
Technical Report

CMU/SEI-92-TR-31
ESC-TR-92-031

Carnegie-Mellon University

Software Engineering Institute

Analysis of a Software
Maintenance System:
A Case Study

Howard M. Slomer
Alan M. Christie

November 1992

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment or administration
of its programs on the basts of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the Educational
Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state or local laws, or executive orders

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state or local laws, or executive orders While the federal government does
continue to exclude gays, lesbians and bisexuals from receiving ROTC scholarships or serving in the military, ROTC classes on this campus are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh. Pa
15213. telephone (412) 268-6684 or the Vice President for Enrollment. Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh. Pa 15213, telephone
(412)268-2056

Technical Report
CMU/SEI-92-TR-31

ESC-TR-92-031
November1992

Analysis of a Software
Maintenance System:

A Case Study

Howard M. Slomer
U.S. Department of Defense

Alan M. Christie
CASE Environments Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Abstract 1

1 Introduction 1

2 A Brief History of the Project 3
2.1 The Early Years 3
2.2 Configuration Management Arrives 5
2.3 CM Continues to Evolve 6

3 An Overview of the Project Software Process 7
3.1 The Change Request Cycle 7
3.2 The Change Control Board 8
3.3 Configuration Management 8
3.4 Unix Directory Structure 9
3.5 System Structure and Components 10
3.6 User Support 11

4 The Change Cycle Illustrated 13
4.1 How to Read the Model 13
4.2 The Top-Level View 13
4.3 Identify Problem 16
4.4 Review and Approve 18
4.5 Install Modifications 18
4.6 Perform CM Activities 21
4.7 Do External Testing 21
4.8 Revise Change Request 24
4.9 Do Account Checks 24
4.10 Move s. Files to CM Repository 24
4.11 Build by CM Group 28
4.12 Build by Developers 29
4.13 The Build Process 29
4.14 Perform Build 31
4.15 Execute Make File 31
4.16 Cycle Through Sub-Directories 35

5 Lessons Learned and Future Directions 37
5.1 The Build Process 37
5.2 Testing 37
5.3 Automation 38
5.4 Buy Versus Build 38

CMU/SEI-92-TR-31

6 The Project Software Process and the Capability Maturity Model 41
6.1 Goals 41
6.2 Commitment to Perform 41
6.3 Ability to Perform 42
6.4 Activities Performed 44
6.5 Monitoring Implementation 49
6.6 Verifying Implementation 49
6.7 Conclusions 49

7 Reusing Elements of the Project Software Process 51
7.1 Reuse Building Blocks 51
7.2 Some Simple Reuse Examples 52

8 Summary and Conclusions 55

Appendix A How to Read the Process Diagrams 57

Appendix B Unix Scripts for System Build 61

Appendix C Sample Makefile 63

Appendix D Sample Compile/Build/lnstall Script 65

Appendix E CCB Change Request Form 71

Appendix F Example of an Initialized CR Form 73

References 77

CMU/SEI-92-TR-31

List of Figures

Figure 3.1 Relationship Between Project Databases
Figure 4.1 RoadmapThrough the Process Model
Figure 4.2 Project Process Overview
Figure 4.3 Process Flow for: Identify Problem
Figure 4.4 Process Flow for: Review and Approve
Figure 4.5 Process Flow for: Install Modifications
Figure 4.6 Process Flow for: Perform CM Activities
Figure 4.7 Process Flow for: Do External Testing
Figure 4.8 Process Flow for: Revise CR
Figure 4.9 Process Flow for: Do Account Checks
Figure 4.10 Process Flow for: Move s. Files to CM REP
Figure 4.11 Process Flow for: Build by CM Group
Figure 4.12 Process Flow for: Build by Developers
Figure 4.13 Process Flow for: Build Process
Figure 4.14 Process Flow for: Perform Build
Figure 4.15 Process Flow for: Execute Make File
Figure 4.16 Process Flow for: Cycle thru Sub-Directories
Figure 4.17 Unix Tree Structure
Figure A.1 A Simple Process Diagram
Figure A.2 An Example of Boolean Composites

10
14
15
17
19
20
21
23
24
26
27
28
29
30
32
33
34
36
58
59

CMU/SEI-92-TR-31

Analysis of a Software Maintenance System: A Case Study

Abstract: To design, implement, and operate a successful software
development process, exposure to similar existing systems is invaluable. The
objective of this paper is thus to document and analyze an existing, moderate
size, software maintenance project. The project, which supports the
maintenance of a software environment has, through incremental
improvement, become very effective. However, this effectiveness has only
been achieved through struggle, compromise, and creativity. The paper
documents the evolution of the project, providing insights into how change was
managed, and defines and formally models the project as it existed until
recently. The project's process is still evolving, and recent changes, while not
formally modeled, are also described.The results of this modeling are applied
1) to compare the project's practices from a perspective of the SEI Capability
Maturity Model (CMM) [Paulk 91, Weber 91] and 2) to address briefly the issue
of process reuse. Comparison to the CMM resulted in an identification of
strengths and weaknesses of the project's software process. In the
examination of reuse issues, three hypothetical examples of process reuse are
examined.

1 Introduction

This report describes how software maintenance is performed within a project supported by
the U.S. Department of Defense.1 The software environment, which is supported and main-
tained by the project, is designed to process large amounts of textual information and to re-
trieve information from dissimilar remote systems. It provides a set of Unix tools which
includes: a high-performance distributed editor, a data base, a forms generation package, a
mail system, application programs and standard user interface. The project also supports a
large collection of library modules (about 1000) that are used both internally and by other soft-
ware development organizations.The project maintenance system is now quite mature, sup-
porting approximately 350,000 lines of code and having processed to date approximately
2000 change requests.

As background, this report first provides a history of the project from its inception, identifying
issues that arose and describing how those issues were resolved (Section 2). The report then
describes the project environment both textually and using a more formal model. The textual
description is useful for gaining an overall qualitative understanding and for providing insights
into the project's operation (see Section 3). The formal model of the project software process
(described in Section 4) provides three benefits. First, it graphically defines roles, activities,
products and so forth and their relationships. It also defines communication links in the pro-
cess and conditions under which activities can occur. Such a formal model provides a level of

1 For security reasons the project cannot be named, and hence in this document it will simply
be referred to as 'the project."

CMU/SEI-92-TR-31 " ~ T

precision and rigor for defining the process which is difficult to attain through textual descrip-
tion. Second, such a model is useful as a basis on which to start process improvement. Often
what is ineffective in a process is clear, but having an agreed upon definition of the process
provides a means for communication about change. Finally, defining a formal model of the
process provides a vehicle for training new members and providing a corporate memory in
"how things are done." It provides a means for new project members to rapidly understand and
visualize the environment in which they will be working, and it establishes continuity of process
when experienced members leave the project. Some insights into the operation and the direc-
tions where these insights are currently leading the project are also discussed (see Section 5).

As a by-product of developing a detailed project process model, it was evident that it would be
a simple but effective exercise to contrast the configuration management practices of the
project with those of the Capability Maturity Model [Paulk 91]. This comparison resulted in
some interesting conclusions with respect to the strengths and weaknesses of the project's
process (see Section 6). Through a formal model, parts of the process may be identified as
candidates for reuse. These process building blocks whose success has been established (at
least within the project) may be useful to others who are considering the installation of a similar
environment. Some of these process elements may come with supporting scripts, thus allow-
ing rapid tailoring of a new, automated environment (see Section 6).

The project software environment was built in-house on top of the Unix operating system [So-
bel 89]. One issue which is often encountered is whether to build such an in-house system or
to buy an external product and tailor it to the needs of the organization. Having experienced
the "build" option, the project can lend insight into the pros and cons of this approach (Section
7).

Appendix A provides a brief description of the graphical terminology used by the process mod-
els shown in Section 4. The tools and artifacts which were developed to support the smooth
functioning of the process are also described in some detail. Appendices B through F provide
details of these artifacts and outlines of how these tools were implemented.

CMU7SEI-92-TR-31

2 A Brief History of the Project

2.1 The Early Years
The project was originally designed to provide a set of tools (editor, mail system, database,
forms package and others) to process large amounts of textual information and to process and
retrieve information from dissimilar remote systems. To provide this capability, multiple re-
quirements were initially imposed on the system design. Some of these are listed below:

• The application programs were required to provide multiple language
support. All project programs, including the text editor, had to support the
extended ASCII character set.

• The project text editor, which is the common user interface to many of the
other programs, was required to provide eye-blink response (less than one
second) without being constrained by file size.

• The project was required to provide an environment which isolated users
from the operating system and, when necessary, from each other.

• The project hardware systems were required to transfer files in both
directions to other project systems and between the project systems and
mainframe systems such as the Cray and IBM 360.

The multiple language requirement was satisfied by using the eighth bit of each byte to extend
the supported character set to 256. This performance requirement was met by designing the
editor to a) distribute the processing between the terminal and the computer, and b) to read
ahead in either direction anticipating the user's need, and transferring the next block of text to
the terminal before it is required. The security requirement was met by replacing the Unix shell
(command interpreter) with one which provided a limited view of the system to the user, based
on the security requirements. All tools enforce a multi-layered security algorithm based on the
user's "need-to-know" and on the terminal's location. Commercial products were not available
at the time which met any of the operational requirements.

The project was first developed on a DEC PDP-11/70 running a modified Unix kernel and Del-
ta Data 3000 terminals. The software was logically divided into two major functional sections:
terminal software and host computer software.

For several years the project did not implement formal configuration management procedures.
Even simple Unix tools like SCCS2 and MAKE were not used. The source files, compile
scripts, and install scripts were stored in a single tree structure of Unix directories. The devel-
opers had complete access to all sources and made changes in place.

A new release was generated by copying the current state of the development tree to an emp-
ty file system and then compiling and linking everything. When the entire set of programs was
compiled and built successfully, a tape was made. This was designated as the new "release."
Backups were made daily to prevent potential disasters.

2 SCCS is the name of the source code control system which runs under Unix.

CMU7SEI-92-TR-31 3

When serious problems were discovered between releases, they were fixed immediately and
the new versions of the programs distributed to users. New software and upgrades to existing
programs were advertised and distributed between releases. No attempt was made to employ
version control or to provide a means of identifying which versions of sources were used to
produce a given executable. Problems were fixed by installing the latest versions of the pro-
gram in development and working from that point.

This "system" worked well for several years. Problems were fixed quickly, new releases were
generated at will, and in general the project's customers were happy.

There were other factors which contributed to the success of the project:

• The project leader was a highly skilled computer scientist who worked with
the development team and was personally responsible or coding many of the
most complex modules.

• The team was small and worked well together to solve difficult problems.

• Everyone informally knew which of the project files the other team members
were changing and automatically avoided potential CM problems.

• Technical decisions were openly discussed and everyone had a chance to
contribute.

As the project continued to grow and expand, however, the lack of formal configuration man-
agement started to cause real problems.

New host computers (AT&T 3b20 and 3b15) and terminals (IBM AT) were introduced, while
the old systems (PDP-11/Delta Data 3000) continued to be used by one of the major opera-
tional groups. The developer faced the problem of porting the software to new hardware plat-
forms while continuing to support the old systems. Enhancements and problem fixes had to
be applied to multiple versions of the software. The situation improved somewhat when life
cycle support for the old systems was transitioned to the operational organization. The old and
new systems were tightly coupled across a network, which meant that many of the software
changes had to be coordinated. The problem changed from maintaining two sets of software
on dissimilar platforms to that of coordinating changes between two separate organizations.

New network technology (TCP/IP) was introduced with the new hosts. Since several of the
original systems were still in use and needed to interface with new systems, the old network
software was ported to the new systems. Both sets of network code and the application pro-
grams that interfaced to them had to be maintained.

As high performance workstations became available, many of the IBM AT terminals were re-
placed with terminals from Sun Microsystems. The developers were not only faced with port-
ing to a new variation of the Unix operating system but also to one that was a moving target.
Unlike other computer manufacturers, Sun frequently introduced new, incompatible versions
of their operating system directly to the user community. The team now faced the problem of
maintaining multiple versions of software on the same hardware platform. Introduction of high
performance Sun 3 and SPARC workstations blurred the distinction between the host and ter-

CMU/SEI-92-TR-31

minal functions, project users now wanted the traditional host software (data base, forms gen-
eration package, mail and other applications) ported to the new work stations.

Several of the original developers resigned from the project and were replaced by less expe-
rienced people. The size of the development team was increased to try to cope with the new
development and maintenance problems. As a result, communication between developers
started to become a problem.

The project was doomed unless a way to manage change could be found.

