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LARGE-SCALE
SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHMS

Samuel Keith Eldersveld, Ph.D.
Stanford University, 1992

Abstract

The problem addressed is the general nonlinear programming problem: finding a local
minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequal-
ity constraints. The methods studied are in the class of sequential quadratic programming
(SQP) algorithms, which have previously proved successful for problems of moderate size.
Our goal is to devise an SQP algorithm that is applicable to large-scale optimization prob-
lems, using sparse data structures and storing less curvature information but maintaining
the property of superlinear convergence. The main features are:

1. The use of a quasi-Newton approzimation to the reduced Hessian of the Lagrangian
function. Only an estimate of the reduced Hessian matrix is required by our algo-
rithm. The impact of not having available the full Hessian approximation is studied
and alternative estimates are constructed.

2. The use of a transformation matriz Q. This allows the QP gradient to be computed
easily when only the reduced Hessian approximation is maintained.

3. The use of a reduced-gradient form of the basis for the null space of the working
set. This choice of basis is more practical than an orthogonal null-space basis for
large-scale problems. The continuity condition for this choice is proven.

4. The use of incomplete solutions of quadratic programming subproblems. Certain
iterates generated by an active-set method for the QP subproblem are used in place
of the QP riinimizer to define the search direction for the nonlinear problem.

An implementation of the new algorithm has been obtained by modifying the code
MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm
on a set of 92 test problems.
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Chapter 1

Introduction

The problem addressed in this report is that of finding a local minimizer for a general
nonlinear function F(z) subject to a set of nonlinear constraints ¢(z) > 0. This is the
general nonlinear programming problem (NLP):

minimize F(z)
zER"
5.t. c(z) >0,

NLP

where F : ®* — R and ¢ : " — R™.

There are a number of mathematically equivalent forms of NLP. The relevance of the
precise form of the problem to the efficiency of specific algorithms is discussed later. We
assume that the objective function F(z) and the nonlinear constraint functions ¢;(z), i =
1,...,m, are twice continuously differentiable.

A wide variety of algorithms exist for solving NLP, none of which can be considered
preferable for all problems. For a general discussion of NLP the reader is referred to
Fletcher [Fle87) and Gill et al. [GMWS8I]. For a recent survey of methods see [GMSW89).

The particular focus of this report is the case of large, sparse NLP. By large and sparse
we mean that we are coucerned with the instances of problem NLP in which n is large,
the m x n Jacobian of the nonlinear constraints is sparse, and usually n — m €« n. Al-
though many algorithms have been proposed to solve NLP, few have been adapted for the
large sparse case. A notable exception is the Lagrangian method of Murtagh and Saun-
ders [MurS82]. This algorithm has been implemented as the mathematical programming
system MINOS [MurS87).

There is a concensus that the best methods for solving NLP when n is small are so-
called sequential quadratic programming (SQP) methods. Such methods make use of local
curvature information to construct a quadratic programming (QP) model or subproblem of
NLP. A local minimizer is found by solving a sequence of these QP subproblems. The rate
of convergence of SQP methods is usually superlinear under certain assumptions on the
closeness of the quadratic approximation. We are concerned with developing large-scale
SQP algorithms that are globally convergent to a local minimizer of NLP, and have a fast
rate of convergence.

All methods for solving NLP are iterative. In the case when n is small the efficiency
of an algorithm is usually measured in terms of the number of iterations, or possibly the
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number of function evaluations, required to attain some specified approximation to the
solution. In the large sparse case we also need to be concerned with the effort required
to compute the iterates. It is sometimes worthwhile to modify the definition of the iter-
ative sequence in order to compute the iterates more efficiently. We may then take more
iterations, but the savings in effort to compute the iterates is sufficient compensation.

1.1.

Notation and definitions

Our notation in this report follows that used in [GMSW86b] and [Pri89). In addition to
F, z and c defined above we shall use the following definitions and conventions:

Subscripts on a function denote the value of the function evaluated -at the variable
with the same subscript (for example, F}, = F(z;)).

Bars on functions or variables or data will often be used to denote updated quanti-
ties (for example, when z,,, corresponds to the new iterate, the new value of the
constraints is denoted ¢ = ¢(zx41)).

A is the vector of Lagrange multiplier estimates for ¢.
L(z,)) = F(z) — ATe() is the Lagrangian function.
g(z) = VF(z) is the n x 1 gradient vector for F.

J(z) is the m x n matrix of gradients for the constraint functions (the Jacobian).
Then J;; = dc;/0z;.

A(z) = ( J(z) -1 ) is the constraint matrix for QP subproblems. Often we will

refer to a partition of A asin A = ( B S N ), where B is nonsingular.

We will often refer to a partitioned vector as in

Ps
P=(Pss Ps» Pv )= | Ps
Dn

In this notation the commas denote that the partitioned vector has a column dimen-
sion of one.

Z denotes a basis for the null space of a matrix of the form A = ( B S 1}, ) .
Y denotes a matrix such that ( Z Y ) is nonsingular.

@ is a transformation matrix of the form Q(z) = ( Z(z) Y(z) )

G(z) denotes the Hessian of F(z). Then G;; = 8?F/0z,0z;.

Gi(z) denotes the Hessian of ¢i(z).
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W(z,A) = G(z) - 3 AiGi(z) is the Hessian of the Lagrangian function.

e H is an n X n approximation to W(z, A).

e s is the m-vector of slack variables for constraints ¢ such that ¢(z) — s = 0.
e 4 is the m-vector of QP multipliers (for A).

o £ = u — X is the search direction for Lagrange multiplier estimates.

e pis the search direction for z.

e ¢ = (c—8)+ Ap is the search direction for slack variables.

e 2* is a solution of the constrained optimization problem NLP.

e )\* is the vector of Lagrange multipliers at 2*.

The above notation will be defined again when the terms involved are first introduced in
the text. This list is intended to be a convenient reference to save searching for definitions
in the text.

1.2. Optimality conditions for NLP

A point =¥ is a weak local minimizer of NLP if ¢(2*) > 0 and there exists a 6 > 0 such
that F(z) > F(2*) for all z satisfying

[t —2*|| <6 and e(x)>0. (1.2.1)

If F(x) > F(2*) for all 2 # 2* satisfving (1.2.1), 2* is defined as a strong local minimizer.

The above definition of a local minimizer is of little aid in determining z* or verifying
that some given point is indeed a minimizer. Most optimization methods (and all of the
algorithms described in this report) determine 2* by seeking points that satisfy verifiable
optimality conditions on 2*. These conditions are characterized by the first and second
derivatives of the Lagrangian function (see for example [FiaM68]). Assuming that the
Jacobian of active constraints at a solution to NLP has full rank, we now give optimality
conditions for NLP.

Necessary conditions for z* to be a local minimizer are that there exist multipliers A*
such that (z*, A*) satisfy the Karush-Kuhn-Tucker (KKT) second-order conditions:

e(z¥) > o (1.2.2)
VFEY) = AT (1.2.3)
o> (1.2.4)
7*Tw* z* is positive semi-definite, (1.2.5)

where W* = W(a*, A*) is the Hessian of the Lagrangian, A* is the Jacobian of the active
constraints at 2* and Z* is a basis for the nullspace of A*. Sufficient conditions for (z*, A*)
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to be a local minimizer are that there exist multipliers A* such that (z*, A*) satisfy the
KKT conditions (1.2.2)-(1.2.3) and

2> o0 (1.2.6)
2*Tw* z* is positive definite. (1.2.7)

A point z* with multipliers A* satisfying only KKT conditions (1.2.2)-(1.2.4) will be
referred to as a first-order KKT point, while a point satisfying only KKT conditions
(1.2.2)-(1.2.3) will be referred to as a constrained stationary point. It should be noted
that the algorithms developed for NLP in this report do not require the provision of
analytical second derivatives. As a result, the algorithms presented in Section 2 only
guarantee that a computed solution z* is a first-order KKT point. Despite this theoretical
restriction on all algorithms that do not evaluate second derivatives, it is important that
such algorithms still attempt to seek a minimizer and not simply a first-order KKT point.

Consider the case of unconstrained minimization. We could simply generate iterates
that reduce ¢Tg. In so doing we would converge to a first-order KKT point that could
be either a maximizer, a saddle-point or a minimizer. If on the other hand we generate
iterates that reduce F(z), we could still only be assured of finding a stationary point (i.e.
g(x) = 0) but it is more likely to be a minimizer. The generalization of this idea for a
constrained problem involves choosing a suitable merit function (see Section 1.3).

It is also important to note that without a strong assumption on the form of the
problem it is not possible to distinguish between local and global solutions.

1.3. SQP algorithms

It is not possible in general to determine an optimal solution to NLP in a finite number of
iterations, except in special cases such as linear and quadratic programs. SQP algorithms
construct a sequence {zx}?2, whose limit points are KKT points. Given a point zj, we
may obtain a new point zr4; by solving a mathematical programming problem whose
solution 2,4 approximates z*. One method of approximating the optimal step (z* — zy)
is to find a minimizer of a local approximation to the problem. For SQP methods the
model problem takes the form of a QP subproblem in which a quadratic approximation is
made to the Lagrangian and linear approximations are made to the nonlinear constraints.
For each z; in the sequence, the k-th QP subproblem may be stated as follows:

e . 1. T T.
ml;l)lel?l‘gl_,lze 14 Hip+ 9;.p

QP

s.t. Arp 2 —cy,

where g = VF(x;) and Hj is an approximation to W(z, Ax), the Hessian of the La-
grangian. The solution and Lagrange multipliers are denoted by the pair (px, tx)-

Ideally, we hope to accept = + pi as the next iterate, especially near the solution.
However, the QP subproblem is defined only by local information (i.e. at the current
iterate); the solution of the model problem may be a poor approximation of the solution
to NLP when the current iterate is not close to 2*. Hence, we regard the solution to QP as
a search direction p;. that will be a descent direction for some merit function, as discussed
next.
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1.3.1. Merit functions

In contrast to algorithms for unconstrained and linearly constrained problems, it is not
practical in general to generate a sequence {z;}%, such that all points z; are feasible.
Given two feasible points we can determine which is best by comparing F(z) evaluated at
the two points. Once the points are allowed to be infeasible it becomes problematical to
determine which is best. To illustrate this difficulty, consider Figure 1. Some of the five
points zy,..., s are infeasible with respect to the single inequality constraint ¢(z) > 0 and
it is not clear which offers the best approximation to z*. Because the sequence {zk}52o

F(z")

c(z)=0

Figure 1. Which is the best point?

in our algorithms may contain infeasible points it is necessary to order the iterates in
some way other than simply noting which iterate has the lowest function value. Many
algorithms for NLP do this by means of a merit function, which is used to determine a step
ay. along a search direction px. The requirement is that the new point z; + aipi reduce
the merit function by a sufficient amount. The points z; therefore form an “improving”
sequence.

One possible choice for a merit function is the augmented Lagrangian merit function
due to Rockafellar [Roc73]:

M(z, A p)= F(z) - ATe + Lplie|l?, (1.3.1)
where p > 0 is a penalty parameter and the vector ¢ is defined as

sron ) ocilx) i ei(z) - Ai/p < 0.
&(z) = { Ai/p otherwise. (1.3.2)

Note that this merit function assigns a positive penalty for increasing constraint violations.
To illustrate the use of (1.3.1), consider the following example:
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minimize F(z) = 2,73
nim| (z) = 1173
s.t. c(z)=2-z}-z3>0.

The optimal solution is z* = (~0.81650,—1.1547) with optimal Lagrange multiplier A=
0.81650. Figure 1 depicts the contours of F(z) with ¢(z) = 0 superimposed for this
example.

Figure 2 depicts the contours of the augmented Lagrangian merit function M(z, M. p)
for the same problem as in Figure 1, using \* = 0.81650 and p = 0.1 and p = 1. Figure 3

Figure 3. Contours of M(z,)*, p) for p = 10 and p = 100

shows the contours of the augmented Lagrangian function with p = 10 and p = 100.
Figures 2 and 3 demonstrate the complications that may arise in choosing the penalty
parameter p. If p is set too small as in the left part of Figure 2, the merit function may
hecome unbounded below. If £ is set too large as in the right part in Figure 3. the merit
function may become ill-conditioned.
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The steps required by an SQP method are summarized in Algorithm 1.3.1 below. Each
step will be discussed in detail in Section 2.

Algorithm 1.3.1. (Model SQP algorithm)

Start with estimates zo and Hy of a solution and the Hessian of the Lagrangian
at zg.

while not converged do

Set up and solve a QP subproblem to obtain a search direction p; and La-
grange multipliers p;.

Compute a steplength a to reduce some merit function.

Update x according to zp41 — Tk + apy.

Evaluate constraints ¢ and gradients g and J at x4,

Update (or form) Hi41, the QP Hessian to be used in the next subproblem.

end do

Figure 4. Model SQP algorithm

1.4. Historical background

SQP methods for NLP were first introduced in 1963. Here we outline the development

of SQP methods since then and emphasize some of the key ideas. For a more detailed
discussion of the history of SQP methods, see [GMWS81, Pow83, GMSW88|.

1.4.1. Early SQP methods

Wilson [Wil63] is believed to have been the first to propose an SQP algorithm. In his
doctoral dissertation he proposed solving convez nonlinear programming problems using
a sequence of inequality constrained QP’s in which the QP objective was defined using
the exact Hessian of the Lagrangian. Successive NLP iterates were obtained as z =z +p
(i.e. without the benefit of a merit function and linesearch).

In 1969, Murray {Mur69] proposed an SQP algorithm employing a quasi-Newton ap-
proximation to the Hessian of the Lagrangian. He also introduced the important concept
of using the QP solution to define a search direction and choosing the next iterate by
taking a step to reduce a merit function. The use of a quasi-Newton approximation and
a linesearch enabled Wilson’s convexity assumption to be relaxed.

Notable developments in SQP algorithms occurred throughout the 1970’s. Biggs
[Big72] proposed an algorithm using an equality-constrained subproblem, and a term for
the multiplier estimate was added to the constraints. Han [HHan76] established sufficient
conditions for local and superlinear convergence of an SQP algorithm under the assump-
tion that the Hessian of the Lagrangian is positive definite on the whole space. Powell
[Pow78a] used the framework of Han to provide a proof of superlinear convergence under
additional assumptions on how well the Hessian of the Lagrangian is approximated.
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1.4.2. Merit functions

Much research has been done on the choice of merit function for SQP iterates. Murray’s
pioneering approach used an ¢ merit function [Mur69]. Since then the focus has been not
on the use of the merit function but on its form. Han [Han76] and Powell [Pow78b} in
their SQP algorithms proposed the use of the ¢; merit function (also known as an exact
penalty function),

M(z,p) = F(z) + pllélh, (14.1)

where p is a nonnegative penalty parameter and é contains only the values of constraints
c(r) considered to be violated at x. A virtue of the ¢; merit function over the £; merit
function is that there exists a bounded value of p for which z* is a minimizer of M(z, p).
This latter property makes convergence proofs relatively simple. However, the £; merit
function is nonsmooth across constraint violations. Maratos [Mar78] in his doctoral d’sser-
tation demonstrated that imposing linesearch conditions using this merit function could
impede the superlinear rate of convergence. To overcome this deficiency SQP methods
based on the ¢; merit function must depart from a pure SQP strategy.
As an alternative, consider the augmented Lagrangian merit function

M(z,A,p) = F(2) - Me + LpéTe, (1.4.2)

where ¢ is defined in (1.3.2). Fletcher [Fle70] first proposed the use of this merit function
(but not in the context of an SQP algorithm). In contrast to (1.4.1), (1.4.2) is a smooth
function. However, it requires estimates of the Lagrange multipliers A. In general, z*
is a minimizer of M(x,,p) only if A = A*. This requirement makes convergence proofs
for SQP methods using (1.4.2) somewhat more difficult than proofs using (1.4.1). Both
Wright [Wri76) and Schittkowski [Sch82] proposed SQP algorithms based on this merit
function.

Consider next an augmented Lagrangian merit function defined in terms of slack vari-
ables s as well as multipliers A and variables x:

M(z,8,),p) = F(z) = M(c - s) + Lp(c - 8)T(c - s). (1.4.3)

It is no longer necessary to restrict the terms involving ¢(z) in (1.4.3) to some subset of
the constraints. The merit function has the same continuity properties as F((z) and ¢(z).
Gill et al. [GMSWS86b] proposed this merit function in the context of an SQP method.
They showed under certain assumptions that z; — 2* and Arx — A*. In his doctoral
dissertation, Prieto [Pri89] showed that a finite value of p suffices. The steplength a is
determined by performing a search in the space of x, s and A. This merit function has
been implemented in the nonlinear programming code NPSOL [GMSW86a).

1.4.3. Use of the reduced Hessian

For moderate-sized problems, the most successful SQP algorithms to date have used dense
approximations to W, the Hessian of the Lagrangian. A key concept for large-scale opti-
mization is the use of an approximation to the reduced Hessian ZTW Z. This is of prime
computational importance for the following reasons:

e A dense approximation to all of IV may require excessive storage.
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¢ Computation of exact second derivatives may not be possible or may be too expen-
sive.

e Even if W can be evaluated cheaply, computation of the matrix product ZTWZ
from Z and W may be too expensive (unless Z has very few columns or some
special structure).

Gill and Murray [GiIM73, GilM74, GilM77] are credited with the first use of reduced
Hessian approximations for linearly constrained problems. Murtagh and Saunders in
[MurS78, MurS87] showed how to apply this approach to the large-scale case. Wright
[Wri76] and Murray and Wright [MurW78] proposed the use of a quasi-Newton approx-
imation to the reduced Hessian for nonlinearly constrained optimization. Coleman and
Conn [ColC84] analyzed an SQP method that approximated the reduced Hessian and
showed that the method when applied to equality-constrained problems converges 2-step
superlinearly. Nocedal and Overton [NocO85), Coleman and Fenyes [ColF88], and Gur-
witz and Overton [GurO89] have all proposed algorithms in which approximations are
made to either ZTW Z or ZTW.

1.4.4. Active-set methods

Although interior-point/barrier methods could be used within an SQP method, we shall
restrict our interest to the solution of the QP subproblems using active-set methods. This
does not preclude the use of barrier methods at the outer level of the SQP algorithm. That
is, inequality constraints could be removed by a barrier transformation and the algorithm
we propose used to solve the resulting barrier subproblem.

For an overview of active-set methods, see Gill et al. [GMW81] or Fletcher [Fle87].

1.4.5. Early termination of subproblems

As problem size grows, the number of iterations required by an active-set method to solve
a QP subproblem to optimality may become large. In a large-scale SQP implementation
it is therefore desirable to impose a limit on the number of QP iterations allowed to solve
the subproblem.

Murray [Mur69)] is credited as the first to suggest this early-termination approach.
Dembo and Tulowitzki [DemT85] defined an early-termination rule for the QP subprob-
lem, based on the norm of the reduced gradient ZTg in the subproblem. Gurwitz and Over-
ton [GurO89] presented an implementation of an early-termination algorithm in which a
subproblem is terminated at the first stationary point (i.e. ZT(g + Hp) = 0). In the
work of Prieto [Pri89], global convergence was proved for an SQP algorithm in which the
search direction is defined from information available at any stationary point encountered
in the solution of the QP subproblem. Prieto also proved that use of a reduced Hessian
approximation in this context provides a 2-step superlinear rate of convergence.

1.4.6. Large-scale SQP

Nickle and Tolle [NicT89] have described a sparse SQP approach in which they maintain
an approximation to W, the full Hessian of the Lagrangian. They sacrifice satisfying the
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quasi-Newton condition (see Section 4.2.2) in order to define an H with the same sparsity
pattern as W.

1.5. Contents and subsequent Chapters

In Section 2 a prototype SQP algorithm for solving NLP is presented. Each subproblem
uses an approximation to the reduced Hessian of the Lagrangian. A discussion of active-
set methods for QP subproblems is also given. In Section 3, important computational
building blocks are developed in order that the large-scale QP subproblems arising in the
SQP method may be solved efficiently. Section 4 discusses quasi-Newton updates for the
reduced Hessian of the Lagrangian and gives computational details. Section 5 presents
computational results for both small and large (i.e. dense and sparse) test problems from
a variety of applications.




Chapter 2

A Prototype SQP Algorithm

In this chapter we define the main theoretical tools for solving large-scale nonlinear pro-
grams and present an algorithm for solving NLP. The algorithm allows the use of incom-
plete solutions from QP subproblems.

2.1. Large-scale NLP

Many SQP methods have been proposed for solving NLP. Most of them perform algebraic
operations that are appropriate for dense problems, but are not practical for large and
sparse ones. For example, the storage required by dense methods may become excessive
when there are many variables. This section gives a standard form for large-scale NLP
and the optimality conditions modified for this form.

2.1.1. The form of the nonlinear problem

In methods for small or dense nonlinear programming problems both nonlinear equality
and inequality constraints (i.e. cg(z) = 0 and ¢,(z) > 0) are usually allowed. In large-scale
optimization the precise form of the problem is crucial, and it is often computationally
convenient to assume that the problem is in the so-called nonlinear programming standard
Jorm (NLPSF):

minimize F(z)
z,

s.t. c(z)—s=0 NLPSF

and lg(f)gu.

