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EVALUATION

The concepts needed to understand reliability are not fully developed. Many
of the important issues are too broad for a single-focused treatment and must
be explored from different angles. This is especially true for understanding
software reliability because software is intangible and difficult to understand
in its own right—adding reliability only complicates the subject.

The goal of this report is to help bridge the gap between what management
can control and what production needs to do. Although the book addresses
software reliability and testing, the approach could be generalized to
producing quality in other domains. M »re precisely, this report lays the
foundation for the bridge to software reliability—it attempts to show how to
determine factcrs that affect reliability across the life cycle and how to
quantitatively evaiuate the process of developing high reliability software so
that one can improve upon the process in the future. The prediction and
estimation numbers produced for software reliability are more valuable for
comparing with other projects and in tracking progress toward continual
quality improvement than in their absolute values. Further research in
experimentally applying reliability measures across software development,
review and test processes is necessary to validate the numbers. If you are not
interested in improving quality on a long-term basis, then this report may
not be especially helpful.

Although the measures described in this report produce exact software
reliability numbers for fault density or failure rate, these numbers must be
used with discretion because the proper relationship with specific levels of
reliability have not yet been proven. There is no magical formula for
deriving reliability predictions or assessments because sotftware engineering
does not yet have the necessary theory upon which to develop such
equations. This does not mean that empirical observations cannot be used to
develop a discipline. Instead, the reader is cautioned that the empirical
observations made during this effort were not extensive enough to prove
their validity over all projects. For example, the measures related to the
development environment try to relate various characteristics of an
environment to their individual impact on reliability. In the projects
studied, there was not enough diversity in these characteristics to enable exact
predictions at that level. Although data analyses ‘2ad to equations, the results
are not appropriate across the complete range of possible outcomes—in fact,
low values for the ‘D¢’ metric produce erroneous negative numbers. It is
better to treat this metric at a more global level (i.e., organic, semi-detached or
embedded) as shown in Metric Worksheet 1A.

In facing such situations, choices had to be made between the theoretical or
ideal state and providing suggestions on how a typical organization could




customize, develop and use reliability measures, tailored to their unique
procedures. This report leans to the practical side of measurement by
showing the role that reliability prediction and estimation could play in the
future. Purists might be disappointed in this.

The path to higher reliability and better testing is not always easy. To
improve a process, change is required. If you don't intend to change your
current procedures, this report may not be of much value. On the other
hand, if you plan to experimentally apply the techniques described in this
repurt, consistently observe results over several projects, and tailor the
techniques and measures for your organization, then, hopefully, you will see
an improvement in your software’s reliability.

Joseph P. Cavano

vi




1.0 INTRODUCTION

1.1 Purpose

The purpose of this report is to describe the results of a research and dcvelopment
effort to integrate and improve the application of software rcliability measurement
and testing techniques. This is the final report of the project. This cffort was
performed under Contract Number F30602-86-C-0269 for the U.S. Air Force Rome Air
Development Center (RADC).

1.2 Scope

Science Applications International Corporation (SAIC) and Research Triangle
Institute (RTI) performed a formal software testing experiment utilizing code
samples from two previously developed AF/DoD software systems as the experimental
vehicles.  These code samples were tested at the unit and Computer Software
Component (CSC) integration test levels in accordance with DoD 2167. Each code
sample was tested employing six different testing techniques which are
representative of the current state of the practice. A common set of test/support
tools were utilized.  All testing was performed in accordance with an experimental
framework which inciuded formal experiments and empirical studies refined from
an initial pilot.  The test results were measured and analyzed in order to make
recommendations about the error detection capability (effectiveness) of the testing
techniques, the test coverage achieved, and the test effort expended. An additional
part of the experiment was to compute the estimated reliability (REN, Reliability
Estimation Number) of the final software product. '

An independcnt software reliability study was conducied 10 measure characteristics
of the software testing code samples and the complete software systems, and to
improve the software reliability data collection procedures and forms. The collected
metrics were used to compute the predicted reliability (RPFOM, Reliability Prediction
Figure of Merit) of the final sofiware product. Exploratory analyses were performed
on these RPFOMs with resulting refinements to the metric multipliers, based on the
experiment and study results.

Testing strategies have been developed from the. analyses of the test results, and
limitations and weaknesses are identified in the testing tcchniques which were
utilized. Potentially useful new testing techniques are described. Finally,
recommendations are made for future experimentation in software reliability
testing.

Inputs to this effort were the RADC Software Test Handbook (STH) [2] and the RADC
Software Reliability Prediction and Estimation Guidebook (SRPEG) {3]. The STH
provides guidance or selecting appropriate state-of-the-art- testing techniques to
achieve a chosen testing confidence level. The SRPEG provides a methodology to
predict software reliability based on software system characteristics, and analyzes
test results to provide an cstimate of future reliability for the final product.

The final output of this effort is the RADC Software Reliability Measurement and Test
Guidebook, which is Volume 2 of this Final Report. Physically, the new guidebook
contains the entire SRPEG, in a revised format with appropriate metric and
procedural refinements, plus selected and appropriately revised sections of the STH.



Tools, techniques, raw data, analyses and software system documentation are being
delivered to RADC where they will form the basis of a repository fer future
experimentation.

1.3  Objectives of Project

The objective of this research and development project was to integrate software
reliability measurement and testing techniques to provide improved techniques for
both software testing and reliability measurement in terms of prediction and
estimation.  This includes the design and conduct of a software testing experiment
and empirical study for comparing test techniques and for measuring the effects of
software process and product variables oa software reliability. The results of this
research also provide additional data for the refinement of the RPFOM and the REN.

Results of these cxperiments and studies provide a quantitative basis for
recommendations to Air Force acquisition managers concerning improved methods
for:

Choosing test techniques.

Allocating test effort among test levels and/or portions of software.
Determining cost trade-offs in testing.

Prediciing and estimating software reliability.

Lo o

These refinements and recommendations are incorporated into an integrated and
improved software reliability and testing guidebook for the acquisition managers.
This guidebook provides:

a. Instructions for collecting metric data on software systems and analyzing
the data to predict and estimate reliability.

b. Guidance on selecting appropriate state-of-the-practice testing techmques.
1.3.1 Software Measursment 2and Reliability Prediction

The objectives of this activity were to perform and evaluate the software reliability
prediction methodology contained in the SRPEG, and to obrain quantitative data that
can be meaningfully analyzed and interpreted in order to:

a. Contribute to the RADC software reliability database.

b. Refine the reliability prediction model.

c. . Integrate the software reliability prediction methodology with techniques
for software testing.

The primary eclements of this study were to collect, compute and analyze software
measurement data on selected software test prcjects in accordance with the software
reliability prediction methodoulogy as documented in the SRPEG. The data to be
collected includes measures of Application Type, Development Environment,
Anomaly Management, Traceability, Quality Review Results, Language Type,
Moduiarity, Complexity and Standards Review Results. Computations include the
RPFCM Numbers at the System and Computer Software Configuration Item (CSCI)
levels during applicable Software Development Life Cycle phases for entire test
projects.  Computations also are performed for individual test samples.  Analyses
inciude exploratory regressions on. the computed RPFOM numbers in order to refine
the equations in the reliability model contained in the SRPEG.




1.3.2 Software Testing and Reliability Estimation

The objectives of this activity were to apply and evaluate commonly uscd software
testing techniques, as specified in the STH, in accordance with the Software
Reliability and Test Integration Plan (SRTIP) (6] and the Software Test Plan (STP) (7].
The SRTIP documents the design and conduct of the cxperiments and cmpirical
studies for comparing test techniques and for measuring the effects of software
process and product variables on software rcliability. The STP describes the test
program required to implemcnt the SRTIP.

To accomplish these objectives, code. samples were seclected from two different
software development projects and then tested using six different test techniques.
The test techniques studied were random testing, functional testing, branch testing,
code review, error and anomaly detection, and structure analysis. In addition,
quantitative measures of software test cffectiveness and efficiency were obtained
during the testing process. Measures were obtained for two levels o' testing: unit and
OSC ,

1.3.3 Data Analyses and Recommendations

Data analvses were conducted on the rcliability data and on the test measurements
and results. These activities involved the graphical presentation of data from simple
descriptive statistics, analyses of variance (ANCVA), empirical analyses cf the test
icchniques, and from comparisons of the software rcliability numbers with test
resulis.

The analyses were oriented towards providing answers to specific questions of
interest which were formulated {rom primary goals of tnc study. Test technique
effectivencss, test effort and test coverage were addressed both within a test level and
across test levels, for single techniques and for test strategies. Tester variability was
also addressed. Exploratory analyses of the reliability data were conducted with the
goal of making refinements to the software reliability prediction models.

Recommendations for testing strategies were made from tiae results of these analyses
with the goal of writing an integrated guidebook for the software rcliability
measurement and testing.

1.3.4 Software Reliability and Testing Guidebook

Refinements to the present RADC methodologies for software reliability and testing,
and recommendations resulting from the experiments and ecmpirical studies were
incorporated into an RADC Software Reliability and Testing Guidebook for Air Force
acquisition managers. This new guidebook represents the integration and updating
of the STH and SRPEG. The revised and integrated guidebook provides guidance on
selecting state-os-the-practice testing techniques, and provides instructions for
collecting metric data on softwarc dcvelopment projects and analyzing the data to
predict and estimate the future reliability of the final product.

1.4 Approach

The Statement of Work (SOW) [1] outlines the approach to be tuken in achieving the
study goals and allocates the work to seven tasks (see Figure 1.1): selecting software
projects, tools, and test techniques; designing the software testing experiments and




empirical studies; collecting raw data for computing the RPFOM on software
development projects and code samples; gathering raw test data and measurements
during software testing; computing the REN and reducing and analyzing the
collected test data; interpreting the statistical results and making recommendations;
and documenting findings in the updated and integrated guidebook. The principal
activities for each of these tasks are shown in Figure 1.2.

1.4.1 Test Techniques, Tools and Projects

Our first task was to identify a candidate set of test techniques and tools to be used to
support the software measurement and software testing to be conducted for the
experiments. In order to best ensure the effectiveness of this selection, analysis was
conducted at the same time concerning the software systems to be used.

The detailed analysis for this iask began with a survey cof existing software
environments.  Specifically., the survey collected data on:

a. Testing techniques used to achieve reliable software.
b. Tools used for software testing.

c¢. Existing Air Force and DoD software development projects to which these
tools and techniques may be applied.

We surveyed nine representative testing techniques as candidates focr the
experiments, based on their usage in industry, their applicability to the modemn
programming environment, and their ability to aid in the testing of computer
systems. These techniques perform either static analysis or dynamic analysis of the
software. They are described in Section 2.2.

Twenty-two candidate testing tools were surveyed for their applicability, power, and
availability. The tools we have identified are classified ecither by the testing
techniques they automate or as general test support tools. They are described in
Section 2.3,

Twelve software projects were identified as candidates for the experiments, based on
size, complexity, and type of application. They are a representative sample of Air
Force systems in general development today. Each project is described in Section 2.1.

1.4.2 Experiment Goals and Design

The design adopied for this study was specifically geared toward providing results
useful to acquisition managers of Air Force software. To ensure a sound,
comprehensive design, the initial design was enhanced with inputs and reviews by
experts in experiment design with human subjects and statistics and enhanced with
inputs and review by industry and academic experts in the fields of computer
science. software testing, experiment design with human subjects, statistics, and
software metrics. [17]

A standardized approach 1o the experimental design was taken, based on earlier work
by Basili and Reiter (18]. In following this approach, a precise definition of
experimental goals in the form of specific questions to be answered was developed
from the objectives declared in the SOW and contents of the initial guidebooks. These
questions were organized into "questions of interest.”
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Candidate statistical designs were evaluated in terms of how well they would test the
chosen questions of interest given the available projects, test techniques, tools, and
other resources. Experiments to address all aspects covered in the two input
guidebooks are beyond the scope and resources of this study. Thus, the design was
tailored to address as much of the information in these two documents as possible,
while controlling the experimental variables to the extent necessary to preserve the
statistical soundness of the design.

A combination of experiments and empirical studies were selected to best meet the
objectives of this study. These studies include application of the selected testing
techniques and measurement of their relative effectiveness and efficiency. They are
summarized here and detailed in Chapter 4.

Test techniques were scparated into two categories: deterministic techniques and
nondeterministic techniques.  Deterministic techniques are those for which one can
determine without doubt that applying a given test technique to a given code sampie
will find a given error. (Note that while one can dctermine error without doubt, the
potential for human error in the determination process siill exists. Thus
deterministic does not imply fcol-proof.) Nondeterministic techniques are those in
which variability across such factors as test personnel and software characteristics
can have profound effects on the effectiveness of the technique.

This distinction between test techniques was made to conserve time and resources.
Techniques which can be highly and consistently automated and are less dependent
upon tester expertise were seen as deterministic and suitable for empirical study.
Nondeterministic techniques require experiments with several testers employing the
test technique to the best of their ability on a given ¢ode sample. Experimental
results will show whether applying the technique usuvally an/or consistently finds a
given error.

The experiment addresses the following:

a. A study of three dynamic test techniques: functional, random, and branch
testing. Data analyses arc by percent known errors observed at each test
level, and by percent known errors at each test level. (Absolute number of
errors are recorded for descriptive purposes. However, since each sample
most likely will not have the same total number of errors, meaningful
comparisons across samples can be made only cn a percentage basis.)

b. A study of one static test technique: code review. Data analyses are by
percent of known errors detected and by percent of known errors detected
at a test level.

c. The measurement of each technique's relative efficiency, in terms of the
number of discrepancy reponts filed, on a time reference basis.