2.2 Configuration Management Arrives

The development team and management held a series of meetings to determine what could
be done to solve the problems. All agreed that a formal system of managing change and con-
trolling software build and release must be introduced. A fundamental decision was made that
the developers would not exercise configuration management on their own software. A new
work center was established to manage configuration control. After several commercial and
government systems were examined, the new CM group decided that none was suitable and
that they would have to develop their own programs and procedures. The CM system now in
place evolved over several years and continues to evolve. The basic requirements for the new
CM system were not formally documented. They evolved during a series of heated meetings
between the new work center chief and the development team. The following list represents
some of the important requirements of the proposed system:

• The CM system must be as non-intrusive as possible; development and
maintenance cannot stop while it is being installed.

• A way of identifying programs must be part of the new system. All programs
must be traceable to a formal release-version number. Additionally, all
programs must be traceable to the versions of the sources, include files and
library modules which were used to generate them.

• A configuration control board (CCB) must be established and meet weekly to
approve all changes. A formal, automated method of submitting change
requests must be implemented.

• Changes approved by the board must be traceable from executables to
specific versions of all files (source files, include files, makefiles, compile
scripts, external #ifdefs, etc.).

• An independent test team must be assigned to do quality assurance. A new
release would not be distributed without their approval.

• A CM baseline repository containing all approved items must be established.
All new baselines had to be generated from the repository and not from the
development system.

CMU/SEI-92-TR-31

2.3 CM Continues to Evolve

The CM software and procedures are not static but are continually evolving to adapt to the
changing needs of the project. Prior to suggested changes, CM and development managers
carefully evaluate possible alterations to the CM system. Some of the developers view many
of the CM practices and procedures as a hinderance to development and tend to resist chang-
es. Modifications which do not directly benefit the developers or ones which divert significant
development resources tend to be resisted.

One issue which arose between the developers and configuration managers was whether or
not to drop the old compile and build scripts in favor of the Unix MAKE utility. The developers
argued that MAKE was not consistent across platforms and that to adopt MAKE would add
unnecessary maintenance problems. The compromise reached was to adopt MAKE but retain
all compile and build functions in the compile/build scripts. MAKE was thus used to determine
dependencies and to start the compile scripts which then performed the software build func-
tion.

A second issue which arose between the two teams involved the format of the files delivered
to the STAGE tree (see Section 3.4 for a description of this tree). The CM manager wanted
the items delivered to STAGE as ASCII files that the CM team would then check in to their
version of the tree in the CM repository. The development manager argued that the delta func-
tion was too important to delegate and should remain a developer function, and that the up-
dated SCCS files should be delivered to the STAGE tree. The option proposed by the CM
organization was adopted. After a short period of time mistakes made by the CM team caused
inconstancies to develope between the repository and development SCCS files. The original
decision was reversed; the SCCS versions of the files are now delivered to the CM team.

In summary, the project evolved from a single platform, single customer system into areas that
the original developers could not have predicted. The customer base grew as more organiza-
tions adopted the system. The number of supported platforms grew with the increased cus-
tomer base and with the evolution to inexpensive computer hardware. As the distinction
between terminals and computers became blurred by the introduction of high performance
workstations, much of the original software had to be redesigned. All of these changes high-
lighted the need for improved change management. The configuration management system
adopted was designed to support current needs and to be flexible enough to grow with the
project. The crucial decision which led to the current effectiveness of the process was the sep-
aration of configuration management activities from those of the developers. Without this re-
organization, the complexity of the process would probably have led to the demise of the
project.

CMU/SEI-92-TR-31

3 An Overview of the Project Software Process

The current project software process has several major features. First, requested changes,
change authorization, change status, and technical approach are all documented in the
change request form (see Appendices E and F). The CR form thus provides an "information
backbone" to the whole change process. Second, a change control board is central in autho-
rizing all proposed changes. Third, configuration management of all revised software is the re-
sponsibility of an independent CM group, rather than the software development group. Finally,
the build process is performed in the same manner by both the development and CM groups
using a consistent set of Unix scripts which allow for a high degree of automation and porta-
bility (see Appendices B, C, and D).

3.1 The Change Request Cycle

Problem reports and requests for new features usually originate with the users. A developer
is assigned to work with the user to determine if the problem is real and if it is a software related
problem. The developer then initiates and submits a formal change request (CR) to the CCB.
Change request generation is automated through a series of programs and shell scripts. The
change request program provides a template containing a series of fields which must be filled
out by the developer. The software assigns a unique number to the change request which will
be used to track the CR through its entire life cycle. The CCB change request then provides
two-way formal communication between the board and the developers. The software is imple-
mented by two programs:

• ccbnew (generate an empty template and assign a unique number to it)

• ccbold # (retrieve for modification a previously generated CCB change
request)

The CCB meets once a week to consider all new requests received during the week and to
take action on old requests which have not been finalized. CCB change requests may cycle
between the developer and the board several times before final disposition. A typical cycle will
start with a report of a problem with a proposed solution. The board may reject the change
request because it does not contain sufficient information or because the board doesn't agree
with the solution. The developer may then re-submit the request and provide additional infor-
mation or possibly an alternate solution. When the board finally approves the change, the sta-
tus will change to be done.

Once the CCB request is approved for development, a developer is identified by the project
chief to make the changes. The developer uses the Unix get command to checkout the items
needed from the development tree, makes and tests the changes, and then uses the Unix del-
ta command to checkln the changes to the SCCS version of the file(s). The original number
assigned to the change request by the ccbnew program must be entered as the Modification
Request (MR) number required by SCCS to do the check in. This feature provides traceability
between change requests and versions of the software.

CMU/SEI-92-TR-31 7

On completion of the changes, the developer updates the CR form by supplying the list of
modified items and any other missing information. The developer then requests the CCB to
change the status of the CR from to be done to include. Once approved, the developer moves
the new SCCS files to a holding directory (called STAGE).

The CM branch picks up the modified SCCS files from STAGE and does extensive accounting
checks. They make sure that all items in the change request have been moved to STAGE and
that the version numbers of the SCCS files match those specified in the CCB change request.
They also verify the MR numbers in the delta(s) match the CCB change number associated
with the request.

Finally the SCCS files are moved 1) to the CM baseline repository, where files under configu-
ration management are stored and 2) to a directory called BASE on the development system
which allows the development team to examine, in read-only mode, the files under CM control.
This latter feature allowed the developers to cross check that released software is consistent
with their intentions.

3.2 The Change Control Board

A configuration control board was established with permanent members consisting of the dep-
uty division chief, work-center chiefs, and project leaders. The CCB reviews all change re-
quests, determines which will be accepted, assigns priorities, and monitors progress by the
development team. The meetings are open to all, and developers are encouraged to attend in
order to defend proposed changes. The results of the meetings are e-mailed to all staff mem-
bers. The CM team uses the published results of the meeting to audit and control the items
which are moved from development to the baseline system.

3.3 Configuration Management

The CM team uses the published results of the CCB meetings to determine which items
should be moved from the development system to the CM baseline repository. They make
sure that all items listed in the CCB change request have been moved to the STAGE area of
the development system. They audit the SCCS files to assure that the correct versions have
been provided and that the SCCS Modification Request (MR) numbers match the CCB
change request number. When the auditing checks have been completed, the new items are
installed on the CM machine and inserted into the CM baseline repository. The items are then
moved back to the BASE tree on the development system. Summary files are produced which
indicate the status of ail CRs.

All application source code, library source code, include files, makefiles, and compile scripts
are under SCCS control. All items contain an imbedded string which will be expanded by
SCCS to produce the following:

CMU/SEI-92-TR-31

• SCCS release, level and branch

• Delta (check-in) date

• Formal release number associated with this delta

During the build process the above information is carried from items to objects to executables.
When applied to an executable, the Unix what command produces a list of all items that make
up the program. The version numbers of each item can then be used to trace back to the CCB
reports which identify why and when changes were made. The CCB report will also yield a
cross-reference list of all other related items which were modified to satisfy the same change
request.

The tools (what, grep, sh, awk, etc.) used for identification and tracking are available on all
Unix platforms.

The CM baseline repository is stored on a separate baseline machine. Access to this machine
is limited to those responsible for maintaining and updating the baseline. Software changes
must be approved by the CCB and audited by the CM team prior to their movement to the
baseline machine. All software released for testing and distribution is built from the sources on
the baseline machine.

3.4 Unix Directory Structure

All items used to generate the project programs are stored in a single tree structure of Unix
directories. A subset of a typical tree is shown in Figure 4.17. The components stored in the
tree include: makefiles, compile scripts, and source code. In addition to these basic compo-
nents, each node in the tree contains a SCCS directory. The SCCS directory holds the SCCS
files for all the items stored at the node. The tree structure is used to separate items into log-
ically related groups of project programs. Large programs like the database and distributed
editor are stored in major branches of the tree, while a number of smaller related programs
might be siblings of a node at the same level. The executables at any point in the tree can be
generated by invoking the Unix make command at that point in the tree. The entire system
can be rebuilt by invoking make from the root of the tree.

The top level of this tree is used to divide the programs into broad subsystems (network, edi-
tor, library, system etc.). Each additional level is used to further divide these subsystems. Pro-
grams may be generated from single or multiple source files. All sources for a program may
be at one level of the tree or may be stored at multiple levels at or below the same level. Each
node of the tree contains at least one file (makefile) which is responsible for making execut-
ables at that node and/or starting the make procedure at all levels immediately below it.

The entire system can be build by running the Unix make command from the top of the tree.
(See Appendix C for an example of a make parameter file.) Each make is responsible for
building items at the node in which it is installed and for starting the make process at all nodes
immediately below it. Individual items can be made by running make at the appropriate node.

CMU/SEI-92-TR-31

Compile scripts (see Appendix D) located at each node are executed by the makefiles. The
compile scripts determine the platform by consulting a single data file at the root directory (Ap-
pendix B) and adjust platform-dependant parameters (compile flags, ifdef parameters, link
flags, location of executable, ownership of executable, mode of executable, etc.) which control
the build and installation of executables.

A new release on a given hardware platform is generated by moving the baseline tree struc-
ture to the target machine and doing a make from the top of the tree. To build the system on
a different platform, the entire tree is moved to that platform and the process repeated.

3.5 System Structure and Components

There are multiple instances of the tree structure described on Section 3.4. These trees are
called DEVEL, STAGE, BASE and the CM baseline repository (see Figure 3.1).

DEVEL

t System CM System

STAGE
CM
Baseline
Repository

BASE

Figure 3-1 Relationship Between Project Databases

All modification and testing are carried out in the DEVEL tree. Communication between team
members working in the DEVEL tree is generally very good; each developer knows where oth-
er team members are working and in general overlapping development is not a problem. Since
development is accomplished directly in the tree and not in separate work spaces, two tech-
niques are employed to help synchronize change. First, when developers are assigned work
they immediately change the ownership of the items under development to themselves. Own-
ership by another developer indicates that someone else is looking at a problem involving the

10 CMU7SEI-92-TR-31

items. However, this does not prevent others from accessing these items; it is only a form of
notification. Second, SCCS provides a primitive form of file locking by not allowing a second
get for update when a change is pending. An SCCS lock indicates that the code is actually
checked our for modification.

The second instance of the tree (STAGE) is usually empty -- it is used as a staging area be-
tween the developers and the CM team. STAGE acts as a buffer between the teams and al-
lows development to continue while the CM managers audit and move completed items to the
CM repository. The developers move completed items to STAGE where the CM team, using
the completed CCB change request as a guide, audit and then move the newly approved
items to the CM machine. Auditing is done to check consistency between the contents of the
CCB change request and the software delivered by the developer.

The third instance of the tree (BASE) contains a copy of the current release plus all approved
changes. Once the CM team audits a change and moves the new versions to the CM reposi-
tory, the items are moved back to this tree. The developers can verify that their changes were
successfully transferred to the repository and that the development tree is current before they
proceed with additional changes.

The forth instance of the tree is the CM baseline repository which is kept on the baseline ma-
chine. The BASE copy on the development system is a mirror image of the baseline reposito-
ry.

3.6 User Support

3.6.1 Upper Management
The CM system provides management with an overview of the status of all change requests.
A summary program scans the CCB change request forms and provides a formatted output of
the current state of all change requests. The agenda for the weekly CCB meetings is deter-
mined from the list. All new items and those which require CCB action are scheduled for dis-
cussion. The list of topics is e-mailed to CCB members.

3.6.2 Project Management
Project managers also have access to the CCB summary files, and they can use them to de-
termine the current state of all outstanding change requests. Details of a particular change re-
quest can be determined from the specific CCB change request.

3.6.3 Developer

The CM system provides developer support in several key ways.

Communication between developers and program managers is automated by the CM system.
A copy of each CR form, when submitted or updated, is automatically mailed to everyone in-
volved with the project.