Each constraint ¢;(z) is associated with a slack variable s; with upper and lower bounds on
its value as shown. The bounds on each slack determine whether the associated constraint
is an equality or inequality. For example, if ¢;(z) corresponds to an equality constraint,
the bounds for slack s; are zero.

The definition of the set of constraints considered to be binding at a point must be
modified for the standard form. At any point z, the set of active constraints will consist
of all functional constraints ¢(z) — s = 0, as well as the set of active bounds at (z,s).

11
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It may appear that increasing the number of variables for the problem in this way is
computationally disadvantageous. For some methods of optimization this is true. How-
ever, it will be seen that this is not the case for the methods presented here.

It has been demonstrated since the earliest simplex codes that there are advantages
in using a standard form involving slacks. In particular, the standard form only requires
access to columns of the Jacobian (as opposed to columns and rows). Also, when the
working-set basis matrix B is factorized (see Section 2.4), the columns associated with
slacks introduce no extra nonzero elements (i.e. fill-in) in the LU factors of B. These same
advantages were retained for sparse NLP by Murtagh and Saunders [MurS78, MurS82).

2.1.2. Optimality conditions for large-scale NLP

In the discussion of optimality conditions it will be convenient to assume that the slack
variables s are included in the definition of the variables z. That is we augment the
variables x to include the slacks s:
r = N
8

so that for the NLP in standard form, z € R**™. We also modify the nonlinear constraints
to include the slack variables. The NLPSF may then be written:

minimize F(z)

Iean-}m ,
s.t. c(z)=0 NLPSF
and <z <u.

As discussed in Section 1, the Karush-Ruhn-Tucker (KKT) conditions describe local
solutions to NLP. These are characterized by conditions on the first and second derivatives
of the Lagrangian. The NLPSF’ now has bound constraints on z (including slacks). This
will slightly change the conditions while making the first-order conditions easier to identify.
Define ¢* = VF(z*)and A* to be the Jacobian of ¢(z*) (that is, J is a matrix of row vectors
each corresponding to ¢;(z*)T for i = 1,...,t, where t is the number of active functional
constraints at z*). Let Z* be a basis for the null space of A* (so that A*Z* = 0). The
KKT necessary conditions for (z*,A*) to be a first-order KK'T pair for NLP are

c(z*) = 0, (2.1.1)

& > 1, (2.1.2)

¥ < u, (2.1.3)
A*TA*—7)+U = g (2.14)
z* -1 = o, (2.1.5)
cllu-2*) = o0, (2.1.6)

n > 0, (2.1.7)

o > 0. (2.1.8)

Let a; be the j-th column of A*. Since the complementarity conditions (2.1.5) and (2.1.6)

enforce ; = o; = 0 when :t; is not equal to either of its bounds, we can write the
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optimality conditions (2.1.4)-(2.1.8) in what is for us a computationally more useful form
involving Z* and the explicit values of ¢ and 7:

z*T¢ = o, (2.1.9)
(uj—z’;)(g’;—a’;T/\*) > 0forj=1,...,n, (2.1.10)
(& -L)g -aTX*) < Oforj=1,...,n. (2.1.11)

J J J 2

Optimal variables .1:’; lying between their bounds will have the corresponding Lagrange
multipliers or reduced costs equal to zero:

gj=1= g; - a’;T/\* = 0. (2.1.12)

Optimality of the Lagrange multipliers requires nonnegative (nonpositive) reduced costs
for variables on lower (upper) bounds.

2.2. Expansion of the model algorithm

Section 1 presented a model algorithm. The optimality procedures within Algorithm 1.3.1
consisted of (1) solving a QP subproblem, (2) performing a linesearch in conjunction with a
merit function, and (3) updating nonlinear quantities including the Hessian approximation
to be used in the next QP subproblem. A discussion of each of these steps follows.

2.2.1. Subproblem definition

A number of methods have been proposed for solving large-scale NLP. Two mentioned
in this section are SQP methods and a Lagrangian method [MurS82]. Although not an
SQP method, the Lagrangian method is mentioned here because it offers one of the few
efficient methods currently available for large-scale problems. Also, the numerical results
of Section 5 compare the SQP algorithims presented in this report with the Lagrangian
method implemented in the form of MINOS. Both approaches use linearly constrained
subproblems. The Lagrangian method uses an augmented Lagrangian as the subproblem
objective, while SQP methods use a quadratic approximation to the Lagrangian. Both
methods involve the use of major and minor iterations. A major iteration is defined to
be tlie set of steps required to form and solve a single subproblem, while a minor iteration
constitutes a single iteration within a subproblem.

2.2.2. Linearly constrained subproblems

We may obtain a linearly constrained subproblem from NLP by replacing ¢(z) with a
linear approximation from its Taylor series expansion:

ez + p) = e(xi) + J(2k)p, (2.2.1)

where J(z;). is the Jacobian of ¢ evaluated at z;. Define Jp(x;) and Ji(zx) to be the
Jacobian of the nonlinear equality and inequality constraints respectively. The linearized
constraints are then

Jep —cg(2r) and (2.2.2)
hp 2 —alxy). (2.2.3)

\2
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As described earlier, it is computationally convenient to convert the linearly constrained
subproblem so that all general constraints are equalities:

(e -1) ( P ) = —(c— s). (2.2.4)

The only inequalities are then simple bounds on the variables:
l—z, < (lq)) < u-— 2z (2.2.5)

The linearly constrained subproblem (LCS) can now be written

minpil(}lize Flay +p)
s.t. Jep—qg=—(ct — i), LCS

lk < I; S U,

where Il = | - 2z and u;, = u — 2.

The subproblem objective in LCS may have many forms. For example in the La-
grangian algorithm of Murtagh and Saunders [MurS82], F takes the form of an augmented
Lagrangian:

F(z, A, p) = F(2) = A& - Aup) + Lpllé - Axpll?, (2.2.6)

where ¢ = ¢(x) — ¢ and p = @ — 2. Note that this subproblem ob jective requires evalua-
tions of both F(a) and ¢(z) and possibly their derivatives during each minor iteration of
the subproblem.

2.2.3. QP subproblems

SQP methods use the same linearized constraints, but the subproblem objective F' is a
local quadratic model of the Lagrangian

L(z,A) = F(z) = Me(2) - 5z = 1) = ¢T(u - z). (2.2.7)
The first two terms of the Taylor expansion of (2.2.7) define the quadratic model:
F=Qup) = Y"Hip + glp, (2.2.8)

where H;. is an approximation to the Hessian of the Lagrangian (H; =~ W{(z, ) and
gk = VF(z;). One resulting QP subproblem at the point z is

minggnize Qi(p) = %I)THH’ +9ip

s.t. Jip - ¢ = —(ck = &), QP(zy)

r
I < < u,

whose solution we denote by (p, gx) with Lagrange multipliers pe.
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Note that the linear term in Q(p) is defined using g = VF(z;) and not VL. In
general, replacing V; L by gx in (2.2.8) may affect the sequence {z,}. However, if n = ngp
and o = agp (the optimal QP multipliers from the solution of @QP(zy)), then examination
of the KKT conditions for the QP subproblem shows that pi(gx) = p(ViL). To see why,
note that the KKT necessary and sufficient conditions require only that p; satisfy

ZTVQi(pi) = 0. (2.2.9)

Define A = (J —1I). Recall from (2.1.10) and (2.1.11) that the terms 7 and o correspond
to the reduced costs (g — ATA); hence, the only difference between the QP gradient in
(2.2.8) and that of the model function defined in terms of VL is the addition of linear
terms involving A. These terms are annihilated by premultiplication by Z7 in (2.2.9);
hence the solution pj of the subproblem QP(z;) is unaltered.

A side-effect is that, when (2.2.8) is used as the objective in QP(z;), the optimal
Lagrange multipliers x* for the constraints Jyp = —(cx — si) of QP(z;) are used as
estimates of A* (rather than as a search direction for A).

To obtain fast convergence it is necessary to include approximations to the second-
order constraint terms, which are part of W, the Hessian of the Lagrangian:

W(zi, M) = Glar) = D (M )iGile).

=1

Also note that errors in A; and p* will affect only the second-order terms in the model
function. This gives some insight into why these methods are superlinearly convergent.

Using the subproblem defined by QP(x) does not require evaluations of the true
objective F(z) or constraints ¢(z) during minor iterations of the subproblem. This can be
a great advantage in some applications.

2.2.4. The merit function

As discussed in Section 1, much research has been undertaken on the form of the merit
function for measuring the progress of an SQP method. As in [GMSW8Gb] and [Pri89] we
use an augmented Lagrangian merit function and include slack variables for the nonlinear
constraints in the merit function:

M(z,s,A,p) = F(z) - Me(z) - s) + %p”(c(:r) - 8|2 (2.2.10)

As in NPSOL [GMSW&G6b], the slacks s = (sq,...,$,) are specially constructed for the
linesearch function:

0 f ief,
s; = { max(0,ci(z)) if 1€Z and p=0, (2.2.11)
max(0,ci(z) - A;/p) otherwise,

where £ and I denote the sets of indices for the nonlinear equality and inequality con-
straints respectively. Choosing s; in this way is equivalent to setting the slacks at their
optimal feasible values if the merit function were being minimized only with respect to
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s. The merit function is thereby reduced. Define & = ui — Ax as the search direction
for the Lagrange multiplier estimates Ax and define gy = Arpr + ¢k — sk as the search
direction for the slacks si just defined. Finally, define p; from the solution of QP(z}) as
the search direction for the variables 2. To obtain the next iterate the linesearch for the
merit function is then performed along the triple search direction:

Tk+1 Tk Pk
Sk41 | — | sk | ta] @ |- (2.2.12)
Ak41 Ak €k

The requirement is that at the new iterate the merit function be reduced by a “sufficient”
amount. There are a various ways to define “sufficient”. Let ¢(a, p) (or sometimes ¢(a))
denote the (linesearch) merit function:

M a,p) = M(zi + apr. sk + aqi, A + ay, p). (2.2.13)
In our algorithm we shall choose a to ensure the following conditions:

#(a) - ¢(0) < oad'(0), (2.2.14)
|¢'(a)] < —n¢'(0), (2.2.15)
1

where 0 < 0 < < 5. For a proof that a point satisfying these conditions exists, see
[GMSWS86b] and [MorS84).

2.2.5. Choice of the penalty parameter

The performance of the SQP algorithm depends on the choice of the penalty parameter p.
In practice it is worthwhile having a parameter for each nonlinear constraint even though
for theoretical purposes a single parameter p would suffice. We take p to be an m-vector
of penalty parameters and we define D = diag(p;), where p; is the penalty parameter for
the i-th constraint. With this definition the merit function becomes

M(z,s,A,p) = F(z) = A{(e(z) - 8) + ¥(c(z) ~ s)TD(c(z) - 3). (2.2.16)

At each iteration the vector p may be modified to ensure that the merit function is reduced
by a sufficient amount.

We now omit the subscripts k. Let ¢’ denote the derivative of ¢ with respect to a. We
can show that

#(0) = gTp+ (22 — ) (c = 3) = (c - $)TD(c - s). (2.2.17)
To achieve reduction of the merit function in the linesearch we require
#'(0) < -1pTHp (2.2.18)

(see (GMSW8Gb]). When the nonlinear constraints ¢(z) are violated, ¢'(0) may not satisfy
(2.2.18) for the current value of the vector p, which then must be modified.

To obtain a sufficient reduction in the merit function when p; = p, it can be shown by
rearranging terms in (2.2.17) that the minimum value of p that ensures (2.2.18) is given
by
9P+ (2 —p)T(e~s) + PpTHP

lle — sl

p= (2.2.19)
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Clearly, other choices of p; will also ensure condition (2.2.18) is satisfied. Two natural
questions are: What is a “good” choice for p; that also ensures (2.2.18)? and: What is
an adequate measure of goodness?

As in the code NPSOL [GMSW86a), one possibility is to minimize the two-norm of p.
Define r = (ry,...,7m) where r; = (¢; — 8;)> and 0 = ¢Tp+ (2A — p)T(c—s) + : THp. The
choice of parameters under this condition can be expressed as the solution to the following
problem:

mipr‘liigrar}”ize %pr
s.t. rTp > 0, (2.2.20)
p20.

The solution p* of this optimization problem is easily found, as shown by the following
lemma.

Lemma 2.2.1. For 8 > 0 the minimum-euclidean-norm choice of the m-vector of penalty
parameters for the augmented Lagrangian merit function (2.2.16) is given by p* = Ar,
where A = 8/rTr.

Proof. Let A and u be Lagrange multipliers for the inequality constraints. The KKT
conditions for (2.2.20) are

1'Tp* > 8,
pro= A4y,

ATt -0) = 0.

pip; = 0,

A >0,

i 2> 0,

P> 0.

Since the objective function is strictly convex, (2.2.20) has a unique solution. It may be
verified that the above equations are satisfied by p* = Ar and u = 0, where A = 8/rTr. g

In our implementation of the prototype algorithm ( Algorithm 2.3.1), we increase p; to
the value p! when (2.2.18) is violated.

2.2.6. Decreasing p

We use the result of Lemma 2.2.1 to increase the value of each p; when it is smaller than
its optimal value. As mentioned in Section 1, it is also necessary to ensure that p is not
too large. When p; is larger than p! it is possible to reduce p; and still satisfy condition
(2.2.18). In these instances we compute a trial value p; that is equal to the geometric
mean of the previous p and a damped value of p*. The trial value is

pi =\ pilé + ), (2.2.21)
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where é; > 1 is a damping parameter, and the new p; is defined as

_) pi if pi < %pi,
pi= { pi otherwise. (2.2.22)

To avoid too many modifications of p, each time any element of p changes, the damping
parameter ;. is increased by a factor of two. This ensures that p; will oscillate only a
finite number of times.

2.2.7. Updates to the QP Hessian

Upon completion of the linesearch procedure it is necessary to set up the next subproblem.
This consists of evaluating the gradient §, the nonlinear constraints ¢ and the Jacobian
J at the new iterate. The new QP subproblem also requires H, an approximation to W.
In dense SQP algorithms, H is usually taken as a quasi-Newton approximation to W. As
mentioned in Section 1, for the large-scale case this can be computationally prohibitive.
Methods for obtaining H in which only an approximation to the reduced Hessian ZTH Z
is maintained are discussed in detail in Section 3.

2.3. The prototype algorithm

Taking into account the descriptions of Section 2.2 we can embhellish the model algorithm
of Section 1. The new algorithm builds on the framework of the model algorithm by
requiring

o use of the augmented Lagrangian merit function (2.2.16);
¢ estimation of Lagrange multipliers;
¢ use of the reduced Hessian.

We now present a prototype SQP algorithm for NLP. The main steps are summarized in
Algorithm 2.3.1.

2.3.1. Convergence of the prototype algorithm

The prototype algorithm draws on the work of Prieto [Pri89] and Gurwitz [Gur87]. It
solves a sequence of problems of the form QP(z;), giving a sequence of solutions {z;}.
We make the following assumptions:

A;.  The SQP iterates {z,} all lie in a closed, bounded region  C R".

Az. The objective F(z) and the constraints c;(z) and their first and second
derivatives are continuous and uniformly bounded in norm on 2.

A3z. The Jacobian of active constraints at any limit point of {z}52, has full row
rank.

Ay. There exists a feasible point for each QP subproblem.
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Algorithm 2.3.1. (Prototype SQP algorithm)

Start with estimates of the solution zo, multipliers Ao, and reduced Hessian of
the Lagrangian Hy.

while not converged do
FEvaluate the Jacobian J(z2) and set up the subproblem QP(z).
Find a constrained stationary point p of Q P(z) with associated multipliers p.
if p = 0 and convergence criteria are satisfied then
converged = true
else

Compute slacks s for the merit function and search directions for multi-
pliers and slacks: € = y— A, and ¢ = Ap + (¢ — s).

Update the diagonal penalty matriz D = diag(p;) if necessary.

Compute the steplength o satisfying steplength criteria for the merit
function M(z,s, A, p). The linesearch is performed on the variables z, s,
and X along corresponding search directions p, ¢, and €.

Update & — x + ap and A — A + af.
Update the reduced Hessian approzimation ZTH Z.
end if
end do

Figure 1. Prototype SQP algorithm

As. Strict complementarity holds for each constrained stationary point of NLP
in §2.

As. The reduced Hessian of the Lagrangian is nonsingular at all KKT points of
NLP.

2.3.2. Global convergence

Prieto [Pri89] in his doctoral dissertation analyzed the convergence properties of a reduced-
Hessian algorithm based on the use of the Lagrangian to define the QP subproblem. He
proved under assumptions A,-Ag and certain conditions on the multiplier estimates that
the algorithm is globally convergent. (These conditions are satisfied by the estimates
in our prototype SQP algorithm.) The main theorem and an important corollary from
this work are repeated here. Theorem 2.3.1 and Corollary 2.3.1 are proved in [Pri89] as
Corollary 5.2.1 and Corollary 5.2.2 respectively.
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Theorem 2.3.1. Under assumptions A,-Ag and the additional assumption that
e = 2+ 02k - 2*|)),

lim ||lzx — 2*|| = 0.

k—oo

Corollary 2.3.1. Under assumptions A;-A¢ and the additional assumption that
i = A* + O(llax — 2*))),

lim ||Ax — A*|| = 0.

k—oo

2.3.3. Rate of convergence

In addition to global convergence, we are naturally interested in the rate of convergence.
We have assumed that our approximation to the Hessian is only accurate on the null
space of the active constraints. A consequence of the use of less precise information is
a degradation in the rate of convergence for the algorithm, relative to one in which the
full Hessian is available or approximated. It is shown in [Pri89)] that provided the penalty
parameter is chosen to be sufficiently large and H, is a sufficiently good approximation
to the reduced Hessian of the Lagrangian, the algorithm converges two-step superlinearly.
That is, the iterative sequence {z} satisfies

- lrrg2 = 2
lim ———T

A — = = 0. (2.3.1)

The precise conditions are:

A;.  When the iterates are close to the solution, the penalty parameter is chosen

to be “large enough”.
As. WZHHy — Wi)Zipz, || = ofllpill), where Wy denotes the Hessian of the La-

grangian at zj.

The theorem giving the required rate of convergence (Theorem 5.3.1 in [Pri89)) is stated
here without proof.

Theorem 2.3.2. There ezists a value p, such that if p; is selected satisfying p; > p, and
if assumptions A;-Ag and the additional assumption that pr = X* + O(||zx — z*||) are
satisfied, then the algorithm converges two-step superlinearly.

2.4. Solution of the subproblem

The method used vu solve the QP subproblems is an active-set method. It is related to
the reduced-gradient method as implemented in MINOS [MurS78].

As in MINOS, it is computationally convenient to convert all general constraints to
equalities, with the only inequalities being simple bounds on the variables. For notational
convenience, the search direction for the subproblem QP(z; ) is augmented to include the

slacks ¢. Define Ay = ( Jip -1 ) and define g € R"*™ to be the original gradient vector
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augmented by m zeros. Likewise, the QP Hessian is augmented with zeros so that it has

dimension n + m:
-~ _( He O
Hy = ( 0 0 ) . (2.4.1)

We may write the new QP subproblem in standard form as

minimize  Q(p) = 1p"Hip+ 9ip
s.t. Arp = "(Ck - sk), QPSF(&:[;)
I < p < ug,

with optimal solution p* and optimal Lagrange multipliers z*.

At a local minimizer of QPSF(x}), the point p* satisfies Axp* = —(cx—si). In addition,
many variables p’; (usually) attain the value of one of their bounds. It is of interest to
consider the set of indices corresponding to the bounds on p* that are exactly satisfied
(i.e. p’; = (Ix); or (ux);). We call this index set of constraints that are “tight” or “active”
at the solution the active set. The active set for the subproblem can be represented by

the active-set matriz,
A:(A 1}’) (2.4.2)

where N consists of the columns of the linearized constraints corresponding to variables
exactly equal to one of their bounds at the optimal solution of the subproblem. The
columns of A correspond to the remaining variables.

If the active set were known a priori, the solution to the subproblem could be solved
in a single iteration. In general we do not know the active set at the start of the solution
process for a subproblem. Active-set methods employ what is called a working set, which
attempts to predict the active set. The working-set matrix A has the form

A= ( B 5 ’}’ ) (2.4.3)

where N consists of the columns of A corresponding to variables temporarily held at
their current values (typically on a bound), and B and S are the remaining columns of
A partitioned so that B is nonsingular. We refer to the variables corresponding to the
columns in B, §, and N as basic, superbasic, and nonbasic variables respectively.

Active-set methods employ a procedure to check whether a feasible stationary point is
optimal (i.e. when the working set has identified the active set). Let g%, = Hxp* + g& and
omit the subscript k. Consider the first-order KKT conditions for (p*, %) to be a local
minimum of the QP subproblem:

Apt = —(c-3s), (2.4.4)
P> 0, (2.4.5)
P o< o (2.4.6)

T » -

Z¥ g4 = 0, (2.4.7
(u; —p’;)((g’;,,)j —(lell*) > 0forj=1,...,n, (2.4.8)
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T .
(p’; - lj)((gz,,)j - a’; w) € Oforj=1,...,n (2.4.9)

This means that p* must be feasible and the reduced gradients (gz,)j - a’;T;t must be zero
for any variable not on a bound (including for example a free variable that is nonbasic).
Let p be a feasible constrained stationary point for the subproblem. If KKT conditions
(2.4.8)-(2.4.9) hold then the active set has been identified and p is an optimal solution
to the subproblem. Verification of (2.4.8) and (2.4.9) for nonbasic variables is carried out
in the process of solving the QP subproblem. This procedure is known as pricing and
is used to modify the working set. When a nonbasic variable fails the pricing test, the
QP objective can be reduce by deleting the variable from the working set and moving the
variable off its bound. These ideas give rise to a model algorithm for QP subproblems.

