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PREFACE

The mission of the Intelligent Training Branch of the
Technical Training Research Division of the Human Resources
Directorate of the Armstrong Laboratory (AL/HRTI) is to
design, develop, and evaluate the application of artificial
intelligence (AI) technologies to computer-assisted training
systems. The current effort was undertaken as part of
HRTI's research on intelligent tutoring systems (ITS) and
ITS development tools. The work was accomplished under
work unit 1121-09-81, Application of Artificial Neural
Networks to Modeling Student Performance. The proposal for
this research was solicited using a Broad Agency
Announcement.
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Probabilistic Student Modeling with Knowledge Space Theory'

Michael Villano and Charles Bloom

Honeywell Sensor and System Development Center
3660 Technology Drive

Minneapo4s, MN 55418

Abstract
This article presents Knowledge Space Theory (Falmagne and Doignon) as the
foundation for a probabilistic student model to be imbedded in an Intelligent
Tutoring System (ITS). Applications to typical IMS student modeling issues such as
knowledge representation, adaptive assessment, curriculum representation,
advancement criteria, and student feedback are discussed. Several factors contribute
to uncertainty in student modeling such as careless errors and lucky guesses,
learning and forgetting, and unanticipated student response patterns. However, a
probabilistic student model can represent uncertainty regarding the estimate of the
student's knowledge and can be tested using empirical student data and established
statistical techniques.

Introduction
The student model in an Intelligent Tutoring System provides support for the
following functions: adaptively assessing the student's mastery of the course
material, representing the student's progress through the curriculum, selecting the
appropriate level of hinting and explanation, determining advancement and
facilitating student feedback. Ideally, the student model should maintain as much
Information about the student's knowledge as is necessary to meet the demands of
the ITS. In addition to dynamically adapting to new information obtained from the
student's responses during an individual's interaction with the ITS, the student
model should also be capable of utilizing assessment experience obtained from a
population of students. The motivation for a probabilistic student model stems
from the need to represent uncertainty regarding the estimate of the student's
knowledge. Several factors contribute to uncertainty in student modeling such as
careless errors and lucky guesses in the student's responses, changes in the student
knowledge due to learning and forgetting, and patterns of student responses simply
unanticipated by the designer of the student model.

The purpose of this paper is to consider the application of Knowledge Space
Theory (Falmagne and Doignon) as a probabilistic student model imbedded in an
Intelligent Tutoring System (iTS). An ITS for high school mathematics is in the
planning stages using KST (Falmagne, personal communication, November 1991).

IThis rsarch was supported in pan by Armsog Laboratory, Human System Division (APSC),
United stain Air Force, &ooks AFB, iX 78235-5600 under contract number F33615-91-C-00O.



Probabilistic Student Model

Knowledge Space Theory was developed primarily for adaptive, computerized
knowledge assessment. Therefore, some conjecture will be necessary to infer how
the various functions of a student model could be handled by this theory.

Knowledge Representation in the Student Model

Knowledge Space Theory
A comprehensive theory of knowledge representation and assessment has been
developed by Falmagne, Doignon and their associates (Falmagne and Doignon, 1985;
Falmagne, Koppen, Villano, Doignon and Johannesen, 1990). In their Knowledge
Space Theory (KST), the basic unit of knowledge is an item. Each item can be in the
form of a problem or an equivalence class of problems that the student has to solve.
An item may also be presented as a task which the student has to perform if the goal
is to assess procedural knowledge. Thus, a body of knowledge is characterized by a
set of items called the domain. The following items will be used as examples
throughout the text:

a.4x7=? b. 1/4x1/7=? c. 0.4x7= ? d. 40%of7= ?

The student's knowledge state is defined as the collection of items the student is
capable of solving. For example, the knowledge state [a, b, d) corresponds to a
student who can solve Items a, b and d but who could not solve Item c. Not all
subsets of items are considered to be feasible states. For example, if a student is
capable of solving the percentage problem (Item d) then we may be able to infer that
the student can perform single-digit multiplication (Item a) and thus, any state that
contained Item d would contain Item a. We also might not expect to find a student
who could answer Item d and none of the other items, thus (d) would not be
considered a feasible state. The collection of all feasible states is called the knowledge
structure. A knowledge structure must contain the null state J ) which corresponds
to the student who fails all the items, and the domain which corresponds to the
student who has mastered all the items. An example knowledge structure for the
four items a, b, c, d appears in Figure 1.