CMU7SEI-92-TR-31 " " TT

Maintenance has been improved substantially by the combination of automatically embedding
SCCS identification strings in the programs and by the tight linkage between CCB change re-
quests, the versions of the source files, and the executables.

The build procedures have been completely automated by makefiles and compile scripts. The
build procedures determine which machine platform the item is being built on and automati-
cally makes adjustments to the compile, build, and install parameters.

Good communication and co-ordination between developers and program managers is pro-
vided via e-mail by the CM system. Communication between developers and the CCB is
through the CCB change request. Copies of all transactions are mailed to everyone on the
project.

3.6.4 Tester
Formal testing of all changes is deferred until a new release is ready for distribution. The test-
ing organization uses information derived from the CCB change requests (test scenarios and
release notes) to unit-test all changes. Copies of the new release are then given to operational
elements to beta-test prior to distribution.

3.6.5 Customer Representative
Release notes which are derived from the CCB change requests are distributed with new ver-
sions of the system. The history provided by the CCB change requests supports those respon-
sible for customer interaction.

12 CMU7SEI-92-TR-31

4 The Change Cycle Illustrated

This section provides a detailed formal definition of the project software process and uses the
graphical modeling representation described in Appendix A. While reading the process dia-
grams is not difficult, a better understanding of them will result if Appendix A is consulted first.
In addition, because the focus of this section is a formal and detailed definition of the process,
a review of the process overview in Section 3 is advisable. In building the model, the intent
was to capture both the human and machine processes and the interaction between them.
This intent defines the model's scope.

4.1 How to Read the Model

The following diagram (Figure 4.1) gives a roadmap through the project process model. Since
the model is multi-leveled, it can become confusing without such an overview. Each box in Fig-
ure 4.1 provides both the title of the process component and the figure number of the detailed
process model corresponding to that component. This road map thus guides the reader
through the diagrams and descriptions in the rest of this section.

Before beginning the detailed descriptions, some conventions should be discussed. First, any
entities which are to the extreme left edge of a diagram provide information which comes from
outside the diagram. In a similar way, any entities which are to the extreme right edge of the
diagram send information out of the diagram, and by implication, on to other diagrams. This
parameter passing is analogous to the way in which variables get passed through subroutine
parameter lists. Using this subroutine analogy further, there is one entity type whose value is
assumed to be globally visible. This is the "Unix tree." Instances if this entity type are, for ex-
ample, the DEVEL tree and the CM baseline repository tree. Any changes that are made to
the content of these trees are assumed to be globally visible without the corresponding vari-
able being explicitly passed through the left or right edge of a process diagram. In reading the
diagrams, it is best to start with these entities linked to the left hand edge. These entities will
initiate certain activities, which themselves will generate new exit entities (e.g., products, con-
ditions). A review of the formalism in the diagrams is provided in Appendix A.

Two other conventions should be noted. First, it is sometimes necessary to specify the same
entity twice on the same diagram, otherwise the clutter of links between entities would reduce
clarity. For example, in a diagram, the agent developerIs commonly used, and it may be nec-
essary to define this agent in two separate locations as developer/1 and developer/2. Second,
in the text below, the names of activities defined in the process diagrams are in a bold, itali-
cized font (e.g. install modifications).

4.2 The Top-Level View

Figure 4.2 shows a top-level view of the project process. A change (bug fix or software en-
hancement) may be initiated either by external users of the software environment or by project
support staff (primarily project developers or the project chief). Throughout the change

CMU/SEI-92-TR-31 13

Level

1

Figure 4-1 Roadmap Through the Process Model

process, the change request form is the main conduit for supplying information and history on
the current change request (CR), and it is the "glue" which ties the process together. Figure
4.1 shows the five major steps in the process of developing and releasing a product. These
steps are:

14 CMU/SEI-92-TR-31

has exit p oduct

has exit p oduct
i

I CR: to be done

has entrance product

install modifications

has exit p -oduct

| CR: include |

has entrance product

perform CM activities

has exit p 'oduct

| CM builc complete

has entranc» product

do external testing

has exit product
"\ operational code

CMU/SEI-92-TR-31 15

1. Identify problem. This activity focuses on identifying either an external
(user) problem or an internal (developer) problem and describing it in the CR.

2. Review/Approve Cycle. Once the problem has been documented, the
responsible developer proposes and records a solution. This proposed
solution is added to the CR.

3. Install Modifications. This activity focuses on obtaining approval for the
proposed changes to the software (through the change control board) and
modifying the software to reflect these changes.

4. Perform CM Activities. On completion of the changes, the modified files are
moved to the configuration management group. The CM group checks for the
consistency and completeness of the files. A system build to obtain updated
executable code is performed after multiple CRs have been collected and
validated.

5. Do External Testing. The final stage is to transfer the executable code over
to an independent test group who verify that the code is ready for release.
Note that as a result of testing, errors may result in a new CR being
developed. This second CR then follows the same procedure as the former
CR.

There are three formal CR status values: under action, to be done and include. In addition to
these, a variety of other status values are used throughout the process model described in this
section. These have no official authorization; they are used here simply to differentiate be-
tween different process states.

4.3 Identify Problem

To initiate a revision to existing software, a blank change request form is generated. The CR
form is on-line and is managed by a suite of programs, coordinated through the ccbnew pro-
gram. For example, when a new CR is being established, the ccbnew program brings up a
blank form, inserts a unique CR number, adds the user ID of the person initiating the effort,
and provides an editor to insert text describing the problem. The ccbnew program also allows
saving of the newly filled-out CR form.

In Figure 4.3, activity generate new CR form automatically inserts the user ID and a unique
change control board number (ccb#) into the form. The user then adds a description of the
problem or enhancement (add problem description). If the CR initiator is an internal user
(i.e., either a developer or the project chief), then that user may go on to suggest how the
change should be implemented. In Figure 4.3, there are two decision "activities" associated
with this process. The first {is user Int or exf) separates internal from external users. The sec-
ond {add to or pass) discriminated between these internal users who decide to add a pro-
posed implementation and those who do not. The final action (save CR: underaction) saves
the CR with the status under action.

16 CMU/SEI-92-TR-31

Figure 4.3 Process Flow for: Identify Problem

external user I requires resource • .
|m raj^C Mor^^fc * 1 user ID
site for

| 'ccb* ge?V

leveloper | / \ "V | CR: with CR« & usorlD |

has entrance composite Vs ^kance composite for
requires^agent / \ >v has jintrance product

I 'edit' program I

project chief I
inclix es

program

padmin' program

entrance composite for requirfs agent

| CR: under action

has/exit product
ite for

CMU/SEI-92-TR-31 17

4.4 Review and Approve

Upon completion of the CR form, change control board approval is required before implemen-
tation of the changes can occur. Figure 4.4 illustrates this approval process. The review panel
consists of the change control board and may involve the developer who is responsible for
managing the CR prior to the changes being implemented. (A different developer may make
the actual changes.)

As a result of the review, (review CR), the CR may be approved and given the status to be
done, it may be rejected (too costly, low priority, etc.) or it may require revision. There are a
variety of reasons for making revisions. First, if the CR was filled out by an external user, the
approach to implementation has not yet been defined. Second, a proposed approach may not
be sufficiently detailed or be too vague. In these cases the review board will provide guidance,
and this is documented through the meeting minutes. These minutes are distributed to all in-
terested parties in electronic form.

The proposed changes are incorporated into the CR (revise CR). The review/approve/revise
cycle can be performed as many times as necessary until one of the exit criteria have been
met (i.e. the CR has either the status to be done or rejected.)

4.5 Install Modifications

After change request approval has been granted, work on implementing the changes starts
(see Figure 4.5). The project chief first identifies which developer will perform the work (assign
developer(dev)/1). That developer then makes copies of the appropriate files from the tree in
which the developers work (check out files). These files are stored in the DEVEL tree in ar-
chival s. format so that they have to be extracted before use. The resulting source files are
placed in another branch of the DEVEL tree for private developer modification. The s. files au-
tomatically lock to prevent clashing. Once checked out, the code changes are made. The de-
velopment sequence consists of making changes (make changes per CR), developing
appropriate tests (develop test suite), and testing the code (test changes locally). This cy-
cle is repeated until the modifications have been successfully incorporated.

Once the updates have been completed, the CR is revised to reflect the changes (revise CR)
and the revised files are incorporated back into the archival s. files (update s. files In DEVEL).
While saving these files, the system requests that the developer type in an MR number. To
this, the developer inserts the number of the CR used to authorize the modifications (see gen-
erate new CR form in Figure 4.3).

18 CMU/SEI-92-TR-31

CMU/SEI-92-TR-31 19

20 CMU/SEI-92-TR-31

4.6 Perform CM Activities

The CM group is responsible for 1) assuring the completeness and correctness of all files
which have been provided by the developer group for the current CR and 2) building the code
to be released. These activities are illustrated in Figure 4.6. In the first activity (do account
checks; see Section 4.9), the CM group uses the change request to assure adequacy of the
files in the STAGE tree. Having resolved any problems (usually through interaction with the
developers), the files in the STAGE tree are transferred over to the CM repository, which has
a structure identical to that of the trees previously discussed.

The software build performed by the CM group involves modifications due to many CRs. As
CRs are processed, they are added to a stack which is managed by the CM group (add CR
to stack). The CM repository is incrementally updated each time a new CR is added to the
stack (move s. files to CM REP; see Section 4.10). The update cycle is continued until the
CM group is ready to release the next version of the software, at which time a build is per-
formed (build by CM group; see Section 4.11). A build may be initiated, for example because
of number of CRs currently processed, or to release an upgrade containing a particularly im-
portant modification (ready to build?). At any point during the accumulation of CRs, the de-
velopers may also decide to perform an informal build on the DEVEL tree (build by dev;see
section 4.12), primarily to assure themselves that the CM group will not confront major prob-
lems when they perform their "official" build.

4.7 Do External Testing

The final step in the modification process is to perform independent testing before release (see
Figure 4.7). Upon completion of the build, the executable code is shipped to the test group.
Because the test group have other responsibilities, a significant delay can result from waiting
for completion of the test phase.

The first activity performed in the test phase is the actual testing (test code). If the tests suc-
ceed, then the existing code built by the CM group is ready for external delivery. If the tests
fail, then a new change request must be prepared, (develop new CR), which is then reviewed
with the change control board, (review with CCB). If the delays incurred in implementing the
proposed changes are significant, and the impact of these changes is serious then the CR by-
passes the normal lengthy review process and follows the accelerated process shown up the
right hand side of Figure 4.7. The CR (CR: quick fix) is used by the developers to revise the
code, (develop revisions). The CM group then build a patch, (buildpatch), which is added to
the tape containing the original (faulty) code, (addpatch to built code). For less urgent fixes,
the (CR: to be done) which exits this task, is injected into the normal CR cycle (see Figure
4.2).

CMU/SEI-92-TR-31 2T

Figure 4.6 Process Flow for: Perform CM Activities

do account checks

has erkrance product

I CM group ~ has exit p\oduct | CR slack

CR: include | r reptaltes

has entrance product

has entaince condition

CR stack +1

move s. files to

I not ready to build I

has entrance condition

build by CM group

has entrance condition

\ CM build complete

22 CMU/SEI-92-TR-31

Figure 4.7 Process Flow for: Do External Testing

has ontrances&ndilion

CM build complete |

has entranct aggregate

I CMREPH
I external tester 1

has entrance/aggregate

lafji^DajjJ^^huil^ort^fc

has entranct

has entrance

requires^agent

condition

[^j^^^^^^^^^^l

I patch to build ~~l

CR: under

has entranct

has entranct

has ex r product

action I

product

I developer "~| > requires agent [_tfiYifiB_wft CCB \

has exit f. roduct

has entranct aggregate

I DEVEL tree I

I change control board

composite

| CR: to be done

CMU/SEI-92-TR-31 23

4.8 Revise Change Request

A change request may be require modification as a result of a CCB review or to reflect chang-
es in code during the development cycle. These changes are made using the "ccbold" pro-
gram, which supports a variety of functions. Figure 4.8 illustrates the activities involved in
revising a CR. The following is a list of these functions:

• Retrieve a copy of an existing CR form from its s. history file.

• Add the ID of the user who is doing the modification to the CR.

• Edit the CR.

• Generate a cWfile which contains only the updates to the CR.

• E-mail to staff members a file containing the modified CR plus a 'diff' list.

• Store the updated CR back in the s. history file.