Algorithm 2.4.1. (Model QP algorithm)
Find a feasible point for the QP subproblem. This defines a working set.
while not converged do

While remaining feasible, find a constrained stationary point for the QP
subproblem. This process may increase the size of the working set as one or
more of the basic or superbasic variables encounter a bound.

Price to determine if the working-set size should be reduced.

Modify the working set by allowing one or more nonbasic variables to move
off a bound.

end do

Figure 2. Model QP algorithm




Chapter 3

Large-scale Quadratic Programs

In this chapter, important computational constructs are developed to assist solution of
the large-scale QP subproblems arising in the SQP method.

3.1. The null-space basis Z

Recall from Section 2 that during the solution of a QP subproblem it is necessary to
maintain Z, a null-space basis of the working-set matrix A. This is because the optimality
conditions for the QP subproblem depend in part on Z and, as demonstrated in Section 3.2,
the form of the QP Hessian also depends on the form of Z.

For the dense case of NLP, Gill et al. [GMSW84, GMSSW85] have used an orthonormal
basis Z obtained by updating the rows and columns of the TQ factorization

A:(o T)Q, (3.1.1)

where @ is an nx n orthogonal matrix, and T is a triangular matrix with varying dimension
t. In this case @ can be partitioned as

n—t t

Q= 7T ). (3.1.2)

Forming an orthogonal @ in the large-scale case is prohibitively expensive in general. A
practical method when = is large is to represent Z as the reduced-gradient null-space basis
of the working-set matrix A (2.4.3). This has been used with success in the mathematical
programming system MINOS [MurS78, MurS87) and has the form

~B-1§
Z= I . (3.1.3)
0

As long as B in (2.4.3) is nonsingular, Z in (3.1.3) is a basis for the null space of A.
In contrast to the dense case, this matrix Z is not computed or stored explicitly. Instead,
a sparse factorization B = LU is maintained along with an index set for the columns of
B, §,and N. Products involving Z and Z7 can then be performed easily by solving with
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B or BT and using the nonzero elements of the columns in S. For example, the reduced
gradient
n= ZTg =g — IS'TB'Tg‘9 (3.1.4)

may be obtained from the operations

solve UTv = g (3.1.5)
solve LTr = wu; (3.1.6)
foom n = g;,- STr. (3.1.7)

3.2. Solution of subproblems

SQP methods make use of local curvature information to construct QP subproblems.
Recall from Section 2 that the search direction p for each SQP iterate is constructed from
a constrained stationary point of a large-scale QP subproblem (LSQP) defined at the
current NLP iterate a:

e e 1, T T
minimize 3 Hp +g'p
s.t. Ap = —e, LSQP

I<p<u

This form of LSQP is slightly different from the subproblem QP(z,) defined in Section 2.
Here p € ™*" is a search direction for the m slack variables s as well as the variables
z. Accordingly, we define A = ( J(z) -1I ), where J(z) is the Jacobian of ¢(z). For the
sake of brevity, the right-hand-side vector for LSQP has been redefined to be ¢ = ¢(z) - s.
Clearly, the ability to solve large-scale QP subproblems efficiently is crucial to our SQP
algorithm. Because we have some freedom in determining the form of the QP Hessian H,
we construct H to be positive definite. The minimizer of the subproblem p* is then
unique (i.e. a global minimizer). In our algorithm, H will not be explicitly available. A
key concept is to work with a nonsingular matrix Q such that Q! and QTHQ have a
reasonably simple form. The forms of Q,Q~! and QTHQ are discussed in Section 3.5.
At each iteration of most active-set methods (and all of the methods we consider) a

KKT system is solved:
H AT P _ q

where A is the working-set matrix and ¢ is the QP right-hand-side vector padded with
zeros to make it compatible with A. Nearly all active-set methods for solving LSQP
generate the same sequence of iterates (see [CotD79], for example). The methods differ
in hotw the iterates are computed, and their efficiency depends on the problem type. QP
methods may be categorized according to the approach used to solve (3.2.1). If the system
is solved directly we say the QP method is a Lagrangian method. If (3.2.1) is reduced to
solving two smaller systems we refer to the method as a projection method.

Let Z be a basis for the null space of A and define ¥ so that ( Z Y ) and AY are
nonsingular. Projection methods come in two different flavors: range-space methods and
null-space methods (see [GMW81], for example). This terminology arises from the fact
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that A defines two complementary subspaces spanned by Z and Y. The work required to
solve for the optimality conditions is directly related to the dimension of either the null
space (the dimension of ZTH Z) or the range space (the dimension of YTH-'Y). Because
we use a null-space method for solving (3.2.1), the method is most efficient when the
dimension of the null space of A is small. It is this class of problems that we are most
interested in.

Each iteration of an active-set method for solving LSQP is called a minor iteration.
Solving the associated KKT system (3.2.1) is equivalent to solving a single equality-
constrained quadratic program (EQP).

The following is a model active-set algorithm for solving LSQP. It assumes that a
working set of the form (2.4.3) is available and that the associated point p is feasible, i.e.
satisfies the constraints in LSQP.

Algorithm 3.2.1. (Active-set algorithm)
while not converged do
if the minimizer has been found on the current subspace then
[?rice nonbasic variables. J
if no new superbasic candidates exist then
converged = true
else

lDelete @ bound from the working set. ]
end if

end if
if not converged then

[Salve the EQP defined by the working set. 1
if a bound was encountered in the solution of the EQP then
kldd the bound encountered to the working set. I

end if
end if
end do

Figure 1. Active-set algorithm

Our definition of convergence in Algorithm 3.2.1 depends on finding a minimizer of LSQP.
The algorithm is easily modified to halt upon finding the first constrained stationary
point (see Section 3.2.3). In addition, Algorithm 3.2.1 requires finding a feasible point, the
computation of which is itself an optimization problem. The main parts of Algorithm 3.2.1
(signified by the boxed text) will be discussed in the following sections.
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3.2.1. Finding an optimal point

Let A denote the working set for a feasible point p for LSQP. Since H is chosen to be
positive definite, the reduced Hessian ZTH Z is known a priori to be positive definite
for every minor iteration. Define g5, = g + Hp, the QP gradient at the point p, and
H, = ZTHZ, the reduced Hessian.

The optimality-phase algorithm starts with a feasible point p, tolerances §,, and §g;,
and a partition of Ainto ( B S N ). Define n; to be the number of columns in §.
Assume that the QP gradient g, is available, along with factorizations for the basis
B = LU and the reduced Hessian H, = RTR.

The first step in finding an optimal point is to determine whether the current point p
is a constrained stationary point, by checking whether the current point is a minimizer on
the current subspace or equivalently, the norm of the reduced gradient is zero (or smaller
than a specified tolerance). If so, it is then necessary to check whether p is the minimizer
of the subproblem, by checking the signs of the multipliers (also called reduced costs)
for the bound constraints. The multipliers are calculated by pricing, as summarized in
Procedure 3.2.1.

Procedure 3.2.1. (Price nonbasic variables)
Form g, = g + Hp.
Solve UTLTy = (9gp)8-
Calculate 11 = (gge )y — NT,.

Select gy (114 ), the most negative (positive) element of n corresponding
to variables at their lower (upper) bounds.

If ;5 > —64; and n, < 45, we conclude that p is a minimizer of the subproblem.
Otherwise, the QP objective may be reduced by deleting a bound from the working set
and adding a variable to the superbasic set. Procedure 3.2.2 summarizes the steps required
to modify the working set when a bound is deleted.

Procedure 3.2.2. (Delete a bound from the working set)
Choose ¢ = argmaz(|n, n.).
Add q to the superbasic index sel.

T,
Add 1, as a new element of Z"gp.

Add a new column to R and increase ng by 1.

The search direction for LSQP at p is defined by the Newton equations,
H,p, = -Z7g,, (3:2.2)
p = Zp,, (3.2.3)

which solve the EQP defined by the current working set. The next iterate p for the
subproblem is p = p + ap. Due to the quadratic nature of the objective function along
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P, when p + p is feasible then o = 1 and p is a constrained stationary point for LSQP. If
p + p is not feasible then a < 1 is the step to the nearest bound constraint along p. The
precise steps for solving the EQP are summarized in Procedure 3.2.3.

Procedure 3.2.3. (Solve an EQP)
Solve RTRps = -ZTgw.
Solve LUpy = ~Sps.
Calculate a, the step to the nearest bound along p, where

ﬁ=( I)Bv Ps, 0 )

Compute a = min(1,a.).
Update p = p + ap.

When the unit step is not feasible the nearest bound is added to the working set. If
the variable corresponds to a column in B, a column from § must be chosen to replace
it in B (see Section 3.3, no. 3). The steps required when a bound is encountered in the
solution of the EQP are summarized in Procedure 3.2.4.

Procedure 3.2.4. (Add a bound to the working set)
if o = a. then
Add the new bound to the working set.
Decrease ng by 1.
Update R.
Update the LU factors if necessary.
end if

Two tests for convergence are required: one to check for convergence in the current
subspace and one to detect convergence to the QP minimizer. As discussed in Section 2, it
is not always necessary to obtain the minimizer of the QP subproblem in order to obtain
a search direction for NLP. The emphasis of Section 3.2.3 will be to develop a strategy in
which we terminate the solution of the subproblem upon finding a QP stationary point.
The complete set of steps for the optimality-phase algorithm for finding a minimizer of
the QP is given in Algorithm 3.2.2.

3.2.2. Obtaining a feasible point

Algorithm 3.2.2 requires a feasible point for LSQP. At the start of a QP subproblem, the
basic variables py are defined by
Bpg = —c.

If pg is feasible we may commence with the oplimality phase. A subproblem is infeasible
only if the bounds on the variables (I;; < p, < u,) are violated. During the feasibility
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Algorithm 3.2.2. (Optimality phase for LSQP)

while not converged do
if | Z7gge|l < 6,y then {Price nonbasic variables}

Form g, = g+ Hp.

Solve UTLTy = (9ge)8-

Calculate 1 = (ggo)n — NTy,

Select ;1 (14 ), the most negative (positive) element of

n corresponding to variables at their lower (upper) bounds.

if ) > —é4; and 5, < &4; then
converged = true
else { Delete a bound from the working set}

Choose ¢ = argmaz(|nl, n.).

Add q to the superbasic index set.

Add 1, as a new element of ZTgQP.

Add a new column to R and increase ng by 1.

end if
end if
if not converged then {Solve an EQP}

Solve RTRps = —Z7g,,.

Solve LUpg = —Sps.

Calculate a., the step to the nearest bound along p = ( ps, ps, 0).
Compute a = min(1,a.).

Update p = p + ap.

if « = o, then {Add a bound to the working set}

Add the new bound to the working set and decrease ng by 1.
Update R and update the LU factors if necessary.

end if
Update the reduced gradient.
end if
end do

Figure 2. Optimality phase for LSQP
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phase of the subproblem, the objective is the sum of infeasibilities for the bounds. This
Phase 1 problem may be written

mi;gg}'ize Z((Ik)j =)t + (p; — (ug);)t
Jj=1

s.t. Ap = —¢,

where 8% = max(0, 3). This procedure for finding a feasible point is similar to the Phase I
method for finding a feasible point for a linear program, extended to work with nonbasic
points (i.e. with superbasic variables). The difference between the feasibility phase and
the optimality phase is that the gradient of the sum of infeasibilities must be formed in
place of g, and the steepest descent search direction is used in place of a search direction
defined in terms of the reduced Hessian H,.

It is not enough just to find a feasible point. If the working set is changed in the
feasibility phase it is necessary to modify H,, since this matrix is required for the optimality
phase.

When the working set is modified to include additional bounds, the reduced Hessian
is modified within the feasibility phase. When bounds are deleted from the working set
there are two options worth considering.

Because only the steepest descent direction is used during the feasibility phase, one
strategy is to wait until a feasible point has been found before expanding the reduced
Hessian, should that be necessary. When the working set has been modified and has fewer
bounds than at the start of the feasibility phase, the new reduced Hessian may be modified
by appending rows and columns of the identity:

i, = ( H, I ) (3.2.4)

Another strategy is to update H, = RTR to take into account deletions from the
working set as they occur in the feasibility phase. For this strategy, the updates are the
same as those for the optimality phase and may require multiplications with the full #
when the working-set size is reduced. The modifications to H, are discussed in detail in
Section 3.7.

The feasibility-phase algorithm starts with tolerances 6,4 and 84 and a partition of
Ainto( B S N ). Define ng to be the number of columns in §. Assume that the
basis factorization B = LU is available, set p, = 0 and p, = 0, and solve LUpy = —c to
determine the initial elements of the search direction.

3.2.3. Early termination of subproblems

The prototype SQP algorithm for NLP (Algorithm 2.3.1) allows the use of only stationary
points rather than minimizers to construct a search direction for the NLP merit function.
As mentioned in Section 1, there are two reasons for early termination of the active-set
method. First, it is desirable to place a limit on the computational effort made. Second,
when z; is a poor approximation to z* {and this is the circumstance when many minor
iterations may be required), the effort to find a QP minimizer seems unwarranted in light
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else

Algorithm 3.2.3. (Feasibility phase for LSQP)

while not (converged or infeasible) do
Form §, the gradient of the sum of infeasibilities.

if ||gl] = 0 then
converged = true

if || 27g)| < é, then {Price nonbasic variables}

Calculate n = gy — NTp.
Select m; (1), the most negative (positive) element of n correspond-

ing to variablr .1 their lower (upper) bounds.

if g > -84 ad 9, < &4 then

infeasible = true

else { Delete a bound from the working set}

Choose ¢ = argmaz(|mi|, ).
Add ¢ to the superbasic index set.
Add 1, as a new element of ZT§ and increase ng by 1.

end

end if

if

if not (converged or infeasible) then {Solve un EQP}

Solve ps = —§s.
Solve LSU Ps =S—.S'ps.
Calculate o, the step to the nearest bound along p = ( ps, ps, 0).

Update p = p + ap.
Add the new bound to the working set and decrease ng by 1.

end if
end do

Update R and the LU factors if necessary.

end if

Figure 3. Feasibility phase algorithm
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of the fact that the subproblem may be a poor model (even locally). Thus, an early-
termination strategy may reduce the total number of QP iterations required to find a
minimizer for NLP.

There may be a further benefit associated with early termination. The pricing step
requires much computational effort (Procedure 3.2.1) and often constitutes a large per-
centage of overall processing time when the subproblem is solved to optimality. Pricing
involves solving with BT (to obtain u) and forming NTu (to obtain reduced costs 17). The
early-termination strategy only requires solves with B (to obtain the search direction) and
a linesearch. If a unit step is taken we terminate the solution of the subproblem, since
the resulting point is a constrained stationary point. Otherwise, a bound is encountered
during the linesearch, the reduced gradient is updated cheaply, and the search direction
is calculated anew in the smaller subspace. This approach requires neither Lagrange mul-
tiplier estimates nor reduced costs! Hence, an important advantage of early termination
of subproblems is the elimination of pricing during subproblem solution (although it is
necessary to price outside the subproblem to determine if the working set should be mod-

ified).

Algorithm 3.2.4. (First-stationary-point algorithm for LSQP)
while not converged do

if ||Z27gg|l < 6,4 then

converged = lrue

else {Solve an EQP}
Solve RTRps = —ZTgQ.,.
Solve LUpg = —Sps.
Calculate a., the step to the nearest bound along p = ( pg, ps, 0 )T

Compute a = min(1,a;).
Update p = p + ap.

if a = a. then {Add a bound to the working set}

Add the new bound to the working set, decrease ng by 1, and update
R and the LU factors if necessary.
end if
Update the reduced gradient.
end if
end do

Figure 4. First stationary point algorithm
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With the early-termination strategy, we have two options for modifying H, (as in the
feasibility phase). Upon completion of a major iteration we may decide to price inside or
outside the subproblem. After completion of the linesearch to reduce the merit function,
the next QP is set up, Lagrange multiplier estimates are then calculated and nonbasic
columns are priced. If the current point is not the minimizer, a decision is made to move
off one or more of the bounds in the working set.

Pricing outside the subproblem allows the reduced Hessian to be updated to reflect the
new superbasic components in a computationally convenient way. The new H, is obtained
by appending a row and column of the identity for each new superbasic variable as in
(3.2.4). This avoids products of the form H:z, which can be computationally expensive.
Note that a major difference relative to the algorithm of Prieto [Pri89] is that the prototype
algorithm does not calculate an auxiliary search direction once a stationary point has been
identified.

Algorithm 3.2.4 presents a stationary-point algorithm for LSQP that terminates upon
finding the first constrained stationary point encountered during subproblem solution.
The First-stationary-point algorithm starts with a feasible point p, a tolerance §,4, and a
partition of A into( B S N ). Define n_ to be the number of columns in 5. Assume
that the QP gradient g, = g + Hp is available and factorizations are available for the
basis B = LU and the reduced Hessian H, = RTR.

3.3. Updating Z

When A is updated during the solution of the subproblem it is necessary to update both
Z and H,. The updates to the working set come in three forms:

1. A bound is deleted and the corresponding column is added to S.
When we decide to drop one or more of the bound constraints from the working set
this has the effect of adding one or more columns to the matrix S. The addition of
a superbasic also increases the number of columns of Z. and the dimension of H,.

2. A variable corresponding to a column in S hits a bound.
When a variable corresponding to the ¢-th column in § encounters a bound, the
variable is deleted from S and added to N. Both Z and H, must be updated to
reflect the modification to §. The ¢-th column of Z is implicitly deleted, and R is
modified to reflect deletion of the ¢-th row and column of H,.

3. A variable corresponding to a column in B hits a bound.
When a variable corresponding to a column in B encounters a bound the updates
to I, are more complicated. It is necessary to replace the column from B with a
suitable column from S (one that maintains the nonsingularity of B). Updates to
the LU factors of B are carried out using a method standard to the simplex method
for linear programming (see [GMSWS8T)).

The updates to I, for each of these cases are discussed in Section 3.7.
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3.4. Continuity of Z

In order to prove that Algorithm 2.3.1 has a superlinear rate of convergence, it is necessary
to assume that f1, is an adequate approximation to ZTW Z. In Section 2 we assumed that
the gradierts and Hessians of F(z) and ¢(z) exist and are continuous and uniformly
bounded in norm on . The quasi-Newton scheme for approximating ZTW Z is based on
inherited information. If ZTZ is not continuously differentiable in the neighborhood of z*
then the assumption that H, is a good approximation to ZTW Z is not reasonable.

Discussion of the continuity of Z was initiated by Coleman and Sorensen [ColS84],
who showed that a standard method for computing an orthogonal factorization of A may
not provide a continuously differentiable Z(z). Gill et al. [GMSSW85] showed how to
compute a continuously differentiable Z using regularized Householder transformations,
and they proved the convergence of both @ and Z under appropriate assumptions.

The difficulties associated with the continuity of Z(z) that arise using orthogonal
transformations do not arise for the reduced-gradient form of Z, as the following lemma
demonstrates.

Lemma 3.4.1. Let the sequence {x;} be defined by the prototype SQP algorithm with
limit point 2*. Let B be a ball around a point 2* and suppose that the correct active set
has been identified and

Alae)=( Br Sk Ni)

is a conlinuously differentiable function of x; in B. Further, suppose that B). has rank m
for all . in B and the indices defining the columns in By, are identical for all z in B.
Then

By, Sk Ny,

| l !

B* g N*

and the null-space basis Z(z) obtained as the reduced gradient matriz from (3.1.3) has
elements that are continuously differentiable for all x; in B.

Proof. Since B; has the same indices and the active set is fixed inside B, by definition
of the active set the result A(2;) — A* = ( B* §* N* ) must follow. In addition,
since A(zr) =( By Sir Ni )is continuously differentiable for x4 in B then By also has
these properties. Moreover, since B is continuously differentiable and has full rank, B,:l
exists and is also continuously differentiable. Finally, the continuity of Z(z;.) follows from
the fact that since S; has elements that are continuously differentiable for all . in B, the
linear transformation B;’Sk has continuously differentiable elements for all z in B. @

The fact that B,:l is not explicitly computed, but operations with the matrix are done
using the LU factors of By, does not impact the continuity of Z. Note that in general the
LU factors are not continuously differentiable but B,:1 is.

3.5. The QP Hessian and the transformation matrix Q

In our prototype algorithm we recur H,, an approximation to the reduced Hessian of the
Lagrangian. Condition Ay of Section 2.3.1 requires that I, the approximation to 1V, be
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accurate only in the null space of the rows of A. We are free to define H in any way
provided

ZTHZ = H,. (3.5.1)

It is important to note that although (3.5.1) must hold, the matrix product is never
actually formed.

When only the reduced Hessian is recurred it is not obvious how the QP gradient can
be formed without great expense, since the QP gradient depends on H. To form the QP
gradient in the dense case (when H is known explicitly) we would simply form

I = 9+ Hp. (3.5.2)

In the large-scale case, H is not stored and so direct multiplication is not possible. Fortu-
nately, we have considerable freedom in the definition of H while still being able to satisfy
(3.5.1). We shall use this freedom to make the computation of g, easy.

