
AD-A258 633

DTIC
Knowledge Acquisition for ELECTE

Visually Oriented Planning DEC 1 5 1992' i
Robert Leo'nard' Joseph SC

August 24, 1992

CMU-CS-92-188

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Submitted in partial fuiflment of the requirements for the

degree of Doctor of Phdosophy

*Appioved tor P xic

0 1992 Robert L Joseph

This research wau sponsored in pat by AT&T Beil Laboratories and in part by the Avionics
Laboranory. Wright Research and Development Ceaw. Aemnautical Systems Divmon (AFSC), U. S.
Air Form Wright-Paterson APB, OH 45433-643 undr Conat F33615-90-C-1465, ARPA Order No.
7597.

The views and conclusions contained in this document ame those of the author and should not be
nretes as representing the official policies, either expressed or implied, of AT&T Bell

or the U.S. Governmen.

92-31344
92 12 14-013 (li l

Keywoid: Knowledg Acquisiao, User Study, Artificial Inftteliece, Planning Systems
h bpUt

Legi: School of Computer Science

DOCTORAL THESIS Tam QaA
in the field of j-i3

Computer Science i J~t f i.t i

Graphical Knowledge Acquisition for t r' i /
Visually-Oriented Planning Domains Ava' 1a.ty rcdc....

!fjaiaSpecial
ROBERT L JOSEPH ! - I

Submitted in Partial Fufillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEFTED:.

/ 000- TMM5 'ON E CHAIR IDATE

-a' ,. miD. _ /qt DATE

APPROVED:

DIAM - DATE

Abstract

Many planning tasks can be represented using mental models in which an expert

manipulates objects from one state to another (delivery route planning - trucks, buildings,

packages, routes, etc.; part machining - parts, drill, mill, drill-bit, etc.). This suggests a
highly graphical knowledge acquisition tool where the expert is able to capture the visual

intuition of the problem solving to facilitate the encoding of a domain knowledge base. By

exploring knowledge acquisition for object manipulation domains, insight will be gained in
how knowledge is acquired and represented for such visually oriented tasks.

This thesis addresses graphical knowledge acquisition in visually oriented domains in the
context of Prodigy, a general problem solving and planning architecture. The prototype

system, called APPRENTICE, demonstrates the main ideas in the thesis. This system

establishes the feasibility of a graphical interface to enhance the ability of the expert to

develop factual domain knowledge (objects, relations, and operators) in multiple domains.

The system has been evaluated in four studies. In the first study, 32 AI students used the

system to build their own domains. In the second study, domains developed by derent

types of users were completed faster using graphical input than using textual input. The

third study was a learning study in which a subject developed several domains in

APPRENTICE. Finally, the fourth study demonstrated the ability to develop a larger

domain in the system. APPRENTICE and its techniques proved to be usable, flexible and

extendable.

Acknowledgment

No man is an island. Although I assert that this research is my own work, I could not
have done it by myself. There are a lot of special people who helped make this work a

reality. Everybody who has touched my life has influenced this research and to all of you

I owe a sincere thank you. In particular.

This thesis is dedicated to my parents, Robert and Evelyn Joseph, who through their

guidance and support instilled in me a sense of drive to achieve my very best. They have

always been my foundation - making sacrifices, providing encouragement, and giving me

support. This work is as much a product of their support as it is of anything else. I owe

them so much.

I want to thank my advisor, Jaime G. Carbonell, who has been with me through thick

and thin. He has supported my research and helped me to grow as a person. Thanks to my

committee members, Herbert Simon, Dario Giuse, and Gary Kahn. Herbert Simon's

calm assurance that I was traveling down a good path for research helped me to press on.

Dario Giuse's practical programming knowledge and insight into the field of User

Interfaces and Knowledge Acquisition proved invaluable. Gary Kahn's industrial point of

view has helped focus the research.

I would like to thank the initial users of APPRENTICE: Jim Blythe, George Burroughs,

Franne McNeal, William Scott Reilly, and Angelika Zobel. Their patience was

appreciated.

Several programmers helped with the implementation of the system: Dan Kahn, Mike

Miller, and David Rager. I owe them my thanks.

I would also like to thank the 31 volunteer subjects fiom the 1991 Fall class of Artificial

Intelligence: Rqresentation and Problem Solving: Dan Appelquist, Marcel Becker, Dina

Berkowitz, Brian Bresnahan, Barry Brumitt, Jason Burgess, Jon Carlstrom, Colleen

Duckett, Mike Gess, Jon Ghiloni, Melissa Goldman, Zach Hraber, John Jeng, Maki
Kato, Brian Kearney, Sanjay Khanna, Quan Le, Dave Leberknight, Mike Mantarro, Ben

McCurtain, Adam Miller, Dan Morrow, Norman Murray, Dave Nespol, Christine Page,

Dave Park, David Poor, Kish Rao, Dan Schaffer, Jeremy Sechler, Anish Sirivasteva, and

Andrew Weller.

A thanks goes out to the volunter subjects for Study 2: Sheila Anderson, Frank Berry,

Ruben Carbonell, Alicia Plrez, Linda Schmandt, Charles IL Taylor, Manuela Veloso,

Joe6 Gacr, and Richard Goodwin

There wer many people who proof read portions of tis theim and helped me to improve

it. In addition to those previously mentioned I would like to also thank: Donna M.

Auguse, Yolanda Gil, Jacquelyn &. Joseph, James Kistler, and Lisa A. Payne.

A special thanks to the CS community at CMU. Many individuals in the community have
enriched my M.

And, finally, thanks to AT&T Bei Laborato-ies for sponsoring my education through

the National Consortium for Graduate Degrees for Minorities in Engineering, Inc. (GEM)

prora and Cooperative Research Feaowship Program (CRFP).

•I

Dedicated to my parents,

Robert and Evelyn Joseph.
They gave me life, a dirst for

knowledge and the will to
persevee.

Table of Contents

1.1 of The 1
1.1.1 Example of a Domain Being Developed in APPRENTICE 2

1.2 Problem Outline 6
1.3 Significance of Research..... 7
1.4 Results 8

1.5 Reader's Guide,. ... 10
Chapter 2 - Related. 11
Chapter 3 - App itice Architecure 17

3.1 Prodigy nn 17
3.1.1 Operation of the Prodigy Planner 18
3.1.2 Prodigy Format 20

3.1.2.1 Defining Object Types. .. 20
3.1.2.2 Defining Predicates and Operators 20
3.12.3 Defining a State .. 22

3.1.3 Example Trace ... 22
3.2 Domain Builder ... 24

3.21 High Level Window Description ... 24
3.2.1.1 Model Window ... 25
3±.1.2 Relation Window ... 26
32-1.3 Operator Window .. 29
3ý-.1.4 State Window 30
3.2.1.5 Problem Window ... 32
3±.1.6 Example Trace 33

32.2 Animation Algorithm34
32-3 Primitive Elements for the Domain Builder 38

3.3 Framegraphics - Low Level Graphics .. 40
Chapter 4- Empirical Analysis: User Studies .. 45

4.1 Study 1: Coverage and Usability .. 45
4.1.1. Study 1: Hypothesis .. 46
4.1.2 Study 1: Procedure ... 46
4.1.3 Study 1: Results .. 47

4.1.3.1 Eight Puzzle Domain ... 47
4.1.3.2 DNA Molecule Domain ... 51
4.1.3.3 Other Results .. 54

4.1.4 Study 1: Analysis... 56
4.1.5 Study 1: Conclusion .. 58

4.2 Study 2: APPRENTICE Versus Emacs Study .. 58
42.1 Study 2: Hypothesis .. 58
4.2.2 Study 2: Procedure ... 58

4.2.1 Phase 1: Domain Building ... 59
4±1.1.1 Phase 1: Results 60
4.±.1.1.2 Phase 1: Analysis ... 61

42.2.2 Phase 2: Domain Understanding 62
42.12.1 Phase 2: Results. .. 63
4.2.1.2.2 Phase 2: Analysis 64

4.2-3 Study 2: Analysis 65
4.2.4 Study 2: Conclusion .. 66

4.3 Learning Study 566

4.4 Study 4: Medium Size Domain Building ... 66
4.4.1 Study 4: Hypothesis 67
4.4.2 Study 4-: Procedure 67
4.4.3 Study 4: Results .. 67
4.4.4 Study 4: Conclusion 69

Chaptor 5 - Domain Q cs 71

5.1 Positive Domain ... 71
5.2 APPRENTICE Limitations 73
5.3 Techniques That Aid Large Domain Development 74

Chapter 6 - Cmclusion ..-......... 77
6.1 Summary of Fundings 77
6.2 Contributions of This Research 77
6.3 Future W...... 78

6.3.1 APPRENTICE-assisted Search Control Rule Development 79
6.3.2 Seamless Environment: Visual and Textual Representation 81
6.3.3 Spatial Multidimensional Relations ... 82
6.3.4 Apprentice Techniques for Non-visual Domains 82

Chapter 7 - References ... 83
Appendix A - Results Chart from Study I .. A-1
Appendix B - DNA Domain Code B-1
Appendix C - Selected Domains from Study 1 .. C-1

Subject I C-2
Subject 12 C-3
Sutiject 22 C-5
Subject 24 C-6
Subject 29 ... C-8

Appendix D - Information Given to Subjects in Study 2 Phase 1 D-1
Prodigy and Domain Description D-2
Emacs/Prodigy Example Domain D-4

APPRENTICE Description ... D-7
Strips World Description .. D-10
Logistic World Description ... D- 11

Appendix E - Questions from Study 2 Phase 2 E- 1
Appendix F - Code for Medium Size Domain .. E-1
Appendix G - Learning Study Domains..E- 1

Hiking World Description ..
Robot Picking Tulip Description ... E-4

List of Figures

Figure 1.1 Several objects that me in a nachining domain ... 2

Figure 1.2 Some relations between objects in the machining domain. 2

Figure 13 State in the machining domain. .. 3

Figure 1.4 The put-part-in-vise operator in the machining domain 3

Figure 1.5 Other operators in the machining domain. .. 4

Figure 1.6 Sequence of operators in the machining domain to drill a hole in a part 5

Figure 1.7 Diagram of typical knowledge acquisition process 6

Figure 2.1 Table of differences among knowledge acquisition systems 15

Figure 3.1 Diagram of the APPRENTICE system. ... 17

Figure 3.2 Functional view of Prodigy ... 19

Figure 3.3 IS-A Definitions for the blocks world .. 20

Figure 3.4 Operator format ... 21

Figure 3.5 Operators for the blocks world. ... 22

Figure 3.6 Problem Definition for the blocks world. ... 22

Figure 3.7 Partial solution race in Prodigy for the blocks example domain 23

Figure 3.8 Model Window: editing the block-nxoel object. 26

Figrme 3.9 Relation Window: developing the On-Table relation 27

Figure 3.10 Relation Window: showing a negated connection 28

Figure 3.11 Relation Window: showing a non-connection definition 28

Figure 3.12 Pickup operator before code is generau .. 30

Figure 3.13 Operator Window showing the Pickup operator with automatically
geeatoed Prodigy cde 30

Figure 3.14 State Window: defining Initial-State-1 ... 31

Figure 3.15 State Window: defining Goal-State-I 32

Figure 3.16 Problem Window: displaying the initial and goal state definitions. 33

Figure 3.17 Visual animation showing blocks world problem being solved. These
are several snapshot views of state changes with applied operator or
backtrk conmnand ... 34

Figure 3.18 Animation diagram. ... 35

Figure 3.19 The Relation Window with the on relation............................

Figure 3.20 Adding the on relation to a state. The relative distance between the two
objects in the relation is used to determine object placement 36

Figure 3.21 Framegraphics diagram. ... 41

Figure 4.1 illustration of eight puzzle game: Initial and final state along with
intrm 1 daemoves ... 48

Figure 4.2 Square and tile objects for the eight puzzle domain 48

Figure 4.3 Relations for the eight puzzle domain .. 48

Figure 4.4 APPRENTICE definition of the move operator for the eight puzzle
domain 49

Figure 4.5 Auy generated Prodigy code from the graphically 49

Figure 4.6 An initial state for the three-puzzle in APPRENTICE and in Prodigy 50

Figure 4.7 A goal state for the three-puzzle in APPRENTICE and in Prodigy 50

Figure 4.8 Steps for solving the 3-puzzle .. 51

Figure 4.9 Objects in the DNA molecule domain. ... 51

Figure 4.10 Relations in the DNA molecule domain 52

Figure 4.11 Operators in the DNA molecule domain 53

Figure 4.12 Initial problem state in the DNA molecule domain 54

Figure 4.13 Goal problem state in the DNA molecule domain. 54

Figure 4.14 Statistics for 32 and 29 subjects in study 1 .. 56

Figure 4.15 Plot of subjects versus domain development times from study 1 57

Figure 4.16 Comparison plot of Study 1 domain elements with the 29 subjects 57

Figure 4.17 Phase I domain building time. The chart shows faster development
time for APPRENTICE than Emacs for all but the seasoned Prodigy
expert. .. 61

Figure 4.18 Ratio of domain building time (EM/AP) .. 61

Figure 4.19 Graphical representations with a multiple-choice question 62

Figure 4.20 Textual representations with a multiple-choice question 63

Figure 4.21 Results of Phase 2, showing much better undertnding (fewer errors)
for APPRENTICE than Emacs .. 64

Figure 4.22 Question 6 representing the move-block operator 65

Figure 4.23 Table of subject 2's domain building time. The domains were built in
order from left to right. ... 66

Figure 4.24 Table of the elements that are impacted when an element is changed 68

Figure 5.1 Operator Window: machining domain organized at bottom of window 76

Figure 6.1 Example of a STRIPS world type domain ... 80

Figure 6.2 Example of possible control rnle built with system assistance 81

Figure 6.3 Currently APPRENTICE provides full data flow from the graphical
interface to Emacs, but only limited data flow from Emacs to the
graphical interface ... 81

Table A.l Study 1 Subjects .. A-2

Chapter 1 - Motivation

1. Preview of Thesis
This thesis investigates the process of producing and exploiting graphically based

specifications of visual domains for a general purpose planning system. The central thesis

is that graphical specification helps both to reduce domain development time and to

improve the accuracy of knowledge capture. The knowledge acquisition (KA) problem is

presented and discussed in section 1.2.

This thesis sets out to:

"* address the problems of ease, speed, and accuracy of knowledge
acquisition. for highly visual planning domains;

"* develop techniques for providing knowledge acquisition access to
people with domain expertise but with no knowledge acquisition
sidlls;

"* validate empirically these techniques across multiple domains and
with different user populations;

"* incorporate new graphical knowledge acquisition methods into a
general purpose planning system without limiting its expressiveness.

A general paradigm has been developed for graphically defining a broad range of

planning domains that lend themselves to a visual representation. A system, called

APPRENTICE, has been developed, tested, and used to build many visual domains. Four

studies were done with APPRENTICE to evaluate its performance with multiple users and

numerous domains, as well as the evolution of the system's use over time. These studies

suggest that the APPRENTICE techniques help the user to decrease development time,

incnease debugging efficiency, and comprehend existing domains faster.

1J.1 Example of a Domain Being Developed in APPRENTICE

Page

The APPRENTICE system ties to mimic some of the techniques that experts use to
convey domain knowledg to a student or an apprentice. When teaching a new domain the
expert first trie to systematically teach fte student the objects, attributes, and relations in
the domain, thus establishing a common vocabulary. The expert and student can then
comfortably discuss this area of expertise. This technique can be used to develop many
diffeePnt domains; but to illustrate this interaction, I will describe the development of a
portion of a machining task. This task is to d,-velop a simple set of rules for drilling a hole
in a part In Chapter 4, this domain will be expanded into larger one.

When experts describe a domain they first start by defining the objects that exist in that
domain. Figure 1.1 shows different objects in the small machining domain. In this
example the expert uses dte objects to talk about the domain.

Doi POt Vhs DOiA Hob
igm LiL Several objects that are in a machining domain.

The pictures, along with the names of the objects, give the student a physical
representation. The drill, drill bit, vise, part, and hole are now part of the common
vocabulary between expert and student.

One a subset of the objects is defined, the expert can describe how these objects relate to
one another. In Figure 1.2 the relations between the objects in our machining domain are
shown.

ViomsaDeI vhsn aPM B In iPut Ddl-lindfl

Figre L2: Some meaions between objects in the machining domain.

Pop 2

These reations allow the expert to discuss how objects interact with one another. Again,
the pictures and text allow the sudkat to form a visual rpsentaion of relations. These are
similr to the way the expert tfinks about the object interactions.

With the objects and relations defined, the expert can then discuss conjunctive sets of
relations or states- Figure 1.3 depicts a state in the machining domain. This figure
represents the Set of relations: vise on a drill, vise holding a part, and drill-

bit in the drill.

Figure U3: State in the machining domain.

This representation makes it relatively easy to visualize what is actually done in a
machining shop. The expert is now able to discuss the machining domain based upon the
exper's knowledge developed over tim

The expert can now discuss operations tha4 when applied, change the state. To describe
these operators the expert first defines a pre-state (a state that has to exist before the
operator can be applied), and then a post-state (a state that exists aftr the operator has been
applied). In Figure 1.4 a simple operator, put-part-in-vise, is developedL This operator
depicts the process of putting a part into a vise.

Pr•3r P:-v-S de

Figur IA4: The put-part-in-vis, operator in the machining domain.

Pape 3

The pie-sta•e defines the conditions which are necessary before the operator can be applied:

the vise must be on the drill and the drill bit must be in the dril If these relatons are true in

the state then the operator can be applied and the state changed to reflect that the part is in

the vise. These pre- and post-states represent the preconditions and the state transition for

the put-part-in-vise operator. Figure 1.5 shows some other operators that are defined

in-asiia way (put-drill-bit-in-drill, put-vise-on-drill, drill-hole-in-

part).

Put-drill-bit -in-drill Put-vise-on-drill

Drill-hole-in-part

Fure LS: Other operators in the machining domain.

Finally, this information can be used by a planner to produce a sequence of operators that,
when applied, will ransform an untial state into a final state. The planner does this by first
detemin g which operators achieve a goal and, if they are not applicable, which operators

estblish the pre-state of the previously related operator. This continues recursively until a

sequence of operators is found that is both applicable to the initial state and achieves the

goal. This process, called Means-Ends Analysis [Newell 721 may mean that the system

has to try several alternative operator applications. Figure 1.6 illustrates one set of sta•e

transitions that the planning system took to solve the machining domain problem earlier

defined.

Page 4

SOUL m-emo 1t - *ll-bit-in-drill

Appiy~p AP~YIOPC
Put-PM-ax~-vis. Dr1Ihi-hiflJparr

God SUN Achv

Fgr L6: Sequence of Operators in the machining domain to drill a hole in a part.

Each squar represents the current State of the problem after the operator under the picture
has been applied. Note that the initial state is composed of a part, a drill bit, a vise and the

drillunassembled; the goal state is to have the part with a hole in it. The sequence of
opemao deemnnined in Figure 1.6 to transform the initial state into the goal state is:

1) put-vise-on-drill

2) put-drill-bit-in-vise

3) put-part-in-vise

4) drill-hole-in-part

As the planner tries to find a solution, the expert can monitor the planner's progress. By
monitoring the planner the expert can detect erroneous or incomplete knowledge. This
helps with debugging domains, which is a significant part of domain development. The

expert can also verify a sequence of opramtors by applying the operators one at a time.

APPRENTICE allows the expert to specify domain information similar to the domain

description previously outlined. APPRENTICE, of course, handles significantly more
complex domains as welL Chapter 3 describes this process in detail.

paue5

1.2 Problem Outline
Expert systems ar increasngly being used in business and industry. The development of
these systems requires the acquisition of knowledge from experts, a very time-consuming
process for both domain experts and knowledge engineers. This knowledge acquisition
(KA) process has been characterized as "the transfer and transformation of problem-
solving expertise from some knowledge source to a program" [Buchanan 83]. By making
the KA process fase and easier for experts, the domain development time and expense
will be reduced.

Machine learning methods are helping to automate knowledge base development and
improvement [Minton 881. Nonetheless, initial domain development has heretofore been
manual, and humans are still needed for domain refinements. Developing domains can be
very difficult and time consuming, especially when the development tool does not reflect a
simple mapping from the external domain to the system's user interface.

Knowledge

II I

Expert ~ Systemva -p xpr

Know l e:digraeftpclkoldeaqiiinpoes

Koledget base deveopmet is an interactive prces This is depcte in Figure 1.7. The
role of the exer is to impart domain knowledge for the knowledge engineer to encode
inothe knowledge base,. The knowledge engineer and the expert may be the same person
or diffrent people and they work towards developing the knowledge base. The knowledge

Page 6

e has the yrsponsiilty of tranlating the eXper-knowledge into a rpesetion for

the ceport sym. If this rpeentaon is very different from the expert's representation
then there ae opportunities to introduce and propagate errors. These errors and
nrceptin required diagnosis and correction, and thereby add to the development time

of a domain.

In order to make this human development process more effcient, tools are needed to

facilitate the initial domain specification, to aid in finding erroneous or incomplete

informadon in a domain, and to hep in corecting that domain infmnadon. This should be

done within a paradigm that represents knowledge in a way experts can use and

understand This thesis examines a restricted type of knowledge acquisition that non-
computer experts can use. I focus on the human interactive process involved when an

expert develops a knowledge base for a planning system where the domain is composed of

physical or mental objects being manipuled.

A graphical knowledge acquisition tool aids in domain development The expert

commu-nicate with the computer in a way similar to the way an expert understands a

domain, and the computer is responsible for transforming the information into a form that

it can use. Also, having the computer communicamt back to the expert in terms that the
expert is more familiar with bette enables the expert to debug and enhance the system's

knowledge.

By focusing on the acquisition of knowledge for visual planning tasks in an

expert/apprentice intmeaction, I show how knowledge base development can be facilitaed

graphically and improved for a range of users, including domain-knowledgeable but
systn-novice usem

1.3 Significance of Research
The research in this dissertation makms four significant contribution:

a new knowledge acquisition methodology is developed for visual domains to

dceas development tinme
die echniques can be applied by user withm knowledge acquisition skills,

* the methodology is implemented and tightly integrated with a planning system
OPdigy), -

Pap 7

* the methodology is tested by building multiple domains and using multiple subjects
with varying skills.

The new graphical approach to knowledge acquisition allows the expert to reason about

domain building in a way similar to how the expert thin about the domain. These general
teniques can be separated into basic elements for developing domains for a general

expt system. With thes techniques, the expert communicates with the system in a way

that is comfortable to the expert; therefore, knowledge acquisition takes less time to

complete Also, the domain development can be done by experts that are not familiar with

planning systems. This is radically different from other knowledge acquisition systems

which provide detailed insight into the expert system, but in a way foreign to the actual

domain. In such systems the expert or knowledge engineer is responsible for translating

domain knowledge into the represenaion that the system expects.

The techniques developed in this thesis are used in building a working system that is tightly

coupled with a planning system. This development allows proof of concept, testing of

ideas, and enhancement of the methodology. Also, unlike knowledge acquisition tools that

require a separate program to run the domain, APPRENTICE allows inuractive domain

development within a planning system. The system is tied directly with the planning

system so that the results of a developed domain can be run on the system instantaneously.

is is similar to using an interpretive language like LISP for development.

Once the system was developed, several experiments were designed and conducted to

detrmine whether the ideas postulated in the thesis were true. These studies were done

with different types of users doing different tasks. Results from these studies showed that

different types of people were able to understand, build, and debug domains. The

productivity of subjects was shown to be higher, and the subjects also found

APPRENTICE more understandable than conventional methods.

1.4 Results
The primary contribution of these studies is to demonstrate the range of application and the

efficiency of APPRENTICE. Most domains were acquired fully with the graphical

ierface, and acquisi speed proved faser for all types of users except Prodigy expert

Page 8

To investigate the claim of the thesis, four studies were performed. These studies tested the

versatility, flexibility, and usability of the APPRENTICE system with multiple subjects in
the development of several domains.

In the first study, APPRENTICE was used to build a diverse set of user-defined domains
by 32 novice users. The users built domains of their own choosing. It took each user
between one and 4.5 hours to construct a simple domain. All users succeeded in building

functional domains, thereby proving the breadth, usability, and versatility of

APPRENTICE.

In the second study, the APPRENTICE system yielded faster development time than
conventional methods for several types of users. This was a comparison study with four

sets of subjects with varying computer skills. Their skills ranged from novice computer
users to advance planner experts. The development time of building a domain in

APPRENTICE was compared with the development time using a text editor (Emacs). All
but the most seasoned planner experts built domains significantly faster in APPRENTICE

than in Emacs. Another phase of this study tested the ability of subjects to understand

domains developed by others. This ability is important in domain development and system
maintenance. The subjects understood the graphical representation of a domain more
accurately (i.e., they answered a set of questions about the domain more correctly) than

they did for a comparable textual representation. This study proved the effectiveness of

APPRENTICE in actual usage and validated the graphical KA paradigm for some

unportant domains.