/ (ab d)

0 -b(a) \ (a.b, c)- (a,b,c,d)0 --- {. \ { ac} Ld}

Figure 1. Example knowledge structure.

An Important special case of a knowledge structure occurs when the collection
of states Is closed under union. That is: if two subsets of items are states in the
knowledge structure then their union is also a state. A knowledge structure
satisfying this condition is called a knowledge space. In Figure 1, notice that
(a, b, d) u (a, c, d) - (a, b, c, d), which is a state in the knowledge space. An additional
and stronger condition on a knowledge space involves the assumption that any
knowledge state is on a "learning peth,_ consisting in an increasing sequence of
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Probabilistic Student Model

states. Beginning with the null state and finishing with the full set of items, any
state in the path different from the null state contains exactly one more problem
than the preceding state. Such a learning path is called a gradation. The following
chain of states illustrates one of the gradations from the knowledge space in Figure
1: ({ c (a) c (a, b} c (a, b, d} c (a, b, c, d}. If any state of the knowledge structure is
contained in at least one gradation, the knowledge space is said to be well-graded.
The knowledge space in Figure 1 is well-graded. The four gradations can be
represented by the corresponding order in which the items can be mastered: abdc,
abcd, acbd, and acdb.

There are two concerns to be addressed regarding storage issues for this form of
knowledge representation. For n items, there are 2n possible knowledge states.
However, in the example, there are only 8 out of 16 possible states in the knowledge
space. There are n! possible gradations, but in the example there are only 4 out of 24
possible gradations. In practice, there are much fewer states (and gradations) than
the theoretical maximum. In the simplest case, if there is a simple order of the items
(a Guttman-scale) yielding a single gradation (learning path) through the items,
then there are oniy n+2 feasible states. In a study involving 50 items in high school
mathematics, the size of the knowledge spaces obtained from systematically
querying experts ranged from 900 to around 8,000 states-roughly the same order of
magnitude across experts (Kambouri, Koppen, Villano, & Falmagne, 1991). The sizes
of these knowledge space are far less than the theoretical maximum of 250 - 1015.

The knowledge space forms the core of a knowledge assessment system. The
goal of a knowledge assessment system is to locate, as efficiently and accurately as
possible, a student's knowledge state in the knowledge structure. Stochastic
knowledge assessment routines have been developed in which uncertainty
regarding the student's knowledge state is represented by a probability distribution
on the states (Falmagne & Doignon, 1988; Villano, 1991). To each state K in a
knowledge structure K, we assign a probability P(IO. The assessment routine updates
the probability distribution on the states to be consistent with the student's
responses to a carefully chosen sequence of items. From the probability distribution
on the states, we can also compute the probability of correct response to an item p(q)
as

p~q P(K)

where Kq is the set of states which contain item q. The probability of an incorrect
response is I - p(q). Item parameters which can be estimated from stochastic
learning models (Falmagne, 1989a; Villano, 1991; Falmagne, 1991a; Falmagne, 1991b)
applied to empirical student data include the probability of a careless error and the
probability of a lucky guess.

Student Model Construction
The two basic steps involved in the construction of a probabilistic student model are
1) building the structural relationships among the items and 2) determining the
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Probabilistic Student Model

initial values for the probabilities in the models. Both of these steps rely on the
judgments of experts or require empirical data from a population of students.

Building the Structural Model
Several methods for building the knowledge structure in KST have been explored:

1) Expert Judgments - an application of the QUERY Routine has been carried
out by Kambouri, Koppen, Villano and Falmagne (1991). QUERY (Koppen and
Doignon, 1990) is a computerized procedure designed to systematically question an
experienced teacher/tutor and obtain the expert's "personal" knowledge structure.
The results obtained for 50 items in high school mathematics revealed that the
procedure could be applied in a realistic setting. Alreement among the experts was
obtained on gross measures such as item difficulty, the relative size of the structures
and the correlation of experts' responses given to the same questions posed by the
routine. The limitations of this approach include a lack of agreement between the
states which make up the experts' structures and the absence of an estimate of the
distribution of the states for a population of students. The lack of agreement
between the experts suggests that some of the experts differ concerning their ability
to perform the task. Villano (1991) compared the performance of the individual
experts' knowledge structures in computerized assessment routines and
demonstrated a significant advantage in using some experts' structures over others.

