eds.), Visual Languages an Application. New York:
Plenum Piess,.pp. 277 - 304,

{26] Chang, S., Tauber, M., Yu, B. & Yu, J. (1989). A visual Ianguage compiler. /EEE Trans. on
Software Engineering, 15(5), pp. 506-525.

[27] Citrin, W. (1991) Visualization-based visual programming. University of Colorado at Boulder,
Boulder, CO, Technical Report CU-CS-535-91.)

(28] Clemons, E. & Greenfield, A. (1985). The SAGE system architecture: A system for the rapid
development of graphics interfaces for decision support. /[EEE Computer Graphics and
Applicadions, 5(11), pp. 38-50.

[29] Cohen, D. (1983). Symbolic execution of the Gist specification language, Proceedings I[JCAI-83,
Karlisruhe, Germany, pp 17 - 20.

(30] Cohen, D. (1984). A forward inference engine to aid in understanding specifications, Proceedings
AAAI-84, Austin, Texas, pp 56 - 60.

{31] Cox, P., Giles, F. & Pietrzykowski, T. (1989). ProGraph: A step towards liberating programming
from textual conditioning. 1989 /EEE Workshop on Visual Languages, pp. 50-156.

(32] Dannenberg, R. & Joseph, R. (1991). Human computer interaction in the Piano Tutor. In M.

Blauner & R. Dannenberg (Eds.), Multimedia Interface Design . Reading, Massachusetts:
Addison-Wesley.

Page 84

(33] Dannenberg, R., Sanchez, M., Joseph, A., Capell, P., Joseph, R. & Saul, R. (1990). A computer-
based multi-media wtor for beginning piano students. /nterface. 19, pp. 155-173.

[34] Davis, R. (1979). Interactive transfer of expertise: Acquisition of new inference rules. Artificial
Intelligence, 12, pp 121-158.

{35] Diederich, J., 1. Ruhmann z2ad M. May (1990). KRITON: a knowledge-acquisition tool for expert
systems. In J.H. Boose and B. R. Gaines (Eds.), The Foundation of Knowledge Acquisition,
London, San Diego: Academic Press.

(36] Duisberg, R. (1986) Constraint-based animation: the implementation of temporal constraints in the
Animus system. Dissertation, University of Washington, Seattle, published as Technical
Report no. 86-09-01.

[37] Duisberg, R. (1990). Visual programming of program visualizations: A gestural interface for
animating algorithms. In T. Ichikawa, E. Jungert & R. Korfhage (Eds.), Visual Languages an
Application. New York: Plenum Press,.pp. 161 - 174,

{38] Eshelman, L. & McDemott, J. (1986). MOLE: A knowledge acquisition tool that uses its head.
Proceedings Fifth National Conference on Artificial Intelligence, Philadelphia, Pennsylvania.

(39] Etzioni, O. (1990). A structural theory of explanation-based learning. Dissertation, Carnegie
Mellon University, Pittsburgh, Pennsylvania, published as Technical Report no. CMU-CS-90-
185.

[40] Fikes, R. and N. Nilsson (1971) Strips: A new approach to the application of theorem proving to
problem solving, Artificial Intelligence, vol. 2.

{41] Fischer, G. (1988) An overview of a graphical multilanguage applications environment. /JEEE
Transactions on Software Engineering, SE-14(6), pp. 774-786.

{42] Foley, J. & McMath, C. (1986). Dynamic process visualization. /[EEE Computer Graphics and
Applications, 6(3), pp. 16-25.

(43] Forsythe, D. & Buchanan, B. (1989). Knowledge acquisition for expert systems: Some pitfalls
and suggestions. /[EEE Transactions on Systems, Man, and Cybernetics, 19(3), pp. 435-442.

[44] Gaver, W. (1989). The SonicFinder: An interface that uses auditory icons. Human-Computer
Interaction, 4(1), pp. 67-94.

(45] Gil, Y. (1992). Acquiring domain knowledge for planning by experimentation. Dissertation,
Carnegie Mellon University, Pittsburgh, PA, published as Technical Report no. CMU-CS-92-
175.

[46] Giuse, D. (1989). KR: Constraint-based knowledge representation. Carnegie Mellon University.
Technical Report.

[47} Giuse, D., Giuse, N., & Miller, R. (1990). Towards computer-assisted maimenahce of medical
knowledge bases. Artificial [ntelligence in Medicine (Elsevier Science Publishers B.V.), 2, pp.
21-33. .

{48] Giuse, D., Giuse, N., Bankowitz, R., and Miller, R. (1991). Heuristic determination of
quantitative data for knowledge acquisition in medicine. Computers and Biomedical Research
(Academic Press), 24, pp. 261-272.

{49] Glinert, E. & Gonczarowski, J. (1987). A (Formal) model for (Iconic) programming

environments.” In INTERACT ‘87, Proceedings of the Second IFIP Conference on Human-
Computer Interaction, Stuttgart, West Germany, pp. 283-290.

Page 85

{50) Glinert, E. (1987). Out of Flatland: Towards three-dimensional visual programming. In
Proceedings of the Second Fall Joint Computer Conference, Dallas, Texas. Los Alamitos,
California: IEEE Computer Society Press, pp. 292-299.

(51] Glinert, Ephraim P. (Ed.) (1990) Visual Progamming Environments: Applications and Issues,
IEEE Computer Society Press, Los Alamitos, CA.

[52) Goldberg, A. (1984). SMALLTALK-80 The [nteractive Programming Environmen:. Reading,
Massachusetts: Addison-Wesley.

(53] Golin, E. & Reiss, S. (1989). The specification of visual language syntax. In Proceedings
Workshop on Visual Languages, Rome, Italy, Los Alamites, California: IEEE Computer
Society Press, pp. 105-110.

{54] Golin, E. (1991). A method for the specification and parsing of visual languages. Unpublished
dissertation, Brown University, Providence, Rhode Island.

[55] Gordon, R., MacNair, E., Gordon, K., & Kurose, J. (1987). A visual programming approach to
manufacturing modeling. Alamden: IBM Research Division.

(56] Graf, M. (1990). Visual programming and visual languages: Lessons learned in the trenches. In
Visual Programming Environments Applications and Issues, pp 452-454.

{57] Gruber, T. (1989). A method of acquiring strategic knowledge. Knowledge Acquisition, 1(3), pp
255-278.

(58] Gutfreund, S. (1987). Maniplicons in ThinkerToy. Proceedings OOPSLA ‘87, Orlando, Florida.
New York: ACM Press, pp. 307-317.

[59] Gyssens, M., Paredaens, J., Van den BusscheJ. & Van Gucht, D. (1991). A graph-oriented
object database model. Indiana University, Bloomington, Indiana, Technical Report No. 327.

[60] Habermann, A. & Notkin, D. (1982). The Gandalf software development environment. In The
Second Compendium of Gandalf Documentation, Camegxe Mellon University, Pittsburgh,

Pennsylvania.

(61] Haeberli, P. (1988). ConMan: A visual programming language for interactive graphics. ACM
Computer Graphics, Proceedings SIGGRAPH ‘88, Atlanta, Georgia, 22(4), pp. 103-111.

[62) Hantfield, B., Winograd T., & Bennen. J. Learning HCI design: Mentoring project groups in a
course on human-computer interaction. Center for the Study of Language and Information,
Technical Report CSLI-91-161 PCD-3.

(63] Heluula, E., Hyrskykari, A., & Raiha, K. (1990). Principles of ALADDIN and other algorithm
animation systems. In T. Ichikawa, E. Jungert & R. Korfhage (Eds.), Visual Languages an
Application. New York: Plenum Press,.pp. 175 - 187.

(64] Henderson Jr., D. & Card, S. (1986). ROOMS: The use of multiple virtual workspaces to reduce
space contention in a window-based graphical user interface. ACM Trans. on Graphics, 5(3),
pp- 211-243, _

(651 Henderson Jr., D. (1986). The TRILLUM user interface design environment. In Conference
Proceedings, CHI'86: Human Factors in Computing Systems, Boston, Massachusetts, New York:
ACM Press, pp 221-227.

{66]) Hollan, J., Hutchins, E., & Weitzman, L. (1984). STEAMER: An interactive inspectable
simulation-based training system. A/ Magazine, Summer, pp. 15-17.

Page 86

{67] Ichikawa, T. & Hirakawa, M. (1987). Visual programming: Toward realization of user-friendly
programming environments. In Proceeding Second Fall Joint Computer Conference, Dallas,
Texas, Los Alamitos, California: IEEE Computer Society Press, pp. 129-137,

[68] Jacobson, C. and M. J. Freiling (1990). ASTEK: a multi-paradigm knowledge acquisition tool for
complex structual knowledge. In J.H. Boose and B. R. Gaines (Eds.), The Foundation of
Knowledge Acquisition, London, San Diego: Academic Press.

[69] Jarveapaa, S. & Dickson, G. (1988). Graphics and managerial decision making: Research based
guidelines. CACM, 31(6), pp. 764-774.

[70] Joseph, R. (1984). An expert system for completing partially routed printed circuit boards. Master's
thesis, Electrical Engineering and Computer Science Department, Massachusetts Institute of
‘Technology.

{71] Joseph, R. (1989). FrameGraphics: A framebased graphic system. Unpublished paper, Carnegie
Melion University, Pittsburgh, Pennsyivania,

(72] Joseph, R. (1991). Muitimedia presentation used in a computer based Piano Tutor system.
Proceedings for The Multimedia Workshop for AAAI-91,

(73] Joseph, R., Ensor, J., Dickinson, A., & Blumenthal, R. (1986). Describe: An explanation facility
for an object-based expert system. Proceedings from the Second Annual Artificial Inteiligence
& Advanced Computer Technology Conference.pp. 69-73.

(74] Kahn, G., Breaux, E., Joseph, R. & DeKlerk, P. (1987). An intelligent mixed-initiative workbench
for knowledge acquisition. Knowledge Acquisition Tools for Expert Systems. San Diego,
California: Academic Press, pp 161-174.

(751 Kahn, G., Nowian, S. & McDermot, J. (1985). MORE: An intelligent knowledge acquisition tool.
Proceedings of the Ninth International Joint Conference on Artficial Intelligence, Los Angeles,
California.

[76] Kangassalo, H. (1988). CONCEPT D: A graphical language for conceptual modeling and data
base use. In Proceedings Workshop on Visual Languages, Pittsburgh, Pennsylvania, Los
Alamitos, California: [EEE Computer Society Press, pp. 2-11.

[77] Klinker, G. (1988). Knack: Sample-driven knowledge acquisition for reporting systems. In S.
Marcus (Ed.), Awtomating Knowledge Acquisition for Expert Systems, Boston: Kluwer
Academic Publishers.

[78] Kodratoff, Y. & Vrain C. (1991) Acquiring first-order knowledge about air traffic control.
Laboratory of Research in Information,University of Paris- South Center of Orsay, Orsay,
France.

(79] Kurlander, D. & Feiner, S. (1988). Editable graphical histories. In Proceedings Workshop on
Visual Languages, Pittsburgh, Pennsylvania, Los Alamitos, California: IEEE Computer
Society Press, pp. 127-134,

[80] LabVIEW (1986) LabVlEW Laboratory virtual instrument engineering workbench. Byte, pp. 84-
92,

(81] Ladner, R. (1988). Public-Law 99-506, Section 508: Electronic equipment accessibility for
disabled workers. Panel position paper in Conference Proceedings, CHI'88: Human Factors in
Computing Systems, Washington, DC, New York: ACM Press, pp. 219-222.