4.9 Do Account Checks

After the development group has completed a set of modifications as defined in the CR, the
appropriate files are transferred to the STAGE tree (see Section 4.5). At this point the CM
group checks to make sure that the files are complete and correct. Figure 4.9 shows this pro-
cess. Three common types of error may occur. The first type of error is simply that the files
requested in the CR are missing (check s. files exist). The second and third types of error
are related. These have to do with:

• cross checking that the version numbers of the files to be modified (as
specified in the CR) are consistent with the latest file version numbers in the
s. history files (check version #'s), and

• cross-checking that the MR number in the s. history file is consistent with the
CR number of the change request under consideration (check MR & CR # s
match). (Recall from Section 4.5 that the MR# was attached to the file after
it was modified.)

Inconsistencies arising from either of these two checks must then be resolved between the
development and CM groups (resolve account errors). Correct recording of this file/CR in-
formation is important not only for ongoing development, but also to allow future tracking of
prior changes in case subsequent operational problems occur.

4.10 Move s. Files to CM Repository

Upon successful completion of the accounting checks, the files are moved from the STAGE
tree to the CM repository (move s. files to CM REP; see Figure 4.10.). As soon as the files
have been transferred, they are moved back to a tree called BASE. This tree has two func-
tions. First, the BASE tree provides the developers with access to the current versions of the
files under configuration management. Second, it allows developers to assure themselves that
the files to be externally released are consistent with their intent (i.e., it is an additional safety
check). In fact, the developers check these BASE tree files for correctness (check base files).

24 CMU/SEI-92-TR-31

CMU/SEI-92-TR-31 25

26 CMU/SEI-92-TR-31

Figure 4.10 Process Flow for: Move s. Files to CM REP

I resolve BASE mconsisl I- hm «»* aggregate -| valid BASE tree I

requires iagent

I develop

CR: include |

has entrance product

I check ! dies fc

has enlrance\ggregate

| done every week~

account checks complete

jjjiove^ile^^C^^E^fc

CMU/SEI-92-TR-31 27

As with the accounting checks, the development and CM groups must resolve any inconsis-
tencies found (resolve BASE Inconslst). The CM group is then responsible for reflecting
these changes in the CM repository (revise CM REP).

In Figure 4.10, the files initially inserted into the CM repository are called verified, since they
have gone through the accounting checks. After the BASE tree checks have been performed,
and any errors corrected, the status of the files is then upgraded to validated. (This terminol-
ogy is used in this report for clarity; these are not a generally used in the project.)

4.11 Build by CM Group

The build performed by the CM group involves two activities (see Figure 4.11). First there is

the build itself (build process), and second there is the production of the accompanying re-
lease package {gen release package). During the build process, errors in compiling and so
forth may arise, and these errors can result in additional "emergency" change requests being
generated (CR: emerg group). The release package involves, in part, the extraction of infor-
mation from the group of change requests which are associated with this build.

28 CMU/SEI-92-TR-31

4.12 Build by Developers

At any time during the accumulation of CRs and prior to a CM build, the developers may de-
cide to perform a build (see Figure 4.12), using the files in the BASE tree (buildprocess). A

Figure 4.12 Process Flow for: Build by Developers

developer builds

I BASE tree I • "" entranra aggregate
build proc—« • has exit product. ,——• ——,

I c *-(bum code I

| developer |

r~null CR: emerg orouo l"

CM aroui

is exit cor ipoelte for

DOl

has exf product

orouo I I CM REP I I CR: emer;

has entrano product

requires ntrance aggregate

G£ ^

has exh aggregate

I revised CM REP I

build may be performed for a number of reasons such as to check a particularly complex set
of changes or simply because time permits. Errors may result in this build process, in which
case a change request will be generated (CR: emerg group). This change request allows the
CM group to revise the CM repository files as necessary (revise files In CM REP).

4.13 The Build Process

Surrounding the mechanics of the build are variety of activities related to change request sup-
port. This support is illustrated in Figure 4.13.

The build (perform build) can have two outcomes: a successful build (built code), in which
case this sub-process is complete, or an unsuccessful build from which errors result. These
errors must first be resolved (resolve build errors) and from this resolution, it is determined
whether these errors must be processed by generating another change request (dev/revlse
CR: emerg fix) or whether the cause was minor (such as a missing file (file not found)). In
the latter case, the file is inserted (fix file error), and a new build is performed. If the error does
require a new CR, then this CR is reviewed with the change control board. The board may
accept or reject the proposed change, and if rejected, then the revise/review cycle is repeated.

CMU/SEI-92-TR-31 29

I CR: emerq fix I

30 CMU/SEI-92-TR-31

If accepted, then the CR is added to the group of changes which exist as part of resolving prior
build errors (add to CR: emerg group).

Once all errors are fixed (those requiring new CRs or otherwise) a successful build can take
place. The existence of built code fires a pseudo-activity (complete CR cycle) allowing the
complete group of CRs to become an exit product along with the code itself.

4.14 Perform Build

The actual build may be performed on one of many platforms (see figure 4.14). After selecting
the target platform for the build (select target machine Y), either the CM repository tree or
the BASE tree is copied over to that platform (copy tree X to machine Y). In order that the
source files can be compiled on this platform, the compile scripts must be configured (through
ifdef's) to the local platform characteristics. This is done through the use of a file called com-
pile, en v. The initiator of the build modifies this ASCII file, which contains a list of all platforms,
by typing an arrow ("->") next to the name of the current platform (set pointer to machine Y).
At this point, the build agent extracts the root make-file from the top node of the tree (get
makeFlle from root), and initiates the actual build (execute makeFlle). Execution results in
one of two possible products: built code or build errors. Once the build has been executed,
and the executable code has been installed, the tree is removed from the platform (delete
copy of tree X).

4.15 Execute Make File

The compilation and build process takes place automatically after the build agent has started
up the make-file associated to the top node of the tree. The make-file serves two purposes: 1)
to compile source code (through a call to a local compile-file) at this level in the tree and 2) to
initiate make files in lower level subdirectories. The complete build process is recursive and
quite complicated. Before describing the actual build process, an explanation of the tree struc-
ture is useful.

All the tree structures in the project are of identical type, which has been called "Unix tree" in
this report (see Figure 4.17). Each node (or subdirectory) in the tree has an SCCS node which
includes three file types: a file called s.makefile which contains the current makefile and its
past history, an s.compilefile file which contains the current compile file and its past history,
and source files and their past history (e.g., s.f2writeblk.c). In order to compile the source code
across the tree, the makefile in the root SCCS directory is extracted from its s. file. Execution
of this makefile in turn initiates makefiles in the SCCS subdirectories one level down from the
current level. The process continues recursively down the tree and terminates on leaf nodes.
If appropriate, the makefile also initiates execution of the local compile file in order to generate
and install executable code from the source code for that node.

Figures 4.15 and 4.16 describe the build process in detail. The processes in these two figures
are tightly coupled through mutually recursive calls between execute makeFlle and cycle

CMU/SEI-92-TR-31 " §T

Figure 4.14 Process Flow for: Perform Build

tree X ft ftatMM at j UNIX tree

I jggj tamnj machine Y

requires Agent

is instance of

/MS exitiftfgiggate

copy of tree X

build agent *| i root s. makeFile ZZl

errors

execute makeFile

/»s exit cc ndition

I makeFile executed I

has exit cc idition

I built code

[di>lgt^coD^oMre£O^J

32 CMU/SEI-92-TR-31

CMU/SEI-92-TR-31 33

Figure 4.16 Process Flow for: Cycle thru Sub-Directories

mil sub dir *

tree X

lincr^mon^suMi^^^^fc

I lirsl/next sub dir I

has entrance

sntsh Igf nyll

is exit compt site for

aggregate

... i fr-

has entr, nee product

[TO}

has exit cc edition

I sub tree not null |

makeFile

| built code

requires agent
• ; I makeFile /1 mnt ' I

has exit composite

has oxitPfSduct

I ima

has exit condition

is exit

-i evele completed

composite tor

execute makeFile

requires agent

I n^ „„,KPFHP fflr,CS jj > 2222 »j sub makeFile ~|

34 CMU/SEI-92-TR-31

thru sub-dlrs. For instance, consider an arbitrary node in the tree. The makefile in the SCCS
branch of this tree initiates the calls to the sub-directories directly below this directory. Cycling
through the sub-directories requires a counter to be set up and initiated to the first sub-direc-
tory (inlt subdlr# to 1). After cycling through the sub-directories (cycle thru sub-dlrs), one of
two outcomes is possible. Either all the code in the sub-tree has compiled, or an error has
been generated in some part of the sub-tree. If an error has occurred then this error is simply
passed on to the next higher level in the tree (pass on sub-dlr or local) bypassing the com-
pilation which would otherwise have been performed at this node.

If no sub-tree errors have been detected, then the compile file is extracted (get compile
script), and the compile sequence is initiated (run compile script). The compile sequence
involves extracting the source code (extract source), compiling the source (compile
source), linking compiled objects (link objects), and installing the resulting executables (In-
stall exe's). Any of these activities can result in errors, and if an error does occur, the se-
quence terminates with the error recorded (record error). This action initiates a backtracking
up the tree, terminating the build process. If the build succeeds, the executable code becomes
part of the accumulating code resulting from the succession of compiles at the nodes currently
traversed (combine builds).

4.16 Cycle Through Sub-Directories

Each non-leaf-node makefile initiates the makefiles in all the sub-directories immediately be-
low the current directory. Figure 4.16 shows this cycle of incrementing through the lower level
sub-directories (or nodes). Each subdirectory is chosen in turn (goto first/next subdlr). The
cycle ends when no more sub-directories exist at this level (check for null sub-dlr). At each
lower level node, the make-file (sub makeFlle) is extracted from its associated s. file (get
makefile (SCCS dlr)), and this is then executed (execute makeFlle). The output from this
execution is either errors or built code. If an error is generated, then execution of subsequent
make-files is bypassed, and the error is propagated backup the tree. If the build is successful,
the variable subdinf is incremented (Increment subdlnf), and the next cycle initiated.

CMU/SEI-92-TR-31 35

36 CMU/SEI-92-TR-31

5 Lessons Learned and Future Directions

Although much has been done to improve the project by applying configuration management
(CM) principles, several key areas remain a problem. The large number of items3 (2000),
hardware platforms4 (15) and versions of Unix operating system5 (10) supported by the
project continues to cause CM and testing problems. Also, several of the hardware platforms
(Sun, 386 Clones) may have one of several different versions of the Unix operating system
installed. The lack of automation of key CM functions continues to cause errors and delays
during the system build and testing cycles. The CM system continues to evolve and solutions
to these problems are being tested for future releases.

5.1 The Build Process
Building and testing new releases for multiple platforms is very time consuming. The entire
tree structure must be installed, built, and tested on each platform. The only way to assure that
all platforms are running identical versions is to make changes in a central repository and then
move the entire tree structure to each platform. When problems occur in building or testing,
the fixes must be installed on all platforms and each rebuilt and tested.

The solution to this problem is currently under test. A set of shell scripts has been developed
which will create a new system on any target platform from sources located on one central sys-
tem. The shell scripts create the tree structure of directories and the makefiles necessary to
build and install the entire system on any of the target systems. The new makefiles obtain their
input from the central system, and the output of the compile, build and install process are ex-
ecuted on the target system. The advantage of this technique is that changes can be made on
a central system, and then all platforms can be built in parallel. Copies of the source tree do
not have to be moved to each platform. The entire process is driven by four script files on the
source machine (three common and one unique for each platform). Porting to new platforms
has been simplified since the sources, the build and the install parameters are now centrally
located on a single machine.

5.2 Testing

Once the new release is built, a major problem is the delay caused by testing. The organiza-
tion chosen by management to test the project software was a Unix application software de-
velopment office with its own development responsibilities. They are responsible for several

3 Source files, include files, makefiles and compile scripts (This number does not included customer developed
code).

4 DEC PDP-11/70; AT&T 3b5, 3b15,3b20,3b2/600;SUN 3, 4; Data General Aviion; IBM AT, Intel 386/486 Clones;
Apollo Workstation, DEC Workstation, AMDAHL, CRAY.

5 Unix Version 6; SVR2; SVR3; SCO XENIX; SCO Unix 3.2;Avik>n SVR5.4;Sun OS 3.5x. 4.0.3, 4.1 ;IBM XENIX.

CMU/SEI-92-TR-31 ' " 37

products which duplicate project functionality and are, in a sense, in competition with the
project. Within this organization, testing products developed in the project has low-priority.
Testing is deferred until the release is ready for distribution and may represent many months
of development and hundreds of individual changes.

Development continues during testing, and in some cases critical changes are ready to install
before testing of the previous release has been completed. In some mission-critical cases, the
software under development must be installed on the customer's system before the official re-
lease. This creates a situation where a customer can actually loose a fix or new capability by
installing the latest release.

The testing delay increases the number of changes that must be tested for each formal re-
lease. A recent release included several hundred separate change requests. The solution to
this problem is to divide the software into small separate products which can be tested and
released individually. When significant changes have been made to one of the products, it will
be tested and released. This process has started, but it is progressing slowly because of the
tight coupling between some of the project programs.