In the dense SQP method of NPSOL [GMSW86a], an important computational device
has been to work with a transformed Hessian approximation QTHQ = RTR, where Q is
the nonsingular matrix that triangularizes the working-set matrix. An analogous device is
essential to the success of our large-scale algorithm. We define the transformation matriz
Q to be

Q= ( Z(z) Y(z) ) (3.5.3)

where Z and Y satisfy the following requirements:

e Z is a basis for the null space of the active constraints at the current point;
ie A(x)Z(x)=0;

¢ () is nonsingular.

We also define

Dy 0 0
QT™HQ=| 0 H, 0 |,
0 0 Dy

where Dy and Dy are nonnegative diagonal matrices each having zero elements on its
diagonals corresponding to linear or slack variables.
Thus, ZTHY = 0 and YTHY = D, and the gradient for the QP is given by

vor = 9+ QTQTHQ)Q 'p. (3.5.4)

Note that the transformed Hessian approximation QTHQ is known and is simple, but
operations with Q~! (rather than Q) are required to compute g, .. We choose the null-
space basis Z to have the reduced-gradient form (3.1.3) but we have some freedom in
choosing Y. In the next section we discuss various choices for Y. Each choice gives rise
to a different Q~1, which in turn affects the effort required to compute the QP gradient.
The merits of the various choices are then compared.
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3.6. The matrix Y

For each QP subproblem the QP Hessian depends only on Ag, the working-set matrix at
the start of the QP subproblem. Define

Ag = ( Bo S 1‘;0 ) (3.6.1)

The null-space basis for Ag will be denoted by Zg and Y for Ag will be denoted by Y with
Qo = (Yo Zo ). The definition of A (i.e. B, S, and N), Z, and Y may change during
the solution of the QP subproblem, but the matrix H remains constant. It is therefore
necessary to remember the column indices in Ay.

In this section we define three possible choices for Y. In addition to requiring Qg to be
nonsingular we would like Qo to be well-conditioned and operations with Q5! to be cheap.
In the following sections the subscripts on the matrices Yy, Zp, etc. will be dropped (e.g.
@ = Qo); when a matrix corresponds to a QP iteration other than the initial one it will be
denoted by a subscript for the current iteration count (e.g. B = B(po) and Br = B(pi)).

3.6.1. Y defined using a partition of /

Lemma 3.6.1. When Y is of the form

I 0
Y=]10 01}, (3.6.2)
0 I
then Q) is nonsingular and
0 I 0
Q'=|1 B's o0 ]. (3.6.3)
0 0 I

Proof. Permutation of the first two blocks of columns from @ gives

-B-'S 1 I I -B-'S
I I = I ’ (3'6-4)
I I I

which shows that @ is nonsingular. The result for Q~! may be shown by block premulti-
plication of (3.6.3) by Q. &
With this choice of Y the QP gradient becomes

(ps + B~ Sps)
9o =9+ | STB~T(pg+ B~'Sps)+ H,ps | . (3.6.5)

Py

The work required to compute g, consists of matrix-vector products with .$ and ST,
a matrix-vector product with H,, and two solves with the basis (one with B and one with
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BT). The QP gradient can be obtained as follows:

form w = Sps; (3.6.6)

solve Bv = w; (3.6.7)

solve BTu = pg+; (3.6.8)

foom w = STu; (3.6.9)

form q = H,ps; (3.6.10)
98 Pt v

form g, = gs |+ g+w |. ' (3.6.11)
9~ PN

We may simplify the computations (3.6.6)—(3.6.10) when the feasibility phase is ter-
minated without changing the working set. When the initial p is feasible with respect to
its bounds, equations (3.6.6)-(3.6.7) can be omitted from the computation.

During the solution of a subproblem the factors LUy of the basis B) change as the
working set changes (refer to Procedure 3.2.4, for example). When Y is of the form (3.6.2)
we must maintain a fectorization of both B and B, since the use of @ requires the use of
By !, To avoid having to store two separate LU factorizations, one for B and one for By, we
could obtain By from By_; using a classical product-form update [Orc68] (or alternatively
a block-LU update as described in Eldersveld and Saunders [E1dS90]). This would allow
us to perform operations with both B and By with no increase 1n storage over that for just
Bi.. However, difficulty arises if the number of updates to B becomes large. Normally, By
is refactorized every 50-150 minor iterations. Thus, if the QP solution process caused B
to undergo many updates it would still be necessary to store two factorizations.

3.6.2. An orthogonal Y

Following the lead established by using the orthogonal TQ factorization for the dense case,
we can choose Y to satisfy ZTY = 0. Unlike the Y obtained from the TQ factorization
we shall not require YTY = I. This choice ensures that Q is nonsingular if Y has full
column rank. We would also expect ¢ to be similarly conditioned to Z provided Y is also
similarly conditioned to Z.

There are many possible choices for an orthogonal Y. An obvious choice is AT, but
such a choice does not give a computationally convenient form for Q~!. A convenient
choice is presented in the following lemma.

Lemma 3.6.2. When Y is of the form

I 0
Y=| $TB-T o |, (3.6.12)
0 I

then Y is orthogonal to Z and Q is nonsingular, with

-$™B-TD C 0
Q!'= D B-'sc o |, (3.6.13)
0 0 I

where C' = (I + STB-TB-15)"1 = (2TZ)™" and D = (I + B-'SSTB-T)~! = (YTy)~1.
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Proof. The result that ZTY = 0 follows easily from the definition of Y and Z. Permu-
tation of @ as in (3.6.4) yields

-B's I I I -Bl§
I sTB-T I =| §TB-T I . (3.6.14)
I I I

Performing block elimination on the right-hand side of (3.6.14) reduces the permuted Q
to
I -B-1§
STp-Tp-1§ , (3.6.15)
I

which is nonsingular since STB~TB-1§ is positive definite. Hence Q is nonsingular. The
result for Q! may be shown by block premultiplication of (3.6.13) by Q. @

Clearly, using Q! directly to obtain the QP gradient does not look promising. Using
(3.6.13) to form matrix-vector products with Q~1 would require separate Cholesky factor-
izations of both ZTZ and YTY. While we would expect Z7Z to be small for the problems
addressed in this report, the same cannot be said for Y7Y. The following lemma shows
the precise form of (YTY)-1.

Lemma 3.6.3. WhenY is of the form (3.6.12), (YTY)~! has the form
(YTy)' = (1 - B'scsTpT), (3.6.16)
where C = (I + STB-TB-18)"! = (Z7Z)"".

Proof. The result may be verified by forming ¥7Y from (3.6.12) and multiplying the
result into the right-hand side of (3.6.16). @

Use of (3.6.16) allows us to provide a more convenient form of Q! that does not
require a factorization of YTV,

Lemma 3.6.4. WhenY is of the form (3.6.12), Q! has the form

-CSTB-T cC 0
Q'=| 1-B'scsT™B-T B-'Sc o0 |, (3.6.17)
0 0 I

where C = (I + STB-TB-18)-! = (27Z)"1.

Proof. The result for Q! arises by the substitution of (3.6.16) into (3.6.13). &

The result of Lemma 3.6.4 allows us to compute the subproblem gradient without
maintaining a Cholesky factorization of Y'7Y'. To compute 9o Tequires four matrix-vector
products with S or S7, four solves with B or BT, two solves with C-! = ZTZ and one
product with H,:

solve BTw = pp; (3.6.18)
form u = STw; (3.6.19)
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solve (ZT2)y = pg—u; (3.6.20)
form w = Sy; (3.6.21)
solve By = w; (3.6.22)
solve BTw = py+v; (3.6.23)
form u = STw; (3.6.24)
form t = H,y; (3.6.25)
solve (ZTZ)yr = t+u; (3.6.26)
form w = Sr; (3.6.27)
solve Bq = w. (3.6.28)

The subproblem gradient may then be written

Y8 Petv—g¢q
9= | 95 | + r . (3.6.29)
In PN

As when Y has the form (3.6.2), Q! is defined in terms of By*. Hence, this form of Y
requires two separate factorizations of the basis matrices within the subproblem, one for
the initial basis By and one for the current basis B;.

3.6.3. Y defined using B!

A choice for Y that leads to a very simple and computationally efficient form for Q! is
given in the following lemma.

Lemma 3.6.5. When Y is of the form

B! 0
Y = 0 o1, (3.6.30)
0 I
Q is nonsingular, and
0 I 0
Q'=| B SO0 (3.6.31)
0 0 1
Proof. Permutation of @ as in (3.6.4) yields
-B-'S B! I B! -B-'S§
I I = I R (3.6.32)
I 1 I

which is nonsingular since B is. Hence @ is nonsingular. The result for Q~! may be shown
by block premultiplication of (3.6.31) by Q. @&
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The form of Q! allows us to compute the QP gradient easily. By definition,

Hy, 00
e = 9+QT| 0 10 |Q (3.6.33)
0 0 I
BT(BPB+SPS)
= g+ | ST(Bps + Sps)+ Hyps |- (3.6.34)
DPn

To compute g, requires three matrix-vector products, one with H,, one with ( B § ),
and one with its transpose:

= (B s){?], 3.6.35

w ( ) ( Do ) (3.6.35)

v = H,ps, (3.6.36)
T

v o= ( IS}T ) w. (3.6.37)

Since H, is small by comparison to ( B 5 ), the main effort is in computing w and v.
We then have

)] Vg
g@-’ = gs + Vs + un
gn Pn

It is important to note that Q! is defined in terms of By not By 1. Operations with
Q7! require multiplications with By. This is easily accomplished by keeping track of the
indices of the columns from A that make up Bg. Hence, a benefit of this choice of Y is
that operations with Q! do not require two separate factorizations of the basis matrices,
in contrast to the previous two choices of Y.

From a computational standpoint, if we restrict ourselves to pricing only after the
feasibility phase of the QP subproblem, the QP gradient can often be computed with
about half the effort of the above method. This is because the matrix-vector product w in
(3.6.35) can be rewritten as w = —(¢; — s;) when the initial p is feasible with respect to
the bounds (as is usually the case in the later stages as we near optimality). In the event
that the initial p is not feasible, w may be calculated as w = —(¢r — sx) — Npy. This is
often cheaper than (3.6.35) because py is expected to contain few nonzero elements.

3.6.4. A comparison of the three choices of Y

We summarize the presentation of the three choices of ¥ by highlighting the computa-
tional effort required to compute the QP gradient. The first column of Table 1 gives the
specific choice of Y. The remaining columns represent the number of operations (solves
or products) with the matrices B, S, H,, and Z7TZ respectively. It may be seen that the
first and third choices are similar in their computational cost. The orthogonal choice of
Y requires about twice the effort and a second Cholesky factorization. Its main benefit
is that the resulting @ may be better conditioned than with the other two choices. A
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Form of Y || B mult. | B solve | S mult. | H, mult. | Z'Z solve
Identity 2 2 1

Orthogonal 4 4 1 2
Inverse B 2 2 1

Table 1. Matrix products and solves required to compute gg. for various choices of Y.

virtue of the last choice of Y is that no additional factorization is required. Moreover,
multiplications with B are likely to require less effort thatn solves with B, since the LU
factors of B contain at least as many nonzero elements as in B itself. It is this definition
of Y that is used for the computational tests of Section 5.

3.7. Updating the reduced Hessian

Changes in the working set cause changes to Z in the following situations:

1. A bound is deleted from the working set and added to S.
2. A variable corresponding to a column in S hits a bound.

3. A variable corresponding to a column in B hits a bound.

These changes to Z in turn cause changes to the reduced Hessian H,. To ease computation
only the Cholesky factor of the reduced Hessian is recurred (instead of H,). This section
describes how the Cholesky factorization #, = RTR may be maintained. The updates to
R are the same as in MINOS [MurS78] except in the first case, where the new column of
R is not open to choice.

3.7.1. Updates to H, arising from deletion of a bound

When a new variable is added to the superbasic set, the reduced-gradient form of Z is
unaltered except for gaining a new column: Z = ( Z z ) The new reduced Hessian is
given by

C aTus ZTHZ ZTH:
A,=2THZ = ( Tyy <TH. ) : (3.7.1)
Let R denote the new Cholesky factor. It follows from (3.7.1) that
R:(R ’). (3.7.2)
é
Hence, R can be obtained by the following operations:
form w = Hz; (3.7.3)
fom v = ZTw; (3.7.4)
solve RTr = v, (3.7.5)

form 6 = /zTw-|r|]2 (3.7.6)
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Since H, is positive definite, & is well defined.

3.7.2. Consequences of an early change of subspace

In our discussion of Section 3.2 we assumed that the minimizer would be found on the
current subspace before pricing. This is not always practical (for some of the same reasons
that lead us to consider an early-termination strategy for subproblems). Optimization
algorithms such as MINOS may terminate the minimization on a subspace when the norm
of the reduced gradient is smaller than a dynamic tolerance. As in the case of early
termination, this may help to avoid unnecessary computation when far from the optimal
active set. Unfortunately, if H, is expanded as in (3.7.1) there is no guarantee that the
search direction resulting from the solution of the Newton equations will provide a feasible
descent direction for the QP iteration. This assertion is reflected in Lemma 3.7.1.

Lemma 3.7.1. If a Lagrange multiplier estimate arising during the QP subproblem is
used to delete a constraint from the working setl, the search direction arising from the
solution of the Newton equations

RTRp, = -27¢, (3.7.7)

may not be a feasible descent direction for the QP subproblem, unless Zqu, = 0 before the
constraint is deleted.

Proof. The proof is given in [GiIM79]. &

Despite this result it may still be worth pricing before finding a minimizer. In the
event that the search direction is not a feasible direction of descent we can simply revert
to minimizing on the current (smaller) subspace.

The use of multiple pricing, i.e. choosing more than one variable to become superbasic,
causes greater difficulty, since it is a combinatorial problem to identify the subset of
variables that prevent the search direction from being feasible. This problem does not
arise in MINOS since the expanded Cholesky factor of the reduced Hessian becomes

_ R
R=< 1). (3.7.8)

Clearly, the new search direction is always feasible with respect to the hounds on the
new superbasic variables. A strategy of expanding the reduced Hessian using (3.7.8) is
acceptable for the optimality-phase algorithm when the update is performed outside the
subproblem. The strategy is unacceptable inside the subproblem since the relation

RTih=2THZ (3.7.9)

would no longer hold. The result of this discrepancy is that if a unit step is taken in the
QP then in general Zqu,, # 0 (as would be the case if equation (3.7.9) held). Since the
reduced Hessian approximation defines the full QP Hessian, when (3.7.9) is violated we
are no longer solving the “correct” subproblem. When this occurs it is necessary to either
modify the definition of the QP Hessian to satisfy (3.7.9) or introduce new linesearch
criteria and termination conditions for the subproblem to ensure that the resulting search
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direction is a descent direction for the merit function. In the computational tests of
Section 5, a conservative strategy was adopted and the subspace was not changed until
the norm of the reduced gradient (for the subproblem) was quite small. To be precise,
minimization on the subspace was continued in the subproblem until

12 ggelloo < Vellitlloos

where ¢ is machine precision.

3.7.3. Updates to H, arising from changes to §

If the ¢-th superbasic variable hits a bound, the new null-space matrix is obtained by
removing the the ¢-th column from S. The new Cholesky factor is updated by applying
plane rotations to R followed by the removal of its ¢-th row and column (see [GGMS74]).

3.7.4. Updates to H, arising from changes to B

If a variable corresponding to the p-th column in B hits a hound, the updating is performed
in two stages. First, the basis is updated by replacing the p-th column in B with the ¢-th
column from S, where ¢ is chosen to keep B well-conditioned. (The procedure requires a
solve with BT.) Finally, we delete the chosen column from S as described in Section 3.7.3.

Let B denote the new basis and Z the corresponding null-space matrix. We shall show
that Z has the form

PZ = ZM. (3.7.10)

where P is a permutation matrix and M is a rank-one modification of the identity. This
expression for Z enables the Cholesky factor of ZTH Z to be determined easily from that
of ZTHZ.

Let a denote the p-th column of B, and suppose it is exchanged with s, the g-th column
of §. Also, let BTr = ¢, and 6 = rTs. Asin [MurS78), q is chosen by first forming y = $7r
and to some extent maximizing the “pivot element” y, = 8 = rTs. We have a = Be,, and
the updated basis B is given by

B=B+(8—(l)€,7;=(1+(8—a)7‘T)B, (3.7.11)

so that

B~'= BN - ¢(s — a)rT), (3.7.12)

where ¢ = 1/0. The change in .S (before deleting the g-th column) is
§5=5-(s=-a)l. (3.7.13)

Lemma 3.7.2. When the basis has been updated «s in (3.7.11) and (3.7.13), then Z is
of the form PZ = ZM, where

M=I4+ev’ and v=-¢STr+e,). (3.7.14)
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Proof. Define Z = ZM. The top m x ng submatrix of Z after swapping the g-th column
of § with the p-th column of B is

B'S = B'(I-¢(s-a)T) (S~ (s-a)el)

(B! = ¢B (s - a)rT)(§ - seT + aeT)

B7'S — ¢B7'srTS + ¢e,rTS — ¢B ' se] + depel
= B"S(I — e (r1S + eqT)) + ¢e,(rTS + el

= B7'SM - eva.

]

Clearly, the result is satisfied for all rows except the p-th:
eZB'IS = —eqT— vT,

which should be eg' after the update. To make the update complete we swap the p-th row
with the (m + ¢)-th row (which is eg'), using the permutation matrix

Pp'm.'.q = (61 ser €p1 €m4q Ep+1 -+ Emig—1 €p €myg4l - .- Emyn, ). (3.7.15)
Premultiplication of Z by Py m4q gives

-B1§
= Z(I— ¢eq(rTS+eqT)). (3.7.16)

The permuted update satisfies eg'Z = e{. The lower ng x ng portion of Z is

TS T
I- eq(f——%—ei), (3.7.17)

which is the identity matrix except that the g-th row which is the p-th row of —B~1S.
Finally, Z is constructed to have one less column than Z by having its ¢g-th column removed
and its (m + ¢)-th row zeroed out and permuted to the bottom. §

3.7.5. Updating the Cholesky factor of H,

The changes to Z must be reflected in updates to the Cholesky factor of H,. We have
H, = MTH,M = (RT+ vuT)(R + uoT), (3.7.18)

where u = Re, is the ¢-th column of R and v = —¢( STr + €g). The updated factor R is
obtained by reducing R + uv? to upper triangular form with two partial sweeps of plane
rotations as in [GGMS74, MurS78]. Finally, because a superbasic column was used to
replace a column from B, the number of superbasic variables is reduced, and a row and
column are removed from /1, (and its Cholesky factor) as described in Section 3.7.3.




Chapter 4

The Quasi-Newton Update to the
Reduced Hessian

In the prototype algorithm, we assume that the QP Hessian H approximates W, the
Hessian of the Lagrangian. The relationship between W and H and computational details
of updating approximations to the reduced Hessian of the Lagrangian are the concerns of
this section.

4.1. Introduction

Quasi-Newton methods are “Newton-like” algorithms in which the Hessian (or classically,
its inverse) is replaced by an approximation. The approximation is obtained by using the
known curvature along the directions of search. Most quasi-Newton methods are based on
a formula from the one-parameter family of updates introduced by Broyden [Bro67], for
unconstrained optimization. Define ¢ € [0,1], s = £—2 and y = §—g. The one-parameter
family of Broyden updates is then

- HssTH
A=H- 3;‘;{3 + l"’— + pww”, (4.1.1)
where 7
8
= (sTHs)'I ( ys sTHs) . (4.1.2)

The choice of the factor ¢ = 1 gives the classical DFP formula, while the choice of ¢ = 0
gives the BFGS formula. At least in one sense, the choice of ¢ is not critical. Dixon
[Dix72a, Dix72b] showed that when the iterates are chosen to satisfy

Hp = -y, (4.1.3)

Z = z+ap, (4.1.4)

where a is the step that minimizes F(a) = F(z + ap), the Broyden updates generate
identical iterates independent of the choice of ¢.

Despite this result, the performance of quasi-Newton methods does depend signifi-
cantly on the choice of ¢ because it is ineflicient in practice to perform accurate line-

44
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searches. Moreover, even the effort to perform the linesearch depends on ¢. For un-
constrained problems, ¢ = 0 (the BFGS update) has been shown to be a good choice
[GMP72].

Recently there has been considerable interest in the rank-one update (see [KBS90] and
[CCT91]). Because our interest is in exploring the differences between our large-scale SQP
approach (using only an reduced Hessian approximation) and NPSOL, we did not wish to
make use of a different update. We have opted to use the BFGS update since this is the
one used in NPSOL.

4.1.1. The BFGS update

The pedagogical form of the BFGS update for unconstrained optimization is given by

- HssTH yyT
H=H- Q_TII—S_ + yTs' (415)

If H is positive definite, the new approximation H is positive definite if and only if yTs > 0.
For unconstrained optimization, we can always ensure y’s > 0 by choosing appropriate
termination conditions for the linesearch (see [GMSW79]). For nonlinearly constrained
optimization, however, yTs > 0 is no longer assured.