The empirical study addresses the following:

a. A study of two static test techniques: structure analysis and error and
anomaly detection. Data analyses are by percent of known errors detected
and by percent of known errors detected at a test level.



b. The establishment of the predictive validity of the RPFOM for the code
samples tested by test technrique.

c¢. The measurement of each technique's relative efficiency, in terms of the
number of discrepancy reports filed (errors located), on a time refer.nce
basis.

These studies were performed initially as a small-scale pilot experiment. The overall
experiment design and methodology was verified in the pilot. This is done to increase
the validity of the subsequent full-scale experiment and attendant findings and
recommendations.

Since the empirical studies address deterministic procedures, only two testers are
needed to apply cach test technique chosen for the empirical study. The experiments
address nondeterministic procedures and employ four testers, Samples consist of
code from the actual product development. .

The experiments are designed as Latin Squares and involve four testers repetitively
testing code sampies with different test techniques. The variability in results due to
the nondeterministic nature of the techniques can be¢ averaged over all the testers.
This increases confidence that what is measured is a test technique's performance,
not a tester's performance.

The questions of interest to be addressed by the experiments and the empirical studies
span the static and dynamic testing techniques, the software reliability measures,
“and the experimental and empirical studies. These questions are categorized by goals
and are easily converted to formal statistical hypotheses. General categories of test
technique evaluation questions to be answered include measures or dependent
variables to be used in the evaluation of test effectiveness, test effort, test coverage,
fault or+error source, and error severity within a test level. Evaluation across test
levels also is performed. Fault or error impact provides a measure of the extent to
which the software must be modified in order to correct the fault or error.

Data is collected to provide insight into the effectiveness and efficiency of different
test techniques at different test levels, per the test objectives: i.e., the test effort
required, test coverage goals, and software error characteristics.

1.4.3 Reliability Prediction Data Collection

The framework for software reliability prediction and estimation is shown in Figure
1.3.  Software reliability prediction is a static process which makes a quantitative
statement about future reliability as a function of metrics. . Sofiware reliability
estimation makes a quantitative observation of attained rciiability using dynamic test
data and extrapolates it t0 the operational environment. This pant of the study is
concerned with reliability prediction.  Reliability estimation is discussed in Section
14.5.

This study represented the first independent application of the SRPEG and therefore
provided the basis for correcting deficiencies in the SRPEG methodology. The SRPEG
methodology for software reliability prediction data collection was simplified in
order to meet the study objectives. This involved condensing and integrating the
tasks, procedures, and worksheets of the SRPEG into a set of easy-to-follow detailed
instructions for data collectors that corrclate precisely with the sequence of
availability of data sources that are customarily produced during the software

10
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development life cycle. A number of corrections, clarifications, and refinements to
the SRPEG were accomplished during this process. These changes provide a
foundation for revisions to the SRPEG which are incorporatcd in the integrated RADC
Software Reliability and Testing Guidebook.

The focus of software reliability data collection is a set of four equations, each
defining a RPFOM at a different stage of the software development life cycle. These
are discussed in detail in Chapter 3. Unlike the SRPEG, which crovides techniques for
reliability prediction from system definition through operational testing and
evaluation, the simplified instructions are applicable only thkrough the coding and .
unit testing phase of the life cycle, as addressed by the experiments. They include
step-by-step instructions, worksheets and answer sheets which support RPFOM data
collection and computation. They were applied to the test projects in a manner
which emulates a real-world application. Consequently, only project data sources
were utilized which would have logically existed at the software life-cycle phase
corresponding to the metrics of interest. This approach was necessary in order to
meaningfully test the utility of the reliability prediction methodolegy.

The RPFOM data to be collected for each test project is specified in metric worksheets.
Each worksheet targets a specific metric, software life-cycle phase, and software
component level. The data collected was manually recorded on metric answer sheets
prior to entry into an auwomated database in order to facilitate data entry and thus
reduce the impact of multiple users accessing a single workstation. Each answer
sheet supports all worksheets corresponding to a specific software component leve!l
and life-cycle phase.

One Application-type RPFOM was calculated for each test project.  This baseline
RPFOM, determined prior to initiation of software development, is an average fault
density based on the principle application of the test project. Then the Development
Environment RPFOM, which is a refinement of the baseline RPFOM, was calculated. It
incorporates nformatiorn pertaining to the softwarc development environment of a
system,

The Requirements and Design RPFOM was computed next. This is a refinement of the
Development Environment piediction and incorporates information on softwarc
characteristics provided by system requirements and design documentation. The last
RPFOM to be computed was the Implementation RPFOM. It represents a final
refinement to the reliability prediction at the CSCI level and incorporates
information on software characteristics derived from source code during coding and
unit testing. Data collection for this RPFOM involved utilization of the RADC
Automated Measurement System (AMS) on the Digital Equipment Corporation (DEC)
VAX computer system for collection of many of the unit-level metric elements.

1.4.4 Software Testing and Evaluation

Software testing quantifies the correctness and completeness of the final product and
its cenformity to requirement. It also provides an environment in which software
reliability estimation may occur. See Figure 1.2. Software testing was performed in
accordance with ihe experiment goals and design described in Section 1.4.2.

Special tester instructions were prepared to ensure uniform application of the test
experiment framework. Testers applied each testing technique in the order specified
by the Latin Squares, utilizing the procedures contained in these instructions. Test
project consultants assisted in pre-test preparation and post-test evaluation activities.




Testers created test cases, test procedures and test drivers from specifications
provided by the consultants. A test harmess was setup utilizing the DEC Test Manager
(DTM) to provide inputs to the test driver and to capture and compare test outputs
from the code samples under test. Chapter 4 contains a detail description of the
software testing and evaluation process.

Preparing for test execution for each test sample included development of a test
driver followed by test data preparation and formulation of expected results for ecach
test technique. Test data preparation formulates test cases and the data to be input to
the code sample. Test case preparation was no. applicable to the static testing
techniques,  For the dynamic testing techniques, test preparation was supported by
DTM and RXVP-80, a program code analyzer from General Research Corporation
(GRC). The Software Design and Documentation Language (SDDL) tool was utilized to
docume=nt the code sample source. The final step before test execution was to tailor
the test driver, if needed. to suit any particular needs of the test cases for a given
code sample and testing technique.

For the dynamic techniques test execution involved executing cach code sample with
prepared test cases and then collecting the results. For the static techniques, test
execution constituted the execution of RXVP-80, as appropriate, on each code sample
and¢ the evaluation of the applicable hardcopy output according to the procedures of
the given technique.

Test evaluation was performed by the testers for each dynamic testing technique to
capture and report test effort and execution details (e.g.. branch cxeccution counts)
and to determine the thoroughness of the testing (i.e., test coverage). For the static
testing tlechniques, evaluation is an integral part of their execution. The concluding
step was for each tester to ¢valuate the static and dynamic techniques to determine
the unique errors found, both individually and by more than one technique, and
whether c¢ach error found was a known devclopment error or newly detected during
the experiment,

1.4.5 Test Data Collection

Careful thought was given to the fest technique and Reliability Estimation {REN) data
t0 be collected and to the data collection procedures. General forms and procedures
that support the test technique data collection activities were prepared for use by
testeys during test development and exccution. They derive from requiremenis in
DoD-STD-2167A for Test Description, Test Procedure and Test Report; from the SRPEG
metric data collection forms for the REN; and from statistical data analysis
requirements in the SRTIP related to discrepancy reporting, execution time, failure
rate, test effort, test coverage and test methodology.

These collected test results and measurements were cntered into a test database
utilizing 4th Dimension (4D) from Acius, Inc. From there a subset of the collected
data was converted to data znalysis input files using StaiView §12+ irom Abacus
Concepts, Inc. These files support the REN calculations and descriptive and statistical
analyses. Their logical organizations were designed to meet the following objectives:

a. To parallel the distinction between experiment activities (i.e., reliability
measurement data collection vs. test technique and REN evaluation).

b. To permit easy file update associated with these activities by multiple
personne! ai multiple sites.
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¢. Refinc the software reliability models for RPFOM.

One poal of these descriptive analyses is to characterize the observations of unique
discrepancy reports detected as a percentage of known original project discrepancy
reports plus those discovered during testing for each tcst technique at each test level
it is applied. In addition, test effort and test coverage are evaluated both for test
techniques applied singly and in strategies, with in test levels and across test levels.
Tester variability is also addressed. These descriptive analyses were conducted using
data collected during the pilot, the empirical study and the formal experiment,
Specific questions that are answered are derived from the SRTIP. Descriptive
analyses were perrormed for both unit and CSC integration levels.

Descriptive analyses were conducted to provide insight intc the characteristics of the
test data collected. The response variables of interest were then used with the ANOVA
models dictated by the Latin Square designs chosen for the experiment. The ANOVA
was conducted on the combined pilot and uhit data, but not on the single CSC latin
square. Identified data transformations were performed on the unit data before the
analysis to ensure the best possible results. ANOVA tests were conducted on the
effectiveness, effort and coverage for tI  test techniques. Information from those
ANOVA results guides which further aualyses are meaningful. These data are
analyzed in a manner that provides answers to the questions of interest for which an
ANOVA is specified. The same analyses were conducted for the formal experiment
and the empirical study.

The goal of the exploratory analysis of the RPFOM cquations is to investigaie and
improve the metric multiplier coefficients in the applicable software reliability
model. Multiple regression analysis and partial correlations were used. These
analyses take into account the metric data collected from the test projects during the
experiments.

The Statistical Analysis System (SAS) was used for all ANOVAs due to the flexibility of
the tool. StatView was used for descriptive and exploratory analyses for which it is
very well suited.

Descriptive analyses include preparing histograms and pilots and other data
presentations for wuse in interpreting results into recommendations for testing
strategies and contribute directly to the updating of the guidebook.

Statistical analysis of the test techniques guides the formulation of effective test
strategies. Exploratory analysis of the softr are reliability measurement numbers
provides the basis for refinements to the software reliability models for the RPFOM.
Conclusions from these investigations and resulting recommendations are
documented in Chapters 3 and 6. Chapter 6 also describes the application of these
results and recommendations to the existing SRPEG and STH in order to produce the
integrated Sofiware Reliability and Testing Guidebook for Air Force acquisition
managers.

1.5 Executive Summary

The important results of this effort can be summarized inio five areas. Each area is
briefly highlighted here with reference to the sections of the report where details
can be found. .




1.5.1 Software Reliability and Testing Data

Documentation and source code were collected for four software development
projects as experimental vchicles for software reliability and testing experiments.
Two of these software systems provided the basis for cxperimentally controlled
observations about software reliability and testing as documented in the RADC
Software Reliability Prediction and Estimation Guidebook (3] and the RADC Software
Testing Handbook (2]. These observations were directed toward the integration of
software and testing into a simple framework for use by Air Force acquisition
managers and software developers. The software system database supported the
conduct of the software testing experiments and the development of an integrated
guidebook for making reliability predictions and estimations, and for selecting and
applying state-of-the-practice testing techniques.  Summary Software project data
are presented in Chapter 2 of this report.

1.5.2 Software Reliability‘Prediction Experiment

The SRPEG includes a comprehensive guide to the application of the RADC software
reliability prediction technology. It was recognized at the beginning of the current
task that this document also included considerable supplemental background and
application strategy in support of the technology. A detailed study of the RPFOM
tasks, procedures, computations and worksheets contained there further showed this
information to be far in excess of what would be needed in our study production
environment.

It was decided that these components of thc documeni shiouid be reorganized and
condensed into a straightforward set of step-by-step instructions for data collectors.
Several discrepancies were found and corrected while evaluating this material. The
resultant instruction manual guided the data collectors through each worksheet and
answer sheet and presents the applicable equations (some of which are automated) in
a simple sequence of computations. Details of this work are discussed in Chapter 3.

These new instructions were followed and even improved upon by our data collectors.
Their application has shown them to be direct and easy to use. The only further
refinements being needed were alternate procedures for special cases, subdivision of
the procedures and forms by both metric and Life Cycle phase and an index table to
locate an correlate them with the metric computations,

Data collection included the effort required te collect data and use the methodology.
This is an important aspect of assessing the costs/benefits of the methodology.

All of these refinements are evaluated in Chapter 3 and are included in the new
guidebook. Chapter 5 includes a study of the computed metric multiplier coefficients
using the experiment data.  The results of this study are included in the new
guidebook. Still, a more comprehensive item-by-item evaluation of the SRPEG
methodology is needed, but was outside the scope of the present study. The new
guidebook should be a living document and incorporate all future advancement of
the present software reliability prediction technology.

1.5.3 Software Testing Experiment

A plan and design was developed for the acquisition and analysis of software
reliability measuremeni and test data within the structure of a formal experimental
framework. Chapter 4 documents the design and conduct of these experiments and




empirical studies for comparing test techniques and for measuring the cffects of
software process and product variables on software reliability. The experimental
design for the experiment was a significant element of the overall study. The
approach takcen, the techniques and tools selected, the cooperative tecam effort
cxpended. the test instructions developed, the data requirements identified, the
automated environment and cross-couitry nctwork established all contribute to an
excellent model for furthur experimentation. The assessment of each test technique
from an input, process, output viewpoint, the instructions for how cach tester would
approach testing individual units and CSC's and the ¢stablishment of criteria
(stopping rules) for test completion offer valuable information for testers and have
been included in the test guidance portion of the guidebook (Vol II).

