<EKXL.T3; vers 1; 07/24/91> # EKXL: A Dynamic Poisson-Solver for Polywelltm/HEPS Spherical Converging Flow Systems[†] Katherine E. King and Robert W. Bussard EMC2-0791-03 APPROVED FOR PUELIC RELEASE DISTRIBUTION UNLIMITED This document has been approved for public release and sale; its distribution is unlimited. OCT 22 1992 WAS SHORT OF THE PRESURE OF INFURNATION AND SECURITY NEVIEW (DAES-PA) MICHIMENT OF DEFENSE This work performed under Contract No. MDA-972-90-C-0006 for the Detense Advanced Research Projects Agency, Defense Sciences Office. 40.0100 92-29994 2996 REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF PACTUAL ACCURACY OR OPINION EMC2 ENERGY/MATTER CONVERSION CORPORATION 9100 A Center Street, Manassas, VA 22110, (703) 330-7990 #### I. HISTORY AND BACKGROUND OF THE EKXL CODE The EKXL code, and each of its predecessors, is a 1-D radially-dependent Poisson-solver. It gives static solutions for potential and density distributions, given edge density specifications for these parameters. It is a "point" model in that spatial variation of externally-imposed fields is possible, but spatial dependence of inter-particle interaction phenomena can not be accommodated as an integral part of code operations. The original code, IACCEL2/EACCEL2, was developed by Ensley^{1, 2} and provided closed analytic solutions in integral form using Struve and Bessel functions. This code employed Gaussian distributions for transverse energy and momentum. Solutions were limited, however, to electron currents of 1–10 A and core densities of $1\times10^9-1\times10^{10}$ 1/cm³, as indicated in Figure 1. The first modification to Ensley's work was ACCEL, developed by Mission Research Corporation³ (MRC). This version of the code utilized a more efficient algorithm for converging a solution to Poisson's equation, resulting in significant run—time savings. New physics elements were also added in order to include tangential current densities where previously only radial current was used. As shown in Figure 1, with the ACCEL improvements solutions were achieved with electron currents of 100—500 A and core densities of 1×10^{11} — 1×10^{12} 1/cm³. What followed was a new code, XL, also developed by MRC4, that was utilized to its capacity by EMC² to study the Polywelltm/HEPS system⁵. This code employed a differential numerical analysis procedure and matrix inversion solution method. The distribution functions for transverse energy and momentum were changed to square functions to simplify the calculation. Features added at this time were adjustable precision 1 and an adaptive grid. This code achieved much higher electron recirculating currents, $1x10^9$ A, and core densities, $1x10^{13}-1x10^{14}$ 1/cm³. However, the core density barrier at $1x10^{14}$ 1/cm³ could not be surpassed, making any studies of Polywelltm reactor densities impossible. Work was then underway at MRC on the next revision, KXL. #### II. THE ADIABATIC KXL CODE EMC² began working with the adiabatic code KXL in July, 1990. KXL uses the same mathematical engine developed in the XL code and a series of intermediate "steady—state" solutions over time to reach the final steady—state condition for the given input parameters. Selected parameters, such as input current and the length of the time step, can be adjusted as the calculation proceeds. As indicated in Figure 1, this method and some of the improvements discussed below allow the code to reach much higher core densities than were possible with XL. The original MRC version of KXL used an explicit input of confinement time. This was replaced with input of the recirculation, $G_{i,j}$, and the confinement time is calculated in the code by $G_{i,j}t_{trans}$. This allowed for more consistency since the transit time is also used elsewhere in the code. The "trapping" formula, F_{trap}, that allows feedback on the current density was first changed by David Smithe of RC and then later by EMC2 (see below). The original form was a generic adjustment that reduced the input current by an input reduction factor. This was changed to an algorithm that adjusts the current based on the core potential to prevent the anode from maximizing, due to too many ions in the core, causing the calculation to be unsuccessful. A target anode potential and maximum beam current are input and the code adjusts the beam current up to that maximum in an attempt to obtain the target anode height. The input variable is V_0 and it represents the target well depth. V_0 can be different for each species, allowing separate control over each beam. For example, a V_0 for the electron beam greater than the maximum well depth would set $F_{\rm trap}$ equal to one and allow the electron beam to remain on at maximum current for the entire run while the code adjusted the ion current within the indicated range. The anode control formula is as follows: $$\mathbf{F}_{\text{trap}} = \frac{1}{1 + e^{\alpha}} \qquad \text{where} \quad \alpha = \frac{\varphi_0 - V_0}{\pm .03 \ \varphi_{\text{max}}}, \tag{1}$$ $\varphi_0 = \text{Current Core Potential}, \ \varphi_{\max} = \text{Maximum Core Potential}, \ \text{and the \pm is}$ - determined by the charge on the beam. If the maximum available ion current is too high, however, the F_{trap} formula cannot turn the current down enough. In effect, there is gun "leakage" and the ions build up (due to their recirculation) and overwhelm the core. When using a large ion current, it still needs to be within a reasonable range of the final gun current for the code to run successfully. The auxiliary potential was introduced in KXL to model mirror reflection of the electrons in the cusp region, $\mu \nabla B = \frac{1}{2} m v_{\perp}^2$. The input to the code is the magnitude of $\mu \nabla B$; therefore, it is not evident what is the magnitude of B since μ is defined as a function of both B and v_{\perp} . Much analysis went into the auxiliary potential in an attempt to determine the magnitude of B to use in the calculation G_j based on either the wiffle ball or mirror reflection models, switching between the two where appropriate. Since the magnitude of B is indeterminate from the auxiliary potential, this linkage was not possible. In previous work with the XL code a gridding problem had been identified. From extensive code runs, many of which did not succeed, it was found that as the system density resolution of areas of high particle density. A radial weighting factor ("R" factor) was then used to ensure an adequate number of grid points near the outer radius, the region where the density changes rapidly. This weighting of the outer regions did not allow sufficient grid points in the core region to resolve high density cases. After EMC² and MRC had worked out a solution for the XL code, the "R" factor was reintroduced when the KXL code was written. Once this factor was removed from KXL the cases began to run more consistently and the core resolution was greatly improved. Figure 2 a shows a KXL run with the "R" factor and Figure 2 b shows the same case after the "R" factor was removed. Note the improved resolution of the core region in Figure 2 b. MRC compiled the KXL code on the Cray computer, and previous PC cases were run to verify that both codes were consistent. Once the running parameters for ion current were worked out, Cray cases were run to reach the high densities that appeared unattainable on the PC, in an attempt to fill in high density points in a study of core density vs. electron current. Examining this data, however, it became apparent that the core densities were much lower than expected from earlier calculations. Numerous variations of input variables were tried in an attempt to increase the densities. In the mean time, an explanation was sought as to why the densities were lower than predicted, and attempts were made to model this behavior. Also, the slope of core density vs. electron current was expected to be linear for constant electron confinement. As Figure 3 indicates, it was not linear until the electron current reaches 1000 A. This problem was discussed at some length by EMC², MRC and Krall Associates. The explanation for the change in slope at 1000 A was found, but without illuminating the too—low density problem. The electron density is increasing linearly the entire time, as expected. It is only the ion density that changes, due to the anode height. The δn required to form an anode is approximately $\delta n = (n_i - n_e) = 3.32 \times 10^9 (E_{anode}/r_o^2)$. The electron currents below the linear slope corresponded to densities where δn was a significant portion of the core density. As core density moves above this density, δn becomes less significant, the effect disappears, and the slope finally becomes linear. By plotting this data for varying anode heights it is apparent that the curve approaches the linear condition as the anode height approaches zero (Figure 4). In an effort to understand the too—low core densities, attention turned to the transit times. The code was modified to print the transit time at each step and this information was plotted, revealing that the code—calculated transit times were much too small to correspond to reality (Figure 5). Several changes were suggested and tried to improve the transit times, however it was then found that altering the transit time calculation had no effect on the final solution. This led to a suspicion that the dn/dt equation that was used to link the intermediate steady—state ("snapshot") solutions might be incorrect. In the KXL code this equation (for electrons) had the form: $$\frac{\mathrm{dn}_{\mathbf{e}}}{\mathrm{dt}} = \frac{\mathrm{n}_{\mathrm{inj}}}{\tau_{\mathrm{t}}} - \frac{\mathrm{n}_{\mathbf{e}}}{\tau_{\mathrm{conf}}},\tag{2a}$$ which gives the final steady-state relation $n_{inj}G_j=n_e$. The basic premise of this time-dependent coupling equation (2a) is, in fact, false. The correct formulation is one that connects time-dependence of <u>total</u> electron populations in the system between successive static solutions from the KXL code. This equation is: $$\frac{d\overline{n}}{dt} = \frac{4\pi R^2 n_{inj} v_{inj}}{4/3 \pi R^3} - \frac{\overline{n}}{t}$$ (2b) However, since the codes are all written to solve only one-dimensional boundary-value problems, it was necessary to recast this equation (2b) in terms of edge (boundary) densities. Thus major modifications to this portion of the code were required. And, other physics phenomena of importance to system operation also needed to be added to the code to improve the realism of its output results. Taking all of these factors together, at this point it was apparent that the KXL code needed considerable modification in order to be useful in analyses of Polywelltm machines in this (HEPS) program. Leaving the original generic code intact, EMC² then began development of the EKXL code, using the mathematical engine of KXL as developed by MRC (and EMC²) but now including all of the appropriate ion/electron/plasma physics analytic forms appropriate to and required for correct numerical results from EKXL code computions. ## III. THE EKXL CODE ## Change in Edge Density with Respect to Time The first step in customizing EKXL to the Polywelltm system was to derive a new, correct dn/dt equation. This equation is the key to the linkage of intermediate steady—state solutions over time, and numerical tests have shown solutions to be very sensitive to errors in this equation. The change—the total number of particles in the system is simply the input less the losses over a given period of time. Therefore, the change in the average number of particles with respect to time is given by: $$\frac{d\bar{n}}{dt} = \frac{4\pi R^2 n_{inj} v_{inj}}{4/3 \pi R^3} - \frac{\bar{n}}{t_c} = \frac{3n_{inj}}{R/v_{inj}} - \frac{\bar{n}}{t_c}$$ (3) where t_c is the confinement time, $G_{i,j}t_{trans}$. The code is only a differencing solution of a one-dimensional boundary-value problem. Thus dn/dt can only be tied to the change in edge (boundary) density, as opposed to average density, so a parameter, $F_n = \overline{n}/n_e$, was introduced to relate edge density to average density. Since this ratio is not fixed, F_n is calculated in the code each time the dn/dt equation is solved (see below). A second parameter, the ratio of free-stream half-transit time with no potential well to the actual transit time, $$F_{t} = \frac{R/v_{inj}}{t_{trans}},$$ (4) was introduced to allow the transit time to be factored out of the dn/dt equation. The final form of the dn/dt equation is then: $$\frac{\mathrm{dn}_{e}}{\mathrm{dt}} = \left[\frac{3\mathrm{n}_{i\,\mathrm{n}\,j}}{\mathrm{F}_{n}\mathrm{F}_{t}} - \frac{\mathrm{n}_{e}}{\mathrm{G}_{i\,,j}} \right] \frac{1}{\mathrm{t}_{\mathrm{trans}}} \tag{5}$$ # Calculation of F The average number of particles between each pair of grid points is used to calculate the number of particles in that shell. This is summed over the entire grid and divided by the total volume to arrive at \overline{n} . A modification was necessary, however, for the electron calculation in the outer shell. In high density cases, the electron density change across the last grid space can be very large (ca. 10^3-10^4x) and an algebraic average is not accurate. An exponential mean form was derived based on the assumption that the logrithmic gradient of the edge electron density varies inversely with the Debye length, λ_D , at the outer radius, R, d/dr (ln n_r) = $-n_r/\lambda_R$, and with a parameter, β , (typically β similar to 0.7), that characterizes the drop in E between the outer radius and the first grid point, $<r_1>$. When the electron density begins to increase rapidly in this region, EKXL will switch from an algebraic average to the following: $$\overline{n} = n_R \frac{2\sqrt{\beta}}{(1 - \langle r_1 \rangle)} \frac{\lambda_D}{R}$$ (6) #### Electron and Ion Recirculation Although analytic forms have been derived for ion loss due to core upscattering^{6, 7} and from fusion reactions⁸, it has been found convenient to choose a constant ion recirculation, G_i , as an independent input to the code. Variation in G_i affects only the ion injection current, I_i , as the circulating ion current, $I_c = I_i G_i$, is fixed by the parameters of a given case. The code has the ability to adjust I_i as needed (see below). The electron recirculation, G_j , may be input at a constant value or it may be calculated in the code using the physics of electron confinement under mirror reflection (MR) and wiffle ball (WB) modes. This model is discussed in detail in other EMC2 technical notes⁹. ¹⁰ and its pertinent algorithms