
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A257 597

_DTIC
rLECTIR

THESIS
A FRAMEWORK FOR CLASSIFYING

AND RESOLVING SEMANTIC HETEROGENEITY
IN OBJECT-ORIENTED DATABASES

by

Michael T. Bourque
September, 1992

Thesis Advisor: Magdi Kamel

_ t o Approved for public release; distribution is unlimited

000m7)*

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

I&. REPORT SECURITY CLASSIFICATION I b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

SApproved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

1 55

6c. ADDRESS (City, State, andZIP Code) 7b. ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

go. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS

Progam Element No. Project No. Task No. WOrk Unit Acces5on

Number

11. TITLE (Include Security Classification)

A FRAMEWORK FOR CLASSIFYING AND RESOLVING SEMANTIC HETEROGENEITY IN OBJECT-ORIENTED DATABASES
(UNCLASSIFIED)

12. PERSONAL AUTHOR(S) Bourque, Michael T.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis From To September, 1992 109
16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Databases, Object-Oriented Analysis, Semantic Heterogeneity

19. ABSTRACT (continue on reverse if necessary and identify by block number)

During the past three decades, many organizations have seen a dramatic proliferation of a
variety of information systems. Organizations soon discovered the need to access and share
data across these different information systems. Under current technology, this integration is
usually not possible due to the heterogeneity of information systems. One level of
heterogeneity is that of semantics. The objective of this thesis is to build a framework for
enumerating, classifying, and resolving the types of semantic heterogeneity that could exist
in an object-oriented database model. The framework covers both schema and data content
conflicts. The schema conflicts are classified broadly by the level at which they occur. The
primary data conflicts covered include inconsistencies and different representations for the
same data.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSWIEDIUNUMITEo 1 AME ASREPOT [TIC USERS Unclasfied

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
Magdi Kamel (408)646-2494 AS/KA

DO FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

i

Approved for public release; distribution is unlimited.

A Framework for Classifying and Resolving Semantic
Heterogeneity in Object-Oriented Databases

by

Michael T. Bourque
Lieutenant, United States Navy

B.A., University of Rochester, 1983

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September, 1992

Author: 9 & 6
Michael T. Bourque

Approved by:
•'Vagdi Ka•xe Thesis Advisor

9~yung W. guh, Se~ond Reader

Department of AdministrativeSc* nceii

ABSTRACT

During the past three decades, many organizations have seen a

dramatic proliferation of a variety of information systems.

Organizations soon discovered the need to access and share data

across these different information systems. Under current

technology, this integration is usually not possible due to the

heterogeneity of information systems. One level of heterogeneity

is that of semantics. The objective of this thesis is to build a

framework for enumerating, classifying, and resolving the types of

semantic heterogeneity that could exist in an object-oriented

database model. The framework covers both schema and data content

conflicts. The schema conflicts are classified broadly by the

level at which they occur. The primary data conflicts covered

include inconsistencies and different representations for the same

data.

Aooession For
NTIS GRA&I
DTIC TAB 0
Unaamt~uoed 0
Ju:3t i c~atj 0 n

By_

-Distributlov/

SAv__._. s. ilitty Codes
lAvoll 8za/tor

Diat Sn•ot&4

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVES 2

C. RESEARCH QUESTIONS 2

D. SCOPE AND LIMITATIONS 3

E. METHODOLOGY 3

F. ORGANIZATION OF THESIS 4

II. BACKGROUND ON HETEROGENEOUS DATABASES 5

A. BACKGROUND 5

B. TYPES OF HETEROGENEITY 8

1. Database Management Systems Heterogeneity . 9

2. Data and Schematic Heterogeneity 11

3. Platform Heterogeneity 11

C. PROPOSED SCLUTIONS 14

1. The Multidatabase or Composite Approach . 14

2. The Federated Approach 15

D. INTEGRATING MODEL REQUIREMENTS 16

III. SCHEMA AND DATA CONFLICTS IN THE RELATIONAL MODEL 17

A. TABLE-VERSUS-TABLE CONFLICTS 17

B. ATTRIBUTE-VERSUS-ATTRIBUTE CONFLICTS 19

iv

C. TABLE-VERSUS-ATTRIBUTE CONFLICTS 20

D. DATA CONFLICTS 20

E. CONCLUSION 22

IV. THE OBJECT-ORIENTED MODEL 24

A. MANAGING COMPLEXITY 24

1. Abstraction 24

2. Encapsulation 25

3. Inheritance 25

4. Association 26

5. Communication and Method Overloading . . 26

B. THE BUILDING BLOCKS 27

1. Class and Objects&Class 27

2. Structure 28

3. Attributes 31

4. Instance Connections 32

5. Methods 32

6. Message Connections 34

C. CONCLUSION 35

V. HETEROGENEOUS DATABASE SCENARIO 36

A. BACKGROUND 36

B. THE LIBRARY FOR CLASSIFIED MATERIAL DATABASE 38

1. Classified Library Relationship Diagram 40

2. Classified Library Data Dictionary .. 41

3. Transformation Process 41

v

4. The Classified Library Object Model 42

C. THE FLIGHT PHYSIOLOGY DATABASE 43

1. Flight Physiology Relational Diagram . . 43

2. Flight Physiology Data Dictionary 43

3. Transformation Process 45

4. The Flight Physiology Object Model 45

D. THE NATOPS DEPARTMENT DATABASE 45

1. NATOPS Department Relational diagram . . 47

2. NATOPS Department Data Dictionary 47

3. Transformation Process 48

4. NATOPS Department Object Model 49

E. THE FLIGHT SCHEDULE DATABASE 49

1. Flight Schedule Relational Diagram . 51

2. Flight Schedule Data Dictionary 53

3. Transformation Process 54

4. Flight Schedule Object Model 55

VI. FRAMEWORK FOR SEMANTIC HETEROGENEITY 58

A. SCHEMA CONFLICTS 60

1. Object level conflicts 60

a. Object name conflicts 60

b. Object structure conflicts 62

2. Attribute Level Conflicts 68

a. Attribute name conflicts 69

b. Attribute constraint conflicts 69

c. Attribute structure conflicts 70

vi

3. Object-Attribute Level Conflicts 71

4. Method Conflicts 72

a. Method name conflicts 72

b. Method message and instance connection

conflicts 73

B. DATA CONFLICTS 73

1. Inconsistencies 73

2. Different Representations for the Same Data 74

a. Different expressions 74

b. Different unit for the same data . . 75

c. Different granularity 75

C. CONCLUSION 76

VII. PROPOSED SOLUTIONS TO SCHEMATIC AND DATA CONFLICTS 77

A. SCHEMA INTEGRATION RESOLUTION 77

1. Object Level Conflict Resolutions 77

a. Object structure conflict resolutions . 77

b. Object name conflict resolutions . . 80

2. Attribute Level Conflict Resolutions . . 81

a. Attribute name conflict resolutions . . 82

b. Attribute constraint conflict

resolutions 82

c. Attribute structure conflict

resolutions 83

3. Object-Attribute Level Conflict Resolutions 84

4. Method Conflict Resolutions 84

vii

B. CONSTRUCTING THE GLOBAL SCHEMA 85

1. The Global Objects 85

2. The Global Schema Structure 86

C. THE GLOBAL CONTROLLER 86

1. Data Inconsistencies Conflict Resolutions . 88

2. Different Representations for the Same Data

Conflict Resolutions 88

D. CONCLUSION 90

VIII. SUMMARY AND CONCLUSIONS 91

A. SUMMARY OF SCHEMA CONFLICTS 91

1. Object Level Conflict Summary 91

2. Attribute Level Conflict Summary 91

3. Object-Attribute Level Conflict Summary . . 92

4. Method Conflict Summary 92

B. SUMMARY OF DATA CONFLICTS 92

1. Inconsistent Data Conflict Summary 92

2. Different Representations for the Same Data

Conflict Summary 92

C. APPLICATIONS 93

D. FUTURE RESEARCH 93

1. Prototype Construction 93

2. Development of Tools Based on Framework . 94

3. Construct Artificial Intelligence (AI)

Techniques to Resolve Semantic Issues . . 94

viii

LIST OF REFERENCES 95

BIBLIOGRAPHY 97

INITIAL DISTRIBUTION LIST 98

ix

I. INTRODUCTION

A. BACKGROUND

During the past three decades, many organizations have

seen a dramatic proliferation of a variety of information

systems. While these information systems are useful in

supporting their different activities, organizations soon

discovered the need to access and share data across these

different information systems.

Under current technology, this integration is usually not

possible due to the heterogeneity of information systems.

This heterogeneity exists at three basic levels (Bertino,

1989). The first is the information system level. Data is

managed by a variety of information systems based on different

data models and languages. The second level of heterogeneity

is that of semantics. Since different information systems

have been designed independently, semantic conflicts are

likely to be presen't. This includes both schema (e.g., name,

type conflicts) and data (e.g., inconsistencies) conflicts.

Finally, the third level of heterogeneity is that of hardware,

operating systems, and communications.

Several approaches have been proposed to address the

issues of integrating heterogeneous information systems

(Sheth, 1990, pp.183-236). A common theme of these approaches

1

is the need for a semantically rich integrating model to

represent, resolve the conflicts of, and integrate the

different component information systems. In this thesis the

issues of identifying and resolving semantic conflicts by

using a generic object-oriented data model as the integrating

model are examined.

B. OBJECTIVES

The objective of this thesis is to build a framework for

enumerating, classifying, and resolving the types of semantic

heterogeneity that could exist in an object-oriented database

model. The framework will cover both schema and data content

conflicts. The schema conflicts are classified broadly by the

level at which they occur. These levels are: object level

conflicts, attribute level conflicts, object-attribute level

conflicts, and object method conflicts. The primary data

conflicts covered include inconsistencies and different

representations for the same data.

To accomplish the objective, a real world database

scenario is presented, a generic object-oriented model is

presented, and the conflict framework is proposed.

C. RESEARCH QUESTIONS

1. Can a workable framework for classifying and

enumerating schema and data heterogeneity conflicts in an

object-oriented database models be developed?

2

2. Can proposed solution guidelines to identified schema

and data heterogeneity conflicts in object-oriented database

models be developed?

D. SCOPE AND LIMITATIONS

This thesis will briefly describe the three levels of

heterogeneity. It will then focus on building a framework for

enumerating and classifying schema and data conflict in an

object-oriented database model and propose a guideline for

conflict resolutions. A similar framework is presented for

use with a relational model. Information systems level,

hardware, operating systems, and communications heterogeneity

will not be addressed in this thesis.

E. METHODOLOGY

This research started with a literature review of

pertinenL topics including: object-oriented models, object-

oriented databases, federated database systems, multidatabase

systems, schematic and data heterogeneity issues, information

systems proliferation issues, and specific Department of

Defence and Department of the Navy information systems

proliferation problems. The second step was to identify the

generic object-oriented model used in this research. The

third step was to identify a useable real world database

scenario to use for research. The fourth step was the

development of the proposed framework. The final step was the

3

development of the guidelines for resolving the identified

conflicts.

F. ORGANIZATION OF THESIS

The organization of the remainder of the thesis is as

follows. Chapter II explains the background of the issue,

presents a rationale of why the problems related to

heterogeneity evolved, and explains the different types of

heterogeneity in information systems. Chapter III overviews

"a framework for classifying schematic and data conflicts in

"a relational model. Chapter IV presents the main

characteristics of the object-oriented model used in this

research. Chapter V presents the database scenario used in

this research. Chapter VI develops a framework for

classifying the schematic and data conflicts of the object-

oriented model presented in Chapter IV and uses the database

scenario in Chapter V to illustrate conflict examples.