Results of these experiments and empirical studies arc presented in Chapter 5. They
provide a quantitative basis for recommendations to Air Force acquisition managers
with regard to choosing test technique(s), allocating test effort among icst levels
and/or portions of software, and determining cost trade-offs in testing for Air Force
software projects. These recommendations are incorporated into a guidebook for the
acquisition managers.

The software test project data described above (Section 1.5.1) and the present
experimental design may be reapplied to such studies, providing additional benefit to
the Governmeni. The scope of such studies can be increased by the utilization of data
from additional software systems.

1.5.4 Integrated Guidebook for Software Reliability and Testing

A guidebock (Volume II of this report) was produced to allow software reliability
engineers and software test engineers to practice the techniques developed during
this rcsearch effort.  Utilizing the daia collected and findings derived from analysis,
procedures are provided which allow reliability predictions and estimations to be
made at various milestones during a software development project; additional
procedures guide the selection and application of efficient and effective testing
techniques.

Figure 1.5 illustrates how this new Guidebook is an integration and updating of two
existing guidebooks: RADC Software Test Handbook [2] and the RADC Software
Reliability Prediction and Estimation Guidebook (3]). The Software Test Handbook
provides guidance on sclecting appropriate state-of-the-practice testing techniques
to achieve a chosen testing confidence level. The Software Reliability Prediction and
Estimation Guidebook provides instructions for collecting metric data on projects and
analyzing the data to predict and estimate the future reliability of the final product.

1.5.5 Integrated Reliability Management System (IRMS)

Enhancements to the IRMS wcre made during the contract effort and the IRMS was
used as the central data management, analysis, and reporting component of the
study. The IRMS is functionally illustrated in Figure 1.6.

1.6 Organization of Report

This document is Volume 1 of the Final Report. It is intended for those interested in
the objectives, process and results of the Software Reliability Measurement and Test
Integration Techniques Study (SRMTIT). It presents a structured view of the
research and development process employed by SAIC and RTI in the conduct of this
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effort the form of the investigations made and all findings, conclusions and
recommendations. The product of this study effort is a Software Reliability
Measurement and Testing Guidebook which 1is intended for use by Air Force
acquisition managers when establishing guidance in the rehability and testing of
software systems. This guidebook is separately bound as Volume 2 of the Final Report.

Chapter 1 introduces the study effort and describes the study purpose, scope,
objectives, and technical approach. It also provides and executive summary of the
important results of this effort.

Chapter 2 describes the three surveys which were performed in order to select the
software projects, testing techniques and testing tools which were utilized in the
study. Selected projects, techniques and tools are identified here, along -with
rationale for their selection. All surveyed and rejected projects, techniques and tools
are also identified.

Chapter 3 describes and discusses the software reliability prediction data collection
activity and the caiculation of the RPFOM. It describes the software reliability
prediction metrics and detailed RPFOM computations at four software project levels:
application, development environment, requirements and design, and imple-
mentation. It also describes the refinement of the data collection computations,
procedures and forms as they were used in the experiment and are incorporated into
the final guidebook. The resources which were utilized in this data collection process
are identified here. In addition, this chapter contains the computed RPFOMs for the
four software. project levels and each of the test codes samples. It concludes with an
evaluation of the study resources, PPFOM procedures and computations, technical
activities and results. An effort .able is provided to estimate and schedule
Government applications of this technology.

Chapter 4 presents the framework of the software testing experiments and empirical
studies. It discusses the conduct of the software testing procedures and the software
reliability and testing methodvlogies which underly the experiment design. Each of
the testing techniques are described there, along with test data and measures to be
collected for test technique evaluation and for computation of the REN for each test
sample. This chapter also identifies all of the resources utilized during the
experiment. It concludes with a summary of the test data collection and ecvaluation
by the testers and contains the computed RENs for each test sample.

Chapter 5 presents the form of the experiment data analyses, describes the findings,
and discusses conclusions which can be made. All descriptive analyses and Analyses
of Variance of the test technique data are described here. Also included in this
chapter are exploratory analyses of the RPFOM for the test code samples.

Appendix A is a glossary of acronyms used in this report.

Appendix B is a bibliography of documents which are referenced or provide
guidelines for this report.




2.0 SURVEYS

Information contained in this chapter represents the results of three technical
surveys of available software development projects, testing techniques and tools for
use in the experiments which were performed during the present study.

2.1 Software Projects Survey

Forty-three software development projects were surveyed. Of these, twelve software
projects became candidates for the experimnents, based on size, complexity, and type
of application. They are a representative sample of Air Force and Depariment of
Defense (DoD) systems in general development today.

2.1.1 Candidate Projects for Consideration
The candidate projects, in ascending order by size, are:

a. Advanced Field Artillery Tactical Data System (AFATDS)
Simulation/Stimulation (5im/Stim) software, (10-50K) - Sim/Stim is
designed to drive/test the AFATDS System Model under Test (SMT) by
simulating nodes in the Brigade slice that are not present in the SMT and
stimulating equipment within the SMT.

b. Facilitv Automated Maintenance Management Enginecering System
(FAMMES) (10-50K) - A wsarchouse inventory conirol program.

¢. Mission Effectiven'ss Model (MEM) (10-50K) - MEM models th=
performance of the space segments of Strategic Defense I[nitiative (SDI)
ballistic missile defense concepts.

d. On-Board Electronic Warfare Simulator (OBEWS) (10-50K) - The OBEWS
designed for Armament Division and Tactical Air Command is a dynamic
simulation of a realistic Electronic Warfare (EW) threat environment
designed to provide real time simulated threats to existing aircraft EW
systems displays.

¢. Radiological Release Information System (RRIS) (10-50K) - A very reliable
nuclear power plant safety system.

f. SCENE (10-50K) - SCENE is a space defense scenario generator that models a
variety of sensors and foreign launch missions under the Surveillance
Command & Control Design Analysis and Engineering (SCCDA&E) contract.

g. Boost Phase Stereo Processor (BPSP) (50-100K) - The BPSP is a realtime
sensor data fusion system under the SCCDA&E contract. It's purpose is to
accept observations of a booster in powered flight from multiple sensor
sources and fuse these observations into an estimate of the current state
(position and velocity of the booster, as well as projecting that state
through to booster burnout.

h. SIMSTAR Preprocessor (50-100K) - This program is a database
preprocessing systern for a large nuclear weapon effects simulator system.




i.  Automatic Test Control System (ATCS) (>100K) - The ATCS USAF project is a
key component of the Aecropiopulsion systems Test Facility used to test air
breathing engines at the Amold Engineering Development Center.

j- Mideastern Command, Control and Communications (C3) and
Communications Protection Plan (MC3 & CPN) (>100K) - The MC3 and CPN is
a program with the US Navy to design, develop and implement a C3 and
communications protection program for Saudi Arabia.

k. National Training Center (NTC) ( 100K) - A large, real-time, multi-
processor, range monitoring and control system.

1. Architecture Design and Assessment System (ADAS) (<70K) - A set of
engineering tools used for the simulation and study of electronic systems.
This system includes two tools: Adasim and Csim. Each tool contains
approximately 5K source lines. These two tools are functionally equivalent,
aiding in the performance of Random Testing. In addition, the Adasim
program is coded in Ada, which permiis collection of information that wili
impact testing strategies to be used in Ada developments.

2.1.2 Evaluation Criteria

In order to be potential candidates the following basic criteria had to be met by each
project surveyed:

a. The projects must be unclassified USAF or DoD systems, or similar in
mission characteristics.

b. Source code must be available at different "snapshots” in time during the
standard development process. This could include completed projects of
which there were historical copies kept or on-going projects whose source
code could be released.

¢. Documentation must be available, including requirement specifications,
design documents and software test documents, or equivalent.

d. Develcpment/target hardware must be accessible.

Table 2.1 gives an overvicw of the candidate projects in terms of these and additional
criteria that were considered for project candidacy.

2.1.3 Selected Software Projects
Four of these candidate projects were selected, two for use in the experiment and two

others available as backup. Table 2.2 categorizes these four projects by software
categories contained in the STH.

Advanced Field Artillery Tactical Data System (AFATDS)
Simulator/Stimulator (Sim/Stim) - AFATDS simulator/stimulator is a DoD
simulation and stimulation software system that is designed to drive and test the
system model under test (SMT) by simulating nodes in the Brigade slice that are not
present in the SMT and stimulating equipment within the SMT.
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Type of Project

PROJECTS

SENSOR/SIGNAL
PRESENTATION
DECISION/
PATTERNAMAGE
PROCESSING
SYSTEM

DEVELOPMENT

ACQUISITION

DATA

PLANNING AID

MANAGEMENT
DATA
SOFTWARE

DIAGNOSTIC
SOFTWARE
SIMULATION
DATABASE

DYNAMICS
ORBITAL
DYNAMICS
MESSAGE

BATCH
EVENT
CONTROL
PROCESS
CONTROL
NAVIGATION
FLIGHT

AFATDS
(Advanced
Field

Artillery Y Y Y Y M
Tactical Data
System)

MC3
{Mideastern
C3 Communi-
cations
Protection
Plan)

<
<
<

NTC (National

Training Y Y|lY|Y]YlY]Y]Y lY Y|y
Center)

SCENE
(Scenario Y Y Y Y Y 1Y
Generator)

Table 2.2. Representation of STH Software Categories
by Chosen Projects




The system contains approximately 72K source lines of FORTRAN 77 code by actual
count. This is approximately double the earlier estimate. Although this project is
primarily a simulation type of project, it also contains attributes that would qualify it
for process control, procedure control, message processing, sensor and signal
processing, database management, diagnostic software, and system software. The
project was developed and run on a DEC VAX/VMS system. Project documentation is
complete except for the detailed design which is documented in a high-level Program
Design Language (PDL). The available source code is from Version 2.0, the first fully
integrated software build. A description of the tools and methodologies employed
during software development is documented in Volume 3 of the Task II Report [8].

Space Defense Scenario Generator (SCENE) - SCENE is an Air Force system that
models a variety of sensors and foreign launch missions under the Surveillaace
Command and Control Design Analysis and Engineering (SCCDA&E) contracts. Iits
primary purpose is to generate sensor observations of hypothetical foreign launches
and range safety operations (RSQOs). The sensor's RSO and launch scenarios ars user-
specifiable.

This software is written in FORTRAN and contains approximately 24K lines of source
code. It is a batch type of program thai also contains the following functions: orbital
dynamics, diagnostic scoftware, simulation, data presentation, and a decision and
planning aid. The program runs on a VAX/VMS system. Documentation is complete,
although the detailed design specification reflects the software as delivered. The
available source code is Release 6.0, prior to system tumover. A description of the
tools and methodologies employed during software development is documented in
Volume 3 of the Task II Repor. ’

Additional Projects - Two additional projects were available for use: Mid-eastern
C3 Communications Protection Plan (MC3) and the National Training Center (NTC)
Core Instrumentation Subsystem (CIS). RPFOMs were collected for NTC-CIS in an
earlier software reliability study for RADC, thus making it redundant to do so again.
MC3 was too large for our present effort budget. As a result, the AFATDS Sim/Stim and
SCENE projects were utilized exclusively for the experiments.

2.14 Software Project Materials

Basic characteristics of the software projects which were utilized in this study are
shown in Table 2.3. Available metric data from the two selected projects is shown in
Table 2.4. Supplemental project information (particularly for system application
type) is available in Project Characteristics Work Sheets found in Volume 3 of the
Task 2 Report. Appendixes A through D of that volume contain matrices of the test
project software and associated Software Problem Report (SPR) histories.




Table 2.3. Characteristics of Selected Projects

Contract |Program Environment
Type Size Development Target MIL-STD
Followed
PROJECTS USAF| DoD HW sSw HW sSw
AFTATDS Y | 72K VAX | vMs | vax | vMs None
Simulator/ 11/780] 4.2 | 11/750] 4.2
Stimulator
(SIM/STIM)
SCENE Y 24K VAX | VMS | VAX | vMS 2167
(Space Defense
Scenario Generator)
Table 2.4. Availability of Metric Data
METRIC SIM/STIM SCENE
Application X X
Deveiopment Environment X X
Anomaly Management X
Traceability
Quality Review X
Language Type X X
Modularity X X
Complexity X X
X. X

Standards Review




2.1.6 Lessons Learned

Several (difficulties were encountered while performing the software decvelopment
project survey and subsequent evaluation of the project materials. They included:

a. Establishing a thorough survey questionnaire.
b. Qualifying a knowledgeable project contact for technical information.

c. Validating the completeness of the available project materials against the
questionnaire.

d. Establishing expedient procedures for evaluating the project materials and
for estimating the effort involved.

The following recommendations will resolve cach of these cited difficulties:
a. Revise the survey questionnaire based on known desired information.

b. Identify the key technical project contact up fiont ‘and ensure his/her
willingness tc provide full support.




¢. Personally travel to ecach project site and verify the availability and
applicability of all project materials.

d. Apply the cvaluation methodology that has evolved from this study.
They arec recommended for future efforts.
2.2 Testing Techniques Survey

A survey of the capability, advantages, and limitations of many of the static and
dynamic software testing techniques currently in use was conducted by reviewing
various reference documents and by interviewing test consultants. A list of these
reference documents is presented in Appendix A of the Task 1 Report [5].