5.3 Automation

Much of the CM auditing and baseline updating is done manually. New programs and proce-
dures are being written to address this problem. Several fields in the CCB change request
form have been changed (Appendix E) to support automatic scanning of the form. Software is
being developed to scan the CR forms in order to automate the auditing and installation pro-
cedures performed by the CM team.

5.4 Buy versus Build

The CM system had to be as portable as the application programs that it supported. Since new
features and bug fixes are applied to multiple hardware platforms, the CM system had to au-
tomatically support product build on all platforms. Since a commercial solution could not be
found which met these basic requirements, the development team constructed their own CM
system from the basic Unix tools available (SCCS, sh, make, cc, Id, mall, grep etc.).

The repository features of a system like Softool's CCC [Softool 91] could be used to store the
software items, but little would be gained by doing so. The predefined CM process model im-
posed by a system like CCC Turnkey would not integrate well with the existing project devel-
opment process. Adjustments to the CCC Turnkey model to match the current process would
be expensive to implement, and it was not obvious what would be gained by doing so. (See
also Section 7.2 for a discussion of this topic.)

Because of the tight coupling and dependencies between the various project programs, the
project developers felt that easy access to all software was necessary and that sharing a com-
mon work space (DEVEL tree) was a benefit rather than a weakness. Commercial systems

38 CMU7SEI-92-TR-31

generally limit access to portions of the code and assume that each developer will work in a
separate work space.

The decision to build rather than buy resulted in the following advantages to the project:

• The CM system is easily tailored to changes in the software development
process, and development can continue its during any upgrades.

• The project owns the CM system and does not have to depend on the
commercial market for support. Revisions and improvements to the
development process are easily incorporated.

• The CM system is hardware-platform independent and can be easily ported
to new platforms.

• Special training on the CM system is not required since the CM system uses
standard Unix tools.

• Maintenance costs are lower. Expensive vendor upgrades are not required
and the project does not need a CM "system administrator" to manage,
maintain, and modify the system.

• Being vendor-independent, it is immune to companies whose future
existence cannot be guaranteed.

CMU7SEI-92-TR-31 39

40 CMU/SEI-92-TR-31

6 The Project Software Process and the Capability
Maturity Model

This section looks at the project software process from the point of view of the configuration
management practices described in the Capability Maturity Model (CMM). Other key practice
areas, such as Software Quality Assurance, are not evaluated. The sub-sections below list the
CMM practices as provided in [Paulk 91], and then give comments (each comments being in
italics and being preceded by a bullet). These comments discuss the project maintenance pro-
cess in relation to the practices. Some of the practices in the CMM are expanded to provide
greater detail; some of this detail has been omitted below if it did not contribute useful insights.
For a detailed discussion of the CMM and its underlying rationale, [Paulk 91] and [Weber 91]
should be consulted.

There are two motivations behind this comparison. First, the exercise of comparing a process
model with the practices of the CMM is useful in answering the question: Do such process
models help in identifying process weakness and areas for process improvement? Second,
this report defines the project maintenance process in sufficient detail that it could be adopted
by others. For an organization wishing to build a maintenance process similar to the project's,
it is useful to identify where enhancements might make the process more effective.

6.1 Goals
Goal 1: Controlled and stable baselines are established for planning, managing, and building
the system.

• Yes. Baselining of software components is clearly the objective of the
project's process through use of change requests, a change control board
and the software support environment.

Goal 2: The integrity of the system's configuration is controlled over time.

• Yes. The system (i.e., products) is controlled through the use of the change
requests and the close coupling of these CRs to the files in the CM
repository.

Goal 3: The status and content of the software baselines are known.

• Yes. The baseline content is well controlled through effective use of the Unix
file system and the content and history of changes are known and can be
tracked through the change requests.

6.2 Commitment to Perform
Commitment 1: The organization follows a written policy for implementing software configura-
tion management (SCM).

CMU/SEI-92-TR-31 41

• No. While a written policy for defining configuration management does not
exist for the project, practices 1 through 5 below are well understood, strictly
observed, and to a great extent controlled through automated procedures.

This policy requires that:

1. Responsibility for SCM for each project is explicitly assigned.

• Yes. This responsibility is shared between the developers, change control
board and the CM group.

2. SCM is implemented on products throughout the project's life cycle.

• Yes. All software products being developed or maintained are controlled
throughout their life cycle.

3. SCM is implemented for externally-deliverable products and for appropriate products used
inside the organization.

• Yes. All deliverable products and associated internal products (i.e., the
change requests) are maintained under CM control.

4. All projects have a repository for storing the key software engineering elements (i.e., con-
figuration items) and the associated SCM records.

• Yes. A repository for all deliverables is maintained under the control of the
CM group.

5. The software baselines and SCM activities are audited on a regular basis.

• No. Formal auditing is not conducted. Informal checks of new baseline items
maybe made the developer group.

6.3 Ability to perform

Ability 1: A board having the authority for managing the software baselines (i.e., a software
configuration control board - SCCB) is established.

• Yes. The project change control board is central to authorizing and
controlling all modifications to software baselines

The SCCB:

1. Authorizes the establishment of software baselines and their configuration items.

• Yes.

2. Represents the interests of the project manager and all groups who may be affected by
changes to the software baselines.

• Yes. The project manager is on the SCCB. All interested parties are invited
to attend the SCCB review meetings in order that their opinions are
accounted for.

42 CMU/SEI-92-TR-31

3. Reviews and authorizes changes to the software baselines.

• Yes.

4. Authorizes the changes to software baselines.

• Yes. Authorization results from the SCCB review meetings and as reflected
in the change requests.

Ability 2: A group that is responsible for coordinating and implementing SCM for the project
(i.e., the SCM group) exists or is established.

• Yes. The project has its own CM group for controlling software baselines.

The SCM group:

1. Creates the project's software baseline library.

• Yes.

2. Develops, documents, and distributes the SCM plans, standards, and procedures.

• No. Formally documented SCM plans are not developed.

3. Manages access to the software baseline library.

• Yes. Only the CM group have access to the repository.

4. Updates the software baselines.

• Yes. And it verifies their completeness and correctness.

5. Creates software baseline products.

• Yes. It performs the builds which result in the baseline products.

6. Records SCM actions.

• Yes. It records actions through the change requests.

7. Produces and distributes SCM reports.

• Yes. It does so for release notes and summaries.

Ability 3: Adequate resources and budget for performing the SCM activities are provided.

• Yes. Adequate resources and budget are provided.

1. A manager is assigned specific responsibilities for SCM.

• Yes.

2. Appropriate tools to support the SCM activities are made available to the SCM staff and to
the software engineering staff.

CMU/SEI-92-TR-31 43

• Yes. These include automated support for change control evolution and
support for software build, multiple databases for software development and
baselining, along with appropriate tools for manipulation of software artifacts.
Appropriate hardware to support the software environment is also provided.

Ability 4: Members of the SCM group are trained in the objectives, procedures, and methods
for performing their SCM activities.

• No. Formal training is not given. Training is on the job.

Ability 5: Members of the software engineering staff are trained to perform their SCM activities.

• No. Formal training is not given. Training is on the job.

6.4 Activities performed

Activity 1: Different levels of SCM are implemented, as appropriate, during the project's life cy-
cle.

• Yes. Different levels of SCM are implemented (e.g., between the developer
and SCM groups). However, the project's life cycle is primarily in the
maintenance phase, and the scope of SCM needs is more limited than in
other projects.

1. The level of SCM is different for different products.

• Not applicable. The product type is quite uniform.

2. The level of SCM changes during the project's life cycle to provide a balance of control and
flexibility that is most beneficial to the project.

• Yes. Different levels of SCM are implemented (e.g., between the developer
and SCM groups). However, the project's life cycle is primarily in the
maintenance phase, and the scope of SCM needs is more limited that in
other projects.

3. The software engineering group informally manages its individual products during develop-
ment.

• Vies. The development group has control over its products prior to their being
baselinedby the SCM group.

4. The software engineering group uses informal SCM for products not under formal SCM.

• Vies. The development team use informal version and configuration control
to manage products under modification.

5. The project uses formal SCM for control and stability of baselined items when they are need-
ed to coordinate and interact between project groups and with the customer.

• Yes. Baseline control is strictly adhered to when product is released to
external customers. Interaction between project groups is not applicable.

44 CMU/SEI-92-TR-31

6. The project's software baseline library and its contents are controlled and available after the
project ends.

• Yes.

Activity 2: A documented SCM plan exists.

• No. A documented SCM plan does not exist.

Activity 3: A documented and approved SCM plan is used as the basis for performing the SCM
activities.

• No. A documented SCM plan does not exist.

Activity 4: A configuration management library system is established as a repository for the
software baselines.

• Yes. It is.

This library system:

1. Supports multiple control levels of SCM.

• Yes. It does in the sense that, while the SCM group have tight control over
the repository, access to baseline information can be retrieved by the
development group through accessing the BASE tree (which reflects the
contents of the CM repository).

2. Provides for the storage and retrieval of configuration items and their configuration compo-
nents.

• Yes.

3. Provides for the sharing (i.e., read-only) and transfer of configuration items and their config-
uration components between the software engineering groups' control and the SCM group's
control and between control levels within the library.

• Yes. Sharing of baseline information results from the CM group's maintaining
of the BASE tree in the same configuration as the CM repository. The BASE
tree is accessible to the developers.

4. Helps to enforce product standards (e.g., naming and format) of configuration items and
their configuration components.

• Yes. Several databases are used in the project environment. These all have
a standard structure. In addition the files within these databases have names
which conform to a defined naming convention.

5. Provides for the storage and recovery of archival versions of configuration items and their
configuration components.

• Yes.

6. Helps to ensure correct creation of software baseline products.

CMU7SEI-92-TR-31 45

• Yes. There are multiple cross-checks within the project's process which
ensure the correctness of baseline products, for example, c ross-checking of
change control numbers, cross-checking of file version numbers, and
verification by the development group that the baseline product is consistent
with their expectations.

7. Provides for the storage, update, and retrieval of SCM records.

• Yes. Control and storage of the change requests allows tracking of any
previous changes that were made.

8. Produces SCM reports.

• Yes. These include release notes, installation notes, summaries.

9. Provides for the maintenance of the library structure and contents

• Yes. The system performs regular backups and provides for restoration and
recovery from errors and crashes.

Activity 5: The software engineering products and process specifications (i.e., configuration
items) to be placed under configuration management are identified.

• Partial yes - the answers to items 1 through 7 below provide explanation.

1. The configuration items are selected based on documented criteria.

• No. There are no documented criteria for selection configuration items. Items
under configuration control include the software items under modification
and change requests.

2. The characteristics of each configuration item are specified.

• No.

3. The software baselines to which each configuration item belongs are specified.

• Ves. Indirectly through the prior change requests, and CR status summaries.

4. The point in the software life cycle that each configuration item is placed under configuration
management is defined.

• Yes. This happens after the CCB authorization takes place.

5. The person responsible for each configuration item (i.e., the owner, from a configuration
management point of view) is defined.

• Vies. The CM group are responsible for all configuration items.

Activity 6: A documented procedure is followed for initiating, recording, reviewing, approving,
and tracking change requests and trouble reports for all configuration items.

• No. However, well understood procedures are followed, and much of this
process is enforced through automation of, for example, the change request
procedure.

46 CMU/SEI-92-TR-31

Activity 7: A documented procedure is followed to control changes to configuration items.

• No. A documented procedure does not exist. However a well-understood
procedure exists.

This procedure requires that:

1. Established controls are followed to ensure that configuration items are checked out and
checked in for change in a manner that maintains the correctness and integrity of the software
baseline library.

• No. No documented procedure exists, but strict check-out and check-in
procedures are followed.

2. Reviews and/or regression tests are performed to ensure that changes have not caused un-
intended effects on the product.

• No. No documented procedure exists, but testing by an independent group
is performed to assure adequacy of the software. (The independent testing
procedure could be stronger in that the tests performed originate with the
development group.)

3. Revised configuration items are audited to ensure that they are prepared according to the
SCM standards and procedures.

• No. No written SCM standards or procedures exist, and therefore no audits
are performed as prescribed in such documents. However, checking is
conducted in several other ways including: reviews of the change requests
by the change control board, and reviews of baseline products by the
development group (using the BASE tree).

4. Only configuration items that are accepted by the SCCB are entered into the software base-
line library.

• Yes.

Check-in procedures include steps to verify that the revisions are authorized, to create a
change log, to maintain a copy of the changes, to update the software baseline library, and to
archive the replaced software baseline.

• Vies. All these procedures are followed.