4.2. Quasi-Newton updates for NLP

A number of authors have proposed SQP algorithms for NLP using H as a quasi-Newton
approximation to W. This idea is credited to Murray who proposed it in [Mur69]. It
has been used with success by others (see [Han76], [Pow83], or [GMSW8G6b)] for example).
Complications arise because of the constraints; for example:

1. The BFGS update as well as many quasi-Newton approximation methods are depen-
dent on the approximation H being positive definite, yet it is not necessary (nor is
it expected) that the exact Hessian I be positive definite, even at the solution.

2. Both W and H require estimates of the Lagrange multipliers, which themselves are
nonlinear functions of z.

3. We can no longer ensure that y7s > 0.

In addition to these difficulties, large-scale SQP methods that approximate the full Hessian
of the Lagrangian may be computationally intractable since the Broyden updates do not
preserve the sparsity of the true Hessian. While the true Hessian may be quite sparse,
its approximation using (4.1.1) is almost always completely dense. Thus, as problem size
grows, the storage and effort required to perform the update may become enormous.

In the case of unconstrained optimization, attempts have been made to exploit spar-
sity in quasi-Newton methods for problems whose Hessian has a known sparsity pattern.
Unfortunately, results for these methods have not been promising (see [Tha83} and [Sha80]
for example).

To preserve sparsity and still satisfy the quasi-Newton condition (see Section 4.2.2) a
significant amount of time may be required to perform the lincar algebra defining a suitable
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sparse update. In addition, a positive-definite / cannot be guaranteed and superlinear
couvergence is not in general achieved.

To preserve sparsity and still satisfy positive definiteness in H, it is possible to construct
an update in which the fill-in (according to the sparsity pattern of the true Hessian) is
ignored. Unfortunately, satisfaction of the quasi-Newton condition cannot be guaranteed
and superlinear convergence is not in general achieved.

Recently, Nickle and Tolle [NicT89] have attempted to use sparsity-exploiting quasi-
Newton updates within an SQP method for constrained problems. They use the BFGS up-
date for the approximation to the full Hessian of the Lagrangian and maintain a Cholesky
factorization of the approximation that ignores the fill-in associated with the standard
update. In their implementation, they do not enforce quasi-Newton condition. The suc-
cess of this approach for large-scale NLP has not been verified as the method has only
been tested on small problems (the largest problem in their test set having 60 variables,
40 linear constraints and 10 nonlinear constraints).

4.2.1. An approximation to the reduced Hessian

The poor performance of late of sparsity-exploiting methods for approximating the full
Hessian leads us to explore alternatives for large-scale NLP.

Consider the use of a quasi-Newton approximation to the reduced Hessian ZTW Z.
This approach for NLP, proposed by Murray and Wright [MurW78], takes advantage

of the property that Z*TW* Z* is positive semidefinite. This result combined with the
computational expense of approximating all of W makes it unreasonable to use a positive-
definite approximation to W for large-scale problems.

As discussed in Section 2, to ensure two-step superlinear convergence of the prototype
algorithm we have assumed that our approximation to the Hessian is accurate on the null
space of the active constraints. Specifically, we assume the approximation to the reduced
Hessian satisfies

WZE(Hi — W) Zipz, || = o(llpell), (4.2.1)

where W, denotes the Hessian of the Lagrangian at 2. Although (4.2.1) cannot be verified
computationally, our goal is to approximate this condition by using a positive-definite
approximation to the reduced Hessian at the initial point, followed by a quasi-Newton
update to the approximation at the end of each major iteration. The update must satisfy
the following minimal requirements:

o The new reduced Hessian approximation, H, = ZTHZ, must be positive definite.
e The “reduced” quasi-Newton condition must be satisfied (see next section).

In addition, there may be special cases to be considered. For example, when all of the NLP
constraints are linear, Lagrange multiplier estimates are not required to update the Hessian
approximation. This is not generally the case for nonlinearly constrained problems but
curiously, one form of the BFGS update for the reduced Hessian does not require Lagrange
multiplier estimates, which clearly circumvents any difficulties arising from such estimates
being poor. The precise form of the updates are discussed in the following sections.
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4.2.2. The quasi-Newton condition

In the unconstrained case, the quasi-Newton condition may be written as
Hs=1y, (4.2.2)

where s = £—x and y = §—g. Likewise, for the linearly constrained case, the quasi-Newton
condition for the reduced Hessian is

Hys; =y, (4.2.3)

where s, = ZT(Z—z) and y, = ZT(§ - g). Note that no additional gradients are necessary
to compute y,.

It can be shown that the reduced Hessian obtained in the linearly constrained case is
identical to the matrix obtained by updating the full matrix and then forming the reduc-
tion. Unfortunately, this property is no longer true for the case of nonlinear constraints.
The difference is due to the fact that the step s taken is not of the form s = Zs,. It is no
longer clear what the definition of s, and y, should be. An approach adopted by Coleman
and Conn [ColC84] is to solve H,s, = —ZTgy, evaluate g(x + Zs,) and then form the
“correct” y corresponding to this intermediate step. This requires an additional gradient
evaluation per iteration. Other candidates for s and y include

s = ZNz-=z), or (4.2.4)
s = ZNz-2), or (4.2.5)
$ AL ZT:t, and (4.2.6)
y = ZNg-ATA-yg), or (4.2.7)
y = ZT((] ~g+ AT\, or (4.2.8)
y = 2ZT5-27. (4.2.9)

The motivation for these choices for ¢ are straightforward. For y, note that (4.2.7)-(4.2.8)
are transformations of y, = V,L(Z,A) — V. L(z, A) under either Z or Z. Equation (4.2.9)
presents a practical choice of y that does not need multiplier estimates. An additional
candidate for s is analogous to the one in MINOS [MurS87}, namely

8 = aps, (4.2.10)

where a is the steplength from the linesearch (which is used each minor iteration to reduce
the augmented Lagrangian objective). For the prototype SQP algorithm, « is taken as
the steplength from the merit function linesearch (performed each major iteration). The
motivation for this choice of s arises from the fact that when the correct active set has been
identified, each QP subproblem is solved in a single iteration. The superbasic component
of the search direction is found by solving

Hyp, = =274, (4.2.11)

where g, — g as p — 0 near the solution. Prior to the computational tests described in
Section 5 each of these cases for y and s was tested. A decision based on the tests was
then made to use (4.2.10) for s and (4.2.9) for y.
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Because NLP is an inequality constrained problem, the number of superbasic variables
usually changes between major iterations. Thus, Z; and Zi4, (and hence H, and H,) may
not be the same size. It would seem that s and y may not be well defined. Fortunately,
this is not a difficulty. During the solution of the QP subproblem the basis By, the reduced
Hessian H, and the index set of superbasic variables are updated each minor iteration.
As a result the set of superbasics and the size of the reduced Hessian are the same at
the completion of the last major iteration as at the start of the next major iteration.
The quasi-Newton update takes place at the start of the new major iteration and can be
completed without excessive expense. The key idea is to ensure that the reduced gradient
ZTg used in the update corresponds to the Z at the end of the last major iteration.

4.3. Modifications to the BFGS update

At times it may not be possible to use the standard BFGS update for the reduced Hessian
without encountering numerical difficulties. Subsequent sections discuss modifications to
the BFGS update for the following cases:

o When yTs <0.
o When |3} is “small”.

¢ When yTs > 0 but yTs is “small”.

4.3.1. When yTs <0

Normally, when yTs < 0 it is necessary to skip the BFGS update to avoid indefiniteness or
singularity in the new approximation. One modification of the BFGS update for the full
Hessian is due to Powell [Pow78a] and attempts to perform the update under conditions
when y7s < 0. Let 5 € [0,1]. The Powell modification defines the new approximation as

_ HssTH  ddT

H=1H- TI~ + T4’ (4.3.1)
where d = 8y + (1 - @)Hs and
_ 1 if yTs > nsTH s,
6= { (1 - m)sTHs/(sTHs — yTs) otherwise. (4.3.2)

This modification ensures that H is positive definite and the determinant of H is no less
than 7 times the determinant of H. For computational purposes, Powell sets = 0.2.

The priorities are different when updating an approximation to the reduced Hessian.
It may be that the search direction lies (almost) entirely in the range space of A. In such
circumstances there is no point in updating H, (since there is no new information). This
idea is reinforced by the results of Coleman and Fenyes ([ColF88], page 11, Corollary 3.6),
who give updates for approximations to ZTW Z and ZTWY and show there instances when
yTs < 0 leads to updating only the approximation to YTHY (while skipping the update
of ZTH Z). For this reason the Powell update was not adopted and updates were skipped
when y7s < 0.
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4.3.2. When |[[s]| is small

A further problem with the standard BFGS update arises when |}s]| < |ly]|. If this occurs,
the modification of Powell (4.3.1)-(4.3.2) may not help. To see why, note that it is possible
to construct examples where ||s]| < ||y|| and yTs > sTH s. Hence, the update using (4.3.2)
may make the new H nearly singular.

As discussed in [Gur87], the method of Coleman and Conn [ColC84] may be interpreted
as a method that prevents these difficulties when ||s]| is small. They define an intermediate
point # = z + Zp,, obtained by first solving H,p, = —ZTg. They use the standard BFGS
update (4.1.5) with an orthogonal Z and with s and y defined as

s = ZN&-2) (4.3.3)
= -H,7'77, (4.3.4)
y = ZNV.L(# ) - V.L(z,))) (4.3.5)
= ZTg- AT\ - 27y, (4.3.6)

which ensures that ||s|| is not too much smaller than ||y||. Using this method they were
able to prove two-step superlinear convergence of an SQP algorithm. As pointed out in
Section 4.2.2, this approach requires an additional set of gradient evaluations.

Nocedal and Overton [NocO85] have used an alternative strategy that does not require
extra gradients. Their method is based on skipping the update when ||s|| is small relative
to a range-space projection of (Z — x). They define v = YT(Z — z) and perforra the update
(4.1.5) only if

loll < (w/(k + 1))l (4.3.7)

where w and v are positive constants and & corresponds to the current iteration. The
authors show two-step superlinear convergence of an SQP algorithm under various con-
ditions. For their computational tests they used w = 1 and v = 0.01. This strategy was
not adopted for the implementation of the prototype SQP algorithm. Instead, we use a
self-scaled update, as described next.

4.3.3. The self-scaled BFGS update

When yTs is “small” we could skip the update to prevent the updated approximation from
being close to singularity. This is not an ideal strategy since some change in the curvature
of the Lagrangian generally takes place. To avoid skipping the update we may employ the
self-scaled quasi-Newton update [Ore74]. This is exactly the same as the standard BFGS
update except that the current approximation is scaled by a dynamic factor v:

HssTH  yyT

T s + E. (4.3.8)

H:‘y”~“/

As described in Brodlie [Bro77], the self-scaled update exhibits the property of a mono-
tonically decreasing condition number for /1 provided the scaling factor v is chosen to
satisfy

y™H ™'y

+(1- ﬂ)—-_yTs . (4.3.9)

yTs
sTH «

y=0
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for 3 € [0,1). If 8 = 1 then v = yTs/sTHs. With this choice of v, (4.3.8) has the property
of correcting the curvature along s before performing the update as well as after the update:

sT(vH)s (yTs/sTHs)sTHs=yTs and (4.3.10)
sTHs = yTs. (4.3.11)

Other choices for ¢ and y have been studied by Brodlie [Bro77] to maintain well-conditioned
approximations to the Hessian. Oren and Spedicato [{NreS76] study different choices for
¢ and v and give optimal choices that minimize a sharp bound on the condition number
of the inverse Hessian approximation at each iteration. For the computational tests de-
scribed in Section 5 we use the standard BFGS method (4.1.5) for the reduced Hessian
when
T, T
y'p>(1-np'Hp, (4.3.12)

where y and s are defined by (4.2.9) and (4.2.10) respectively, and 7 is a linesearch param-
eter (typically 7 = 0.9). When (4.3.12) is not satisfied but y7s is positive, the self-scaled
BFGS update (4.3.8) is performed with v = yTs/sTHs.

4.3.4. Updating the Cholesky factors of the reduced Hessian

In classical implementations of quasi-Newton methods, the inverse approximation H~!
was updated at each iteration. Although convenient, this technique may create serious
numerical difficulties. For example, due to rounding error in just one iteration, all subse-
quent approximations to the inverse Hessian may be indefinite. Unfortunately, it is not
generally possible to determine if the approximation is singular or indefinite by a simple
examination of the matrix itself.

In the prototype algorithm the system of equations H,p, = —ZTg must be solved to
determine the superbasic search direction. A reliable and convenient approach is based
on using the Cholesky factors of H,, as developed bv Gill and Murray [GilM72] for un-
constrained optimization. The method has the advantage of being able to detect easily a
singular or indefinite approximation to the Hessian. In addition, there is no penalty for
maintaining an approximation to the Hessian rather than its inverse. Let H, = RTR. To
obtain the search direction we solve RTw = —ZTg and Rp, = w using forward and back
substitution.

For the computational tests of Section 5 we have implemented the prototype algorithm
using updates to the Cholesky factors of the reduced Hessian. As described in Dennis and
Schnabel [DenS83) for unconstrained optimization. the update to H, (4.1.5) is a rank-two
modification to RTR, reflected in a rank-one update to R itself:

i= R+ (aRs)(y — aH,s)T

R = s , (4.3.13)
where
T,
— y's
o= TH,s (4.3.14)

The factor R is returned to upper triangular form using plane rotations as described in

[GGMST4).
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4.3.5. The update for self-scaled factors

When the self-scaled BFGS update (4.3.8) is used, the update to the Cholesky factors has
the form H.5)T
R=1nR+ (aRs)(y —fm) 23)
yls

, (4.3.15)

where ) = a and a is given by (4.3.14).




Chapter 5

Computational Results

In this chapter numerical results obtained from a sparsity-exploiting implementation of
the prototype SQP algorithm (Algorithm 2.3.1) are given. The tests consist of solving
two sets of test problems using the new algorithm and comparing the results with those of
MINOS and NPSOL. The first set of problems are from the literature and are all dense and
relatively small. The second set of problems are sparse optimal control problems. The
purpose of the testing is to demonstrate the large-scale SQP algorithm’s strengths and
weaknesses.

5.1. Implementation

The implementation, hereafter referred to as LSSQP, has been written as a major modifi-
cation of the mathematical programming system MINOS. For a description of MINOS see
[MurS78, MurS82] and [MurS87).

Many features and modules of the Fortran code in MINOS were used in LSSQP, includ-
ing:

e MPS data handling and hashing routines. These routines are used to read in the
data corresponding to constraint rows and columns, coefficients for linear constraints
(if any), right-hand side values for constraints, and bounds and initial values for the
variables.

¢ Basis-handling routines for factorizing and updating the LU factors of the basis B
(routines from the LUSOL package as described in [GMSW8T]).

e The pricing routine used to calculate reduced costs for nonbasic variables.

o The linear search routine used to calculate the step to the nearest bound in the QP
subproblem.

o The nonlinear search rcutinc used to find a steplength a that sufficiently reduces
the augmented Lagrangian merit function.

e Routines for updating the Cholesky factors of the reduced Hessian following changes
in the working set.

52
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Because LSSQP and MINOS share many of the same routines, the differences in the com-
putational performance of the two methods are due to the basic approach. The main
features of LSSQP and some of the differences between SQP methods (LSSQP and NPSOL)
and MINOS are discussed in the following sections.

5.1.1. Form of the subproblem

For problems with nonlinear constraints, MINOS uses a sequential linearly constrained
(SLC) method and evaluates the functions and gradients during each minor iteration.
NPSOL and LSSQP solve quadratic programming subproblems (which have the same lin-
earized constraints) but evaluate nonlinear functions and gradients only after termination
of a subproblem (as part of each major iteration).

SLC and SQP methods deal with the constraint linearizations the same way. The
subproblems differ in their objective functions. In general, evaluating a QP objective
should be less expensive than evaluating a general nonlinear objective. This should give
an advantage to an SQP method over a Lagrangian method. However, for some simple
problems this advantage may be negated by the expense of evaluating the QP gradient.
For SQP methods, most of the expense associated with the QP gradient comes from the
matrix-vector multiplication with the QP Hessian (i.e. forming Hp). While NPSOL recurs
an approximation to the full Hessian of the Lagrangian (so the matrix-vector product is
straightforward), LSSQP maintains an approximation on a subspace and therefore requires
a more complex approach to obtain the full QP gradient (see Section 3.5).

Since the subproblem solved in MINOS has a general nonlinear ob jective, one hypoth-
esis is that the number of iterations required to solve a subproblem is likely to be greater
than the number required by NPSOL or LSSQP.

5.1.2. Quasi-Newton updates

In MINOS, the gradient of the objective is evaluated each minor iteration. With this
information available, a quasi-Newton update to the reduced Hessian is performed each
minor iteration. In SQP methods, the gradient of the objective is evaluated before the
beginning of a major iteration. As a result, a quasi-Newton update to the reduced Hessian
is performed only once per major iteration. With fewer opportunities to update the
reduced Hessian, a hypothesis is that LSSQP and NPSOL may require more ma jor iterations
than MINOS. As already noted, we may expect SQP methods to require fewer minor
iterations per major iteration than methods such as MINOS, but it is not clear which
approach is likely to require fewer total minor iterations.

5.1.3. Basis refactorization

The initialization of a major iteration consists of setting up the subproblem to be solved.
Part of this process involves linearization of the nonlinear constraints (if any). A basis B
is then formed and factorized. The cumulative effort to factorize the basis at the start of
each major iteration may constitute a large percentage of the overall expense of solving
NLP. Because of this, methods requiring few total minor iterations may not be efficient if
they require many major iterations.




54 Large-Scale SQP Algorithms

SQP methods such as LSSQP should prove to be more efficient on large sparse problems
if the average effort to factorize the basis (for each subproblem) is small compared to the
average effort to evaluate functions and gradients during solution of the subproblem.

5.1.4. Termination conditions

Let dopt be an optimality tolerance and ég, be the feasibility tolerance for nonlinear
constraints (typically, fops = 1076 and &g, = 10-%). Let p be the search direction obtained
from the last QP subproblem. In all, five criteria must be satisfied if a point z is to be
considered optimal for NLP:

alpll < bopt (1 + ||z]]), (5.1.1)

l(e =Moo < bfeas (5.1.2)
127l < Sopr (14 [FI), (5.1.3)
sign(u; — x;)n; > —ébopt (1 + max(|F|,||gyll)» J nonbasic, (5.1.4)
sign(z; — 1;)n; < +bop (1 4+ max(|F|,|lgylloo), J nonbasic, (5.1.5)

where g is the gradient of F, g, is the subproblem gradient of the nonbasic variables and
N = (9ge); — WT(tj.

The termination conditions (5.1.1)—(5.1.3) are similar to those in NPSOL [GMSW86a)].
Conditions (5.1.4)—(5.1.5) are evaluated only at feasible points for the subproblem and
correspond to having no nonbasic variable with a nonoptimal Lagrange multiplier (of a sig-
nificant magnitude). This condition is tested as a by-product of pricing (Procedure 3.2.1).
If a minimizer has been reached on the current subspace and the pricing procedure finds
no nonbasic variable with a suitable reduced cost, the current p is a solution for the sub-
problem. Note that when a subproblem is terminated early, these conditions will not be
satisfied. Also, a dynamic tolerance (which is gradually reduced to dopt) is optionally
used to check for optimal multipliers. Early subproblems may therefore be solved to only
moderate accuracy. Termination condition (5.1.3) differs from (5.1.4)-(5.1.5) in that it
checks whether the norm of the reduced gradient for NLP is small enough.

For the experimental results we defined the optimality tolerance §opy = 107 for all
problems unless specified in the “Comment™ section of Tables 7 and 8. The termination
conditions for MINOS are described in [MurS87]. In general, all methods (NPSOL, MINOS,
and LSSQP) obtained solutions to similar accuracy on all test problems solved. On many
problems the convergence is fast, so that small differences in the accuracy of the methods
are not significant.

5.1.5. Testing Environments

Section 5.3 gives numerical results for 92 test problems described in Section 5.2. These
problems are sorted into two test sets. The first set (of smaller problems) was tested using
a Digital Equipment Corporation VAXstation I with 9 megabytes of main memory. The
operating system was VAX/VMS version 5.0. All Fortran files were compiled under VAX
FORTRAN version 5.2-015 using the default options, including code optimization.

The second set (of larger problems) was tested using a Digital Equipment Corporation
DECstation 3100 with 24 megabytes of main memory. The operating system was Ultrix
version 4.1. Fortran files were compiled under full optimization for these tests.




5.2 Test problems 55

5.2. Test problems

The test problems used in this section come from a variety of applications. There are two
test problem sets described next.

5.2.1. The small test problems

The first set of test problems consists of 80 small problems (n < 100), whose names and
statistics are given in Tables 7 and 8.

The first three columns give the problem number, problem name and comments such
as the type of application, author, or alternative name of the test problem. Comments
may also allude to a different starting point from one given in the literature or special
features of the MINOS options file. Columns 4-7 give the number of variables for the
problem, the number of linear constraints, and the number of nonlinear constraints. The
final column gives the optimal (published) objective value.

Unless noted in the Comment section, the Jacobian for these problems is treated in
a dense manner by MINOS and LSSQP. (NPSOL treats all problems as dense.) Likewise,
unless noted, the initial starting points for the problems are the ones given in the published
references.