Chapter VII presents guidelines for resolving the conflicts

identified in Chapter VI. Chapter VIII concludes the paper

with a summary and provides directions for future research.

4

II. BACKGROUND ON HETEROGENEOUS DATABASES

A. BACKGROUND

Today, from administrative to operational commands, the

use of computers to solve data manipulation problems is very

common. This fact had its foundations with the widespread use

of mainframe computers in the 1960s. In the military, these

early computers were mostly associated with data and research

centers. Initially, programs were developed for specialized

applications that relied on large amounts of data typically

stored on disks. The data was stored in flat file systems

and uniquely addressed by the programs developed to use it.

It was apparent that a large amount of information was common

to different applications and that there was a need to share

access to data (Parsaye, 1989, pp.36).

As technology was introduced to organizations, the type of

administrative control within the organization dictated how

new technology was exploited. The DOD had a slack environment

when database technology was introduced. Each branch of the

service was allowed to operate independently with little or no

guidance. Within the services, major commands also acted

independently. Though this lack of coordination led to many

duplicate efforts and a lack of standardization, this approach

5

had some benefits. To quote Richard Nolan (Nolan's stages of

growth);

"The balance between control and slack is
important in developing appropriate management
approaches for each stage of an organizational
learning. For example, an imbalance of high control
and low slack in the earlier stages can impede the use
of information technology in the organization;
conversely, an imbalance of low control and high slack
in the latter stages can lead to explosive data
processing budget increases and inefficient systems."
(Nolan, 1979, pp.117)

In the March-April 1979 Harvard Business Review Richard

Nolan wrote an article "Managing the Crisis in Data

Processing." In this article Nolan proposed six stages of

growth. The first is the initiation stage where new

technology is first introduced. The second stage is the

contagion stage where proliferation of the technology begins.

The third stage is the control stage where formalized planning

and control are introduced. The fourth stage is the

integration stage where plans are tailored to include all

aspects of the organization. The fifth stage is the data

administration stage where the organization has complete

shared data and common systems. The sixth and final stage is

maturity where data is used as a strategic resource.

Examining database development in terms of Nolan's stages

of growth helps explain the proliferation of databases in the

DOD. Putting this proliferation in terms of Nolan's stages of

growth, the widespread use of databases started in the

6

contagion stage. In this stage, senior and middle managers

became frustrated in their attempts to obtain information from

centralized systems. This frustration led to proposals for

more local databases. In DOD/DON, the initial emphasis on

data centers generated end-user frustration. Data was

supplied by the end-users, but access to that data was

limited. To resolve this problem many end-users throughout

the DOD/DON chain of command started to develop their own

specialized databases.

The databases that evolved were influenced by the data

model that was in vogue at the time of development. Once

these databases were populated, it was perceived as cheaper to

maintain, rather than standardizing on one model or format.

This was partly due to the view end-users took of their data.

Data was viewed as proprietary, not a strategic asset of the

entire DOD/DON.

After the explosive growth of databases, the DOD/DON

entered the control phase of Nolan's growth model. Here the

emphasis is on reduced costs. Redundancies are seen as

wasteful. This issue was discussed in appropriations testimony

before the House of Representatives on the Corporate

Information Management program. One example cited is the DOD

payroll systems. Throughout the DOD there are 27 different

civilian payroll systems, each with an associated database.

These systems range from 25 year old to state-of-the-art

technology. As for the Navy, the DON alone had nine systems

7

in use at the time of the testimony (DOD, 1991, pp.21-22).

This example highlights some proliferation problems associated

with the contagion stage of Nolan' growth model. As we move

further along in the control stage, many of these redundancies

will be examined in detail. This is part of the on going

Corporate Information Management (CIM) initiative. Of ten,

redesigning and rebuilding systems from scratch to eliminate

redundancies is not feasible. Designing systems that can

access data already available is a more likely option.

However, the requirement is a system that can access and share

data across the existing heterogeneous databases. This

process has defaulted tc a manual one that combines numerous

queries across the heterogeneous databases of interest. To

avoid the inefficiencies created by this manual process,

problems related to homogenizing heterogeneous databases must

be resolved. To solve these problems requires an

understanding of the different types of heterogeneity that

exist in database applications.

B. TYPES OF BETEROGINEITY

Heterogeneity exists at three basic levels. The first is

the information systems level. Data is managed by a variety

of information systems based on different data models and

languages (e.g., file systems, navigational database systems,

relational database systems, etc.). The second level of

heterogeneity is that of semantics. Since different

8

information systems have been designed independently, semantic

conflicts are likely to be present. This includes both schema

(e.g., name, type conflicts) and data (e.g., inconsistencies)

conflicts. Finally, the third level of heterogeneity is that

of hardware, operating systems, and communications. The three

levels of heterogeneity as it applies to database applications

are discussed briefly in the following sections.

1. Database Management Systems Heterogeneity

The need to share large amounts of data led to the

development of centralized databases and database management

systems. The data was grouped by files of records. Each

record contained several attributes. Managing the files via

a database consisted of three primary tasks, defining the data

structure, developing a data manipulation language, and

developing a data query language (Parsaye, 1989, pp.40).

The data manipulation and query language depended on

how the user perceives the data in the database. The three

core models that evolved were the hierarchical, network, and

relational models. All three of these data models are still

in use.

The hierarchical model is based on the concepts of a

tree structure. Each node has branches that point to the

children of that node. Every node has a parent except for the

root node. Hierarchical databases often exhibit poor

flexibility, but have good performance.

9

The network model is similar to the hierarchical

model. However, it uses additional pointers so that links

between any nodes can be created. CODASYL is a good example

of a network model that developed out of the COBOL language

(Gillenson, 1990, pp.256). Both the hierarchical and network

models are considered navigational data models which get their

power from storage and retrieval techniques.

The relational model uses tables to view data. It is

based on the concept that data is organized and stored in two-

dimensional tables called relations. Each row in a table

represents a record. Each column represents a field. The

entire table is roughly equivalent to a file (Kroenke, 1988,

pp.132).

These three models represent the foundation of most

database management systems (DBMS) in use today. Over time,

the need for adding more semantics to the models was

recognized. This led to the development of models that tried

to capture more semantic information. Chief among these

models was the Entity Relationship Model. An entity is a

representation of a real world object. Each entity has

properties or attributes. Entities in a particular system

have symbolically stated relationships.

The latest data model is the object-oriented model.

The object-oriented model uses objects to model the domain of

interest. The objects have names, attributes, and methods

associated with them. Object-oriented databases are gaining

10

in popularity and the use of the object model as an

integrating data model in heterogeneous environments is the

focus of this thesis.

2. Data and Schematic Heterogeneity

Since databases are developed independently with

different designs, semantic conflicts are likely to occur.

Semantic conflicts are classified as either schema or data

conflicts.

Schema conflicts occur when different structures or

symbology is used to represent the same information, or when

a similar structure or symbology is used to represent

different information. Schema conflicts include name and

structure conflicts. Data conflicts are generally caused by

failures to maintain a database or data entry error. These

conflicts include violations of databases integrity

constraints, the use of different representations for the same

data, and inconsistent data. In the next chapter, we present

an overview of schematic and data heterogeneity in relational

databases.

3. Platform Heterogeneity

"Heterogeneous computing environments consist
of dissimilar hardware or software systems.
Because of the diversity, interconnecting
systems is far more difficult in heterogeneous
environments than in homogeneous environments
where each system is based on the same or
closely related, hardware and software."
(Notkin, 1987, pp.41)

11

Heterogeneity of hardware is often unavoidable. It

occurs in DOD/DON through the acquisition process. As

technology evolves, different types of hardware systems are

developed that meet the specification of proposals which start

the acquisition process. The DOD/DON traditionally goes for

the least expensive system that meets the specification

without regard to existing architecture (unless existing

architecture is taken into account in the specification).

The problems that arise due to hardware and software

heterogeneity generally fall under one of the following

general areas; interconnection, filing (data storage),

authentication, naming, and user interfaces. The following

paragraphs give a brief description of each problem.

Interconnection problems deal with how dissimilar

systems communicate. Two basic mechanisms for communication

are message passing and remote procedure calls. Message

passing consists of passing data asynchronously from one

process to another. Remote procedure calls provide semantics

across a network that are similar to procedure calls in a

standard programming language. This type of communication is

synchronous in nature. Either of these methods must work with

a standard set of communication protocols such as TCP/IP.

The filing problems center on the different data

formats used by different computer architectures. An example

would be one system using ANSI retrieving a file from a system

12

aI

using EBCDIC or a system that uses 16 bit words retrieving a

file from a system that uses 32 bit words.

The authentication problems deal with the concerns of

three broad problem areas: sources of distrust and diversity

with respect to authentication; identifying the actual

function of authentication and authorization; and

accommodating the need for local autonomy within global

authentication environments.

The naming problems center on the naming scheme

adopted for files or applications. Names come in two types,

relative and absolute. An absolute name refers to the same

object regardless of its context. This facilitates sharing

since a common vocabulary would be implied. A relative name

is context dependant. Relative naming has greater utility.

Another problem related to naming is the choice of a single

global homogenous name space, or many local name spaces. The

choice of naming scheme will have a design impact on the

development of any multidatabase system.

The final problem area deals with the user interface.

Mark Weisner of the University of Maryland defined four levels

of user interface heterogeneity; (1) what the user sees, (2)

what the application sees and provides, (3) what the window

system sees and provides, and (4) what the hardware provides

(Notkin, 1987, pp.48-49).

13

C. PROPOSED SOLUTIONS

There are two general approaches for providing integrated

access to a collection of heterogeneous databases. They are

the multidatabase or composite approach and the federated

approach.

1. The Kultidatabase or Composite Approach

The multidatabase or composite approach relies on a

global schema. The global schema provides a description of

the information in the heterogeneous composite databases and

make up a logically single, integrated database. Access and

manipulation operations are expressed in a universal query

language and mediated through the global schema. This format

provides the user with the illusion of a centralized database.

(Collet, 1991, pp.50)

Construction of a global schema is a difficult

process. The main reason is the lack of a general solution

for the semantic conflicts in a situation in which the

autonomy of each of the constituent databases is preserved

(Litwin, 1986, pp.213). Furthermore, the process must be

repeated every time a composite database schema changes or

another composite database is added to the system.

The users are not required to know what semantic

conflicts exist among the composite databases. However the

developers must provide explicit resolutions for the conflicts

before actual system use. In essence a centralized view of

14

all the composite databases is developed. This centralized or

virtual view may be different from the local views of the

composite databases. The view discrepancy can cause problems

in the execution of existing applications.

2. The Federated Approach

By contrast with composite or multidatabase systems,

the federated database uses an organization model based on

equal, autonomous databases, with sharing controlled by

explicit interfaces (Heimbigner, 1985, pp.48). The user is

shown a collection of local views along with tools for

information sharing among the composite databases. In

essence, a virtual global schema is created.

Federated databases try to minimize central authority,

yet support partial sharing and coordination among composite

databases. Without the constraint of a central authority the

federated system tries to maintain as much composite database

autonomy as possible and still support strong information

sharing.

To facilitate the conflicting requirements of autonomy

and data sharing, the federated architecture relies on three

component schemas: private schema, export schema, and import

schema. The private schema is the schema that describes a

composite database and is stored at the location of the

composite database. The export schema is the portion of the

schema that a particular composite database is willing to

15

share. The import schema specifies the information that

composite databases desire to use from other composite

databases. (Heimbigner, 1985, pp.54)

Negotiation is another key feature of the federated

architecture. This system is conceptually made up of two

parts; an interpreter, and a collection of procedures written

in the negotiator's language. This negotiation aspect is

where most of the heterogeneous conflicts are resolved.