In the third study, APPRENTICE was used by one user to build a medium size domain
that had 33 objects, 77 relations, and 34 operators in it. For this domain the graphical
rpeentation helped to enrich the development process. The pictures acted as visual cues

in helping the subject develop the domain. For example, it was easy to recognize and

correct the situation that a drill did not have a drill bit when creating the drill operator.
Another advantage was that the graphics helped the user to remember the context in which

he was working when he camne back to the work after an interruption.

Finally, the last study was done with one user building several similar domains over time.

In this study the user took longer to build the first domain but less time to build subsequent

domainThis indicates that, as users build domains in APPRENTICE, their productivity

Par 9

These studies provide an indication of the merits of the APPRENTICE system. The

system has been used:
"• by multiple user
"• to developed multiple domains

"• over a period of time
" to developed a medium size domain.

Overall APPRENTICE was successfully used by 41 different people and 41 distinct
domaim were developed. These study results help to support the thesis of his dissertation.

1.5 Reader's Guide
Chapter 2 companres the research of this thesis with other, related wor Chapter 3 describes
the implementa-ion of the system. In Chapter 4 the empirical studies are explained and the
results shown. Chapter 5 summarizes what I learned, and Chapter 6 draws some

conclusionL The Appendices contain supporting material and are not needed in the
understanding of the concepts reported in this thesis. Nevertheless, the information they
contain may be of interest to some people, such as those attempting to replicate or expand
upon the APPRENTICE system.

Page 10

Chapter 2 - Related Work

The design and implementation of APPRENTICE draws upon ideas from several

disciplines: user interfaces; visual programming and visual languages; machine learning;

and, the most obvious, knowledge acquisition. The first three disciplines complement my

work and have provided fertile ground from which to borrow many techniques. I will

discuss some of the techniques that I used. The last discipline, knowledge acquisition has

also provided many advantages to my work and helped me to explore new ideas. I will

contrast my work with others in the area of knowledge acquisition.

Techniques from the field of user interfaces were used to develop the human computer

interaction for the APPRENTICE system. Direct manipulation was the basis for the

interface design. This gives users, both novice and expert, an intuitive feel for how to use

the system. User actions cause immediate reactions which are easy to relate to.

With the user interface several different types of interfaces were used. Techniques

supported by MacDraw [MacDraw 89] were adapted to develop the user-defined objects.

This provides users with an easily understood interface for creating simple graphical

objects. Icon manipulation enables production of other domain elements with these objects

as building blocks. This allows users shortcuts for developing relations between the objects

represented as icons [Macintosh 87]. The interface also strives for consistency, user

feedback, handling of user mistakes, a simple display and actions that have quick feedback.

These are important qualities of a good interface design. These and other techniques are

described in much of the literature [Goldberg 801 (Shneiderman 86] [Cardelli 881 [Myers

92].

visual nd Visual Lanvae
Visual programming and visual languages are orthogonal fields of study that benefited

APPRENTICE. The goals of Visual Programming are to create working programs [Cox
89], systems (Ichikawa 87] (Fischer 88] or investigate ideas [Henderson 86] [Gutfreund

871. These are different from the goal of APPRENTICE, which is to develop domains for

Pagp 11

a planning system. One difference in the way that APPRENTICE works is that most

visual prgramming systns have a predefined set of icons, and therefore the users have to

conform their thinking about the system in the way that the software designers had in

mind. To aid in domain development, APPRENTICE provides the user with the ability to

define the objects of the domain in a visual representation that corresponds closely to the

physical world. This allows the user a comfortable environment to work in, where ideas

representing physical relations do not have to be transformed into an unrelated

representation.

The advantages of animation have been demonstrated by systems such as BALSA-I

(Brown 841, BALSA-Il (Brown 881, Animus [Duisberg 86], and STEAMER [Hollan

84]. Animation is also used in APPRENTICE to give the user feedback when the system

is solving a problem.

MachineLain
Machine learning is another field of study which has had influence on my work. Currently,

machine learning research cannot create initial domain information without the aid of a

human. Automated learning methods allow knowledge that has already been encoded to be

refined. This can be achieved by decreasing the search space as with EBL (Minton 88], by

statically compiling knowledge (Entzio 90], by using abstraction techniques [Knoblock 90]

or analogous plan usage (Veloso 92] or by adding information to an already existing

knowledge base as with experimentation [Gi 92]. APPRENTICE is a tool that helps with

initial domain formulation, and therefore could be a useful complement to machine

learning systems.

Also, search control rules [Minton 89] (which can be learned by different methods [Minton

88] [Entzio 90]) could be directly used in APPRENTICE to decrease search time.

Currently, no matter how these search control rules are obtained they can be used with

APPRENTICE.

Knowledr,e Agauaisiro

In the knowledge acquisition field several techniques have been used to try to elicit expert

knowledge, and map that knowledge into expert system primitives.

Page 12

Alexander et. al. (Alexander 87] have developed a technique called ontological analysis or

SUPE-SPOONS which aids in knowledge-level analysis of a problem space. The analysis

divides domain knowledge into three categories:

1) Static Ontology - physical objects or primitive objects in a problem space, their

properties and relations.
2) Dynamic Ontology - state space of the problem-solving domain and the actions that

transform the problem from one state to another state.

3) Epistemic Ontology - constraints and methods that control the use of knowledge

applied to the static and dynamic ontologies.

Complex domain ontologies are constructed in a three-step process in the order that the
categories are presented. The system ASTEK [Jacobson-90], based on the SUPE-

SPOONS research, provides multiple paradigms for knowledge editing while maintaining
a single consistent framework. This knowledge editing is in the form of natural language

and graph editing techniques.

The ontologies created with the system are very similar to the workings of APPRENTICE.
The static ontology parallels object and relation definitions. The dynamic ontology is like
the operator definition. The epistemic ontology is similar to search control rules. Like the
ontological analysis technique, APPRENTICE builds its knowledge base in similar stages.

APPRENTICE attempts to capture and exploit both the visual and semantic domain

knowledge.

Systems that take different approaches include: KREME [Abrett 87] a knowledge
representation editing and modeling environment; KRITON [Diederich 901 a hybrid

system that uses interview, protocol analysis, and incremental text analysis; and
AQUINAS [Boose 87] a system that interviews experts to build tables of distinctions or

repertory grids between elements. The systems fall into the following information

gathering techniques:
"• Visual and Semantic Acquisition (APPRENTICE)

"* Interviewing and Protocol (KRflON)

"* Clustering or Scaling (AQUINAS)
"• Natural Language Systems (ASTECK, KRITON)

"• Visual Graphs of Underlying Data Structure (KREME)

Page 13

PROTEGE [Musen 88] has had success providing a graphical program for developing

graphical knowledge acquisition and editing tools. These knowledge acquisition tools elicit

knowledge for the domain independent planner e-ONCOCIN, which uses the method of

skeletal refinement for problem solving. PROTEGE has been used to create KA tools for

oncology protocols (p-OPAL) and hypertension protocols (HTN). With the KA tools,

doctos without the aid of knowledge engineers, can create expert systems to advise in the

treatment of oncology and hypertension. The interface to these knowledge acquisition tools

uses form filling and graphical flow chart building to elicit the domain knowledge. Unlike

APPRENTICE, PROTEGE is not integrated with the target expert system. Also,

PROTEGE's domain is more limited, although the authors are currently expanding the

system into PROTEGE-H. Finally another important difference is that PROTEGE is not a

system for developing planning domains.

QMR-KAT (Giuse 90] is another system for knowledge acquisition in medicine which lets

experts build knowledge bases without a knowledge engineer to act as intermediary. The

QMR knowledge base is one of the most comprehensive knowledge bases in use for

medical decision support for diagnosis of internal medicine diseases. Knowledge base

information consists of textual descriptions of a disease called disease unit. This

representation is different than the visual approach of APPRENTICE, and of course the

QMR system is not a planning system.

There are other knowledge acquisition systems that take a different approach than

APPRENTICE. MORE [Kahn 85] is a system which automatically interviews experts for

the information they use to solve diagnostic problem. ASK [Gruber 89] is a system that

elicits justifications from experts and generates strategy rules. It is used with the system

MUM, which is a knowledge system that concentrates on the strategic aspects of diagnosis

of chest pain. DACRON [Mahling 891 is a visual knowledge acquisition tool for the

POLYMER planning system. SALT [Marcus 86] is a system that assists in knowledge

acquisition for incremental design tasks such as configuration. The system uses a propose-

and-revise problem solving strategy. ROGET (Bennet 85] is a program to assist

knowledge engineers and domain experts in developing EMYCIN-based expert systems.

KNACK (Klinker 88] is a knowledge acquisition tool for building knowledge bases to

generate reports. This system is interesting because it is sample-based: the expert provides

a sample report, and the system analyzes and generalizes the sample.

Page 14

To help explain some differences between the above systems, six system characterstics are

oudined below. These characteristics are then shown in a chart for comparison.

Feedback Type - type of feedback the system gives (textual, animated, graphs).

Knowledge Developed - type of knowledge the system can acquire (static and/or dynamic

knowld).
Domain Type - types of domains the system is used for.

Generate-Test Cycle - development done in generate and test mode in conjunction with the

target expert system

Mode Type - system-directed acquisition or user-directed acquisition.

Knowledge Acquired - acquire incremental, factual and/or better performance knowledge.

AWREN= MORE ASK OPAL DACRON SALT ROGET

Feedback AnMmated Text Text Form Fill Icons Text Text
Tye lowc' ____________ _____

Xwowledge Static Dynadc Dynamic o 'i Both Both BothDevelope
Domain vlol Diagnosfics Medical Medical Hierarchical Constraint Clausifica•i
Type Planang Satisfaction on Problem

Solvmin
Genrate- Yes Yes Yes Nb Yes M No

Test Cycle
Mode Type User System System Usa* User systm* Sysent
Knowledge Factual ncremental Incremental Factual Incremental Incremental Incremental

QMR-KAT KNACK
Feedback Text Text

Knowledge Static Static
Developed
Domain Medical Report
TYM I Diasnostics -eneraion

Generate- Yes No
Test Cycle
Made Type Both Both
Knowledge Incremental IncrementalAomired

* No imeraction with expert system
Figure 2.1: Table of differences among knowledge acquisition systems

Finally, knowlcdge base development environments such as KREME [Abrett 87],

ONTOS (Nirenburg 88], and CYC (Lenat 86] elicit mostly static or factual knowledge.

These systems investigate how to organize and maintain large knowledge based systems.

Handling large knowledge bases is a future direction of the APPRENTICE system.

Page 15

The major difference between APPRENTICE and other systems is that APPRENTICE

enables users to model the physical world with their own defined representations. Also, the

APPRENTICE system is interactive with the Prodigy planning system providing a closed

loop for development and utilization of a knowledge base. Although the planner and

acquisition tool are integrated the APPRENTICE techniques are also described

independent of a planning system.

Page 16

Chapter 3 - Apprentice Architecture

The APPRENTICE system can be subdivided into three components: the graphical

interface component, Famegraphics; the domain building component, Domain Builder,

and the planning system, Prodigy. I built the Framegraphics system and the Domain

Builder for this research. Figure 3.1 depicts the relationships among the components in

more detail. In this chapter, I will discuss in some detail the various components of the

systemn

0 0
Framegraphics I I

r FRAMEGRAMHCS-~~ ~ - ----- I-s

Damo Br~

Domain Builder

Prodigy Mw PROIG- Y N syatnn

Figure 3.1: Diagram of the APPRENTICE system.

3.1 Prodigy
Prodigy WMinton 89] is a domain-independent problem-solver system used primarily as a

tegtbed for research in planning, machine learning, and knowledge acquisition. It uses basic

means-ends analysis in planning for high-level, symbolic domains. Since its inception, the

Prodigy system has continued to develop. The first version of the system, Prodigy 2.0,

was a linear planner (i.e., it did not allow interleaving of goals) [Minton 89]. The next

Page 17

yeruio of Prodigy, Nolimit, was a non-linear planner which provided interleving goals

[Velos 921. The syntax of the two sysomn is slightly differet, with the biggest differece

being that Nolimit requires all objects used in a domain to be explicitly defined in the

syntax (see section 3.1.2).

The basic design of APPRENTICE was able to accommodate both planners.

APPRENTICE was first developed using Prodigy 2.0 but now works with Nolimi.

Parting APPRENTICE to the different problem solvers required very litile modification.

The basic functioning of APPRENTICE with a problem solver will be discussed later.

This section will outline the Nolimit Prodigy planner. Then a simple trace of the planner

solving a problem will be described; and finally, an outline of the input language will be

presented. This is the planner which was used in the studies described later.

3.11 Operagon of the Prodigy Planner

A domain theory in Prodigy consists of operators, inference rules, and search control rules.

These rules are essentially If-Then rules. 1Th left-hand sides of these rules are represented

by a Prodigy Description Language (PDL). This language is a form of first-order predicate

logic. PDL allows conjunctions, disjunctions, negations, and existential and universal

quantifications. APPRENTICE utomatcly generates conjunctions and existential

quaifidation from its pictorial representation. A disjunction can be modelled as multiple

rules, and negations can be rPresented explicitly. Universal quantifications are not

automatically generated by the APPRENTICE system but can be added manually to the

generamd code. Thus far, none of the domains that were built in APPRENTICE needed

universal quantification. Therefore a lot of resources were not devoted to developing a

sim way to generate and depict universd qunification graphically.

Operators and infeence rules =r factual knowledge that modifies the state as the planner is

solving a problem. Although inference rules do not corrspond to exmmnal actions, they can

be modelled as operators. On the other hand, search control rules are control knowledge

that dire the search for the solution. This thesis deals mainly with die creation of factual

knowledge. Developing search control knowledge is discussed in section 6.3.

Operator have three pare: the parameter list, the pr econdtons, and the effect. The effec

pat of an operator either adds or delete a predicate from ft stae When given an initial

and goal state along with a domain definition, the Prodigy planner tries to detemine a

Pape 18

sequene of actions (motandated operators) that when applied in a given order will change

the ima sofe to achieve fhe goal s=e. The search tree initially begins with a single node

rernting a set of stare predicates in the initial state and a set of goal predicates to be

achieved. To move from the initial state to the goal state, the tee is expanded by repeating

two phases: the decision phase and the expansion phase.

The firs step during the decision phase is to choose a node. The second step is to choose a
goal t focus on, which becoms the curent goal. The third step is to choose an operator to

achieve the curent goal. The final step is to choose bindings for the variables in the
operat (this is called insntiatng the operator). The default search strategy for this

decision process is depth-first search but can be guided by search control rules. These

search control rules are used to prune the search tree (Minton 89].

Initial Stat & Goal State

Goal Set

State

control Select GoalYE

Rules &r NO Back-
- track?

e 3: Functional view of Prodigy.

During the expansion phase a new node is created. If the instantiated operator's

preconditions are satisfied by the state, then the operator is applied. Otherwise, the system

Page 19

subgls (changing ft curnt goal) on an unmatched precondition adding the old curent
goal to the set of goals that are pending; or subgoals on a previously unachieved goal.

When a state is achieved in which all of the top-level goals are satisfied, the problem is

solved. Figure 3.2 shows a high level flowchart of the Prodigy system.

31.2 Prodgy Format
Writing a domain in Prodigy requires several stqe The user must crem object prototype
defiitions, predicates representing relations among objects, operators, instances of objects,
start states and goal states. An example of a domain being built will be shown using a

slight variation of the blocks world domain. The blocks world domain consists of a set of

blocks that can be stacked onm-stacked off each other or put-down on/picked-up off the

table. In this blocks world the table and the arm me represented explicitly.

3-/JaJ -2-m cf OJdW Tz=

Object definitions for a domain are defined with the "is-a" function. These definition types
tell Prodigy the name of the objects in the domain. In the example blocks world, the user

will need block objects, table objects, and arm objects. An object definition has the

following format: (IS-A objece-name TYPE). In this example, these objects are defined
as follows:

(1S-A Block-Model T"Z)
(IS-A Table-model TIPE)
(1S-A ArM-Model TYPE)

Figre 3.3: IS-A Definitions for the blocks world

The operator defines legal transitions between states. Each operator has a precondition that

must be satsfied before the operator can be applied and an effects-list that describes how

the application of the operant changes the stat Specifically, the effectslist indicates the

atomic formulas that are added to and/or deleted from the state when the operator is

applied. Thee peconditions and effects m repesened by predicates. Pedicates reprsent
relationships between objects. In order to allow an operator to work in a generic way, the

pdatks use variables. These variables match dtffu= objects in the state definition. "<

surrounding a name represents a variable. An operator format is shown below:

Page 20

(OPMUAOR nium-of-oqpweao"
(FARAW

((<Varl> typel)
(CVaz3> type2)
(<vau3> type3) ...)

(1UE

(AND (predl. <vari> cvar2=.)
(pred2 <var2> <var3>))..)

((DM (predi <varl> <var2>))
(AM (pred3 <arl> cvar3>))) ...

Fige 34: Operator for3.a

Opeaors in the blocks world me defined in Figure 3.5. Consider the operator Pick-up. In
its PARAMS list the variable <ob> is of type block-model, <table> is of type table-

model, and <arm> is of type a"m-model. In the precondition, the predicate (clear <ob>)

checks that the block <ob> has nothing on top of it; the predicate (on-table <table>

<ob>) checks to see if the variable <ob> is on the <table>; and the predicat (empty

<arm>) checks that the <arm> is empty. Finally, if all of these predicates are true for a

panicular block, table and arm in the current state, then the matching block is picked up off

the table by the amn Also the pmrdicates in the effect list update the state by deleting/adding

the relevant predicates.

(OPBRATOR PICK-UP
(para=s ((<ob, BDLOCK-MODKDL)

(<ctable> TABLE-MODEL)
(Car> ARli-9DE,)))

(preconds (and (clear <ob>)
(on-table <table> <cobh)
(erut3, <a='>)))

(effects ((de1 (on-table <table> <ob>))
(del (clear <ob>))
(del (emty <arm),)
(add (holding <arm> <ob>))))

(OPERATOR UNSTPCK
(parasm ((cob> BLOCK-MODL)

(<underob> BLOCK-MODEL)
(ca=:- APM-WODMM))))

(preconds (and (an <cob <underob>)
(clear <oW>)
(ewtLy <cara.)))

(effects ((del (on -ob> <underob>)))
(del (clear <cob>))
(add (holding <arm> <ob>))
(add (clear cunderob>)))))

(OPERATOR PUT-DOWN
(persus ((<ob, K.OCK-MO)DL))

(<canap ARM-NODD.)
(<Cable> ThAr--MODE,)))

(preconds (holding ,carid <obh))
(effects ((del (holding <a&m, <ob>))

(a4d (clear cobp))
(add (emty carz>))
(add (on-table <table> <obh)))))

(OPA•TOR STACK
(parga ((<ob> BLOCK-MODEL)

(-cunderob> BLOCK-MODL)

Pap 21

(precoads (and (clear <underob>)
(holding -carm <oh>))

(effects ((del (holding <arm> <ob>))
(del (clear underob>)}
(add (clear <ob>))
(acd (on <ob> <=underob>)))))

Figrme 3.: Operators for the blocks world.

3J.2W a StA

After the domain is developed, the problems that the user wants to solve must be defined.
A particular problem is defined by instaces of objects, a start state, and a goal expression,
which is a subset of the entire goal state. Below is a problem in the blocks world. The

instances are A, B, C, A_Table, and AnArm. The goal is to get A on A-Table, B on A,

and C on B. The start state has Blocks A, B, and C on A-Table and An-Arm empty.

(Sh-n•f•TMc Block-model A)
(Ho-INSTANCES Block-model B)
(MA-DISTAM Block-model C)
(BRA-NSTANE•3 Table-model ATable)
(Ru-nST1PCES Aza-model .An-AM)

(GOT. (On B A)
(•n C s)
(On-table A))

(STATE (AnD (On-Table A-Table A)
(on-Table A-Table B)
(On-Table ALTable C)
(Clear A)
(Clear 3)
(Clear C)
(Mwt An-AM)

Figre 3A: Problem Definition for the blocks world.

3.1.3 Example Trace
Using the domain and problem definition from the previous section, Figure 3.7 depicts a
partial solution trace of the Prodigy planner. The planner uses means-ends analysis to solve
the problem. The planner first determines which operators achieve the final goaL If the
operaur are not applicable, it then determines which operatMs establish t.e pro-state of the
previously related operator. This continues recursively until a sequence of operators is
foumi that is applicable to the initial se and achieves the goal.

The twace shows a segment of the solution path in which the system bcklackm Each Him
contains information about the step in the means-eads analysis being tried. The Tn#
displays the node name of the solver's cunzen posit'on. The next part of the line is either a

goal to be worked on, an ins aed operato toy and satisfy, or an operator to apply.

fpag 22

The applied operatos are capitalized. If there are additional choices available at a particular
node that information is displayed in the form of a list (e.g., goal-choices-left or ops-left).

The first pat of the partial trace, starting with the *****, does not succeed because it cannot
satisfy the goal (on b a) with c already stacked on b. This causes a condition where a state

would be repeated and the solution search would end up in an infinite loop, therefore the

system backtmcks and reorders the top level goals. With this reordering, the second part of

the trace leads to a solution. The solution found is listed at the end of the trace.

Af1w nei• od Waipsd solu2im d&mg Fabom wovfmg

tnl (done)
tn2 (*finisha)
I tn3 (on c b)
I goal-choices-left: ((on b a))
) tn4 (stack b c an-arm)
I I tnS (holding c anarm)
I I tn6 (pickup an-arm c a-table)
I I ops-left: ((unsrtack b c an,_arm) (unstack c c an_arm) (unstack a c

an.arm))
I I TN7 (PICKUP AN._ARM C A-TABLE)
I TN8 (STACK B C AN.ARM)
I t9 (on b a)
I tnlO (stack a b anarm)
I tnll (holding b an_a=)
I tn48 (unstack a b an_azm?
* STATE LOOP ***

***** BACKTRACK TO NODE T2 *

tn2 (*finish*)
I tn56 (on b a)
I tn57 (stack a b anarm)
I I tn58 (holding b anarm)

I tn59 (pickup anarm b atable)
I I ope-left: ((unstack b b an.arm) (unstack c b anarm) (unstack a b

an-arm))
I I TN60 (PICKUP ANARM B ATABLE)
I TN61 (STACK A B ANARM)
I tn62 (on c b)
I tn63 (stack b c an_arm)
I I tn64 (holding c aiarm)
I I tn65 (pickup anarm c atable)
I I opu-left: ((unrtack b c anarm) (unstack c c anarm) (unstack a c

an-arm))
I I TN66 (PICKUP AN.ARM C ATABLE)
I TN67 (STACK B C ANARM)
TN68 (*FINZSH*)

This is the solution found:
(pickup arm b table)
(stack a b arm)
(pickup arm c table)
(stack b c arm)
(*finish*)

igm 3.7: Parial solution ace in Pdigy for the blocks example domain.

Pape 23

3.2 Domain Builder
The domain builder allows an expert to graphically represent and create a domain. This
g1raphical process resembles an experts experience more closely than writing a domain in
textual form as described in the previous section. Once a graphical domain is defined, the
domain builder then automatically tanslates this graphical representation into PDL, which
is loaded and run in the Prodigy planner. The raphical system is tightly integrated with the
planner, providing intaitive domain developtent. This section outlines the implementation
of grqaica knowledge acquisition, then discusses the primitives that are needed for the
process independent of the acw•- implemn ion.

3.2.1 High Level Window Description
In developing a domain using the domain builder, several things have to be defined:
objects, relationships between the objects, operators to change sets of relationships, and
initial and goal states for defining problems. In the domain builder, separat windows are
used to develop each particular element. The windows am.

Mode Window - Allows objects in a domain to be defined.
Relation Window - Allows relationships between objects to be defined.
Operaor Window - Allows state changes to be defined.
State Window - Allows the definition of a start stue and a goal state
Problem Window - Allows the setup and running of a problem to be

solved.
Apprentice Window - Allows the mipulation of a domain.