and defining equations are given in Figure 6. As discussed earlier, the magnitude of B cannot be tied to the auxiliary potential and is, therefore, a separate input parameter for the mirror/wiffle model. #### Ion Losses Due to Fusion Reactions Fusion reactions of ions in the core and surrounding region will consume ions. This source of loss is important only at conditions of high core density and large ion energy. The total fusion rate is calculated in the code as part of the fusion and gain calculations (see below). This allows for easy inclusion of the ion losses due to fusion in the ion dn/dt equation. If the total fusion rate is DD_{fus} fusions/sec, then the number of ions lost to fusion is 2DD_{fus} ions/sec. This loss term would go in to the original dN/dt equation and the resulting dn_/dt equation would be: $$\frac{dn_e}{dt} = \left[\frac{3n_{inj}}{F_n F_t} - \left[\frac{n_e}{G_i} + \frac{DD_{fus}}{F_n F_{DD}}\right]\right] \frac{1}{t_{trans}}$$ (7) where $F_{DD} = 4/3 \pi r^3/t_{trans}$ is introduced to allow the transit time to be factored out. # Ion Losses Due to Core Upscattering Ion losses due to core collisional upscattering can be accounted for by adding a loss term to the dn/dt equation for ions. Based on the work of Rosenberg and Krall⁶, as modified by Bussard⁷, the upscattering time for ions, t_{up}, is calculated each time the dn/dt equation is solved, from $$\frac{1}{t_{up}} = \frac{Z^4}{1.892 \times 10^{13} f^2 (1+f)^2 A^{1/2}} \frac{1}{R} \int \frac{n(r)}{E(r)^{3/2}} dr$$ (8) A factoring parameter, $F_u = t_{up}/t_{trans}$, was introduced into the dn/dt equation so that the ion losses due to upscattering are given by $n_e/(F_u t_{trans})$. This form is easily incorporated into the ion dn/dt equation which becomes $$\frac{dn_e}{dt} = \left[\frac{3n_{inj}}{F_n F_t} - n_e \left[\frac{1}{G_i} + \frac{1}{F_u} \right] - \frac{DD_{fus}}{F_n F_{DD}} \right] \frac{1}{t_{trans}}$$ (9) The fractional velocity spread, f, is a specified input parameter. If f = 0, no ion upscattering is calculated. This parameter can be estimated by comparison of scattering collision rates in the core, edge, and mantle regions^{11, 12, 13} of the system, comparing transverse momentum vs. radial momentum exchange processes. Such estimates are not yet complete; when available the analytic forms that describe them can be added to the dn/dt equation, as above. ## Average Transit Time Calculations The data in the code is quite sufficient to calculate the ion transit time directly. Using the potential at each grid point and the input parameters E_{inj} , dE and dE_{perp}, the average transit time across each grid point can be calculated and summed across the entire grid to arrive at the average ion transit time through the system. The calculation of transit time for electrons, however, presents an interesting problem. The direct method used for ion transit time does not lend itself to an accurate calculation of the average electron transit time as the individual times vary greatly with the energy spread of the electrons. Electrons with a maximum dE_{perp} will be turned early and have short transit times while the electrons with maximum energy, $E_{inj}+dE$, and no dE_{perp} will pass through the bottom of the well and reach the core yielding much longer transit times. Several attempts were made to calculate and average the electron transit times within the code, consuming significant computational time. Due to the dependence of $\mathbf{F}_{\mathbf{n}}$ on transit time, however, a small deviation in average transit time could continue to feed back into a large error in dn/dt. In short, the detailed computational capability of the code would lead to amplification of numerical errors in original data. In this circumstance, the internal data calculation was abandoned in favor of an analytic form based upon system parameters, which yields a more accurate and consistent averaged result and utilizes less computational time. As derived and discussed in another EMC2 note¹⁴ (see for definitions of terms) the electron transit time is: $$t_{tot} = \frac{2R}{v_{in}} \left[\frac{\langle r_{o} \rangle + \left[\frac{\langle r_{w} \rangle^{2} - \langle r_{o} \rangle^{2}}{2 \langle r_{o} \rangle} \right]}{\left[\eta' + \frac{1}{2} (1 - \alpha_{q}) \right]^{1/2}} + \frac{2}{\left[1 + \frac{1}{2} (1 - \alpha_{q}) \right]^{1/2}} \left[\frac{1}{\langle r_{w} \rangle^{1/2}} - 1 \right] \right]$$ (10) where $$\alpha_{\rm q} = \varphi_{\rm o}/\varphi_{\rm min}$$, $\eta' = 1 - \alpha_{\rm q}(1 - \eta_{\rm o})$, $\eta_{\rm o} = E_{\rm ao}/E_{\rm o}$, $< r_{\rm w}> = < r_0> + \left[\frac{2}{\rm m} < r_0>^2 \eta'\right]^{1/({\rm m}+2)}$ and $< r_0>$ is the core radius. This is a calculation of the <u>maximum</u> transit time. But the electrons occupy a spread in total and transverse energy. Across this energy distribution the individual