2) Empirical Data - Villano (1991) investigated various methods for building
knowledge structures. A refinement procedure was developed which involved the
application of a probabilistic model to a large (N=60,000) reference set of students.
Guttman-scale based structures were built by ordering items by increasing item
difficulty to form a single learning path through the items. A third method utilized
repeated applications of stochastic assessment routines to determine the collection
of feasible states from the power set.

3) Neural Networks - A novel application of neural networks to construct a
knowledge structure has been demonstrated by Harp, Samad and Villano (1992).
Self-organizing feature maps are used to capture the possible states of student
knowledge from an existing test database in the domain of aircraft fuel
management. Noise-tolerance and insensitivity to feature map parameter values.
are demonstrated.

Initial Uncertainty of the Student Model
In the absence of empirical data (in the form of expert judgments or student
responses) regarding the likelihood of knowledge states in a population of students,
all the states would need to be considered equally likely. However, one of the
significant benefits of probabilistic student models is the capability of incorporating
knowledge about a population of students to improve the initial estimate of an
individual student by the student modeL

A variety of a priori probability distributions on the knowledge states have been
studied by Villano (1991). The following distributions were implemented and
evaluated in stochastic assessment rutines

1) Uniform Prior - all states in the structure are initially equiprobable.
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Probabilistic Student Model

2) Refined Prior - the probabilities of the states are parameters estimated
directly by applying a probabilistic model and maximum likelihood
techniques to a large (N=60,000) reference set of student responses.

3) Assessed Prior - the probabilities of the states are estimated by taking the
"average" of the final distributions resulting from the complete assessment of
a large (N=60,000) reference set of student responses.

Falmagne (personal communication, November 1991) suggests that information
regarding the background of the student, such as the student's age, level of
education, prior training, etc. could also be used to "prime" the a priori probability
distribution. This priming could be similar in spirit to the forward chaining that is
often done at the start of some diagnostic expert systems.

Applications of the Student Model
Adaptive Assessment Item Selection
For an assessment routine to be adaptive, it must be capable of determining the next
"best" question to pose to the student based on a dynamic student model. In KST,
one method for selecting the most "informative" item to ask is choose the item
with the least predictable response (Falmagne & Doignon, 1988; Villano, 1991). For
the half-split item selection rule, we choose the item whose probability of being
answered correctly, p(q) is closest to .5. The reasoning is as follows. If p(a) = .85, then
Item a would not be informative because it is almost certain the student would
respond correctly. If p(d) = .1, then Item d is not informative because we are fairly
certain (1-.1= .9) that the student would fail this item. If p(c) = .5, then Item c would
be the most informative item to ask of these three because there would be an equal
chance of the student passing or failing item c. Item c is thus the item for which our
estimate of how the student will respond is the most uncertain. (If two or more
items are equally informative, then we randomly choose from among those items.)
There is an entropy-based rule in KST in which we try to select the item which will
bring about the greatest reduction in the entropy of the probability distribution on
the states, but it has been shown to be equivalent to the half-split question selection
rule under certain conditions (Falmagne and Doignon, 1988).

Adaptive Assessment Updating Routine
A dynamic student model would necessarily require periodic updating with each
new item response obtained from the student. In order to perform adaptive
assessment, an updating rule must be specified to maintain the current estimate of
the student's performance.

In the stochastic knowledge assessment routines of Falmagne and Doignon
(1988; Villano, 1991) the probability distribution on the states is maintained through
an application of an updating rule which modifies the probabilities of the states to be
consistent with each new response obtained from the student. For example, if the
student responds correctly to an item, then the probability of the states which
contain that item are increased, while the probability of the states which do not
contain that item are decreased. Various updating rules are possible. The
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Probabilistic Student Model

multiplicative updating rule specifies an operator (greater than 1) which is.used to
increase (by multiplying and then normalizing) the probability of the states
consistent with the student's response. The larger the value of the parameter, the
greater the change in the distribution. The calibration of such a parameter has been
demonstrated by Villano (1991).