Page 87

{82] Laird, J., Roseabloom, P.& Newell, A. (1986). Chunking in SOAR: The anatomy of a general
learning mechanism, Machine Learning, 1(1).

[{83] Larkin, Jill & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words,
Cognitive Science, 11, pp. 65-99.

(84) Lenat, D., Prakash, M. & Shepherd, M. (1986). CYC: Using common sense knowledge to
overcome brittleness and knowledge acquisition bottlenecks. A/ Magazine, 6, pp. 65-85.

[85) Lieberman, H. (1989) A three-dimensional representation for program execution. In Proceedings
Workshop on Visual Languages, Rome, Italy, Los Alamitos, California: IEEE Computer

Society press, pp. 111-116.
{86} Lodding, K. (1983). Iconic interfacing. /JEEE Computer Graphics and Applications, 3(2), pp. 11-20.

(871 MacDraw Manual. (1989). Claris Software, 5201 Patrick Henry Drive, Santa Clara, CA, 95052,
408-727-8227.

[(88] Macintosh (1985). Inside Macintosh Volume I. Reading, Massachusetts: Addison-Wesley.

[89] MacKinlay, J. & Genesereth, M. (1984). Expressiveness of languages. Proceedings AAAI-84,
Austin, Texas.

[90] MacKiniay, J. (1986). Automating the design of graphical presentations of relational information.
ACM Trans. on Graphics, 5(2), pp. 110-141.

(91] MacroMind Director Manual. (1990). 410 ’rownsend Suite 408, San Francisco, CA 94107, Phone
415-442-0200, Director.

[92] Macus, S. (1986). Taking backtracking with a grain of SALT. Proceedings of the First AAAI
Knowledge Acquisition for Knowledge-based Systems Workshop, Banff, Canada.

(93] Mahadevan, S. (1990). An apprentice-based approach to leaming problem-solving knowledge. The
State University of New Jersey, Rutgers, New Bruaswick.

{94] Mahling, D. E. (1989). A visual language for the aquisition and display of plans, In Proceedings of
1989 IEEE Workshop on Visual Languages, Washington, D.C.: IEEE Computer Society Press,
pp. 50 - 55.

(95] Malone, T.W. (1980). What makes things fun to learn? A study of intrinsically motivating
computer games (extended excerpt). Unpublished dissertation, Stanford University, Stanford,
California.

{96} McCleary Jr., G. An effective graphic ‘vocabulary.” Los Alamitos, California: IEEE Computer
Society Press.

(971 McDermott, J. (1982). R1: A rule-baseu configurer of expert systems. Artificial Intelligence, 28.

98] Miller, G. (1956). The magic number seven plus or minus two: Some limits on our capacity for
information processing. Psychological Review, 63(2), pp. 81-96.

[99] Minton, S. (1988). Learning effective search control knowledge: An explanation-based approach.
Doctoral dissertation, Camnegie Mellon University, Pittsburgh, Pennsylvania.

[100] Minton, S., Knoblock, C., Kuokka, D., Gil, Y., Joseph, R. & Carbonell, J. (1989). PRODIGY 2.0:
The manual and wworial. Unpublished paper, Camegie Mellon University, Pittsburgh,

Pennsylvania.

Page 88

{101] Moher, T. (1988). PROVIDE: A process visualization and debugging environment. /EEE Trans.
on Software Engineering, SE-14(6), pp. 849-857.

(102] Musen, M. (1988). Generation of model-based knowledge-acquisition tools for clinical-trail
advice systems. Doctoral dissertation, Stanford University, Stanford, California.

[103] Myers, B. (1987). Creating user interfaces by demonstration. Doctoral dissertation, University of
Taronto,

(104) Myers, B. (1988). The state of the art in visual programming and program visualization. Camegie
. Mellon University, Pittsburgh, Pennsylvania, Technical Report CMU-CS-88-114,

(105] Myers, B. (1992). State of the art in user interface software tools. Carnegie Mellon University,
Piusburgh, Pennsylivania.

[106] Newell, A. & Simon, H. (1972). Human problem solving, Englewood Cliffs, New Jersey:
Prentice-Hall.

[107] Newell, A. (1981). The knowledge level. A/ Magazine, 2, pp 1 - 20.

{108] NeXT Inc. (1991) 900 Chesapeake Drive, Redwood City, CA 94063, NeXTStep and the NeXT
Interface Builder.

[109]) Nirenburg, S., Monarch, 1. Kaufmann, T. & Carbonell J. (1988). Acquisition of very large
knowiedge bases: methodology, tools and applications. Third AAAI-sponsored Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Canada.

{110] Novak Jr., G. (1977). Representation of knowledge in a program for solving physics problems.
LJCIA, pp 286-291.

(111] Nyberg, E. (1988). The FRAMEKIT user's guide version 2.0. Unpublished paper, Camnegie
Mellon University, Pittsburgh, Pennsyivania.

[112) Pace, L. & Fabrocini, F. (1988). Using classification to guide knowledge acquisition and
refinement in real-world domains. Submitted to [JCAI-89.

{113] Papert, S. (1980). Mindstorms children, computers, and powerful ideas. New York: Basic books.

[114] Park, H. (1990). Abstract object types equal abstract data types plus abstract knowledge types
plus abstract connector types. The University of lowa, lowa City, Iowa.

(115] Peppex, J., Joseph, R. & Hayes, P. (1986). GWW: A structured environment for building natural
language interfaces. Computer, pp 85-88.

(116] Perlin, M. (1989). Call-Graph caching: Transforming programs into networks. Proc.edings IJCIA-
89. '

{117] Potosnak, K. (1988). Do icons make user interfaces easier to use? /[EEE Software, 5(3), pp. 97-
99.

- [118] Richer, M. & Clancey, W. (197?). Guidon-Watch: A graphics interface for viewing a knowledge

base.

{119) Rogers, G. (1990). Visual programming using graphics, reiations, and classes. Department of
Computer Science, University of [llinois at Urbana-Champaign.

{120) Roman, G. & Cox, K. (1989). A declarative approach to visualizing concurrent computations.
IEEE Computer, 22(10), pp. 25-36.

Jage 89

(121] Schaffner, S. & Borkan, M. (1988). SEGUE: Support for distributed graphical interfaces. /[EEE
Compuier, 21(12), pp. 42-585.

(122] Scott, A., Clayton, J. & Gibson, E. (1991). A practical guide to knowledge acquisition. Reading,
Massachusetts: Addison-Wesley. .

{123] Shaw, M. (1986). An input-output model for interactive systems. In Conference Proceedings,
CHI'86: Human Factors in Computing Systems, Boston Massachusetts. New York: ACM Press,
pp. 261-273.

(124) Shneiderr=oa, B. (1983). Direct manipulation: A step beyond programming languages. /EEE
Computer, 16(8), pp. 57-69.

(125] Shneiderman, B. (1987). Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Reading, Massachuseuts: Addison-Wesley.

[126] Shortliffe, E. (1976) Computer-based Medical Consultations: MYCIN. American Elsevier.
{127] Shu, N. (1988). A visual programming language designed for automatic programming. In

Proceedings of the 21st Hawaii International Conference on System Sciences (HICSS-21),
Kailua Kona Hawaii, Volume 2: Software Track, Los Alamitos, California: IEEE Computer

Society Press, pp. 662-671.

{128] Simon, H. & Paige, J. (1966). Cognitive processes in solving algebra word problems. In H.
Simon, Models in Thought , pp 201-229.

[129] Smilh.'D, (1988). The interface construction set, Workshop on Visual Languages, Pittsburgh,
Pennsylvania, pp. 109-120.

{130] Staliman, R. (1979). Emacs: The extensible, customizable, self documenting display editor,
Technical report 519, MIT Artificial Intelligence Lab.

[131] Steele, G. (1984). Common Lisp: The language. Billerica, Massachusetts: Digital Press.

[132] Sutheriand, I. (1963). SketchPad: A man-machine graphical communication system. AFIPS
Spring Joint Computer Conference, pp 329-346.

(133] Swartout, B. (1982). GIST English generator. Proceedings AAAI-82, Pittsburgh, Pennsylvania, pp
404-409. .

[134] Swartout, B. (1983). The GIST behavior explainer. Proceedings AAAI-83, Washington D.C.

[135] Tanimoto, S. & Glinert, E. (1986). Designing iconic programming systems: Representation and
learnability. In Proceedings Workshop on Visual Languages, Dallas, Texas. Los Alamitos,
California: IEEE Computer Society Press, pp. 54-60.

{136] Tanimoto, S. (1979). Stylization as a means of compactin pictorial databases. Journal of Policy
Analysis and Information Systems, 3(2), pp. 67-89.

(137] Tanimoto, S. (1987). Visual representation in the game of adumbration. In Proceedings
Workshop on Visual Languages, Linkoping, Sweden, pp. 17-28.

[138} Tortora, G. & Leoncino, P. (1988). A model for the specification and interpretation of visual

languages. /n Proceedings Workshop on Visual Languages, Pittsburgh, Pennsylvania. Los
Alamitos, California: IEEE Computer Society Press, pp. 52-60.

Page 90

(139] Vam Nes, F., Juola, J. & Moonea, R. (1987). Attraction and distraction by text colors on displays.
In INTERACT ‘87, Proceedings of the Second IFIP Conference on Human-Computer
Interactions, Stuttgart, West Germany, pp. 513-518. :

(140} Veloso, M. (1992). Learning by analogical reasoning in general problem solving. Doctoral
dissertation, Camnegie Mellon University, Pittsburgh, Pennsylvania., published as Technical
Report no. CMU-CS-92-174.

(141] Veloso, M. M., D. Bomajo, and M. A. Perez (1992) NoLimit - The Nonlinear problem solver for
PRODIGY: User's and programmer’s manual, School of Computer Science, Carnegie Mellon,
Technical Report forthcoming.

[142] Vener, A. & Glinert, E- (1988). MAGNEX: A text editor for the visually impaired. In
Proceedings 16th Annual ACM Computer Science Conference, Atlania, Georgia. New York:
ACM Press, pp. 402-407.

{143] Waterman, D. & Newell, A. (1971). Protocol analysis as a task for artificial inteiligence.
Artificial Intelligence, 2(3-4).

(144] Winston, P. (1977). Artificial Intelligence. Reading, Massachusetts: Addison-Wesley.

(145] Wood, W. & Wood, S. (1987). Icons in everyday life. In G. Salvendy (Ed.), Social, Ergonomic
and Stress Aspects of Work with Computers. Proceedings of the Second International
Conference on Human-Computer Interaction, Honolulu, Hawaii, 1, pp. 97-104.

[146] York, B. & Karshmer, A. (1989). Tools to support blind programmers. In Proceedings 17th Annual
ACM Computer Science Conj’eren_ce. Louisville, Kentucky. New York: ACM Press, pp. 5-11.

(147] Yoshida, N., Kikuno, T., Miyao, J. & Hirakawa, N. Advanced functions in a form system based
on a formal form model. Visual Programming Environments Applications and Issues, pp 198-
205.