The four subcomponent windows (object, relation, operator, and state) are used to define a
domain. The Problem Window is used to create a problem that will be run in the Prodigy
planner. The Apprentice Window is used for domain manipulation: saving, deleting, and
loading domains

All the windows have a similar MacDraw''t[MacDraw 89] style interface, which is
mouse- and object-oriented. Thi similarity allows the user to interact with each window in
a consistent manner. A single mouse "click" selects an object; "click and drag" moves an
object; and "double-click" allows an objects name to be edited or a domain element to be
made available for editing. Windows are reconfigurable. All objects in the window can be
easily moved, and their locations saved, so that each window can be customized to a user's

Pag 24

Each window has a work area in which a particular domain element type (objects,

relations. opeators, and states) can be developed. This work area allows elements to be

developed one at a time. For example, in Figure 3.8 the Model Window's work area is

used for building a block object. To build or modify a different object, the block object is
*Ic.if1ed and another object can be manipulated. This iconifying process takes the sub-parts

of the current element from the work area and represents all of the information in a single

name diat can be placed anywhen on the screen. An element can be edited again by double

clicking on its iconifled name. This action places the original element in the window, and

die sub-pam of the double-Clicked element are put into the work area ready to be modified.

3,2.1.1 Model Whydow

The Model Window is used to create prototype objects of the domain along with

connection points (•e., location in which the objects will interact with one another). These

objects are then used in defining relations, operatwors, and states. The work area allows one

object at a time to be developed. The work area has a very simple object-oriented drawing

package type interace. I this work area lines, text, instance names, and connection points

can be added, detetti, or edited for an object. Each element in the work area can be

manipulated. To create a particular element type, the user selects the corresponding box

from the palette on the left of the work area. In Figure 3.8, the box element has been

selected.

Once all the modifications to an object are made, then the results can be saved, thus

incorporating the changes into the prototype object. Objects can also have attribute
information attached to them. Attributes are added to objects by double clicking on the

Attr. field. This brings up a popup editor which allows attribute information to be added.

This attribute information is specified by an attribute name and the variables with type

definitions that follow. In Figure 3.8 the attribute of the block is weight, and its value is

some number. During the generation of a state or operator this attribute will translate into

(weight <b~ockxx> <lbs>). Each individual object can be edited to include or exclude

Pape 25

MODEL-WEIDOW

Q DiuslObject Block-Model
A1:. (weight <,f:.nmer4ypc)

7 0
\ Work Ar ea (ins ide bounda ry)

Ofbiret R.4, Rdain

Tabbse-Modd ~ ~ i

Amn-Modd sm

Figure 3A Model Window: editing the block-model object.

3.11J. Rela/ WA

The Relation Window allows the user to build relations between objects and automacally

generates a predicate from the objects. These relations are used in the automatic code
geeation during the operator and state definition. This allows users to define much of the

rule and state knowledge graphically, and the system is able to check and flag
i=iesu in the definitions. Figure 3.9 is an example of the Relation Window.

In the Relation Window, object prototypes that the system knows about are pictured

around the outside of the work area. These objects can be moved by the user to any
position ounkse the work area. Relations are defined by dragging prototype objects, one at

a time, into the work area. This produces instances of the objects. Instances are then

connected together by their connection points to represent the relation. This visual picture

trasaes into a textual list of the relation name and the objects in the relation. This textual

representation is a predicate in PDL These predicates are used in operator and state

defmtions

Figure 3.9 represents the relation On-Table between a block and a table. The block and

table are connected together at their connection points. This connection is designated by a

line joining them. During the state and opator definitions, whenever a block and a table

Page 26

are connected together in this fashion, the On-Table predicate will be automatically

To the left of the work area are the object prototypes that were created in the Model

W'mdow. At the top of the window are two relations that have already been defined on and

Holding. The machine-generated PDL predicate (on-table <block876> <table564>)

is in the window and can be directly edited by the user. The Dep-List in the window allows

the user to define a dependency order among the objects that is used for the solution

animation. The Dep-List will be discussed in section 3.2.2.
pr hp, Relatiewnu

~REI.ATION-WINDO

Holding e0 ,_ ,-.*

DOM RELATION: On-Table
<blokx76>

OhM•i e,7, pr~orv.U y

e3,9: Relaon Wndow:. developing the On-Table relatio.

The Relation Window also allows a user to define a negated connection existing between

two objects (ie., arm and block). A connection is negated by selecting the connection point

to be negated then clicking the Not Connected button. In Figure 3.10, when an arm is not

holding a block, the empty relation holds. The square around the arm connection point

signifies that the conection has been negated.

Page 27

MRELATION-WINDOW

0DOMle LI Not Com~cu On On-Table
Holdng

ý RELIIONWEMI

Deim im M m~camd on On-Table
Holi~ng Empty

DOME RELATION: Clear Doi"

14t1

Figure 3.11: Re Afo indow: showing a non-connection definition.

Finally, there is a way to describe a relation when an object is not connected to any other
object This is done by selecting a connection point on an object, then clickting the Not
Connected buton Thins signifies that when nothing is connected to that connection point,
the relation holds. In Figure 3. 11 the ciear relation is shown. This relation is applicable

Page 28

when these is nothing connected to the top of a block (i.e., no block is on top of the block,

and the block is not being held by an arm).

3.2-1-3 0•rnE Window
The Operator W'indow allows the graphical creation of operators or rules in the domain and

automatically generates Prodigy operator code. In this window the work area is divided

into two regions: before and after. When all the relations in the before region are true for a

particular state, then the operator transforms the matched objects into the relations in the

after region. Therefore, the before region defines the conditions that have to be true before
the operator is applied, and the after region implicitly defines the transition between states

when the operator is applied.

An operator is defined by building a picture of its before and after states. This creation

process is similar to defining a relation. To create an operator, the relevant prototype objects

are dragged into the before region of the work area and connected together to represent the

before state. The user can then copy these objects to the after region by clicking the Copy

Pre State button. This will also link the similar objects together. Thus, if the name of an

object in the before state is changed, then the conresponding objeces name in the after state

is also changed, and vice versa. Objects can also be added directly to a region with the drag

technique, but these objects are not linked with any other objects. To link two similar

objects in the before and after region, the user should select the desired objects and click the

Create Link button. Once the before and after states are defined, the system can

automatically compute the preconditions and the effects for the operator in PDL. This

computation is displayed so that the user can make modifications if needed. User

modifications made to the generated code are recorded and used when the system

automatically regenerates the operator due to graphical modifications the user makes.

In Figure 3.12 the operator Pickup is being defined. Similar to the relation window, the

prototype objects are positioned around the work area. Note that names of objects in the

operator have <> around them. This represents a variable name. Figure 3.13 shows the

generated code for the Pickup operator.

Page 29

OPERATOR-WINDOW

C]Dobf JIM C C pie sof Sl] Ciazo Lgak L1a

ISNaum: Pickup

,-2-

Bcfoi Afte

Figre3..2Pickup operato before code is generated.

OPERATOR-WINDOW i
0 Dubalmeo 13 Cwym saws Gomm Link A'

Na34 Pickupd> (d5 (=Rabic <blck>~ 4mtbIc>))

(d <brwct>) DONE (de -(<ra>))
(copy' <aM>) (d (dew. <block>))

'W ~ ~(old Odn <am <Mok>~))

iH

F~gur 3.11: Operato Window:. showing the Pickup operto with autmaicly geneated
Prodigy code.

3.21-4 Sho.w Whmw.

The State Window allows the graphical description of a state and automatically generates
the Prodigy sta code to reflect the depiction. The initial staft is a description of the stae at

Page 30

the beginning of planning. The definition procedure is similar to the other process. The

state is defined by instances of objects and their connections. The user drags prototype

objects into the work area and connects them together. From this visual representation the

system generates an initial state code definition ay. Figure 3.14 is an initial state

that has three blocks on a table. The automatically generated state code is also part of the

State Window.

STAT•EWINOW

eld elm CowyStam

DONE N==~ Initial-State-I I

(on-labl A ATable)

F~~~~~smre~~amtal C.4 A-Tabldw:dfi ig middi e-)

systemautoma icyrgenrae 3.14 State Vfno:defiptiong detorpical changes.

Page 31

I i .11

STATE-WENDOW

DOME NW= Gon-Satme-I

(as B A)

(AB~

Fqp 3.15: Stat Wmdow- defining Goal-State-1.

3•.2.1J Pmobfin Whudir

In the Problem Window the user define the problem that is to be solved and sees the

anirmio as the system plans the solution. In order to solve a problem, Prodigy needs to

be givew 1) the opmtr that amn to be used, 2) the initial state for the problem and 3) the:

goal stat for the problem. These are speified separatey, providing flexible problem

1-ecifcation. For example, one may specify several problems with the same initial state

but different goal sonts, or test only a subset of the available operators Figure. 3.16 shows

the Problem Window based on the information we prevously defined. By selecting the

Execute Problem button, the current problem's code is loaded into Prodigy and executed.

As the planner solves the problem, the solution is graphically annimated•, as shown in the

next sction.

Pape 32

•POBLEM-WV4DOW

STAler:. Jiibi-Stam4
JDOMB MAME dim

Thitialcr Uddattow I.A N

A C

Fige 3.16: Problem Window: displaying the initial and goal stat definitions.

3-2J.- &zAN TAU
Figure 3.17 is an example tace of the system solving the problem that we previously
defined. The doman and problem definition are the same as the textual domain that we
defined previously. The partial trace below shows the steps the system takes in order to
achieve the goal state The system starts out by stacking the blocks in the wrong order.
Later on, the system backtracks and reorder the goals. The syste then stacks the blocks
in the correct oid" and solves the problem.

The solution for the defined problem is to:
(pickup arm b t'able)
(stack a b arm)
(pickup arm c table)
(stack b c arm)

Another debugging tool allows the user to apply instantiated operators one by one. When
applying an operator, if preconditions are not satisfied in the particular state, a message is
displayed containing the relations that were not matched in the precondition. This stepping
process helps the user verify that an operator is performing as believed. Of course, all
gap 1ia animation is also updated when an opersor is applied successfully.

Pap033

BZ E

seveal State P1 f a k C Stack aplof ao peatok a commzad .

,,A ai A o

The animation algorithm provides the ability to visually trace the progress of a solution

during planning. This is done systematially, as shown by Figure 3.18. Once a problem is

ready to be solved, then the animation routine begins. First the graphical object information
is initialid; the graphIcal k r tion of each object is displayed in the problem window

at a location based upon the initial state definition. A list of all the graphical objects with
supporting information is compiled and stored for animation. The graphical dependences
and relative poition for each object in all the relaions are compud and store.c In the next
step, the PDL definition for the domain is collected and tprpared to be loaded into the
Prodigy planner. Ones the initialization is as the PDL code is loaded into the planner
and planning begins. During the planning phase, the planner will update the graphical
display as operatior are applied. This update procedure will be explained later in more

detaiL If the planner backuacks, then the screen flashes and the new state being worked on

is drawn.

Page 34

GrzeCaphics
•Prepare PDL Deftimions

Load PDL Definition
into Planner

Execute Oeuc < t~
Planner LJ

Prodigy Planner
Figur 3JE Animation diagram.

The key to this tace animation is gen dhe information about the objects interaction from
the relation information. When an operator adds or deletes a set of relations in the current
state, the relation information is used to update the graphical display. Therefore, the initial
infor1ation needed from each relation is: 1) what are the object types in the relation; 2)
what are the dependencies between objem; and 3) what are the relative distances between
the objects. A short example iustraing the information needed and how it is used foMlows.

The objects in a relation are ordcred according to the objects dependency with the other
objects. This orde is userdefined and reptesned in the Dep-List of the relation window.
Figure 3.19 shows the relation window with the definition of the "on" relation. The bottom
object in the Dep-List is the most stable object during movement. Thus in Figure 3.20 the
top block is moved to a location relative to the bottom block. The graphical distance
between the two objects is used when the objects are amnied in the solution trace.

Pap 35

RELATION-WINDOW

DON RELATION: On
<top>

Wire 3.19:. The Relaton Window with the on relaion

Figune 3.20 shows three snapshots of an animation n- The firt snapshot shows B right
beore an opeatr is applied to add (on B A). Snapshot two shows the result of that
relation being addled to the state. See how block B moved relative to the position of block
A. Futr in the solution r snapshot the shows the afte effecs of adding the (on c

B) teladion to the stau In this case block C moved relative to the position of block B.

!C

f IB B

Afl C A C A

Lawa
in Plaz

Before After Later, After
(n aB A) (on B A) (on C B)

liur 3.20: Adding the on Eclation to a sawe. The relative distance between the two

objects in the relaion is used to degmrine object placemmna

Pape 36

The above description gives an overview of the animation process, but the movement of
objects relative to each other is slightly more complicated. The previous dependencies of

objects are also used to compute an objectes new location. When an operator is applied, the
internal smte of the planner is updated and all the added and deleted relations ar then used

to generate the animation. Deleted relations remove object dependencies and erase objects

on the screen; added relations creat new dependencies among objects and move the

objects to a new location. Below is a description and example of the relation effects.

For each deleted relatiom

"• Each object in the relation is erased from the screen.
"• Each objects dependency, based upon the particular relationship, is deleted.

For example, deleting the (hoiding B AnAz) relation erases the objects from
the screen and breaks the dependencies ofB and An Arm.

For each added relation.

* New dependencies between objects are recorded based upon the relation. For

vwnple, when the relation (on B A) is added, B is set to depend on A.

• The order of object movement (i.e., move an object before another object) is set
based upon the relation. For exanple, in the previous on relation, A is moved

before B.

- A relative displacement function is computed for each object. For example, the

function (move-rel 0 -30 A B) is stored for the object B's move function relative

toA.
* A topological sort on the objects is done based upon its previous and present

dependencie. For example, in the states of Figure 320 sort all objects in the state

(A, B, C, An Arm, ATable).
*Move all the objects to their new locations in the order of the sort using the
displ nt function. This is done by applying the displacement functions to the

objects in sorted order.
• Redraw all the objects in the domain.

The deletion of relations must be done before the addition of relations. Using the above

algorithm in all the domains that were developed in APPRENTICE, the solution trace

provided a realistic animation of the planner execution. In cases where there are circular

Page 37

dthis animation may break down but this did not become a factor in the

domains developed thus far.

3.2.3 Prhiate Elements for the Domain Builder
APPRENTICE is just one iplemntaon of domain developing techniques that aid in
knowledge acquisition. This section removes the implementation details and describes the
undalying set of ptimitives th are needed to develop a doman using the APPRENTICE
tng t h Primitives Will mke t ncorpoa of newly developed
interface techniques eier. These primitives support the development of domain
definitions that have objects, operators, states and instances. The primitives are defined
below, fonlowed by examples from both the blocks world and a business organization chart

domain.

Object Creation - The ability to define a visual representation of the
domain objects. For example, visually represent a block or a business

division.

Object Variable Deflnitions - The ability to refer to a class of objects. This
is used in dt definition of relations and operators. For example, be able
to make rfrence to any block or business dvision.

Object Comnection Points - The ability to define a set of physical
locations, either e:plicitly or implicitly, on each object and allow the
objects to connect with one another. This will form relations between the
objects. For example, form connections at the top and bottom of a block

or connections at the top and bottom of a dvision icon.

Object Attributes - The ability to associate attributes with individual

objects. For example, the weight of a block, the number of workers in a
division.

Relation Definition - TIe ability to define relationships between objects

types or instances by connecting their connection points. For example,
block on another block, subdivision under a dtvision.

Pa 383.

Relatio Graphical Relative Position - The ability to define the graphical
reaive position of objects. This is important during animation to give a
ralt portrayal of the solution. For rxample. a block positioned on top
of a another block a subdivision positioned underneath a division.

Rdeai Dqe dmcy - The ability during the graphical trace for objects to
be drawn relative to one another. The ability to define a dependency list
defining the drawing precedence of objects is also importanL This can be
implicitly or explicitly controlled by the user. For example, use the
location of the bottom block to get the relative position of the top block,

ue the dfiuon location to get the positon of its subdivision.

Composition Element Creation - The ability to create a static description
or state using a set of relations. For exwmple, block A on block B and
block B on a table, a business organizational chart.

Tranation Element Creation - The ability to use the differences between
comprositio elements to describe a state transition. For example, pickup a
block reassigning a subdiveion.

Solution Tradug - The ability to inspect the problem solution as operators
are applie For example, animate the robot arm moving or animate a
sb"vision changing the dvision it reports to during a reorganization.

The above primitives can be combined together to create a system that allows users to
develop domains faster and more accurately (see Chapter 4). The development paradigm is
based on creating domain objects, relations, operators, and states. Below are the definitions
of these elements.

Prototype and Itance Definition - A prototype is a class of physical

objects defined. These prototypes are graphically defined, have ways of
exprsing connection with other physical objects, and can represent

at-ibutes about themselves. An instance is an actual physical object
copied from the ptowype definitios.

Pape 39

Rdaflo m Deintion - Relations are definitions of how physical objects

connect with one another. The definition should include the objects

forming the relation, the physical orientation between the objects, and the
ineIIMonnected dependency between objects. The latter two criteria are
used for the animation of the domain.

State Definition - Stats are a set of objects and their relations with each

other. Sums are defined by creating composition elements previously
disussed.

Opato Defnton - Operators are set of objects and relations defining
when the operator is applicable to a situation and a set of effects that occur

when an operator has been applied. Therefore, the operator is a

combination of the composition element for the before part and a

transitio element describing the difference between the before part and an

after state for the effects paut

Solutiom Animation - Problem solving can be graphically traced as the

problem is being solved, providing visual feedback from the problem

solver by using the relation definitons. An algorithm for dynamically

racing a solution was given in section 3.2.2.

Using APPREN1CE as the model, the domain eements described above ame shown to be
an effective model for doing knowledge acquisition of visual domains. It has also been

demonsrmod that these elcemts can be translated into code that a planner can use to solve

a problem in the domain. With these primitives, other user interfaces can be built to be

effective in providing users with an intuitive system for KA.

3.3 Framegraphics - Low Level Graphics
A flexible graphical tool was needed to build an interactive system like APPRENTICE. I

developed a fnume-based graphical system called Frmegr.phics for the development of

APPREN•CE. Because of its ese of use, flexibility, and extensibiity, Frae.gra,1 ics has
also been used as the mice for building a piano tutoring system (Joseph 91] and an

oo al ppical editor (lenburg 8M].

Pap 40

This object-odente graphical toolkit was built using Framekit 2.0 [Nyberg 881, a frame-
based knowledge repstation language. Framegraphics provides a machine-ine de
graphica system for rapidly prototyping user interfaces in a Common Lisp environment. It
is cumrtly running on the Macintosh under Allegro 1.2, on the IBM RT/PC under
CMULisp and XlI, and on the Sparc workstation under Allegro and Xl1. Figure 3.21
shows a block diagram of Famegraphics organization.

Framegraphics 1.0

l •an~ t 2. man •

FIgure 3.21: Framegphics diagram.

In Framegraphics, graphical objects are represented by frmnes and stored in a is-a/instance-
of hierarchy. The parent frame of all graphical objects is the frame "graphic-object," but
only instance-of frames within the graphic-object hierarchy are displayable objects. The
graphic-object frame stores the default behavior for graphicaCL objects. This default behavior
is in the form of functions, demons, and values stored in slots. This means that a graphical
object can be created with very little work, yet have default behavior. This default behavior
also helps users quickly learn how to use the application system by providing a consistent
Warface.

The system's default behavior is modelled after the Macintosh intface. Objects can be
selected by a mouse click, they can be moved by click and drag, multiple selected objects
can be moved, ex.

Page 41

Most of this default behavior is implemented as function names stored as slot values. To
run a particular function, first the slot value is retrieved using inheritance Mhen t_ -alue is
executed with the current frame information as its parameters. The ove-proc slot is an

example of this. When a screen item is moved, the move-proc slot is queried. If a value is
not found locally, which is usually the case, the inheritance mechanpir. returns a value
frm the hierarchy. This value is then used as a function, and the arguments of the local
frame an the iprameters. This is a very powerful method to share code among objects.

This default behavior can also be easily modified or extended for an individual object or a
class of objects. In APPRENTICE it was exremely easy to add a help facility. It took only

an hour to develop a functional help system so that objects on the screen could provide
information about themselves. This was accomplished by adding a help-proc slot with a

help function to the high level "apprentice-graphic-object" frame, the top display frame for

the apprentice interfaco. This function took the local frame name and retrieved information

from its help-mug slot. These strings were then displayed along with the frame name. By

adding a textual description to the selected help-msg slot, help information could be
tailored for individual screen objects or classes of objects. Currently the help system is

activated by an alt-clkk selection on a paricular graphical object Again, this activation was
caused by adding a function to the alt-click-proc Slot that called the help-proc slot

function of a frame. This activation could be easily changed to work another way. For
example, help could be activated by clicking a button that displays information about the

selected frames. Also note that the help function can be made different for each object just

by changing the help-proc slot function for the different frames.

In the same manner, I was able to add in a day the ability to generate a Postscript file from

a display screen. Th was developed after most of the APPRENTICE system was already

built. I was able to modify the whole systm by adding a function slot ps-proc. In this slot
each frame or class of frames would have a function that wrote to a file the Postscript
commands for displaying the object. This function was much like the drawing routine for

the objects. To creae a Postscript ie of a window, all that was needed was to loop through
the display list and have each frame run its ps-proc fumction sending the output to a file.

As with any object-oriented systm exending object types is a simple matter. The editor

fýr the model window was developed and integrated into the system in about a day. It is

selectabW, moveabie, and responds to help messages consistent with other objects, yet it

eage 42

also allows the building of graphical objects. Another new object type developed was an

object that displays graphs and allows interaction (selection, movement, and click

s) with the nodes of that graph. The development and integration of these objects

was effortless and straightforward.

Page 43

Page 44

Chapter 4- Empirical Analysis: User
Studies

The APPRENTICE system was designed as a knowledge acquisition tool to facilitate the

construction of Prodigy domains. To be useful, the system needed to be usable by a wide
range of people and provide more functionality and understandability than other systems.

Four studies were done with APPRENTICE to evaluate its performance with multiple

users and multiple domains, as well as the evolution of the system use over time. The four

studies are comprised of a study of the system's coverage and usability, a study that
compares APPRENTICE and Emacs, a study of system usage over time, and a study to

build a medium size domain. This chapter will describe each of these studies in detail

4.1 Study 1: Coverage and Usability
To testhe coverage and usability of APPRENTICE, 32 students from an advanced Al
class participated in developing their own domains using APPRENTICE. The objective of

this study was to:
" Have multiple subjects use APPRENTICE. This provided insight on how users

intmacted with the system. It helped to determine what is easy and what is difficult

for others to understand. It also showed if individual conceptual models can be

incorporated into domain building in APPRENTICE.

"• Get different types of domains built using APPRENTICE. This gave an indication of
what types of domains can be built using this tooL It also investigated whether the

domain building philosophy was sound.

"* Determine what additional functionality is needeiL This allowed me to more fully
debug and enhance the system, because other users invariably tried things that I had
not considered. It also pointed out additional functionality needed.

"* Measure ease of building a working domain from a concept using APPRENTICE.

This allowed me to quantify the time it takes a person unfamiliar with

APPRENTICE to use the system productively.

Page 45

To reah the above objectives, each subject built in APPRENTICE a domain that they
specified. The ime to build the domain and the final domain produced was recoded What
follows is a description of the building process, examples of two different subjects'
domains, and the measured results and analysis for ail subject

4.11. Study 1: Hypoesis
The majority of users in this study should be able to use APPRENTICE successfully to

build new domain.

4.1.2 Study 1: Procedure
The participants were students enrolled in the class Artificial Intelligence:
Representation and Problem Solving. The class description from the University
catalogue is as follows:

Aad Inteffitc=* R=nr.ZeMMi and Problem Solbpw

Intelligent computer programs can solve problems, undersatud natural language, reasoa about
their actions, and learn from apeience. They do diese things by manipulating internal symbolic
repwmarin The course will cover the an type of symbolic knowledge representation and
the main techniques for planning and problem solving. LISP, a computer language designed for
symbolic programmng, will be taught during the course, and there will be a required
proVWin g project in LISP.

Each student was required to develop a simple domain on paper using a STRIPS type
syntax [Fikes 71] as part of their normal course work. The students knew nothing about
APPRENT1CE while they were developing these domains. During the class after the
students finished the above assignment, I gave a forty-five minute lecture on
APPRENTICE. As an optional assignment, the students were asked to encode their
domain in APPRENTICE. Thirty-two people volunteered to do the assignment. Each
student individually did the following procedure:

1) The student was given a three-page description of APPRENTICE to read. This
description is listed in the Appendix D - Apprentice Desc-pt-on.

2) 1 gave a short introduction describing domain elements (objects, relations, and
operKO).

3) whe student wrote down the objects, relations, and operators in thei domain.
4) The student was given a brief demonstration of how to build a simple domain (the

blocks world) in APPRENTICE.
This entire preHmnary setup took approxiaWy 40 minutes.

Pap, 46

5) The students indepedy built their domains using APPRENTICE.

During the study, the students never referenced their previous paper-based assignment

With only two exceptions, all students were able to build their domains in APPRENTICE.
One student (subject 3) needed an additional function for his domain that the system did
not support at the time; another student's paper domain (subject 4) contained no search, so
he built another domain.