2.2.1 Candidate Techniques for Consideration

Software quality should be a primary concern in software development efforts. The
traditional methods of asse-sing software quality are software evaluation and
software testing.

Software evaluation examines the software and the processes used during its
development to see that its stated requirements and goals are met. Static analysis
techniques employ this method of software quality assessment. In these techmiques,
the requiremenrs and design documents and the code arc anmalyzed, c¢iither manuaily
or automatically, without actually e¢xecuting the code.

Software testing involves actual execution of the program, Dynamic analysis
techniques employ this method of software quality assessment. The principal
applications of dynamic analysis include program testing, debugging, and
performance measurement. This involves the processes of preparing for test
execution and analysis of test results.

The following static analysis techniques were surveyed for use in the experiments:

a. Code Reviews - Assesses conformance of the oprogram implementation to a
prepared checklist.

b. Error and Anomaly Detection - Checks program syntax, coding standards,
data and interfaces for anomalies.

c. Structure Analysis/Documentation - Checks correctness of a program's
control and code structures.

d. Program Quality Analysis - Measures a program's complexity and quality
attributes.

e. Input Space Partitioning - Partitions the program inpu. space into path
domains to exercise selected paths,

f. Data-Flow Guided Testing - Partitions a program flow graph into intervals
for analysis. of correct sequences of operation.

The following dynamic analysis techniques were surveyed:



g. Instrumentation-Based Testing - Inserts non-interfering probes into the
program o monitor execution behavior and performance.

h. Random Testing.- Samples the program input domain to find obscure
processing errors.

i. Functional Testing - Finds discrepancies between the program execution
and its specification.

2.2.2 Evaluation Criteria

In conducting the survey, the following evaluation criteria were used: usability of
the testing technique; use of the technique in the software life cycle; SAIC and RTI
projects that utilized the technique; and strengths, weaknesses, and special
considerations. Tables 2.5 and 2.6 present an overview of these criteria for each of
the testing techniques,

The column entitled USEABILITY summarizes the application of each testing
techrique and the extent of its usage.

The column LIFE CYCLE identifies the applicable test phase in the software life cycle
when the test technique may be employed. The test phases for a program in
progressive order are:

a. Unit Test - The smallest compilable entity is tested.

b. Unit Integration and Test (CSC Test) - Multiple interfacing units are tested
to the component level.

¢. Program Test (CSClI Test) - The entire CPCI is tested as a correct
implementation of the specified design; component interfaces are verified.

d. System Test - The entire System is tested to meet its system level
requirements; integrating software with the associated hardware,

Some of these techniques had been applied on specific SAIC/RTI software projects
(indicated in the middle column of Table 2.5) as follows:

a. Code Reviews were conducted through the entire life cycle of SAIC's
Performance Analysis and Test (PAT) Program. Peer Reviews audited unit
code and formal review tracked the software product across development,
design, coding, unit test, CSC test, and program/system test phases of the
project.

b. In providing Independent Verification and Validation (1V&V) support to
the Joint Cruise Missile Project Office, SAIC conducted metrics-directed
testing of the Mission Planning system (MPS) software for the Air-
Launched Cruise Missile (ALCM). An automated testing tool was used to
measure Ssoftware complexity. Additionally, several test covers were
developed in order to determine the amount of testing required for each
test path. Each test cover provides information on the software complexity
value for each module, and indicates which paths are to be exercised with
greatest intensity, those to be exercised with less' intensity, and those
which will Ls exercised least.
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c. During both the Radiation Release Information System (RRIS) and the
National Training Center (NTC) Core Instrumentation Subsystem (CIS)
projects, Path Coverage Testing was used during integraiion and test of
modules.

d. Random Testing was conducted in NASA projects by RTI during which an
automated testing tool was utilized.

e. Functional Testing was performed during system testing of the B-1B
Bomber (B-1B) Technical Suppon Center (TSC) baseline system and during
software testing for the NTC CIS. In both cases, Requirements/Test Matrices
were used to determine the specification requirements that were not met
during testing. Additionally, the Digital Equipment Corporation (DEC) Test
Manager tool was used directly during Functional Testing of the
Architectural Design and Assessment Sysiem (ADAS) project.

The column STRENGTHS, WEAKNESSES, AND SPECIAL CONSIDERATIONS summarizes the

advantages and limitations of each test technique. Complementary characteristics
(an advantage gained by using a test technique with one or more others) ond
available tools and/or methods are also described. Entries in this column are

expanded upon below.

a. Code Reviews (both Peer Reviews and Formal Reviews) are widely used,
applicable to large and small projects, are not limited by project type or
complexity, and catch errors carly in the life cycle. These reviews assist
and ease subsequent system level testing, but still require some static
testing for complete verification.

b. Error and sAnomaly Detection techniques are highly effective, are
extensively antomated (but language dependent), and are most applicable
during the unit test and CSC test periods of the life cycle.

¢. Structure Analysis/Documentation techniques and tools are widely
available and used. This technique's prime utility is in the early stages of
debugging, and is most applicable with complex program control flow, but
covers only a limited range of programming standards and possible error
situations.

d. Program Quality analysis (also known as Metrics-Directed Testing), can be
used both for software recliability analysis and for program Structure
Analysis. The latter usage will be in combination with the Path Analysis
test technique (which is an element of Input Space Partitioning).

e. Input Space Partitioning consists of three techniques:

1. Path Analysis (also known as Path Coverage) is recognized to have
some drawbacks in that determining the paths of a program and
selecting data to execute the chosen paths poses a difficult (if not
unmanageable) problem. However, by supplementing this testing
technique with other methods, it may be possible to seclect finite
subscts of test data for the chosen paths in order to detect ccrtain type
of errors.




2. Domain Testing is limited to simple linear predicates and has difficulty
in selecting test cases for a program which has a large number of

input variables. It concentrates on path selection errors, which
requires other testing methods to be used to test a program
thoroughly.

3. Parition Analysis is more .a test support method than a reliability test
technique. The specification of a program is assumed t0 be correct,
while in practice. it may be incomplete or contain errors.

f. Data Flow Guided Testing: Test strategies for this testing technique are
more difficult to apply in practice than control-oriented strategies.

g. Instrumentation-Based Testing consists of four techuiques:

1. Path and Structural Analysis (Branch) is very effective in detecting
data, logic and computation errors and is well complemenied by
Functional Testing.

2. Performance Measurement is highly effective in identifying
performance problems in a program and is applicable during unit test
through CPCI test.

3. Executable Assertion Testing is effective in determining
computational, range, and flow errors in early life cycle testing, but is
constrained by its resource- and time-consuming complexity of use,

4. Debug Aids are also efficient, but complex. Its tools are language and
operating system dependent.

h. Random Testing possesses desirable and effective features. Generated test
data may provide near total branch coverage. Automated tools are readily
available to perform random testing.

i.  Functional Testing techniques are based on state-of-the-art design analysis
techniques effective in finding errors. Tocls are readily available to
perform functional testing.

2,23 Selected Testing Techniques

Three static analysis techniques and three dynamic analysis techniques were
selected for this study:

STATIC DYNAMIC
Code Review Branch Tecsting
Error and Anomaly Detection Random Testing
Structure Analysis | Functional Testing

Code Review, This static testing technique involves the reading or visual
inspection of a program with the objective of finding faults. Test personnel perform




a code review of the sample code units using the appropriate documentation and
specifications.

Code reviews conducted consist of code reading and code ins ections.. Code reading
includes the study and evaluation of compiled unit sourc. code line-by-line to
evaluate data availability and variable initiation. Code ins ections are driven by
checklists in order to identify common type of errors, including logic crrors, on the
unit code.

Error and Anomaiy Detection. This static testing technique is applied to detect
faults via interface checking, physical units checking, and data flow analysis. Test
personnel perform error and anomaly detection on the selected sample code units
using the appropriate documentation and specifications.

Interface checking analyzes the consistency and completeness of the information
and control flow between units. It checks for and detects:

a. Incorrect number of arguments.

b. Data type mismatches between actual and formal parameters.

¢. Data constraint mismatches between actual and formai parameters.
d. Data usage anomalies.

Physica! urits checking is performed to detect operations performed on variables of
more than one type to determine if necessary conversions have been made.

Data flow analysis identifies paths in which there are variable set-use
inconsistencies.

Structure Analysis. This static test technique detects faults concerning the
control structurcs and code structures of FORTRAN, and improper subprogram usage.

Test personnel perform structure analysis on the sample code units using the
appropriate documents and specifications, Structure analysis is performed (o
determine the presence of improper or incomplete control structures, structurally
dead code, possible recursion in routine calls, routines which are never called, and
attempts to call non-existent routines.

Branch Testing, This testing technique combines static and dynamic techniques
and detects failures. The static portion is used to determine test data that force
selected branches to be executed. The dynamic portion is used to actually run the
code with these test data and then obtain test outputs. Test personnel perform branch
testing of the sample code wunits wusing the appropriate documentation and
specifications.

Test coverage analysis is used to detect untested parts of the program. Output data
analysis is applied to detect outputs that deviate from known or specified output
values.

Random Testing. This is a dynamic testing technique which tests a unit by'
randomly sclecting a subset of all possible input values. This testing technique




detects failures. Random testing is performed to detect outputs from the random
inputs that deviate from known or expected output values. Test personnel perform
random testing of the sample code units using the appropriate dccumentation and
specifications.

Functional Testing. This is a dynamic testing technique which finds failures
consisting of discrepancies between the program and its specification. In using this
testing technique, the program design is viewed as an abstract description of the
design and requirement specification. Test data are generated, based on knowledge
of the programs under test and on the nature of the program's inputs. The test data
are designed to ensure adequate testing of the requirements stated in the
specification.

Test personnel perform functional testing of the sample code wunits using the
appropriate documentation and specifications. Functional testing is performed to
assure that each unit correctly performs the functions that it is intended to perform.
This is accomplished by: :

a. Testing using nominal, extreme, and erroneous input values.

b. Testing for error detection and proper error recovery, including
appropriate ¢Iror me:sages.

c¢. Testing with data output options and formats.
2.3 Test & Support Tools Survey

Software development/testing tools have formed the foundation of the modern
programmer’'s "workbench"”. As programming problems have become more complex,
increasingly sophisticated tools have been constructed to aid in development and
testing.  Clearly, in the modemn programming environment, useful tools coupled with
sound testing practices are key to the realization of reliable software systems.

A survey of many of the software testing tools currently and generally available was
conducted. This survey involved a review of the current literature (both
professional publications and vendor offerings) describing available software
testing tools (see Appendix B).  Essentially, these tools may be divided into the
following three categories:

a. Static znalysis tools.
b. Dynamic analysis tools.
¢. Test Support Tools.

Static analysis tools support the static analysis techniques described in 2.2.1. These
tools automate all or portions of those test techniques and vary in scope and
functionality. A characteristic common to each of these tools is the processing and
evaluation cof the program source code. They range from systems which simply
cnforce coding standards to systems which carry out sophisticated structured
analysis.

Dynamic analysis tools are used to support the dynmamic analysis techniques described
in 2.2.1. These tools directly cxecute the program being tested and perform a wide
range of functions including ¢>verage analysis, the generation and evaluaticn of
test data, and the production of run-time statistics.
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Test support tools facilitate the testing process and, as such, suppon all of the testing
techniques. They do not normally evaluate or execute the program code. Their
general function is to provide database, analysis and documentation support for
program requirements, design, code and test cases.

2.3.1 Candidate Tools for Consideration

Twenty-two representative and available 1ools were surveyed to automate the
candidate testing techniques and to support experimentation. Each of the candidate
tools which were identified by our survey are categorized into the appropriate test
category and test technique. A few of these test tools arc applicable to more than one
category or technique, and this is identified. :

The Static Analysis Tools surveyed for use in the experiments include:

a. Documentation, Analysis, Validation & Error Detection (DAVE) - Automates
Error/Anomaly Detection and Structure Analysis/Documentation.

b. Mainwainability Analysis Tool (MAT) - Automates Error/Anomaly Detection.
¢. FORTRAN-Lint - Automates Error/Anomaly Detection.
d. Source Code Analyzer (SCA) - Automates Error/Anomaly Detection.

e. Software Design and Documentation Language (SDDL) - Automates
Error/Anomaly Detection.

f. Automated Measurement System (AMS) - Automates Program Quality
Analysis.

g. Metric Information Tracking System (MITS) - Automates Program Quality
Analysis.

The Dynamic Analysis Tools include:
a. RXVP-80 - Automates Error/Anomaly Detection, Static Structure
Analysis/Documentation, Static Path Analysis, Dynamic Path/Structural
Analysis, Assertion Checking, and Debugging.

b. FTN-77 Analyzer - Automates Dynamic Path/Structural Analysis,
Performance Mecasurement, Assertion Checking, and Debugging.

¢. Status - Automates Performance Measurement and Debugging.

d.  Trailblazer - Automates Dynamic Path/Structural Analysis and
Performance Measurement.

¢. Lint-Plus - Automates Error/Anomaly Detection, Dynamic Path/Structural

: Analysis and Debugging.

f. Path Analysis Tool (PAT) - Automates Dynamic Path/Structural Analysis.

g. Performance and Coverage Analyzer (PCA) - Automates Dynamic
Path/Structural Analysis and Performance Measurement.