(148] Zloof, M. (1980). A language for office and business automation. In Office Automation
Conference Digest.Reston, Virginia: AFIPS Press, pp. 249-260.

Page 91

Appendix A - Results Chart from Study 1

A-l

E: sum; Domain " Time Obj- | Rela- | Oper-
tions Descriptions |_(rs:min) | ects | tioss | ators

1) Master, HSS, PHI Taking customer's order 1:30 5 1 6| s
2} Junior, SCS, M-C People showering _ 3:20 4 11 5
3) Master, CMU, INI Packet switching _ 220 4 | 7| 4
4) Doct, SIA, IA House building 2:220 6 | 8 | 3
5) Junior, SCS, M-C Macaroni & Cheese 2:30 8 9 7
6) Doct, HSS, SDS Move world with blocks 2:00 3 5 7
7) Junior, SCS, M-C Person killing a roach 1:40 3 5 5
8) Programmer Person bicydling 4:30 6 14 6
9) 5 Sen, MCS, MTH Square game 310 2 12 10
10) 5 Sen. MCS. MTH | Robot fetching a cigarete 2:00 5 1 9 | 7
11) Junior, SCS, M-C Hitting freshman with bat 1:30 3 4 3
12) Soph, HSS, HOO Playing a CD in a player 2:15 4 5 8
13) Doct. CMU, RI Robot passing blocks 1:30 3 | a4 | 4
14) Senior, CFA, MUS Cat getting fish 2:00 7 10 6
15) Junior, SCS, M-C Eight puzzle 1:30 2 1
16) Senior, SCS, M-C | People in room, sitting _ 2:00 4 5
17) Senior, SCS, M-C Fixing Kool-Aid 1:00 7 8
18) Doct, CMU, RI Cooking and eating Spam 145] 9 | 13 | 10
19) Senior, SCS, M-C Building DNA molecule 2:00 10 14 11
20) Senior, MCS, BSC Playing a CD player 1:40 4 3 8
21) Senior, SCS, M-C Feeding cat 2:30 11 23 7
22) Senior, SCS, M-C Traveler to Mecca 2:30 11 10 6
23) Senior, SCS, M-C Automobile starting 2:30 6 7 5
24) Senior, SCS, M-C Washing clothes 1:40 4 5 11
25) Junior, M, MC Automotive trip 1:50 9 16 5
26) Senior, SCS, M-C Making sandwich 2:10 6 12 6
27) Senior, SCS, M-C Delivering pizza to a TA 1:10 5 6 4
28) Senior, SCS, M-C____| Moving blocks outside 1:50 4 1 6!l s
29) S Sen. HSS, PSY Cooking carrot cake 2:20 13 | 21 | 5
30) Senior, SCS, M-C Taking out the trash 1:50 4 7 3
31) Junior, SCS, M-C Three location biocks wodd 2:10 3 4 2
32) Junior, SCS, M-C Getting ready for school 1:20 7 6 11

Table A.1: Study 1 Subjects

A-2

Chart 1 is used in conjunction with Table 1 to help decipher the student description column.
This information is broken down by each student's year, department, and major.

L Department Major

CFA - College of Fine Arts BSC - Biological Scieaces

CMU - Carmegie Mellon University HOO - General HSS

HSS - Humanities and Social Science IA - Industrial Management
IM - Industrial Management INI - Information Networking Institute
MCS - Mellon College of Science IMC - IM-CTT/MCS Track

SCS - Schaool of Computer Science PHI - Philosophy

SIA - Graduate School of Industrial|PSY - Psychology
Administration MTH - Math

CMU - Carnegie Mellon University MUS - Music

HSS - Humanities and Social Science M-C - Math and Computer Science
IM - Industrial Management RI - Robotics

MCS - Mellon College of Science SDS - Social and Decision Science
SCS - School of Computer Science

SIA - Graduate School of Industrial

Administrati

Table A2: Student Categories

A-3

Appendix B - DNA Domain Code

B-1

pldep

s ((iboe ko) (ayoo> o))

(gemoaxts ndl)

(eficos ((xX (xiho-holding-qto <y i)

{(couazx plcMp-gan
(peams u:nbum Q> gl))

(pomccrcs
(etfacxs ((aX (ribo-hokding-gmn <ibe <Di))))

(cpmac phdep-any

(carms ((emy> any) (ibos ©idd))

(o nil)

(effixts ((s) (riko-holding-any wry> <ib)))))

(PEBRE RL-g-OBC-00C
Camms ((cyt» o) (aiboe ribd) (<> gm)))
poexxs (ribo-holding-ga <ciboe QD))
(effisces

{{Gal (ribo-holding-gamn <l agrp))

(a2l (QED-TIE-DOCYID YO <GEDY})))

(Puatx pL-eost-00g

Carme ((<EMD QWY) (QEE> QW) (it dixd))
o (rin-toidng-any any> <ibo))
(effixces

((da (ribo-folding-any «smy> <o))

(=22 (EEy-OBC-00-GID QIE> <X}))))

pldrap-adm

pume ((ade> xix) (<l rido)))

(posaxxis odl)

(affices ((adl (ribo-holding-scen <cibo> D)) }))

pldup-hym

Cms ((<lyee) (il riko)))

meaxris nil))

(effxts ((adl (ibo-nolding-thys <cilxe <iyee)))))
(et wie-e-tpair

(pacae

((chy thm (@-tpain at-main)
(o> axy) (=i adx)
(> hym))

(comxrcis
(i (adroec-to-tha <hye - D)
(emy-DeC-to-adi N WEY>}))
{atfactn
((dal (adm-Det-to-thm <thyay <adep))
(Gl (ezy-net-to-admn <aiin> <ERY>))
(a2l (a~aci-c-part-cf-oat <ERy> <XED <a-L-peir>
<tui)]

(AT - TmE-00-4
s ((adies adm) (> €2y) (<> 6io)))
foacxcs (ribo-holding-awy <azy> <o))
(effies
(ol (ribo-holding-emy <suy> <ibow))
(all (eny-nec-to-aim <y <wTY>)))))

(pmAtYr PE--neE-to-C
pms ((ibos rilo) (<t the) (x> aim)))
oeoxxs {ribo-rolding-adn <ibo> <adan))

(effacts
(panx salw-g-ogatr (el {(ribo-hoiding-ain <t adep))
-] adi (xdn-nec-Co-tha <y adapi))})
((am> axy) (GE> gan)
(«ytor o) (qgo-guiz> go-fairn)))
s
xt (EEy-NBe-to-gEn <D <ERY>)
(GEOER-O-GYEO <YU> <D))
Cae-irstaces GIN gerd1S6)
Ges-irstaroe CID yB156)
em-irtaces BEY «uy3156)
(we~irstarces G-C-EAIR g-o-pair3is6)
ee-irntaroms RO xilx8158)
(heo-tratarres A“T-ERIR a-t-puix?)
tme-irstaces BEY «wy2)
(we-instavoss ACEN adwid)
(en-instarces THAM thag)

B-2

Appendix C - Selected Domains from

Subject 1

Subject 12
Subject 22
Subject 24
Subject 29

Study 1

C-1

Customer Ordering Domain Built By Subject 1

il ety N gy

5

oty

VHOHPIMUVO MO~~ZIMDYYD>

|
|
:
|
¢
2
f

(params ((cedax242> oxder) (<robotl4d> rubot)

wrons TR (osxiar-condition <ordar242» coolsd)

Start and Goal Stage in APPRENTICE for Subject 1 {rbot-in~de Qobotddd> «<ir242>)))

ORDERtS hagew))
AOBOTIIM U D (e (ovdar-food <order2dl> <customx242>)))})
foe V)

(opazutor cook-opder
CUSTOMER1IS (patwms ({<xobot2S5> robot) (<orce2SS» order) (<kitchenl3SOs kitchen)))
unoockad)

K] {preconds (end (order~condition axciar2$S>
x - (robotwith-oiar <ondas2SS> <robot2S5y)
(robot-in-kitchen <dtchanl3s0> <robocasSs)))
GTCHINII® Rt (effects ((del (order-condition <xciee2SS> uncookmd))

il (oxdar-condition <order2sS>
P —— { { coolaad)) }))
(operator move-robot-dr
(perms {(«27i>) (<kitchand$9> kitchen) («<robotd71> roboc)))
L (cxeotnds (robot-in-kitchen <ikitchan2é®> <xobotl7l>))

= (effeots ((dal (robot-in-kitchen <dtchmndé®> <robotd71»))
haows (uid (robot-in-dr <aobot2Tl> «<kd71>)1)})

Ausomatically Generated Start & Goal State Description for Subject 1 (eeseor sove-roboc-tizchen

(pureme {(ddoduni7é> kitchen) («robot27S» robot) («dk274> dr)))

(hap~instamces iitcnen Kicchanld6d) (frecunds (vobot~in-dr <obotdTS> «<A2Té>))
(hao~instences dr dr136d) {effects ((dal (robot-in-dr <robotaTS> «ITe>))
(hme-inetances custoans cescomarli€3) (e {roboc-in-kitchen <citchemd7éd> <rabota7S>}})))
{has~instmaons robot tobotll)éd)
(haw~instenoes cvdwr owxlerid€S) (opssutor get-order
(pecmme | (eowdar3S4Se ordar} (xustameriS4S» customer)
(ooel (cuet-stute cuscamaridE) bepoy)) («<robotsis> roboc) («XS007> dr)))
(md (cust-state wamtopariS4ss)
‘ ted m(unhegpy |
(cust-state cestomeril6) unhepgy) {ordar-food <omiec3S4S> ecascomar3Sess)
(apnoe idechenl36d dr1363) (Casg-in-dr «irS00T> <mtamer?SiS>)
(opdes-food opderl)3 customarlil€l) B {robot-in-dr <obotISe®> «drS007>)))
(ouse-ta-dr dri)) cascomr1dEd) (effoots {(del (order~food eucariSiSs custameiSiss))
(robog-in-iicchen kitchanid6d robocldéd))) (e (robot-with-ovder «oderdS4Se <robociSéfs)))))

Playi
ying CD Player By Subject 12

§l
il

30

Jo0

g
m® ‘

e

|‘

il Comeyw

¥l

10
30

3l
]

30

N Quanginger

5l
i

10

L

O

Yo MmMm=mo k=

NS Pay sty

]
0

:
[bm

o]
0
i

[;

i

(1

C3

Start and Goal State in APPRENTICE fur Subject 12

e /nk
Clase Sop Py Ckee o
[~— T s B s =Y P"- = s“"l:::1 M::
x 1/ -
e Tha_Piaymc.
Sn Goal
Aumomatically Generated Start & Goal State Description for Subject 12
(has~instances player the_playes)
(has~inscances ol weoag od)
(has~inscances o the i)
(ha-instances od-reck the_zaci)
(has~instances od othes_od)
(hop-instances el cthe_arm}
(has-instences i bed i)
(goal (md (playes-etate the Dlayer closed)
(Slayes-ruomng playing)
{in tha od che playec))i
(state (md Player-scate the playwr
(playes-ruang the_playesr plaving)
{on~runkk the_od the_reck)
(om~veck other_od the rack)
(in be od
(wolding wong ot the_sm))
Amomatically Generased Prodigy Domain Code for Subject 12
{is-a dmain-cirject-nodal { <arnd352>)
:Mﬂh .-b-m-mm ¥ mubecp) (in «=x352> <playes2i5a>)))
(effeces
(i~ Player type) {(dal (@pry-erm axm2iSd>))
{is~e a3 ope) (dal (in «xi23S> Pleya215d))
(1s~a aireck type) (e (@mpry-player laper2iSdy))
ladd (Bolding «xi2352> <armd3Sd>}))))
(cpamater plcik-wp