transit times can vary markedly. Analysis of this variation suggests an exponential distribution of transit times across the band. Integrated averaging over this variation yields a correction factor to give average transit times of the average electron in terms of the total maximum transit time of equation (10). This factor is found to be: $$\overline{t_{\text{trans}}} = \frac{\ln \left[\frac{t_{\text{trans}}}{2R/v_{\text{in}}}\right]}{\left[\frac{t_{\text{trans}}}{2R/v_{\text{in}}} - 1\right]} t_{\text{tot}}$$ (11) #### Fusion Rates and Power Gain The KXL code contained a subroutine to calculate the approximate neutron rate (1/2 the fusion rate) for DD fusion. This subroutine was modified in EKXL to include fusion rate calculations for DT, D³He and p¹¹B based upon the deuteron density (as the code does not currently accommodate different electron and ion injection radii, necessary for center—of—momentum, center—of—geometry placement of these ions). Calculation of system gross gain for all four fuel combinations was also added to the EKXL code, where gross gain is defined as $$GGAIN = \frac{P_{fus}}{P_{inj}} = \frac{E_{fus} \int_{0}^{R} n_{i}^{2}(r) \sigma(E) v_{i}(r) 4\pi r^{2} dr}{P_{e_{inj}} + P_{i_{inj}}}$$ (12) The densities used for each fuel combination were: DT For DT fusion rates, the existing deuteron density, D, is divided in half and treated as 50:50 D:T D^3 He For a 50:50 D: 3 He distribution the total D + 3 He density will be 2/3 the existing D density for the same potential distribution. p¹¹B For 50:50 p:¹¹B he total density of p + ¹¹B is 1/3 the existing D density. #### Bremmstrahlung Losses Bre...mstrahlung will be an important energy loss mechanism from the system at high density conditions. This was estimated from standard formulae¹⁵ for bremmstrahlung radiation density, integrated over the system volume to give total bremmstrahlung output, ignoring self—absorption by the plasma and any internal reflection from the boundary walls. This is discussed in a separate EMC2 technical note, forthcoming. The resulting expression is used in the EKXL code to calculate bremmstrahlung gross output as $$P_{\text{bremm}} = 1.69 \times 10^{-32} \int_{0}^{R} n_{i}(r) n_{e}(r) Z^{2} \sqrt{E_{e}(r)} 4 \pi r^{2} dr$$ (13) This is added to the injection power to determine net power input and system net gain. $$NGAIN = \frac{P_{fus}}{P_{inj} + P_{bremm}}$$ (14) ## Ion Current Adjustment The problem with the anode control, discussed previously — allowing too many ions to build up in the system and thus requiring the maximum ion current to be within range of the final ion current — was addressed in EKXL with a different form of anode control that calculates the ion current density based on the core densities, the electron current density and $G_{i,j}$. The difference in core densities is given by ¹⁶ $$n_i - n_e = 3.32 \times 10^8 \frac{(\varphi_o - \varphi_{min})}{2}$$ (15) where φ_0 is the core potential and φ_{\min} is the potential at the bottom of the well (both in eV), r_0 is the core radius in meters and density is in $1/m^3$. The difference in densities at the target anode potential, φ_a , is then $$n'_{i} - n'_{e} = 3.32 \times 10^{8} \frac{(\varphi_{a} - \varphi_{min})}{r_{0}^{2}}$$ (16) The change in density from n, to n; is then $$\Delta n_i = n'_i - n_i = 3.32 \times 10^8 \frac{(\varphi_a - \varphi_{min})}{r_0^2} + (\Delta n_e + n_e) - n_i$$ OI $$\Delta n_i = 3.32 \times 10^8 \frac{(\varphi_e - \varphi_{min})}{r_0^2} - (n_i - n_e) + \Delta n_e$$ (17) Substituting equation (15) into equation (17) gives $$\Delta n_i = 3.32 \times 10^8 \frac{(\varphi_a - \varphi_o)}{r_o^2} + \Delta n_e$$ (18) and $$J_{i} = \frac{3.32 \times 10^{8}}{G_{i} r_{0}^{2} \Delta t} (\varphi_{a} - \varphi_{o}) + J_{e} \frac{G_{j}}{G_{i}}$$ (19) where J_{i,e} are the circulating current densities. # **Automatic Operating Mode** In the XL code a case achieved a steady—state solution or none at all. The KXL code has the ability to stop at any "snapshot" point by specifying the time duration in the input file. This allows a succeeding run to be started at the end of a previous calculation, using a special data file created when that calculation was completed, and to continue for the time duration specified in the new input file. This allows for the adjustment of time steps and ion current necessary to achieve the final steady—state solutions previously unattainable with the XL code. The drawback is that the manual adjustment of duration time and ion currents require continuing operator input. In the EKXL code an "automatic" mode was introduced that eliminates the need for most manual restarts. In automatic mode, the code will run to the end of the specified time duration or a steady—state solution, whichever comes first, using a series of intermediate time steps (simulating the manual restarts required in KXL) automatically