The students' domains fall into several categories: recipes (making carrot cake, Kool-Aid,
etc.), transportation (moving blocks outside the house, delivering pizza, etc.), games (eight
puzzle), controlling an appliance (playing a CD player, washing clothes, etc.), and Biology
(building DNA molecules). The students' domains ranged in complexity from the eight
puzzle domain (containing 2 objects, 3 relations, and 1 operator) to a domain to compose a
sub-part of a DNA molecule (containing 10 objects, 14 relations, and 11 operators). The
development time for the domains ranged from 1 hour to 4.5 hours. The mean time for
domain completion was 2 hours and 4 minutes. For a description of the entire subject
population and domains built, see Appendix A.

41.3 Study 1: Results
The next section describes two representative domains (the eight puzzle and the DNA
molecule domains) along with the students' visual representations and the system-
S-- code

4.ne .171

The eight puzzle domain consists of squares adjacent to one another and numbered tiles
that sit on top of the squares. This was the simplest domain built as part of study 1. The
playing board is composed of 3x3 squares and a set of tiles on all but one of the squares
(there is always a square without a tile on it). The tiles have unique identifiers (e.g.
numbers, letrs, etc.). A tile can be moved to the empty square if the tiled square is
adjacent to the empty squae. The tiles start out in one configuraton; the goal is to get to a
final configuration through a series of tile moves. Figure 4.1 illustraies the eight puzzle

game-

Page 47

0 SO 3#

Move 2 up to Sq2
7 sMove 5over to Sq5

Move 6 up to Sq6
8

IZitial state Inte-mdiate Moves Final/Goal Stats

Fgure 4 mlusation of eight puzzle game: Initial and final state along with inteediate
moves.

Subject 8 encoded the eight puzzle domain in APPRENTICE as follows. The subject first
built two objects (a tile and a square) with connection points. The tile and the square are

<Tile>

pictred n Fgure4.2

Figur 4.2: Square and tile objects for the eight puzzle domain.

The next step was to build relations. There are three relations. They are "adjacent," one
square connected to another, "on," a square with a tile on it; and "square-empty," a square
without a tile on it. The three relations are shown in Figure 4.3. Note: the box on the square
connection point in the square-empty relation means that the relationship is true if the
connection does not exist (there is no connection between the square and any tile).

<><Squar.23S> <Squar.236> <SquaZ.237>, <Til.917

<T17;>

on Adj acent Square-Empty

Figre 4.3: Relations for the eight puzzle domain.

The only operator is to move a tile. This operator is pictured in Figure 4.4. The
automadcally generated code that the system produced is in Figure 4.5. The MOVE

Pape 48

opesawo requites that ther exist two squares that are adjacent to one another, and a tile is
on one square, and the adjacent square is empty. When the operator fires, the tile moves
fomn the inway tiled square to the other squawe leaving the previously tied square empty.

Name: Move

DOME

~ ~S~ar23< Square239> .d:23 >
Before After

FRgue 4.4: APPRENTCE definition of ft move operator for the eight puzzle doman

(Operator MOVE
(prams ((<Square238> SQUARE)

(<Square239> SQUARE)
(<Tilel78> TILE)))

(preconds
(and (On <Tilel78> <Square238>)

(Square-empty <Square239>)
(Adjacent <Square238> <Square239>)
(Adjacent <Square239> <Square238>)))

(effects ((del (On <Tilel78> <Square238>))
(del (Square-empty <Square239>))
(add (On <Tilel78> <Square239>))
(add (Square-empty <Square238>))))

Fir 4.5: Automatcally generated Prodigy code from the graphically

dened wvE operem'.

Initial and goal states were also built. For bhviny of explanation, a 2x2 puzzle will be used

in the following description. Figure 4.6 shows an initi state that the user defined using a
2x2 puzzle (this problem is alsoo known as the fhee-puzcle).

Pap 49

State
- (On one Sq2)

Sql (On three Sq3)
(On two Sq4)
(Square-empty Sq2)

Eono.-* (Adjacent Sql Sq2)

J--L E] (Adjacent Sq2 Sql)
3S (Adjacent Sq2 Sq4)

(Adjacent Sq4 Sq2)
I(IAdjacent Sq4 Sq3)

o t(Adjacent Sq3 Sq4)
(Adjacent Sq1 Sq3)
(Adjacent Sq3 Sql)

Apprade Dnhn A a•M y Gemerad
Piodig SON DehMf

Figre 44: An inital sm for the three-puzle in APPRENTCE and in Prodigy.

A goal stae for ft h•ee-puzzle is rpresented in Figure 4.7.

State
(On one Sq1)

11 q2 (On three sq3)
(On two Sq2)
ono(Square-empty Sq4)
(Adjacent Sql Sq2)

- - (Adjacent Sq2 Sq1)
(Adjacent Sq2 Sq4)

34(Adjacent Sq4 Sq:)
(Adjacent Sq4 Sq3)

three(Adjacent 5q3 Sq4)
(Adjacent Sql Sq3)
(Adjacent Sq3 Sql)

Appruatic Ddbidoa AtalcaInyGe.~ated
Prodigy Slate Deflidum

Fgr 4.7: A goal sm for the three-puzzle in APPREN•ICE and in Prodigy.

By specifying the initial stae, goal stae, and operator(s), the problem can now be run with
animaion Figure 4.8 shows a set of snapsowt along the solution path. Since this was an

eay problem, the solution was found right away.

Paep 50

Initial Goal Moove two to Sq2Mlove on* to Sql Goal State Achieved

Figure 4.8: Steps for solving the 3-puz=e•

4.1-3-2 DNA MockDoain

Another domain that a student built was a procedure for building sub-parts of a DNA

molecule with organic building blocks. This is one of the most complex domains build as a

part of study 1. This domain is a student's view of a very complex process and should not

be viewed as a valid description of a genetic process.

DNA is a double helical, long molecule structure composed of several building blocks. The

connections between the two parallel sides consist of pairs of organic base elements:
adenin thymie, guanine, and cytosine. Adenine can only pair with thymine, and guanine

can only pair with cytosine. This domain deals with the construction of these nucleotide

The basic elements in this domain are the organic building blocks (cytosine, guanine,

thymine, adenine), a chemical mediator (enzyme), a ransport element (ribosome), and
nucleotide pain (a-t-pairs and g-c-pain). These objects are shown below.

CYTO GUAN THYM ADEN ENZY

RIBO A-T-PAIR G-C-PAIR

Fiure 43.: Objects in the DNA molecule domain.

Page 51

The reladons in this domain are depicted below and represent the intmaction between the

domin objects. These nhi s a betwee the organic building blocks, the ribosome
and the organic building blocks, the enzyme and the organic building blocks, and the

compoiion elemet of the nucleodde pairs.

ribo-bolding ribo-holding rnio-holding ribo-holding
-gum -thys -cYto -&den

guan-next -to-cyto aden-nex-to-thym enzy-next-to-aden

xU

g-and-c-part-of -gc a-and-t -pat-of -at enzy-next-to-guan

Fgure 4.10: Relatons in the DNA molecule domain.

Finally, the opemars consists of the procedure to connect the organic building blocks into

the approprniat nucleotide pair. This consists of using the ribosome to transport the

building blocks to the correct location and allow the elements to be connected together.

Below are the visual representations of the operators. The generated code will be included

inAppendixB.

Pae 52

G

Pick-up-cyto Pick-up-guan Pick-up-enzy

AT, u G

Pick-up-aden Pick-up-thym Put-g-next-to-c

E A
A

ut -e-next-to-g Put-e-nexw -to-a Put-a-next-to-t

GC C cA

IMke-g-c-pair Make-a-t-pair

Figu 4.11: Operators in the DNA molecule domain.

Finally the initial and goal state of a problem is shown. The system then figures out the
seque nc of operators to apply to go from this initial state to the goal scate.

Pap 53

IA

Figure 4.12: Intial problem state in the DNA molecule domain

Figure 4.13: Goal problem state in the DNA molecule domain.

The solution for the above problem is:

•pick-up-guan guani ribol
put-g-noxt-to-c guanl ribol cytol
pick-up-enzy ribol enzyl
put-e-noxt-to-g ribol guanl enzyl
miake-g-c-pair g-c-pairl cytol guanl enzyl
pick-up-aden ribol adeni
put-a-next-to-t aden1 thyml ribol
pick-up-enzy ribol enzy2
put-*-next-tO-a ribol enzy2 adenl
mako-a-t-pair thynl adenl enzy2 a-t-pairl thyml

4- 1 -3 lf3 a. RUd'

Aftr students finished their domains, they were asked to complete a questionnaire. Their

overall impressions were very favorable, and their comments helped me to improve the

system. On the following page is a epesetative sample of these comments.

P3, 54

Excerpt of Quotes from Subjects for Study 1
I had a used her muliple subdeees but Urn, was anasy way The grap"ia bi~ is very mtugflgtwward so use and aim-
Io do this. ply a qure, a brief sesd=o of just playing around with the
The sakify to qeety objecst behg a anheinea of smother sysiam in get used to it.
objedumorwavailawe Peqpl. Showebing -2
Suchas systm seems necessary in order to deliver the powe
of planing MOgMa to compsau-ayep. Certain functionality of the system and its use was

Robot Tabig Cawssm 's Order -1I undorspecified in the system's help featue amid in
the hardcopy documentation.

The intemrative nowt of th pretc Aawe tMareoml masnual has bees written and
Ssytem Maob the developoiast of the, doý- the helia syste bin bees iapdated
main and the solutio geeation of the killin Roaw -7

- fim. Amany drawin the pictures said
Bicyclinjg -8 making connections between I wa " obidm DNA Wold do-

For all the prawu I offaied in the above paragraphi, eir Ittur,$ain flanda Mon man ad it workedl It took adenine, cy-
I mst ow rp ou o mke o uer aita ventowsin. guanine, and thymine molecules and

I ~ ff3 yO made A-T and G-C par out of them with
eader. anid ma conforming to various standards Cat Gating Firk - th1epo4arbsm adezms
that have evolved in UJJ design. For example. a co- wee elo fu a tiosome I wand anz les.og
busauntid consistent way to navigate the ptograin'sAprniewsfmt &Iwaabeogt
stane is needed. Soniftma~, I would haetodc my domain. which was just ideas on paper
on aword to reurn. anidothers I would clickoana I built dhe domain I intended. I to actually run.
buton. I really do feel lie I am being nipiky. how even aied up building nane than DNA World - 19
am, became I wo vaty pleased with all the less I intaided.
trivial aspect of Appratime in particular bow it rp. MoveW0Id with Blocka - 6

, theat domain with objem opwa~n aid ~sa.
More coultemsy isedded to bo ppme Theme was too much overlapping of graphics and text. Its was at tines
Iw 601aclaot h shli f iuie(r dcult to tell what was on the screem The fact that all user-defined
evI a dwa cbompltex usyflnsse of~p~c i(aue or aobjects aid states automatically went to the same 4 - en location (first
mvnare y complcatedtdmai tha ithe sot wer hav position on the left side) wee confusing. The arbitrariness of the beac-

n 1 ompicatd dmaintha thesor we ave tion of various pieces of information was noticeable and added to the
ban Inctin .. dt confudo of novice.

Mkieproles Is ub ithIn d oidimThis ka amnfuning point but is just a programaming ftx It was
dosf:Robot Fetching . 10 F Id mongl for an etperionsill systess.

I think that the staie ithnfomton (which was not printed in novice mode)
is quit helpful However, once again, the screwn cluttra is a problem.
Overall. I found it to be a great visald method for entering my domain,
and I apse this is a superior method for knowledge acquaisition.

I am not sone about dhe scalabllity issue - I think one of th Playing CD Player -12
bigger pqobienas would be the graphical display of a lot of
data and some automated methods for keeping the pictures
cohesive aid understandable.
This problais is deslt with in the wedim dum domabn I buil the domain I started out with although I added a
"+ Add the ability to animate the plan solution. fAw mane opersau and, ston to make it -o complicated.
"+ Have ability to save other pionsolution It wasgenerally enyto use. and it wu;kind of fun. I iked
"+ Have the intermediae stpo displayed in an out put the fac that we had to draw our opeators aid states. I think

Pasmus Blockir -13 this makes it -o interesting I~ easier to Moiow.
Firing Kool-Aid - 17

Provriding for multiple objects of the same clams but with diffeen attributes,
or anything involving afttibuts was not as obvious. kt neeck to provil an Lamn whte orgtcik left click. etc.
masiormeth-dI 1r dealing with attributes, pehp labeling object in awls, at each po took same getting used to. but
dam mand *parss with the awribmui after time became easy to use.
The alifyto hlernidl stlir!Me bettor will dter be diciiedo ba Feaf"elmn h Cat -21

Playing CD Player -20

ThefBold Texaismy comsmeaaeu

Page 55

41.4 Sa*dy 1: Analysis
APPRENTICE was used successfully by a varied set of people, over several type• of

dons in a relatively short time. All domains that the students tried to build in
APPRENTICE successfully lead to a running system. The students were diverse, ranging
from college sophomores to first year graduate students, and majors xanging from

Computer Science to Music. The system supported the development of several types of
domains like solving the eight puzzle, building a DNA molecule, cooking a carrot cake,

and delivering p

The students also helped debug and enhance the system. Some developments that resulted

from this study were better consistency checking, increased functionality with class

specification and hierarchy of objects, and increased system-directed help and user
warnings. Finally, an intangible result was that the students enjoyed using the system. They

found it "easy and fun."

A closer analysis of the study 1 data provides more characterization of the domain

development process. The average time for domain development was two hours and four

min. In Figure 4.14 statistics from the data are shown. Figure 4.15 is a plot of the subjects

versus their development time,. It also shows the development tme median (120), quardles
(100, 140) and whiskers (60, 200). Notice that in the chart there are three subject

development ames that seemed to be inconsistent with the rest. A light gray box surrounds

these times. Analysis was done on the data with and without these subjects.

Median Tune 120.0 120.0
Mean Time 124A 114.5
Standmnd Deviation T7"me 40.7 24.9
"Mean Objects 5.7 5.9
Mean Relations 8.8 8.4
Meaw Operao 6.1 6.0

Figure 4.14: Statistics for 32 and 29 subjects in study 1.

Page 56

300

2350
Apbkftq rnmawyd far

200

ISO -gas

5 -

0 10 20 30 40

SUDJUC! ID N0M

Figure 4.1S: Plot of subjects versus domain development times from study 1.

I also analy-m lie relationships between the different elements of the domains. Figure 4.16

shows the comparison plots. The object and relation elements are strongly correlated,
where the opera are not correlated with either the objects or the relations.

Is S is is n a 09 a 3 4

uI

i u . F ea ch

55 5Pa 57

rersso usn utobet n oprtr st needn vraes.Freh

Ueesiong the datafromtedsuyI i multiple regressionch ona other 29sujcts. Time woiastheg

Page 57

the time development (e.g., background of students, complexity of graphical objects,
domain types being developed, etc.).

4.1.5 Study 1: Conclusion
The hypothesis was confirmed. AIL subjects were able to encode working domains using
APPRENTICE and none of the domains was preselected for its visually oriented

properste APPRENTICE showed a wide applicability to many domains.

4.2 Study 2: APPRENTICE Versus Emacs Study
This study compares the use of APPRENTICE to build a domain versus the use of

Emacs, a typical text editor commonly used by programmers, to build a domain. The

objective of this study was to:
"* Test the productivity of users with APPRENTICE versus Emacs. This provides

quantitative results about users' productivity when building domains utilizing these

two methods.

"• Test user's comprehension of new domains represented graphically versus domains
represented textually. This gives an indication of how well a domain is understood

when it isrepresented by pictures or by simple textual "if-then" rules.
"* Test the usability of APPREWT7CE with a variet of users from prodigy experts to

non-programmer users. This provides a diverse population of users for
APPRENTICE. The system was tested and enhanced similar to study 1.

This is a two-phase study. Phase 1 compares the time it takes different types of users to

build domains in APPRENTICE versus Emacs. Phase 2 measures each subject's ability to

s already built domains, using multiple choice questions.

4.2.1 Study 2: Hypothesis
Non-technical users will encode and understand domains faster and with more accuracy

with APPRENTICE than Emacs.

4.2.2 Stady 2: Procedure
In both phases four types of people were used.

PRODIGY EXPERTS are graduate students currently working on various projects
that use Prodigy. They have an in-depth understanding of Prodigy and its use and

have used Emacs as their primary tool for building domains.

Page 58

AT INDUSTRY EMPLOYEES are members of Carnegie Group, Inc., an Al

company located primarily in Pittsburgh. These employees are familiar with Al

terminology and have worked with Emacs extensively. They knew nothing about

Prodigy before the experiment
CMU AT EXPERTS are subjects who are working in Al at Carnegie Mellon

University. This group is very familiar with Al programming techniques and the

use of Ernacs but had no prior knowledge of Prodigy.

NON-3TE NL USER are subjects who were unfamiliar with the field of Al

and had only limited computer experience. Computer exposure for these

individuals has been limited to word processing software, drawing packages, and

simple daabase use.

422.1 Phase 1: Domain Buildin

For Phase 1 each subjectds task was to build a domain in Apprentice and a different domain

in Emacs. The specified domains were a package delivery domain and a robot path

planning domain. The two domains were of equal complexity. They used a similar number

of objects, relations, and operators. To gain experience developing domains in both

systems, each subject used a small pizza-delivery domain for practice. A description of

each domain is in Appendix D.

Emacs was chosen as the text editor for development comparison because it is currently

used to develop domains in Prodigy and is similar to other methods used to build domains

in typical planning systems. The Prodigy language syntax has an if-then syntax, indicative

of the syntax of a lot of expert systems. The instruction that each user was given for how to

use each system is in Appendix D. The instruction for using Emacs shows the PDL

without universal quantifiers.

Phase 1: PROCEDURE

Each subject was given an introductory page about Prodigy and Expert Systems (see

Appendix D). The page also presentrA the very simple practice domain, a pizza-delivery

domain. Once subjects finished reading the introductory page, they used the following

procedure with each system. For example, a subject would do the following procedure in

En•cs, and then repeat the procedure using APPRENTICE.

1) The subject read a two-page description of the system they were going to use.

Page 59

2) The subject was given a dezonstruaion building a subset of the blocks world domain

in the curren system.

3) The subject built the prtice pizu-deliery domain in the current systemL

4) Finally, the subject built one of the experimental domains on their own using the

apppriate sys teM

After the first system was used, the subjects went back to the Preliminary Setup and

repeated the process with the other system.

While the subjects were building their domains, timing data was being recorded. Each

subject built one domain using APPRENTICE and the other domain using Emacs. Each
domain was built with each system being used by at least one person in a particular group.

For example, in the Al Employee group, Subject 1 built the Strips domain using
APPRENTICE and the Logistics domain using Emacs, whereas Subject 2 built the Strips

domain using Emacs and the Logistics domain using APPRENTICE. This information is

presented in Figure 4.17.

,4, .1 Phm I! Rmsut

The charts in Figure 4.17 display the amount of time it took each subject to build a

particular domain with a specific system. Subjects ame grouped together according to the
four types discussed earlier. Each subjectes results are depicted in the boxes under S#. The

domain that was being built is shown along the left side of the box (except for the non-

technical users). The interior squares show the system that the subject used to build the

particular domain and the amount of time it took that person to do it. The order in which

the domains were built is represented from top to bottom. The shaded boxes are the

domains that were built using APPRENTICE, and the bold face type shows the faster time

for each subject. The XX represents an individual's inability to come close to task

completion within a two-hour period.

Pap 60

CMU Al zpWt Al Industry Employees
Si S2 31 S2

Strips M Lgsi t E
~~ ~63 min2im O

-MA' EM A
25 min Strips 57 minn 4m

NOm-Tediimical Usrns ProdigyMW
Si S2 S3 Si S2

A? * EM Logistic AO EM
. 25mmu:' 3S5.1.

strips Sr Logitic EM AP:

L73 min Z~I XX

ICC - Damamn could not be completed

igRpm 4.17: Phase 1 domain building time The chart shows faster development time for

APPRENT1CE than Emacs for all but the seasoned Prodigy expert.

Except for the Prodigy experts all subjects were able to build domains faster by using
APPRENISCE than by using Emacs. Several people were uinable to even build domains
using Emacs. As expected, tie non-technical users had the biggest ratio difference between
domains built using APPRENT1CE and domains built using Emacs, as seeinFi~i4.1&

CMU l &pdS usty mnime
Si S2 SI 52

1.14 1.97 1.97 xx

Si S2 S3 51 S2
3.32 xx xx .44 .78

XX means that the Zmacs domains wore not successfully completed

Figur 4.18: Ratio of domain building dime (EMfAp).

Page 61

Ma stong indication that visual domains are built faster in APPRENTICE than in Emacs

can be further analyzed For this analysis let's ignore the Prodigy experts. They are well

versed in Prodigy and had built many domains in Emacs similar to the domains in the

study. Ignoring the Prodigy experts, all other subjects developed domains faster in

APPRENTCE The probability of all seven subjects randomly developing domains in

APPRENTICE faster is 1/2 or 0.78%. This gives a strong indication that people similar to

the ones in this study (excluding the Prodigy experts) will develop visual domains faster in

APPRENTICE than in Emacs.

4.2.12 Eh=• 2: Domain LUmdgru~kg

Phase 2 tested the ability of a user to understand a new domain represented graphically

versus a domain represented textually. Each subject was asked ten questions about a

domain represented textually, and ten questions about a different domain represented

graphically. The two domains used for this experiment were the monkey and banana

domain and the blocks world domain. As with phase 1, each domain was studied using

both systems for each subject type.

Phase 2: PROCEDURE

This process was also automated. The user was presented with an operator or a set of initial

and goal states. The user was then asked several multiple-choice questions pertaining to the

representation. Below are typical graphical and textual displays, along with a sample

multiple-choice question. All questions for both representations are in Appendix E.

No=s Opt

Is operator op4 representing?
1) Grabbing the banana 3) Monkey moving the block
2) Monkey moving himself 4) Monkey getting on the block

Fure419: Graphical r.pstations with a multiple-choice question.

Page 62

Opi
If

(monkey-at-loc <11> <monk>)
(connected <11> <12>)
(connected <12> <11>)))

Then
(del (monkey-at-loc <11> <monk>))
(add (monkey-at-loc <12> <monk>))

Is operator op4 representing?
1) Grabbing the banana 3) Monkey moving the block
2) Monkey moving himself 4) Monkey getting on the block

Fgure 4.& Texual representations with a multiple-choice question.

The time to complete all the questions and the subject's answers were automatically

reconded for each user.

4.1t2-1 Phase 2! Remlts

The results of the users' responses are shown in Figure 4.21. The highlighted areas depict
answm s about the graphical represention Bold leers represent answers that were wrong.
I=& the squares anr the domain and representation the subject used, the am it took the
subject to answer the questions, and the number of answers the subject got wrong. For a
comp;et description of the quesions and the wrong answers that were given see Appendix
E.

Pap 63

CMU AlExperft AI Jnduutry Employee

Si S2 Si, S

1Wl 3w

M~....W
M~ bW4M Mookq -E

Non-Technical Users Prodig Experts

S1 S2 S3 Si S2

-X- -

OW OW 1w

F~gur 4.21: Results of Phase 2, showing much betmtunestndn (fewer errors) for
APPRENTICE than Emacs.

The subject un Asoddomains presented graphically mome accurately and more quickly
than domains presented textually. The mean time for answering all ten questions for the
graphic repr 3esetato was 238 seconds with a standard deviation of 87 seconds, but for
the textual representation the mean time was 320 seconds with a standard deviation of 200
seconds.

Also all the subjects got the answers correct for the graphical repe-seFntation, except for one
answer by a non-technical subject. In question 6 of the monkey and bananat domain, the
move block operator did not have the monkey connected to the block (see Figure 4.21).
The subject didn't think the monkey was moving the block but just moving himself. Also

Paup 64

nota that the same subject understood the graphical representation much better than the

tmxal representation. as seen by the eight wrong answas about the textual representation.

Name: Op3

as a

Is operator op4 representing?
1) Grabbing the banana 3) Monkey moving the block
2) Monkey moving himself 4) Monkey getting on the block

FIgr 42: Question 6 representing the move-block operator.

There were more wrong answers for the textual representation. Four subjects got a
combined total of 13 wrong answers for the textual representative questions. Although the

questions and the rules were very simple, the subjects still had difficulty quickly

understanding a totally new domain.

4.2.3 Sbtw 2: Analysis
Te results of study 2 war.

" Domains were built faster using APPRENTICE than Emacs for all but the most

seasoned Prodigy users. This study was done with users of different degrees of
computer experience. Even users who were proficient in Emacs were able to use

APPRENTICE faster.

"* Users who had limited computer expertise were able to effectively build domains in

APPRENTICE, yet some where unable to do so in Emacs.