These problems have been used to test the mathematical programming code NPSOL
[GMSW86a] and many are considered to be difficult to solve. Several of the problems do
not satisfy the assumptions in Section 2 that were used in the proof of convergence for
the prototype algorithm. For example, in some cases the Jacobian at the solution has less
than full row rank. Other problems do not satisfy the strict complementarity conditions
or have infeasible subproblems. The test problems from the small set are taken from the
following sources:

o Problem 1 is the sample test problem distributed with NPSOL. It is described in
[GMSWS86a).

e Problems 2, 6-9, 39-41 and 45-79 have the prefix HS. They correspond to the same
numbered problems from Hock and Schittkowski [HocS81). The upper bound for z3
in problem number 52 (HS 70) was changed from 1.0 to 0.9999, as otherwise MINOS
would evaluate the objective at a singularity. The modification does not change the
optimal solution.

e Problems 3 and 10 have the prefix A'S. They correspond to the same numbered
problems from Schittkowski [SchR7].

o Problems 4-5 and 16 are described in [MurS82]. Problems 4-5 correspond to the
problems Wright No. 4 and Wright No. 9. The starting points for these two problems
are from point (d) of the reference.

e Problems 11-15, 17, 32-38, 42-44 and 80 are from Prieto [Pri89]. Problem 36 is
solved again as problem 37 with an alternate starting point of ¢ = (0.097,0.063).

e Problems 18-21 are from Fraley [Fra®8).

o Problems 22-31 are from Boggs and Tolle [BogT84].
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It should be noted that the functions and gradients for the small problems are usually
very cheap to evaluate. Many of the problems have been chosen to be test problems
for precisely this reason, but historically it has been assumed that the efficiency of an
algorithm is measured by the number of function and gradient evaluations required to
find a minimizer. We will be concerned with these measures of efficiency as well as others
such as total CPU time required to solve the test set.

Many of the small test problems have multiple local minimizers. As shown in Tables 9-
16, different methods (NPSOL, MINOS or LSSQP) may converge to different minimizers.

Fourteen of the small test problems contain only linear constraints: problems 10, 12—
14, 24, 43-44, 47-49, 61, 76-77 and 80. On such problems MINOS requires only a single
major iteration. This is not true for the SQP methods. The differences between the
approaches arise from the fact that the reduced Hessian approximation is updated each
minor iteration for MINOS and each major iteration for SQP methods. Thus, MINOS
generally has more opportunities to perform the update. As a result, we would expect the
performance of NPSOL and LSSQP to be similar on these linearly constrained problems
{but to differ from that of MINOS).

5.2.2. Run-time parameters: Small test set

In MINOS, NPSOL and LSSQP the SPECS or options file sets various run-time parameters
that describe the nature of the problem to be solved and the quality of the solution to be
obtained. The options file must begin with the keyword “BeGIN”. Each subsequent line of
the options file contains one or more keywords and an associated value. For example, the
line

Nonlinear Constraints 14

specifies that the problem has 14 nonlinear constraints. The last line of the options file is
signified with the keyword “END”. A full description of the MINOS and NPSOL options can
be found in [MurS87} and [GMSW86a) respectively. The LSSQP solver maintains the use
of all MINOS options as well as a few others, such as whether or not to use self-scaling for
the BFGS update to the reduced Hessian. Except where noted in the Comment section
of Tables 7-8, a uniform set of options was used for all runs. An example of the MINOS
options file (for problem number 1) is given in Figure 1.

Problems 1-3 used the “Jacobian Sparse” option. Problems 4-80 used the “Jacobian Dense”
option. Problems with more than 10 variables used a SPECS file that increased the major
iterations limit to 300 and the total minor iterations limit to 1000. All other parameters
were set to their default options. For the runs with NPSOL the default options were used
(see [PriR9]).

5.2.3. The large test problems

The large test problems come from a class of applications known as trajectory optimization.
All were generated using the system OTIS [HarP87], and their specifications are given in
Table 1. A description of these sparse optimal control problems and their mathematical
programming formulation is given in the Appendix. It is important to note that the OTIS
function routines compute first derivatives by finite differences. Advantage is taken of the
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BEGIN Hexagon (Sparse version)

Problem Number 1
¥onlinear Constraints 14
Nonlinear Variables 9
Iterations 300
Major Iterations 50
Print Level 0
Jacobian Sparse
END Hexagon

Figure 1. Sample SPECS file for small test problems

sparsity pattern of the Jacobian, but this is partly why the function/gradient evaluations
are expensive. Also, the truncation error in the gradients makes it difficult to confirm
“optimality” unless 8opy is raised to about 1074

No. Problem Comment n Leon. | Neon. | F (")
1 F4 Min-time climb 6 Nodes 112 8 126 1.0280052864e+4-00
2 F4 Min-time climb 7 Nodes || 130 8 150 1.0030551461e+00
3 F4 Min-time climb 8 Nodes 148 8 174 9.947]1482986e-01
4 F4 Min-time climb 9 Nodes 166 8 198 9.9011108551e—01
5 F4 Min-time climb 10 Nodes 184 8 222 9.8758647160e~01
6 F4 Min-time climb 11 Nodes | 202 8 246 9.8531969486e—01
7 F4 Min-time climb 12 Nodes || 220 8 270 9.8519559525¢—-01
8 F4 Min-time climb 14 Nodes |} 256 8 318 9.8490191159%e—-01
9 F4 Min-time climb 15 Nodes || 274 8 342 9.8347245192e—01
10 F4 Min-time climb NP 6 Nodes 112 8 104 1.0018209554e+00
11  F4 Min-time climb NP 15 Nodes || 274 8 284 9.8165983233e—-01
12 _VTOL Descent . 435 1l 24 _ 483 | —1.6825846298e+-00

Table 1. Large problem statistics.

8.2.4. Minimum time-to-climb problems

The first 9 large test problems are for a minimum time-to-climb problem [BryG9] for an
F4 Phantom II supersonic interceptor. The aim is to find the pitch function to take the
aircraft from sea level and Mach 0.34 to an altitude of 20 km (= 65,617 ft) and Mach 1.0
in minimum time. The problems differ in the number of distinct time segments or nodes
used to define the problem. The number of nodes varies from 6 to 15. In general, as the
number of nodes increases, the model hecomes more accurate and the optimal objective
decreases but the problem becomes more difficult to solve.

Problems 10-11 correspond to the F4 minimum time-to-climb problem in which the
pressure constraint has been omitted from the problem formulation. Although the number
of constraints is fewer, the problem appears to be more difficult to solve.
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Problem 12 is the the VTOL Descent problem, which finds the optimal descent trajec-
tory for a vertical take-off and landing aircraft.

5.2.5. Run-time parameters: Large test set
Most of the standard MINOS run-time options were used. Special options for the large

problems were contained in a single options file used for all large runs using either MINOS,
NPSOL or LSSQP as the solver. The MINOS options file for these runs is given in Figure 2.

BEGIN OTIS (Trajectory Problems)

Major Iterations 500
Minor Iterations 200
Iterations 10000
Linesearch Tolerance 0.5
Row Tolerance 1.0E-0S
Function Precision 1.0E-10

Optimality Tolerance 1.0E-04
Feasibility Tolerance 1.0E-05

Verify Level -1
Print Level 0
Hessian Dimension 50
Partial Price 1
Crash Option 1
Jacobian Sparse
Solution No
END OTIS

Figure 2. SPECS file for large test problems

When LSSQP was run with early termination of the subproblems, the parameters

Optlevel Partial
Multiple Price 5

were added to the MINOS options file. These options were not included in the MINOS
runs

on the small test set or used in the NPSOL runs. The statement “Optlevel Partial” invokes
the early-termination strategy and halts the solution of the subproblem after finding the
first stationary point (i.e. when ||ZTgQ,|| < bopt). Invoking “Multiple Price 5” allows more
than one nonbasic variable to be deleted from the working set during a single minor
iteration. It is hoped that this will prevent the prototype algorithm from expending too
many minor iterations on a nonoptimal working set.
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5.3. Numerical results

In this section we compare the results from LSSQP with NPSOL [GMSW86a] (version
4.05) and MINOS [MurS87] (version 5.3). The purpose of the tests is to demonstrate
the efficiency of the new algorithm for large sparse nonlinear optimization and show the
following;:

e The method is a practical alternative to the dense SQP method of NPSOL for large
sparse problems.

¢ The method is a practical alternative to the Lagrangian method of the MINOS system
for problems with functions and gradients that are expensive to compute.

Numerical result for the small test set are summarized in Table 2. Complete results for
all test problems are given in Tables 3-16. The descriptive headings for the columns in the
tables correspond to problem number and name, major iteration count, minor iteration
count, total function evaluations, final objective value, maximum constraint violation
(MINOS and LSSQP only), and solution time in CPU seconds. The final status of the
solver is given in the last column of the tables. The notation is as follows:

Opt: An optimal solution was found (MINOS, NPSOL, LSSQP).
Fail: The algorithm failed to find an opiimal solution (NPSOL).

Itr: The solver reached the limit on total major or minor iterations for the problem (Mi-
NOS, LSSQP).

Cbi: The final point did not satisfy the termination conditions but could not be improved
upon (MINOS, LSSQP).

Note that “function evaluation” means computation of both the objective and constraint
functions and their gradients.

5.3.1. Results for the small test set

Four runs were made on the small test set. One run each was made using MINOS (Tables 9
and 10) and NPSOL (Tables 11 and 12), and two runs were performed using the prototype
algorithm LSSQP. The LSSQP runs differed only in whether the subproblems were solved
to completion (Tables 13 and 14) or the early-termination strategy was used (Tables 15
and 16).

A comparison of the runs using LSSQP, NPSOL and MINOS on the small test set is
summarized in Table 2. The column headings entitled MINOS and NPSOL are self-
explanatory. LSSQP-O gives results for LSSQP in which QP subproblems were solved
to optimality and LSSQP-E gives results for LSSQP when subproblems were terminated
early.

Each of the three methods were similarly robust. The first three terminated success-
fully on 76 of the 80 problems. For all solved problems, NPSOL required the fewest function
evaluations (1642 and 797 CPU seconds). MINOS required significantly more function eval-
nations (5876) but the least time (560 C'PU seconds). LSSQP-O required 2658 function
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Algorithm MINOS| NPSOL | LSSQP-O [ LSSQP-E |

[| Problems attempted || 80 80 80 80
No. Optimal 76 76 76 67
Total major iterations 646 1142 1493 1339
Total minor iterations 2477 2067 2802 2086
Total function evals. 5876 1642 2658 2489
Total Time 559.96 | 797.12 |  753.97 944.42

Table 2. Summary of small test problem results.

evaluations and 754 CPU seconds, while LSSQP-E (with the early-termination strategy)
solved only 67 of the test problems and required 2489 function evaluations and 944 CPU
seconds.

Note that two of our hypotheses of Section 5.1 are borne out by the results on the
small test problems. MINOS required the fewest major iterations by about 2:1 over NPSOL
and LSSQP. In addition, MINOS required more minor iterations per major iteration, while
the total number of minor iterations was similar for all methods.

While the number of function evaluations is a salient measure of the efficiency of the
methods tested, computational efficiency may also be measured by total solution time.
NPSOL provided the fastest solution time for 48 out of the 80 problems, while MINOS
proved to be fastest for 21 of the 80. The two LSSQP tests were fastest on only 11
problems. Note that the overall time for the 80 problems is somewhat misleading since
two of the problems, namely numbers 11 and 80 (OPF 30 BUS and Weapon), required a
disproportionate amount of solution time for all four methods. Deleting these problems
gives the overall timing results as: NPSOL: 208 seconds, MINOS: 336 seconds, LSSQP-O:
399 seconds. LSSQP-E required 365 seconds to solve 65 of the 80 problems to optimality.

On the 14 problems with only linear constraints, MINOS required 1334 function evalu-
ations and 133 CPU seconds, while NPSOL required 248 functions and 171 CPU seconds.
LSSQP-0 (LSSQP-E) required 392 (411) functions and 233 (223) seconds. MINOS required
the fewest CPU seconds to find a minimizer for 8, NPSOL for 4 and LSSQP for 2 of the 14
problems.

As yet, the early-termination option is not as robust as solving the subproblems to
optimality. This could be due to the fact that only the stationary point from the QP
subproblem is used for the merit function (i.e. the method does not use an auxiliary
search direction as does Prieto [Pri89], who provided more encouraging results using this
strategy in a modification of NPSOL).

5.3.2. Results for the large test set

The large set (problems 81-92) were solved using MINOS, NZSOL and LSSQP. NZSOL
is a version of NPSOL in which the QP subproblems are solved using QPSOL [GMSW83]
instead of LSSOL [GHMSWS8G]. Like NPSOL, NZSOL is a dense SQP method, but has been
modified to maintain a factorization of the reduced Hessian ZTH Z instead of the full (and
dense) transformation QTHQ. Hence, NZSOL is expected to outperform NPSOL on large
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No. Problem || Itns. | LC It. | Funs. T F(z*) Time | Stat.
81 F4 6 Node 12 307 540 | 1.0280054062e+00 644.98 | Opt
82 F4 7 Node 17 637 1245 | 1.0099320805e+4-00 | 1769.14 | Opt
83 F4 8 Node 21 792 1511 | 9.9609431692e—01 | 2490.31 | Opt
84 F4 9 Node 20 1200 | 3046 | 9.9011118247e—01 | 5660.29 | Opt

Table 3. Large Problem Results: MINOS version 5.3.

il No. Problem Itns. | QP It. | Funs. F(z') Time Stal.
81 F4 6 Node 18 64 31 1.029382e+-00 175.11 | Opt
82 F4 7 Node .19 58 29 1.003055e+00 263.37 | Opt
83 F4 8 Node 21 94 39 9.960943e~01 431.41 | Opt
84 F4 9 Node 19 95 32 9.901111e-01 530.23 | Opt
85 F4 10 Node 21 127 37 9.875875e—01 844.71 | Opt
86 F4 11 Node 27 80 33 9.863111e—01 1264.22 | Opt
87 F4 12 Node 28 85 34 9.851976e~01 1748.94 | Opt
88 F4 14 Node 25 78 30 9.849011e—-01 2383.98 | Opt
89 F4 15 Node 26 108 31 9.834741e—-01 3154.55 | Opt
90 F4-NP 6 Node 22 40 30 1.001819e+00 181.78 | Opt
91 F4-NP 15 Node 33 65 38 9.695897e—01 3858.89 | Opt
92 VTOL Descent 20 159 25 | —1.683044e—00 | 10351.63 | Opt

Table 4. Large Problem Results: NZSOL

problems with few degrees of freedom.

Results for MINOS and NZSOL are given in Tables 3 and 4. Results for LSSQP-O and
LSSQP-E are given in Tables 5 and 6.

The results of the tests on these larger problems show that LSSQP-O is very competi-
tive with MINOS and NZSOL. NZSOL required the fewest function evaluations and major
and minor iterations than either MINOS or LSSQP-O on all the test problems. LSSQP-O
required many fewer function evaluations and exhibited faster solution times than MINOS.
In addition, LSSQP-O was very competitive with NZSOL with respect to solution time.

One of the major differences between LSSQP-O and NZSOL is in the number of function
evaluations and major and minor iterations required to solve the problems to the specified
accuracy. For example, LSSQP required three to thirty times as many functions as NZSOL.
One reason for this could be the differences in the form of the quasi-Newton update.
Another reason could be the form of the null-space basis Z.

It should be noted that extensive tests using LSSQP on the large test problems indicate
that it does not have the same level of robustness offered by NZSOL. Modification of one
or more of the run-time parameters may lead to significantly slower solution times. One
method for increasing the robustness of LSSQP would be to modify the linesearch routines
to account for the lack of precision in the gradients of these problems. The tests reported
in this section used a ‘function plus gradient” linesearch even though the gradients for these
large problems are obtained by differencing. Preliminary tests have shown that a ‘function
only’ linesearch may produce a more robust (and cfficient) version of LSSQP’. More tests
are required to determine the exact cause of the large differences in performance between
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Mo. Problem Itns. | QP It. | Funs. F(z') Time | Stat.
81 F4 6 Node 40 373 82 1.0280052864e+00 104.27 | Opt
82 F4 7 Node 42 455 97 1.0030551461e+00 151.83 | Opt
83 F4 8 Node 36 382 70 9.9471482986e—01 126.03 | Opt
84 F4 9 Node 40 394 91 9.9011108551e—01 160.97 | Opt
85 F4 10 Node 76 1139 221 9.8758697042¢—01 506.04 | Opt
86 F4 11 Node 85 1249 254 9.8531899149e—01 645.75 | Opt
87 F4 12 Node 150 2770 532 9.8519559525e—01 | 1536.22 | Opt
88 F4 14 Node 182 2831 794 9.8490191159¢—01 | 2563.11 | Opt
89 F4 15 Node 246 5067 996 9.8347245192¢—01 | 3901.23 | Opt
90 F4-NP 6 Node 63 255 212 1.0018209554e+-00 232.15 Opt—
91 F4-NP 15 Node 281 4906 1196 9.8165983233e—01 | 4793.97 | Opt
92 VTOL Descent 105 1857 320 | —1.6825846298e—00 | 2363.40 | Opt

Table 5. Large Problem Results: (LSSQP-0O) Full completion.

No. Problem Itns. | QP It. | Funs. F(z)) Time Stat.
81 F4 6 Node 64 279 144 ) 1.0280054023e+00 187.85 | Opt
82 F4 7 Node 44 204 94 | 1.0030551798e+00 143.22 | Opt
83 F4 8 Node 143 452 143 | 9.9471483247e-01 544.59 | Opt
84 F4 9 Node 85 393 235 | 9.9011120191e-01 455.78 | Opt
85 F4 10 Node 143 888 494 | 9.8758760121e—01 | 1063.13 | Opt
86 F4 11 Node 102 625 325 | 9.8531969486e—01 786.71 | Opt
87 F4 12 Node 263 1418 804 | 9.8519638914e-01 | 2166.77 | Opt

Table 6. Large Problem Results: (LSSQP-E) Early termination.

NZSOL and LSSQP.

For the largest problem in the test set, the VT OL Descent problem, the value of sparse-
matrix operations becomes very clear. Even though NZSOL requires a twelfth of the (very
expensive) function evalutions, the total CPU time is more than four times that of LSSQP.

The results from MINOS show that the method requires many function evaluations,
which results in a substantial increase in the solution times compared to NZSOL and
LSSQP-0. As the problem size increases, the solution times grow rapidly. For this rea-
son MINOS was tested on only the four smallest F4 Minimum time-to-climb problems
(problems 81-84).

The performance of MINOS on these problems is somewhat anomalous. We see that
the hypothesis that MINOS takes fewer majci iterations still holds, but the number of
minor jterations per major iteration relative to those required by NZSOL and LSSQP is
significantly more than for the small test problems. The computation of the constraints
and gradients for these problems are very expensive (see the Appendix). Since MINOS
must evaluate the constraints and gradients many times to solve each subproblem it can-
not match the SQP methods, which only evaluate functions and gradients after each
subproblem (requiring fewer total function evaluations).

As with the small test set, the early-termination strategy did not perform as well as
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the full-optimization strategy. LSSQP-E was tested on the first 6 problems in the large test
set and required 60% more CPU than LSSQP-O. It also required more major iterations
and function evaluations but fewer minor iterations than LSSQP-O. LSSQP-E required
more solution time on all but the 7-node problem over that required by LSSQP-O. It is
important to note that the QP iterations on these optimal control problems are relatively
cheap compared to function and gradient evalutions. Since the early-termination strategy
is designed to reduce the number of QP iterations required, it is not expected to impact
the solution of problems such as these. Still, it is encouraging that the early-termination
algorithm (even with its acknowledged deficiencies) proved to be robust on the set of
large test problems. Moreover, it did achieve a reduction in the number of QP iterations
required to find a minimizer. More testing is needed on large-scale problems for which the
QP iterations are similar in cost to function evaluations.

5.3.3. A final note on computational results

There are several criteria that should be used to measure the efficiency of an algorithm.
Two important measures are speed (measured in CPU time required for solution) and the
storage required by all data structures used by the algorithm. LSSQP is similar to MINOS
in this last respect, its data structures being almost identical. Because of their sparse-
matrix technology, both of these methods have an advantage over NPSOL (or NZSOL) on
large problems whose Jacobian is sparse.

Sparse-matrix technology does not give an advantage to either MINOS or LSSQP over
NPSOL for problems in the smal: test set. lHowever, because the function and gradient
evaluations are relatively cheap for these problems, the CPU time is highly correlated with
the number of basis factorizations required to find a minimizer (at least for the larger of
the small test problems).

For the trajectory optimization problems, if sparse-matrix methods are employed the
computational cost of solving the problem is dominated by the cost of function and gradi-
ent evaluations. For these problems the salient measure of efficiency is time. For MINOS
and the two variants of LSSQP, the solution time is highly correlated with the number
of function evalutions required. As the problems grow in size, the cost of the dense TQ
factorization required within NZSOL increasingly impacts the solution time. As a result,
LSSQP exhibits a growing advantage in time over NZSOL. This is clearly shown by the
results. The worst relative performance for NZSOL is for the largest problem.