Activity 8: A documented procedure is followed to create and control the release of software
baseline products.

• No. No documented procedure is followed. However, a well-understood
procedure is followed.

This procedure requires that:

1. The SCCB authorizes the creation of software baseline products.

• No. No documented procedure exists, but the change control board does
authorize the creation of software baseline products.

CMU/SEI-92-TR-31 47

2. Software baseline products, for both internal and external use, are built only from configu-
ration items in the software baseline library.

• No. No documented procedure exists, but software baseline products, for
both internal and external use, are built only from configuration Herns in the
CM repository.

Activity 9: A documented procedure is followed to record the status of configuration items and
change requests.

• No. No documented procedure exists, but the status of configuration Herns
and change requests is strictly controlled through, for example, the change
control board.

This procedure requires that:

1. The configuration management actions are recorded in sufficient detail so that the software
baselines' content and status are known and previous versions can be recovered.

• Vies. This information is recorded in the change request.

2. The current status and history (i.e., changes and other actions) of the software baselines
are maintained.

• Yes - s. files containing the current versions and previous histories of files are
maintained and any file version can be accessed through the SCCS
configuration management system.

Activity 10: Standard reports documenting the SCM activities and the contents of the software
baseline are created and distributed to affected groups and individuals.

• Yes.

These reports include:

1 SCCB meeting minutes

• Yes. CCB meeting minutes are generated and distributed.

2. Change request summary and status.

• Yes. They are included in the change request.

3. Trouble report summary and status (including fixes).

• Yes. They are included in the change request.

4. Summary of changes made to the software baselines.

• Yes. They are included in the software release notes.

5. Revision history of configuration items.

• Yes. They appear in the SCC s.files.

48 CMU/SEI-92-TR-31

6. Software baseline status.

• Yes. they are included in the CRs pending revision.

7. Findings of software baseline audits.

• No. No formal baseline audits take place. In some cases developers will build
perform software builds on code derived from baseline files. This activity
provides a cross check on the baseline products.

Activity 11: A documented procedure is followed to prepare for, conduct, report results from,
and track action from software baseline audits.

• No. No documented procedure is followed to prepare for, conduct, report
results from, and track action from software baseline audits. However, as
noted under item 6 of activity 4 above, extensive checks are made to assure
accuracy of all baseline products.

6.5 Monitoring implementation

Monitor 1: Measurements are made and used to determine the cost and schedule status of the
SCM activities.

• No. No measurements are made or used to determine the cost and schedule
status of the SCM activities.

6.6 Verifying implementation
Verification 1: The SCM activities are reviewed with senior management on a regular basis.

• No. SCM activities are not regularly reviewed with senior management (i.e.,
management above the operation level of the project).

Verification 2:The SCM activities are reviewed with the project manager on a regular basis.

• Yes. The project manager is closely involved with oversight of the project
activities.

Verification 3: Periodic audits are performed to assess how well the SCM standards and pro-
cedures are being followed and how effective they are in managing the software baselines.

• No. This is because there are no formal standards or procedures.

Verification 4: The software quality assurance group reviews and audits the activities and prod-
ucts for SCM, and reports results as appropriate.

• No. This is because there is no software quality assurance group.

6.7 Conclusions

The exercise of mapping the characteristics of the project environment to the Capability Ma-
turity Model has provided several insights. First, as might be expected, one does not need a

CMU7SEI-92-TR-31 49

process model in order to compare a project's practices to those to the CMM. The act of build-
ing the process model is, however, very helpful in performing this comparison. In addition, it
was found, again not unexpectedly, that the CMM refers to some issues which may not be ad-
dressed in a process model. For example, a process model is unlikely to incorporate training
activities or may not explicitly specify certain documentation (e.g., SCM standards) which are
needed for compliance with the CMM.

In summary, the following were found to be the strengths and weaknesses of the project main-
tenance process, as compared to the practices defined in the Capability Maturity Model:

Strengths:

• The process of assuring correctness and completeness of baselines is
effective.

• Change control is well defined and managed through an effective CR
process.

• The SCM function is separate and independent of the development function.

Weaknesses:

• Lack of documentation (procedures, plans, etc.).

• Lack of formal training.

• Lack of tracking (e.g., on cost and schedules).

• Lack of independent audits.

Most of the above weaknesses do not deal with the day-to-day process issues as modeled in
Section 4, but rather with issues which affect the longer term operation. For example, if there
were a major movement of personnel out of the project, the lack of training and documented
procedures would become a more vital issue.

50 CMU7SEI-92-TR-31

7 Reusing Elements of the Project Software
Process

The process model defined in Section 4 provides a good testbed to explore some of the issues
associated with process reuse, a topic of some relevance to this report. In designing a main-
tenance (or other) system to meet a specific set of requirements, it is unlikely that a design
such as described in this report would be appropriate in its entirety. This suggests the possi-
bility of using elements of the existing process as building blocks of a modified process. After
discussing reuse in general, several concrete examples are described, providing some con-
text. Note that the discussion deals with reuse of elements of an existing process which was
not built with reuse in mind; it does not deal with the design of processes for reuse.

7.1 Reuse Building Blocks

The project software process model has significant hierarchical structure (see Figure 4.1). At
the start of the modeling effort, this structure was not clear. As a particular process diagram
grew more complex, it became apparent that some of the modeling detail was better captured
at a level below the current one. This situation occurred several times and resulted in a final
model having six levels as can be seen in Figure 4.1. One challenge of this decomposing pro-
cess was to identify the "best" architecture, one which minimized information flow between
process diagrams, while it maximized information flow within each diagram.This not only
helped with clarity, but also resulted in well defined functional units which mapped directly to
the actual process. In summary, the major building blocks are:

• Level 1: define maintenance life cycle.

• Level 2: identify problem, review & approve CR, install modifications, perform
CM activities, do external testing.

• Level 3: revise CR, do accounting checks, move files to CM repository, build
by developers, build by CM group.

• Level 4: build process.

• Level 5: perform build.

• Level 6: cycle through sub-directories, execute make file.

Communication of information between the process diagrams occurs in two ways: through ex-
plicit links between diagrams, and through access of information from a "globally" define re-
source. In the former case, change request information and status (or condition) changes are
the main examples, while in the latter case, information in the databases (data stores) is the
most obvious example.

With respect to the levels, it is interesting to examine some qualitative differences. The top lev-
el (Level 1) represents a process diagram of the project's life cycle. For the intermediate lev-
els, humans are the main active agents, although machine agents also operate. At the lowest

CMU/SEI-92-TR-31 51

level (Level 6), only machine agents operate, indicating that the associated sub-processes are
entirely automated.

The change request is seen to be an important artifact at the top level, being the "glue" which
holds to sub-processes together. It therefore seems that significant changes to the character-
istics of the change request form could not be made without significant impact on the global
process. Similarly, the architecture of the repository and the manner in which the data is stored
using SCCS constraints the higher level CM process. However, so long as the new process
maintains the conventions: 1) the inputs to and output from a reused building block are con-
sistent with the project's conventions, and 2) the changes to the underlying repository are con-
sistent with the project database conventions, then the new process can use the candidate
building block (see Figure 7.1).

Repository

w

8 o
Q.

Figure 7.1 Maintaining Data Consistency Around a Building Block

7.2 Some Simple Reuse Examples

To help illustrate issues on reuse, this subsection describes some simple reuse cases involv-
ing the project's sub-processes. The first example looks at modifying the project's software
process in order to account for software development rather than software maintenance. This
modification primarily involves modifying the "front end" of the project's process. To make this
change, the three high-level activities identify problem and review/approve CR and install
modifications (see Figure 4.2) must be removed and replaced with the activities shown in Fig-
ure 7.2. However, this is not a complete replacement, since the old review/approve CR pro-
cess can be reused in the requirements and design areas. In addition, the develop S/W
modules activity is virtually identical to the old install modifications activity, and hence can be
reused. Only the develop requirements and develop design processes needs to be construct-
ed. In this example, the chances of adapting the project process elements for reuse look good.

A second example of process reuse involves: building a maintenance system in which the ba-
sic project process is used, but which is supported by a different repository design such as
CCC [Softool 91]. The turnkey version of CCC has a life cycle process model embedded in it,

52 CMU7SEI-92-TR-31

I CR:req/unapp I

develop
requirements

review/approve
requirements

I CR.design/unapp

develop
design

review/approve
design

I
I CR:require/app |

develop
S/W modules

|CR:design/app

Figure 7.2 Modifying the Front-End of the Project Process

and, as with the project, its change request form is central to its operation. However, CCC has
its own notion of project states, some of which are distinctly different from the project process
states. At the top level, this difference may be a significant impediment in the use of CCC. In
addition, the turnkey CCC may not be able to support CM over multiple platforms in the way
the project was designed to do. Finally, in CCC, the test group is responsible for final approval
of the software, not the CM group. On the positive side, with appropriate changes in CR status
naming conventions, the sub-processes identify problem and review/approve cycle may be re-
usable. However, in most of the other cases, the sub-processes are tied too intimately to the
structure and the distributed nature of the databases so that their re-use is questionable.
Hence the chances of this adaptation being successful are low.

The final example of reuse involves stripping the repository out of the project environment and
using it to support an entirely new process. The discussion here will not define the new pro-
cess, but instead highlight some implications which result from the design of the project's re-
pository. The project repository consists of multiple databases of identical structure, that is
respectively, DEVEL, STAGE, BASE, and the CM repository. Each of these is designed to
support a specific part of the project's life cycle. If this "life cycle" environment were to support
another software process, much of the process "baggage" would have to be accepted also.
However, the process constraints are imposed through the use of the multiple databases, not
through the design of the database itself. (Each data base is tied to a different state in the
project's process.) Thus, if only the basic design of the database were adopted, significant
flexibility could be accommodated in the use of both the database structure and the accompa-
nying build and compile script files in the new software process.

CMU/SEI-92-TR-31 53

54 CMU/SEI-92-TR-31

8 Summary and Conclusions

The maintenance project described in this document started out with a modest goal: to support
a Unix-based software environment on a small number of platforms. Over time, the demand
for the project's products grew as more customers wished to use them. This resulted in the
need to support an increasing number of platforms, operating system variants, and files. In ad-
dition, new network technology was introduced and the distinction between terminals and host
computers was blurred with the introduction of high performance workstations. Thus the
project support group was forced to develop and implement an effective configuration control
system for this increasingly complex operation and to work within a well-defined and under-
stood process.

The CM system developed includes a number of significant elements: the change request
form, the change control board, the independent CM and test groups, and the functionality pro-
vided by the automated build, compile, and install facilities. The change request form is the
central document which ties the maintenance process together. All information about the sta-
tus of modifications is incorporated into the CR; hence, this document provides a "paper trail"
for tracking and auditing the progress of changes. The change control board reviews all pro-
posed changes (using the CR), whether those changes are related to new requests, solution
approaches, or implementations. The CCB is also responsible for final release of new revi-
sions. The CM and external test functions have been separated from the development activity.
This allows the developers to focus on development, while a dedicated CM group provides an
objective basis for product quality. As a backup guarantee on product quality, the development
group is also able to cross-check the files actually sent to the CM repository. Finally, much
work was invested in building the scripts and compile files. These scripts and files allowed for
a significant degree of automation of the compile, build, and install activities.

These changes to the process have resulted in many benefits. First, program managers can
track the status of all pending changes, and also interact with and influence the decisions
made by the developers. Second, the developers can trace individual items which make up a
program. Third, customers have benefitted because much of the uncertainty about both ver-
sions of the program they are running, and the status of requested changes has been re-
moved. Finally, the quality of the product has improved since the built-in checks minimize the
likelihood of wrong file versions being accidentally incorporated into released software.

This report has defined the process in considerable detail, both through textual description and
through a graphical process model. The graphical model turned out to be many layers deep,
the top layer representing the overall "life cycle" of the maintenance process, and is dominated
by the evolution of the change request. The focus of the lowest layer represented the com-
pletely automated build process where build scripts were the active agents. Between these
extremes, both human and machine agents drive the process. This model added a degree of
precision to the definition of the process which is difficult to capture in the textual description.

CMU/SEI-92-TR-31 55

Through the experience gained in operating this maintenance project, several improvements
have been identified and are currently being incorporated. These include increasing the de-
gree of automation of the build process, reducing the delays in the external test phase, and
automating the CM audit. With the current system, the build for each platform must be per-
formed individually, while with the anticipated system, builds will be performed automatically
and simultaneously on all platforms. The current external test procedure involves a group who
have other responsibilities besides testing project software. Consequently slow turn around
occurs. A plan is being implemented to use other human resources to perform this test func-
tion. Finally, to improve the manual CM audit function, software is being developed to extract
information from the CR form and through this, to automate the audit and installation proce-
dures.