"• When given unknown domain definitions, users understood the domains better in

APPRENTICE-type graphical descriptions than a textual STRIPS-type

P -hodolp.

Pape 65

* Again, users found the system to be Oft and easy."

4.2.4 Sbad 2: Conizlion
The hypothesis was confirmed. Non-technical (and all non-Prodigy) users were more

productive with APPRENTICE than Emacs. Every user was able to build a successful

domain using APPRENTICE while some non-technical users could not build a domain

using Emacs.

4.3 Learning Study
In this sudy a subject built four domains over tine. The goal of this study was to see the

speed in which productivity increased. The subject used for this was subject 2 from the
Prodigy expert group from Study 2. Thee additional domains where built by the subject

over the course of one day. These domains were hiking world, loading truck world, and

robot picking tulip world. They can be found in Appendix G. All domains were of similar

complexity o the snips domain that was previously built. The domains had three objects,

four relations, and two to four operators in them. The results are as follows.

Strips Bking Load Truck Pickine Tulips

Subk 2 45 min 25 min 35 min 1 25 min

Figgir 4.23: Table of subject 2's domain building time. The domains were built in order

from left to right

As Figure 4.23 shows, the user took less time to build the domains as experience
increased. This experiment is not meant as a scientific study but as an indication that

expeee using APPRENTICE will improve development tim

4A Study 4: Medium Size Domain Building
A medium size domain with 34 operators was developed to test the scalability of

APPRENTICE. The objectives of this study we to:
"* Determine the APPRE WCE techniques usefiu in developing larger domains. As

domains get larger, how does the APPRENTICE system aid or hinder the
development process?

"* £fiore addtdona techniques neededfor development of larger domains. What are

sme of the ixunentm of domans as they get lag

Page 66

SInves.digate ise of developing a domain over dime. In the other studies the
domains were developed in one sitting. What are some of the things that affect the
creation of a domain during multiple d&vlopmUt sessions?

In this study, I took an already established large machining domain and developed a sub-
portion of it in APPRENTICE over time. The domain is described in the next section,
followed by what I learned from the experience.

4.4.1 SAIly 4: Hypodah
APPREN71CE scales up to larger domains.

4.4.2 Sftdy 4: Procedure
The domain I used had been previously developed and recorded in a technical report at
CMU (Gil 901. An excerpt from the absract of that report follows:

Much research is being done on the aautomaion of manufactring processes. The
planing component in the production stage is very signscant, due to the variery of
alternatve processes, their compleity. and their interactions. This document
describe a specifcation of some manufacturing processes. including the machining.
Joining, and flinshing of parts. The aim of this specication is not to be comprehensive
or detaffed, but to present the A community with a model of a complex and realistic
applcaa.on-IGu 901

Over a thre-mouth period, woriing part time, I developed a sub-portion of the machining
domain in APPRENTICE. This requred understanding the machining domain, debugging
and enhancing APPRENTICE, and understanding some subtle features about Nolimit. The
developed domain consists of 33 objects, 77 relations and 34 operators. The operators
consist of operations to drill, saw, plame polish, and mill parts. The graphical and textual
representations of the domain are included in Appendix F.

4.4.3 Study 4: Re$uits
Larger domains are very hard to build using any system. In developing the machining
domain dice re three areas of results: 1) ways in which graphical techniques aided in the
domain development; 2) additional programming algorithms that aided in domain
development; and 3) techniques that were not programmed but could provide some
support for domain development.

The graphical representation of the domain provided several aids to the domain
development, the first being that visual images are very heW in not forgetting relevant

Page 67

infonmtion. When building the operator to saw a part it was obvious that the band saw had

to have a blade in it and the part had to be on the band saw table. Also the graphical images

helped me to remember what state I left the domain in from the last session. This was very

useful because I was constantly going out of town during the development of this domain.

As the domain increased in size and complexity the knowledge base changed. These
changes wer in the form of object name changes, object appearance changes, connection
points moved, relation definition changes, operator definition changes, and states definition
changes. Some of the consistency checking was already a part of the system; but as the
machining domain increased, more consistency checking and updating was needed. For

example, when an object name changed, the relation, operator, and state that used that

object had to be updated. Figure 4.24 shows the impact elements have on other elements

when they change.

hrelations operators states problem

objects X X X X

relations

operators x

states X

Figure 4.24: Table of the element that are impacted when an element is changed.

Another featu• in the system that proved to be useful was being able to test sub-parts of

the domain. This was achieved by being able to define a problem with a subset of the

defined operators and being able to individually test an operator with user-selected
instantiain.*

As the domain got bigger there were other features that I thought could aid in the domain

developmet. One feature was the ability to copy and paste objects. The second was the
ability to abstract the relation definition or at least automate the definition of relations for

objects in the same hierarchy. Currently a relation definition involving a machine would

also need to be explicitly defined for all different types machine (e.g., put-vise-on-machine

needs to be defined for the machine, drill, planner, and mill objects). It would be good if,

Page 68

when a relatIon was defined for a parent object (ie., a machine object), the system defined
the other relations automatically, allowing the user to change any that were incorrect.

Fnully, atcibutes need to be handled better. As the complexity of the domain increased

attributes became mnre and more important. The size of the part and the hole position are

some of these attributes. Allowing the attributes to be handled with a more graphical

mehodology would help increase the user's domain understanding.

4.4.4 Study 4: Concl9sion
The hypothesis was confirmed. APPRENTICE does scales up to larger domains. For

future work more investigation can be done on scaling up domains in APPRENTICE.

Page 69

Pag 70

Chapter 5 - Domain Characteristics

This chapter discusses the domain characteristics that are conducive to efficient domain
development in APPRENTICE. Since APPRENTICE provides the ability to textually edit
any portion of a domain, any domain developed for Prodigy can be built using
APPRENTICE. There are, however some characteristics that are better suited for
APPRENTICE's graphical form of knowledge acquisition. In essence, APPRENTICE
performs best with domains in which the central part of the domain is represented by
objects, relations, and operators; with domains that are highly visual; and with domains that
involve procedural tasks.

In Study 1, 30 of the 32 domains suggested by Al students _dor to any knowledge of
APPRENTICE were easily acquired via APPRENTICE. Therefore, visual-orientation is a
very wide-rangng property for most domains.

It is my belief that knowledge acquisition should be done with multiple techniques, in
which the KA system strives to closely resemble the way the expert thinks about and
solves problems in the domain being developed. It is important for the designers of
knowledge acquisition system to understand different techniques to help develop versatile
"hybrid" KA systems. With such combined systems, the strengths of each technique can
be utilized by selecting the most appropriate one for each situation.

To help identify the strengths of the APPRENTICE techniques, this chapter addresses the
characteristics of a domain that makes the domain amenable to APPRENTICE. I will also
discuss the ability of APPRENTICE to develop medium size domains, as well as some
issues of expanding domain knowledge.

5.1 Positive Domain Characteristics
A set of domain charactimdstics emerged as multiple domains were built in APPRENTICE.
APPRENTICE-like techniques are useful with domains having the pri ary characteristics
of 1) objects central to the domain's representation; 2) visual images corresponding to the
domain objects; and 3) modelling a procedural task. Other secondary domain

Page 71

c c stics that APPRENTICE can handle well are domains in which the objects are

grouped in a hierarchy and domains in which object attributes relate only to a particular

object

Domains in which objects are central to the representation can be described in terms of the

objects, relations, and operatos This domain description parallels the development process

for building domains in APPRENTICE. This allows the expert to focus on the domain

information and not on the system representational language. This key characteristic has
been a predominant characteristic in all the domains that have been built thus far in

APPRENTICE.

Alternatively, in the absence of physical objects, the APPRENTICE approach works well

if a mental description of the domain with a highly visual representation can be formulated

(e.g. packet switching). This allows the expert to create visual images of a domain, similar

to the mental representation that the expert already has, and eliminates some of the mental
r-anslation that die expert has to do in order to develop a domain.

Another characteristic that APPRENTICE supports well is domain modelling of a
procedural task that has a stuctuired approach to planning problem solutions, such as

cooking a carrot cake or machining a metal part. These tasks follow the expert/apprentice
paradigm in which the expert demonstrates to an apprentice how to solve a problem in the
domain. The expert is first concerned about building a common language with the
apprentice; thus, object and relation descriptions are needed. Then the expert is concerned
about relaying to the apprentice the procedural or operational information in which the
objects and relations are used to describe the operational information. For domains that are
not solving a procedural task, such as text composition or unstructured troubleshooting, a

different set of techniques are needed, and an APPRENTICE-like approach would not
work well.

The other characteristics that have been shown to be supported by APPRENI XCE are the
hierarchy relationship between objects (e.g., drill is-a machine), and the attribute description

of individual objects (e.g., weight of block, etc.).

Page 72

5.2 APPRENTICE Limitations
There are a'o certain domain characteristics that do not seem to be conducive to the
APPRENTICE techniques. Of course, domains that are not visual prove to be difficult to
express with the system. Another limitation in the current system is the difficulty of
expressing multidimensional relations. These types of relations represent the relationship
between objects in two- or three- dimensional space. I briefly discuss the needs and
specifications for allowing this type of relations definition in section 6.3.3.

Another difficulty with APPRENTICE derives from the planning system itself. Nolimit
does not handle infinite type variables (i.e., numbers, time, etc.) very cleanly. Variables of
this type cannot be bound in an operator from the state definition during planning. This
requires custom Lisp code to be written to generate the appropriate instances of the
variables. This is handled by brute force in the APPRENTICE system, and none of the
domains observed made extensive use of infinite type variables. Because the difficulty in
dealing with infinite types is due to the underlying problem solver, APPRENTICE may
deal with izdnit types better using another planner.

For the largest domains that were built in APPRENTICE, the limited screen real estate did
not cause a problem. But as domains get bigger and there is a high degree of interaction
among objects, I expect that there will not be enough room on the screen for all the
graphics. This limitation can be minimized by developing better techniques for allowing the
user to store and display needed information, such as techniques for creating abstract object
types that can graphically represent multiple objects as one. For example the strips domain

could be extended to have multiple buildings with several rooms. A plan consists of
moving packages from one location to another. This may mean moving packages between

buildings. To encode the operator to move packages between buildings only the buildings
need to be considered. To encode the operator to move packages between rooms only the

rooms L a particular building need to be considered. By allowing abstract object definitions
to handle this type of context sensitive usage screen real estate can be conserved and larger

domains can be better organized.

Finally, some information can be expressed more concisely and with great ease in a non-
visual representation (e.g., matlhematical formulas, programming, etc.). As discussed

previously, the expert should be allowed to use other methods to represented domain

Page 73

information, thus allowing maximum flexibility for the expert. APPRENTICE shows

some amunt of this ability by allowing the generated code to be edited manually.

5.3 Techniques That Aid Large Domain Development
Large domains share certain characteristics that have to be addressed. With large domains

them are many things to keep track of, multiple interactions to coordinate, and many details

to incorporate into the knowledge base. Several APPRENTICE techniques aid in the

development of these large domains.

The ability to have the visual representation closely match the physical domain aids in

cueing the expert to needed information during domain development. For example, if the

expert is developing the operator to drill a hole in a part, it is obviously easy to graphically

identify the drill-bit not being in place. This error would be more difficult to find in a

textual representation. As the domain increases in size, this ability to detect obvious

inconsistence becomes more and more valuable.

The structure of APPRENTICE gives an expert a consistent paradigm for developing a

knowledge base, while also allowing the flexibility to build sub-parts one at a time.

Because the domain closely resembles the knowledge being encoded and the development

procedures are easily understood, the expert has a clear focus on what information needs to

be added and where that informton should go. Also, the expert can develop different parts
of the domain as appropriate. This allows the expert to change focus and develop relevant

information. For example, the expert can develop a portion of the domain (e.g., relevant

objects, relations, and operators) to drill a hole in a part, and later develop the portion of the

domain to polish a part. This flexibility is very important in developing large domains in

segments.

Large domains are developed over time during many sessions. The expert may go for long

periods of time without using or reviewing certain information. The visualization helps the

expert quickly recall the previous work. The graphics also help experts at the beginning of a

new session determine where they ended from the last session.

With a shared visual representation, multiple developers can easily communicate to

develop and maintain a large knowledge base. The demonstrated ease in domain

undertanding indicates the feasibility of this coordinated effort.

Page 74

As a domain increases in size during development, some of the APPRENTICE techniques
can be used to help make this development more efficient. APPRENTICE has several
capabilities that aid in the expansion of a domain. These are consistency checking,
i haae of objects, unknown relations warnings, and a customizable interface.

Consistency checking allows changes made to parts of a domain to be propagated to the
other relevant parts of the domain. For example, if the name or the appearance of an object
is changed, then all domain elements using the object are modified to reflect the change.

Changes to a relation also invoke the update of operators and states that use the relation.
This provides flexibility in domain development, as described earlier.

The ability to define operators using objects high in the hierarchy allows for a more general
operator definition, thereby consolidating information and making the domain better
organized. This is demonstrated in the cooking carrot cake domain in Appendix C. The
operators get and put-in-bowl are defined using the super class object ingr. This means that
separate definitions are not needed for carrots, spices, sugar, oil, and flour. This makes the
domain easier to understand and maintain.

As operators or states are being developed, sometimes the expert will describe object

connections that have not yet been defined as a relation. When the system detects an
undefined connection, a warning message is produced, giving the expert an opportunity to
add the needed relation knowledge. An expert would create an undefined connection

between objects because during operator development the expert has visual cues of the
needed information for the operator. Thus when the expert thinks of a needed relation the
connection is made. The system then uses this new information to solicit the missing

relation definition from the expert. For example, in the machining domain, a relation
between the drill machine and the drill-bit may not have been initially defined. During the
building of the drill operator, the drill machine and drill-bit are connected together. It is
visually obvious to have the drill holding a drill-bit in order to drill a hole in a par. The
system recognizes that no relation definition exists between the drill machine and the drill-
bit and warns the user of this. The user can then define the holding-tool relation between
the drill machine and the drill-bit

The final issue that aids in the development of large domains is to provide the expert a
direct manipulation interface for organizing the workspace. Because the interface is easily

Page 75

modifiable, the expert can organize the graphical objects according to personal preference
and for productive development. Figure 5.1 depicts the bottom half of the operator window

with the medium size machining domain loaded. Notice that I have grouped prototype
objects together by types (e.g., row of drill bits, row of machines, etc.). Also, the operators
are group by functionality (e.g., operators to do drilling are in the left comer, operators to
mill parts are grouped together, etc.). This ability to manipulate the workspace helped to

create an organized environment for rapid domain development.

M4 -LL M 'm

4�4

~mmmwt -•a

Flgure 5.1: Operator W'mdow: machining domain organized at bottom of window.

Page 76

Chapter 6 - Conclusion

This chapter highlights the technical accomplishments of this dissertation and illuminates

the possiblities for futuresearch.

6.1 Summary of Findings
The ability to model real world information with metaphors similar to the visual aspects of

the domain has been shown to aid domain development. This is because:

" Objects are based on the physical world. The objects in APPRENTICE occupy

space on the screen similar to the space that objects occupy in the real world. Also
siml to the physical world APPRENTICE objects are only at a single location at

a time. These similarities help the expert understand and describe a domain using

already deveoped intuitions.
"* In using already learned intuitions to develop domains in APPRENTICE the

experts do not have to mentally translate the physical domain into a foreign

machine rceyps nio.
* When the system is developing a solution to a problem, the expert can quickly

understand what the system is doing by observing the animation. This allows the
expert confidence in the system and provides a faster indicator when some

knowledge is incomplete.

6.2 Contributions of This Research
In this research, a method for graphical knowledge acquisition for visual planning domains

was developed, described, implemented, and tested. A strong visual intuition for physical
and conceptual domains maps very well with the conceptual representation of the domain.

With these methods, the expert is able to express domain information similar to the way
the infomaion is thought about. These techniques we shown to increase the ease, speed,
and accuracy of knowledge acquisition through a set of user studies.

Pae 77

The APPRENTICE system is tightly integrated into the Prodigy planning system.
Although APPRENTICE is easy to use, it does not keep the expert from using the

expuszve power of the underlying planning system if needed. APPRENTICE allows the

building of a domain using a graphical representation to create the information. Domain

elements such as objects, relations, and operators are defined graphically. This allows the

expert a straightforward mapping between the physical domain and the encoded

Several studies wea done with the APPRENTICE system to evaluate the ease, speed, and

accuracy of the new techniques. Study 1 had 32 subjects developing their individual

domains in APPRENTICE. This study showed the ease of use and the flexibility of the

system with multiple subjects. Study 2 was a comparison between the productivity of

developing domains in a text editor versus developing domains in APPRENTICE, using

different types of users. The APPRENTICE system produced quicker development time
and better domain undetanding for all but the most seasoned Prodigy users. In Study 3,

the system was used by a subject to develop four similar domains over time. This study

indicates that domain development efficiency increases over time as the subject becomes

more familiar with the system. Finally, in Study 4 the system was used to develop a

machining domain. This study verified the ability of APPRENTICE to work with a larger

domain.

An important contribution is that APPRENTICE demonstrated the soundness of the

techniques even with users with very little prior computer knowledge. In Study 2 the non-

technical computer users were able to develop working domains using the APPRENI7CE

system, but most of them were not able to develop similar domains using Emacs. Even

with the non-technical subject who was able to build a domain in both systems, there was

still about a 300% improvement in the development time for the APPRENTICE system.

6.3 Future Work
As I developed the core techniques for APPRENTICE, more ideas emerged than I had

time to investigate. Some of these ideas would help make the system more usable, while

others could be used to extend the system capabilities. I will describe the ideas in the

following sections.

Pape 78

6.3 APPRENTICE.auibted Search Control Rule Development
In this dissertation I have only discussed the creation of factual knowledge for a domain.
Search control knowledge is also important in encoding information to better guide the

planning system. Future work should be done to aid the expert in developing these search

control rules. This section outlines possible techniques that could be incorporated into the
system.

The goal of a planning system is to find a set of operators that, when applied sequentially,

will transform the initial state into the goal stat The search sequence is determined by the

accuracy of the operators, the correct specification of the initial and goal states, and the set

of defined search control rules. Thus, the efficiency of the planner is dependent on the

selection of goals, operators, and objects in exploring the problem space. This selection can

be directly controlled by search control rules. Search control rules can be developed by both

the user and system, by directly observing and correcting search path mistakes.

There are three phases of development in creating search control rules. These phases are: 1)

determining if the system is solving the problem correctly;, 2) if the system is not solving

the problem correctly, determining why and where the knowledge base is incomplete; and

3) creating search control rules to enhance the knowledge basem

To automate the development process the expert needs to determine where the planner

made a wrong move and to show the planner the correct move that should have been

made. The system could ask directed questions that would allow it to automatically

formulait a control rule for current and future use.

To demonstrate a possible scenario I will use a STRIPS world type domain. The domain is

as follows:
ObjeCt: package, robot, and rooms

r"l08lo in-room-package, package-on- robot, in-room-robot, rooms-

connected

oppator: pickup-package, put-down-package, Meme-robot

i duWSbAC (in-room-package pkl RocmA), (in-room-robot Robot1 RoomA),

(room-connected RoomA RoomB, (room-connected RoomS RoomA)

•0geoa S (in-room-robot Roboti RoomB), (in-room-package pkl RocmSB)

Pap 79

Note: pickup-package removes the package from the room that the package is in, and
put-down-package places the package in the same room as the robot.

t -l
Rocam ROOMB

Figr 6.1: Example of a STRIPS world type domain.

When running the above problem the expert sees the robot move to RoomB, then come

back to pick up pkl, and then move to RoomB with the package. This is because the first
goal is to get (in-room-robot Robot1 Rooua). By watching this solution the expert

notices that the robot should have picked up the pkl first, then tried to move to the next

rooL

The expert then demonstrates to the system that the robot should pick up the package first

befor moving the robot. The system then notes that there is a discrepancy between what it
did versus what it should have done. The system then sets about obtaining additional

infonmaion it needs to avoid similar is like this in the future.

Control rules take the form of selecting, deleting, or pr-fe-ring some information. Much

could be done to help the expert write these rules. The impotnt information to determine
is what kind of search control rule needs to be written and what state informatioh is needed
in order to use the control rule. The system could ask focus questions of the expert. These
questions help develop control rules such as the fouowing. if the goal of getting a package

to a room has not yet been achieved and the robot is in the same room as the package, then

prefe working on the in-room-package goal first This control rule could be written as

follows.

PaS 80

(RZORDUR-CANDIDATZ-GOAL-RULE- 1
(Cba (and (current-nods <ruo)

(cand•tdate-goal <n> (in-room <Robby> <room>))
(candidate-goal <n:c (in-room-package <pkl> <room>))
(known <a> (and (in-room-package <pkl> <RoomA>)

(not-equal -croon> <RoomA>)))))
(rhe (prefor goal (in-room-package <pkl> <room>)

(in-room <Robby> <room>))))

JIgure 6.2: Example of possible control rule built with system assistance.

The above example has outlined a technique for possibly adding a search control rule to a
knowledge base. This has been achieved by first noting that the planned solution was not

optimale demonsxQa ing to the system the correct sequence, and finally getting system-

directed help to determine the relevant information that was needed to build a new search

control rule. A deeper understanding of how a system can interactively aid an expert in

developing search control rules will improve domain development.

6.3.2 Seamless Environment; Viswl and Textual Representation
One of the things that Study 2 revealed was that Prodigy experts built domains faster in
Emacs than in APPRENTICE. This suggests that the ability to build domains in Emacs

should be incorporated into the APPRENTICE system. Providing a seamless bridge

between the power of the graphical mterface along with the ability to use Emacs to build

domains could prove to be a dynamic combination.

Currently APPRENTICE supports full data flow from the graphical system to Emacs.
APPRENTICE creates the Prodigy code automatically from the graphical description of

the domain. This created code can be edited in Emacs. However, the Emacs-edited code
does not autmatically invoke a graphical representation in the graphical system. Thus, the
graphical interface cannot be used to edit the Emacs code. Figure 6.3 shows this

reWonship.

EGrmphical
mc

Fkgupm 63: Currently APPRENTICE provides full data flow from the graphical interface

to Emacs, but only limited data flow from Emacs to the graphical interface.

Page 81

Fufth remsah could explore having text that coresponds to graphical relations developed
with a text editor auo y update the graphical display. This would allow editing of
the, vteta code with the grahical sysmm•Glinert 90].

6.3.3 Spatial Mudtinansional Relations
During the course of exploring domains in APPRENTICE, it became apparent that for
developm-n1 of some domains two- and three-dimensional spatial •-formation needs to be
easily represented. This would be needed in a CAD/CAM domain, for example. In these
types of domains, information is thought of as spatial positioning between objects. More
work needs to be done into how to allow the expert an easy and intuitive way to represent

and this spatial positioning [Chang 901.

6.3.4 Apprentice Techniques for Non-visual Domains
The APPRENTICE techniques have proven to enhance the domain development process

for visual planning domains. This is partially due to the ability of experts to understand the
domain development process in respect to how they describe the domain. It may be
possible to develop techniques similar to the ones used in APPRENTICE for non-visual

domains that will also help enhance the development process.

Pg 82

Chapter 7 - References

(1] Abret, G. & Burstein, M. HL (1987). The KREME knowledge editing environment. Knowledge
Acquisition Tools for £qert Systems. San Diego: Academic Press, pp. 1-24.

(2] Adobe Systems, Inc. (1985). Postscript Language Reference Manual. Reading, Massachusetts:
Addison-Wesley.

(3] Alexander, J.H., Freiling, M. J., Shulman, SJ., Rehfuss, S. & Messick, S. L. (1987). Ontological
analysis: an ongoing experiment. Knowledge Acquiition Tools for Expert Systems. San Diego:
Academic Press, pp. 25-38.

[41 Anzai, Y. & Simon, H. (1979). The theory of learning by doing. Psychological Review. 16(2). pp.
124-140.

(5] Aoyama, M., Miyamow. K., Murakami, N., Nagano, H. & Oki, Y. (1989). Design specification in

Japan: Tree-structured charts. IEEE Software, 6(2), pp. 31-37.

[6] Baker, B.R. (1986). Using images to generate speech. Byte, 11(3), pp. 160-168.

[7) Barichella, E., Beretta, M., Dioguardi. N., Mussio, P., Padula, M., Pietrogrande, M. & Protti, M.
(1990) A visual environment for liver simulation studies. In T. Ichikawa, E. Jungert & R.
Xcii age (Eds.), Visual Languages an Application. New York: Plenum Press,.pp. 255-275.

[81 Beach, R. & Stone, M. (1983). Graphical style: Towards high quality illustrations. ACM Computer
Graphics. Proceedings of SIGGRAPH83, Detroit, Michigan, 17(3), pp. 127-135.