(pewns { (axd-tuaididb> chravk) («cil3N6> o) u—m&an
(precoads (end (eprty-emm enld3és)
(aareaok <233 exi-Tani23d)))
{etfante (il (omrvack «xX23¥> <ai-rwci23d6>))
(add (holting <2330 axadid>)})))

(cpaxeter pug-dovm
(v ({(oxrec2MD ol-reat) (x> o (i34 wm)))
(ovesnds (holding «xiiid> «asm@itd>»))
(egfonts
((dal (holding <«oSI34d» <armdIED>))
(add (empty-emn <amddcdy))
(el {om~emok <ofi4D> ect-renidd&»)))))

(cpeatnr lagect
(urms | {(layesddi?> player) (andM?> wm) (MU al)))
[]

(ancy-azh «s3dd?>)
(el (in B> @layerdP>)))))

c &]
usms ((Plagexdddy player) («ORIED o (@S> wm)))
Swenands

(end igur-etate Qloyely5d> cpm)
Olaer-renng Glayedish sxped)

(cparator play-player
(pusms ((layes3357> playex) («x2IS7> odj))
(preconds

Slaya2IsT> stgped)
Wmmmn

(coawates stop-player

pusems ((playmediSl> player) («x2I61> aif}}

(prevonds

(e 1a <cd36l> layes2I6l>)
(player-stace playerddél> closed)
Glayer-ramng layec2d6l> playing)))

(effncts ((dal layes-rwmng @lae2ibls playing))

(el (playes-ruonmng Glara2ifl> scpet)))))

(eowwtor cpe-player
s { (@la3iSs player)))
pomands (e (player-scace closed)

scopped)))
(offnots ((del (playes-stace ©lAyer2iES> closed))
(ad (player-stace Qlayecd)sS> cpmn)))))

C4

Trip to Mecca By Subject 22

R aom, et

<ban

v

gty hehe

L T T N

W gt meney

& | %e

i o

(otate {(apxl (a-loo sider housal houser)))

NN HOAMSwWCy "OWM RIOHPEITM YO WA—-HZMEYYD>

L 7]

= | mie

-j.ﬁ .~“
ity oniutle
i

— Start miGoaTSm APPRETT forS 2

—@i"’/)—

.-- A

Amtomatically Generated PmdlgyDammCo&ﬁrSubjthZ

(opamator sowe_go house
(pems ({eaiur> pareon) (<abbars_howser houss)))
(peesoxis ail)
(etfoctn {(adi (at-loc «alber> <aliars houses)))))

(opesator move
omeems ((enlle> pareon) (aaftex> lovation) (<before loocsticm)))
resundy {s£-100 wifex> dalowre))

(affouts (idnl (ec-los wibar> datores))
(adS {ug-loe wiber» wftar»)))))

L X ¥]

(P ((emvaridils water) (mm (.-unu--um
nemals (a2-los @ureenldtic «nllidete)

(effoses ((ady wmmm)

pecator get, food

(peswns {(«foodl29> fooxt) (<personi290> parsom) (<storeil9l> storel))
Precmds {at-10¢ ©ECWNI290> <stareld’l>))

(effmcts ({adi (hes Dossession <£00d129%> <Derwomi2®N>}))))

{cpammtor get_money

(peruns {{(exoayli00> noney) (@ececnllS®> paxem) (<housel2®®> house)))
presends (at-lov @ErERIIN <Dousell))

(effeces ((add (has powsssicn @oOeyl300> <DArEonl2>)))))

{opasator crose_sasext

(pevans {(amooes usomm) (<ibee> peramm) («<oml_to_mecoss rosd)
(Stigme food) (emll yater> water) (<heckeler money)))

(dal (at-los <albar> <cosd_to_macoww))
(add (at-uscoe ckber> @mooe))))d C-§

Washing Clothes By Subject 24

| e _!m/m\._”m

|

ol |

A o _wmter

MAMEE tam s yvastr

<CAAMMEZE~UDR OAMMMLCHOMY KO

NOM-MO K o

C6

Operator (cont)

LY v]

1

Automatically Generated Start & Goal State Description for Subject 24

(has~instances washer washar$80)
(haw-instances basiwt Dasists80)

Start and Goal Stage in APPRENTICE for Subject 24

7 - 2

Ausomatically Generated Prodigy Domain Code for Subject 24

is~e baed type)
{is-a davengenc type)
(is-a veshar ctype)
(1o~a benime type)

(perator pick . decergme
(parems ((<weniie0> hand) (wclecerguntsdo> dacexgunt)))
{prvomxts (hexbapty <amdiit>))
(offootn {(dal (handwpty <aandPiOs))
(s (hamd holding satevgeat <3stangunciio> <handidds)))))

(parator put_douwn_dstengut

(perems ((dwadied> hand) (wdetearguatitd> detargunt)))
(prevomds <dsoaxgutitl> <mndid>))
(effeots {(dal (hemd holding detecgemc <wendidy) }
(e (hemnpty <hemdBdd>}))))

(add (e holding Desint dasitiit> <andBid>)))))

{(opesmtor put_soue_basint .

(pumms { («<niBS?> o) (<busimtSS?> beslm)))

(oxosoads (hand_bolding beniae <usineSi?> <andi?>))

(offouts (inl (hemihelding besint <asimtsi?> Daaddd?>))
(e (hanhmgry <andf?>)))))

(cpummter washer-on
(puresn ((cnshutbd> washe)))
(prosends (end (wash-ecate eunshardSés off)
desn~etave emshartSé> closed)))
(effaste ((dal (wash-scane wushay@Sés off))
(el hemab-evate enshex®fé> on)))))

(opurator close presher
o ((anshay@ile wabar)))
orevands (and Smsh-etate -anshey@ils off)
(dosw-otate «nshw@ile cpm)))
(stfuosts (¢l (deow-etase emsharfils open))
(e idver-etste amshaptile alossd))))

(cpagator cpen yasher
(paxemn { (omuhex$S6> wvasher)))
(precondis {exd (vesh-ecate cmshar®SE> off)
(door-etate amsher®Sé> closed)))
(affects ((del (door-state «wwmshex®56> cloesd))
{add (door-etate amsher€Sé> cpanl))))

(cpegetor tarm_on_sesher
Gerans ((omubareS7> wvasher) (edecergucsS®> decasgent)
{<banietcSS> bashet)))

(add (wash-etate amsher®S7> on))})))

(opmpator tuzn_off_weshear
(pacwmn ((@mahes®S8>» washer)))
(precondy (aoxi (vash-etats <msher€Sh> on)
(doog-etate <msherfS®> closed)))
(effeces ((dal (wmsh-etate <wusherSS®> cn))
(acky (wash-otate <amsher®38> off)))))

{opeERror pour_sietasxmnt.
perwme ((<andibé> hand) («lecargeesté> detargmnc)
(amahas866> washer)))

(preomcls
{emd {wesh-stare emsheax®bls off)

(add (devevgant_in sasher emsherttts <lacergemcttts]))))

(opesutor pows_ lamdey
Cermms ((DendB73> hand) (<msletf7)> banlut) {eashest7d> wesher)))

[]

(and (wagh~-otave emshec®Td> off)
(doox-etate ensherf?d> cpen)
(band_olding basimt <ashact?3» <andi?3>)))

(affocts ((adi (clothas_inesher <asiuti7d> anshect?3>})}))

Cooking Carrot Cake By Subject 29

- A ol on
P
P
R
E J
N
T
C p——-
E
o o o) MO AT
[) P [~ TO)
E
R
emees A
T
f
= R zE‘
R :é’
S
agats ———
F
(o)
o L] R [L)
W g eenn s
u
B Auntomaticaily Generated Prodigy Domain Code
| é for Subject 29
c e
Poerr g T (ia-a ingr type) -
(ia-a baxear type)
2 (cpacecor gut
9 (pecams ((«OmEerIIth> comtar) (<naydISh> any) (<ingr9’t®> ingr)))
Greconds (may-ing <ingred8h> ammydIN>))
(effacts ((dl (mmy-ing <ingx9389% <may’I>))
vom - (ahd (cR-commter <ingrddts> <councar’ish)))})
Smmmlsmn h E ¢ ; ((<Donl9391> boarl) (<counterd?3¥l> councer! («ingr9392> ingr)))
(Coecrmdy (oR-coERar <ngr939d> <comtardif>))
8 fetfaots ((dal (a~counter <ingrilid> <ramcard3sl>))
(add (in-bowl <ingr93sd> <Howl9391n)))))
wlx-batter
Dnﬂ :: (cpasutor

({<bantax$e0l> Datter) (<bowi®395> bowl) (<oarzoca’ldsss carrocs)
(ploest?®> ices) (<mxuedIs> agur) (wil939% oil)

g ‘ (<floucs?®%e flor)))
{peecin

(and (in-boed <Lloam?IS> Dowl939%>)

.y et S)
\mtomatically Generased Start & Goal Stse Description for Subject 29 T o <immttrte stz

|
gz
%
g
i

(dal (in-bowl empioesSI9Se £Howl9395>))
(el (in-bod dmcoeriiil> SDowi939%5)))))

(cpareter put-butter-in-oven
(parmmn ((w9410 ovan) {<bowl 9409> bowl) (dectarleIH W)H
(oneomds (in-bowl <hettaridfil> iSO})

i

i
|

ovn ovenitly) ¢ e | "
: (e (in-oven <DetLaridtdd> <ovenddi®x))}))
(hev-instmees caln calmdtl9) {operaces csek
‘) [] (:mcm (?lmbﬂ-)
toresnls (in-evn dutteridiils <ovenlisdts))
(ocute (and (my-ing Dowidl? auy$’) (atfosts (Wl (in-owen DEEveridiie> wovanliSdér))
{amy-ing 041941} awysill) {add (in-ovem <onitalefi6> <ovanidetder)))))

C3

Appendix D - Information Given to
Subjects in Study 2 Phase 1

D-1

Prodigy and Domain Description

In the field of Artificial Intelligence one way of emulating human problem solving
techniques is with planning systems. Planning systems allow a user to define a situation
and problem systematically and have the system plan a solution. PRODIGY is such a
general purpose planning system.

In PRODIGY the actions that the planner takes are defined by operators (actions a person
would use to solve a problem). The problem is a coarse representation of relevant facts
describing the initial situation before a plan is executed; and the final situation desired after
a set of operators are executed. Let's take a very simple example like the process of
delivering a pizza. This can be a very complicated process, but in this case we only want a
very coarse grain model of the "domain" or situation.