D. INTEGRATING MODEL REQUIREMENTS

Either approach requires a strong integrating model that

is semantically rich enough to subsume the component

databases. The composite or multidatabase needs a

semantically rich model to build an all encompassing global

schema. The federated model needs a semantically rich model

to supply the needs of its negotiator. This thesis uses the

object oriented model as the integrating model and develops a

framework for representing the semantic heterogeneity for this

model.

16

III. SCHEMA AND DATA CONFLICTS IN THE RELATIONAL MODEL

This chapter is a synopsis of an article by Won Kim and

Jungyun Seo from the December 1991 issue of Computer magazine

called "Classifying Schematic and Data Heterogeneity in

Multidatabase Systems." The article developed a complete

framework for enumerating and classifying the types of

multidatabase system structural and representational

discrepancies.

When viewed in a relational sense, the schema conflicts

can be categorized in three main area's: table-versus-table

conflicts, attribute-versus-attribute conf'!ics, and table-

versus-attribute conflicts. Eac!, of these can be further

broken down. We will look aL each schema conflict subarea

separately, and then discuss the data conflicts.

A. TABLE-VERSUS-TABLE CONFLICTS

The table-versus-table conflicts occur when different

databases use different definitions to represent similar

information in tables. Table versus table conflicts can be

categorized as one-to-one and many-to-many table conflicts.

One-to-one table conflicts occur when the different databases

represent similar information using different names,

structures, and constraints in single tables. The table name

17

conflicts arise when different names are used in different

databases to represent semantically equivalent tables. An

example would be one table named "document" that describes

real world paper-media documents, and another database with a

table "publication" that describes the same object. A second

version of this conflict occurs when different databases use

the same table name to represent semantically different

tables. Going back to the document example, we compare this

to another database that has a table named "document", yet the

attributes describe those of a file on a harddrive in a

computer versus a paper media. The table structure conflicts

occur when different databases have similar tables, yet the

numbers of attributes in the tables differ. The table

constraint problem arises from differences in the

specifications of the tables in the different databases.

These problems are associated with the use of primary,

candidate, and foreign keys. If an attribute is a key in one

database, but the corresponding attribute in the table of

another database is not a key, it is difficult to impose

constraints on this attribute at a homogenizing level. Thus,

making updates based on a key with a conflict is difficult.

Many-to-many table conflicts occur when different

databases use a different number of tables to represent the

same information. This type of conflict can usually be

decomposed into one-to-one table conflicts.

18

B. ATTRIBUTE-VERSUS-ATTRIBUTE CONFLICTS

The attribute-versus-attribute conflicts occur when

different definitions for semantically equivalent attributes

exist in different databases. Like table conflicts, one-to-

one and many-to-many attribute conflicts exist. Many-to-many

conflict, however, can be decomposed into one-to-one

conflicts. The attribute-versus-attribute conflicts can be

categorized as attribute name conflicts, default value

conflicts, and attribute constraint conflicts.

Attribute name conflicts arise from using different names

for semantically equivalent attributes in different databases

or when the same attribute name is used for semantically

different attributes. This is very similar to the table name

conflicts described earlier.

Attribute default value conflicts arise when one database

enters a null when no attribute value is entered, while

another database enters another default value when no value

for the same attribute is entered.

Attribute constraint conflicts fall under two types; data

type conflicts and attribute integrity-constraint conflicts.

Data type conflicts occur when semantically equivalent

attributes in different databases have different data types.

An example would be an attribute representing a social

security number stored as a numeric type in one database, and

as a character type in another database. Attribute integrity-

constraints conflicts arp similar to default value conflicts.

19

Specifically, they deal with the field size of an attribute.

An example would be the attribute weight in one database being

defined as an integer less than 999, while the same attribute

is defined as an integer less than 9999 in another database.

This would cause a problem in homogenizing the two databases

when a four digit value is entered. It would work for one

database, but not the other.

C. TABLE-VERSUS-ATTRIBUTE CONFLICTS

The third category is table-versus-attribute conflicts.

These conflicts occur if one database uses tables while

another uses attributes to represent the same information.

Often this conflict type can be regarded as a combination of

many-to-many table conflicts and many-to-many attribute

conflicts.

D. DATA CONFLICTS

In relational models the data conflicts fall into two

subcategories: data conflict that violate specified integrity

constraints and conflicts based on different representations

for the same data. The first problem can be expressed as

wrong data. This is generally caused by a failure to maintain

a database or a failure to enforce integrity constraints. We

see this problem when equivalent attributes of different

databases are expected to have the same value, yet the values

are different. Another common cause of this problem is

20

obsolete data. This can be seen when two databases have

similar data, yet one has more frequent update periods. An

example would be two similar databases that track individual

flight hours. One is updated weekly and the other is updated

monthly. If each database was queried for LT Smith's flight

hours, the results are likely to be different.

The second type of data conflict, different

representations for the same data can actually be viewed in

three different aspects. The first deals with different

expressions. This occurs when the same type of data has

different expressions in different databases. An example

would be listing LT Smith's rank as "LT" in one database and

"0-3" in another. In USN terms both mean the same thing. The

second aspect deals with different units. These conflicts

arise when different databases use different units for similar

numeric data. An example of this would be a flight time

database that uses minutes as the measurement of flight time,

while another flight hour database that uses hours and partial

hours to record the flight time. The third aspect is

different precision. Precision conflicts occur when two

similar databases use values from domains of different

cardinalities for the same attribute. An example would be one

data base that uses light, medium, and heavy to describe the

weight of an aircraft, while another uses a numeric range of

100 to 200,000 pounds to describe weight. Figure 1 is a

21

synopsis of the schema and data conflict classifications. (Kim,

1991, pp.1 2 -18)

E. CONCLUSION

The objective of this thesis is to develop a similar

framework for classifying schematic and data conflicts in an

object-oriented model. The next chapter introduces the

object-model used in support of this endeavor.

22

I. Schema Conflict

A. Table-versus-table conflicts

1. One-to-one table conflicts
a. Table name conficts

1) Different name for
equivalent tables

2) Same name for different tables

b. Table structure conflicts
1) Missing attributes
2) Missing but implicit attribtes

c. Table constraint conflicts

2. Many-to-many table conflicts
B. Attribute-versus-attribute conflicts

1. One-to-one attribute conflicts
a. Attribute name conflicts

1) Different names for
equivalent attributes

2) Same name for different attributes
b, Default value conflicts
c. Attribute constraint conflicts

1) Data type conflicts
2) Attribute integrity-contraint conflicts

2. Many-to-many attribute conflicts
C. lable-versus-attribute conflicts

II. Data Conflicts

A. Wrong data
1. Incorrect-entry data

2. Obsolete data
B. Different representation for the same data

(Same representation for different data)
1. Different expressions
2. Different units
3. Different precisions

Figure 1 Schema and Data Heterogeneity Conflicts in
Relational Models

23

IV. THE OBJECT-ORIENTED MODEL

The use of an object-oriented model gives us richer

semantics and greater modeling power over alternate

approaches. Additionally, an object-oriented model is an

ideal integration model for combining heterogeneous databases.

A. MANAGING COMPLEXITY

An object-oriented model is used for representing and

managing complexity in a problem domain. Although there is no

general consensus on what constitutes an object-oriented

model, there are some agreed-upon characteristics that give an

object-oriented model its semantic richness(Brown, 1991,

pp.20). These characteristics include data and procedural

abstractions, encapsulation, inheritance, associations,

communication via method connections, and function

overloading.

1. Abstraction

There are two types of abstraction, procedural and

data. Procedural abstraction is the principle that any

operation that achieves a well defined effect can be treated

by its users as a simple entity, despite the fact that the

operation may actually be achieved by some sequence of lower-

level operations. Data abstraction is the principle of

24

defining a data type in terms of the operations that apply to

the object with the constraint that the values of such objects

can be modified and observed only by the use of the operations

(Coad, 1991, pp.14).

2. Encapsulation

Encapsulation is a facility that serves to protect

some part of a program or data against improper access.

Central to the object-oriented model is the concept that the

entities of interest in the real world can be modeled most

effectively by representing each real-world entity as an

object in the model. The definition of such an object

includes both the data properties of that object and the

operators which are permitted to manipulate that object. The

essence of encapsulation is that such operators form an

interface to objects which provide the only way to amend the

state of the objects. The user of an object has no way to

access that object other than through the defined set of

operators (Brown, 1991, pp.19). Encapsulation is often used

to enforce information hiding. The power of encapsulation is

that it keeps related content together.

3. Inheritance

Inheritance is a mechanism for expressing similarity

among classes, and simplifying definitions of classes similar

to those previously defined. In general, we find that a

subclass hierarchy can be defined in which a subclass is a

25

specialization of its superclass in the hierarchy. An

important aspect of this specialization is that we do not need

to define each subclass from scratch. We think of a subclass

as inheriting the behavior of its superclass (Brown, 1991,

pp.20). This inheritance portrays generalization and

specialization making common attributes and functions explicit

within class hierarchy. Inheritance allows for the explicit

expression of commonality. (Coad, 1991, pp.15)

4. ASsociation

Association is the ability to tie together certain

things that happen at some point in time or under similar

circumstances. In constructing any type of information model,

we are concerned with identifying associations between things

in the real world and reflecting those associations as

precisely stated relationships in the model (Shlaer, 1988,

pp.47). To have an association is to have some logical

connection.

5. Conmunication and Method Overloading

Communication with messages is a principle for

managing complexity, especially for interfacing different

objects. This communication takes the form of producing

functions (or methods). Message data is passed to an object,

the data in the message causes reactions with the object.

These reactions can be thought of as methods. Methods with

the same name can cause different reactions depending on the

26

amount and type of data supplied in the message. This allows

for method overloading.

B. THE BUILDING BLOCKS

1. Class and Objects&Class

An object is an abstraction of something in a problem

domain, reflecting the capabilities of a system to keep

information about it, interact with it, or both (Coad, 1991,

pp.53). Another way of looking at an object, is that it is an

encapsulation envelope. It encapsulates knowledge in the form

of attribute values and exclusive methods that can be

performed with or on the object. 1

Class is a lescription of one or more objects with a

uniform set of attributes and methods, including a description

of how to create new objects in the class. A class of objects

contain common traits or attributes and have the same

behavior. Figure 2 shows the symbology used to represent an

object&class and a class.

The top part in either object&class or the class

symbol contains the name of the object or class. This name is

a noun that describes the basic concept of the object. The

middle area of the object&class or class symbol contains the

attributes of the object&class or class. The bottom area of

I The object model used in this paper is based on the
model proposed by Coad and Yourdon in "Object-Oriented
Analysis", Yourdon Press, 1991

27

NAME NAME

Attributes Attributes

Methods Methods

Object&Cless Class

Figure 2 Class and Object&Class

the symbol contains a list of the methods associated with the

object&class or class.

2. Structure

The structure is a symbolic expression of the problem

domain complexity, pertinent to the systems responsibility

(Coad, 1991, pp.78). It indicates the relationships among the

object&classes and classes. In this model two types of

structure exist. Generalization-specialization structure and

whole-part structure.

Generalization-specialization structure is used to

distinguish between similar but not identical classes. The

attributes and methods germane to the actual class are

inherited in the specialization class. The generalization-

specialization structure allows for a method of organization

28

that implies inheritance from generalization class to

specialization class and allows for an explicit representation

of more attributes and methods pertinent to the specialization

class. This structure notation is shown in Figure 3.