The Testing Support Tools Surveyed include:

a. Requirements Tracing Tcol (RTT) - Automates software requirements for
functional testing.

b. Database Management System (DBMS) - Automates program tcst and data
management.

¢. LIBRARIAN - Automates program management.

d. Code Management System (CMS) - Automates program and module
management. ,

e. Change and Configuration Control Environment (CCC) - automates program
management.

f. Test Manager (TM) - Automates test management.
g. Metric Maintenance Manager (MMM) - Automates metrics management,

h. Statistical Modeling and Estimation of Reliability Functions for Software
(SMERFS) - Automates software reliability estimation.

Table 2.7 provides applicable purchase information for each candidate tool, including
vendor, price, terms and conditions, version and documentation.

2.3.2 Evaluation Criteria

The following criteria were used to select the necessary test and support tools for the
experiments from among the 22 candidates:

Timely availability of the tool.

Familiarity with the tool.

Applicability of the tool to candidate projects.
Applicability of the tool to candidate testing techniques.
Data collection and analysis of software measurements.
Acquisition, generation, and management of test data.
Statistical capabilities for analysis of experiments.
Vendor, host computer and applicable source languages.

om0 Q0 T

2.3.3 Selected Test & Support Tools

The goal of the study was to measure cffectiveness of test techniques. Tools were
chosen to support the techniques chosen. The experimental design approach taken
was to make the cffect of the tools as negligible as possible and emphasize the test
technique. Cominents were gathered from testers and operators on tools at the end of
the experiment and cmpirical study. To decrease impact of a tooi effect, the best tool
available to support and/or automaiec a test technique was desired. Inputs from test
experts familiar with commercial tools aided the final selection of tools identified in
the survey in Task 1. Thus the same tools, the best available within budget, hardware,
and cperating system constraints, were used by all testers for a given technique.
Three software testing tools were selected. These tools are shown in Table 2.8 and are
described below.
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Table 2.8, Software Test Support Tools

TOOL APPLICATION SOURCE

DTM Manage software samples, test 020
cases, test data.

SDOL Support code reading. SAIC

RXVP-80 | Support error and anomaly
detection, structural analysis,
and branch testing.

Also used to provide path covarage
information.

GRC

DEC Test Manager. The Dec Test Manager (DTM) is used to crganize online test
information for the three dynamic testing techniques. Within the DTM testers define
test descriptions; each test description defines one test, by associating together the
appropriate test sample, its ancillary data files (if any), the sample driver, input
case(s), expected outputs (the benchmark), and actual test outputs. One or more test
descriptions are organized into a DTM test collection. The DTM allows test execution at
the test collection level. All tests for the dynamic test techniques are run as DTM test
collections. ~ The DTM automatically stores test outputs and compares them with
expected outputs (the benchmark), flagging all mismatches between actual and
expected outputs.

SDDL. The Software Design and Documentation Language is used in conjunction
with the code review technique only. Neither testers nor operators use the SDDL tool.
All code samples were run through the SDDL tool by SAIC personnel prior to the
beginning of this study. [Each tester received the printed outputs of SDDLs static
processing of their code samples. These outputs consist of:

a. Table of contents for SDDLs output.

b. Source code, enhanced with indentation based on structure and with flow
line arrows in a two-dimensional representation.

¢. Module cross-reference listing.

d. Module reference tree.

RXVP80. The RXVP80 test tool combines static and dynamic analysis features. RXVP-
80 is used to automate structure analysis and error and anomaly detection, to process
code samples to identify branch coverage for the branch testing technique, and to
instrument samples for path coverage information for all three dynamic techniques.
Testers use the static features of RXVP-80 to obtain reports for static analyses of the
code samples as required for the static techniques. They instruct RXVP-80 to




instrument the code wunder test with path coverage commands to create an
instrumented version of the source code for use in dynamic testing. These operations
are performed by running RXVP-80 independently of the DTM. Subsequently, code
samples which are instrumented with the dynamic component of RXVP-80 are
invoked from within a DTM test description template file.




3.0 SOFTWARE RELIABILITY PREDICTION

The goal of software reliability prediction is the assessment of a software system's
ability to meet specified reliability requirements. The RPFOM is a statement of
predicted reliability based on software measurements collected during each phase of
software development prior to commencement of CSC integration and testing. The
RPFOM contributes to attainment of reliability goals by providing feedback for
improving software system design and implementation.

31 Technical Approach

The following objectives and constraints were considered when defining the
reliability prediction data collection activities for this project:

a. Objectives:

1. Gaining better records of code characteristics in a more usable and
realistic form.

2. Developing improved techuniques for applying the consequent
knowledge to prediction in appropriate confidence settings.

b. Constraints
i.  The ability to accumulate data of kanown validity for new apnlications.
2. The complexity of the prediction techniques.
There are four levels in which RPFOMs are collected:

a. Project initiation.

b. Project development environment.
¢c. Requirements and design.

d. Implementation.

Each of these is described in detail in Section 3.3. Table 3.1 identifies the project data
that is collected and used to compute the metrics on which these four RPFOMs arc
based. These RPFOMs are then computed using original project data from the
requirements, design, and implementation phases.

Careful thought was given to the data to be collected and to the data collection
procedures.  Data for computing the RPFOM measures of software reliability werc
collected utilizing exacting procedures especially prepared for the experiment. Then
the reliability predictions were update at the precise intervals specified during thc
system development cycle. Special database management software was developed for
this application, utilizing 4th Dimension (4D). In addition, the RADC Automated
Measurement System (AMS) was utilized to automate the collection of raw
measurement data from the software project source code.

Software measurement data comprising the RPFOMs was collected on the softwarc
development projects described in Section 2.1.3 based on refinements to applicable
worksheets and cquations in ithe SRPEG. The RPFOMs were calculated both for the
cnuire projects and for the unit and CSC integration code samples selected for the




Table 3.1 RPFOM Data Requirements

. SRPEG Data Collection
Task Other [SRPEG]
Section Data Input Form Procedure
101 Application (A) System architecture diagram; 0 1

statement of need; required
operational capability; system
requirements-statgment

102 Development Requirements document; 1 2
Environment (DE) Speciiications document

103 System Level 51
Charactenistics (S)

Requirements and Design SAx STx SQ
Representation Metric (S1)

- — D = P W AT e e Ty s i . —— —— —— — ——_ 4 WS W T G P = = — o = e = == —-—

Anomaly Management (SA) All system documentation and 2 3
source code
Traceability (ST) Requirements and design 3 4

documaents with a cross-
reference matrix

Quality Review Resuits (SQ) Requirements document; 10 S
preliminary design speciication;
detailed design spectication

Discrepancies (DR) Discrepancy reports 5 12
104 Software implamentation Si.x SMx SX x SR

Metrc (S2)

Language Type (SL) Requirements specification 4 6and 8

Modularity (SM) Module size estimates and 4 9

source code
‘Complexity (SX) Source code 4 10
Standards Review (SR) Source code 11 11




experiment. See Scction 3.6.2 (Table 3.19) for the identification of the software test
samples.

Data collection and computational requirements for each RPFUM are summarized in
the following sections. Figure 3.1 summarizes the RPFOM data coliection process.
Some of the computations are automated by the RPFOM Database application software.
Reference Section 3.4.3 for details.

3.2 Data Collection Resources

Collection of extensive software measurements and computation of the variety of
software project RPFOMs proved to be an intensive computer-based application. A
medium- to large-sccle computer system with software support tools was essential to
automate source code measurcment and the ancillary daia base¢ management
function. All levels of available software test project development specifications,
including the unit source code, were utilized to collect the RPFCM metrics. A vefined
set of metric equations, questions and answer sheets for data collection and RPFOM
calculations were extracted from the SRPEG and utilized by assigned data collection
personnel. While administrative and technical support personnel largely performed
this task, there was a need for a junior level programmer to perforni non-automated
measurements of the software source code. [Each of these rescurces are discussed in
the following sections.

3.2.1 Computer Systems

Two Apple Macintosh 1I systems (one at each data-collection site, i.e., SAIC and RTI
and a Mac SE (at the SAIC site) served as automated workstations for performing
RPFOM data management, calculations and report generation. Each Mac Il system
had the following configuration:

2 Mbyte random-access memory.

40 Mbyte hard disk drive.

800 Kbyte floppy disk drive.
High-resolution monochrcme monitor.
Dot-matrix printer.

© oo o

The SAIC Mac II Workstation was linked to a DEC VAX 8650 on which the AMS
automated metrics data-collection tool resides. The RTI Mac 11 Workstation was linked
to a network of DEC MicroVAX 2000 Workstations also containing AMS. The SAIC and
RTI VAXes were linked via Arpanet.

3.2.2 Suppert Software

The Integrated Reliability Management System (IRMS) was the basic support system
used in this project. A major capability added to the IRMS during this effort was the
ability to download automatic metric analyses from a host (VAX) to a data base
management system in IRMS (hosted on a Mac).

Two scftware support tools were selected to automate major portions of the RPFOM
data collection, entry and computation subiasks: AMS and 4th Dimension DBMS. They
are described in more detail in the following paragraphs.
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3.2.2.1 Automated Measurement System

AMS reads filss of FORTRAN unit source code on the VAX computer system, evaluates
22 of the 34 Standards Review questions in SRPEG worksheet 11A .(see Table 2-1), and
provides thesc answers on its cwn Worksheet E. AMS also automates the collection of
many questions on several of the other SRFEG metric work sheets, but requires that
the source requirements and design documentation be formalized by use of Software
Requirements Engineering Methodology (SREM), Requirements Specification
Language (RSL) and the Software Design and Documentation Language (SDDL). As
aone of these requirecments and design specification tools were utilized in our
available experimental projects, we were limited to the above mentioned capabilities
of AMS Worksheet E. '

The Automated Measurement System (AMS) [24, 25] is resident on the DEC VAXes at
each darta collection site. AMS utilizes worksheets to provide automated measurement
of the unit-level metric elements from SRPEG Worksheets 11A and 4A that are listed
in Table 3.2. This table also provides the corresponding metric acronyms that appear
in the AMS software evaluation report (i.e., Worksheet E) from which the metric
vailues are taken. These values are manually entered into the automated RPFOM
Database by the data collector. While AMS was available at both sites, it was utilized
exclusively at the SAIC site.

3.2.2.2 4th Dimension DBMS

The 4D DBMS [26, 27. 28] manages files of data on the Apple Macintosh computers. It
was a new product which provided user-friendly screen generation and associated
relational file definition, creation, maintenance, query, computation and reporting
facilities. All of these capabilities were deemed necessary to the development of
databases to record, manage and amalyze both the experiment RPFOM and software
testing results data. The IRMS which is a Mac II based software reliability
workstation was previously acquired by RADC under separate contract. Figure 3.2
shows the interfaces between AMS and 4D that were developed for our study.

Our initial approach with the data base management system was to prototype an
Entity-Relationship model of the RPFOM worksheets and answer sheets, with
corresponding data entry screens and computational procedures. Following this, the
complete RPFOM application was developed, including some of the «calculaticns
needed for RPFOM computation. Section 3.4.3 describes the level of automated support
provided. The user interface to this database is described in Volume 2 of the Task III
Report.

3.2.3 Personnel
Contractor experience in applied software reliability measurement test and

integration techniques was augmented by contributions of carefully selected
consultants witnh knowledge of the test projects and metric data collection software

support tools.  Specific personnel roles during the conduct of this task were as
follows.
a. Activity Leader (1). Key project person; responsible for activity

assignment, coordination, completion, and products.




Table 3.2. Cross-reference of automated Metric elements from
Metric Work Sheet 11A and AMS Software Evaluation
DCF Report (Phase E, unit level)

Worlk1 iheet AMS Worllc1 iheet AMS
MO.1(3) MC.1(4e) S1.4(3)a S1.4(4e)
MO.1(4)a MO.1(5)e SL4(4)a SL.4(6e)
MO.1(5) MO.1{7¢) SL1.4(5) SI1.4(8e)
MO.1(7) MO.1(%) SL.4(6)a S1.4(9¢)
MO.1(9) MO.1(3e) SL.4(8)a SL.4(11e)
SL.1(2) SL.1(2e) S1.4(9)a SL.4(12e)
SL1(3) S1.1(3e) S1.4(9)b S1.4(13e)
SL.1(4) S1.1(4e) S1.4(10)a SI.4(14e)
SI.1(5)a SL.1(5¢) SL4(10)b S1.4(15e)
SL.1(5)b SI.1(6e) SI.5(3) S1.5(4e)
SL.1(10) SI.1(11e)

SI.4(1) SL4(le) |
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b. Data Collector (4). Technical support staff and junior engineer; completes
data collection forms on a per-project basis: executes metrics collection tool
and produces measurement reports.

¢. Data Entry (2). Admipistrative staff; enters metric data into the database
and performs metric computations.

d. Project Consultant (2). Senior engineer: advises in the acquisition and
evaluation of the test project materials.

e. Software Consultant (2). Engineer; advises in the application and operation
of the metrics collection tool (AMS) and the DBMS software (4D).

3.2.4 Instruction Manual

An instruction manual was developed for RPFOM data collection and computation.
The purpose of this manual was to provide a concise set of easy to use instructions,
based upon the SRPEG and tailored to the objectives of our experiment.