Domain: You have a car and work for a pizza place. When the pizza is ready you load it
into your car, which is at the pizza place, and deliver it to someone's home. For this domain
you can only deliver one pizza at a time. There are 3 operators that you will be concerned
with: load-pizza-in-car, drive-to-location and unload-pizza-from-car. The load-pizza-in-car
states that if the pizza is ready and the car is at the same location as the pizza and the car is
empty then the pizza can be put inside the car. The next operator, drive-to-location, states
that if a car is in at location1 then it can drive to a different location, location2. Finally the
unload-pizza-from-car states that if a pizza is in the car then the pizza can be unloaded from
the car and the pizza is now in the same location that the car is and the car is empty.

load-pizza-in-car drive-car unioad-pizza-from-car
if i if
pizza at locationl car at locationl car at location
car at locationl then - .| pizzaincar
then car at location2 then
__put pizza in car unload pizza to location
Lets describe two problems:

PROBLEM 1: The initial sitnation is that the pizza and the car are at the store. The goal is
to deliver the pizza to Larry's house. The solution is to load-pizza-in-car at the store, drive-
car to Larry’s house and then unioad the pizza at Larry's house.

PROBLEM 2: Here is a slightly more complicated situation. The initial sitnation is that the
car is now at Larry’s house and the pizza is at the pizza place. Again the goal is to deliver
the pizza to Larry's house. Here the solution is to drive-car to the store then load-pizza-in-
car at the store, drive-car to Larry's house and then unload the pizza at Larry's house.

How do you encode this information so a computer can use it? That is what planning
systems allow you to do.

The pizza delivery domain is right now a very simple domain, but by adding more delivery
locations and route length information the complexity of the problem increases and the
system can actually be useful in planning pizza delivery routes.

D-2

The task is to build this simple pizza delivery route domain as an exercise in Prodigy. You
will use Apprentice, a visual domain building tool, and Emacs, a textual editor.

D3

Emacs/Prodigy Example Domain

L Introduction

Writing a domain in Prodigy requires several steps. You must create object type definitions
used in the domain, operators, instances of objects, start states, and goals states. Below is
an example of ail these steps for the pizza domain. We will use the pizza domain to define
a domain in Prodigy using Emacs.

2. Defining Object Types

First you must define object definitions for a domain. These type definitions tell Prodigy
the name of the objects you will be using in the domain. For the pizza domain you will
need pizza objects, car objects and location objects. An object definition has the following
skeleton (IS-A object-name TYPE). For the pizza domain these objects are defined as
below.

3. Defining Predicates and Operators

Next you must define operators. The operators define how to change states in the domain.
This change is defined by giving the preconditions of a situation and then the effects of the
change. These pre-conditions and effects are represented by predicates. Predicates represent
relations between objects. In order to allow an operator to work in a generic way the
predicates use variables. These variables match different objects in the state definition and
are represented by < surrounding the name of the variable. An operator skeleton is as
shown below:

(OPERATOR name-of-operator
(PARAMS
((<varl> typel)

(AND (predl <varl> <var2>)
(pred2<var2> <var3>))..)

((DEL (predl <varl> <var2>))
(ADD (pred3 <varl> <var3>))) ...)

Real operators in the pizza domain are defined below. Look at the operator LOAD-PIZZA.
In the PARAMS list the variable <pizza> is of type pizza-model, etc. In the precond list the
condition Car-at-loc says that the variable <car> has to be at variable location <loc> and the
condition pizza-at-loc says that the variable <pizza> has to be at the same location <loc> as
the variable <car>. Finally if these predicates are true in the state, then the variable <pizza>
is moved inside the <car> variable and the <pizza> is no longer at the location <loc>. See if
you can determine what the other operators mean.
(OPERATOR LOAD-PIZZA

(PARAMS
m PIZZA-MODEL) (<loc> LOCATION-MODEL) (<car> CAR-MODELY)))

(AND (CAR-AT-LOC <car> <loc>) (PIZZA-AT-LOC <pizza> <loc>)))
(EFFECTS

((DBL (PTZZA-AT-LOC <pizze> <ioc>))
(ADD (PIZZA-IN-CAR <izz> <cap>)))))

(orna.'lm MOVE-CAR
((<docl> LOCATION-MODEL) (<doc2> LOCATION-MODEL) (<car> CAR-MODEL)))
(PRBCONDS (CAR-AT-LOC <ca> <locl>))

(BFFECTS
((DEL (CAR-AT-LOC <car > <ocl>))
(ADD (CAR-AT-LOC <car> <oc2>)))))

(om»(\rm UNLOAD-PIZZA
(o> Nl.&CAmN-MODEL) (<pizza> PIZZA-MODEL) (<car> CAR-MODEL)))
(AND (PIZZA-IN-CAR <pizza> <car>) (CAR-AT-LOC <car> <oc>)))

(BFFECTS .
((DBL (PIZZA-IN-CAR <pizze> <cap>))
(ADD (PIZZA-AT-LOC <pizze> <loc>)))))

4, Defining a State

After the domain is described then the problems that you want to solve need to be defined.
The problem is defined by a start state (STATE, below) and a gaol state (GOAL, below) in
the domain. Below the State says that the Pepperoni and Domino-Car are at the Pizza-place
and the goal is to get the Pepperoni to Larry's place. When defining problems for a domain
you must specify what the instances are in the problem. For example the word Pepperoni is
an actual pizza and Domino-Car is an actual car.

(GOAL (PIZZA-AT-LOC PEPPERONI LARRY)) .
(STATE (AND (PIZZA-AT-LOC PEPPERONI PIZZA-PLACE) (CAR-AT-LOC DOMINO-CAR PIZZA-PLACE)))

5. Emacs and Prodigy Usage Description

You wxll have three windows available. The first window will be the domain wmdow, the
second window will be the start and goal window and the third window will be the lisp
window.

Text is entered in each window by typing. The text is placed at the point of the blinking
cursor B in the active window. A window becomes active by clicking the mouse in it. The
cursor can be moved within a window by pointing and clicking the mouse button at the
desired location or with the use of control key + text keys. The cursor movements for
different keys are listed below. A-<key> means hold the control key down with the

respective <key>.

A-a - move cursor to the front of the line A-¢ - move cursor to the end of the line
A-f - move cursor forward one space A-b - move cursor backward one space
A-n - move cursor down one line A-p - move cursor up one¢ line
A-g - abort whatever you did Ax-"o - move to the above window

6. Starting Prodigy

Once you have created the objects and the operators for a domain then AcA-] will load that
information. When you have typed in a problem, A-c*p will load the problem and run
Prodigy. The results of the run will be printed out in the lisp window. You can also test
each operator separately against the current system state. To start testing individual

D-5

operators use the A-c-*f command. Then use the step-operator function in the lisp window
to run operators. Below is the syntax for the step-operator:

(step-operator <op-name> (<varl> VAR1-NAME, (<var2> . VAR2-NAME))

Example of step-operator from pizza domain above:

(step-operator load-pizza (<pizza> . Pepperoni) (<car> . Domino-Car) (<loc> Pizza-
Place))

To view the current state type: (print-state)
7. Steps for Defining the Pizza Domain and Probiem

1) Define the object types (car, pizza, and location)

2) Define needed relations (pizza-in-car, car-at-loc, and pizza-at-loc)

3) Define the operators (load-pizza, unload-pizza, and drive-car)

4) Define the problem with instances (Pepperoni, Domino-car, Pizza-Place, and Larry-
Place)

5) Define the start state and the goal state

6) Debug domain (fix syntax errors and step through individual operators)

APPRENTICE Description

L Introduction

APPRENTICE allows an expert to create each part of a domain in Prodigy using pictures
that the expert develops. There is an APPRENTICE development window for each aspect
of a domain. To make domain development easier, the main input device is a mouse. In
cach window there are buttons that perform actions and textual items that display
information. Each window has a development box that the expert works in to develop a

particular piece of knowledge.

Users familiar with the Macintosh interface should be very comfortable using
APPRENTICE. Every item other than the development box is movable by moving the
mouse to a position over the object and holding the left mouse button down while moving
the object to the desired location.

2. APPRENTICE Windows

Model Window - Allows objects in a domain to be defined (e.g., Truck, Pizza, Location)

Relation Window - Allows relationships between objects to be defined (e.g., inside-truck,
at-location).

Operator Window - Allows state changes to be defined (e.g., load-pizza, move-car, unload-

pizza).
State Window - Allows the definition of a start state and a goal state.
Problem Window - Allows the setup and running of a problem to be solved.

Common Apprentice Window Facts
* Hold down button over an object move it. -Gi&onobjeaallmediﬁnginfamﬁon..
+ Hold down button in blank area and drag 1’ « Click return in wotk window ailows work on snother thing,
rectangle seiect object inside rectangle. » Shift click on anything give help message about thing clicked.
* Shift click button select multiple object. « Alt Click on object allows editing attributes of the object.
* Selected items appear highlighted.

« Shift right click on an item gives a help message on the item,

* The name text represents the name of a item (i.e., object, relation, operator, state or
problem).

« Multiple items selection: 1) hold the shift key down; 2) drag a box around a set of items.

« Text can be edited by clicking the right button.

* Object names can be changed by right clicking on the object.

* Buttons can be moved with the mouse by there text part are activated by the box part.

2.1. Model Window

The model window allows the expert to develop the objects of a domain. The objects have
an appearance as well as connection spots. The development box allows you to work on a
particular object. Window components:

NAME: name of the particular object type

GRAPHICAL EDITOR: An area used to build the visual representation of objects
DELETE INST BUTTON - Deletes selected model instances

D7

2 1.1. Graphical Edi

Models or objects are made up of simple drawing elements. The editor lets you draw these
simple elements to build an object. Each element in the editor can be manipulated with
mouse movement.

The following drawing objects are available:

Arrow allows selection, movement, and alteration of elements.
Allowsyoutodrawalineelcment.

[a]] Allows you to add a text element.

[O] Allows you to draw a box clement.

[ass] Allows the instance name of the object to be displayed.

[z] DEL deletes the selected elements.

Saves the elements in the editor to the actual object. If no object is currently being
worked on, then a new object is created.

[x] Allows you to place connection point element on the object.

2.2, Relation Window

Drag the objects into the wark area that defines a relationship between the objects. Connect
the objects to one another with their connection points by clicking on each relevant
connection point. When you are finished with a relation then right click on DONE.

2.3. Operator State

Operators are defined by dragging objects and connecting them together in the pre state and
then in post state. The Copy prestate button copies the information in the pre state side
into the post state side. The Link Obj buttons ailows an object selected in the pre state to
be linked with an object selected in the post state. When you are finished with an operator
then right click on DONE.

2.4. State Window

To define a state, drag the appropriate objects into the work area window and connect the
objects up as they would be in a state. Copy state button will copy a selected state
into the work area. When you are finished with a state then right click on DONE.

2.5. Problem Window

The problem window allows you to define a problem that consists of a start state, goal
state, and a set of operators. The problem elements are defined by right clicking on the
START-STATE, GOAL-STATE, and OPS text. Once a problem is defined, to have the
system try and plan a path click the RUN DOMAIN button. If you want to test on operator
at a time click the STEP FORWARD button.