GENERALIZATION

SPECIALIZATION1 SPECIALIZATION2

Figure 3 Generalization-Specialization Hierarchy Structure

Their are two types of generalization-specialization

structure forms. The structure forms are either a hierarchy

(as depicted in Figure 3) or a lattice. Though the hierarchy

form is the most common, the lattice structure can capture

more information. Specifically, the lattice structure can

highlight additional specializations and explicitly capture

commonality while only modestly increasing model complexity

(Coad, 1991, pp.89). This notation is depicted in Figure 4.

The whole-part structure is based on a basic method of

organization. It groups a whole object with the parts of that

object. An example of this would be a whole object called

29

AIRCPF

MI LITAR(A/C CIILIANA C E, CPZA/

FMILITAMY.ETAIC MILITARYPWO/ C CIVILIAK~.EA/C CIVILIAN~qOA/C

Figure 4 Generalization-Specialization Lattice Structure

ship, associated with a number of part objects like

propulsion-plant and cargo. The notation to represent a

whole-part structure displays directionality and explicitly

the number of parts related to the whole. The notation is

depicted in Figure 5.

The term multiple structures is used to describe

combinations of general-specialization and whole-part

structures. The essence of structure is that structure is an

expression of problem-domain complexity pertinent to the

system's responsibility. Structure is used as an overall term

describing both generalization-specializa\:ion and whole-part

structures (Coad, 1991, pp.99).

30

I I

PAWT PART2

Figure 5 Whole-Part Structure

3. Attributes

Attributes add detail to the class, object&class and

structure abstractions. An attribute is some data or store

information for which each object in a class has its own

value. Attributes may only be changed by exclusive methods.

If another part of the system needs to manipulate an attribute

of an object, it must specify a message connection that

contains information to a method defined by the object (Coad,

1991, pp.120).

Each attribute of an object must capture a complete

compact concept. This concept must be important to the

problem domain. Making each attribute a complete compact

concept reduces the number of attributes that must be included

in the object. This leads to a simpler model for review.

31

Attributes of a generalized class in a generalization-

specialization structure also apply to the specialization

objects of that generalized class. Determining were

attributes should be placed in a structure is an important

part of determining the generalization-,-ecialization

structure.

4. Instance Connections

Instance connections model associations. An instance

connection models the problem domain mapping that one object

needs with other objects in order to fulfill its

responsibilities. These can be one-to-one instance

connections causing a mandatory association between one object

and another, or optional association, or mandatory one way but

optional in the other direction. One-to-many, or range of

possibilities, is also captured in instance connection

symbology. (Coad, 1991, pp.126) An instance connection is

modeled in Figure 6.

5. Methods

A method is a specific process that uses data from an

object. Up to now we have discussed how to model data.

Methods are how we model processes.

Each object exists in different states. The state of

an object is reflected by the values of it's attributes.

Methods are the processes that change the values of the

attributes. This implies that knowledge about the state of an

32

SHIP CREW-MEMBER

01m

Figure 6 Instance Connection

object is important when examining met1hods.

The methods of a system can be divided into two main

types; algorithmically-simple methods and algorithmically-

complex methods. Algorithmically-simple methods apply to each

class and object in the model. They are create, connect,

access, and release methods. The create method is used to

create and initialize a new object in a class. The connect

method connects or disconnects an object with another object.

The access method sets the attribute values of an object. The

release method deletes an object. The algorithmically-complex

methods fall into two categories. The calculate category

methods use attribute values to calculate specific results.

The monitor category methods monitor external systems or

devises.

33

6. Kessage Connections

Message connections are the means of connecting object

to facilitate methods. These connections exist solely for the

benefit of the methods. Each message connection represents

values sent within the context of a particular method and a

response as a result of that method (Coad, 1991, pp.155). The

notation for a message connection is a dashed arrow connecting

objects or a class to objects as shown in Figure 7.

SERVER RECEIVER

Attributes Attributes

Met hods Methods

Figure 7 Message Connection

Additionally, one message connection sender object can

send a message to multiple receiver objects. The values sent

in the message connection invoke methods in each object that

receive the connection. The annotation is shown in Figure 8.

34

SERVER

Attributes /"

Methods

Figure 8 Multiple Message Connections

C. CONCLUSION

This chapter explained the tools used to analyze the

problem domain in the framework of object-oriented analysis.

The notations used were adopted from "Object-Oriented

Analysis" by Peter Coad and Edward Yourdon. These tools give

us a strong modeling power, and support the semantics needed

to represent the semantics of many data models. These

concepts and tools are used in the next chapter to transform

schemas of databases based on several data models into

equivalent schemas in an object-oriented model in preparation

for integration into a global schema.

35

V. HETEROGENEOUS DATABASE SCENARIO

A. BACKGROUND

The database scenario used in this thesis comes from a

U.S. Navy Maritime Patrol Training Squadron. The squadron is

the east coast training squadron for all P-3C maritime patrol

aircraft aircrew positions. We examine four heterogeneous

databases that have been independently developed to support

various applications of the squadron. Specifically, the

databases include a library database for classified material,

an aircrew physiology database, a Naval Air Training,

Operations and Standardization (NATOPS) department database,

and a flight schedule database.

These databases were developed by different people and at

different times using different data models. They have never

been standardized in terms of data elements. All of them run

on personal computers. They were developed with either "Q and

A", "Dbase III plus", or "Enable". The command has interest

in developing more databases, but lacks the expertise to

design and implement an overall database application that

covers all of their needs.

Each of the databases being examined has a specific

purpose. The library for classified material database

maintains data on all classified material used for

36

instruction. The flight physiology database tracks the status

of student and staff aircrewmen in regards to physiology,

survival, and other expiring qualifications. The NATOPS

department database tracks NATOPS qualifications and NATOPS

publications issued to all aircrewmen. The flight schedule

database is used to promulgate a daily flight and ground

training events' schedule. Frequently, queries that span

across these databases need to be answered. Currently, this

is accomplished manually through a tedious procedure. First,

the database that contain the data to be accessed are

identified. Second, several queries in different languages

are formulated and executed on the different databases.

Third, the results are transferred to the requesting site,

combined, and the requested information extracted and

formatted. Additionally, considerable overlap occurs among

the four databases.

To allow queries that span several databases, a federated

approach is suggested. With this approach, each local

database is considered a logical component in the federation

(Heimberger, 1985, pp.48). The components are tied together

by explicit interfaces that form a virtual global schema that

represent the integration of the local schemas. To accomplish

this several steps are necessary. First, each local schema is

transformed into an equivalent schema in a semantically rich

common data model. Second, schema conflicts need to be

identified and resolved. Third, the local schemas in the

37

common data model are merged to form a virtual global schema.

Fourth, an additional control component, known as the global

controller, is required. The global controller maintains the

definition of the virtual global schema and acts as a

coordinator and translator: it receives a global query,

possibly in a user specific language; translates it into an

equivalent query on a common-model global schema; decomposes

and translates the common-model query into subqueries to the

corresponding local database sites for processing; collects

the results; identifies and resolves data content conflicts;

reformats the results; and sends it back to the originating

site.

B. THE LIBRARY FOR CLASSIFIED MATERIAL DATABASE

The library database contains the data necessary to track

classified document that are issued to students and

instructors while under a course of instruction at the

training squadron. The data is grouped by different

components: the library data includes the name of the library

and the custodian; document data includes the publication

name, document number, classification, status (checked in or

out), and if status is checked out the social security number

of the document holder; student data includes name, social

security number, locker number, secret folder numbers, class

number, and crew number; staff data includes name, social

38

security number, locker number, secret folder numbers, safe

number, and crew number.

Each document has a serial number; each student has an

assigned locker and secret folder number; and each instructor

has a secret folder number. Documents classified below the

secret level are issued to students. The students store them

in their confidential lockers when not in use. Secret

documents are issued to students, but stored in student secret

folder in the IML vault. The students check out their folders

when they need documents for class, study, or flights.

Instructors can check out confidential documents and store

them in approved safes. Additionally, they can check out

secret documents and store them in approved safe or use a

secret folder in IML. The choice for instructors comes down

to a matter of convenience; however, all applicable security

precautions apply.

The IML staff conducts a daily inventory of all secret

material. This is conducted at the end of the normal work

day. This inventory includes all secret material not issued,

all student secret material, and all instructor material

stored in IML's vault. Instructor material stored in

individual safes are periodically inventoried. All other

student material is inventoried upon check-in and check-out.

This occurs every six weeks.

Problems that arise are usually related to the flight

schedule. Often, an individual has material signed out, and

39

is on a flight or trainer that is scheduled to land or finish

after normal working hours. This material is stored in a

separate safe and inventoried the next morning.

1. Classified Library Relationship Diagram

The classified library relationship diagram is

depicted in Figure 9.

LIBRARY

I Llb% Custodian

DOCLUMENT

I-bNafne Publication DocNu- Statusi Classification

DOCUMENT- DOCOLDER

OocNumI Z

DOCHOLDER

Nme SS ILockerIn SeCFoINUM

STUDENT

55 CiaseNtn I 0.WNtn

STAFF

SS O~ffc*Num SafeNum
SSI - I - I

Figure 9 Library of Classified Material Relational Diagram

40

2. Classified Library Data Dictionary

NAME TYPE(Length) Description

LibName Character (30) Name of Library

Custodian Character (35) Name of Custodian

Publication Character (50) Title of Document

DocNum Numerical (5) Assigned Serial Number

Status Character (4) In or out of library

Classification Character (6) Conf, Secret, or None

Name Character (25) Name and Rank of Person

SS Numeric (9) Social Security Number

LockerNum Numeric (3) Assigned Locker Number

SecFolderNum Numeric (3) Assigned Secret Folder

ClassNum Numeric (4) Assigned Class Number

CrewNum Character f2) Assigned Crew Number

OfficeNum Character (3) Office Number

SafeNum Character (3) Safe Number

3. Transformation Process

The transformation process is started by examining

each table to see if it could be modeled as an object. Most

objects are either tangible things, roles, incidents,

interactions, or specifications (Shlaer, 1988, pp.14).

The easiest objects to identify are the tangible

things. Library, document, and document holder fit in this

category. Student and staff also fit, but they are specific

types of document holders. They are modeled as

41

specialization objects to the generalization object document

holder. The Docunent-DocHolder relationship is not an object

but conveys a necessary relationship that must be modeled.

After determining objects, we list attributes

associated with each one. Next, we examine the application to

determine the methods associated within each object. The

implicit methods of add, edit, and delete are not modeled.

They are implied in the object class structure. The methods

that must be modeled are library inventory, custody reports,

individual inventory, check-in and check-out.

4. The Classified Library Object Model

The classified library object model is depicted in

Figure 10.

I~f

I- - - - -- --------------

Fi~rei0 Cassiied ira Obec Mde-4-2

0'M

cImSrfkstIa

Figure 10 Classified Library Object Model

42

C. THE FLIGHT PHYSIOLOGY DATABASE

The flight physiology database consists of data on

officers, enlisted personnel, and aircrew qualification

requirements. The data is grouped by the different

components: officer data includes name, rank, social security

number, birth month, and designator (pilot or flight officer);

enlisted data includes name, rate, birth month, and social

security number; requirement data includes type of requirement

and the date it is due.

Every naval aircrew member must have certain expiring

qualification to continue flying. These include flight

physicals, basic survival swim qualifications, advanced water

survival (DWEST), flight physiology training, instrument

qualifications, SERE, and NATOPS qualifications. The aircrew

position determines which events are required and how often.

If a required qualification lapses, the particular aircrew

member is considered in a down status until that qualification

is obtained. While in a down status he cannot perform his

normal aircrew duties.