5.4. Conclusions

We have prepnsed a new algorithin for the solution of large-scale nonlinear programming
problems. Our approach differs substantially from previous methods because the QP
subproblems are solved using sparse techniques and we approximate only the reduced
Hessian of the Lagrangian. The theorctical convergence properties of the new method are
the same as for dense implementations that approximate only the reduced Hessian of the
Lagrangian. Based on the preliminary numerical test results for the algorithm. there is
every reason to expect that the algorithm will prove useful in practice for many large-scale
problems in which the nonlinear function and constraints are computationally expensive
to evaluate.
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5.4.1. Future work

Many modifications could be made to the prototype SQP algorithm. Some possibilities
follow:

1. Use of a “limited size” quasi-Newton approzimation to the reduced Hessian. In
this strategy, an approximation to a pseudo reduced Hessian of a fixed size (e.g. of
dimension 200) would be updated at each iteration. This would include the reduced
Hessian for the current superbasic variables as well as for other pseudo superbasic
variables. The latter would be a subset of the remaining nonbasic variables and
could be identified as those variables that would be expected to be superbasic or
had “recently” been superbasic (but were not currently). This would allow curvaturc
information associated with these variables to he maintained throughout the solution
process and may lead to faster convergence. An observed feature of LSSQP and
NZSOL on large problems is that the number of QP iterations does not always
decrease to 1 in a neighborhood of the solution but is usually some small number.
Variables on a bound with small reduced costs may enter and leave the superbasic
set. The proposed modification would prevent the curvature for these variable from
being lost.

2. Use of second derivatives in the solution of subproblems. In general, we would expect
to obtain faster rates of convergence (i.e. quadratic versus two-step superlinear) at
the expense of a more complicated algorithm. With exact second derivatives it would
be necessary to have a more complex linesearch as well as a method for maintaining
a positive-definite reduced Hessian and routines for obtaining directions of negative
curvature (see [Pri89] for example).

3. Use of single-phase subproblems. Such a method would incorporate a merit function
within the subproblem itself, and should perform well on large-scale problems that
require a large number of minor iterations in order to obtain a feasible point for the
subproblem. Such a modification would also allow for infeasible subproblems.

4. Use of the present algorithm at a lower level. Part of the large-scale SQP algorithm
in this report is an algorithm to solve a QP based on the provision of a reduced
Hessian. Such an algorithm could be used to solve the subproblems in MINOS. It
would have three levels of iteration. At the lowest level, function and gradients would
not be required. At the intermediate level, subproblems would be solved with the use
of an augmented Lagrangian objective function (as is done now with MINOS). The
top level corresponds to a major iteration and makes use of a merit function and a
linesearch. We expect that such an algorithm would improve upon the performance
of MINOS on problems for which the functions were expensive. It may be expected
to do better than the algorithm described here on problems for which the function
evaluations, although expensive, did not overwhelm the total computational effort.
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“ No. Problem Comment " n | Leon. | Neon. F(z)

1 Hexagon Sparse version 9 4 14 | —1.349963e+00
II 2 HS 108 Sparse version 9 0 13 | —8.660254e—01
3 KS372 Sparse version 9 0 12 1.339009e+04
4 MHW ¢4 Margaret Wright 5 0 3 2.787187e+01
5 MHWY Margaret Wright 5 0 3 |} —4.247468e+01
6 HS 14 2 1 1 1.393465e+00
7 HS26 fopr = 1072 3 0 1 0.000000e+-00
8 HS 43 Rosen-Suzuki 4 0 3 | —4.400000e+01
9 HS65 3 0 1 9.535289e-01
10 KS 231 2 2 0 0.000000e+-00
11  OPF 30 BUS 67 0 60 9.720420e~01
12 QP problem 7 7 0 | —1.847785e+06
13 LC7 7 7 0 9.295973e+05
14 Norway 7 6 0 | —2.402344e401
15  Singular 2 0 2 0.000000e+00
16 Alan Manne Economic growth 30 10 10 | —2.670099e+00
17  Steinke2 Sopy = 1072 6 0 14 4.000131e—04
18 Square root 1 9 0 9 2.500000e+03
19 Square root 2 9 0 9 2.999795e¢4-00
20 Square root 3 9 0 9 2.000000e+00
21 Square root 4 4 0 4 2.500000e+01
22 Boggs-Tolle 1 2 0 1 | —1.000000e+00
23 Boggs-Tolle 2 3 0 1 3.256820e—02
24 Boggs-Tolle 3 5 3 0 4.093023e+00
25 Boggs-Tolle 4 3 1 1 | —4.551055e—~03
26 Boggs-Tolle 5 HS 63 3 1 1 9.577426e+02
27 Boggs-Tolle 6 HS 77 5 ] 2 2.415051e—01
28 Boggs-Tolle 7 5 0 3 3.065000e+02
29 Boggs-Tolle 8 5 0 2 1.000000e+00
30 Boggs-Tolle 9 HS 39 4 Q 2 | —1.000000e400
31  Boggs-Tolle 10 2 0 2 | ~1.000000e+00
32 Boggs-Tolle 11 HS 79 5 0 3 9.171343e~02
33  Boggs-Tolle 12 5 0 3 6.188119¢+-00
34  Powell triangles 7 0 5 2.331371e+01
35 Powell badly scaled 2 0 1 3.586574e~03
36  Powell wriggle 2 0 2] —1.911618e—16
37 Powell wriggle zo = (0.097,0.063) 2 0 2| —1.911618e-16
38 Powell-Maratos 2 0 1 | —1.000000e+00
39 HS 72 Sops = 1071 9 0 2 7.266794e+02
40 HS 7L_ . Cattle feed 4 2 1 2.989438e+4-01

|

Table 7. Small problem statistics (1-40).
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No. Problem Comment n | Leon. | Necon. |  F (')
41 HS 107 9 0 6 5.055011e+03
42  Mukai-Polak 6 0 2 5.000000e+00
43  Penaltyl a 50 1 0 4.313635e—02
44 Penaltyl c 50 1 0 4.313635e—-02
45 HS 32 3 1 1 1.000000e+00
46 HS 46 5 0 2 0.000000e+00
47 HS 51 5 3 0 0.000000e+-00
48 HS 52 5 3 0 5.326648e+00
49 HS 53 5 3 0 4.093023e+-00
50 HS13 2 0 1 1.000000e+-00
51 HS 64 3 0 1 6.299842¢+03
52 HS 70 4 0 1 7.498464e—03
53 HS T 4 0 2 1.701402e+-01
54 HS 74 4 2 3 5.126498e+03
55 HS 75 4 2 3 5.174413e+403
56 HS 78 5 0 3 | -2.919700e+00
57 HS 80 5 0 3 5.394985e—02
58 HS 81 5 0 3 5.394985e¢—02
59 HS 84 5 0 3 | —5.329025e406
60 HS 85 Sops = 1072 5 0 38 | —1.905134e+00
61 HS 86 Colville No. 1 5 10 0 | —3.234868e+01
62 HS 93 Transformer design 6 0 2 1.350760e+02
63 HS 95 6 0 4 1.561953e—02
64 HS 96 6 0 4 1.561953e—02
65 HS 97 6 0 4 3.135809e4-00
66 HS 98 6 0 4 3.135809e+00
67 HS 99 7 0 2 | -8.310799¢+08
68 HS 100 7 0 4 6.806301e4-02
69 HS 104 Reactor design 8 0 5 3.951163e+4-00
70 HS 109 9 1 8 5.362069¢+03
71 HS 111 10 0 3 | —4.776109e+01
72 HS 112 Chemical equilibrium 10 3 0 | —4.776109e+01
73 HS 113 Wong No. 2 10 3 5 2.430621e+01
74 HS 114 Alkylation process 10 5 6 | —1.768807¢+03
75 HS 117 Colville No. 2, Shell dual 15 0 5 3.234867e+-03
76 HS 118 LC problem 15 17 0 6.648204¢4-02
77 HS 119 Colville No. 7 16 8 0 2.448997e+02
78 HS 83 Dembo No. 2 5 0 6 1.012243e+04
79 HS 106 Dembo No. 5 8 3 3 7.049331e+04
80 Weapon assignment 12 0 | —1.735019¢4-03

o ool

Table 8. Small problem statistics (41-80).
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No. Problem Itns. { LC It. | Funs. F(z") viol. Time
1 Hexagon 9 59 126 | —1.349963e+00 | 1.03e—13 6.87
2 HS 108 9 50 104 | —8.660254e—01 | 2.94e—-14 4.90
3 KSan 12 40 84 1.339009¢-+04 | 1.73e—10 5.13
4 MHW 4 6 13 31 2.787187e+01 | 7.93e—12 1.14
5 MHW 19 37 130 | —4.247468e+4-01 | 2.47e—-13 3.95
6 HS M4 7 3 17 1.393465e+00 | 0.00e+00 .55
7 HS26 16 76 194 1.808355e—12 | 3.96e—06 4.13
8 HS43 15 56 117 | —4.400000e+01 | 2.22e—16 3.67
9 HS65 7 14 39 9.53528%e—01 | 2.67e—15 .97
10 KS 231 1 5 13 1.449526e—25 | 0.00e+00 .27
11  OPF 30 BUS 8 127 197 9.720420e—-01 | 5.33e—15 | 185.17
| 12 QP problem 1 10 18 | —1.847785e+06 | 0.00e+00 .57
13 LC7 1 9 12 9.295973e+4-05 | 0.00e+00 47
14 Norway 1 6 8 | —4.086420e+400 | 0.00e+00 .39
15 Singular 18 1 20 0.000000e+00 | 1.16e—10 1.13
16 Alan Manne 4 20 36 | —2.670099e+00 | 2.31e-10 4.10
17 SteinkeZ —_ — — — — —_—
L 18 Square root 1 5 2 9 2.500000e+03 | 9.71e~16 .75
19  Square root 2 27 0 29 3.000000e+00 | 1.42e~14 3.54
20 Square root 3 5 4 14 2.000000e+400 | 5.43e~10 .85
21 Square root 4 21 0 23 2.500000e+03 | 2.78¢~17 1.67
22 Boggs-Tolle 1 17 21 67 | —1.000000e+00 | 4.12e—12 1.72
23  Boggs Tolle 2 8 20 66 3.256820e—02 | 4.00e—-15 1.19
24 Boggs-'Tolle 3 1 3 10 4.093023e+4-00 | 0.00e+400 .24
25 Boggs-Tolle 4 7 6 18 | -7.317428e+401 | 1.78e~15 .71
26 Boggs-iolle 5 — — — — — —
27 Boggs-Tolle 6 15 49 121 2.415051e—01 | 4.44e—-16 3.19
28 Boggs-Tolle 7 4 3 12 3.603798e+02 | 2.00e~12 .43
29  Boggs- [olle 8 12 2 16 1.000000e+00 | 2.38e—07 .87
30 Boggs-Tolle 9 11 21 54 | —1.000000e+00 | 1.39¢—13 1.65
31 Boggs lolle 10 8 1 12 | -1.000000e+00 | 2.78e—17 .59
32 Boggs lolle 11 9 19 52 9.171343e—02 | 2.03e-11 1.67
33 Boggs-Tolle 12 19 75 191 6.188119e¢+4+00 | 1.42e—14 4.92
34 Powell triangles 11 34 82 2.331371e401 | 2.22¢~16 3.37
35 Powel! vad scale 6 4 19 1.146177e—12 | 1.17e-12 .54
36 Powell wriggle S1 5 7 25 1.061979¢+400 | 0.00e+00 .67
37 Powell wriggle S2 — — — — — —
38 Powell-Maratos 9 10 36 | —1.000000e+00 | 0.00e400 .96
39 HS 72 4 1 7 7.266819e¢+402 | 1.16e—16 .33
40 HS 73 5 7 18 2.989438e+01 | 4.44e—16 .71

Y b e e T
Converged to a different minimizer.

Table 9. Small problems: MINOS (1-40).
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Stat. |

Problem 2 F z') viol. Time

41 HS 107 6 12 28 5.055012e+-03 | 4.51e—17 1.53 | Opt
42 Mukai-Polak 14 113 238 5.000000e+00 | 0.00e+00 6.44 | Opt
43 Penaltyl a 1 161 384 4.313635¢—02 | 0.00e+00 | 43.92 | Opt
44 Penaltyl ¢ 1 161 384 4.313635e—02 | 0.00e+00 | 43.64 | Opt
45 HS 32 7 7 19 1.000000e+-00 | 0.00e+00 .69 | Opt
46 HS 46 11 52 120 9.862650e—15 | 7.57e—07 3.11 | Opt
47 HS 51 1 3 10 9.629650e—34 | 0.00e+00 .21 | Opt
48 HS 52 1 3 6 6.000000e+00 | 0.00e+00 .25 | Opt
49 HS 53 1 3 10 4.093023e+00 | 0.00e+00 .16 | Opt
50 HS13 28 6 42 1.000069¢+400 | 0.00e+400 1.88 | Opt
51 HS 64 13 30 106 6.299842e+03 | 2.54e—08 | 2.21 | Opt
52 HS 70 7 34 92 7.498464e—03 | 0.00e+00 5.40 | Opt
53 HS 71 10 21 51 1.701402¢+4-01 | 8.88e—16 1.65 | Opt
54 HS 74 16 25 55 5.126498e+03 | 1.42e-14 2.65 | Opt
55 HS 75 13 13 33 5.174413e+403 | 4.83e-13 1.80 | Opt
56 HS78 7 10 29 | —2.919700e+00 | 2.08¢—14 1.07 | Opt
57 HS 80 9 18 49 5.394985e—-02 | 2.35e-12 1.66 | Opt
58 HS 81 9 18 51 5.394985e—-02 | 3.19e-11 1.73 | Opt
59 HS 84 7 27 78 | —5.191258e+06 | 0.00e+00 2.12 | Opt
60 HS 85 6 7 32 | ~1.905155¢+4+00 | 6.91e—11 4.85 | Opt
61 HS 86 1 11 19 | —3.234868e+01 | 0.00e-00 .74 | Opt
62 HS93 9 35 76 1.350760e+02 | 2.07e~-14 2.44 | Opt
63 HS95 3 1 5 1.561953e—02 | 0.00e+00 .32 | Opt
64 HS 96 3 1 5 1.561953e—02 | 0.00e400 .24 | Opt
65 HS 97 4 14 20 4.071246e+00 | 0.00e+400 .92 | Opt!
66 HS 98 4 5 12 4.071246e+00 | 0.00e+00 .56 | Opt
67 HS 99 11 60 145 | —8.310799¢+08 | 1.02e—10 8.78 | Opt
68 HS 100 10 56 120 6.839810e+02 | 1.13e—11 4.27 | Opt
69 HS 104 — — — — — — | Ier
70 HS 109 14 64 109 5.362069e+03 | 1.39e¢—-13 7.18 | Opt
71 HS 111 19 149 363 | —4.776109e+01 | 9.00e—14 | 14.31 | Opt
72 HS 112 1 38 110 | —4.776109e+01 | 0.00e+00 2.26 | Opt
73 HS 113 18 103 212 2.430621e+01 | 8.88¢—16 | 10.64 | Opt
74 HS 114 18 42 120 | ~1.768807e+03 | 5.16e—09 6.04 | Opt
75 HS 117 8 71 140 3.234868e+01 | 0.00e+00 7.11 | Opt
76 HS 118 1 17 2 6.648204e+02 | 0.00e+00 1.20 | Opt
77 HS 119 1 22 28 2.448997e+02 | 0.00e4-00 2.46 | Opt
78 HS 83 4 4 9 1.012243e+04 | 6.89e—13 .67 | Opt
79 HS 106 5 42 107 2.100000e+03 | 0.00e+00 | 4.58 | Opt

Weapon —1.735019e+403 | 0.00e4-00 | 38.33 | Opt

T"Converged to a different minimizer.

Table 10. Small problems: MINOS (41-80).
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Problem

T

F(z')

QO 3 N LN WD ]

Converged to a different minimizer.

Hexagon

HS 108

KS 372

MHW 4

MHW 9

HS 14

HS 26

HS 43

HS 65

KS 231

OPF 30 BUS
QP problem
LC7

Norway
Singular

Alan Manne
Steinke2
Square root 1
Square root 2
Square root 3
Square root 4
Boggs-Tolle 1
Boggs-Tolle 2
Boggs-Tolle 3
Boggs-Tolle 4
Boggs-Tolle 5
Boggs-Tolle 6
Boggs-Tolle 7
Boggs-Tolle 8
Boggs-Tolle 9
Boggs-Tolle 10
Boggs-Tolle 11
Boggs-Tolle 12
Powell triangles
Powell bad scale
Powell wriggle S1
Powell wriggle S2
Powell-Maratos
HS 72

HS 73

"

-1
ERE R R XK

|~.—-

| & & |

[ O I ) bt Q) e [y —
O W =D W] T NN O -

7
4

—.1349963e+01
—.8660254e+-00
.1339009e+04
.2787187e+02
-.3618808e+-02
.1393465e+-00
.1969433e—20
~—.4400000e+02
.9535289¢+-00
.1339909e—20
.9927005e+-00
-.1847785e+07
.9295973e+06
—.2402344e+-02
.0000000e+00
-.2670099%e+01

.2999795e+01
.2000000e+-01
—.1000000e+01
.3256820e—01
.4093023e+-01
—.4551055e—03
.9577426e+403
.2415051e+4-00
.3065000e+03
.1000000e+-01
—.1000000e+01
-.1000000e+-01
.9171343e—01
.6188119e+01
.2331371e+02
.1305195e~23
—.1911618e—15
~-.2530612e~-10
—.1000000e+01
.7266794e+4-03

.2989438e4-02

Table 11. Small problems: NPSOL (1-40).

Time | Stat.
3.69 | Opt
4.41 | Opt

10.36 | Opt
1.31 | opt
3.71 | Opt

49 | Opt
3.39 | Opt
.81 | Opt
.70 | opt
1.41 | opt
468.12 | Opt
1.10 | Opt
.76 | Opt
1.23 | Opt
1.03 | Opt
21.13 | Opt
— | Fail
— | Fail
5.01 | Opt
.95 | Opt
— | Fail
.81 | Opt
.71 | Opt
.19 | Opt
.92 ( Opt
.58 | Opt
1.52 | Opt
3.36 | Opt
1.25 | opt
.95 | Opt
.48 | Opt
1.05 | Opt
3.04 | Opt
3.27 | Opt
.85 | Opt
2.77 | Opt
.81 | Opt
.44 | Opt
.69 | Opt
.38 | Opt
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No. Problem Itns. | QP It. | Funs. F(z*) Time | Stat.
41 HS 107 1 27 18 .5055012e+04 2.77 | Opt
42 Mukai-Polak 10 13 16 .5000000e+-01 1.08 | Opt
43  Penaltyl a 16 77 18 .4313635e~01 20.01 | Opt
44  Penaltyl c 29 152 85 .4313635e—01 24.35 | Opt
45 HS 32 2 3 3 .1000000e+-01 .25 | Opt
46 HS 46 55 56 58 .1936782e-22 5.26 | Opt
47 HS 51 2 2 5 .3851860e—32 .18 | Opt
48 HS 52 2 2 5 .5326648e+01 .19 | Opt
49 HS 53 2 2 5 .4093023e+01 .19 | Opt
50 HS13 22 13 23 .1002181e+01 1.29 | Opt
51 HS 64 29 47 39 .6299842e+04 2.34 | Opt
52 HS 70 36 39 39 .7498464e—02 3.33 | Opt
53 HST1 5 9 6 .1701402¢+-02 .53 | Opt
54 HS 74 10 14 15 .512649R8e+04 1.17 | Opt
55 HS 75 6 7 10 .5174413e+404 .72 | Opt
56 HS 78 10 11 14 | —.2919700e+4-01 1.15 | Opt
57 HS 80 8 8 10 .5394985e—01 .92 | Opt
58 HS 81 14 15 20 .5394985e--01 1.57 | Opt
59 HS 84 — — — — — | Fail
60 HS 85 17 33 18 | —.1905155e+01 4.00 | Opt
61 HS 86 6 11 8 | —.3234868e+02 .62 | Opt
62 HS 93 12 14 15 .1350760e+-03 1.36 | Opt
63 HS 95 1 1 2 .1561953e—01 .15 | Opt
64 HS 96 1 1 2 .1561953e-01 A7 | Opt
65 HS 97 3 3 6 .3135809e+01 40 | Opt
66 HS 98 3 8 6 .3135809e+-01 .43 | Opt
67 HS 99 23 74 44 | —.8290102e+09 3.99 | Opt
68 HS 100 14 18 29 .6806301e-+03 2.07 | Opt
69 HS 104 18 23 20 .3951163e+01 3.36 | Opt
70 HS 109 11 25 13 .5362069¢e+4-04 3.23 | Opt
71 HS 111 41 44 64 | —.477323%¢+02 8.08 | Opt
72 HS 112 19 54 39 | —.4776109e+02 2.78 | Opt
73 HS 113 14 38 19 .2430621e+02 3.12 | Opt
74 HS 114 18 36 19 | —.1768807e+04 3.81 | Opt
75 HS 117 17 96 21 .3234868e4-02 6.75 | Opt
76 HS 118 4 20 6 .6648204e+03 1.35 | Opt
77 HS 119 12 41 16 .2448997e+4-03 4.25 | Opt
78 HS 83 4 4 6 .1012243e405 .54 | Opt
79 HS 106 17 30 21 .7049248e+-04 2.90 | Opt
80 Weapon 96 244 98 | ~.1735019¢+04 { 120.78 | Opt

e —

Table 12. Small problems: NPSOL (41-80).
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No. Problem Itns. | QP It. | Funs. F(z) viol. Time | Stat. "