3.StepsforDeﬁningthePimDominandProblem

1) Draw the object types with connection (car-model, pizza-model, and location-model)

2) Define needed relations (pizza-in-car, car-at-loc, and pizza-at-loc)

3) Define the operators by pre and post state (load-pizza, unload-pizza, and drive-car)

4) Define the start state and the goal state graphically. The instances should have the names:
Pepperoni, Domino-car, Pizza-Place, and Larry-Place

5) Define the problem by combining operator, start state, and goal state

6) Debug domain (fix syntax errors and step through individual operators)

D9

Strips World Description
Problem Descriot

The strips domain is a fictitious world comprised of the following objects: robots, boxes,
and rooms. Relations between the objects are as follows: 1) robots can hold a box; 2) two
rooms can be connected together; 3) robots can be in a room; and 4) boxes can be in a
room. The actions that are performed in this domain are: 1) robots can pick up boxes; 2)
robots can put down boxes; 3) robots can move between connected rooms with a box; and
4) robots can move between connected rooms without 2 box. The goal of this domain is to
plan paths of movement for boxes to get from an initial location to a final destination.

Task: Define an initial state, goal state, and domain. Have the system find the plan needed
to go from initial to goal state of the following problems.

Problem 1: For the initial state create two rooms (Rooml, Room2), a robot, and a box.
Room1 and Room?2 are connected together. Have the robot and box in Room1. The goal is
to have the box placed in Room2.

Problem 2: Use the work from the previous problem. For the initial state create three
rooms (Rooml, Room2, Room3), a robot, and a box. Room1 is connected to Room2 and
Room2 is connected to Room3. Have the robot in Room1 and the box in Room2. This
time the goal state is to have the box be put in Room3.

D-10

Logistic World Description
Problem Descrioti

The logistic world is comprised of the following objects: boxes and hubs. Hubs are
buildings to which boxes are brought for sorting and distribution. Relations between
objects are as follows: 1) boxes can be at the indoor of a hub 2) boxes can be at the outdoor
of a hub and 3) hubs are connected together from the outdcor of one hub to the indoor of
another hub. The actions in the domain are that 1) boxes can move between the outdoor of
one hub to the indoor of a connected hub and 2) a box at a hub's indoor must be sorted to
get to the hub's outdoor. The goal of this domain is to plan paths of movement for boxes to
get from an initial location to a final destination.

Task: Define an initial state, goal state, and domain. Have the system find the plan needed
to go from initial to goal state of the following problems.

Problem 1: The initial state has three hubs (hubl, hub2, and hub3). Hubl's outdoor is
connected to Hub2's indoor. Hub2's outdoor is connected to Hub3's indoor. There is
initially a box (Box1) at the inside door of Hubl. The goal is to have the box delivered to

the inside door of Hub3.

Problem 2: Use the work from the previous problem. In this problem the initial state has
four hubs (hubl, hub2, hub3 and hub4). Hubl's outdoor is connected to Hub2's and
Hub3's indoor. Hub3's outdoor is connected to Hub4's indoor. A box (Box1) starts at the
ingide door of Hub1. The goal is to have the box delivered to the inside door of Hub4.

D-11

Appendix E - Questions from Study 2
Phase 2

E-1

Questions from Study 2 of Phase 2

The following section conizins the domains, questions, and resuits from study 2 of phase 2. For this phase two
domains were used: the monkey and banana domain and the blocks domain. The questions are about operators or
states in these domains.

Each question section has a graphical representation of an operator or state along side the textual representa-
tion of the same information. The textual representation was automatically generated with APPRENTICE from the
graphical representation. The mulitiple-choice question is below these representations. The correct answer to the
question has been made bold for your convenience. To the right of the question is the data showing the subjects
that answered this question incorrectly. Only one incorrect answer was given during the graphical representation
testing. The incorrect question for the textual representation will be duly noted.

Blocks Domain

Question 1:

Dn—- De.u-- Du-q

=

———/

If op2 has fired is the arm empty or holding a block?

1) Holding

OPERATOR NAME:op2

params
(<bottom> block-model)
{<top> block-model)
(<arm> arm-model)

(on <top> <bottom>)
{empty-arm <arm>)
(clear <top>)

effects

(del (on <top> <bottom>))
(del (empty-arm <arm>))
(el (clear <top>))

(sdd (holding <top> <arm>))
(add (clear <bottom>))

2) BEmpty
3) Unknown
Question 2:
O Cowmen - [Jueew OPERATOR NAME: op3
L 2] pecams
coms (<> arm-model)
(<block> block-model)
(<tabie> table-model)
/#\ /i\ (ou-table <block> <table>)
[3" (empty-arm <arm>) (clear <block>)
offscts
(del (on-table <block> <table>))
(del (empty-arm <arm>))
——%——. —_— (del (clear <block>))
Lt _~Z AR (add (Bokding <block> <arm>)
If op3 has fired is the arm empty or holding a block?
1) Holding
2) Empty

3) Unknown

E-2

Question 3:

Oomme Jowmen [Juew

N
-

Is operator opl representing?

1) Picking up a block off the table
2) Putting down a block on the table
3) Stacking a block on another

4) Unstacking a block off another

Question 4:

Oosams Dowmes Cuma

Is operator op2 representing?

1) Picking up a block off the table
2) Putting down a block on the table
3) Stacking a block on another

4) Unstacking a block off another

(del (holding <block> <anm>))
(add (on-table <block> <table>))
(add (empty-arm <arm>))

(add (clear <block>))

OPERATOR NAME:op2
params
{<bottom> block-model)
(<top> block-model)
(<arm> arm-model)
preconds
(on <top> <bottom>)
(empty-arm <anm>)
(clear <top>)
effects
(del (on <top> <bottom>))
(del (empty-arm <arm>))
(del (clear <top>))
(add (holding <top> <arm>))
(add (clear <bottom>))

E-3

Question §:

A

P

'—"-'—'/

Is operator op3 representing?

1) Picking up a block off the table
2) Putting down a block on the table
3) Stacking a block on another

4) Unstacking a block off another

Question 6:
CJowasa [Jowneas O
| o~
- &

Is operator op4 representing?
1) Picking up a block off the table
2) Putting down a block on the table
3) Stacking a block on anotherxr
4) Unstacking a block off another

OPERATOR NAME: op3

perams
(<arm> arm-modei)
(<block> block-model)
(<table> table-model)
preconds
(on-table <block> <table>)
(empty-am <arm>) (clear <block>)
effocts

(del (on-table <block> <table>))
(dei (empty-arm <anm>))

(del (clear <blocic>))

(add (holding <blocic> <arm>))

(add (on <top> <bottom>))
(add (empty-arm <arm>))
(add (clesr <top>))

E4

Question 7:

Dln- E]--— Dn.a- sfﬁ:f“m
L] (clear b)
. - (clear a)
(empty-arm x)
STATS.STT G- Sl G- T (on-table c table)
00N, STATR Ges B emtanc (on-table b table)
,=4, (on-table a table)
GOAL STATE
(a1 (o] [¢] zdﬂt I;)
v onac,
L X _~ (caba)

In the goal state of problem stack-3-block-l what is blockB on top of?
1) BlockC
2) BlockA .
3) The Table
4) None of the above

Question 8:
START STATE
D | S D A Oomte D Coome Aruatn]
" (clear b)
- (clear a)
STBSTATR S-S ihuinOn- Tl) [
/* (cn-table a table)
GOAL STATE
=
v~ onac
l/ //' (onba)

In the start state of problem stack-3-block-1 what is blockB on top of?
1) BlockC
2) BlockA
3) The Table
4) None of the above

Question 9:

Oumre Jrases [Jommmms

[od{od-{>+

START STATE
(clearc)
(clear b)
(clear a)
(empty-arm arm)
(on-table c table)
{on-table b table)
(on-table a table)

" GOAL STATE

(cleara)
(onbc)
(onab)

In the goal state of problem stack-3-block-2 what is blockB on top of?

1) BlockC

2) BlockAa

3) The Table

4) None of the above

Question 10:

This domain is for?
1) Stacking Blocks
2) Moving Packages
3) Getting bananas

Monkey and Banana Domain

Question 1:
Domn Jowmem [Joea
T
x =E
e i o

OPERATOR NAME: op2

perams
(<book> hook-model)
(<locatiotr> location-model)
(<monkey> monkey-model)
(<block> block-model)
(<banans> banana-model)))

preconds
(on-block <monkey> <block>)
(under-hook <location> <hook>)
(block-at-iocation <block> <location>)
(on-ceiling <banana> <hook>)))

effects
(del (onceiling <banana> <hook>))
(add (holding-banana <banana> <monkey>))

If op2 has fired is the monkey’s hand empty or holding the bananas?
1) Holding the bananas

2) Empty
3) Unknown

Question 2:

Ooemwe [Jowmes Ouecn

=

-

ahp

OPERATOR NAME: op3

perams
(<to-loc> location-model)
(<from-loc> location-model)
(<monkey> monkey-model)

preconds
(connected <to-loc> <from-loc>)
(connected <from-loc> <to-loc>)
(monkey-at-location <monkey> <from-loc>)))
(del (monkey-st-location <monkey> <from-loc>))
(add (monkey-at-location <monkey> <to-loc>))

If op3d has fired is the monkey in the same location?
1) Same location
2) Differemt location

3) Unknown

E-7

Question 3:

Oesmea Tow Ouacr OPERATOR NAME: opl
params
- (<blocic> block-model)
oo (<location> location-model)
(<monkey> moakey-model)
preconds
(monkey-at-location <monkey> <location>)
’% (block-at-location <block> <location>)
effects
(del (moukey-at-location <monkey> <location>))
(add (on-block <monkey> <block>))
JuvRny oz
o AFTER
Is operator opl representing?
1) Grabbing the bananas
2) Monkey moving himself
3) Monkey moving the Block
4) Monksy getting om Block
Question 4:
Ooern Towmen [Jueo OPERATOR NAME: op2
perams
[(<hoolc hook-model)
oove ~ (<location> location-model)
S oy (<monkey> monkey-model)
v (<block> block-modet)
(<banana> banana-model)))
preconds
% ﬁ (on-block <monkey> <block>)
_ (under-hook <location> <hook>)
(block-at-location <block> <location>)
S s (on-ceiling <bsnana> <hook>)))
A effects
“wou .‘.:' (ded (on-ceiling <banana> <hook>))
(add (holding-benana <banana> <monkey>))

Is operator op2 representing?
1) Grabbing the bananas
2) Monkey moving himself
3) Monkey moving the Block
4) Monkey getting on Block

Question 5:

—ﬁo—- iDn.uu— wacn

=

-

- =

<hw
o AFTER

Is operator op3 representing?
1) Grabbing the bananas
2) Monkey moving himself
3) Monkey moving the Block
4) Monkey getting on Block

Question 6:
[P PO
ZRE

Is operator opd4 representing?
1) Grabbing the bananas
2) Monkey moving himself

3) Monkey moving the Block
4) Monkey getting on Block

OPERATOR NAME: op3
params
(<to-loc> locatio.1-model)
(<from-loc> location-model)
(<monkey> monkey-model)
preconds

(connected <to~loc> <from-loc>)

(connected <from-loc> <to-loc>)

(monkey-at-location <monkey> <from-loc>)))
effects

(del (monkey-at-location <monkey> <from-loc>))

{add (monkey-at-location <monkey> <to-loc>))

OPERATOR NAME: opd4

perams
(<to-loc> location-model)
(<from-loc> location-model)
(<monkey> monkey-model)
(<block> block-model)

preconds
(connected <to-loc> <from-loc>)
(connacted <from-loc> <to-loc>)
(monkey-at-location <monkey> <from-loc>)
(block-at-location <block> <from-loc>)))

effects
(del (monkey-at-location <monkey> <from-locs>))
(del (block-at-location <block> <from-loc>))
(add (monkey-at-location <monkey> <to-loc>))
(add (block-at-locstion <block> <to-loc>))

E9

Question 7:

Du—- Dn-— Do—u—

NAME Pendtuy

e

2!