1. Flight Physiology Relational Diagram

The flight physiology relational diagram is depicted

in Figure 11.

2. Flight Physiology Data Dictionary

NAME TYPE(Length) Description

LastName Character (25) Last Name of Individual

43

OFFICER

LastName FIrstNane MI Rank Binth Designator Soc

REQU I REMENT

Type Dueate Soc

ENLISTED

LastName FlrstName MI I Rate Bmonth Sc I

Figure 11 Flight Physiology Relational Diagram

FirstName Character (25) First Name of Individual

MI Character (1) Middle Initial

Rank Character (5) Rank

Bmonth Character (3) Birth Month

Designator Character (4) Designator of Officer

Soc Character (9) Social Security Number

Name Character (15) Type of Qualification

DueDate Date Date Qual Complete

Rate Character (7) Rate of Enlisted

Crewnum Character (4) Number of assigned crew

44

3. Transformation Process

All of the tables can be transformed to objects,

however, officer and enlisted share a number of attributes.

This similarity is captured by using a generalization-

specialization structure. Creating a class to capture the

similar attributes is used. This class is labeled

"servicemember" and has the attributes lastname, firstname,

mi, and soc. The specialization objects of this class are

"enlisted" and "officer".

The methods are derived from the applications of the

database. The database is used for planning inputs to a

master schedule and to notify individuals of expiring

qualifications. These methods are listed as "planninglist"

and "notification".

4. The Flight Physiology Object Model

The flight physiology object model is depicted in

Figure 12.

D. THE NATOPS DEPARTMENT DATABASE

The NATOPS department database consists of data on

officers, enlisted personnel, and NATOPS qualification

requirements. The data is group by the different components:

aircrew data includes name, rank, social security number,

position, and crew number; test and check flight data includes

type of test or check flight, date of item, test or flight

administer, and score; publication data includes name, number,

45

SERV I CEMEWER

LastName RE(QU I REWENT

FirstNanme

MI Name

Wwont h DueDate

SocSoc

Note irtIo PInni'M List

Notifiction 1%M IAM

ENLISTEDOFFICER

Rank

Figure 12 Flight Physiology Object Model

and current change number.

This database is used to track the NATOPS qualification

progress of aircrew. It keeps track of open and closed book

test scores, oral exam scores, and flight grades. Each

aircrew student is associated with an aircrew position. That

position is associated with required tests, oral exam and

flights. Additionally, the department tracks NATOPS

publications issued to all squadron aircrew.

Two primary applications are associated with this

database. In the first application, publications are tracked

for accountability. Additionally the database assists in

46

recall purposes when updates to publications are required.

The second application is generating a 90 day planning tool

where all personnel needing renewed or initial NATOPS

qualifications are tracked 90 days before their due date. This

tool is used as an input to a monthly planning calendar.

1. NATOPS Department Relational diagram

The NATOPS department relational diagram is depicted

in Figure 13.

AI RCREW

Flrstame LastNa'me Grade Position Socsec rewNu

TEST/CHECKFLT

Type D2ate, Issuecby Score Socsec 6

PUBLICATION

PubrNae PL~bNIJ1n ChangeNum Sce

Figure 13 NATOPS Department Relational Diagram

2. NATOPS Department Data Dictionary

NAME TYPE(Length) Description

LastName Character (25) Last Name of Individual

47

FirstName Character (25) First Name of Individual

Grade Character (3) Paygrade

Position Character (3) Crew position

Socsec Character (9) Social Security Number

Type Character (6) Open, Closed etc.,

Date Date Date Obtained

Issuedby Character (25) Name

Score Numeric (4) Numeric score obtained

PubName Character (35) Name of Publication

PubNum Character (6) Serial Number

ChangeNum Character (4) Latest change entered

BC Logical Blue Card Holder Y/N

CrewNum Character(4) Crew Number

3. Transformation Process

All of the tables can be modeled as objects.

Additionally, none of the tables contain similarities. So, to

make the transformation each table is transformed into an

object.

In determining the methods we examine the applications

that access this database. One primary application is

maintaining a publication inventory list. The second

application is generating a 90 day planning input for NATOPS

qualifications that expire in the next 90 days. Additionally

a third application is sending out change notices for

48

publications, and tracking change entries into applicable

NATOPS related publications. Finally the last application is

tracking individual performance.

4. NATOPS Department Object Model

The NATOPS department object model is depicted in

Figure 14.

A I CR•EW

F rrtiNkme
LastName

Grade

Position

Socsec
crewtuf

Performance

B * THEPUBLIGHTISHOUENAABSevents simuator vents reuiedevntotaf res

studetcrws, and4 airrM adeDtarutratdfrma

ehsbfcs
PULCAgTION |lninL

evns iuDlator evets reqire evnts, saf res

student crwadIice dddt r subtace foma

eventm. ThSaai ru ytedfeetcompoent:fih

event data includes event number, aircraft, preflight time,

49

take off time, land time, staff crew number and student crew

number; simulator event data includes event number, simulator

number, lab number, student crew number, staff crew number,

brief time, and end time; required event data includes event

number, event name, room number, start time, and end time;

staff crew data includes staff crew number, and the various

staff personnel assigned to that crew; student crew data

includes the student crew number and the various student

assigned to that crew.

The flight schedule database is used as a planning and

execution tool to promulgate a daily flight schedule. Events

are the primary focus of the database. These events are

either ground training events, simulator events, flight

events, or administrative events. Each event is given a time

block. Additionally, the required assets and personnel are

identified for each event.

The primary application is to ensure that required

training is accomplished without double scheduling personnel.

Assets may or may not be double scheduled depending on the

event. In terms of assets, it is possible to double schedule

most ground training events, but assets for flights and

simulators cannot be double scheduled. Administrative events

cannot be double scheduled unless they are of a large meeting

type. An example would be an all officers meeting. This

would apply to all officers not otherwise scheduled.

50

1. Flight Schedule Relational Diagram

The flight schedule relational diagram is depicted in

Figure 15 and 16.

Requirement

EventNuml RoomI Start I End Title

F It Sc hedu I e

EnevtNum Type J

Flight

P I uslverrber

EventANum Posif iton MemNum

EventNum NCosition IVemNum

StudentCrew

StuO-ew ISTUPILI STUPiL2 ISTUTO STUNC STUSSI

Simulator-

Evn~m SimNum ILabNum StuCrew ý stf Crew I B Ief E=nd

Figure 15 Flight Schedule Relational Diagram

51

StaffCrew

Stf Crew PPCNum ITCNum NCN,7m[SSINum ...

Staff PPC Staff NFtJ

Rank IName IPPCNum [Rnk IName INFONum

StaffSSl

Rat-e Name AWNum

St ude nt Cr ew

StuCrew STUPILI STUPIL2 STUTC STUNG STUSSI ..

StuAW StuPi lot

Pate IName StuAWNum RPank- Name S5tuPCNum

StuNFO

Rank Nam StuNFONum

Figure 16 Flight Schedule Diagram Part 2

52

2. Flight Schedule Data Dictionary

NAME TYPE(Length) Description

EventNum Numeric (2) Event Number

Type Character (6) Flight or Sim

A/C Character (5) Aircraft Side Number

Pre Numeric (4) Preflight Time

Toff Numeric (4) Takeoff Time

Land Numeric (4) Land Time

StfCrew Numeric(2) Staff Crew Number

StuCrew Numeric (2) Student Crew Number

PPCNum Numeric (3) Pilot ID Number

TCNum Numeric (3) NFO ID Number

NCNum Numeric (3) NFO ID Number

SSlNum Numeric (3) AW ID Number

Position Character (4) Position Code (PPC,TC,..

MemNum Numeric (3) NFO,Pilot,... ID Number

STUPILl Numeric (3) Student Pilot ID Number

STUPIL2 Numeric (3) Student Pilot ID Number

STUTC Numeric (3) Student NFO ID Number

STUNC Numeric (3) Student NFO ID Number

STUSSI Numeric (3) Student AW ID Number

SimNum Character (5) Simulator ID Number

LabNum Character (5) Assigned Lab Number

Brief Numeric (4) Brief Time

End Numeric (4) Session End Time

53

Rank Character (7) Rank or Rate of Person

Name Character (35) Name of Person

StuAWNum Numeric (3) Enlisted AW ID Number

StuPCNumn Numeric (3) Student Pilot ID Number

StuNFONum Numeric (3) Student NFO ID Number

Room Character (4) Room for Admin Event

Title Character (5) Name of Admin Event

3. Transformation Process

This is a more complex structure than the previous

databases. To capture this complexity we use a number of

whole-part structures and generalization-specialization

structures. Starting with the fltschedule table, we transform

this into an object with parts flight and simulator.

Additionally, both staffcrew and studentcrew are treated as

parts of simulator and flight. Likewise, plusmember and

minusmember are treated as objects with connections to flight

and simulator.

Some of the tables have similar attributes. To

capture this, we use a generalization-specializations

structure. We start by building a generalization class of

identical attributes from the aircrcý position related tables.

We then add a number of specialization class-objects to cover

the non-related attributes in staffppc, staffnfo, staffssl,

stuaw, stupilot, and stunfo. This generalization-

54

specialization structure is also part of a whole structure to

staffcrew or studentcrew.

To determine the methods, we must examine the

applications of the database. The primary objective is to

schedule required training without double scheduling

personnel.

4. Flight Schedule Object Model

The flight schedule relational diagram is depicted in

Figure 17 and 18.

55

FLTSCHEDULE

EiventNum

Type REQU I REMENT

Chk-DupG

CrtSchedule EvefliNum

Title

Room
Start

OM rind

O*.M 0G.M

FL IGHT SIMULATOR
G.M

EventNum EventNum

A/C S(mNum

Pre LaflNum

Toff StuCrew

Land Stf crew

StfCrew Brief1)

StuCrew End________________

PLUSMEMBER M I NUSMENBSR

I I I I ~EventNta'1 Eventlslun

Position Position

MemNvnl MemNt~mn

STAFFCREW STUDENTCREW

Stf Crew StuCrew

PPCNiayi STUP IL1

TCNuiu STUPIL2

NCNum STIJTC

SSINLxin STUNC

Si-USSI

Figure 17 Flight Schedule Object Model Part 1

56

STLJOENTCRE\W

srAFFCREW
StuCrew

stfCrew STUPILI

PPCNum STUPIL2

TCNum AIRCREW STLJTC

NCNum STUNC

SSINum Grade STUSSI
CrewNun Name CrewNum

STAFFPPC j STAFFNFO STAFFSSI

PPCNum J NFONLwn AW14Lurm

STLPILOT STUNFO STUAW

StuPCNum St~uNFONum StuAWNum

Figure 18 Flight Schedule Object Model Part 2

57

VI. FRAMEWORK FOR SEMANTIC HETEROGENEITY

Schematic and data conflicts between databases are a

crucial problem in building multidatabase systems (Kim, 1991,

pp.81. The conflicts are caused by structural and

representational discrepancies or conflicts between component

databases. To build a homogenizing layer, a global schema is

needed. These conflicts must be resolved before constructing

a global schema. To accomplish this we build a framework for

enumerating and classifying the types of semantic

heterogeneity that could exist in the object-oriented database

model. The scenario developed in Chapter V will be used to

illustrate the conflicts of the framework. The object model

used is the model proposed in Chapter IV.

Semantic conflicts are divided into schema and data

contents conflicts (Kim, 1991, pp.12-18). Schema conflicts

are classified broadly by the level at which they could occur.

These levels are: object level conflicts, attribute level

conflicts, object-attribute level conflicts, and object method

conflicts. The framework covers two primary types of data

conflicts; inconsistencies and different representations for

the same data. Each level of the framework is discussed in

detail. Figure 19 is an overview of the types of conflicts

that are described.