[9] Bennet, J.S. (1985) ROGET: A knowledge-based system for acquiring conceptual structure of a
diagnostic expert system. J Automated Reasoning, I(1).

[101 Beretta, M., Mussio, P. & Protti. (1986). Icons: Interpretation and use. Proceedings Workshop on
Visual Languages. Dallas. Texas. Los Alamitos, Califoia: IE Computer Society r'ess, pp.
149-158.

[11] Birmingham, W. & Klinker, G. (1989). Building knowledge-acquisition tools. Ann Arbor,
Michigan: The University of Michigan.

[12] Blatner, M., Sumikawa, D. & Greenberg, R. (1989). Earcons and icons: Their structure and
common design principles. Human-Computer Interaction, 4(1), pp. 11-44.

[131 Boose, J. & Bradshaw, J. (1987). Expertise transfer and complex problems: Using AQUINAS as a
knowledge-acquisition workbench for knowledge-based systems. Knowledge Acquisition Tools
for Expert Systems. San Diego: Academic Press, pp 39-64.

[141 Borning, A. (1979). Thinglab: A constraint-oriented simulation laboratory, XEROX PARC, 79(3).

(15] Bomaing, A. (1981). The programming language aspects of Thinglab: A constraint-oriented
simulation laboratory. ACM Transactions on PrograNming Languages and Systems. 3(4), pp.
33-387.

(161 Bridgeland. D. (1990). Simulacrum: A system behavior example editor. In T. Ichikawa. E. Jungert
& R. Korfhage (Eds.), Visual Languages an Application. New York: Plenum Press,.pp. 191-202.

?age 83

[17] Brown, M.H. & Sedgewick, R. (1984). A system for algorithm animation. ACM Computer
Graphics. In Proceedings of SIGGRAPH'84, Minneapolis, Minnesota, 18(3), pp. 177-186.

(181 Brown, Mu. & Sedgewick, R. (1985). Techniques for algorithm animation. IEEE Software, 2(1),
pp. 28-39.

[191 Brown, M.H. (1988). Exploring algorithms using BALSA-IL IEEE Computer, 21(5), pp.14-36.

[201 Brown, M.H. (1988). Perspectives on algorithm animation. In Conference Proceedings.
CHI88:Hwman Factors in Computing Systems, Washington, D.C., New York: ACM Press, pp.
33-38.

[211 Brown, M.,., Newsome, S.L. & Glinet, E.P. (1989). An experiment into the use of auditory cues
to reduce visual workload. In Conference Proceedings, CHI89: Human Factors in Computing
Systems. Austin, Texas, New York: ACM Press, pp. 339-346.

(22] Buchanan, G., Barstow, D., Bechtal, R. Bennett, J.. Clancey, W., Kulikowski, C., Mitchell, T., &
Waterman, D. (1983). Construction of an expert system. In F. Hayes-Roth, D. Waterman, &
D. Lenat (Eds.), Building Expert Systems, Reading, Massachusetts: Addison-Wesley, pp 127 -
167.

[231 Carboneil, J., Gil, Y., Joseph, R.. Knoblock, C., Minton, S., & Veloso, M. (1990). Designing an
integrated arclutewrer The PRODIGY view. In Proceedings from The 12th Annual Conference
of the Cognitive Science Society.

(24] Cardelli, L. (1988). Building user interfaces by direct manipulation. In Proceedings UISrI88, ACM
SIGGRAPH Symposium on User Interface Software and Technology, Banff, Alberta. Canada, pp
152-166.

(25] Chang, S. & Jungert, E. (1990). A spatial knowledge structure for visual information systems. In T.
Ichikawa, E. Jungert & R. Korfhage (Eds.), Visual Languages an Application. New York:
Plenum Pess,.pp. 277 - 304.

(26] Chang, S., Tauber, M., Yu, B. & Yu, J. (1989). A visual language compiler. IEEE Trans. on
Software Engineering, 15(5), pp. 506-525.

(271 Citrin, W. (1991) Visualization-based visual programming. University of Colorado at Boulder,
Boulder, CO, Technical Report CU-CS-535-91.

(281 Clemons, E. & Greenfield, A. (1985). The SAGE system architecture: A system for the rapid
development of graphics interfaces for decision support. IEEE Computer Graphics and
Applications, 5(11), pp. 38-50.

[29] Cohen, D. (1983). Symbolic execution of the Gist specification language, Proceedings IJCAI-83.
Karisruhe, Germany, pp 17 - 20.

(301 Cohen, D. (1984). A forward inference engine to aid in understanding specifications, Proceedings
AAAI-84, Austin, Texas, pp 56 - 60.

[311 Cox, P., Giles, F. & Pietrzykowski, T. (1989). ProGraph: A step towards liberating programming
from textual conditioning. 1989 IEEE Workshop on Visual Languages, pp. 50-156.

(32] Dannenberg, R. & Joseph, R. (1991). Human computer interaction in the Piano Tutor. In M.
Blaamer & R. Dannenberg (Eds.), Multimedia Interface Design . Reading, Massachusetts:
Addison-Wesley.

Page 84

[331 Dmanenberg, R., Sanchez, M., Joseph, A., Capell, P., Joseph, R. & Saul, R. (1990). A computer-
based multi-media tutor for beginning piano students. Interface. 19, pp. 155-173.

[34] Davis, R. (1979). Interactive transfer of expertise: Acquisition of new inference rules. Artificial
Intelligence, 12, pp 121-158.

[35] Diederich. J., L Ruhmann and M. May (1990). KurTON: a knowledge-acquisition tool for expert
systems. In J.H. Boose and B. R. Gaines (Eds.), The Foundation of Knowledge Acquisition,
London, San Diego: Academic Press.

[36] Duisberg. R. (1986) Constraint-based animation: the implementation of temporal constraints in the
Animus system. Dissertation, University of Washington, Seattle, published as Technical
Report no. 86-09-01.

[37] Duisberg. R. (1990). Visual programming of program visualizations: A gestural interface for
animating algorithms. In T. Ichikawa, E. Jungert & R. Korfhage (Eds.), Visual Languages an
Application. New York: Plenum Press,.pp. 161 - 174.

[381 Eshelman, L. & McDermott, J. (1986). MOLE: A knowledge acquisition tool that uses its head.
Proceedings Foth National Conference on Artificial Intelligence, Philadelphia, Pennsylvania.

[39] Etzioni, 0. (1990). A structural theory of explanation-based learning. Dissertation, Carnegie
Mellon University, Pittsburgh, Pennsylvania, published as Technical Report no. CMU-CS-90-
185.

[40] Fikes, R. and N. Nilsson (1971) Strips: A new approach to the application of theorem proving to
problem solving, Artificial Intelligence, vol. 2.

[41] Fischer, G. (1988) An overview of a graphical multilanguage applications environment. IEEE
Transactions on Software Engineering, SE-14(6), pp. 774-786.

[421 Foley, J. & McMath, C. (1986). Dynamic process visualization. IEEE Computer Graphics and
Applications, 6(3), pp. 16-25.

[43] Forsythe, D. & Buchanan, B. (1989). Knowledge acquisition for expert systems: Some pitfalls
and suggestions. IEEE Transactions on Systems, Man, and Cybernetics, 19(3), pp. 435-442.

[441 Gaver, W. (1989). The SonicFinder: An interface that uses auditory icons. Human-Computer
Interaction, 4(1), pp. 67-94.

[45] Gil, Y. (1992). Acquiring domain knowledge for planning by experimentation. Dissertation,
Carnegie Mellon University, Pittsburgh, PA, published as Technical Report no. CMU-CS-92-
175.

[46] Giuse, D. (1989). KR: Constraint-based knowledge representation. Carnegie Mellon University.
Technical Report.

[47] Giuse, D., Giuse, N., & Miller, R. (1990). Towards computer-assisted maintenance of medical
knowledge bases. Artificial Intelligence in Medicine (Elsevier Science Publishers B.V.), 2. pp.
21-33.

[48] Giuse, D., Giuse, N., Bankowitz, R., and Miller, R. (1991). Heuristic determination of
quantitative data for knowledge acquisition in medicine. Computers and Biomedical Research
(Academic Press), 24, pp. 261-272.

(491 Glinert, E. & Gonczarowski, J. (1987). A (Formal) model for (Iconic) programming
evvironments." In INTERACT '87, Proceedings of the Second IFIP Conference on Human-
Computer Interaction, Stuttgart, West Germany, pp. 283-290.

Page 85

(SO] Glinme, E. (1987). Out of Flaeland: Towards three-dimensional visual programming. In
Proceedings of the Second Fall Joint Computer Conference, Dallas, Texas. Los Alamitos,
California* IEE Computer Society Press, pp. 292-299.

[51] Glinert, Ephraim P. (Ed.) (1990) Visual Progamming Environments: Applications and Issues.
MEE Computer Society Press, Los Alamits, CA.

[52] Goldberg, A. (1984). SMALLTALK-80 The Interactive Programming Environment. Reading,
Massachusetts Addison-Wesley.

[531 Golin, E. & Reis. S. (1989). The specification of visual language syntax. In Proceedings
Workskop on Visual Languages, Rome, Italy, Los Alamitos, California: IEEE Computer
Socety Press, pp. 105-110.

[541 Golin, E. (1991). A method for the specification and parsing of visual languages. Unpublished
dissertation, Brown University, Providence, Rhode Island.

[55] Gordon, R., MacNair, E., Gordon, K.. & Kurose, J. (1987). A visual programming approach to
manq'acturing modeling. Alamden: IBM Research Division.

(561 Graf, M. (1990). Visual programming and visual languages: Lessons learned in the trenches. In
Visual Programming Environments Applications and Issues, pp 452454.

(57] Gruber, T. (1989). A method of acquiring strategic knowledge. Knowledge Acquisition, 1(3), pp
255-27&

(58] Gutfreund. S. (1987). Maniplicons in ThinkerToy. Proceedings OOPSLA '87, Orlando, Florida.
New York: ACM Press, pp. 307-317.

[59] Gyssens, M., Paredacns, I., Van den Busschej. & Van Gucht, D. (1991). A graph-oriented
object database modeL Indiana University, Bloomington, Indiana, Technical Report No. 327.

[601 Habermann, A. & Notkin, D. (1982). The Gandalf software development environment. In The
Second Compendium of Gandalf Documentation, Carnegie Mellon University, Pittsburgh,
Pennsylvania.

(61] Haeberli, P. (1988). ConMan: A visual programming language for interactive graphics. ACM
Computer Graphics, Proceedings SIGGRAPH '88, Atlanta, Georgia, 22(4), pp. 103-111.

(621 Hartfield, B., Winograd T., & Bennett, J. Learning HCI design: Mentoring project groups in a
course on human-computer interaction. Center for the Study of Language and Information,
Technical Report CSLI-91-161 PCD-3.

[63] Helnula, E., Hyrskykari, A., & Raiha, K. (1990). Principles of ALADDIN and other algorithm
animation systems. In T. Ichikawa, E. Jungert & R. Korfhage (Eds.), Visual Languages an
Application. New York: Plenum Press,.pp. 175 - 187.

(641 Hendersan Jr., D. & Card, 4. (1986). ROOMS: The use of multiple virtual workspaces to reduce
spec contention in a window-based graphical user interface. ACM Trans. on Graphics, 5(3),
pp. 211-243.

(65] Henderson Jr., D. (1986). The TRILLUM user interface design environment. In Conference
Proceedings, CHI'86: Human Factors in Computing Systems. Boston, Massachusetts, New York:
ACM Press, pp 221-227.

(661 Holian, J., Hutchins, E., & Weitzman, L. (1984). STEAMER: An interactive inspectable
simulation4ued training system. Al' Magazine, Summer, pp. 15-17.

Page 86

(67] Ichikawa, T. & Hirakawa, M. (1987). Visual programming: Toward realization of user-friendlyprogramming environments. In Proceeding Second Fall Joint Computer Conference. Dallas,
Texas, Los Alamitos, California: IEEE Computer Society Press, pp. 129-137.

[681 Jacobson, C. and M. J. Freiin"g (1990). ASTEK: a multi-paradigm knowledge acquisition tool for
complex structual knowledge. In J.H. Boose and B. R. Gaines (Eds.), The Foundation of
Knowledge Acquisition, London, San Diego: Academic Press.

[69] Jarvenpia, S. & Dickson, G. (1988). Graphics and managerial decision making. Research based
guidelines. CACM. 31(6). pp. 764-774.

[70] Joseph, R. (1984). An exwert system for completing partially routed printed circuit boards. Master's
thesis, Electrical Engineering and Computer Science Department, Massachusetts Institute of
Technology.

[71] Joseph, R. (1989). FrameGraphics: A framebased graphic system. Unpublished paper, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

[72] Joseph, R. (1991). Multimedia presentation used in a computer based Piano Tutor system.
Proceedings for The Multimedia Workshopfor AAAI-91.

[73] Joseph, R., Ensor, J., Dickinson, A., & Blumenthal, R. (1986). Describe: An explanation facility
for an object-based expert system. Proceedings from the Second Annual Artificial Intelligence
& Advanced Computer Technology Conference.pp. 69-73.

(74] Kahn, G., Breaux, E., Joseph, R. & DeKlerk, P. (1987). An intelligent mixed-initiative workbench
for knowledge acquisition. Knowledge Acquisition Tools for Expert Systems. San Diego,
California: Academic Press, pp 161-174.

(75] Kahn, G., Nowlan, S. & McDermott, J. (1985). MORE: An intelligent knowledge acquisition tool.
Proceedings of the Ninth International Joint Conference on Artficial Intelligence. Los Angeles,
Californi&

[76] Kangassalo, H. (1988). CONCEPT D:. A graphical language for conceptual modeling and data
base use. In Proceedings Workshop on Visual Languages, Pittsburgh, Pennsylvania, Los
Alamitos, California: IEEE Computer Society Press, pp. 2-11.

[77] Klinker, G. (1988). Knack: Sample-driven knowledge acquisition for reporting systems. In S.
Marcus (Ed.), Automating Knowledge Acquisition for Expert Systems, Boston: Kluwer
Academic Publishers.

[78] Kodratoff, Y. & Vrain C. (1991). Acquiring first-order knowledge about air traffic control.
Laboratory of Research in InformationUniversity of Paris-South, Center of Orsay, Orsay,
France.

[79] Kurlander, D. & Feiner, S. (1988). Editable graphical histories. In Proceedings Workshop on
Visual Languages. Pittsburgh. Pennsylvania, Los Alamitos, California: IEEE Computer
Society Press, pp. 127-134.

[80] LabVIEW (1986) LabVIEW: Laboratory virtual instrument engineering workbench. Byte, pp. 84-
92.

[81] Ladner, R. (1988). Public-Law 99-506, Section 508: Electronic equipment accessibility for
disabled workers. Panel position paper in Conference Proceedings. CHI88: Human Factors in
Computing Systems. Washington. DC, New York: ACM Press, pp. 219-222.

Page 87

[82] Laird, J., Roseabloom, P.& Newell, A. (1986). Chunking in SOAR: The anatomy of a general
learning mechanisn, Machine Learning, 1(1).

[831 Larkin, Jill & Simon. H. (1987). Why a diagram is (sometimes) worth ten thousand words,
Cognitive Science, 11, pp. 65-99.

[84] Lenat, D., Prakash, M. & Shepherd, M. (1986). CYC: Using common sense knowledge to
overcome brittleness and knowledge acquiition bottlenecks. At Magazine, 6, pp. 65-85.

[85"] L4eeman H. (1989) A three-dimensional representation for program execution. In Proceedings
Workshop on Visual Languages, Rome. Italy, Los Alamitos, California: IEEE Computer
Society press, pp. 111-116.

(86] Lodding. KL (1983). Iconic interfacing. IEEE Computer Graphics and Applications, 3(2), pp. 11-20.

(87] MacDraw Manual (1989). Claris Software, 5201 Patrick Henry Drive, Santa Clara, CA, 95052,
408-727-8227.

[88] Macintosh (1985). Inside Macintosh Volume I. Reading, Massachusetts: Addison-Wesley.

[89] MacKinlay, J. & Genesereth, M. (1984). Expressiveness of languages. Proceedings AAAI-84,
Austin, Texas.

[90] MacKinlay, J. (1986). Automating the design of graphical presentations of relational information.
ACM Trans. on Graphics, 5(2), pp. 110-141.

(91] MacroMind Director Manual. (1990). 410 Townsend Suite 408, San Francisco, CA 94107, Phone
415-442-0200, Director.

[92] Macus, S. (1986). Taking backtracking with a grain of SALT. Proceedings of the First AAAI
Knowledge Acquismon for Knowledge-based Systems Workshop, Banff Canada.

(931 Mahadevan, S. (1990). An apprentice-based approach to learning problem-solving knowledge. The
State University of New Jersey, Rutgers, New Brunswick.

[94] Mabling, D. E. (1989). A visual language for the aquisition and display of plans, In Proceedings of
1989 IEEE Workshop on Visual Languages. Washington, D.C.: IEEE Computer Society Press,
pp. 50- 55.

(95] Malone, T.W. (1980). What makes thingsfun to learn? A study of intrinsically motivating
computer games (extended excerpt). Unpublished dissertation, Stanford University, Stanford,
California.

[96] McCleary Jr., G. An effective graphic 'vocabulary.' Los Alamitos, California: IEEE Computer
Society Press.

(97] McDermom, J. (1982). RI: A rule-basei configurer of expert systems. Artficial Intelligence, 28.

[981 Miller, G. (1956). The magic number seven plus or minus two: Some limits on our capacity for
information processing. Psychological Review, 63(2), pp. 81-96.

[99] Minton, S. (1988). Learning effective search control knowledge: An explanation-based approach.
Doctoral dissertation, Carnegie Mellon University, Pittsburgh, Pennsylvania.

(1001 Minton, S., Knoblock, C., Kuokka, D., Gil, Y., Joseph, R. & Carbonel, J. (1989). PRODIGY 2.0:
The manual and tutorial. Unpublished paper, Carnegie Mellon University, Pittsburgh,
Pennsylvania.

Page 88

[1011 Moier, T. (1988). PROVIDE: A process visalization and debugging environment. IEEE Trams.
on Software Engineering, SE-14(6), pp. 849-857.

[1021 Musm, M. (1988). Generation of model-based knowledge-acquisition tools for clinical-trail
adi•e systems. Doctoral dissertation, Stanford University, Stanford, California.

[1031 Myers, B. (1987). Creating user interfaces by demonstration. Doctoral dissertation, University of
Toronto, Canada.

[104] Myers, B. (1988). The state of the art in visual programming and program visualization. Carnegie
Mellon University, Pittsburgh, Pennsylvania, Technical Report CMU-CS-88-114.

[1051 Myers, B. (1992). State of the art in user interface software tools. Carnegie Mellon University,
Pittsburgh. Pennsylvania.

[1061 Newell, A. & Simon, H. (1972). Human problem solving, Englewood Cliffs, New Jersey:
Prentice-Hall.

[107] Newell, A. (1981). The knowledge level. Al Magazine, 2, pp 1 - 20.

(1081 NeXT Inc. (1991) 900 Chesapeake Drive, Redwood City, CA 94063, NeXTStep and the NeXT
Interface Builder.

[109] Nirenburg, S., Monarch, I. Kaufmann, T. & Carbonell J. (1988). Acquisition of very large
knowledge bases: methodology, tools and applications. Third AAAl-sponsored Knowledge
Acquisition for Knowledge-Based Systems Workshop, BanIf, Canada.

[1101 Novak Jr., G. (1977j. Representation of knowledge in a program for solving physics problems.
IJCIA, pp 286-291.

[Il1] Nyberg, E. (1988). The FRAMEK/T use's guide version 2.0. Unpublished paper, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

[112] Pace., L & Fabrocini, F. (1988). Using classification to guide knowledge acquisition and
refinement in real-world domains. Submitted to UCAI-89.

[1131 Papem S. (1980). Mindstorms children, computer and powerful ideas. New York: Basic books.

[114] Park, H. (1990). Abstract object types equal abstract data types plus abstract knowledge types
plus abstract connector types. The University of Iowa, Iowa City, Iowa.

[115] Pepper, J., Joseph, R. & Hayes, P. (1986). GWW: A structured environment for building natural
language interfaces. Cowiputer, pp 85-88.

[116] Perlin, M. (1989). Call-Graph caching* Transforming programs into networks. Proc..edings IJCIA-
89.

[117] Potosak, K. (1988). Do icons make user interfaces easier to use? IEEE Software, 5(3), pp. 97-
99.

[1181 Riche, M. & Clancey, W. (19.). Guidon- Watch: A graphics interface for viewing a knowledge
base.

1191 Rogers, G. (1990). Visual programming using graphics, relations, and classes. Department of
Computer Science, University of Illinois at Urbana-Champaign.

[1201 Roman, G. & Cox, K. (1989). A declarative approach to visualizing concurrent computations.
IEEE Computer, 22(10), pp. 25-36.

Sg89

(1211 Schaffeer, S. & Borkan, M. (1988). SEGUE: Support for distributed graphical iterfaces. IEEE
CompuWer, 21(12), pp. 42-55.

(1221 Scott, A., Clayton, J. & Gibso, E. (1991). A practical guide to knowledge acquisition. Reading,
Masachusent: Addison-Wesley.

(1231 Shaw, M. (1986). An input-output model for interactive systems. In Conference Proceedings,
CH!'86: Human Factors in Computing Systems, Boston Massachusetts. New Yodr ACM Press,
pp.261-273.

(1241 Shneiderm-a,, B. (1983). Direct manipulation: A step beyond programming languages. IEEE
Computer, 16(8), pp. 57-69.

(1251 Shneiderman, B. (1987). Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Reading, Mbsachusens: Addison-Wesley.

(126] Shortliffe, E. (1976) Computer-based Medical Consultations: MYCIN. American Elsevier.

(1271 Shu, N. (1988). A visual programming language designed for automatic programming. In
Proceedings of the 21st Hawaii International Conference on System Sciences (HICSS-21).
Kailua Kona Hawaii, Volume 2: Software Track, Los Alamitos, California: IEEE Computer
Society Press, pp. 662-671.

[1281 Simon, H. & Paige, J. (1966). Cognitive processes in solving algebra word problems. In H.
Simon, Models in Thought , pp 201-229.

(1291 Smith, D. (1988). The interface construction set, Workshop on Visual Languages. Pittsburgh.
Pennsylvania, pp. 109-120.

[1301 Stallman, R. (1979). Emacs: The extensible, cusiomizable. self docwnenting display editor,

Technical report 519, MIT Artificial Intelligence Lab.

(131] Steele, G. (1984). Common Lisp: The language. Billerica, Massachusetts: Digital Press.

(1321 Sutherland, I. (1963). SketchPad: A man-machine graphical communication system. AFIPS
Spring Joint Computer Conference, pp 329-346.

[133] Swartout, B. (1982). GIST English generator. Proceedings AAAI-82, Pittsburgh, Pennsylvania, pp
404409.

(134] Swartout, B. (1983). The GIST behavior explainer. Proceedings AAAI-83, Washington D.C.

(1351 Tanimoto, S. & Glinert, E. (1986). Designing iconic programming systems: Representation and
learnability. In Proceedings Workshop on Visual Languages, Dallas, Texas. Los Alamitos,
California: EEE Computer Society Press, pp. 54-60.

(136] Tanimoto, S. (1979). Stylization as a means of compactin pictorial databases. Journal of Policy
Analysis and Information Systems, 3(2), pp. 67-89.

[137] Tanimoto, S. (1987). Visual representation in the game of adumbration. In Proceedings
Workshop on Visual Languages. Linkoping. Sweden, pp. 17-28.

[1381 Tortma, G. & Leoccino, P. (1988). A model for the specification and interpretation of visual
languages. In Proceedings Workshop on Visual Languages, Pittsburgh. Pennsylvania. Los
Alamitos, California: IEEE Computer Society Press, pp. 52-60.

Page 90

[1391 Van Nos, F., Juola, J. & Moonae, R. (1987). Atancti and disuudon by text colors an displays.
In INTERACT "87. Proceedings of the Second IFIP Conference on Human-Computer
Interactions. Stuttgart. West Germany. pp. 513-518.

(1401 Velogo, M. (1992). Learning by analogical reasoning in general problem solving. Doctoral
dissertation, Carnegie Mellon University, Pittsburgh, Pennsylvania., published as Technical
Report no. CMU-CS-92-174.

[141] Veloso, M. M., D. Borrajo, and M. A. Perez (1992) NoLimi - The Nonlinear problem solver for
PRODIGY: User's and programmer's manual, School of Computer Science. Carnegie Mellon.,
Technical Report forthcoming.

[1421 Vener, A. & Olinert, E- (1988). MAGNEX: A text editor for the visually impaired. In
Proceedings 16th Annual ACM Computer Science Conference, Atlanta. Georgia. New York:
ACM Press, pp. 402-407.