What is the goal of probleml?
1) To have the monkey on the block
2) To have the monkey at location 3
3) To have the monkey holding the ba-

4) None of the above

Question 8:

Do-- Dma—- Do—n—

NAME: Aty

e

In the start state of prouibleml where is the block?

1) Locl
2) Loc2
3) Loc3

4) None of the above

START STATE
(on-ceiling banana hook)
(block-at-location block loc4)
{monkey-at-location monkey loc3)
(connected loc2 locd)
(connected loc2 loc3)
(connected locl loc2)
(connected loc4 loc2)
(connected loc3 loc2)
(connected loc2 locl)
(under-hook loc1 hook)

GOAL STATE
(holding-banana banana monkey)

START STATE
{on-ceiling banana hook)
(block-at-location block locd)
(monkey-at-location monkey loc3)
(connected loc2 locd)
(connected loc2 loc3)
(connected locl loc2)
(connected loc4 loc2)
{connected loc3 loc2)
(connected loc2 locl)
(under-hook Jocl hook)

GOAL STATE
(holding-banans banana monkey)

E-10

Question 9:

Ormea Oreome [Jomm

e

4««._

In the start state of probleml where is the monkey?

1) Locl
2) Loc2
3) Loc3
4) Loc4

Question 10:

This domain is for?
1) Stacking Blocks
2) Moving Packages

3) Monkey getting bananas

START STATE
(on-ceiling banana hook)
(block-at-location block locd)
(monkey-at-location monkey loc3)
(connected loc2 locd)
(connected loc2 loc3)
(connected locl loc2)
{connected loc4 loc2)
(connected loc3 loc2)
(connected loc2 locl)
(under-hook loc1 hook)

GOAL STATE
(bolding-banana banana monkey)

E-11

Appendix F - Code for Medium Size
Domain

F-1

{opaxator

{<tsblet0sé> table}))
(precomds (holdiag-caol «-bicd06e> «irilli0sd>))
(effoots
((dal (holding-tool «d-biti0st> «illeéd))
(edd (is~ewailable~cool-holder «ixill064>))
(s (1o-evailable~cool «i-bite0éd»))
(add (Go~cable «i-bitsi6e> <tabled0bir)])))

resove-holding-device-in-drill
(params {(<rill250> drill) (<tabled2S®» tahle)

{eviond2S8> visw)))
(pawconds (end (has-deviae <viset2St> «irillaash»)
{is-anpty-tolding-viss <vised2S®)))
(atfaccs
((dal (has-devios <viseddS®> «irill@258»))
(a3 (is-ewailable-cable «ixill4338»))
(ackd (cm-cable <vissdIS®> <tableddSe»)))))

releass-fran-vise
(parwms {(<visedild> vise) (parTiIid> past)

(<cabledI1d>» table)))
w {helding @uxtdild> wvisetild))

uu m«wxb <visedd1d>))

(add (co-cable PWTAILD <tabled3ld>))
(e (is-evaileble-part <pextdIld))

(add (is-empty-bolding-vies <viset3l2»})}))

{cPeracor drill-with-epot-drill

[]
{{<sides part-eide) (<locx> mmber-cype) (<locy> mmber-Cype)
(<apotl2647> spot) («irill95iS» drill) (<viged51S»> vise)

(@urtISiS> pext) (<e-d951S> spoc-drill)))

(preconds
(and (clean <parcySlSs)
(bolding <GestIS1S> <vieedSiS»)
(ham~device <vised515> «ixill9S1S>)
(bolding-cool <-d9515> «<irill9siS»}))
(effacts
{(dal (clesn <axvd51Sy))
(ackd {spor-location <spotiZé47> <side <loco> <locy>))
(add (hee-auTS artI51S»))
(o (hag-epot <Wpotidsé?> urtISiS»)))))

(cpuator put-in-drill-epinile
tparmms ((«xill756> Arill) («-bit?5&> drill-tde)
(<tabledOtt» table)))

(cparator drill-dtheseraight-fluted-deill

pecuma

{ («deptio> maber-type) (<holeddsl> hole) {«1112376> drill)
(<> ombar-type) (<wa-f-d2376> stTaight- ~fluced-deill)
(<vissdd02> vise) (<QEXt2405> pare) («<aides part-aide)

(is~ewvadlable-cool «d-bit756>)
{an-cable «-bitTS6> <tabletdsta))) (oo mmbar-typs) (<locy> muber-typs) (<spot3eEd> &pot)))
(etfaces
{(dal (is-eweilable~tool-bolder «iril1756>)) (end (epoc-location <apot2dsd> <side> <loco <locy>)
{dal (ie~ewilable~tool «d-bit756»)) {clemn
. (el (en-cable <«-Dit756> <tabledlibs)) {saterial~of artiiS> brass)
(aki (bolding-toal «3-bit7Sé> «irill7Ses)}))) (Slamaser <-f-A2376> «b)
(holding <paxv2é0S>)
{operator pat-holding-device-in-drill «visad0D> «ixil12376>)
Purems ((«irilifld> drill) (cviselld> vise) (haa-epot <apotl> urt2405>)
(<tablet060» table))) (holding-cool <e-f~dRI76> airili2iTe>)}}
(precmds (effeces
(and (is~evailable-cable «irillSld») . ({dal (spox-looation <spor2esd> <side> «locw> <locy>))
{is~epry-holding-vise <viselll>) {dal (clemn <paxt2405>))
(an~table <vissfll> <tabled060>})) (dal (has-epot <spot24td>
(et faces Hmmm¢m¢<mwn

(akd (hag-birTe «extdi0d>))
(add (has-hole <w0ledéhl> artaddsS»)))))

{peasor drill-dth-tist-drill

{(opugator cless-pact (pucens
{ (adepthe muber-type) (<holes hole) («irill> drill)

(presends
(egfoots {(add (clem @erti2I?>))})}

{<vises vise) (<per™> pare) («weides perc-side)
(<locsos mmber-cype) (<locy> asber-type) {(<spoc> #pot)

(«> mabar-cypa) (<t-d> twist-drill)))

((<vignldi®> q.unb’u (end (Slamster <c-d> <)
(parems { vise) (
(«tabletdils table))) {spot-location apot> wider <loc <looy>)
(clem <pazt>)
(and (clemn @urtidd®) (holding oue> <wvisw)
(carcable @urtidIt> <cabletdesSs) (hap-cavice <vises «irill>)
(is~ewiisble-pare ©urcilI®) (ham-gpot Apot> PETT>)
{ wissilI®))) (halding-oool <t «irill>)))
(.] {affocts
(el (on-cable @ertilits <csbietiils)) {(dal (spot-icoation <apot> <side <iea <looy>))
@l (ie-evnilehle-puare uxeilit>)) {dal {oleam @ant>))
(dal (hem-epot apOt> CRTr))

Wl (is-epty-iding-vise <«viselll®>))

(e (holding ©wrtiI®> <viselll®})})) (a8 (hole-loomtion dwler <wide «ipth> «b <lozo <looys))

(add (han-bamzs Gwe>)) (add (has-tnle <wler @uoi))})

(cpasuene ramove~drill-fran-epinctie
(parums ((«drille06e» drill) (wd-bicetSt> drill-bic)

F-2

(has-device <vised®ét> «<Irilld96é>)
(hae-hole doler @uctd¥dr)))
(effacks
{{dal (clemm arti®éd>))
el (ole-loation <uler «ide <mtiy < doao <docy»))
(dal (heo-bole <oler Gartdded>))
(add {Lo-cagped <captt?D> <oler side <> «b Jdoco <docy>))
(add (hee-bTs <Gartiséd>))
(et e-Cap <Capt?T3> Paxtiséin}))))

(apecacor drillwdth-o-b
{(pacums

(diamecer <«cb504bé> «b)

({dal (hole-location <wies wide <ty <> <dowe <locy>))
(dal (clesh <Pext5043>))

(del (has~hale <holes PEEtSOAI>))

{add ({o-comtuiees 530 dule aids dytey <& dom> doy> amglel)
(ackd (hee-Dumrs <pagtS04dy))

(acdd (haw=C~D «c-b50S4> <Part3043>)))))

{cperaror drilldith-o-e
(pacuns
{ (ngler mmbar-cyps) («3-e5071> coutnes~sinks
(aixil15061> drill) (<vise5061> viss)
(«on5062>» cumtarsink) (@extS0E3>» paxt) («sides parc-side)
(«dipth> mmber-typs) (e mmbar-type) (<loc> mmber-type)
(<looy> mmbex-type) (<wles hole)})

(precmds
(anxd (hole=looation dnler <sides «dspth» <d <loce <locy>)

((del (hole-looation <wiler <ide «depthy <b <locxy <locy»))
idul (clesn @arcS063>))

(dnl (has-bole <holer @arcS0ti»))

(a8 ({o-wmumink «-dSD dnie aids dythy < o> <o amgiel)
(2 (ee-Dixxs }

(add (Da0-0~8 w0-e5071> ©uxTS06I»)))))

(cparator put-Quld-a-pare
{pacums
{ {3000 paxe) (<£S008> fluid) (<vissS005> vise)
{amohinatOSd> machine) (<tablaidiS4> cable)))

{(comfli®> vomn) («kil1S001> drill) («viseSOP1l> vise)

{(OutiiNty past) («<omurSiSl> remmer) (<2505 fluid)

(axides partc-side) («pthe cabwr-Ope) («b cEbar-type)
{<omw meber-oypel (<looy> mamber-<ype) (<dwles bolel))

(prevais

(and Onle-location doier <ide dpths «b <oy <looy>)
Giaater aumsittl> «b)
{clems @urtSefl>)

((dal (hale~locaticn <holer <aides «pthy «<b <loc> <locy»))
(dal (clesn artSO9»))

(dol (han-fluid <f5092> artS091>))

(dal (has-hole <hole> PaztSON>))

(add {is-ressed cesili®> dole aido <wxd> «b oo <docy>))
(add (hag-bars <artS091»))

(add (Naw-reem <Tom5103> arc3osis)))))

{opssator drill-wdith-oil-drill

(paxams
({elopth> muber-type) («b mmber-type) (<ioleéséS> hole)
(«ieill6®> drill) (<o-h-d838» oil-hole~drill)
(«<side parc-eide) (<loco mmber-cype) (<locy> mmber-typs)
(apottile> spot) («<vieesli®> vise) (Gartél3®> parc)
(«06048> £luid)))

{preconds
(axd (clesn PartsSID>)

((del (clesn arcélds>))

(dal (spot-location <spockli®> <side> <loco <locy»))

(dal (bag-fluid <£6848> Partsi3s»))

(dal (ham-gpot <spot§838> paxtélisy))

(add (Bole-looation <0leéfdS> wide <ty < <loao <logy>})

(acd (heg-burze <Patédi®>))
<holebiS> parchidt>)))))

(on~cable-blade-eew <aew7007> <table7007>)))
(effects
((dal (bend-emr-evailable-for-blade <band sew7007»))
(dal (le-ewailable-bend-esw <aaw?007>})
(del (on-cable-blade~emw <se7007> «<tabla7007>))
(add (halding-becd-ewy <am/?7007> <band_se7007>)))))