58

A Schema Conf I icts

I. Object Level Conflicts

- Object name conflicts

- Object structure conflicts

2. Attribute Level Conflicts

- Attribute name conflicts

- Attribute constraint conflicts

- Attribute structure conflicts

3. Object-Attribute Level Conflicts

- Object-attribute structure conflicts

4. Method Conflicts

- Method name conflict5

- Method connection conflicts

B. Data Conflicts

1. Inconsistencies

2. Different Representations for the Same Data

- Different expresions

- Different units

- Different granularities

Figure 19 Object Model Semantic Conflicts

59

A. SCHEMA CONFLICTS

1. Object level conflicts

Object level conflicts occur when the heterogenous

databases use different representations for similar objects.

These can be decomposed into object name conflicts, or object

structure conflicts.

a. Object name conflicts

Object name conflicts are of two types. The first

is a homonym problem exhibited when the same name is used in

two databases to denote semantically different objects. The

second is a synonym problem that occurs when the same name is

used to denote semantically different objects. The database

scenario exhibits both.

The homonym conflict is seen in the following

example. The Flight Schedule model has an object called

requirement that refers to a required administrative event.

The Flight Physiology object-model has an object called

requirement that refers to required aircrew qualification.

Though these object have the same name they are not

semantically related. Figure 20 illustrates the problem.

Tne synonym conflict is seen in the following

example. The classified library object-model has an object

call docholder that refers to a person who has custody of a

document. The NATOPS Department object-model has an object

60

FLIGHT PHYSIOLOGY OBJECT MODEL FLIGHT SCHEDULE OBJECT L0DEL

REQUIREMENT RPE-U I REMENT

EventNum

Type Title

Couplet i onrte

Soc
Start

End

Planning List

Figure 20 Example of Homonym Object Name Conflict

called aircrew that refers to a person who also has custody of

a document. These two objects are semantically equivalent and

represent a person who has custody of a document, yet they

have different names. Figure 21 illustrates the problem.

NkTOPS Dapart-nt Object Clessified Library Object

A I RCREW DOCLUENTHOLDER

FIrstName Name
LASt Name Locker Nunter
Grade

Position Secret Fo Ider Nufn

Socsec
Irefeltor ysieet

Performance

" Both are abstrIctiom of a Pr who ha. custody of s publicution

" Oifferenceo In attributes is another seantic Problem ttt ili I

be addessed late-.

Figure 21 Example of Synonym Object Name Conflict

61

b. Object structure conflicts

There are three types of object structure

conflicts; generalization-specialization, whole-part, and

generalization-specialization to whole-part structure

conflicts. With these conflicts one must focus on the

attributes required in the query or application precipitating

the conflict. Object method conflicts are treated as a

special case and addressed later.In the generalization-

specialization structure conflicts, the attributes of an

object in one model are contained in a generalization-

specialization structure of another model. Consider the name,

rank, and social security number attributes. In the NATOPS

department model this information is contained in the aircrew

object. In the flight physiology model this information is

contained in the servicemember-officer generalization-

specialization structure. However, in the aircrew object,

grade encompasses both rate and rank in the officer and

enlisted objects of the generalization-specialization

structure in the flight physiology model. Figure 22

illustrates this situation.

In a whole-part structure conflict, the attributes

of an object in one model are contained in a whole-part

structure of another model. Consider the attributes name and

crew number. This information is contained in the aircrew

object in the NATOPS model, and in the whole-part structure of

staffcrew object and the studentcrew object in the flight

62

Flight Physiology model NATOPS Model

SERVI CBEEMER
A I RCREW

Last Name
LrST Nwie F i rst Name
First NAme LaSt Name

MI Grade

onth Posi t i on
Soc

Socsec

CrCewNiru

Notification

Performance

ENLISTED OFFICER

Rate Ronk
Desligntar

Figure 22 Generalization-Specialization Conflicts

schedule object model (The generalization-specialization

structure aircrew-staffPPC, aircrew-staffNFO, etc., does not

cause an additional conflict due to the concept of inheritance

of the generalization objects). Figure 23 illustrates this

situation.

In the generalization-specialization to whole-part

structure conflict the attributes of interest are contained in

a generalization-specialization structure in one model, and a

whole-part structure of another model. Consider the attributes

of name, grade, and crew number where grade is either the rank

of an officer, or the rate of an enlisted personnel. This

information is contained the generalization-specialization

63

IMThPS Idodf

Fglntt io

UtAFFCW MOsam

Paulormc.•

FI rbT.e 5RuleQE.T<:E

Si? STLILD
• rc~um

BTi~i i .

A I5 ILU2L

SSIIM STUC
cr'"U(•h Ný JTM1

0-0.4L.

- - I

SnTIILOT OTUWOSlp

Figure 23 Whole-Part Structure Conflicts

structure in the flight physiology model and in a whole-part

structure in the flight schedule model. Figure 24 illustrates

this situation.

In the generalization-specialization to

generalization-specialization conflict, the attribute of

64

•Mh

BMOW

Too- AIR3W EWILSwo
NI I I I~b'

I II

Figure 24 Generalization-Specialization to Whole-Part
Structure Conflicts

interest~ in one general ization -special izat ion structure are

found in a different generalization-specialization structure

of another object model. Consider the attributes of grade and

name, were grade is either an officer's rank or an enlisted's

65

rate. This information is found in a generalization-

specialization structure in the flight schedule model as well

as a generalization-specialization structure in the flight

physiology model. Figure 25 illustrates this situation.

In the whole-part to whole-part conflict, the

attribute of interest in one whole-part structure are found in

a different whole-part structure of another object model. Our

example does not contain an example of this conflict.

Modifying the NATOPS model so that publication is now a whole-

part structure. The natlib object will contain the name of

the +NATOPS library (assume we can now have more than one) and

it has NATOPS position publications (natpub) and crew station

maintenance manuals (crewman) as parts. The attributes of

interest are the library name and all the publications

contained in the libraries. This modified model contains a

whole object natlib that contains the attribute LibName and

parts natpub and crewman that contain all the publications.

The classified library model has a whole object called library

and two parts. One part is publication which contains all the

publication names in the library and the others are abstracts

of document holders. Figure 26 illustrates the modification

and the conflict situation.

66

Flight Physiology Model Flight Schedule Model

SNI CaEWBE
AIRCREW

LoStIh~maFirtNeme -e
Flrmttmae 00do

MI Name

beont h

SOc

Nat IfrIcut Ian

STAFFPPC STAFFNFO STAFFSS1

PPCNLu NFONui A~¶4JI

DeI)•orstor

STIJNO STIAW STUPILOT

StuuNFONufn St WNWUm St uPCNUI

Figure 25 Generalization-Specialization to Generalization-

Specializtion Strucure Conflicts

67

ClasesifIe Library Model Moidified Ne4TOPS Model

LI BARY

NATLI B

LibI~tw

LocationCCLttodoi nll

L I bIM

I nvmemrny

Cockd in
Chcout.

DOCtllElm . @ r •

1•,& I teal Ionl NAT';:UJ CREVM

S t a t u re P u b ~ u i n P u b l * N ý

Cls fctfrcagm"eu ChsnWeuM

stati; on

Chge~mot[e Ihg C O.rc

Figure 26 Whole-Part to Whole-Part Structure Conflicts

2. Attribute Level Conflicts

Attribute level conflicts occur when the heterogenous

databases use different delineations to represent similar

attributes of abstractions. These can be decomposed into

attribute name conflicts, attribute constraint conflicts or

attribute structure conflicts.

68

a. Attribute name conflicts

Attribute name conflicts are of two types. The

first is a homonym problem exhibited when the same name is

used to denote semantically different attributes. The second

is a synonym problem that occurs when the same name is used to

denote semantically different attributes. The database

scenario exhibits both.

The synonym conflict is exhibited in the following

example. In the classified library model, the attribute

'name' refers to the name of a person. In the flight

physiology model, 'name' refers to the name of a requirement

not a person.

The homonym conflict is seen in the following

example. In the flight physiology model the attribute name

for a social security number is 'soc'. In the NATOPS model

the attribute name for a social security number is 'Socsec'.

b. Attribute constraint conflicts

There are two types of attribute constraint

conflicts, data type and attribute integrity-constraint

conflicts. The data type conflicts occur when semantically

equivalent attributes in different models have different data

types or data length. In our example the attribute that

represents a social security number in the classified library

model, named 'SS', is of type numeric. In the flight

69

physiology model the same attribute, named 'soc', is of type

character. Similarly, in one model the length of the social

security field could be 9, while in another it could be 11 to

accommodate two hyphens. An example is "045-62-3436" vice

"045623436".

The attribute integrity-constraint conflict occur

due to dissimilar definitions of attribute constraints of

similar attributes in the different models. In our example,

in the flight physiology model the allowed values of rank are

Ens, Ltjg, LT, LCDR, CDR, CAPT, RADM, and VADM. In the flight

schedule model, the allowed values are Ens, Ltjg, LT, LCDR,

CDR, and CAPT.

c. Attribute structure conflicts

Attribute structure conflicts occur when a group of

attributes in one model are semantically equivalent to a

single or lessor number of attributes in another model. These

occur when semantically similar objects have a different

number of attributes. This can be further decomposed into a

missing attributes conflict, or missing but implicit attribute

In the missing attribute conflict one object is missing

attributes that a semantically equivalent object contains.

The attribute is truly missing and cannot be deduced. In our

example, the flight physiology model has an object called

requirement. The attributes are type, completiondate, and

70

Soc. The NATOPS department model object test/checkflt has

type, date, issuedby, socsec, score, and bc as attributes.

The objects are semantically similar. Requirement.type is

equal to test/checkflt.type. Requirement.completiondate is

equivalent test/checkf lt. date. Requirement.soc is equivalent

to test/checkflt.socsec. Test/checkflt has the additional

attributes of issuedby, score, and bc. None of these can be

deduced in the requirement object.

In the missing but implicit attribute conflict,

attributes in one object are missing, but can be deduced. This

can be a subtle distinction. Our scenario does not have a

good example of this. To illustrate we will change the last

example slightly. The requirement object will remain the

same. The test/checkflt object will now have the attributes

type, date, socsec, and name. Name refers to a persons name

that is associated with the socsec (social security number).

Now the missing attribute of name can be deduced in the

requirement object.

3. Object-Attribute Level Conflicts

Object-attribute level conflicts occur when

information in one model is reflected by an attribute and by

an object in another. The database scenario does not have a

good example of this. For our purposes assume the NATOPS

model has an object called aircraft. The object aircraft

contains attributes side-number, type, and version. The

71

flight schedule model has an attribute called aircraft that

identifies the aircraft by side number. The implication is

that knowing the side number implies type and version. So, the

information in an attribute in one model is contained in the

object of another model.

4. Method Conflicts

Method conflicts fall into two general types. The

classes are divided by conflicts that concern methods unique

to one model, or conflicts that concern the global or

integrated model. The types of method conflicts exhibited are

dependant on the type of homogenizing strategy employed.

a. Method name conflicts

With methods unique to one model, the primary

conflict that arises in a global view is a method name

conflict. This occurs when two heterogeneous models contain

methods with the same name and the method is being employeu

while exploiting a global schema. In our example, the flight

physiology model has an method called planning list that works

in conjunction with the attributes of the requirement,

enlisted, and officer objects of that model. The NATOPS

department model also has a method called planning list. It

was designed to work with the objects of that model. So, in

an actual or virtual global schema, a conflict would occur if

both methods are transported to the global schema.