A comparison of the project's process against the CM practices of the Capability Maturity Mod-
el [Weber 91] was made. This comparison resulted in the identification of strengths and weak-
nesses in the existing process. These strengths and weaknesses are listed below.

Strengths:

• The process of assuring correctness and completeness of baselines is
effective.

• Change control is well defined and managed through an effective CR
process.

• The CM function is separate and independent of the development function.

Weaknesses:

• Lack of documentation (procedures, plans etc.).

• Lack of formal training.

• Lack of tracking (e.g. on cost and schedules).

• Lack of independent audits.

This profile of strengths and weaknesses indicates that the required operational aspects of the
project's software process are very adequately addressed, while some issues related to, for
example, higher management oversight, could be strengthened.

The final issue addressed was that of reuse. The model defined in Section 4 provides a break-
down of the project's process into relatively self-contained sub-processes which communicate
with each other, three hypothetical examples were looked at in order to see if these sub-pro-
cesses could be modified or rearranged to support other processes. These examples were: 1)
modifying the process to account for front-end requirements and design phases, 2) replacing
the software support environment with a commercial system such as CCC, and 3) porting the
project's directory structure together with the build scripts and compile files to another software
development process.The conclusions reached were that 1) and 3) might be achievable while
2) is unlikely to be successful.

56 CMU/SEI-92-TR-31

Appendix A How to Read the Process Diagrams
To understand the process diagrams in Section 4, this appendix provides a brief guide to the
formalism. The appendix does not describe how to use the program, ProNet [Christie 92],
which generated the diagrams.

The diagrams are based on a modified Entity-Relation model, in which the entities and rela-
tionships have defined types. Central to the approach is the entity type activity. Activities form
"anchor points" to which other entities are attached. The other entity types are:

• Products. These can either be required to support an activity or be produced
by an activity. Products must be the result of some activity being modeled;
otherwise, it must be categorized as resource (see below).

• Conditions. These can either be required to initiate an activity or result from
an activity.

• Agents. These are active entities (either human or otherwise) needed to
support an activity. As defined here, agents are roles rather than role
instances, (i.e., it is sufficient to specify project chief without specifying the
project chief's name.)

• Resources. These are passive entities (produced externally to the system
being modeled) required to support activities and they maybe transformed
into products by the activity (e.g., a blank form).

• Constraints. These are policy restrictions imposed on the performance of an
activity (e.g. a quality assurance constraint).

• Junctions. These are Boolean combinations of conditions, products, agents
etc.(i.e. the existence or non-existence of a product, etc. is equivalent to a
condition).

• Aggregates. These are combinations of entities differing in type. For
example, a UNIX tree is an aggregate which is composed of files (type:
product! e<^ a directory structure (type: resource).

There is no finer-grained definition to the "agent" type. Agents can be humans or machines
and the distinction between agent roles and physical agents is not made. However, given the
nature of the model this lack of distinction does not lead to any obvious ambiguities.

Most relationships link the entities to the activities. Hence we have such relationships as:

{product} is entrance product for {activity}

{product} is exit product from {activity}

{agent} is required agent for {activity}

In general, products, conditions, resources, junctions and aggregates form inputs to and out-
puts from activities, while agents and constraints are required by activities.These relationships
are all written in italics, and the information they contain allows the reader to identify the type
of entity linked to the activity. The activities can be identified since they always have a shad-

CMU/SEI-92-TR-31 " 57

owed box around the entity name. In addition, a small black dot is placed next to the entity at
the end of the relationship. For example in the relationship "ABC is entrance product forXYZ',
the dot would appear in the graphical relationship close to the box surrounding the activity
XYZ. The above information is illustrated in Figure A.1

compileT"
js required agent for

| source code I/s entranc* I"*"* h7i\ compile code

ready to compile : entrance condition for

[compiled code

-tffextf product from

is exit product from

Figure A.1 A Simple Process Diagram

There is a second class of relationship having to do with generalization (inheritance) and ag-
gregation relations. The generalization relations are is generalization of and is instance of,
while the aggregation relations are includes and is part of. These relationships follow the same
syntactic rules as the relations described above. However, there are some additional points to
be noted. These relationships can connect activities with non-activity entities, as well as non-
activity entities with each other. With the generalization relations, only like entity types can be
connected together (e.g., product X is part of product Y), while with the aggregation relation,
arbitrary entity types can be connected.

Aggregation relations can be specified in two different ways. The first way is simply of the form:
{activity} is part of {activity}. The second way is required in order to add hierarchical structure.
For a process model of any size, there is a need to structure the model into higher and lower
level diagrams, where the lower level diagrams act like components (or subroutines) to the
higher level. In order to expand an entity into its constituent parts, the is part of relation is used.
Most commonly (but not necessarily), an activity box in one diagram is expanded in another
diagram in order to show detail. If the depth of a box framing an entity is doubled, then this
indicates that a lower level diagram exists. As an example of this, see figure 4.2, which con-
tains five activities, each of which is expanded (Figures 4.3 through 4.7).

The final class of relationships contains only one relationship type. This class is a "catch all"
for entities which are related in ways that cannot be expressed by any of the pre-defined types.
This custom relationship allows the modeler is define the relationship expression as arbitrary
text. For example, a custom relationship used in Figure 4.6 is the word replaces. Custom re-
lationships are used very sparingly since, as they do not have a pre-defined meaning, they
could detract from the clarity of the model.

58 CMU/SEI-92-TR-31

One entity type, the junction, requires additional explanation. Before an activity can be initiat-
ed, a set of Boolean conditions (here called a composite) may have to be true. For example,
if the Boolean composite (product A or (agent B and condition C)) is true, then activity X can
start. In a similar vein, the activity X may generate as output (condition D or condition E).These
relationships are represented diagrammatically as shown in Figure A.2.

conditions C

agent B ^

| product A [-£•

{entrancecomposite for

has exit condition

is exit composite tor

composite for ^

condition D

entrance product for

ndition

[condition E|

Figure A.2 An Example of Boolean Composites

There are four types of junctions: convergent and divergent, conjunctive ("AND") and disjunc-
tive ("OR"). In the picture, CO implies a convergent "OR", CA implies a convergent "AND"
while DO implies a divergent "OR". The final type (not shown in the diagram) is a divergent
"AND" (DA). Convergent nodes always precede activities, while divergent nodes always come
after activities. It should be noted that, for multiple entities acting directly on an activity, it is
assumed that these entities are all ANDed together. This is also true for multiple outputs from
an activity.

Some final rules must be described in order to understand the process aspects of this model-
ing approach. Except through the generalization and aggregation relationships, activities nev-
er connect to other activities. For example, from a process point of view, an activity may
produce a product as output. The existence of this product now allows a second activity to
start. Thus, activities are activated only indirectly through the consequences of other activities
(products available, conditions set to true, etc.), not through direct connections between activ-
ities. It is thus not appropriate to read the diagrams as flow charts.

CMU/SEI-92-TR-31 59

Appendix B Unix Scripts for System Build
This appendix contains a shortened version of the file "compile.env." This file is stored at the
top of the tree and is used by the build scripts at each node of the tree to set platform depen-
dent build parameters. The scripts which build and install the project software must be aware
of the type of hardware and the software version of the operating system running on the plat-
form. This is the only file that must be altered in order to build and install the software on a
particular platform. The platform is selected by using an editor to move the arrow (->) next to
platform type. In this example the AT&T 3B15 running Unix version 2.2 has been selected.

*
This file is read by the compile shell script. The version
pointed to by the arrow is the version we will compile.
*

*
this is the version for the AT&T 3B15
running Unix 2.2
*
-)3B15_UNIX_2.2

this is the version for the AT&T 3B15
running Unix 3.1
*
3B15_UNIX_3.1

*
this is the version for the scope 1000 80386 "b" end "c"
machines
running SCO XENIX 2.3
*
SCO_386_2.3

*
this is the version for the scope 1000 80386 "b" and wc"
machines running SCO XENIX 3.2
*
SCO 386 3.2

*
this is the version for the SUN 3
running SunOS 4.0.3
*
SUN3_4.0.3

CMU/SEI-92-TR-31 " ~~ §7

this is ths version for th« SUM 4
running SunOS 4.0.3
*
SUN4 4.0.3

62 CMU/SEI-92TR-31

Appendix C Sample Makefile

Make files are description files used by the Unix make program. Makefiles are stored at each
node of the project's source tree. Most of the actual work of building and installing the software
is done by shell scripts stored with the makefiles at each node in the tree. Shell scripts are
used to do most of the compile, build and install functions to avoid the maintenance problems
associated with platform variations of make.

%Z%DSG %N% %I% %6% dist=%Q%

help:

gecho "\tuse \"make all\" to . /compile link install"
gecho "\tu«e \"make file\" to ./compile link"
@echo "\tuse V'make clean\" to remove *.o and file"
6echo "\tuse \"make install\" to install file"

all: install clean

file : compile decl.h hlpdeclare.h errdeclare.h\
file.o consts.o exist.o args.o subsl.o subs2.o

subs3.o
gchmod +x compile
6./compile link

.c.o :
gchmod +x compile
./compile $*

clean:
gchmod +x compile
6./compile clean

install: file
gchmod +x compile
g./compile install

file.c:
get SCCS/s.file.c

consts.c:
get SCCS/s.consts.c

exist.c:
get SCCS/s.exist.c

args.c: get SCCS/s.args.c

subsl.c:
get SCCS/s.subsl.c

CMU/SEI-92-TR-31 63

subs2.c:
gat SCCS/*.sub»2.c

subs3.c:
gat SCCS/s.»ubs3.c

dacl.h:
gat SCCS/s.dacl.h

arrdadara.h:
gat SCCS/s.arrdadara.h

hlpdadara.h:
gat SCCS/s.hlpdadara.h

compile:
gat SCCS/s.compile
chmod +x compile

64 CMU/SEI-92-TR-31

Appendix D Sample Compile/Build/lnstall Script

This is an example of a compile script which is stored at nodes within the tree. Compile scripts
are executed by the makefiles at each node. The compile script determines the platform by
consulting a file at the top of the tree; it then adjusts the compile, build, and install parameters
and does the installation. This compile script builds and installs the program FILE.

•/bin/sh
@(#)USG compile 2.4 3/19/91 di»t=
compile

This la a simplified example of a shall script which ia
responsible for compiling, linking and installing a
program at one node in the traa. The acript ia axacutad
by the makefile at tha mode. The acript accepta a aet of
parameters which can be keywords and/or module names. A
data file (compile. env) at root of the tree ia examined
to determine the hardware/a of t ware platform on which the
build ia taking place.

example: compile all link install clean

Set var EXECUTABLE to the program file name

XECDTABLE=FILE

Set ALLMODULES to the liat of modules included in the
program

ALLMODULES="file consts exist args subsl subs2 subs3"

Check the compile.env file to determine the platform

caae 'grep WA-)W ../compile.env* in

Each aection of the "caae" statement aeta the ahell
variables which will be used to compile, link and inatall
the program. The platform type ia defined in the
"compile.env" file and must match a line in one of the
sections of the caae statement.
*

*
AT&T 3B15 2.2
*

CMU/SEI-92-TR-31 * 65

*3B15_UNIX_2.2)
CCFIAGS«"-0 -K sd"
LDFLAGS=-lproject
INCLUDES
TARGET=/usr/ptssexec
MODKS=700
DID=project
GID«emer
ARCHIVES
LINKNAMKS=

9 9

*
ATCT 3B15 and 3B2 3.x
*
*3B15_UNIX_3.1 | \
*3B15_UNIX_3.2_MLS | \
*3B2_UNIX_3.1 | \
*3B2_UNIX_3.2 | \
*3B2_UNIX__3. 2MLS)

CCFLAGS="-0 -K"
LDFLAGS = -lproject
IMCLUDB=
TARGET=/usr/pt88exec
MODES-70
UID=project
GID««ur
ARCHIVES
LINKNAMESs

*
SUN
*
*SUN3_4.0.3)

CC=/usr/5bin/cc
CCFLAGSs"-0 -f8881"
LDFLAGS="-lproject /usr/51ib/libc.a*
INCLUDES
TARGET=/usr/ptssexec
MODES-700
UIDsproject
GID=emer
ARCHIVES
LINKNAMESs
/ 9

*
SUN
*
*SUN4_4.0.3 | \
*SUN386I_4.0.3)

CCs/u»r/5bin/cc
CCFLAGSs"-0"
LDPLAGSs"-lproject /usr/51ib/libc.a'
INCLUDES
TARGETs/usr/users/hms

66 CMU/SEI-92-TR-31

MODES*700
UID*project
GID*emer
ARCHIVE*
LINKNAMES*
/ f

*
EASY DATA
*
*SCO_386_2.3 | \
*SCO_286_2.2 | \
*PS2)