This tailoring involved organizing applicable worksheets of the SRPEG into a sect of
simplified detail instructions, worksheets and answer sheets that correlate precisely
with the sequence of availability of data sources (i.e., documentation and code) that
are customarily produced during the Software Development Life Cycle. Table 3.3
shows the correlation bztween the SRPEG and these worksheets and answer sheets.

A number of useful corrections, clarifications, and refinements are described in
Section 3.5 and are incorporaied in the Volume 2 guidebook, along with appropriate
revisions to the worksheets plus all of the newly developed answer sheets. These
changes to the SRPEG and the resulting instruction manual provided the
instructions, work sheets, and answer sheets necessary to support RPFOM data
collection and computation. Data sources, input and output requirements, and
automated tools for data collection and management are described there. A
prerequisite to applying these instructions is a breakdown of the project software
into CSClIs, CSCs, and units.

3.2.5 Project Documentation

All available metric source documentation was acquired and utilized for each of the
software development projects which had been selected for the experiments. Two
projects, the AFATDS Sim/Stim and SCENE project were utilized, due to the intensive
nature of the rcliability prediction data collection process and the available cffort
for this study. Table 3.4 describes these documents and source tapes.

3.3 Reliability Prediction Methodology

The Reliability Prediction Methodology begins with an architectural diagram. The
software components allocated to hardware compcenents can be identified on the
system architecture diagram.  This allocation should be overlayed on the hardware
reliability block diagram. The reliability block diagram shows interdependencies
among all ¢lements or functional groups of the system. The purpose of the reliability
block diagram is to show by concise visual shorthand the various series - parallel
block combinations (paths) that result in successful mission performance. A
complete understanding of the system's mission definition and service use profile
(operational concept) is required to produce the reliability diagram.
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3.3.1 Reliability Models

Tasks 101 through 104 of the SRPEG and of the Volume 2 Guidebook provide the
procedures for calculating a predictive RPFOM for each component identified in the
block diagram according to the following cquation:

RPFOM =A *D *§

where: RPFOM is the predicted fault density
A is the application type metric
D is the software development environment metric
S is the software characteristic metric

This is Reliability Model 1 as described in the SRPEG. A is expressed in (fractional)
faults per line of code, and examples of acwal values are presented in Task 101. D and
S are modification factors, and each of these can have a value that is less than one (1)
if the cnvironment or implementation tends to reduce the fault density. These
factors are cquivalent to pi factors in MIL HDBK 217E. The Application Area metric
represents an average or baseline fault density which can be used as a starting point
for the prediction.

Tasks 101 through 104 are preliminary procedures for prediction. Their 1ables,
coefficients, and algorithms are updated in Chapter 5 as a result of data collection and
statistical analyses performed on two additional software systems during the present
experiments.

For specified software components, a detailed model based on a functional flow
analysis can be developed. This Reliability Model 2 was not evaluated in the present
study.
3.3.2 Reiiability Computations
The functional definition of RPFOM for Reliability Model 1 is:

RPFOM = Predictive Fault Density = Faults/LOC (Eq. 1-1)
where Fault is a condition that causes a functional unit to fail to perform its required
function, and LOC is executable line of code. The RPFOM can be computed for an
entire software system and/or its components (e.g., CSCIs). The RPFOM can be
converted to a failure rate or calculated as a railure rate also. Four successive RPFOM
equations, each representing a refinement to its predecessor, are given:

RPFOM = A (Eq. 1-2)
where "A" is a metric for System Application Type;

RPFOM = A *D (Eq. 1-3)

where "D" is a metric for System Development Environment;

RPFOM = A * D *S1 (Eq. 1-4)




Table 3.4.

List 6f Project Documentation Available
for Metrics Data Collection

PROJECT METRIC METRIC SPECIFICATION |
TYPE WORK SHEET NAME |
AFATDS APPLICATION 0 A. System Specification for AFATDS, i
SIM/STIM (A) Simulator/ Stimulator :
Draft 1
April 1986
B. AFATDS Simulator/ Stimulator,
Softwara Overview
Fina)
February 10, 1987
C. Subcontractor Statement of Work i
Revision F i
May 26, 1986 l
DEVELOPMENT 1 Refer to A
ENVIRONMENT ;
(o)) D. PDL Tapes !
|
|
ANOMALY 24, 28, Referto A, D
MANAGEMENT 2C,2D
(SA)
TRACEABILITY 3A, 3B, Referto A, D
(sM 3C
QUALITY REVIEW 10A, 108, Refer to A, D :
RESULTS 10C, 10D ,
(SQ)
LANGUAGE 4A, 4B E. Source Code, AMS Work Sheet E
TYPE
(SL)
MODULARITY 4A, 4B Refer to E
(SM)
COMFLEXITY 4A, 4B Refer to E
£x)
STANDARDS 11A, 11B Refer to &
REVIEW

(SR)




Table 3.4. List of Project Documentation Available
for Metrics Data Collection (Continued)

PROJECT METRIC METRIC SPECIFICATION
TYPE WORK SHEET NAME
MC3 APPLICATION 0 A. Command Center System
(A) 15-May-1985
8. Program Perfogmance Specitication
for the RSNFC © Program
DEVELOPMENT 1, 1A Refer to Specifications A, 8
ENVIRONMENT
(D) C. Program Design Specification for the
RSNF C° 4-0CT-1985
ANOMALY 2A, 2B, Refer to Specitications 8, C
MANAGEMENT 2C, 20
(SA)
R TRACEABILITY 3A, 3B, Refer to Specifications A, B, C
SN 3C
QUALITY REVIEW 10A, 108, Refer 1o Specifications A, B, C
RESULTS 10C, 10D .
(5Q)
LANGUAGE 4A, 4B D. Source Code, AMS Work Sheet "E”
TYPE
(SL)
MODULARITY 4A, 4B Refer to Specification D
(SM)
COMPLEXITY 4A, 4B Refer to Specification D
(SX)
STANDARDS 11A, 118 Refer to Specification D
REVIEW

(SR)




Table 3.4. List of Project Documentation Available
for Metrics Data Collection (Continued)

PROJECT METRIC METRIC SPECIFICATION
TYPE WORK SHEET NAME
SCENE APPLICATION 0 A. Space Defensa Simulator Program
(A) Development Plan
30-July-1984
B. SPADCCS Space Defense Simulation
Users Manual
22-April-1987
C. SPADCCS Scenario Generator (Scene)
Detailed Design Document
Versions 1 and 2
17-Septerhber-1984
DEVELOPMENT 1, 1A D. Scene Engingering Manual
ENVIRONMENT 24 April-1987
D)
Retfer to Specification C
ANOMALY 2A, 2B, Refer 10 Specitications C, D
MANAGEMENT 2C, 2D
(SA)
TRACEABILITY 3A, 3B, Refer to Specitications C, D
(ST 3C
QUALITY REVIEW 10A, 108, Refer to Specificaiions C, D
RESULTS 10C, 10D
(SQ)
LANGUAGE 4A, 4B E. Source Code and AMS Work Sheet "E"
TYPE
(SL)
MODULARITY 4A, 4B Refer to Specification E
(EM)
COMPLEXITY 4A, 4B Refer to Specification €
(8%
STANDARDS 11A, 11B Reter to Specification €
REVIEW
(SR)
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Table 3.4. List of Project Documentation Available
for Metrics Data Collection (Continued)

PROJECT METRIC METRIC SPECIFICATION
TYPE WORK SHEET NAME
NTC APPLICATION 0 A. Requirements Design Spacification Vol. 1
(A)
Sections 1.2, 1.3, 1.4,1.5,2.0, 3.1
12 August 1985
NTC-1221-18
DEVELOPMENT 1 Refer to A, Sections 3.1, 3.2
ENVIRONMENT
(D) B. Requirements Design Specification, Vol. Il
Sections 4.0, 5.0, 16 Sept 83, NTC-1221-18
ANOMALY 2A, 2B, Refer to A, Section 3.2
MANAGEMENT 2C.2D
(SA) Refer to B, Sections 4.0, 5.0
TRACEABILITY 3A, 3B, Refer to A, Sections 3.1, 3.2
(ST 3C Refer to B, Sections 4.0, 5.0
C. Accept. Test Plans, 15 Feb 84, NTC-1252-62
QUALITY REVIEW 10A, 10B, Refer to A, Section 3.2
RESULTS 10C, 10D
(SQ) Refer to B, Sections 4.0, 5.0
LANGUAGE 4A, 4B D. Source Code
TYPE
(SL) E. AMS Work Sheet "E"
MODULARITY 4A, 4B Refer to Specification D, E
(SM)
COMPLEXITY 4A, 4B Refer to Specification D, E
(SX)
STANDARDS 11A, 11B Refer 1o Specification D, €
REVIEW

(SR)




where "S1" is a metric of Software Characteristics during software Requirements and
Design Specification;

RPFOM =A *D * 82 (Eq. 1-5)

where "S2" is a metric of Software Characteristics during software Implementation.
"A" is expressed as a baseline fault density, whereas "D,” “S1," and "S2" are
modification factors for which values can range from <! (decreased fault density) to
>1 (increased fault density).

The "S1" metric is derived from "SA" (Anomaly Management), "ST" (Traceability), and
"SQ" (Quality Review) metrics:

S1=SA*S8T*SQ (Eq. 1-6)

The "S2" Metric is derived from "SL" (Language Type), "SM" (Modularity), "SX"
(Complexity), and "SR" (Standards Review) meirics:

S2=SL *SM *SX * SR (Eq. 1-7)
3.3.2.1 Application RPFOM

The Application-type RPFOM (Eq. 1-2) is calculated for each test project. This
baseline RPFOM, determined prior to initiation of software development, is an
average fault density based on the principie application type of the test project (e.g.,
Airbome System). Metric Worksheet 0 provides a list of six application types for
selection.

3.3.2.2 Development Environment RPFOM

The Development Environment RPFOM, which is a refinement of the baseline RPFOM,
incorporates information, summarized in the "D" metric, should be available during a
software pre-development phase of the life-cycle. Although this RPFOM is defined by
a single expression (Eq. 1-3), one or two worksheets (cither 1A, or 1A in combination
with 1B) can be utilized to compute "D" depending on the level of detail of project
environment data avaiiable. In order to evaliate the general applicability of each of
these work sheets, Development Environment RPFOM was calculated twice for each
1est project.

Worksheet 1A provides a quick approximation of "D" based upon selection by the data
collector of one of three development environment categories. Worksheet 1B
provides a more precise determination of "D" based upon a checklist of 38
development environment characteristics:

D = (0.109D¢ - 0.04) / 0.014 if Embedded from W/S 1A
= (0.008Dc + 0.009) / 0.013 if Semi-detached from W/S 1A
= (0.018Dc - 0.003) / 0.008 if Organic from W/S 1A

where Dc = (# characteristics in W/S 1B not applicable to system)/38.
3.3.2.3 Requirements and Design RPFOM

This RPFOM (Eq. 1-4), a refinement of the Development Environment prediction,
inccrporates information on softwarz characteristics provided by system

58



requirements and design documentation to determine the SA, ST, and SQ metric
components of S1 (Eq. 1-6). Any of three scts of worksheets, each set specific to a
particular Life-cycle phase, is used to derive these three metric components. Three
Requirements and Design RPFOM values corresponding to SSR, PDR, and CDR were
determined for each CSCI of the two software test projects in order to evaluate the
usability of each set of worksheets. Derivation of SA, ST, SQ is summarized below.

Anomaly Management (SA): The "SA" metric is equated to one of three values
based on the value of "AM," which is derived from responses by data collectors to
questions in Worksheets 2A (SSR), 2B (PDR), and 2C/2D (CDR) that apply to the
capabilities of a system to respond to software errors and other anomalies:

AM=  Number of "NO" responses/Total number of "YES" and "NO" responses
"SA" is then computed automatically as follows:

SA =09if AM< 04"
=10if0.6 >AM>04
=1.1if AM> 0.6

Traceability (ST): A value for "ST" is seclected by the data collector using
Worksheets 3A (SSR), 3B (PDR), or 3C (CDR) which cncompass traceability of
requirements from system level through unit level.

Quality Review (SQ): The "SQ" metric is equated automatically o one of two values:

0 1.1 if DR/ Total # Y and N responses > 0.5

1.0 if DR/ Total # Y and N responses < 0.5

DR is a count of "NO" responses from Worksheet during Software Requirements
Analysis 10A (SSR), 10B during Preliminary Design (PDR), or 10C/10D during Detailed
Design (CDR).

3.3.2.4 Impiementation RPFOM

The Implementation RPFOM (Eq. 1-5). which represents a final refincment to the
reliability prediction at the CSCI lcvel, incorporates information on software
characteristics derived from source code during Coding and Unit Testing (C&UT) to
determine the SL, SM, SX, and SR componenis of S2 (Eq. 1-7). Unit-level metrics are
collected for Worksheets 4A and 11A, and then summed for corresponding CSCIs using
Worksheets 4B and 11B. Data collection for this RPFOM begins with the utlization of
the AMS on the VAX for collection of many of the unit-level metric clements. The
values obtained from the AMS hard-copy report are then transferred to an answer
sheet along with values for non-automated metrics as indicated in the worksheets.
Derivauon of SL, SM, SX, and SR components of S2 is summarized below.

Language Type (SL): The "SL" metric is derived as follows:
SL = (HLOC/LOC) + (1.4 ALOC/LOC)
where: HLOC

ALOC
LOC

higher-order-language line of code for CSCI
assembly language lines of code for CSCI
total executable lines of code for CSCI

mono
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Values for HLOC, ALOC and LOC are determined in Workshcet 4B based upon unit-level
values for these variables Worksheet 4A.