72

b. Method message and instance connection conflicts

The second class of method conflicts occurs when a

method in a heterogeneous model is extended to apply to other

heterogeneous models in a real or virtual global schema.

Again the possibility of a naming conflict exists. However,

the conflicts here would more likely be related to conflicts

of message connections and/or instance connections. The

message and instance connections would relate to attributes

that exist in the local model or view. Extending the method

to the global model or global schema would entail establishing

message or instance connections to other heterogeneous models.

These connections could cause the manifestation of all

previously mentioned schematic conflicts.

B. DATA CONFLICTS

Data conflicts are of two distinct types; inconsistencies,

or different representations for same data. Data conflicts

are independent of the schema involved.

1. Inconsistencies

Inconsistencies are generally due to failures in

maintaining a database, such as failing to keep the database

up to date and failure to enforce integrity rules (Kim, 1991,

pp.17). The problems with inconsistencies can be expressed as

data entry errors or obsolete data.

Data entry errors occur when equivalent attributes in

different object models, which are expected to have the same

73

value, have different values. In our example the attribute

rank appears in the flight schedule and flight physiology

models. Rank is part of the same abstraction. It naturally

follows that an instance of similar objects in the two

different models should have the same rank. If however in one

data base, the rank of John Smith is LT, and in the other the

rank of the same instance is Ltjg, we have a case of wrong

data in one of the models. If this was due to an entry error,

it would be classified as an incorrect-data entry. It

naturally follows that an instance of similar objects in the

two different models should have the same rank. If however,

in one data base, the rank of John Smith is LT, and in the

other the rank of the same instance is Ltjg, we have a case of

wrong data in one of the models. If John Smith was recently

promoted to the rank of LT, and this was updated in one model

and not the other, this would be a case of obsolete data.

2. Different Representations for the Same Data

The three aspects of data that lead to its

representation are expressions, units, and granularity. These

are the areas of representational conflict we will examine

further.

a. Different expressions

Conflicts in expression can occur when two models

use the same data, but express it differently. In our example

the data in rank can be expressed as Ens, Ltjg, LT, LCDR, CDR,

74

or CAPT. This data could also be expressed as 0-1, 0-2, 0-3,

0-4, 0-5, or 0-6. In the U.S. Navy military rank structure

these codes are different expressions for the same data.

Using the same example, ensign, lieutenant junior grade,

lieutenant, etc., could be spelled out instead of using the

abbreviations. This would be a case of using different words

or strings for the same data.

b. Different unit for the same data

These conflicts arise when two models use different

units for similar numeric data. In our example we could

included an attribute qualduration of type numeric to both

the NATOPS department model and the flight physiology model.

In one we could have the numeric represent months, while in

the other the numeric represent years. So, even if both

attributes hold the same value they represent different

things.

c. Different granularity

Conflicts in granularity occur when two models use

values from the domain of different cardinalities for the same

data (Kim, 1991, pp.17). For example in our scenario the

NATOPS model has an attribute score. The data type is a

numeric from range 0.0 to 4.0 reflecting a 4.0 grading scale.

We can added a semantically equivalent attribute to the

flight physiology model and make it of an enumerated data type

of fail, very poor, poor, satisfactory, good, very good, and

75

outstanding. The domains now represent the same data, but use

different granularity.

C. CONCLUSION

In this chapter we attempted to develop a complete

framework for enumerating and classifying schematic and data

conflicts in a object-oriented database model. In the next

chapter several ideas are proposed to resolve these conflicts.

76

VII. PROPOSED SOLUTIONS TO SCHEMATIC AND DATA CONFLICTS

In this chapter we will consider the problems encountered

and the feasible solutions for querying the global schema. We

will focus on integrating the classified library, and the

NATOPS department databases. Problems encountered when

adding, deleting, or modifying data in a global schema are not

addressed.

To allow for queries to span these two databases a

federated approach is used. As indicated earlier the first

step in this approach is to transform the component database

schemas into equivalent schemas in the object-oriented model.

This was accomplished in Chapter IV. The second step is to

examine the component databases in the object-oriented model

and integrate them into a global schema after identifying and

resolving the schematic conflicts.

A. SCHEMA INTEGRATION RESOLUTION

The first step in this process is conflict identification.

To aid in identifying the schema and data conflicts we rely on

the framework developed in Chapter VI.

1. Object Level Conflict Resolutions

a. Object structure conflict resolutions

We begin by examining the library and NATOPS

department object models for object structure conflicts. The

77

classified library model, shown in Figure 28, has a

generalization-specialization structure made up of a

generalization object 'documentholder' and specialization

objects 'studentholder' and 'staffholder'. This structure is

semantically equivalent to the NATOPS object 'aircrew', shown

in Figure 27. This is the only object structure conflict

present, and is a generalization-specialization conflict. To

resolve structure conflicts in preparation for integration, we

remap the structure of the simpler model to a more complex one

to better match the structure of the complex model.

A IRCREW

F IretName

LastNeme

Grade

Pos)tion
Socsec
Crew"um

Per•f orwnnCe

0•1 0•1

"ITEST/ DIECKFLT
PUBLICATION

Type
PLbl•m 0'M 0O.L Date
PUDNu ii__$s _ _y

ChamngeNurn Sca:r"e

Sec

Inventory 8C-- .'.• . nn gs

ChgNotice

L I

Figure 27 NATOPS Department Object Model

78

II MAW

- - - - ------- r -Poo- Chu '

OSS.tft Oc WN M

Ifli.,llo.-I0 1 ,

0 1 o --

STUDEWOL~eRSrAPP43nM

Figure 28 Classified Library Object Model

When examining the two structures, it is obvious

that the classified library model is the more complex model.

To remap the NATOPS structure, we rely on the attribute

'position' to distinguish between student and staff personnel.

This attribute starts with 'stu' for student aircrew. For

example, a staff pilot is entered as pilot for position in the

NATOPS database while a student pilot is entered as stupilot.

To develop the structure we use the aircrew object as a

generalization object, and add staffaircrew and stuaircrew as

specialization objects. Position and crewnumber attributes

are moved to the corresponding specialization objects. Once

79

the models are remapped into an equivalent structure, the

object structure conflicts are resolved. Figure 29

illustrates the NATOPS data model remapping.

A I

ISTAFrPAIFCV STUAIRCF"

siOecti no mcnict Preso

The nret c lc m

OM

TIME/ CH-E(3=LT

library moe and the MLcoreomape A Smdl Thpe folwn

PUbNur* luDitt

ChamngeNun Scare

invntry
Chaiot.l l ~ 'fS e

Figure 29 NATOPS Department Remapped

b. Object name conflict .resolutions

The next conflicts to resolve are the object name

conflicts. When resolving these conflicts we focus on the

library model and the remapped NATOPS model. The following

object name conflicts are present: Library.documentholder is

equivalent to NATOPS.aircrew, Library.studentholder is

80

equivalent to NATOPS.stuaircrew, Library.staffholder is

equivalent to NATOPS.staffaircrew, and Library.document is

equivalent to NATOPS.publication. These object name conflicts

are resolved in the global schema by using a global object

that corresponds to each equivalent pair. The mapping to/from

the local objects is handled by a look-up table accessible by

the global controller. Information in the look-up tables are

accessed at run-time by the global controller to direct

queries to the component databases. The global controller is

explained in detail in section C.

For our example, Library.documentholder and

NATOPS.aircrew correspond to a global generalization object

named holder. Library.studentholder and NATOPS.stuaircrew

correspond to a global specialization object called student.

Library.staffholder and NATOPS.staffaircrew correspond to a

global specialization object called staff. Library.document

and NATOPS.publicaticn correspond to a global object called

document. The Library.library and the NATOPS.test/checkflt

objects have no semantic equivalents. Thus, they each become

global objects.

2. Attribute Level Conflict Resolutions

With the object level conflicts resolved, we turn our

attention to the attribute level conflicts. To determine what

attribute level conflicts are present, we examine the

81

attributes of the semantically equivalent objects. Again, we

use the conflict framework developed in Chapter IV as a guide.

a. Attribute name conflict resolutions

The first apparent problems are attribute name

conflicts. Library.documentholder has an attribute called

'ss' and NATOPS.aircrew has an attribute called 'socsec'.

Both refer to a social security number. The attributes

'publication' in Library.document and 'pubname' in

NATOPS.document are semantically equivalent, and 'Docnumber"

in Library.document and 'pubnum' in NATOPS.publication are

also semantically equivalent. These depict the synonyms

conflict. They are resolved in the global schema by using a

global object attribute that corresponds to each equivalent

pair. The mapping to/from the local object attributes is

handled by a look-up table accessible by the global

controller.

b. Attribute constraint conflict resolutions

The Library attribute 'ss' is defined as a nine

digit numeric type, and the NATOPS attribute 'socsec' is

defined as a nine place character type. The NATOPS 'crewnum'

is defined as a four place character while the Library

'crewnum' is defined as a two place character. The attributes

'publication' in Library.document and 'pubname' in

NATOPS.document are semantically equivalent, and 'pubnum' in

publication and 'docnumber' in document are semantically

82

equivalent. The types of these equivalent attributes are the

same, but the length are different. These are all attribute

constraint conflicts. Again, the resolution of this at the

query level is provided by a look-up table accessible to the

global controller.

c. Attribute structure conflict resolutions

The 'name' attribute in Library.documentholder is

semantically equivalent to 'grade' plus 'firstname' plus

'lastname' in NATOPS.aircrew. This is an attribute structure

conflict where a group of attributes in one model are

semantically equivalent to a single attribute in another

model. The resolution of this conflict is accomplished at two

levels. First, at the global schema level, an object

corresponding to this pair will contain the more detailed

attribute structure (i.e., grade, lastname, and firstname).

Second, the global controller uses a look-up table to resolve

decompose and translate a query to the global schema into

subqueries to the corresponding data models schemas. An

example of an element in a look-up table to resolve this

conflict is as follows: Library.name NATOPS.grade +

NATOPS.firstname + NATOPS.lastname.

Additionally, the attributes 'lockernumber' and

'secretfoldernum' in Library.documentholder are not

semantically contained in NATOPS.aircrew.

Library.studentholder has an additional attribute 'classnum'

83

and NATOPS.stuaircrew has an additional attribute 'position'.

They are, however, semantically unrelated. Library. staffholder

and NATOPS.Staffaircrew are both specialization objects of the

corresponding Library.documentholder and NATOPS.aircrew

generalization pair. None of the specialization attributes in

these specialization objects correspond to each other. These

are all missing attribute conflicts. To resolve these, the

attributes in the global schema represent the union of the

attributes in the local schemas.

3. Object-Attribute Level Conflict Resolutions

Our example does not contain any object-attribute

level conflicts. These conflicts are present when an

attribute in one model corresponds to an object in another

model. At the global schema level, the solution is to

transform the attribute into an object. This is similar to

the structure remapping presented earlier, where by the

structure of one model is remapped so both models, that will

be integrated, have similar objects. At run-time, the global

controller uses look up tables to resolve the conflict between

the global schema object and the local schema.

4. Method Conflict Resolutions

The method conflict we are concerned with, are the

conflicts that arise when local methods are extended to the

global schema. Local methods are designed to act on

attributes of local objects. To use these methods in a global

84

view, the appropriate message connections must be mapped to

the appropriate global objects. The resolution of this

conflict is dependant on the resolution of all other

conflicts. To simplify this exercise, we are building a

global schema without the intention of extending local methods

to the global schema.

B. CONSTRUCTING THE GLOBAL SCHEMA

1. The Global Objects

The first two candidate global objects are the non-

equivalent objects. These are the Library.library and the

NATOPS.test/checkflt objects. In this case, for simplicity

the global objects maintain the same names and attributes.