The multiplicative operator can be indexed by the item asked and the response
given (correct or incorrect). Thus, a correct response to a particularly diagnostic item
could have a stronger effect on the change in the mass of the probability distribution
than some other less diagnostic item. (For example, items with low probability of a
careless error could have higher update parameters. The response to these items
would be judged to be more reliable due to the lower error rate.) During the
instructional phase of an ITS, incorrect responses may be more prevalent as the
student may be less cautious than during testing. Therefore, incorrect responses
could have lower updating parameters set to exert less influence on the change in
the distribution during the instructional phase. The multiplicative updating rule
can be regarded as a generalization of a Bayesian updating rule as pointed out by
Koppen in Falmagne and Doignon (1988).

Knowledge Type Representations
Both declarative and procedural knowledge can be represented and integrated in a
knowledge structure. A distinction between these two traditional knowledge types
may be necessary for expository purposes (lesson presentation may diffe_ for
teaching declarative vs. procedural knowledge) as well as for testing formats.
Procedural knowledge may be tested by presenting a task for the student to complete
and monitoring the student's performance. Declarative knowledge, although
implicitly tested during the completion of a task, can be assessed directly using
standard fill-in or multiple choice questions. In order to satisfy these and other
concerns for maintaining the distinction between declarative and procedural
knowledge, the complete knowledge structure encompassing both can be divided in
to two "substructures" as indicated in Figure 2.

Curriculum Representation
Various learning paths through a curriculum may be represented in a student
model to accommodate different instructional strategies of educators and different
learning styles on the part of students. If an item has more than one unique set of
prerquisites, then alternative paths through the items should be represented. The
curriculum path determines the next lesson (associated with an item) to teach in a
directed, as opposed to an exploratory ITS.

In KST, the learning paths (called gradations) may be used to guide the teaching of
the student. In a well-graded knowledge space, the next lesson to teach is the one

tested by the next item in the learning path. In the event that there is more than one
path to follow from the current knowledge state, you may choose the "easiest" item
(the item with the highest probability of being answered correctly), or the item along
the most traveled (i.e, most probable) learning path. Additional parameters which
should affect teaching include the history of the knowledge state over time and an
estimate of the learning rate of the student. The learning rate of the student can be
estimated using the stochastic learning path model specified by Falmagne, (1991b).
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Probabilistic Student Model

Knowledge Structure with Declarative and Procedural Knowledge..
(a) (A, a, b, c) {A, C, a, b, c)

(} (a, b) ( (A, a, b) [A, B, C, a, b, c, d)

Declarative Knowledge Substructure
(a) (a, b, c}

(} (a, a, ba, bc,d

Procedural Knowledge Substructure

-(A) (A Q A, B, CQ\ /
(A, B)

Figure 2. An example of a knowledge structure and two of its substructures. The
declarative items appear as small letters. The capital letters denote procedural items.

If all the parameters of the model have been estimated for a population of students,
then we can re-estimate the learning rate parameter for a particular student. If we
observe n patterns of responses at different times, ti, t2, ...tn, then we can estimate
the students' learning rate by maximizing the likelihood of the student's learning
rate parameter at time tn.

Hint Level Selection
The content of a hint or explanation in an ITS relies upon the student model's
representation of the student's level of mastery of the material. Advice or help to be
presented to the student should be tailored to the individual student's needs.
Advanced students may prefer to be given more terse explanations, whereas novice
students could be given more elaborate guidance. The coaching which a student
receives from the ITS should be careful only to include references to concepts which
the student model indicates as having been mastered.

The level of explanation or hints in KST could depend ul ,,n wrhether the
student is being assessed at a coarse substructure or at a finer, morm...gnostic level.
The height of an item in the knowledge structure is a rough measure of item
difficulty and could also be used to determine the level of hinting. The height of an
item h(q) is defined as the smallest number of items which must be mastered before
q. (Kambouri e' al., 1991). In the example knowledge space in Figure 1, h(a) = 0 and
h(d) = 2. (There are no items which must be mastered before Item a and at least 2
Items (a, b or a, c) which must be mastered before Item d. If the items span a wide
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Probabilistic Student Model

range of heights, then each level of help could be associated with a particular height
interval. For example, if we wish to offer 3 levels of help in an ITS (beginner,
novice, advanced) and the heights for 20 items range from 0 to 12, then Table 1
shows one possible mapping of the item height to the hint level.