[143] Waterman, D. & Newell, A. (1971). Protocol analysis as a task for artificial intelligence.

Arti•fcial Intelligence, 2(3-4).

(1441 Winston, P. (1977). Artificial Intelligence. Reading, Massachusetts: Addison-Wesley.

[145] Wood, W. & Wood, S. (1987). Icons in everyday life. In G. Salvendy (Ed.), Social, Ergonomic
and Stress Aspects of Work with Computers. Proceedings of the Second International
Conference on HUman-Computer Interaction, Honolulu, Hawaii, 1, pp. 97-104.

[146] York, B. & Karshmer, A. (1989). Tools to support blind programmers. In Proceedings 17th Annual
ACM Computer Science Conference. Louisville, Kentucky. New York: ACM Press, pp. 5-11.

[147] Yoshida, N., Kikuno, T., Miyao, J. & Hirakawa, N. Advanced functions in a form system based
on a formal form model Visual Programming Environments Applications and Issues, pp 198-
205.

[1481 Zloof, M. (1980). A language for office and business automation. In Office Automation
Conference Digest.Reston, Virginia: AFIPS Press, pp. 249-260.

Page 91

Appendix A - Results Chart from Study 1

A-I

Siaiet Time Obj. e. 01-

Deewbda, ____. ___, (b.-in) ects d am

1) Maer, HSS, PHI Takin cusomers onrer 1:30 5 6 5

21 FJ=Wtor. SCS. Me, People stlowea,, 3:20 4 11 5

3)_________ Master CMU, NI Pakietswtc___ 2:20 4 7 4
4) Do, SIA. IA House building 2:20 6 8 3

5) Junior, SCS, M-C Macazni & cheese 2:30 8 9 7

6) Doct HSS, SDS Move wodd with blocks 2.0)0 3 5 7

7) Junior, SCS. M-C Pem klling a oach 1:40 3 5 5

8) Progm Person bicycling 4:30 6 14 6

9) Sen MCS, TH Square game 3:10 2 12 10

10) 5 Sen. MCS, MTH Robot!Mn a cigarede 2:00 5 9 7

11) Junior. SCS, M-C Hitting frestxan with bat 130 3 4 3

12) Soph, HSS, HOO Playing a CD in a player 2:15 4 5 8

13)Do CCMU, RI Roaopassi blocks 1:30 3 4 4

14) Senior. CFA, MUS Cat getting fish 2-00 7 10 6

15) Junior, SCS, M-C Eight puzzle 1:30 2 3 1

16) Senior, soS, M-C People in room. sitting 2:00 4 8 5

17) Senior, SCS. M-C Fixing Kool-Aid 1.'(0 7 9 8

18) DoM CMU, RI Cooki and eatngSpm,, 1:45 9 13 10

19) Senior, SCS. M-C Buiking DNA molecule 2.'00 10 14 11

20) Senior, MCS, BSC Playing a CD player 1:40 4 3 8

21) Senior, SCS. M-C Feeding cat 2:30 11 23 7

22) Senior, SCS, M-C TrAveier•to becca 2:30 11 10 6

23) Senior, SCS, M-C Automobile starling 2:30 6 7 5

24) Senior, SCS, M-C Washing clothes 1:40 4 5 11

25) Junior. IM, IMC Automottve t* , 1:50 9 16 5

26) Senior, SCS, M-C Makisndwich 2:10 6 12 6

27) Senior, SCS. M-C Delivering piza to a TA 1:10 5 6 4

28) Senor, sCs. M-C Moving bocks outde6
29) 5 Sen. H ,S , PSY Cooing cake 2.20 13, 21 5,

30) Senior, SCS. M-C Taking out the trash 1-.0 4 7 3

31) Junior, SCS, M-C Tlc location blocks world 2:10 3 4 2

32) Junior. SCS. M-C Getting ready for scxxol 120 7 6

Table A.I: Study 1 Subjects

A-2

COrt 1 is used in cojunjmcon with Table 1 to help decipher the sudxent descr4ion colunm.
This infomtion is broke down by each students year, department, and major.

D~epartmet Major
CFA - College of Fme AW BSC - Biological Scieces
CHU - Cafee Mallw UnwvUsity HOO - Ueaene HSS
lSS. - Humnaid and Social Science IA - Indis Management

DiA - lndushl Managameat RG - In- zation Netwcdking Instite
MCS - Mealon Conege of Science iC - JM-CflYMcs Track
SCS - School of Computer Science PHI - Philosophy
SIA - Graduate School of Industrial PSY - Psychology
Adm a MT- Math
CHU - Caregie Melon University MUS - Music
HSS - Humanities and Social Science M-C - Math and Computer Science
IM - Industial Management RI - Robotics
MCS - Mellon College of Science SDS - Social and Decision Science
SCS - School of Computer Science
SIA - Graduate School of Industrial

Table Al: Student Categories

A-3

Appendix B - DNA Domain Code

(14 - _w**mf "mm

mm4 wwcle - - -

(034 *
-_ - (o

(Joew am f ((.ft m& (-ibp x))U)

(Joe4w qw

Wý~~~ ~ ~ ((Csc zwtbwCW)"Ubn

-_~ -LI
pdb ((an bdo

-qmwvd44 (a OmC-. -W h - -t-

3 q ~ n (40wo

(E~((~ ~ .~ b3) U C (mCW-USCO-I 4np

(qmmP-qcct Ang~ --- d

V ý (oz om xw (4a wdO W

um wb-ý on= ((Uwat (i-rm

Wnowwtj q3 9co ao j*ý apab4
(CpMWA (~m4& -(d -bmdk- %cp-9

mm ~ h4am dw(aimm)

(%sno MW))

am~om Q<-M 9w mA0imi
0=4 *MWý -m 2f56GRxom56

-mnm A-0 aa tmpumw

mmp-km amBOW

Appendix C - Selected Domains from
Study 1

Subject 1
Subject 12
Subject 22
Subject 24
Subject 29

C-1

Customer Orderin Domain Built By Subject 1
-- a-af

A
AMO a-M

C3 R

I

- 7 R

A -
TR
0

R

s Au~miclyGenad
u Pmcdig D==ai Code for Subj=i 1
B 1.

omumum w ~

4. 24*1 (<c ~1abZ I

(ed ~ ~ ~ cusma (MEL4& (z-jk)))M~b~~b

wp (0A-edti (m -oOha- b- ao C1DW 7 J l

Aus tut and Gamzd StotGu Sw Deswipck for u~ 1uj I- (xb-i- ac74o *1

* (d*4 (amL (cum-ftwo-cwtowns. h%7b
(s-13) (cwd-fwa-wwc~b c~wm276 2*j))j

-O -2 U1k(qr -

Wý ((=bm25 -bc I-fc5 -vdw Wdssa. ktAn
((- U (ambei-cali -MwdU.

MO-"baw~ 13 25wua .a- -Mb*Ub
(-Sa.*~~~~~ -16 .ulU)** d e3!1.bJ d
(~-I-M~ ~~3Q mU34Ma (GNWWSC -=*CS ummi"5 Ieaj~4)

ww" OW (abe-md~i -eadsOS& cCl"M

Playing CD Phyer By Subject 12

p
P

N

Cbm T

I

E

S

F
0

B

E

mm T s

1

C-3

Stint muGoal SftinAMIEN1TCE fi Subject 12

A. inR3 Gewned Stat& Goal Stat Despicn for Subject 12

aa-f-. tbsaJw
ad OMSK-gm

-W a ý CR-MdCdbKO
Wal OL~o-OU d-DU -~

01m-m tbDU -ll*
Oti dw- Cbs-L w I)

(@M 09p(Met fgiqmt- w CONO
0M4-aM d-V SV
(ew doa Ojf
(--. aftri doC
(in buLo tbA*'O

O -ft MGC Cbs-wI I

AutMwnll a flY- Cenatied Prodigy Domain Code forSubject 12

(in-. 01M (i t252 Vw3W5

do-t a qx(WL (in 4=05i, U~ aa2*5) I
(J&.* .5 . tv~~w (am(www 4UfviwS7A.3

-P ~II 3*dnd"(G-Z (400346 as (.N33b OM)) VilPV-wof (" (Nw-am 63mn& "Pv I#(-J~r42W Plaw) WO"3 01
t("" -won -w401Q6M) -0Of

wý(WI (OMW* 40ano 4m-Iý3b 3 W(OU-- 'vL~a3S7p Oftwa

(an ~ ~ ~ ~ ~ ~ ~ ~ ~ 1~ meo330 Oaoom nvn~ uam
we -tw vl 7bw alot&)

-6W ("Wana an~ (4wana am)) IO3333-M aftM l~w)

((&L aws .1031 ONNO 00Igg6,)m (I6 3
(a m (40014 -MOM1 j1

(M -r" -WlM-*vlC4)(dIa@vfvVVOI
C.Lqp)mlmq~3~alig3

-04b -u~gb (twmm - V& -A OV1 PCO- -9N OtW-MM .9wWO am
0"(OPOf 0190b 1M~3 (qo W- 61f-t"."ampCM

OfL t& M -0 % @0 4")la - -'Wst e -O3VK W O))

W- (44WNOb PU)3
(4om -9O -PG~ (-d WU-M 4*AW-246 ap3

-ME (('914a na plaws" 14dwb 40 I-M32) W&V1&M 4ml3662%f stqw))
-o UO-2 pr912 (dn* (do 01Wa-Om 4p 1ar~ CUM))

C4

Trip to Mecca By Subject 22

R

N

0 Ifi

R
A
T
0

a ~R I

F
0
R

U
B
I
E
C
T

GwwwdW&GoaSM~wc~wf~rStart and Godl Stntp in APPREMlE for Suic
To

lhm@-Iinmm FAO
ft-fit MU OUIM)(hpl m OMM
ftii Nb~ COAM

Auaamucailyaieud PmyDoxmain Codefr Subject 2
d1.-. -HW~ qw (40443 f~Q(LbMA$t tl

wý-(WMIIN-pow -U~d-boow hw"$ (Im bM saw (-98SO (46OW2I. bomb))

(qpmn -
-EO WN-gI GNP ~ ((,mob UNN (-wis-P- (-Ou~twim" 9-4

AL MP wtk-i. ft" 2)22O 3 ý(wad l .W(at-Un ~ ~ ~ ~ .0dm,4OM l M s-OOA w"XoW.--.
to"m ga-M4d ubOMA M N - "A NI -4 -

MO2nad 4ddad 4=WmmJ Ux 2)2o
(COMOW~~~ c-swttwe4ea 9"~ep ý)

Washing Clothes By Subject 24

R

N
T
I

MO 0 M- o
PE
R
A
T

0 I
R

ARMS

U
B

T

4 1b [j
-mamom

I~I
-Al

C-6

Oplrator (coot) Auil 1 1 ly, GeomadStat& Goal SMa Dm ipifonr Sulj=24

Cga (wA~ oW

-amwowobao
%Oom d~omb

Ai*~~n~iva~~lyIlmmisd Pzdio oni fi))u2

14 left) (sa (md Ot--w ~ mmUM off)

SM~r u4d Cx -mi FEMM i a2

-~tv ((&dww - W1 I5)
-. a 49 (&u-Vaf m onG Clem Ij I

- low ~ Afteptllb 41116W M wom h

(a twd.e 49(bCN3mO

-m~m -damosa m0ol4 .IW - ----- om~.4~wml~
ta mt qh~~lw)) (Mftm W Io11)

(0U 41 ? he UAawU. bom)) Wý il -.o

OMN~ am - hm~lp) towC-ta

Cooking Carrt Ca-kee By Subject 29
WAS= A o

p
P
R

N
ET

E

R
A
T
0
R

as

0

B ~An,-N--uM-iw--Iy G.wz~d Prodigy Domain Code

"(L-a a" M

2

9~(~ w((~f f(lw-t 4'i3Ua ~M~bl33
fals ((&& WkwSb. 4iwgg MI938b.3))

Sort and Goal Sof in A~FFR~MC forSubj=29 l p "f m1(z&4" nrji

WýC(IgbW93t. b~m (qcWU 2U. aewO FilS3N. .Law 1
(a-wm 4dog2*-mc~ zl

(I (G4U W4M3I =0 M)

(aftip m dm Us b.w m.H 3d=32-4NI"U)

-6M 441U4 b 4ftwd9U5w 3
~S - ~wd (wo(ndUin A d939p

d~bC4

Appendix D - Information Given to
Subjects in Study 2 Phase I

D-1

Prodig and Domain Description

In the field of Artificial Intelligence one way of emulating human problem solving
techniques is with planning systems. Planning systems allow a user to define a situation
and problem systematically and have the system plan a solution. PRODIGY is such a
gemeal purpos planning system.

In PRODIGY the actions that the planne takes are defined by operators (actions a person
would use to solve a problem). The problem is a coarse representation of relevant facts
describing the initial situation before a plan is executed; and the final situation desired after
a set of operators are executed. Let's take a very simple example like the process of
delivering a pizL This can be a very complicated process, but in this case we only want a
very coarse grain model of the "domain" or situation.

Domain: You have a car and work for a pizza place. When the pizza is ready you load it
into your car, which is at the pizza place, and deliver it to someone's home. For this domain
you can only deliver one pizza at a time. There are 3 operators that you will be concerned
with: load-pizza-in-car, drive-to-location and unload-pizza-from-car. The load-pizza-in-car
states that if the pizza is ready and the car is atthe same location as the pizza and the car is
empty then the pizza can be put inside the car. The next operator, drive-to-location, states
that if a car is in at locationi then it can drive to a different location, location2. Finally the
unload-pizza-from-car states that if a pizza is in the car then the pizza can be unloaded from
the car and the pizza is now in the same location that the car is and the car is empty.

lod-piza-car drve-car unload-pizza-fivrom
if *if if

pizza at locationl car at locationl car at location
car at location1 then pizzain car

then car at locat.on2 then
put pizza in car , unload pizza to location

Lw descibe two problems:

PROBLEM 1: The initial situation is that the pizza and the car are at the store. The goal is
to deliver the pizza to Larry's house. The solution is to load-pizza-in-car at the store, drive-
car to Lany's house and then unload the pizza at Larry's house,.

PROBLEM 2: Here is a slightly more complicated situation. The initial situation is that the
car is now at Larry's house and the pizza is at the pizza place. Again the goal is to deliver
the pizza to Larry's house. Here the solution is to drive-car to the store then load-pizza-in-
car at the store, drive-car to Larry's house and then unload the pizza at Larry's house.

How do you encode this information so a compumr can use it? That is what planning
systen allow you to do.

The pirn delivery domain is right now a very simple domain, but by adding more delivery
locations and route length information the complexity of the problem increases and the
syaem, can actually be useful in plannin pirn delivery routes.

D-2

sw task is to build this simple pizza delivery route domain as an exercise in Prodigy. You
will use Appwndce, a visual domain building tool and Emacs, a textual editor.

D-3

Emas/P gy Example Domain

L IoI
Writing a domain in Prodigy requires several steps. You must create object type definitions
used in the domain, operators, instances of objects, start states, and goals states. Below is
an example of all these steps for the pizza domain. We will use the pizza domain to define
a domain in Prodigy using Emacs.

2. Dein Objec Types
First you must define object definitions for a domain. These type definitions tell Prodigy
the name of the objects you will be using in the domain. For the pizza domain you will
need pizza objects, car objects and location objects. An object definition has the following
skeleton (IS-A object-nme TYPE). For the pizza doman these objects are defined as
below.

(IS-A lAcamModi TYPE)
(&A Cu.ma TYPE)
(S-A sm-moa TYPE)

3. Deinig Prediates and Oper2aors
Next you must define operators. The operators define how to change states in the domain.
This change is defined by giving the preconditions of a situation and then the effects of the
change. These pre-conditions and effects are represented by predicasm Predicates represent
relations between objects. In order to allow an operator to work in a generic way the
predicates use variables. These variables match different objects in the state definition and
ate represented by <> surrounding the name of the variable. An operator skeleton is as
shown below-

(OPMtATM
(PARAM

((<,•i>~ tWt)
(vw2: qp@2)
(<,-l "a*3) -)

(AND (pqdl -cvatri %vu2)(p"<Vsa2, <Vw-7))..)

((DEL (podi <var1> oa't))
(ADD (pud3 <ml> <vr3>))) _)

Real operators in the pizza domain are defined below. Look at the operator LOAD-PIZZA.
In the PARAMS list the variable <pizza> is of type pizza-modeL etc. In the precond list the
condition Car-at-loc says that the variable <ca=> has to be at variable location <boc> and the
condition pizza-at-lic says that the variable <pizza> has to be at the same location <1oc> as
the variable <a>. Finally if these predicates are true in the state, then the variable <pizza>
is moved inside the <car> variable and the <pizza> is no longer at the location <toe>. See if
you can detesmine what the other opetors mean.

(OFUAT7M LOAD-F2ZA
(PARAIS

A= PF.A-MOD9L (4oco WOCATION-MODEL) (<:- C4ARMODEL)))

(AMD (CAR-AT-LOC -=ý <k*) (PI .- AT-LOC -V=;- 4a=)))

((M (PCM-AT-U)C <• 4=-))
(AW (FIZZ-94LC)))

(OMWAlIM MOVE-CAR
(7ARAIG
((<ire3, LOC, ATIK4MODW (d LOCATION-MODEL) (<mo CAR-MODEL)))

(FBCODHD (CAR-AT-LOC M docil>))

((DIL (CAR-AT-,OC 4oad>))
(ADD (CAR-AT-LOC o2>)))))

(OPM11OR UNLOADA
(?ARAIM
((dsc LOCA7TNMODEL(-) Vim> PTA-MODEL) (<cu, CAR-MODEL)))

(AND (PI•A-A-CAR qxiom •-) (CAR-AT4L0C < 4aoc)))

(OME 04PW-R(CAR)
(ADD MM-A.AT.WC cm da,)T))

4. Defining a State
After the domain is described then the problems that you want to solve need to be defined.
The problem is defined by a start state (STATE, below) and a gaol state (GOAL, below) in
the domain. Below the Statie says that the Pepperoni and Domino-Car are at the Pizza-place
and the goal is to get the Pepperoni to Ia.ry's place. When defining problems for a domain
you must specify what the instances are in the problem. For example the word Pepperoni is
an actual pizza and Domino-Car is an actual car.

(HA-q-SrANc Lacmk-odd Pim-Pham)
O3IA&-INSTr 5 e Lay)
(iL3A-STANCES C= Ds w)
OU-5.NrANCES Namowdd Peppmmn)

(GOAL 011.A-AT-LOC P•EI•o•n LARRY))

(STATS (ANM (PM.-AT-wC PtFY•E PzA-P.ACE) (CAR-AT-LC DOMINO.CAR PUZ•.P•ACE)))

5. Emas and Prodigy Usage Description
You will have three windows available. The first window will be the domain window, the
second window will be the start and goal window and the third window will be the lisp
window.

Text is entered in each window by typing. The text is placed at the point of the blinking
cursor I in the active window. A window becomes active by clicking the mouse in it The
cursor can be moved within a window by pointing and clicking the mouse button at the
desired location or with the use of control key + text keys. The cursor movements for
different keys are listed below. A-<key> means hold the control key down with the
respective 4zy>.

"A-a - move cursor to the front of the line A-e - move cursor to the end of the line
A-f - move cursor forward one space A-b - move cursor backward one space
A-n - move cursor down one line A-p - move cursor up one line
A-g - abort whatever you did Ax-"o - move to the above window

SStarting Prodigy
Once you have creatd the objects and the operaOr for a domain then -cA-I will load that
informaion. When you have typed in a problem, & will load the problem and run
Prodigy. The results of the run will be printed out in the lisp window. You can also test
each opamor separately against the current system state. To start testing individual

D-5

operatars use the A-c-Af command. Then use the step-opator function in the lisp window

to run operatom Below is the syntax for the step-operator.

(step-operator <op-name> (<val> VAR1-NAME, (<var2>. VAR2-NAME))

Example of step-operator from pizza domain above:

(step-operator load-pizza (<pizza>. Pepperoni) (<car>. Domino-Car) (<ioc> Pizza-Phtce))

To view the curent state type: (print-state)

7. Steps for Defining the Pizza Domain and Problem

1) Define the object types (car, pizza, and location)
2) Define needed relations (pizza-in-car, car-at-loc, and pizza-at-loc)
3) Define the operators (load-pizza. unload-pizza, and drive-car)
4) Define the problem with instances (Pepperoni, Domino-car, Pizza-Place, and Larry-
Place)
5) Define the start state and the goal stare
6) Debug domain (fix syntax eom and step through individual operators)

APPRENTICE Description

L Introduction
APPRENTICE allows an expert to create each part of a domain in Prodigy using pictures
that the expert develops. There is an APPRENTICE development window for each aspect
of a domain. To make domain development easier, the main input device is a mouse. In
each window there are buttons that perform actions and textual items that display
information. Each window has a development box that the expert works in to develop a
particular piece of knowledge.

Users familiar with the Macintosh interface should be very comfortable using
APPRENTICE. Every item other than the development box is movable by moving the
mouse to a position over the object and holding the left mouse button down while moving
the object to the desired location.

2. APPRENTICE Windows
Model Window - Allows objects in a domain to be defined (e.g., Track, Pizza, Location)
Relation Window - Allows relationships between objects to be defined (e.g., inside-truck,

az-location).
Operator Window - Allows state changes to be defined (e.g., load-pizza, move-car, unload-

State Window - Allows the definition of a start state and a goal state.
Problem Window - Allows the setup and nmning of a problem to be solved.

Common Apprentice Window Facts

"• Holdodwn uI-ov an object mve 1 .ickon objm allows editing infomation.
"* Hold down buuaon in blank -se and &W- -ttIH C* i ln.i watk window allow work on anot ethin&.

zcuaagle select object maude rectangle. - Shift dick on anything give help amempg about thing clicked
"• Shift click buton selec multile object. "' * Alt Click on object allows editing andbute. of the objecL

" Selected items appear highlighted.
"• Shift right click on an item gives a help message on the item.
"* The name text represents the name of a item (i.e., object, relation, operator, state or

problem).
" Multiple items selection: 1) hold the shift key down; 2) drag a box around a set of items.
"* Text can be edited by clicking the light button.
"* Object names can be changed by right clicking on the object.
"• Buttons can be moved with the mouse by there text part are activated by the box part.

2.L Model Window

The model window allows the expert to develop the objects of a domain. The objects have
an appearance as well as connection spots. The development box allows you to work on a
particular object. Window components:

NAME: name of the particular object type

GRAPHICAL EDITOR: An area used to build the visual representation of objects
DELETE INST BU'ITON - Deletes selected model instances

D-7

211.1. Graphical Editor

Models or objects ae made up of simple drawing elements. The editor lets you draw these
sample elements to build an object. Each element in the editor can be manipulated with
mouse movement
The following drawing objects are available:

Mr\ Anow allows selection, movement, and alteration of elements.

[2_ Allows you to draw a line element.
r'7& Allows you to add a text element.

MJ- Allows you to draw a box element.
Q Allows the instance name of the object to be displayed.

F DEL deletes the selected elements.

V Saves the elements in the editor to the actual object. if no object is currently being
worked on, then a new object is created.

7 Allows you to place connection point element on the object.

2.2. Relation Window

Drag the objects into the work area that defines a relationship between the objects. Connect
the objects to one another with their connection points by clicking on each relevant
connection point. When you are finished with a relation then right click on DONE.

23. Operator State

Operators are defined by dragging objects and connecting them toge•her in the pre state and
then in post state. The Copy prestate button copies the information in the pre stat side
into the post stat side. The Link Obj butons allows an object selected in the pre state to
be linked with an object selected in the post state. When you are finished with an operator
then right click on DONE.

2A State Window

To define a suite, drag the appropriate objects into the work area window and connect the
objects up as they would be in a state. Copy state button will copy a selected state
into the work arm. When you am finished with a stare then right click on DONE.

2.. Problem Window

The problem window allows you to define a problem that consists of a start state, goal
state, and a set of operators. The problem elements are defined by right clicking on the
START-STATE, GOAL- STATE, and OPS text. Once a problem is defined, to have the
sysem try and plan a path click the RUN DOMAIN button. If you want to test on operator
at a tim click the STEP FORWARD button.

3. Steps for Defining the Pizz Domain and Problem

1) Draw the object types with connection (car-model9 pizza-model, and location-model)

2) Define needed relations (pizz-in-car, car-at-lc, and pi•..-at-loc)
3) Define the op•a•os by pr and post state (load-pi, unload-pizz= and drive-car)

4) Define the start state and the goal state graphically. The instances should have the names:

Pepeoni, Domino-car, Pizza-Place, and Larry-Place
5) Define the problem by combining operawr, start state, and goal state
6) Debug domain (fix syntax amors and step through individual opeators)

D-9

Strips World Description
Problem • '~fon

The strips domain is a fictitious world comprised of the following objects: robots, boxes,
and rooms. Relations between the objects are as follows: 1) robots can hold a box; 2) two
rooms can be connected together, 3) robots can be in a room; and 4) boxes can be in a
room. The actions that awe performed in this domain are: 1) robots can pick up boxes; 2)
robots can put down boxes; 3) robots can move between connected rooms with a box; and
4) robots can move between connected rooms without a box. The goal of this domain is to
plan paths of movement for boxes to get from an initial location to a final destination.