The rest of the global objects come from the

semantically equivalent pairs. From the Library.documentholder

and NATOPS.aircrew pair we build a generalization object

called 'holder' and include the attributes grade, firstname,

lastname, lockernumber, secretfoldernum, and socsec. From the

Library.studentholder and NATOPS.stuaircrew pair we build a

specialization object called 'student'. This object includes

the attributes crewnum, classnum, and position. The

Library.staffholder and NATOPS.staffaircrew pair yields the

global specialization object 'staff' with the attributes

position, crewnum, safenum, and officenum. The final global

object comes from the Library.document and NATOPS.publication

pair. We name this object 'document' and give it the

85

attributes name, number, changenum, status, classification,

and socsec.

2. The Global Schema Structure

Figure 30 depicts the global schema when the NATOPS

and Library models are combined.

5W~tr-0GVL

crookm. P-It•o

L Off I

5'Tm dTmA,

Hý Typ.

Cr..&a on

Figure 30 The Global Schema

C. THE GLOBAL CONTROLLER

The global controller was briefly mentioned earlier. This

is an important component in the federated approach. It

maintains the definition of the global schema and acts as a

86

coordinator and translator. When it receives a global query

from a component database, it translates this query into an

equivalent query on the global schema. This global schema

query is decomposed and translated into subqueries that are

sent to the corresponding local databases for processing. The

results are collected and any corresponding data content

conflicts are resolved. These results are then reformatted

and sent back to the originating component database.

To illustrate this we look at the following query on the

global schema from a relational user. The user wants a list

of title and serial number of all publications checked out to

a person whose social security number is 046-62-3436.

The global controller first transforms this into an

equivalent query on the global schema. The information needed

to make this change comes from a series of look-up tables.

The resultant query is then decomposed and translated into

queries to the component databases. Again, extensive use of

look-up tables enables this process. In our case we have two

component queries, one being a query to the library database;

SELECT Publication, DocNumber

FROM Document, StudentHolder, StaffHolder

WHERE SS = 046623436.

The second is to the NATOPS databases;

SELECT PubName, PubNum

FROM Publication, StaffAircrew, StuAircrew

WHERE Socsec = "046623436".

87

The results of the component queries are collected and any

corresponding data content conflicts are resolved by the

global controller. The results are then reformatted and sent

back to the requesting site.

All the conflicts and solutions are captured for use by

the global controller. Additionally, the global controller

maintains the definition of the global schema and acts as a

coordinator and translator. At run-time it attempts to

resolve the following data conflicts.

1. Data Inconsistencies Conflict Resolutions

The first conflict is caused by inconsistencies.

These are generally due to failures in maintaining a database,

such as failing to keep the database up to date. The global

controller may not be able to resolve this conflict. One

possible solution is to prioritize the component databases.

If one database has a greater update rate than another, the

assumption is that the data it contains is the most current.

This can resolve some conflicts. However, it is not fool

proof since it cannot correct for entry errors.

2. Different Representations for the Same Data Conflict

Resolutions

Our framework has three categories of this conflict:

different expressions for the same data, different units for

the same data, and different granularities for the same data.

In a global query for an individual's grade, the local NATOPS

88

model returnE 'LT' and the Library model returns '0-3'. This

is an example of different expressions for the same data.

They both correspond to the U.S. Navy rank of lieutenant. The

global comptroller must have some means of determining this

similarity. Again, a solution is a look-up table.

The model does not have a different unit data

conflict. This conflict occurs when two models use different

units for similar numeric data. To illustrate this conflict,

we examine two local databases that have an attribute for

flight time. Querying one database yields the time in

minutes, and the other yields the time in hours. One solution

for translating the times is for the global controller to use

a conversion formula.

As in the previous case this model does not have

different granularity data conflict. These conflicts occur

when two models use values from the domain of different

cardinalities for the same data. To illustrate this, the

NATOPS object test/checkflt has an attribute score. The data

entered here is on a scale of 0.0 to 4.0. If another

component database had a similar attribute where data is

entered on a scale of 1 to 100. The global controller would

need a mechanism to translate between the two. Again,

possible solutions are look-up tables or conversion formulas.

89

D. CONCLUSION

This chapter proposed a method of resolving the identified

conflicts between two component databases. To build a global

schema that encompasses more databases, each successive

database would be added in similar fashion to the resultant

global schema of the previous component databases. In

essence, building a global database with multiple component

databases is an iterative process. The principles remain the

same. However, the overall complexity increases. As this

happens the importance of the global controller is magnified.

90

VIII. SUMMARY AND CONCLUSIONS

The framework developed in this thesis provides a

comprehensive enumeration and classification of schema and

data conflicts among component databases in an object-oriented

database model. The schema conflicts are broadly classified

by the level at which they could occur. These levels are:

object level conflicts, attribute level conflicts, and object-

attribute level conflicts. The data conflicts are classified

as inconsistencies, and different representations for the same

data. The following is a summary of these conflicts.

A. SUMMARY OF SCHEMA CONFLICTS

1. Object Level Conflict Summary

Object level conflicts occur when the heterogeneous

databases use different representation for similar objects or

abstractions. Object level conflicts are decomposed into

object name conflicts and object structure conflicts.

2. Attribute Level Conflict Summary

Attribute level conflicts occur when the heteroreneous

databases use different delineations to represent similar

attributes. These conflicts are decomposed into attribute

name conflicts, attribute constraint conflicts, and attribute

structure conflicts.

91

3. Object-Attribute Level Conflict Summary

Object-attribute level conflicts occur when the same

information is represented by one or more attributes in one

model and as an object in another model.

4. Method Conflict Summary

The types of method conflicts are dependant on the

strategy chosen for defining methods in the global model. One

strategy would extend methods at the local schema level to

apply to the global schema. In this situation, methods have

to be rewritten or mapped into the final global schema that

results from resolving all other conflicts

B. SUMMARY OF DATA CONFLICTS

1. Inconsistent Data Conflict Summary

Inconsistent data is generally due to data entry

errors or failures in maintaining a database. Failures in

maintaining a database usually manifest themselves in failing

to keep the database up to date and failures to enforce

semantic integrity rules.

2. Different Representations for the Same Data Conflict

Summary

The three aspects of data that lead to different

representation are different expressions for the same data

(e.g., U.S. Navy, USN.), different units (e.g., inches, feet),

and different granularity (e.g., a scale from 1 to 4 and a

scale of 1 to 10).

92

C. APPLICATIONS

The Department of Defence is in the process of evaluating

military information systems in regards to the corporate

information management initiative (CIM). Many of the initial

problems identified deal with redundant information systems.

There is a need to access multiple independent information

systems and to use the contained information for a strategic

advantage at the department of defence level.

One solution is to consolidate these systems along lines

of functionality, and rebuild them from scratch. The goal

would be to reduce redundancies and foster interoperability

between the remaining systems- This may not be feasible in

every situation. An alternate solution is to organize

existing systems along the lines of functionality, and then

homogenize them so that they can share data. This is where

resolving the heterogeneity conflicts becomes important.

D. FUTURE RESEARCH

Applying the framework and proposed solutions to build a

global schema from a number of related component heterogeneous

databases is the logical next step. Additional research is

needed in the following areas.

1. Prototype Construction

The conflict framework and proposed solutions could be

the basis of a prototype for building an information systems

93

homogenizing layer. The development of a workable prototype

could impact how the Department of Defence proceeds with it's

information consolidation efforts.

2. Development of Tools Based on Framework

The framework could be the foundation for a set of

workable conflict identification tools. These tools could

automate the identification and resolution of semantic and

data conflicts found in similar databases prior to attempted

integration. With the conflicts identified, the integration

process should be significantly shortened.

3. Construct Artificial Intelligence (AI) Techniques to

Resolve Semantic Issues

The conflict framework could be the foundation for an

AI system that could automate the integration process between

numerous component databases.

94

LIST OF REFERENCES

Bertino, E., and others, "An Object-Oriented Approach to the
Interconnection of Heterogeneous Databases," In Position
Papers of 1989 Workshop on Heterogeneous Databases, Dec 1989.

Brown, A., Object-Oriented Databases: Applications in Software
Engineering, McGraw-Hill, 1991.

Bulman, D. M., and Bulman, E. K., "Objects,Entities,Things,
and Knowledge (Object-oriented Programming Term Definitions) ,"
Computer Language, vol 9, no 2, pp. 44-48, Jan 1992.

Coad, P., and Yourdon, E., Object-Oriented Analysis, 2d ed.,
Prentice-Hall, 1991.

Collet, C., Huhns, M. N., and Shen, W., "Resource Integration
Using a Large Knowledge Base Carnot," IEEE Computer, pp. 55-
62, Dec 1991.

Department of Defence Appropriations for 1991, Automatic Data
Processing Programs-Overview, pp. 1-59, Government Printing
Office, 1990.

Gillenson, M. L., Database Step-by-Step, John Wiley and Sons,
1990.

Heimbigner, D., and McLeod, D., "A Federated Architecture for
Information Management," ACM Transactions Office Information
Systems, vol 3, no 3, pp. 46-71, July 1985.

Kim, W.,and Seo, J., "Classifying Schematic and Data
Heterogeneity in Multidatabase Systems," IEEE Computer, vol
24, no 12, pp. 12-18, Dec 1991.

Kroenke, D. M., and Dolan, K. A., Databases Processing
Fundamentals, Design, Implementation, 3d ed, Macmillian
Publishing Company, 1988.

Litwin, W., and Abdellatif, A., "Multidatabase
Interoperability," IEEE Computer, pp. 10-18, Dec 1986.

Nolan, R. L., "Managing the Crises in Data Processing,"
Harvard Business Review, pp. 114-126, March-April 1979.

Notkin, D., and others, "Heterogeneous Computing Environments:
Report on the ACM Sigops Workshop on Accommodating

95

Heterogeneity, " Communications of the ACM, vol 30, no 2, pp.
24-32, Feb 1987.

Parsaye, R., and others., Intelligent Databases, Addison,
1989.

Sheth, A. P., and Larson, J. A., "Federated Database Systems
for Managing Distributed Heterogeneous, and Autonomous
Databases," ACM Computing Surveys, vol 22, no 3, pp. 183-236,
Sep 1990.

Shlaer, S., and Mellor, S. J., Object-Oriented Systems
Analysis: Modeling the World in Data, Prentice-Hall, 1988.

96

BIBLIOGRAPHY

Ahmed, R., and others, "The Pegasus Heterogeneous
Multidatabase System," IEEE Computer, Dec 1991.

Edelstein, H. A., "Database World Targets Next-Generation
Problems: As Distributed Applications Grow More Complex,
Federated DBMSs, Object-Oriented Techniques Offer Solutions,"
Software Magazine, vol 11, no 6, pp. 79-85, May 1991.

Gupta,A., Integration of Information Systems: Bridging
Heterogeneous Databases, IEEE Press, 1989.

Rafii, A., and others, "Integration Strategies in Pegasus
Object Oriented Multidatabase Systems," paper from Hewlett-
Packard Laboratories, 1991.

Wilkinson, K., Lyngbaek, P., and Hasan, W., "The Iris
Architecture and Implementation," IEEE Transactions on
Knowledge and Data Engineering, vol 2, no 1, Mar 1990.

97

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor Magdi Kamel, Code AS/KA 9
Naval Postgraduate School
Monterey, California 93943-5002

4. Professor Myung W. Suh, Code AS/SU 1
Naval Postgraduate School
Monterey, California 93943-5002

5. Lieutenant Michael T. Bourque 1
USS America (CV-66)
FPO AE 09531-2790

98