(opagetor talw~blade~cut-of -bexi-ems
(pezwme ((«bencd_see7014> bancd_saw) (<csms7014> banxci-sew-blads)
{«<table701S> table)))}
(preconds (holding-had-esw <san7014> <bend saw7014>))
(effacts
({del (holding-bend-eaw <ea7014> <dmxl _se7014>))

(et (on~cable-blads~eur <eme7014> <table7015»}))))

(cparator put-part-on-band-ess
(pacwem
((<and_sav7019> band] sws) (<smv7019> bund-ess-blade)
(<table7020> table) (Part7020> paxt)))

(poecunds
(end (olding-bensi-emr <amv7019> <Danc_sme7019>)
(1s~evailable-part <part?020>)
(on-table <@axt7i20> «cable?020>}))
(affects
({dal i(om-cable <art’0a0> <table?020>))
(el (paxt-an-bmnd-ewy art7020> <band_sme?019>)))))

{cpemator cale-part-off-band-em

[
{{<bmxl_sua/7030> bamxl_se) (<c2aw7030> Danci-owms-blecis)
(@et7031> paxe) («cable?032> cable)))

(preconis
(and (Part-cn-band-say @arc7031> <bamxi sew7Q30>)
(holding-band-ete <san7030> <bend_sew7030>)
(is-ewailable-part uc?031>)))
(atfonts
{idal (paxe-ca-band-smr @uct7031> <omel_SE1030>})
(add (ca~cable «@art70J1l> «<table7032»))))}

(opesmtor cut-with-bund-ens
(pezms .
((mew-sizes part-size) (<band _sew?7040>
{(<s®> parc-aide) (econdl> pare-surtace-condicion)

F-3

dal (clems Guet?056s))
(add (surface-condition <parc?036> <at> polish)})))

(opanenor gut-drill-in-mill
(parmms {(«nd1113701>
tad-DALLI78L> drill-bdT)))

(<cablaliT81> table)

{(cpmpator put-vise-in-will
(parens {({@i1113912> xilling sachine) {«visali®id> vise)
{«<zablal3912> table)))
(preconds
tand (not-holding-vise-in-uill @ilil3®id>)

(cn~table <viseliSid <tableldld>)
(is~aspty-holding-vise <viseli®d)))

(atfacce

{0 a9})

moc-holding-vise-in-aill
(dal (on-cable <visel)®ld> <cablell®ids))
(st (holding-vise-inraill <viseli®l2> «llllind>)))))

(«viselIS22> vise)

presonds
(and Owolding-drill-bit-in-aill «-bici3D> «illi3sil>)
(is~eveilable~tool «d-bicii®Il>}))
(.] .
(el (holdisg-deill-bic-in-aill «d-bitlifIl> ailll3fIl>))
(ad tnov-helding-drill-bic-in-eill «ill13931>))
«Fbit1inIl> <ableidId)))))

lopesuter nill-tudst-drill
(pesuns
{ (etapthe wmbur-cyDe) (<holel’®é®s bole) (arde sdll-drill)
(ani1113940> nilling packine) («d> mEbeE-CYPN)
(e~-dlI%3> Orist-drill) (<visel)S43> vise) (qpaxti)®d> paxt)
(<oldes pat-eids) (<loop mubar-Ope) (<loqy> mubar-typs)
{upeei29e®> spatl))
[~]
(and (spor-locaticn @putlIN® <side <lom> <dooy>)

(clean PurtiItD>)
Wlamter <-dLIND> «>)

(a8 (hag-tarrs <Qarclisd»))
(ad3 (has-bole <holelisés> <arcl3fii»)))))

{cpeeator mill-wpot-drill
(pecuns

{effuces

((dal {(clesn <actl3sed»))
(a8 (spot-locetion <spOCLIN7E> <side» <locao <locy»}}
(add (hag-iamys <Dartiiveos))
(akl (has-epot <spotliF7e> <partlisés)))))

{cprator puc-milling-cutter-in-aill
(pecams {(<tablele009> cable} (an_c14010> milling cuccer)
(axi1114010> mdlling smchine)))

[
(and {sec-up-for axdll14010> milling)
acli0ld> <tableld009>)
(noe-holding-drill-bit-in-mill <=il1114010>)}}
(atfaces
((dal (milling-cucter-an-table < c14010> <tablel4009>})
(dal {(moc-bolding-drill-bit-in-will axill14010>))
(add (milling-cucver-oo-mill < cid010» ail114010>)))))

(apeyator remcve-uilling-cucver-from-aill
(params {(<cablald018> table) (wmilli4018> milling suchine)
(14018 willing cuctec)!)

{poeconds :
(and tmilling-cucoer-an-aill <@ cl4018> @dlll4018>)
(not-holding-vise-in-aill <@xilli4018»)})
(effaces
((dal (milling-cutter-cn-mill < cld01®> will14018>))
(acd a_cletiss <tablel401>))
(add (noc-holding-drill-bic-in-will <axilll401®>)))))

{opaaeor wi)]-part

(pacems
{(xizad> pert-size) (> mill-drill)
(a1114027> milling puchine) (<viseldd2d> vise)
(<al> purc-sida) (econdl> parc-eurfece-condicion)
(atin» dimesion-side) (<sizei> part-size)
(<Qartle02?> pazt) (<R £14033> milling cuccer)))

(precands
(et (sface-condition ©areid2)> 0> <oomdl>)
(dimmsions ©extlélad> «iis> <sizel>)
(sne-up-fox «@ill14023> @~d>)
(milling-cucar-cn-aill @ ciéill> axdll14623>)
(holding-vise-in-uill <viseldl2l> =ill14023>)
(holding @artiiiad> <viseldd23>)))
{etfacee
({dal (surtsoe-condition <> <condl>))
(dal (dtmosions QEldl)> «dim> <sizel>))
(e (aagsce~condition @arclé2d> <sl> roughl)
(add (Gimemsions ©ETIAD> <t <wizad>)))))

(opaxacor put-vise-in-plaer
(omms ((<cableld10b table) (<visaldl0S» vise)
t@lenridltse plaser)))

oreumds (ed (co-table <visaidl0S> <tablaldlde>)
(io~aspty-holkding-vise <visaldl0Ss}))

(etfoces

({dal {(cn-cable <viseld10S» <cableldlOts))

tedd (holding-vise-in-planer <viseldl0Ss ©lanaridlS>)))))

(cpegator reESve~vise-fram-planas
Deame ({<cablaldlOf tabie) (Glaneriditd> planer)
tevienld109> visel))

(presnmis

(md (iding-vise-in-planr <viseldl09> @lamartdl0P>)

F4

(1o-apry-helding-vise <visaldiome)))

(efSaks
(el Owiding-vise-in-plases <wviseldioh @laneridloe))
(add (en-table <viseldlo® <cablaidlote))}})

(apasator plane-paxt

paxt-sise)
{<viealdlles viss) (<se pust-side)
(b pars-oxtacv-cendition) (adis» dissasion-eids)
(«sines paxt-cise) (@artldlliSe part))}
(pareceschs
(and (maface-condition @ertidllS> <al> woud)
(dinensions ©uTiAlLSS <t wize)
(holdingvise-in-planee viseldllds @laelilld)
holdiag @umtiiliSe «viselqlldr}))
(effects
(Wal (sertace-comdicion @utliliSe <wte exad))
el iimmsions Gutidllile «tis wisel)
(add (werface-condizion @erclidllSs <t rough))
(el (dinmsios QETLLIS> <l aw~else)))))

{opazetor seC-p-will-for-drilling
perems ((@d> will-drill) (@xdllI026> milling smchine)))
(eeg-up-for willINEd> a-d))
(affaces {{dal (sst-up-for ailliC263> -)
(akd (set=up~for «mill3263> drilling)))))

) X

"

=4

el

.| &H | gﬂjﬁ | &z{

S

Appendix G - Learning Study Domains

G-1

Hiking World Description

In this domain a person is hiking with a backpack from one campground to another
campground. The objects in this domain are: backpack, person, and campgrounds.
Relations between objects are as follows: 1) a person can hold a backpack; 2) a person can
be at a campground; 3) a backpack can be at a campground; and 4) two campgrounds can
be connected to each other. The actions that are performed in this domain are: 1) a person
can pickup a backpack; 2) a person can put down a backpack; and 3) a person can move
from one campground to another connected campground.

Task: Define an initial state, goal state, and domain. Have the system find the plan needed
to go from initial to goal state of the following problems.

Problem 1: For the initial state create two campgrounds (camp1, camp2), a person, and a
backpack. Camp] and camp2 are connected together. Have the person and backpack start at
camp]1. The goal is o have the backpack sitting at camp2.

Probiem 2: Use the work from the previous problem. For the initial state create three
campgrounds (camp1, camp2, camp3), a person, and a backpack. Camp1 is connected to
camp? and camp?2 is connected to camp3. Have the person start at campl and the backpack
at camp2. This time the goal state is to have the backpack sitting at camp3.

G2

Loading Truck World Description

In this domain a person will be loading a truck with packages from a warehouse. The
objects in this domain are: truck, warehouse, person and packages. The relations that exist
between the objects are: 1) a package can be on the truck; 2) a package can be in the
warchouse; 3) a person can be on the truck; and 4) a person can be in the warehouse. The
actions that can be performed in this domain are: 1) pick a package up at the warehouse; 2)
Take a package from the warehouse to the truck; 3) put a package in the truck; and 4) Go
from the truck back to the warchouse.

Task: Define an initial state, goal state, and domain. Have the system find the plan needed
to go from initial to goal state of the following problems.

Problem 1: For the initial state create a truck, a package, a warchouse, and a person. The
person is at the warchouse along with the package. The goal is to have the package loaded
onto the truck.

Problem 2: Use the work from the previous problem. For the initial state this time have the
person start out at the. truck and the package at the warehouse. The goal is again to have the
package loaded onto the truck. ‘

G3

Robot Picking Tulip Description

In this domain a robot is going around to different locations and picking up tulips. The
objects in this domain are: robot with a basket, tulips, and locations. Relations between
objects are as follows: 1)ambotwithabasketcanholdauﬂipind:cbasketﬂ)ambotwith
a basket can be at a location; 3) a tulip can be at a location; and 4) two locations can be
connectedweachotha.neacﬁonsthatarepexfomndinthisdomainarc: 1) a robot with a
basketcanpickupamlipandputitinabasket;and2)arobotcanmoveﬁ'omonelocation
to another connected location.

Task: Define an initial state, goal state, and domain. Have the system find the plan needed
to go from initial to goal state of the following problems.

Problem 1: For the initial state create two location (Locl, Loc2), a robot, and a tulip. Locl
and Loc2 are connected together. Have the robot start at Locl and the tulip start at Loc2.
The goal is to have the robot hold the tulip in its basket.

Problem 2: Use the work from the previous problem. For the initial state create three
locations (Loc1, Loc2, Loc3), a robot, and two tulips. Locl is connected to Loc2 and Loc2
is connected to Loc3. Have the robot at Loc1, a tulip at Loc2, and a tulip at Loc3. This time
thegoalstateiswhaved:erobotholdingtwomlipsinitsbaskct. '