adjusting the length of each intermediate time step based upon whether or not the previous time step was successful. This is facilitated by the ion current control and allows the code to run unattended as far as is possible without requiring operator intervention. #### IV. SAMPLE CODE RUN FOR EKXL V4.1 Figure 7 shows a sample input file for EKXL version 4.1 as it is described above. This calculation ran in automatic mode with fixed ion current for a 15 keV well in a 92 cm device. The name of the log file, a sample of which is shown in Figures 8 a—b, and the dataset file, a sample of which is shown in Figure 9, are taken from the name of the input file, with the extension indicating the nature of the data. For example, the input file in Figure 7 is named BREM2b.INP. The log file in Figure 8 is named BREM2b.LOG and the dataset file in Figure 9 is named BREM2b.OUT. The last character of the file name is used to indicate the number of the run. In this example, the "b" indicates that it is the second run and the "Initialization file" is set to "YES" in the input file. This calculation started where BREM2a.INP ended, and this is verified in the beginning of the log file (Figure 8 a) where it states that initialization file BREM2.TMP was read. The log file prints run diagnostics of the numerical calculation⁴ to help the user in determining if and when problems occurred in the calculation. Figure 7 a shows the beginning of the log file, while Figure 7 b shows the end. As seen in the figures, the log file also contains the transit times (Tau), the electron confinement time, the ion upscattering time (if this calculation is being used), the radius of the wiffle ball, $\langle r_b \rangle$, the actual ion and electron currents being used in the code, the fusion rates for DT, D³He and p¹¹B, the plasma gain for all four fuels and the bremmstrahlung power as calculated from the DD density. The end of the file indicates that the snapshot was saved and lists the files to which output was written. Figure 9 shows only the first portion of an output dataset file. This file contains the potential and ion and electron densities at each grid point for every successful snapshot in the run. The output is formatted and comma-separated which allows for easy import into spreadsheet or graphics software. A sample plot of this output data is shown in Figure 10. The beam profiles from the input file have been printed across the top of this chart and the fusion rates have been imported from the log file. Hundreds of cases have been run with the EKXL code modelling many areas of interest from basic experiments, to current SCIF parameters, to reactor regimes. Results of these code runs have been used extensively to better understand the physics involved in Polywelltm devices and also to improve the modelling, especially as it is applied in the code. A compilation of results of specific interest to the SCIF experiment are presented in some detail in another EMC2 technical report on these computer simulations¹⁷. The potential of this code, however, has not been fully realized and there still remain many areas of interest that have not been explored. # LIST OF FIGURES | Figure 1. | Maximum operational levels for successful Vlasov—Poisson "1—D" code runs. | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Figure 2. | a. KXL case with R weighting factor.b. Same case with R weighting removed. Note improved core resolution and density. | | Figure 3. | Core density vs. electron current for a fixed electron confinement. Slope is linear for currents greater 1000 A. | | Figure 4. | Core density vs. electron current for varying anode heights. Slope approaches linear as anode approaches sero. | | Figure 5. | Electron transit time as calculated in KXL. For all currents, electron energy is 100 keV. | | Figure 6. | Formulas used in the mirror/wiffle model for G, calculation. | | Figure 7. | Sample input file for an EKXL v4.1 code run. | | Figure 8. | a. Beginning of the log file created by EKXL for the run in Figure 7. b. End of the log file created by EKXL for the run in Figure 7. | | Figure 9. | Beginning of the output dataset file generated by the EKXL run in Figure 7. | | Figure 10 | Sample plot of the data in the EKXL output file, as shown in Figure 9. This graph was generated in SuperCalc v5.0. | | | | #### REFERENCES - ¹ Ensley, D.L., "Physics Modeling Project", internal memorandum to Pacific—Sierra Research Corporation, October, 1986 - ² Ensley, D.L., "IACCEL2/EACCEL2 User Guide", internal memorandum to Pacific—Sierra Research Corporation, April 1987 - 3 McDonald, J., B. Goplen, "ACCEL User's Manual", Mission Research Corporation Report MRC/WDC-R-180, November 1988 - 4 Smithe, D., "XL Reference Manual", Mission Research Corporation Report MRC/WDC-R-226, January 1990 - King, K.E., R.W. Bussard, "Examination of Electrostatic Well Formation for Spherically Convergent Electron and Deuteron Beams", Energy/Matter Conversion Corporation Report EMC2 0990 02, September 1990 - 6 Rosenberg, M.