Complexity (S8X): The "SX" metric is derived as follows:
SX = (1.5a + b + 0.8c)/NM

where: a= # units in CSCI with sx > 20
b= # units in CSCI with 7 < sx < 20
¢= # unit in CSCI with sx < 7
NM= # units in CSCI
sx=  complexity for unit

Values for a, b, and ¢ are determined in Workshect 4B based upon unit-level data
provided in Worksheet 4A.

Modularity (SM): The "SM" Metric is derived as follows:
SM = (0% + w + 2x)/NM

# units in CSCI with MLOC < 100

# units in CSCI with 100 < MLLOC < 500
# units in CSCI with MLOC > 500

lines of code in unit

# units in CSCI

where:

® € e
it 0 n

Values for u, w, and x are determined in Workshect 4B based upon unit-level data
provided in Worksheet 4A.

Standards Review (SR): The "SR" metric is derived as follows:

SR =15ifDF>0.5
=1.0if0.5>DF > 0.25
=0.75if DF<0.25

where: DF = (# "No" responses) / (# "No" + "Yes" responses)

Values for # "No" responses and # "yes" responses are determined in Worksheet 11B
based upon unit-level data provided in Worksheet 11A.

3.3.3 Software Reliability Prediction

The results of using Reliability Model 1 is a prediction of software reliability for each
block in the system/hardwarec block diagram. A description of the format and
documentation required for a block diagram is in MIL-STD 756B, Task Secction 100.
The software reliability prediction numbers should be entered on the block diagram
and incorporated into the mathematical model of that diagram. The use of these
procedures and assumptions made should be documented under paragraph 2.3.8.1,
Sofiware Reliability Assumptions, in that task section.

When using Model 1, the predicted software reliability figure of merit is a fault
density as described above. The predicted software reliability figure of merit is a
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probability thav the software will not cause failure of a mission for a specified time
under specified conditions. The probability of failure for a specified period of time is
given by the failure rate, the expected (average) number of failures per unit time,
usually taken as a computer-or CPU-hour. Because the failure rate has a direct
correspondence to the definition of software reliability, it is selected as the primary
unit of measure for software reliability.

The fault density predicted by Model 1 is used as an early indicator of software
reliability based on the facts that: (1) the number of problems being identified and
an estimate of size are relatively easy to determine during the early phases of a
development and (2) most historical data available for software systems support the
calculation of a fault density, but not failure rate. Fault density is the number of
faults detected (or expected to be detected) in a program divided by the number of
executable lines. Fault density was found to range from 0.005 to 0.02 in high quality
software, in early research on software reliability. The prediction of fault density is
suitable for the early stages of software development. As information about the
intended execution environment becomes available, the predicted fault density can
be translated into a predicted failure rate.

The fault density cannot be used directly in the system block model. Iastead it can be
used as an indicator for unreliable components or critical reliability components.
The fault density derived by the prediction methods can be compared to Table 3.5
which contains industry averages or with the specified fault density requirement, if
stated in the Requirement for Proposal (RFP). Actions can then be taken in .he early
phases of development to remedy pinpointed -unreliable components through
redesign, reimplementation or emphasis and rework during test.
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APPLICATION TRANSFORMATION
TYPE RATIO
AIRBORNE 6.2
STRATEGIC 1.2
TACTICAL 13.8
PROCESS CONTROL 3.8
PRODUCTION CENTER 23

DEVELOPMENTAL NOT AVAILABLE
AVERAGE 10.6

Table 3.5 Transformation for Fault Density to Failure Rate

3.4. Data Collection Framework

The RPFOM daia collection process should be applied to softwarc projects during their
development. In the present study it was necessary to apply these procedures to
completed projects in a manner which emulated their development. Only project data
sources which (would have) exist(ed) at the software life-cycle phase corresponding
to the metrics of interesi were referenced for each RPFOM. This careful attention to
the timeliness of all data scurces was necessary ir order to meaningfully apply and
evaluate the reliability prediction methodology in the present study.

3.4.1 General Procedures

General procedures that supported the RPFOM data collection activities are described
in the following task sections of the SRPEG:

a. Task Section 101: pp. TS-9-TS-10: Software Reliability Prediction based on
Application,

b. Task Section 10z: pp. TS-11-TS-13: Software Reliability Prediction based on
Development Environment.
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c¢. Task Section 103: pp. TS$S-14-TS-17: Software Reliability Prediction based on
CSCI Level Software Characteristics.

d. Task Section 104: pp. TS-18-1TS-20: Software Reliability Prediction based on
CSCI/Unit Level Characteristics.

3.4.2 Life-Cycle Phase Worksheets

Detailed worksheets for each task procedure can be found in the body of the task
section. Refined task worksheets and answer sheets as actually used in the
experiment arc contained in the instruction manual These worksheets were
extracted directly from the SRPEG, with the goal of simplifying their organization,
clarifying many of the individual worksheet questions, and resolving several points
of inconsistency in worksheets and equations. These refinements are discussed in
Section 3.5 and are incorporated into Tasks 101 through 104 of the Volume =
guidebook.

The instruction manual was organized as a stand-alone document for use by data
collectors.  Metric worksheets and answer sheets are arranged there in the sequence
of their utilization.  Associated detailed instructions also appear there. The RPFOM
data collected for each test project is specified in the metric worksheets. Each work
sheet targets a specific metric(s) (e.g., Quality Review), software life-cycle phase
(e.g., Detailed Design), and sofiware component level (i.e., System, CSCI, or Unit) as
illusirated in Table 3.6. The colliected data can be recorded manually on metric
answer sheets prior to entry into the RPFOM Database, as was done during the present
study. Answer sheets were prepared to support all worksheets corresponding to a
specific software component level and life-cycle phase.

These worksheets and answer sheets were used as directed. Then the collected
answers were entered into the RPFOM Database.

3.4.3 Database Development

The RADC software prediction methodology requires the collection of a significant
amount of measurement data from software project documents and source code.
Further, the necessary computations of these raw metrics and their summarization
into meaningfu] system and CSCI-level RPFOMSs is itself significant. Such could not be
economically accomplished without the support of an automated DBMS. It was
determined carly that a DBMS-based application package was needed which would:

a. Provide data entry capability for every metric answer sheet in the
instruction manual.

b. Automatically perform as many of the computations on the corresponding
worksheets as our effort and schedule budget would permit.

c¢. Permit the user w enter answers from any remaining computations on the
worksheets.

d. Retain all original data and computed answers.
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e. Automate as many combinations of system and CSCI-level RPFOMs from the
SRPEG and instruction manual as are meaningful for subsequent
evaluation.

f. Perform interactive computation of user-sclected RPFOMs and retain the
results.

The resulting RPFOM database is a close model of the RPFOM worksheets/answer
sheets and it implements the natural entity relationships between them. This data
base was implemented within the IRMS. Figure 3.3 illustrates the RPFOM databasc
relational structures. These structures implement the various worksheets and
answer sheets in Table 3.3. They also parallel the system, CSCI and unit hierarchy of
each software project in order to record applicable metric data. Volume 2 of the Task
III report provides definitions for all of the data items in these structures.

All RPFOMs and a few of the calculations on raw metric data are performed
automatically (i.e., S1, S2, A, Dy, Dp SL, SM, SX and SA). The remaining calculations
must be computed manually and the results entered into the database. We were not
able 10 automaie as many of the basic computations as originally planned due to
budget constraints but the potential for doing so exists.

In summary, the RPFOM database is comprehensive and fully automates the RPFOM
data management functions for Tasks 201 through 204, excluding the calculations for
Worksheets 2C and 10C. These can be added in future experimentation. The database
is user friendly, as it is based on the standard Mac-user interface through 4D.

Primary areas to consider during future software reliability experimentation are
automation of the remaining Worksheet 2C and 10C calculations, as noted above, and
the interface between the RPFOM Database and AMS which feeds it. Right now the
latter is a manual interface and need not be. The majority of SRPEG Worksheet 11A is
derived presently from the AMS Worksheet E. New effort can be directed to
automating this interface and to enhancing AMS 1o automatically provide the
remaining Worksheet 11A metrics while it processes software project source code.
Additional candidates for such cnhancement are SRPEG Worksheets 2. 3 and 10 (all
phases) which could be similarly interfaced to equivalent AMS Worksheets. This will
accommodate software development projects which utilize SREM, RSL zmd SDDL 1o
formalize these metric inputs to AMS.

3.5 Refinements to the SRPEG

Refinements made to the SRPEG during this study can be classified into global
changes, worksheet changes and equation changes. They are made in Volume 2.

a. Global Changes

1. All occurrences of "NA" were deleted for components of metric
questions which recquire a numeric response. If a wvalue cannot be
determined for a numeric question, the corresponding item on the
answer shect (and in the data base) should bhe left blank. All other
"NA" responscs for non-numeric questions should be addressed as
being "Not Applicable to Sample Project.”




RPFOM Workshaeet 0 RPFOM SUMMARY .
CS_ld A Sample Name A '
xDate D Parent CSCI A
Analyst A Projeci A
Source Document T Lovei A
Application A DE1 R
AVG FAULT DENSR System Levei CH R RPFOM Workshest 11A
S1_SSR R CS_id A ]
RPFOM Worksheat 1 SA_SSR R Parent CSC! A .
CS 19 A ST_SSR R Parent CSC A .
Data Collector A SassR R xDate D
xDate D RPFOM WS 2ABC Discrepancies R Analyst A
Dev Environment A Analyst A Number of Requi | MO_1_3 A
D1 R cs_id A S2 MO_1_4A |
D2 R Phase A MO 1 48 !
TC 11 A | RPFOM Workshast 4AB
TC12 A
'?)PFOM Wokstes 22y |[sT R [RPFOM Worksheet 118
xDate xDate D A
Analyst A A
CcS_ud A :
AM_1_1A l
AM_1_1B | IR
AM_1_1C R A
AM_1_2A l RPFOM Worksheat 10A] ;
AM_1_23 !
AM 172C R ;
EFFOM Workshest 224 [RPFOM Workahes! 20 '
Analyst A xDate D RPFOM Worksheet 100 )

A Analyst A

A cs_id A

A AM_1_3A R

A AM_31_38B R

A AM_1_3C R Parent CSCI

A AM_1_3D A Parent CSC

A AM_2 2 A xDate

A Analyst

A

RPFOM Worksheet 108 N

RPFOM Worksheet 2C cs_Id A i
xDate D Analyst A
Analyst A AC_1.7 A
Parent CSC! A AU_11 A
cs Id A AU_1_4A R
AM—" 3 A AU__1__4B A
AM—Z-'/ A AU_1_4C R
—— AU_1_4D A

Figure 3.3 RPFOM Database Relational Structures
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An option of "UNK", or unknown, has been added to the answer sheets
and data base for most of the non-numeric metric questions. This is
used when a "Yes" response may be warranted, but cannot be chosen
with certainty due to the unavailability of information.

Questions 1G and 1H on Worksheet 1B, Developmental Environment,
were vague regarding average levels for both education and
experience. This was resolved by placing the average experience

level at three years and the average educational level at a bachelors
degree.

Worksheets for Standards Review were established for data collection
at the CSCI lcvel, Unit level, and CSC levels. It was determined that
only the CSCI and Unit level worksheets were appropriate.

For Quality Review Results there was an issue of whether we could use
AMS answered questions for this phase of the life cycle. It was
determined that these three metrics should be based solely on

documentation as a data source, since source code does not exist at this
point in the life cycle.

The size requirements for a unit sct by the SRPEG scemed to be
excessively large for the modularity metric. Unit size set by the SRPEG
list 2 small unit as under 200 lines of code, a medium size unit had
between 200 and 3000 line of code, and a large unit was over 3000 lines
of code. OQur changes resulted in lowering the size of a small unit to
under 100 lines of code, a medium size unit has between 200 and 500
lines of code, and a large unit is over 500 lines of code.

b. Worksheet Changes

1.  Worksheets 2A, 2B, 2C, 2D names were changed as follows:

From:

Checklist 1B1 To: Worksheet 2A
Checklist 1B2 Worksheet 2B
Checklist 1B3 Worksheet 2D
Checklist 134 Worksheet 2C

Worksheet 2A, Question AM.1(4) - The word ‘exist” was omitted in the

question.  Both possibie responses were"no." One of these was changed to
"yes.”

Worksheet 2B, Question AM.6(1) - Ambiguity in this question was corrected.
The duplicate CP.1(1) question was deleted.



Worksheet 11A - Only the following questions are¢ answerable utilizing AMS
Worksheet E as source:

MO.1(3) SI.1 (523) S1.4(4a) S1.4(10b)
MO.1(5) SI.1(5b) S1.4(5) SL.5(3)
MO.I(7) SI.1(5¢) SI.4(6a)

MO.1(9) SI.1(5d; SI1.4(8a)

SL.1(2) S1.1(10) S$1.4(9a)

SI1.1(3) S1.4(1) S1.4/9b)

SI1.1(4) S1.4(3a) S1.4(10a)

Consequently, only corresponding questions in Worksheet 11B can be
answered. The equation remained the same but the total number of
responses are lessened to “23."