Table 1
Definition of Help Level from Item Height

Item Height Help Level

0 to 3 beginner
4 to 8 novice
9 to 12 advanced

An item parameter such as the probability of a careless error may also influence
hinting. For example, if an item had a relatively high probability of a careless error, a
hint might warn the student to take extra time to check and confirm the answer to
the item.

Advancement Criterion
A student's advancement through the curriculum may need to be directed or at least
monitored by the ITS, particularly in domains such as mathematics, where
advanced concepts will not be easily mastered without a strong understanding of
fundamental principles or prerequisites. (A debate comparing directed vs.
exploratory learning is well beyond the scope of this paper.)

The student would be expected to master the current item in the learning path
before moving on to more advanced items. If this constraint is relaxed, a criterion
could be specdied to control advancement. Thus, mastery of an item could be
defined by a score on equivalence class of items. In addition, a minimum number of
instances of an item may be required to which the student must respond.

Student Feedback
An inspectable, detailed representation of the learner's mastery of the material can
provide feedback regarding the student's most recent accomplishments and most
pressing weaknesses.

In KST, rather than reporting a single score (ie, ability = 95%), we can be much
iftore bpecific and indicate the most advanced item that has been mastered as well as
a list of the missing items and/or future items to be mastered. If a single score is
preferred, we should not just use "blind" averaging of the scores on the items, but
rather take advantage of diagnostic information for the specific items. For example,
weighting the average score by the heights of the items. Ideally, we would prefer not
to lose the distinction between a student who can answer many simple items versus
one who can answer a few difficult items. A proposed project that has been on the
table for a number of years in Falmagne's lab (personal communication) involves
the generation of diagnostic dialogue once a student's knowledge state has been
Isolated. The following issues would need to be addressed in the development of
such a system:
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1) an analysis of the items in terms of skills or concepts should be performed.
2) quantitative aspects of skill should be translated into linguistic terms.
3) degrees of doubt regarding the diagnosis should be expressed.

"Student probably knows multiplication, but may be weak in percents."
4) broad issues in generating discourse would need to be addressed.

Evaluation of a Probabilistic Student Model
An important consideration for utilizing probabilistic student models in an ITS is
the ability to quantitatively evaluate their effectiveness using established statistical
techniques on simulated and real student data. Some points to consider when
evaluating student models are given below:

Error sensitivity. The responsiveness of the student model to careless errors or lucky
guesses on the part of the student is a critical feature of probabilistic student models
and should be carefully studied.

Parameter sensitivity. How critical to the success of the student model are the initial
parameter estimates? The importance of the estimates of the a priori probability
distribution on the states and the item parameters has to be reviewed.

Efficiency. Ideally, a student model should minimize the number of questions that
are necessary to obtain an accurate assessment of the student. The cost of asking
additional items should be measured against any increase in assessment accuracy.

Learning rate. How quickly the student model converges to an accurate estimate of
the state of the student's knowledge is also of interest and related to the issue of
efficiency.

Assessment accuracy. Many of the above considerations rely upon some measure of
the quality of the assessment. One such measure involves computing a prediction
index (Villano, 1991) which represents the proportion of student responses correctly
predicted for items which have not yet been asked during the assessment.

Discussion
Knowledge Space Theory was developed to conduct efficient, computerized student
assessments and therefore may be a viable choice as a probabilistic student model. A
variety of techniques have been investigated for building the structural and
probabilistic components of the student model in KST. A realistic concern regarding
the implementation of knowledge spaces is the possible combinatorial explosion in
terms of the size of a knowledge space if there is a significant lack of structure
among the items. The size of a knowledge structure may not be an important
consideration with the rapid increases in the power and storage capacity of modern
computers. A large number of research issues remain to be explored in regards to
applying probabilistic student models to an Intelligent Tutoring System. However,
the goal of developing a dynamic, non-deterministic student model capable of
robust, individualized assessment may be well worth the cost.
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