(EMC2), N.A. Krall, "Ion Loss by Collisional Upscattering", Krall Associates Report KA 90 39, October 1990 - ⁷ Bussard, R.W., "Core Collisional Ion Upscattering and Loss Time", Energy/Matter Conversion Corporation Report EMC2 1090 03, October 1990 - Bussard, R.W., "Fusion Lifetime Limits on Ion Upscattering", Energy/Matter Conversion Corporation Report EMC2 0291 04, February 1991 - Bussard, R.W., K.E. King, "Electron Recirculation in Electrostatic Multicusp Systems: I— Confinement and Losses in Simple Power Law Wells", Energy/Matter Conversion Corporation Report EMC2—0491—03, April 1991 - ¹⁰ Bussard, R.W., K.E. King, "Electron Recirculation in Electrostatic Multicusp Systems: II System Performance Scaling of One—Dimensional 'Rollover' Wells", Energy/Matter Conversion Corporation Report EMC2—0791—04, July 1991 - 11 Rosenberg, M.(EMC2), N.A. Krall, "Ion Loss by Collisions Outside the Core", Krall Associates Report KA 91 02, January 1991 - 12 Krall, N.A., "Anisotropy Profiles for the Ion and Electron Plasma in the Polywelltm/SCIF", Krall Associates Report KA 91 09, April 1991 - 13 Krall, N.A., "Core and Mantle Properties of Weibel Instability in the Polywelltm/SCIF", Krall Associates Report KA 91 10, May 1991 - ¹⁴ Bussard, R.W., K.E. King, "Electron Transit Time in Central Virtual Anode Wells", Energy/Matter Conversion Corporation Report EMC2 0291-03, February 1991 - 15 Book, D.L., "NRL Plasma Formulary", 1987 revised, Naval Research Laboratory, Washington, D.C. - 16 Bussard, R.W., G.P. Jellison, G.E. McClellan, "Preliminary Research Studies of a New Method for Control of Charged Particle Interactions", Pacific—Sierra Research Corp. Report PSR 1899, 30 November 1988, Final Report under Contract DNA001—87—C—0052, Appendix A, Sect. on Negative Potential Well Formation - 17 Bussard, R.W., K.E. King, "Computer Modelling of SIF Experiment Performance", Energy/Matter Conversion Corporation Report EMC2-0691-02, June 1991 Electron Recirculating Current in successful code runs (dash dot) $I_{\mathfrak{e}}^{} \left(Amps \right)$ Maximum Operational Levels for Successful Vlasov–Poisson "1–D" Code Runs a. KXL case with R weighting factor. b. Same case with R weighting removed. Note improved core resolution and density. Core Density of Ions (1/m3) Core density vs. electron current for a fixed electron confinement. Slope is linear for currents greater 1000 A. Figure 3. Core Density (1/m3) (a) JianaT uaT Electron transit time as calculated in KXL. For all currents, electron energy is 100 keV. Mirror/Wiffle Model for Gio where: $$\begin{aligned} G_{jo} &= G_{jMRo} \left[\frac{4}{N} \frac{(1 - \langle r_b \rangle)}{(1 - \alpha_r)} t_{MR} + \langle r_b \rangle t_{WB} \right] \frac{1}{t_{tot}} & r_b < r_x \\ G_{jo} &= G_{jMRo} \left[\frac{4}{N} \frac{(1 - \langle r_b \rangle)}{(1 - \alpha_r)} t_{MR} + G_{jWB} < r_b \rangle t_{WB} \right] \frac{1}{t_{tot}} & r_b > r_x \\ \end{aligned}$$ where: $$G_{jMRo} &= \frac{1}{\langle r_{ad} \rangle^m} \left[1 - \alpha_q (1 - \langle r_{ad} \rangle^m) \right] & r_b < r_{ad} \\ G_{jMRo} &= \frac{1}{\langle r_b \rangle^m} \left[1 - \alpha_q (1 - \langle r_b \rangle^m) \right] & r_b > r_{ad} \\ G_{jWB} &= \frac{2r_e Z}{Nk_L^2 S^2} & Z = 8\pi r_e r_e^2 & \text{and} & W = \frac{E_0}{E_0^2 R^2} \\ < r_b > (2m+2) &= (ZW) \frac{\left[1 - \alpha_q (1 - \langle r_b \rangle^m) \right]}{\left[f_0 (\langle r_b \rangle) \right]^2} & < r_g >^2 &= \left[\frac{2WS^2}{r_e < r} \right] \frac{\left[1 - \alpha_q (1 - \langle r_b \rangle^m) \right]}{\left[f_0 (\langle r_b \rangle) \right]^2} \\ < r_x > (2m+2) &= \left[\frac{NWk_L^2 S^2}{2 r_e} \right] \frac{\left[1 - \alpha_q (1 - \langle r_x \rangle^m) \right]}{\left[f_0 (\langle r_x \rangle) \right]^2} & S^2 &= \overline{\sin^2 \varphi} \\ < r_{ad} > &= \langle r_{ad0} \rangle + k_a (\langle r_b \rangle - \langle r_x \rangle) & k_a &= \frac{\langle r_k \rangle - \langle r_{ad0} \rangle}{\langle r_k \rangle - \langle r_x \rangle} \end{aligned}$$ $$\langle r_{ad0} \rangle^{(2m+2)} = \left[\frac{2m^2}{\Gamma_a^2} \frac{WS^2}{r_e} \right] \left[1 - \alpha_q (1 - \langle r_{ad0} \rangle^m) \right] \left[1 + \frac{\langle r_{ad0} \rangle f_0'(\langle r_{ad0} \rangle)}{m f_0(\langle r_{ad0} \rangle)} \right]$$ $$f_0(\langle r \rangle) = \left[\frac{2}{1 + \langle r \rangle^{(m+2)}} \right] \qquad f_0'(\langle r \rangle) = -\frac{2(m+2)\langle r \rangle^{(m+1)}}{\left[1 + \langle r \rangle^{(m+2)} \right]^2}$$ Formulas used in the mirror/wiffle model for G_i calculation. ``` Log Filename: (program uses INP filename) Dataset Name: (program uses INP filename), Initialization file: YES, Operating mode: AUTOMATIC , end time=1.000e-03 sec, with 3 snapshots/dt, m, Ncusps= 8MR, Fixed Outer Potential: 0.e3 Volts at r=0.92 Number