ITak Define an initial state, goal state, and domain. Have the system find the plan needed
to go from iia to goal state of the following problems.

Problem 1: For the initial state create two rooms (Rooml, Room2), a robot, and a box.
Rooml and Room2 are connected together. Have the robot and box in Rooml. The goal is
to have the box placed in Room2.

Problem 2: Use the work from the previous problem. For the initial state create three
rooms (Rooml, Room2, Room3), a robot, and a box. Rooml is connected to Room2 and
Room2 is connected to Roomn3. Have the robot in Rooml and the box in Room2. This
time the goal state is to have the box be put in Room3.

D-IO

Logistic World Description
Problem fio

The logistic world is comprised of the following objects: boxes and hubs. Hubs are
buildings to which boxes are brought for sorting and distribution. Relations between
objects are as follows: 1) boxes can be at the indoor of a hub 2) boxes can be at the outdoor
of a hub and 3) hubs are connected together from the out&.or of one hub to the indoor of
another hub. The actions in the domain are that 1) boxes can move between the outdoor of
one hub to the indoor of a connected hub and 2) a box at a hub's indoor must be sorted to
get to the hub's outdoor. The goal of this domain is to plan paths of movement for boxes to
get from an initial location to a final destination.

TakM Define an ina state, goal state, and domain Have the system find the plan needed
to go from initial to goal state of the following problems.

Problem 1: The initial state has three hubs (hubl, hub2, and hub3). Hubl's outdoor is
connected to Hub2's indoor. Hub2's outdoor is connected to Hub3's indoor. There is
initially a box (BoxI) at the inside door of Hubi. The goal is to have the box delivered to
the inside door of Hub3.

Problem 2: Use the work from the previous problem. In this problem the initial state has
four hubs (hubl, hub2, hub3 and hub4). Hubl's outdoor is connected to Hub2's and
Hub3's indoor. Hub3's outdoor, is connected to Hub4's indoor. A box (Boxi) starts at the
inside door of Hubl. The goal is to have the box delivered to the inside door of Hub4.

D-11

Appendix E - Questions from Study 2
Phase 2

B-I

Questions from Study 2 of Phase 2
113 Aowmfg section contaim the domaim, questims, and msulzs from study 2 of phase 2. For this phase two
domains wene used: the mookey mod ban= domain and the blocks domain. The questions are about operators or
states In these domains.

Each questmi section has a graphical =npmen-o of an opeator or state along side die textual representa-
tics of the sme Wmation.1Tm textual rtepestation was automatically gentraed with APPRENTICE from the
graphical P p o The multiple-cice question is below these representations. The correct answer to the
question has been made bold for your convenience. To the right of the question is the data showing the subjects
that anwered this question wl cy. Only one incoct answer was given during the graphical representation
tesng The incorrct question for the textual. rp epresNtIon will be duly noted.

Blocks Domain
Question 1:

OPMRATOR NAMEop2

Pu-M
fvIW (<bolom> block-modMl)

Om (<Wp bloc-modMl)(<am> am-moMe)

(an cpt , <bostom,)
(mukW-m <MV0.)

____(dol (anpty-min <ouom>))

(dl(emM- <am>))

(del (dofw <np>))
(a& holdng <mp <=rn>))

-•. (add (dai <bosom>))

If op2 has fired is the arm empty or holding a block?
1) Holding ri T i
2) Ropty)IM~-T~ehn 53 1
3) Unknown

Question 2:

O~OPRMATOR NAM op3
I-

-d (oh.modal) S•)-o4 <biok -mi>

If op3 has fired is the arm empty or holding a block?

2) molding
2) hp-ty FE-2

3) Unknown

Question 3:
oa3"-- U--- -OPMATOR NAE api

- (%Nock bback-nwM)

, -n
(UM (O~hb < <- gmh))

(add (ampl,-m <,m>c)

(add (deu <,bkck))

- a

Is operator opl representing?
1) Picking up a block off the table 11AI~qmtS2i1 .

2) Putting down a block on the table I
3) Stacking a block on another I
4) 1Mstaak~ng a block off anothe

Question 4:
o3"" OMEATOR NAMEcp2a

(cbomMu bok-moda)
mm *- blck-umodal)

(dd(on 4ap cbatmw>))

(del (empty4mR <am>))

(aiM (bolig -Mop~ <am>))- AM (add (dig 4000Mm))

Is operator op2 representing?
1) Picking up a block off the table
2) l Ltting do=a a block on the table
3) Stacking a block on another
4) Unstacking a block off another _______________

E-3

Question 5:
Q Q.,..*. i~uOPEATOR NAM~ op3

(<bdic~ Nockwimodel)

(on-t (ah blocb mb)

__ _(add (Olin <Mock -WeD)
(dm1 (okya= <M>cb))

2) Putting dow a block off the table
3) Sutacing dw a block on anthertbl
4) nStacking a block ofn another

Question 6:

Q ~ Q~~iau~.. C -~0OPRATOR NAME op4

-<01 am-model)

(Clew 41001m)
efflow

(ddftht8wP~wm))
(del(clAw boUom,))

APM (so (elm <w -

Is operator op4 representing?
1) Picking up a block off the table .
2) Putting down a block on the table E 41
3) Stacking a bl ock on another
4) Unstacking a block off another

E-4

Question 7:
Q Q *. START STATE

(CWm C)
-. ••(du b)

(Gim a)

(On-abl c tdle)
(on-Utb b tAl)
(m4-"bl a table)

GOAL STATE
(cleaw b)
(an a C)

(on b s)

In the goal state of problem stack-3-block-1 what is blockE on top of?
1) BlockC
2) BlockA
3) The Table
4) None of the above

Question 8:
~ START STATE

- (clear b)
.. .mm...(dear a)(clew b)

(emty-am am)
(oR-Oabl c table)
(oas-able b table)
(on-uble a table)

GOAL STATE

(an a c)

(ob a)

In the start state of problem stack-3-block-1 what is blockB on top of?
1) BlockC
2) BlockA
3) fte Table
4) None of the above

E-5

Question 9:
Ooob 08ff Om START STATE

(doar)w•.mm~- (m)

U (an-table b tabWy)St. '-,I ,, (on-tabl, a table)

GOAL STATE

(on ba)

(an a b)

In the goal state of problem stack-3-block-2 what is blockfl on top of?
1) Blo]kC
2) BlockA
3) The Table
4) None of the above

Question 10:
This domain is for?

1) Stacking Blocks
2) Moving Packages
3) Getting bananas

E-6

Monkey and Banana Domain

Question 1:

o ~ft OPMRTOR NAMEP oap
pow

('b~ck> bock-modul)

ftx(clocaijam, caZ~n>d1)cdo

ARM ~ (de (naei* bmw><bok)
(ad Mo~ing-ban <bimaso <oney)

if-2hsfrdi h mne' adepyo hodel(cilng thebamnanaso~

1) Rolding tba bwzanau
2) P.Xoty
3) Ujnknown

Question 2:
o ~ 0 OwU00i OMEATOR NAW- op3

(ctom-loc locfijon-iodel)
- (cmokePm~onkeia-model)

(axmnnctad 034oc> -cfnm-loc)
(oawumxfd 4mtom-lom <tolo>
(mnkay-4ocafton onfw> fm-1c>)))

(del (mouakey-st-Iacation <monkey> cfron4oc>))
(add (mwadwy-az4ocaaon :mookey> <to-loc>))

If op3 has fired is the monkey in the same location?
1) Same location
2) Different location
3) Unkniown

E-7

Question 3:

0--- [-- O'-. OPEATOR NAMM api

(<bocxk> block-model)
m (<locaon> l n)

(<nokey> one-mdl

(moke-a-loaton<Monkey> <iocation>)
(block-al-locaton 4blck> <location,)

(del (mankevy-st-Iocation <monkey> <location>))
(add (on-block <monkey> <blok*))

Is operator opl representing?
1) Grabbing the bananas
2) Monkey moving himself
3) Monkey moving the Block
4) Monkey getting on Block

Question 4:

Oo--- Qaw-,~- ci-e ORMATOR NAME: op2

(<dmok> ok-modul)
uos (<oadin> locaon-model)--- (<monkey> monkey-mod.!)

(<bkxo block-model)
(- bwma-mode)))

-o4m -~oky <blc>-ud~ok <location> <book>)
(block-az-ocution <block> <location>)
(on-coding <bumi> <book>))

_ _(add (holdang- bmuua <bani <onk ey>))
- (afl (bon-ce mng < banan <mook>))

Is operator op2 representing?
1) •abbing tb4 bananas
2) Monkey moving himself
3) Monkey moving the Block
4) Monkey getting on Block

E-8

Question 5:
Q.MMO Q..o.. QM OPERATOR NAM- op3

(<a-loin locr~ali-model)
(<ftom-loc> kotion-model)
(<mnky mane-ode)

(connected <bio: <fzom-loc:>)
(connected <hx4oc~ 4o-bxo~)
(mookey-a~ocatian <mnokey> <ftom-1oc>))

(did (monkey-at-locafion <monkey> <rom-lao>))
0&i (monkey-at-location <rnonkey> <fto-loc,.))

Is operator op3 representing?
1) Grabbing the bananas
2) Monkey moving hi-self
3) Monkey moving the Block
4) Monkey getting on Block

Questi on 6:
~ ~ OPEATOR NAM- wp4

(<m~c>Io location-model)
- ~(ch=n4oc, location-model)

(<monkeyr> monkey-model)
(<bkoob block-model)

(cuoneted <to-lao> <hmm-loo>)
(connected cfrom-loc, <ta-lao>)
(moakey-at-locaimon <monkey> <from-lao>)
(block-c-location <blocb fmlo>)

effleo

Is operator op4 representing?
1) Grabbing the bananas
2) Monkey moving himself 0*1U
3) Monkey soying the Block f Uimg Gqkdnu~J
4) Monkey getting on Block

E-9

Question 7:

0 0Qa.0mQc START STATE
(as-cilg banana hook)

Sa (blok-az-Ioca- on block otc4)
(monkey-a-locaion monkey oc3)

,,M . ..O (conn :e d 1o=2 Joo4)

(cnece (• o4 Wc.)

• .m (connmeod In fool

(umdr-hook loc book)

GOAL STATE
(holding-banma bmaa monkey)

What is the goal of probleml?
1) To have the monkey on the block
2) To have the monkey at location 3
3) To have the monkey holding the ha-

unsn
4) None of the above

Question 8:
Qo---0~ - -- START STATE

_________________________________(cm-ceffing banana hook)
0"WA -.L (bo•k--locaidon block Ioc4)

(monkey-at-kcazion monkey loc3)
-aem 1oc2 loc4)

(conected Ioc2 oc=3)
(ounectmdld loc2i Id)

.• ((connecmd 1o lo=2)
(aMoncled Wcc loc2)
(,conewod 1oc2 loci)
"("-de,-hook loci hook)

GOAL STATE
Qiolding-baum bann monkey)

In the start state of prtoleml where is the block?
1) Loci
2) Loc2
3) Loc3
4) None of the above

E-10

Question 9:

- -] START STATE
(on-,iling banwaa book)
(block-a-loca-bo block loc4)
(monkey-at-location monkey loc3)

" OW40t OM S - (cnleocl i=oc2)
(coanncled Joel l=2)
(Ctece - 0 1=4 a2)
(botmectld 1a3 loc2

Z-i (conanected locZ loci)"no (rodeo-hook kloc book)

GOAL STATE
low(holding-banana banana monkay)

In the start state of probleml where is the monkey?
1) Locl
2) Loc2
3) Loe3
4) Loc4

Question 10:

This domain is for?
1) Stacking Blocks
2) Moving Packages
3) Monkey getting bananas

E-11

Appendix F - Code for Medium Size
Domain

F-I

CM-A i -i an oC id alpm l4tO4 U4&L464 W

C Z - n rff i&n I "� a m m .d M ~ ~ 4 dM 46 b4) J

CM0-A 1I-u M a ssuml-oa 4ltot

(I"A - -U

CM-& t. VA
(zs-& RM immCC~ vi m*u4 4AI-1)tas b ai2 ta1G ble

CMO-A wm ra 4isis I
(IS-&WAICIA TA mns(dtibdwf A 45 *U5

CM- IA I" ((& llw bwu wimtsbb wilP 2

CM-A HOLM& W .-Y C=M wasv tdolw iwI - n o

CM-A VVS ýCs I(odngLMU2 ISM

(XI-A ni'rf TEID(atemot
=-& NO= ~ =90&40 t~ (del~ podi wWZ 4isU2

CMi-A Ur -ILA oCdhl~)

co"NE- 6 OULEW (oort ob q-du -mot et16?2 c 1rdi du
zpswCýi ClmbUU ONIONS
AffA=W-vrEK~lZ =v&-" (.wido pac-sid W2dV 00W OS)0Lý MO2CS

Com = Couwa5 (.ýpol2CI CspooI t~cM~ CkL)(4i@S~ ia

1C- MON MU _M-M(m M rp o lc- 5.oso-rU
CI CmTHU M.-4) oveganoalC.1~36~i1

(W1 EN- R v .w% U=(al (7~clalm v 4U9L'v)

C~~n maoUM3r vU1 Cssad~uvma
000 to eeWcvaoal4wv SOW1)

(4&-it75w dcu4At (opow(sUms futddt

C4is~os vilisa) (.WIt2aS3b part (4sdo p orta. daa

Ctootal C18-bitft xdgogUf) C))m~5

C (almbcewwf lea C(ongmeloCgiptcsb MatU@3 4mido) C<1 U *1S)

CGMW -C(w~o Wt2$pVr20

(4tdd&4060* toblol)) M&4~almlr-0 a--W - dU6)1

(ad -drL13

(s &qprnvvvw iO34(o aAII VK:654

(Odamd WCUIS *111)33 ddMU~bh*1f'))

(OPM W cus-lot (DOXIN

- u Mousp100 vannd"11 4fiLS 1
i 14oWT3- ta~nWtqdd49W dW -COMb CI U*dLM-Cml tinOK3 *Vi flS09 b

(wivisig6 v~sel C4asi4SE polt 21) (gtIn "I aubo-ta CWAdvin 4006"13 wAftiL8b)
C*010s WAW-W (4a -sa-9 C4wj =nbw-tWm2 OV-*,im 4b&imiW1 4ptOj121

Wasono 40ap5aw 46I WRl46b C ON101 SW613W VWWQ913.)j 2)

(holda t'-1"4veil~m 2 M1U ae-hum
moom~movc Av66dft -ML44P)(ma*== X03 vt"

MC4W - vls -? J h lap)t al* gia m-ws dnpa)
temso (%== dC846 -1aat8bv1) tmald

f (adi6 22)) Cporw66 WOME 2

C am *111aInaitm44o 4ie bto c-41o 401M (aimth 0WWCWa N&EIartpik 4W@b2bW
Wd 000,4044, -dolowvort"64W j (4 -laG@ m d aaEU b (-~-S1W oi-edd

C0 C*-lopd4M704OS ob dtp4 4000, CW-V0'h ksidl Voct-dif (4068 ~anfol83b2 1c, ubwt

C'00@4 Mas- .) 49C49664 m)2OO48 CPWJ kAGNU-d*) Wide) (.V~t. .tviuaSW

Cclscotor dG46 .d111W*. (=A (CIO&a vat6836 qt6162
WINNOW (IM~4vaIU) ~~l-locatc -cl.EH5,f -cis -c6 40Y2.clm4f)

Clmwpso usor-a. 4(04vW6- ai21W-2 Cl Cha.-bmui 4t8606)2-fV~
C.0finw. ddi I-ar"0433.) MOUcirtea 4"6CN6Nb dm4U6L w))

(4071 C. Woo 0"l 46D)) a -m) Ca-aa 4wX6'70 3 VwcWIb-) Cl70) ~

C Cm.um~ C.-ddla. a&)* (dal C'=- ocati -W=6f -adu 47 o <*w-?

CMaapUmwoin2 CKamo 4bmla)2). (di ftia= Wog-lmm cUSW

C M~mla-dlasAInsmHs 4l.. ai~. f cl (INKp Cc04um701b t"3002)
COla INaSIA410 onclb2) 4 Choo~olm- a7014, 97Ol45

(ndMa-bom) 49 CU0O4 . 2) Cao Min-envla.Mlab 70lo421e la 7 S, 2botGE 3))

CWO* IMov-cai @PbG -9=0am3 1)))p2 CU s-otla~~ia- s7
(c-dA4=I-s C0W=73 <tab0OOM

tind06b 2W --- OL~ -wbu mtO4031

C -Cdda..Xcdu <i"3,Wd)(Cm.-talea . eme700 ots=0707i 22b"0W

C4050 C CUUNDNik -' NS03 CPU6 (ldCvAmd-6 via.-ids CU C*1dCmng an76o -ca768622pj~IO)
42Cbs, Sabt Oa.2 Cnmabox-e ma) 220 Csait-.-mar7U -Wlb 22

1*1IJ Calmbe- (.60S d Ce)1)(patW C" Uaf
Cflalik WINNO I 4laP7HW eds"Se#762bodap-~b

C m-carc 4*111 ~ b CdU'4Q (am 2211ondsacnlUo

C C D-hl' -1LG C.P1lS6S*111 cym) vm C*u (c~ai- w=03b 036

kW * CCINN -ezwslM4 CWi--m
WI 0 -101 Cdle 4PUS06s4 C(ANW)mI~ kankine C40492 bnd-WN4)lm

(nCumnoo 40401 a401 Abe clas 4 m 410* C0" C4amalams table) C0aM7f046 pot)

(mCt-alm vUin"apl

(40 0100-4 .0-907P ogcso3*1) 1 (00 004104mou-aw4@0U93-4:sd-FM%%

(4nwl" sswmw *wj~w-mjaU) 4OL - (a3b 4iiLUMOW

(iooiu u-m 4M NO loto

~ -~~~7N) 33(da (ca~m APCLJ34 3)
wor-onboamo w=00041MLMO440))(dL am49 MW1946.4-tL390,1

1490= WL o7H4)C t -lainim,*DLLd34&,ii 4 k 41 400

Ma~ tfm.mc- VWO etwb m40M3 (aft -w4l AwLcl948* 4H3) IM)

((--AOmimvZir (clJU (40- vsim-wi(cop oa-v
(alr~Uhbu -. jtjq@ - ~)C-A MdU

-wOAd f m m (.ddO6 bmU bf" (1Mtmgo tJ*PE (44soug is))

(AI en Dual)n qm@E~e ((mL (clowm 4cL3Su bP
is am am U) (onqs-Wfor 4m aaL3 flb -cm)o

ind (in goaian v7o56e owpU*3kUbta.j co3))6o As-* -~lWlE*

I(atom SS2 opitat OWAUtahJ733u WtMcb, (iqw~

(jo a ub o M 4p tm etjlJ7Un var"zU) -i wa

(do& (Ge s -V t W qa po4" e 1 i H))) (a ft thwU -. g 4M U - 13 .. I)b)a 4

(am (ow ooJa ac a vacc?"G (Mbm U OlmaWo Ca m, (* ~ 2 *i

PC-kt a1MJli mjjja)) dm twaJ.114M~ tlh iaUGn ((OvamLg23 vim)w- i- '
- (M U T J W g m - ((. O 4 0 5 t a l) O i c , 0 0 3 ~ i C c t w

-,4 dcM- 4A) Wvm 3~ (,int 4U ~ b- g s) (j4uSL wb imM .~ t

11 lmU toot3JY-g 3LLT 3 (aMU &V qdM 4 4103 Mi4lm

(mi t-ftjd @a i- biat-4qil wtjLUYMa lan low-owl ~ e~ ia

lM(m-ýl d-btLM UJ -wabWO 43 3))i*gi (umm-iw4w d0lab

((o&otaj*ItJ~f-jq .d.WcZJMbfl) ((do MUU _A .-tUdU -A413,

- (d (= (mbd~rila tvim11US -a414103

((o w CV.O14IW U t-*1U3 (4IS9b is 9 33.in)(i(Wi~ l.I ~ iS40183. x~#141M 4 3)3
WsmmI -~Lk~ ~m~lo~d- -4ia1Pva ej4~W0

-~d U3o tg"M it) g. -,-41 dISL=c

(dfi 4*ss-iini -LC39t 4dM40a4 4wm11i v1U
-d of~lb-i--i 0MS214A4~

4*, 433~4b 4* di4hgsi~i~a lha11lh4144)

(VOMI O A" (4w0ft $ AC b

-1-iiw =: =tm4I qi4@-4

wommo-

o -da 1,. -- 0 M 4Wjft* Llb~j 4@ 141i061I

C&M totw-mdim -p~4S 4w- moN

wwomb ~ (mtwc ýW
W(ot I(amp-ft a0IO 4v&

(a (a--mM ma usm

wpumL "cvfut-Ii

-ý ((4 -bt win l3rw) (4im -Nu~mm
ocwmmb11JI3 (am-w-E ImLW P 3))b4

WCOM8((da (@M4P-O 4dlC20*FW-M

I I=J

s -
j I *1

•
mm m w updm~ nuon

1n -

I I I N 1

I ,-A i lI

II . _I

1 ,1

Appendix G - Learning Study Domains

G-1

Hiking World Description

In this domain a person is hiking with a backpack from one campground to another

campground. The objects in this domain are: backpack, person, and campgrounds.

Relations between objects ars a follows: 1) a person can hold a backpack; 2) a person can

be at a campground; 3) a backpack can be at a campground; and 4) two campgrounds can

be connected to each other. The actions that are performed in this domain are: 1) a person

can pickup a backpack, 2) a person can put down a backpack; and 3) a person can mcove

from one campground to another connected campground.

Tak Define an initial state, goal state, and domain. Have the system find the plan needed

to go from initial to goal state of the following problems.

Problem 1: For the initial state create two campgrounds (camp 1, camp2), a person, and a

back Campi and camp2 are connected together. Have the person and backpack start at

campl. The goal is i have the backpack sitting at camp2.

Problem 2: Use the work from the previous problem. For the initial state creame three

campgrounds (campl, camp2, camp3), a person, and a backpack. Camp1 is connected to

camp2 and camp2 is connected to camp3. Have the person start at camp1 and the backpack

at camp2. This time the goal state is to have the backpack sitting at camp3.

0-2

Loading Truck World Description

In this domain a person will be loading a truck with packages from a warehouse. The

objects in this domain aw:. truck, warehouse, person and packages. Th relations that exist

between the objects me: 1) a package can be on the truck; 2) a package can be in the

warehouse; 3) a person can be on the truck; and 4) a person can be in the warehouse. The

actions that can be performed in this domain are: 1) pick a package up at the warehouse; 2)

Take a package from the warehouse to the truck; 3) put a package in the truck; and 4) Go

from the truck back to the warehouse.

Task Define an initial state, goal state, and domain Have the system find the plan needed

to go from initial to goal state of the following problems.

Problem 1: For the initial state create a wuck, a package, a warehouse, and a person. The

person is at the warehouse along with the package. The goal is to have the package loaded

onto the truck.

Problem 2: Use the work from the previous problem. For the initial state this time have the

person start out at the truck and the package at the warehouse. The goal is again to have the

- loaded onto ft =kru&

G-3

Robot Picking Tulip Description

In this domain a robot is going around to different locations and picking up tulips. The

objects in this domain are: robot with a basket, tulips, and locations. Rlations between

objects am as follows: 1) a robot with a basket can hold a tuip in the basket; 2) a robot with

a basket can be at a location; 3) a tulip can be at a location; and 4) two locations can be

c ed to each other. The actions that are performed in this domain are: 1) a robot with a

baske can pickup a tulip and put it in a basket; and 2) a robot can move from one location

to another connected location.

TakL Define an iWd state, goal state, and domai Have the system find the plan needed

to go from initial to goal state of the following problems.

Problem 1: For the initial state create two location (Locl, Loc2), a robot, and a tulip. Locl

and Loc2 are connected together. Have the robot start at LocI and the tulip start at Loc2.

The goal is to have the robot hold the tulip in its basket

Problem 2: Use the work from the previous problem. For the initial state create three

locations (LocI, Loc2, Loc3), a robot, and two tulips. LocI is connected to Loc2 and Loc2

is connected to Loc3. Have the robot at LocI1, a tulip at Loc2, and a tulip at Loc3. This time

the goal state is to have the robot holding two tulips in its basket.

G4