CCFLAGS="-Oat -DPCAT"
LDFLAGS*-lpro ject
INCLUDE*
TARGET=/u8r/pt88«xec
MODES=700
UID=project
GIP—emer
ARCHIVE*:
LINKNAMES*
f t

*
EASY DATA
*
*SCO_386_3.2)

CCFLAGS="-Oat -DSCO_UNIX"
LDFLAGS = -lproj act
INCLUDE*
TARGET*/usr/ptssexec
MODBS*700
UID*project
GID*emer
ARCHIVE*
LINKNAMES*
r r

*
Many of the platform descriptions were removed from here
to simplify the example.
*

*
ERROR - specified platform (in compil.env) does not have
a matching entry in the CASE statement!
*

*)
echo "Can't identify the machine. Exiting."
exit 1

• sac

*
Check the input parameters to determine what must be

CMU/SEI-92-TR-31 67

don*. Possible values in the parameter list are: all,
link, install, clean or the names of specific nodules to
compile.
*

if [-s "${1}"]
then

CPCUNIT S=${ALLMODULES}
else

CPCUNITS=${*}
fi

if [W${1>" = "all"]
then

CPCDNITS=${ALLMODULES}
shift
CPCUNITS="${CPCUNITS} ${*}"

fi

OBJ*

cd 'dirname ${0)'

*
If the compiler was not specified, then make it "cc"
*
if [-a *${CC}W]
then

CC=cc
fi

*
Process the parameter list, set flags for LINK, INSTALL
or CLEAN and try to copile everthing else.
*

for FILE in ${CPCUNITS)
do
case ${FILE} in

link)
LINK=1
continue

install)
INSTALL=1
continue
r r

clean)
CLEAN=1
continue

*)
echo W${CC) -c ${CCFLAGS} ${INCLUDE}${FILE}.c"

68 CMU/SEI-92-TR-31

${CC} -C ${CCFLAGS} ${INCLUDK} ${FILE}.C

if [! ${?} -eq 0]
than

exit 1
fi
OBJ="${OBJ} ${FILE}.o"

esac

don*

*
If the OBJ list is empty (not constructed by the compile
step) then make the OBJ list for ALLMODULKS.
*

if [! w${OBJ}"]
then

for FILE in ${ALLMODULES]
do
OBJ="${OBJ} ${FILE}.o"

done
fi

*
Do either a link or an archive based on whether or not
the shell variable EXECUTABLE contains an executable
name.
*

if [W${LINK>" * *1*]
then

if [-Z "${EXECUTABLE}"]
then
echo "Archiving ${TARGET}/${ARCHIVE} ${OBJ}"
/usr/localbin/archive rv ${TARGET}/${ARCHIVE} ${OBJ}
if t I ${?} -aq 0]
then

exit 1
fi

else
echo "Linking CC ${OBJ} ${LDFLAGS} -O ${EXECUTABLE}"
CC ${OBJ} ${LDFLAGS} -o ${EXECUTABLE}
if [! ${?} -aq 0]
then

exit 1
fi

fi
fi

CMU/SEI-92-TR-31 " 69

*
Install the program if specified and If EXECUTABLE
contains an executable name. Otherwise, Install the
program In an archive (usually libproject.a).
*

if ["$(INSTALL)" • wl"]
than

echo "Installing"
if [-Z "${EXECUTABLE}"]
than
echo "Archiving $(TARGET)/$(ARCHIVE) $(OBJ)"
/usr/localbin/archive rv $(TARGET)/$(ARCHIVE) ${0BJ)
if [• $(?) -eq 0]
then

exit 1
fi

else
rm -f ${TARGET}/$(EXECUTABLE)
for FILE in ${LINKNAMES)
do

rm -f $(FILE)
dona
cp ${EXECUTABLE) ${TARGET}/$(EXECUTABLE)
if [• $(?) -aq 0]
than

exit 1
fi

on some platforms "chown" must be executed as a
priviladged (su) program?!

chown ${UID) ${TARGET)/${EXECUTABLE)
chgrp ${GID) $(TARGET)/$(EXECUTABLE)
Chmod $(MODES) ${TARGET)/$(EXECUTABLE}
Is -1 $(TARGET)/$(EXECUTABLE)
for FILE in ${LINKNAMES)
do

echo "linking $(TARGET)/$(EXECUTABLE) ${FILE)"
In $(TARGET)/$(EXECUTABLE) ${FILE)

dona
fi

fi
*
Clean out the .o files and the executable
*
if [W$(CLEAN)" = "1"]
than
echo "Cleaning"
rm -f *.o
rm -f $(EXECUTABLE)

fi

70 CMU/SEI-92-TR-31

Appendix E CCB Change Request Form

ssssssaCCB REPORT ID #nnnn========

(nnnn is inserted automatically by CCBNEW program)

CREATED BY:

(This field is automatically filled when CCBNSW is run,
the program insert* the usar's name and a time stamp.)

MODIFIED BY:

(This field is automatically filled when CCBOLD nnnn is
run and will be repeated as many times as nacassary.)

SUBJECT:

(Short ona lina description of problem or update
request.)

PROBLEM DESCRIPTION:

(Description of the symptoms and circumstances
surrounding the failure or a request for a new feature.)

ANY PREVIOUS CCB REFERENCES :

(Usually empty but may be filled in by the developer.
Provides a cross reference to related CCB items.)

GENERAL DESCRIPTION OF CHANGE:

(Non-technical description of the changes made. This
field provides input to the non-technical members of the
CCB board.)

LIST OF OS RELEASES AFFECTED:

(Machines and operating system versions that the change
must be applied to.)

MANUAL PAGE CREATED/MODIFIED:

(Formal manual pages affected by the changes and the
location of the updated manual pages.)

LIST OF SOURCES CHANGED WITH SCCS DELTAS:

(Pathnames to the new SCCS files including the SCCS
delta numbers of the changes.)

CMU/SEI-92-TR-31 7!

DETAILS OF CHANGES MADE (IF APPROPIATE):

(Technical description of what was changed. This section
Blight contain small coda segments and is primarily aimed
at developers who may make follow up changes to the same
items.)

TEST HISTORY AMD SCENARIO FOR CHANGES :

(Whan, how and on what platforms wars tha changes
tested. The test team will use these notes to develop test
scenarios for the next release.)

LIST OF INSTALLED MODULES CHANGED:

(List of executable affected by the change. The list may
be long if the changes were made to one of the library
modules.)

ANY NON-STANDARD INSTALLATION PROCEDURES:

(Anything that involves more than "make install". This
would include network changes, OS changes or anything that
might require a reboot to install etc.)

ANY DOCS FOR RELEASE NOTES:

(This information will be included in the release notes
with the next major release. They are used to alert system
administrators and users to changes that affect the way
executables behave or to document new features that have
been added since the last release.)

72 CMU/SEI-92-TR-31

Appendix F Example of an Initialized CR Form
This is an example of a completed CR form. Several of the fields have been changed to sup-
port automatic processing of the CM auditing functions.

CCBID#1743

CREATED: by radavia on Wed Nov 20 19:01:13 GMT 1991

SUBJECT: ath_load and proj_gotty for Sun OS, DGUX

PRODUCT: project

PROGRAMMER: rtdivii

PROBLEM DESCRIPTION:

For the Sun, eth_load needs changing to know about GUL,
and also about "rotaring". For the Data General, the
programs needs an Initial port.

On the Data General, proj_getty requires a tricky
adaptation. You can't open the slave side of a pseudo tty
on the Aviion unless the controller side is already open.
The solution proposed here is to have pro j_getty hold up,
in an infinite sleep, until eth_load awakens it after
opening the controller. Proj_getty registers his pid in
/pro ject/gettypids and locks same (so eth_load will know
the proj_getty is still alive).

The network part of the code is hard to read because of
excessive fifdefs. These have now been encapsulated into
the module *proj_list".

ANY PREVIOUS CCB REFERENCES:

GENERAL DESCRIPTION OF CHANGE:

Add GUL to Sun version.
Add rotaring to Sun version.
Add proj_getty sleep, eth_load wakeup trick for DGDX

version.
Hack out most of the network calls and replace with

proj_list.

CMU7SEI-92-TR-31 73

LIST OF MACHINE MODELS, OS RELEASES AFFECTED:

Sun OS
DGUX

MANUAL PAGE CREATED/MODIFIED (Yes/No/Not-Applicable)

LIST OF SOURCE MODULES CHANGED:
u SYS/eth_load/SCCS/s.ath_load.c 2.10
u SYS/proj_getty/SCCS/s.proj_getty.c 2.3

DETAILS OF CHANGES MADE (if appropriate):

1. "8(#)SHAREDPORTS defined — eth_load.c" SCCS string
added if SHAREDPORTS fifdef is true.
2 . Module changed to key off standard pro ject/define .h GUL
define vice GRAND_UNIFIED_LOGIN.
3. Use LIKE43SOCXETS define instead of TLISOCKCOMP.
4. Ported to DGUX.
5 . Implemented rotaring on the Sun. (Needed fifdef for Sun
OS 4 locking bug.)
6. Turn off catcher for SIGCLD during network socket close.
If the network close is interrupted it doesn't complete
properly.
7 . Added logic to sense the pro jterm "panic" character, to
increase the liklihood eth_load will exit when pro jterm
goes away and KEEP_ALIVE doesn't work.
8. Add logic to awaken proj_getty under DGUX.

TEST HISTORY « SCENARIO FOR THIS CHANGE:
Tested by daily use on Quark, Fillet and Quasar,

LIST OF INSTALLED MODULES CHANGED:
/usr/localbin/eth_load
/usr/localbin/proj_getty

ANY NON_STANDARD INSTALLATION PROCEDURES

ANY DOCUMENTATION FOR THE RELEASE NOTES:

74 CMU/SEI-92-TR-31

)From: MINUTKS/ccbll2 6
#1743 eth_lo*d and pro j_gatty for Sun OS, DGUX : All OK
«t*tua=INC_project

CMU/SEI-92-TR-31 75

References
[Christie 92] Alan M. Christie, "A Graphical Process Definition Language with Application,"

Software Engineering Institute, To be published.

[Paulk 91] Mark C. Paulk et a!., "The Capability Maturity Model for Software," Software
Engineering Institute Technical Report CMU/SEI-91-TR-24, ADA240603,
August 1991.

[Sobel 89] Mark G. Sobell, "A Practical Guide to the Unix System," Benjamin Cummings
Publishing Company Inc., Second Edition, 1989.

[Softool 91] Softool Corporation, Goleta, CA, "CCC/DM Turnkey User's Manual," Revision
nn3-111, June 1991.

[Weber 91] Charles V. Weber et al., "Key Practices of the Capability Maturity Model," Soft-
ware Engineering Institute Technical Report CMU/SEI-91-TR-25, ADA240604,
August 1991.

CMU/SET-92-TR-31 ~~ 77

UNLIMITED, UNCLASSIFIED
SECURTTY CLASSIFICATION OF THIS PAOE

REPORT DOCUMENTATION PAGE
U. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. DECLASSmCATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILrTY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-92-TR-31

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-92-031

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7i. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

ESC/AVS
Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/AVS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003

8c. ADDRESS (city, aute. and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.
N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Claaailication)

Analysis of a Software Maintenance System: A Case Study

12. PERSONAL AUTHOR(S)
Howard M. Slomer and Alan M. Christie

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

November 1992
15. PAGE COUNT

80
16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB.GR.

18. SUBJECT TERMS (continue on tevene of necessary and identify by block number)

capability maturity model
configuration management
software maintenance systems software environment

19. ABSTRACT (continue on reverse if neceaaary and identify by block number)

To design, implement, and operate a successful software development process, exposure to similar existing systems
is invaluable. The objective of this paper is thus to document and analyze an existing, moderate size, software main-
tenance project. The project, which supports the maintenance of a software environment has, through incremental
improvement, beoome very effective. However, this effectiveness has only been achieved through struggle, compro-
mise, and creativity. The paper documents the evolution of the project, providing insights into how change was man-
aged, and defines and formally models the project as it existed until recently. The project's process is still evolving, and
recent changes, while not formally modeled, are also described. The results of this modeling are applied 1) to compare
the project's practices from a perspective of the SEI Capability Maturity Model (CMM), and 2) to address briefly the
issue of process reuse. Comparison to the CMM resulted in an identification of strengths and weaknesses of the
project's software process. In the examination of reuse issues, three hypothetical examples of process reuse are

(please turn over)

20. DISTRIBUTION/AVAILABILrTY OF ABSTRACT

UNO^SSIFIED/UNUMrrED | SAME AS RPTQ DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include »tci code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/AVS (SEI)

DD FORM 1473,83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