of Beam Populations: 2, with repeller effic.: 0.9000, Ig [A] Einj(eV) dE[eV] dEperp[eV] B[G],Gi V0trap[eV] Name 1) Elec 18.0e03 14.5e03 0.50e03 3.00e03 -20.0e03 4.35e03 18.0e03 10.00e00 1.00e00 2) Deut 1.71e00 1e00 Number of Thermal Populations: 0, ---------- Name [#/m**3] @[Volts] Temp[eV] 0) Elec 1.e16 100.e3 ----+==+--+======+--+=======++--+======+ Deuterium Neutral Density: O.e18 /m**3, aij: 1 ICC mass ratio, Auxiliary Potential: 14.9e3 Volts for e's, with exponent=3. Fractional velocity spread: 0, kl Radius Factor: Grid: 200 points with adaptive fraction of 0.8 and tolerance 1.e-5 Transit Time Correction Factor (Y/N): Y, ka <radius>: 0.83. Modified B Field Shape: Y, Modified Gj: Y, Adjust Ion Current: N. Bremmstrahlung <radius>: 1.00, Ion Fusion Losses: N ``` Figure 7. Sample input file for an EKXL v4.1 code run. ## Figure 8. a Operating mode is AUTOMATIC ``` Auxiliary potential option is on. Initialization file read: brem2.tmp iter = 1, dumax = 3.21E-07, step = 1.00E+00 Electron confinement time: 6.389E-07 Wiffle radius rb: 1.936E-01 time = 1.000E-06, determ = 1.000E+20 Tau = 6.100E-08 3.019E-06 time = 1.263E-06, determ = 1.000E+20 Tau = 6.100E-08 3.027E-06 2) time = 1.395E-06, determ = 1.000E+20 Tau = 6.100E-08 3.019E-06 3) time = 1.972E-06, determ = 1.000E+20 Tau = 6.100E-08 3.022E-06 4) 5) time = 2.053E-06, determ = 1.000E+20 Tau = 6.100E-08 3.021E-06 6) time = 1.527E-06, determ = 1.000E+20 Tau = 6.100E-08 3.021E-06 Figure 8. b iter = 1, dumax = 6.82E-07, step = 1.00E+00 Electron confinement time: 6.996E-06 Wiffle radius rb: 2.692E-01 7871 time = 1.636E-04, determ = 1.000E+20 Tau = 6.113E-08 2.911E-06 788) time = 1.663E-04, determ = 1.000E+20 Tau = 6.113E-08 2.911E-06 789) time = 1.676E-04, determ = 1.000E+20 Tau = 6.113E-08 2.911E-06 790) time = 1.736E-04, determ = 1.000E+20 Tau = 6.113E-08 2.911E-06 791) time = 1.744E-04, determ = 1.000E+20 Tau = 6.113E-08 2.911E-06 time = 1.690E-04, determ = 1.000E+20 Tau = 6.113E-08 2.911E-06 iter = 1, dumax = 4.24E-07, step = 1.00E+00 Electron confinement time: 6.995E-06 Wiffle radius rb: 2.692E-01 t(upscatter) = 0.000E+00 0.000E+00 Gun current 1 is: 1.800E+04 Gun current 2 is: 1.800E+04 Gun current 1 is: 1.800E+04 Gun current 2 is: 1.800E+04 Fusion Rate: DT=1.313E+14 DHe3=1.951E+10 DHe3 n=1.643E+11 pB11=5.434E+02 Gplasma: DD=6.624E-09 DT=1.417E-06 DHe3=9.550E-10 pB11=2.900E-18 Pbrem: 1.059E+01 Gicc= 9.130E-06 No/Nc = 9.523E+01 (<No>/Nc)^2= 1.378E+03 ### SNAPSHOT SAVED ### Restart file written: brem2.tmp Print files written: brem2b.out brem2b.tim a. Beginning of the log file created by EKXL for the run in Figure 7. Figure 8. b. End of the log file created by EKXL for the run in Figure 7. ``` ``` Start date: 07/16/91 Dataset: brem2b Time: 1.74E-04 sec 200 Number of Grid Points: DD=1.479E+12, DN=0.000E+00 Deut Beam Neutron Count rate (#/sec): Nb (\#/m**3) Lambda (m) Pot (V) DD (n/scm3) Elec Deut R (m) 6.601E+20, 6.601E+20 0.000000, -1.453E+04, 1.718E+17, 0.000E+00, 0.000434, -1.453E+04, 1.718E+17, 0.000E+00, 6.601E+20, 6.601E+20 0.000868, -1.453E+04, 1.718E+17, 0.000E+00, 6.601E+20, 6.601E+20 0.001302, -1.453E+04, 0.000E+00, 6.601E+20, 6.601E+20 1.719E+17, 0.000E+00, 6.601E+20, 6.601E+20 0.001737, -1.453E+04, 1.720E+17, 0.000E+00, 6.601E+20, 0.002171, -1.453E+04, 1.722E+17, 6.601E+20 0.000E+00, 6.601E+20, 6.601E+20 0.002605, -1.453E+04, 1.724E+17, 0.003039, -1.453E+04, 1.727E+17, 0.000E+00, 6.601E+20, 6.601E+20 0.003473, -1.453E+04, 0.000E+00, 6.601E+20, 6.601E+20 1.731E+17, 0.003907, -1.453E+04, 0.000E+00, 6.601E+20, 6.601E+20 1.736E+17, 0.000E+00, 6.601E+20, 6.601E+20 0.004341, -1.453E+04, 1.744E+17, 0.004776, -1.453E+04, 1.753E+17, 0.000E+00, 6.601E+20, 6.601E+20 6.601E+20, 6.601E+20 0.005210, -1.453E+04, 1.765E+17, 0.000E+00, 0.000E+00, 6.601E+20, 6.601E+20 0.005644, -1.453E+04, 1.780E+17, 0.006078, -1.453E+04, 1.799E+17, 0.000E+00, 6.601E+20, 6.601E+20 6.601E+20, 0.006512, -1.453E+04, 1.821E+17, 0.000E+00, 6.601E+20 0.006946, -1.453E+04, 0.000E+00, 6.601E+20, 6.601E+20 1.845E+17, 0.007380, -1.453E+04, 1.870E+17, 0.000E+00, 6.601E+20, 6.601E+20 0.007815, -1.453E+04, 0.000E+00, 6.601E+20, 6.601E+20 1.893E+17, 0.008249, -1.453E+04, 1.908E+17, 0.000E+00, 6.601E+20, 6.601E+20 0.000E+00, 6.601E+20, 6.601E+20 0.008683, -1.453E+04, 1.909E+17, 0.009122, -1.453E+04, 1.885E+17, 0.000E+00, 6.601E+20, 6.601E+20 0.009574, -1.453E+04, 6.601E+20 1.820E+17, 0.000E+00, 6.601E+20, 0.010045, -1.457E+04, 1.313E+17, 0.000E+00, 5.760E+20, 5.760E+20 0.000E+00, 4.414E+20 0.010543, -1.464E+04, 4.414E+20, 7.805E+16, 5.492E+16, 0.000E+00, 3.689E+20, 3.689E+20 0.011077, -1.468E+04, 0.000E+00, 3.150E+20, 3.150E+20 0.011655, -1.472E+04, 4.027E+16, ``` Start time: 17:29:20.81 Beginning of the output dataset file generated by the EKXL run in Figure 7. Figure 9. Sample plot of the data in the EKXL output file, as shown in Figure 9. This graph was generated in SuperCalc v5.0. Figure 10