1 Hexagon 23 56 36 | —1.349963e+00 | 5.13e~13 11.53
2 HS 108 7 7 10 | —8.660254e—01 | 4.85e—14 1.88
3 KSa3mn2 35 205 87 1.339009¢+404 | 5.93e—12 26.26
4 MHW 4 15 19 28 2.787187e401 | 2.84e-11 2.74
5 MHWY 14 19 27 | —4.247468e+01 | 5.42e—-12 2.42
6 HS 14 8 2 14 1.393465e+00 | 3.21e~-12 .81
7 HS26 37 36 47 7.028190e—12 | 5.55e—17 4.59
8 HS43 13 17 17 | —4.400000e+01 | 7.11e—11 2.16
9 HS 65 17 25 22 9.535289e—01 | 2.06e—13 2.38
10 KS 231 15 16 44 6.321700e—21 | 0.00e+-00 1.51
11 OPF 30 Bus 30 112 40 9.720420e—01 | 5.61e—15 | 178.95
12 QP problem 11 26 16 | —1.847785e+06 | 0.00e+00 2.51
13 LC7 10 24 14 9.295973e+405 | 0.00e+00 2.04
14 Norway 6 20 9 | ~2.402344e+4-01 | 0.00e+00 1.66
15 Singular 20 1 23 0.000000e+00 | 7.28e—12 1.75
16 Alan Manne 14 35 22 | —2.670099¢+400 | 8.98e—14 9.64
17  Steinke2 2 14 5 4.142865e¢—04 | 1.02¢-07 a7
18 Square root 1 17 2 47 2.499997e4-03 | 2.50e—09 4.19
19  Square root 2 18 0 25 2.999939%e+400 | 6.43e—10 3.49
I 20 Square root 3 13 12 18 2.000000e+00 | 2.86e—12 3.37
21 Square root 4 — — — — — —
22 Boggs-Tolle 1 11 10 18 { —1.000000e+00 | 0.00e+00 1.26
23  Boggs-Tolle 2 12 12 20 3.256820e—02 | 5.80e—14 1.53
24 Boggs-Tolle 3 5 7 10 7.957949e—01 | 0.00e+00 .70
25 Boggs-Tolle 4 8 7 16 | ~7.317428e+01 | 1.83e~13 1.05
26 Boggs-Tolle 5 10 10 15 9.617152e+02 | 1.77e~-11 1.41
27 Boggs-Tolle 6 25 27 34 2.415051e—01 | 2.23e—14 3.75
28 Boggs-Tolle 7 _— — — — — —
29 Boggs-Tolle 8 21 3 24 1.000000e+00 | 9.10e—13 241
30 Boggs-Tolle 9 45 46 87 | —1.000001e+00 | 2.77e—09 6.84
31 Boggs-Tolle 10 8 1 10 | -1.000000e400 | 2.97e—09 .78
32 Boggs-Tolle 11 14 16 19 9.171343e-02 | 2.78e—-12 2.33
33 Boggs-Tolle 12 56 62 162 6.188119e+00 | 7.11e—-13 9.69
34 PFPowell triangles 15 34 20 2.331371e+01 | 4.56e—11 4.02
35 Powell bad scale 15 12 54 0.000000e+00 | 0.00e+00 1.85
36 Powell wriggle S1 139 178 283 | —3.171038e—13 | 6.78e—08 20.05
37 Powell wriggle S2 47 14 99 | —3.677403e—-07 | 6.44e—10 5.12
38 Powell-Maratos 7 5 10 | —1.000000e+00 | 5.55e~17 .83
39 HS 72 4 1 7 7.266819e+02 | 1.18e—16 .48
40 HS 73 5 7 9 2.989438e+01 | 4.44e—16 .79

T e
C

onverged to a different minimizer.

Table 13. Small problems: (LSSQP-0) Full completion (1-40).
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—No.

Problem Itns. | QP It. | Funs. F(z') viol. Time
41 HS 107 — — — — — —
42 Mukai-Polak 39 51 99 | 5.000000e+00 | 2.32e—13 | 6.65
43 Penaltyl a 5 100 14 | 4.961360e—02 | 0.00e+00 | 14.57
44  Penaltyl c 5 100 14 | 4.961360e—02 | 0.00e4+00 | 14.20
45 HS 32 4 6 6 | 1.000000e+00 | 0.00e+00 61
46 HS 46 24 26 30 | 6.666278e—13 | 2.16e~15 | 3.57
47 HS 51 5 8 10 | 6.499273e—02 | 0.00e400 75
48 HS 52 7 13 14 1.372951e+00 | 0.00e4-00 1.08
49 HS 53 5 7 10 | 7.957949e—01 | 0.00e400 75
50 HS13 24 22 30 | 9.995875e—01 | 8.78e-12 | 2.52
51 HSe64 15 21 21 | 6.299842e+03 | 9.43e~10 | 2.04
52 HS 70 36 39 41 | 7.498464e—03 | 0.00e+00 | 6.01
53 HSTI 9 13 13 | 1.701402e401 | 1.78e—14 | 1.43
54 HS 74 12 13 15 | 5.126498e403 | 2.27e-13 | 2.15
55 HS 75 8 7 10 | 5.174413e+03 | 2.30e~10 | 1.30
56 HS 78 10 11 16 | —2.919700e+00 | 3.08¢—13 | 1.67 | Opt
57 HS 80 11 11 16 | 5.394985e—02 | 0.00e4+00 | 1.78 | Opt
58 HS 81 12 12 17 | 5.394985e—02 | 2.22e—16 | 2.05 | Opt
59 HS 84 4 6 6 | —5.329025¢+06 | 0.00e4-00 59 | opt
60 HS 85 17 40 46 | —1.905155e+4+00 | 3.55e—15 17.33 | Opt
61 HS 86 15 38 a5 | —3.234868¢+01 | 0.00e+00 | 3.41 | Opt
62 HS 93 26 58 35 | 1.350760e+02 | 3.40e~11 | 5.77 | Opt
63 HS 95 3 1 5| 1.561953e—02 | 0.00e+00 .36 | Opt
64 HS 96 3 1 5| 1.561953e—02 | 0.00e+00 38 | opt
65 HS 97 8 23 11 | 3.135809¢+00 | 0.00e+00 | 1.66 | Opt
66 HS 98 8 20 11 | 3.135809e+00 | 0.00e4+00 | 1.55 | Opt
67 HS 99 28 49 55 | —8.310799¢+08 | 2.11e—07 | 7.28 | Opt
68 HS 100 20 28 31| 6.839810e+02 | 1.12e—09 | 4.28 | Opt
69 HS 104 22 49 34 3.951163e400 | 6.88¢—15 6.53 | Opt
70 HS 109 18 56 24 | 5.362069¢+03 | 4.87e~13 | 7.13 | Opt
71 HS 111 54 65 68 | —4.776109¢+01 | 2.78e—17 | 11.99 | Opt
72 HS 112 19 62 54 | —4.776109¢+01 | 0.00e+00 | 5.13 | Opt
73 HS 113 60 148 | 107 | 2.430621e+01 | 1.23e—08 | 23.85 | Opt
74 HS 114 30 63 91 | —8.825283e+02 | 5.68e~14 | 11.51 | Opt*
75 HS 117 —_ _— —_ — — — | Itr
76 HS 118 4 30 7| 6.648204e+02 | 0.00e4+00 | 3.42 | Opt
77 HS 119 18 95 40 2.448997e+402 | 0.00e400 11.44 | Opt
78 h583 1 7 7| 1.012243¢404 | 6.89e-13 | 1.08 | Opt
79 HS 106 5 10 7| 2.100000e+03 | 0.00e4+00 | 1.27 | Opt’
80 Weapon 2124 | 393 | 165 | —1.735019e+03 | 0.00e+00 | 176.05 | Opt

“TConverged to a difierent minimizer.

Table 14. Small problems: (LSSQP-O) Full completion (41-80).
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Converged to a different minimizer.

No. Problem . F(z") viol. .
1 Hexagon 33 63 43 | —1.349963e+00 | 6.73e—12 14.87 | Opt
2 HS 108 15 24 22 | —8.660254e~01 | 2.78e~17 5.18 | Opt
3 KS372 23 67 38 1.339009e+04 | 9.98e—09 11.24 | Opt
4 MHW ¢4 42 18 84 2.787187e+01 | 1.24e—12 6.00 | Opt
5 MHWY 20 21 37 | —4.247468e+01 | 1.31e—13 3.32 | Opt
6 HS 14 7 2 11 1.393465¢+00 | 8.60e—12 .75 | Opt
7 HS 26 31 29 39 7.7117254e—10 | 2.22e—16 3.49 | Opt
8 HS 43 18 21 28 | —4.400000e+01 | 1.23e~10 3.02 | Opt
9 HS65 21 22 33 9.535288e—01 | 0.00e+00 2.55 | Opt

10 KS 231 15 14 44 6.321700e—21 | 0.00e400 1.18 | Opt
11 OPF 30 BUS 81 144 129 9.720420e—-01 | 1.33e—08 | 384.83 | Opt
12 QP problem 5 9 9 | —7.750787e+05 | 0.00e+00 91 | opt
13 LC7 12 19 15 7.790963e+05 | 0.00e+00 1.69 | opt!
14 Norway 6 13 8 | —4.086420e+00 | 0.00e+00 1.10 | Opt
15  Singular 20 1 23 0.000000e+00 | 7.28e—12 1.75 | Opt
16  Alan Manne 24 46 29 | —2.670099¢+00 | 5.62e—14 16.72 { Opt
17  Steinke2 7 14 14 4.000131e—04 | 8.0le—-16 1.56 | Opt
18 Square root 1 15 2 28 2.500000e+-03 | 4.90e—13 3.38 | Opt
19  Square root 2 17 0 29 2.999878e+00 | 2.27e—-10 3.22 | Opt
20 Square root 3 3 0 5 2.000000e+00 | 0.00e+00 .48 | Opt
21 Square root 4 — — — — — — | Itr
22  Boggs-Tolle 1 15 8 27 1 —1.000000e+00 | 2.87e400 1.60 | Opt
23 Boggs-Tolle 2 14 12 23 3.256820e—02 | 1.31e—14 1.63 | Opt
24 Boggs-Tolle 3 6 8 10 8.117684e—01 | 0.00e+00 .63 | Opt
25 Boggs-Tolle 4 9 6 13 | —7.317428e+01 | 1.78e-15 1.11 | opd
26 Boggs-Tolle 5 1 8 16 9.617152e+02 | 0.00e+00 1.44 | Opt
27 Boggs-Tolle 6 29 28 50 2.415051e—01 | 1.94e—12 4.09 | Opt
28 Boggs-Tolle 7 — — —_ — — — | Itr
29 Boggs-Tolle 8 21 3 24 1.000000e+00 | 9.10e—-13 2.30 | Opt
30 Boggs-Tolle 9 — — — — — — | Itr
31 Boggs-Tolle 10 8 1 12 | —1.000000e+00 | 2.97e—09 .79 | Opt
32 Boggs-Tolle 11 15 16 22 9.171343e-02 | 1.11e~16 2.34 | Opt
33 Boggs-Tolle 12 70 56 275 6.188119e400 | 2.64e—11 11.08 | Opt
34 Powell triangles — — — — — — | Itr
35 Powell bad scale — — — — — — | Itr
36 Powell wriggle S1 — — — — — — | Itr
37 Powell wriggle S2 — — — — — — | Itr
38 Powell-Maratos 7 4 10 | —1.000000e+00 | 1.57e—14 .14 | Opt
39 HS T2 4 1 7 7.266819e+02 | 1.18e—16 .47 | Opt
HS 73 5 7] 8| 2.989438e+01 [ 0.00e+00 .75 | Opt

Table 15. Small problems: (LSSQP-E) Early termination (1-40).
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No. Problem Itns. | QP It. | Funs. F(z") viol. Time | Stat.
41 HS 107 — — —_ — — —y Itr
42  Mukai-Polak 17 20 49 5.000000e+-00 | 7.79e—07 2.63 | Opt
43 Penaltyl a 4 50 15 4.961363e—-02 | 0.00e400 4.93 | Opt
44 Penaltyl c 4 50 15 | 4.961363e—02 | 0.00e+00 | 4.64 | Opt’
45 HS 32 4 6 6 1.000000e4-00 | 0.00e+00 .66 | Opt
46 HS 46 40 41 49 3.370541e—11 | 4.72e—14 5.75 | Opt
47 HS 51 5 8 10 | 6.499273e—02 | 0.00e+400 .72 | opt
48 HS 52 14 21 50 7.222497e—01 | 0.00e+-00 1.96 | Opt!
49 HS 53 5 7 10 8.117684e—01 | 0.00e+00 .67 Opt’
50 HS 13 24 22 30 9.995875e—01 | 8.78e—12 2.30 | Opt
51 HS 64 18 23 33 6.299842e¢+03 | 4.00e—08 2.32 | Opt
52 HS 70 37 35 41 7.498464e—03 | 0.00e+00 5.82 | Opt
53 HS 71 15 17 19 1.701402e4-01 | 1.65e—12 2.08 | Opt
54 HS 74 12 12 15 5.126498e+03 | 2.27e—-13 1.98 | Opt
55 HS 75 8 7 11 5.174413e+403 | 2.30e~10 1.28 | Opt
56 HS 78 — — — — —_ — | Itr
57 HS 80 12 10 18 5.394985e—02 | 0.00e+00 1.84 | Opt
58 HS 81 11 9 15 5.394985e—02 | 1.11e—16 1.63 | Opt
59 HS 84 6 5 8 | —5.329025e+06 | 1.46e—11 .75 | Opt
60 HS 85 —_ — — — — — | Itr
61 HS 86 5 9 9 | ~3.234868e+01 | 0.00e+00 .90 | Opt
62 HS 93 18 26 25 1.350760e+02 | 8.67e—14 3.10 | Opt "
63 HS 95 5 5 7 1.561953e—02 | 0.00e+00 .70 | Opt
64 HS 96 5 5 7 1.561953e—02 | 0.00e+4-00 .73 { Opt
65 HS 97 4 15 7 3.135809e+00 | 0.00e+400 1.08 | Opt
66 HS 98 —_ — — — — — | Itr
67 HS 99 — — — —_ — — | Itr
68 HS 100 23 25 33 6.839810e402 | 3.20e~11 4.17 | Opt
69 HS 104 26 48 56 3.951163e+00 | 1.21e~-17 6.92 | Opt
70 HS 109 13 44 18 5.362287e403 | 7.35e—13 5.07 | Opt
71 HS 111 68 55 88 | —4.776109e+01 | 6.39e—08 12.58 | Opt
72 HS 112 24 60 74 | —4.776109e+-01 | 0.00e+400 5.06 | Opt
73 HS 113 53 64 65 2.430621e+01 | 8.40e—09 14.63 | Opt
74 HS 114 — — — — — — | Cbs
75 HS 117 31 193 304 1.325514e+403 | 0.00e+4-00 27.38 | Opt’
76 HS 118 10 37 16 6.648204e+02 | 0.00e+400 4.36 | Opt
77 HS 119 13 44 25 2.448997e+02 | 0.00e+00 5.48 | Opt
78 HS 83 9 9 12 1.012243e+04 | 3.36e—08 1.95 | Opt
79 HS 106 7 7 9 2.100000e+03 | 0.00e+00 1.32 | opt
80 Weapon 129 410 175 | —1.735019e+03 | 0.00e+00 | 194.84 | Opt

T Converged to a different minimizer.

Table 16. Small problems

: (LSSQP-E) Early termination (41-80).




Appendix A

Nonlinear Programming for
Trajectory Optimization

A.1. Trajectory optimization

Despite the empirical sucess of optimization implementations such as MINOS and NPSOL,
we can identify problems for which improved performance is desirable. A class of problems
that we feel will benefit from large-scale SQP methods is in the area of trajectory optimiza-
tion. In general these mathematical programming problems are characterized by matrices
that are large and sparse and have functions that are expensive to evaluate. An example
of a trajectory optimization problem is the Supersonic Interceptor Minimum-Time Climb
(SIMTC) problem [Bry69j. The problem statement is:

Find the path taking a supersonic interceptor from sea level and Mach 0.34 to
an altitude of 20km and Mach 1.0 in minimum time.

Sample graphs of the optimal altitude and thrust profiles (plotted against elapsed time
of flight) for a Phantom F4 are given in Figure 1. Note the non-intuitive shape of the
optimal trajectory.

A.2. Problem statement

Trajectory optimization leads to problems in optimal control. The goal is to minimize a
specified performance index F. For the SIMTC problem in Section A.1 the performance
index is the time required to reach a specific altitude and speed. Other possibilities for
F are the amount of fuel burned or the time to reach a specific destination. Trajectory
optimization problems are described in terms of a sequence of N time stages with time
points E; (called events) delimiting the stages. For the general formulation we write F as

F(2(E), w(E),w. E). (A.2.1)
The performance index F is a function of
o A vector of states x, governed by first-order differential equations (see below),

o Control functions u(t) (c.g. pitch angle),

76
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Figure 1. Altitude and thrust profiles for the Phantom-F4 SIMTC problem

e Vehicle design parameters w (e.g. rocket nozzle diameter),
¢ Time points E;, i =1,...,N + 1, delimiting the stages.

The i-th stage is a dynamical system restricted by diflerential constraints (called state
equations) of the form

[ dl
2= = filz.v.w,t) 1€[E;, Eip), (A.2.2)
for i = 1,...,N. These constraints correspond to differential equations of motion. The

variables must also satisfy nonlinear initial and terminal conditions «; at each stage:
I# < ai(z(E)),(E),w) < uf. (A.2.3)
In addition, path constraints h; may be imposed on the system at each stage E;:
¥ < hifz,uw, 1) < uf. (A.2.4)

The functions f;, a; and h; are assumed to be twice continuously differentiable within
each stage. However, the functions are allowed to be discontinuous between events. That
is, at event boundaries, discontinuities of the form

I(E,'.H) = z2(E;) + o; (A.2.5)

are allowed. These allow the modelling of characteristics such as the jettison of a payload
or a modification of velocity. The o,;’s may be fixed or included in the design parameter
set w.

Hargraves and Paris {HarP87] presented a dJirect trajectory optimization method of
the form (A.2.1)-(A.2.5) that represents state and control variables by piecewise polyno-
mials. This method has been developed into OTIS. a system for trajectory optimization
[HarP88). Specifically, Hargraves and Paris transformed the optimal control problem into
a mathematical programming problem by using an implicit integration scheme known
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as collocation (see [Enr91)) to satisfy equations (A.2.2). This method of transforming
the optimal control problem into a mathematical programming problem is called direct
transcription.

A complete description of the transcription method used to approximate (A.2.2) can
be found in [Enr91] or (HarP87]. The method is summarized below:

1. Each stage [E;, E;4,] is partitioned into a set of M smaller segments.

2. A cubic spline is fitted for each segment. The data for the fit is taken from the values
of %’f at the mesh points of each segment.

3. A numerical integration scheme is used to approximate z(t) at the midpoint of each
segment.

4. Variables §; (called defects) are defined as the difference between the approximation
and the true value at the midpoint.

If the defects can be driven to zero, the cubic spline will provide an accurate approximation
to (A.2.2). As aresult of this transcription process, the optimal control constraints (A.2.2)
can be replaced in the formulation by equality constraints of the form §; = 0 for i =
1...., M, for each of the N events for the problem.

A.2.1. Problem formulation

The mathematical programming problem now includes terms for the defects of the in-
terpolation method in place of equations (A.2.2). In addition, the boundary conditions
(A.2.3) are enforced and the nonlinear path constraints (A.2.4) are enforced at the grid
points. The transcribed trajectory optimization problem may be written as the following
mathematical program:

minimize F(z,uw. F,w)
s.t. d; = 0, ¢=1,...,N,
I < ai(z(Ey).(Er),w) < wu, i=1,...,N,
7 < hi(z,u,w,t) < uf, i=1,...,N,
l'(E,‘+1)--'l'(E,‘)-—0,‘ = 0, t=1,...,N,
5 < (z,u. E,w) < B,

where d; is a vector of center defects for stage i (d; = [6i1,...,68inm])).
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Abstract

The problem addressed is the general nonlinear programming problem: finding a local
minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequal-
ity constraints. The methods studied are in the class of sequential quadratic programming
(SQP) algorithms, which have previously proved successful for problems of moderate size.
Our goal is to devise an SQP algorithm that is applicable to large-scale optimization prob-
lems, using sparse data structures and storing less curvature information but maintaining
the property of superlinear convergence. The main features are:

1. The use of a quasi-Newton approzimation to the reduced Hessian of the Lagrangian
function. Only an estimate of the reduced Hessian matrix is required by our algo-
rithm. The impact of not having available the full Hessian approximation is studied
and alternative estimates are constructed.

2. The use of a transformation matriz Q. This allows the QP gradient to be computed
easily when only the reduced Hessian approximation is maintained.

3. The use of a reduced-gradient form of the basis for the null space of the working
set. This choice of basis is more practical than an orthogonal null-space basis for
large-scale problems. The continuity condition for this choice is proven.

4. The use of incomplete solutions of quadratic programming subproblems. Certain
iterates generated by an active-set method for the QP subproblem are used in place
of the QP minimizer to define the search direction for the nonlinear problem.

An implementation of the new algorithm has been obtained by modifying the code
MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm
on a set of 92 test problems.