6. Worksheet 11B - The equation at the end of the work sheet asks for no/ino +
yes) and assigns this value to DR. However, none of the questions in this
work sheet gave a yes/no response. We evaluated all of the questions
inserted an equation that would give a valid yes/no response into the
questions noted below:

MO.1(5) SI.1(2) SL.4(1)
MO.1(3) SI.1(3) S1.4(5)
MO.1(6) SI.1(4) S1.4(12)
MO. I(7) SI.1(5) S§1.4(13)
MO.1(8) SL.2(1) SL.5(3)
MO.1(9)

The following additional changes were made 10 specific questions on
Worksheet 11B:

MO.1(9) This question did not have a corresponding question in
11B. An appropriate question with yes/no conclusion
was inserted.

MO.2(2),(3) Both are hardware questions and were consequently
deleted.

S1.4(9)c. An omitted minus sign was restored in the calculation.
Equation Changes
1. Development Enviromment cquations (SRPEG: TS-11: RDCI: 2-5):

SRPEG: Dc = No. of methods and tools applicable 1c system (i.e.
"yes")/38.

New Equation: D; = No. of methods and 1ools not applicable 10 system
(i.e., "no")/38.
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Apomaly: The SRPEG Dc results in a larger fault-density multiplier
correlated with an increase in number of beneficial methods and tools
used.

2. Anomaly Management - SA (SFREG: TS-13; RDCI: 2-5):

SRPEG: SA=09if AM> 0.6
=11ifAM< 04

New Equation: SA =09 if AM <04
= L1if AM>0.6

Anomaly: An increase in AM (proportion of "no" responses)
corresponds to a decline in the SRPEG SA (fault-density multiplier), thus
incorrectly effecting a higher predicted reliability.

3.6 Data Collection Results
The results of this study classify into two major subjects:

a. Effort expended on ecach study activity and on the individuali work sheets
for each test project.

b. RPFOM Numbers computed for each test project: first as complete software
systems, then for each test sample at the PDR and Code and Unit Test (C&UT)
phases. ‘

Findings and Conclusions are discussed in Section 3.7 and are based on our utilization
of available resources, application of refined RPFOM worksheets and equations, and
conduct of the required study activities.

Analysis and recommendations regarding the RPFOM metric multiplier coefficients
are provided in Chapter §.

3.6.1 Effort Summary

Table 3.7 provides a summary of the combined effort expended bty project personnel
in the performance of the study activities. These numbers are estimates and are
hased on project records and notes.




ACTIVITY MANWEEKS PERCENT
OF EFFORT
AMS Farniliarization 4 6
4D Familiarization _ 4 6
Instruction Preparation 21 30
Database Development 10 14
Material Set-up and Control 3 4
Orientation and Training 3 4
Data Collection and Calculation 25 36
Task !l Total 70 | 100

Table 3.7 Task Il Activity Effort Summary

The products of this work for future RADC experimentation in software reliability
prediction can be categorized into:

a.

Documentation and source code for four software development projects to
be maintained in the RADC software reliability project repository for
future experimental use.

Recorded effort data for two of these projecis (Sim/Stim and SCENE) upon
which to estimate future efforts 10 measure and predict software rcliability.

Raw measurement data from .hese two projects to incorporate into the
RADC soitware reliability data base for { ture experimental analyses.

Computed sofiwarc reliability data from these project test sampies  for
comparison with software testing results.

Simplified instructions for software reliability prediction, and experience
gained - both a basis for recommendations and revisions to the SRPEG.
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f. - Enhancements to the IRMS utilizing a modern DBMS. The enhancements
included an automated SRPEG worksheet management and RPFOM
computation capability.

g. An IRMS workstation interface to the RADC Automated Measurement System
Worksheet E for automated source code reliability measurement,

Tables 3.8 through 3.11 provide an estimate of the effort expended to process cach
RPFOM worksheet for both software projecis utilized in the study. Tables 3.8, 3.9 and
3.10 show the separate data collection and data entry effort for each worksheet at the
System, CSCI and Unit levels, respectively. Estimates for the system level worksheets
are approximations. The remaining estimates are based on timing 2 few samples of
each worksheet and then averaging. Similarities on the average times for several of
the CSCI level worksheets in Table 3.9 are due to the unavailability of detail design

specifications and the generic answering of "no" to applicable questions.

In Tables 3.8, 3.9 and 3.10, the total number of CSCIs and Uaits are shown for cach
software project, and average worksheet time is accumulated accordingly. In the
right-hand columns of these tables, this information is averaged and accumulated for
both projects in combination. Table 3.11 summarizes all of this information into
accumulated effort for data collection and data entry for all worksheets for the
individual and combined projects.

Based on the personnel and software projects utilized, we believe these cffort tablcs
to be useful predictors of future software reliability prediction efforts for similar
applications. SAIC and RT!( data collection personnel qualifications werz quite
representative of those called for in Section 3.2.3. Sim/Stim is representative of a
medium software developmeat project, having a total 72K LOC and an average of 154
LOC per unit. SCENE is represcntative of a small project, having a total of 24K LOC and
a very wide range of unit sizes which average 142 LOC each. Combined, Sim/Stim and
SCENE represent small-to-medium project whose units average about 148 LOC. For
larger projects, one c4n extrapolate effort estimates based on the information
contained herein. A tabie is provided for this purpose in Section 3.7.

3.6.2 RPFOM Numbers

RPFOMs were computed both for the two test projects and for the unit and CSC
integration test samples sclected from these projects. The complete set of
computations specified in Section 3.3.2 were performed for all four Software
Development Life Cycle phases on each software project. This yielded the Application
(A) and Development Environment (A*D) RPFOMs at the System level, and the refincd
Requirements and Design (A*D*S1) and Implementation (A*D*S1*S2) RPFOMs at the
CSCI level. The Implementation RPFOM also was computed for ecach individual test
sample. All RPFOMs and their underlying metrics are documented in Tables 3.13
through 3.17. Table 2.12 provides an index of their organization and ccmtent. Table
3.18 contains a summary of the test sample RPFOMs.

3.7 Findings and Conclusions

Analysis of the computed RPFOM values is documented in Chapter 5. This section
presents conclusions regarding the RADC software reliability prediction
methodology, based on the technical activities which were performed for this task
and the effort cxpended. In addition, recommendations are made f{or continued




Table 3.8. System Level Worksheet Effort (Minutes)

SIM/STIM SCENE COMBINED
Work L
Sheset Activity #SYS TIME #Svs TIME 6 A #SYS| AVG| CuM
[/ /]
o | oc | 10.07/ | 10c P 2 |100] 200
DE W17 0.5 V) 0.5 1.0
| "7 7
1A DC 60.0 / 60.0 / 60.0( 120.0
DE 0.25 / 0.25 / 0.25] 05
1B DC 60.0 / 60.0 % 60.0! 120.0
DE 1.0 / 1.0 / 10| 20
7@ ﬁé 7
Total DC 1 [130.0 1 1130.0 2 / 260.0
DE 1.75/// 1.75 /éj % 3.5
g s

Legend: DC - Data Collection

DE - Data Entry




Table 3.9. CSCl Level Worksheet Eftort (Minutes)

SIM/STIM SCENE COMBINED
Work
Sheet {Activity [ #C's| AVG | CUM | #C's| AVG | CUM | #C's| AVG | CUM
2A DC 4| o5/ 20| 1] 05| 05| 5| 05| 25
DE 1.0f 4.0 1.0 | 1.0 1.0 5.0
2B bC 0.5 20 05| 05 05| 25
DE 1.0l 40 1.0 | 1.0 1.0 5.0
2D DC 1.0l 4.0 1.0 | 1.0 1.0] 5.0
DE 1.0 4.0 1.0 1.0 1.0 5.0
3A DC 0.5 2.0 0.5 | 05 05| 25
DE 0.5 20 05| 05 05| 25
3B DC 0.5 2.0 051 05 05 25
DE 05| 20 G5 | 05 0.5] 2.5
3C DC 1.0{ 4.0 1.0 1.0 1.0 5.0
DE 05| 20 05| 05 0.5] 2.5
4B DC 40.0| 160.0 40.0 | 40.0 40.0 1 200.0
DE 1.0 4.0 1.0 1.0 1.0 5.0
10A DC 0.5 20 05| 05 0.5| 2.5
DE 1.0{ 4.0 1.0 1.0 1.0| 5.0
108 DC 0.5| 20 0.5 | 05 c.5| 25
DE 1.0] 4.0 1.0] 1.0 1.0l 5.0
10D DC 0.5| 20 05| 05 05| 2.5
DE 1.0] 4.0 10] 1.0 1.0 5.0 .
118 DC 120.0| 480.0 120.0 {120.0 120.0 | 600.0 b
DE 3.0 12.0 3.0 | 30 3.0| 15.0 )
Totai | DC | 4 § 10| 1h \w 28] 5 RN\ 13.6
Manhours| DE %\ 0.8 k\ ] 0.2 N 1.0

~1
ro




Table 3.10. Unit Level

Worksheet Effort Minutes)

SIM/STIM SCENE COMBINED
Waork
Sheet | Activity| #Us | ava | cum | sus| ave |cum | sus | Ava | cum
2C oc | 466 38" | a.75 | 181] 620
DC 0251 1171116 | 0.25 | 29 053] 329
DE 05| za3l 38| 15| 57 0.56 | 347
DE 11¢ | 05| 58
4A DC 10.0 | 4660| 154 | 10.0 | 1540 100 | 6200
DE 20| 932 20| 308 20 | 1240
10c | oc 38* | 3.0 | 494
DC 051 233 116| 05 58 13] 806
DE 05| 233l 38| 05| 19 05| 310
DE 116 | 05| 58
11A | DC 3.0 113980] 154 | 3.0 | 4260 3.0 | 18600
DE 0.5 | 2330 05| 775 051 3100
Total | DC | 466 7 39.6| 154 % 14.4| 620 7 54.0
Mandays DE 4 7.8 //% 2.7 /// 10.5

* Documentation existed for these units only
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Table 3.11. Worksheet Effort Summary by Level (Manweeks)
! SIM/STIM SCENE COMBINED
e\{\."ggt Activity| # %/ & CUM | # 7/ / CUM # % CUM
e Uleal-
=l BB BB E
CSCl DC | 4 /0.28 1 / 0.07| 5 % 0.35
DE % 0.02 1 0.01 7] 0.03
Unit DC | 466 % 7.92 | 154 Z 2.88 | 620 7¢ 10.80
| . . 4 .
DE /,//é 1.56 % ¢ 54 % 2.10
0 ea Vs G
i d 20 A s




research in the applied software reliability prediction technology specified in the
SRPEG.

3.7.1 Support Tools and Database

The IRMS workstation (a Mac Il-based system) was a very effective and low-cost
mechanism for the management of large volumes of software project measures.
Operationally, the RPFOM Database application has been easy to use and maintain, and
has yielded high productivity. It is strongly recommended that the metrics which
were not automated and the manual interface to AMS Worksheet E be automated in
future versions of the IRMS in order to increase this productivity.

Developmentally, AMS and the DBMS were difficult to learn to use and were
unpredictable in some aspects of their operation. Both were acquired in their first
release versions, and to some cxtent we were field testing them. Documentation was
minimal and no formal user training was available for either product. We worked
through these difficulties and our subsequent operational application ran smocthly.

AMS is a very useful and sophisticated measurement automation tool. Its Worksheet E
should be enhanced to extract all of the software measures required by SRPEG
Worksheet 11A. In addition, it would be potentially very useful to correlate the other
AMS worksheets with the SRPEG worksheets, and automate their interfaces.  This
would provide the mechanism to fully iutegrate the IRMS workstation developed
under the cusrent contract into the Software Life Cycle Support Environment
(SLCSE) facility at RADC.

A number of faults were encountered with the AMS and they were reported.

It is expected that the fault in AMS which prevents it from reliably precessing
FORTRAN IMCLUDE files will be corrected in a subssquent revision. Meanwbile, it is
essential that these statements be removed (or commented out) in source files when
running Worksheet E. Further, our cxperience with this function of AMS shows it to
be both expedient and ecconomical to run AMS on large mainframe systems.
Operation on a muilti-user VMS VAX 780 or single-user MicroVAX 2000 was
unacceptably slow. On the VAX 8650 the production rates were very acceptable for
this heavily compute-bound source language processor.

The present study has demonstrated the utility of a Macintosh-based DBMS for
voftware reliability prediction data management and analysis, and the potential for a
Mac interface to VAX-resident software reliability tools. This interface could be
realized by completing an automated connection between IRMS and AMS, and by
incorporating 1IRMS enhancements to automate all metrics calculations.

3.7.2 Software Projects and Materials

The total available documentation and source code for Siri/Su.u and SCENE inrludes
the specially prepared detail design specifications (by project consulcants) for each
of the experiment test samples. These software development project materials
adequatcly support the two primary objectives cf the current task:

a. To evaluate the software reliability prediction methodology in the SRPEG by
utilizing the speciaily derived instructions for data collectors on complete
sofiware systems. :




Table 2.12 RPFOM Number Index

Type Level Project Table Page
Project CsCli Sim/Stim 5-7 -9

SCENE 5-8 5-13

Samples Integ Sim/Stim 5-9 5-14

Unit Sim/Stim 5-10 5-18

SCENE 5-11 -22
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Table 3.18. Task Il RPFOM Summary

Test Test | Sample RPFOM Components RPFOM
Project | Level Name A D1 D2 313 g2 Number
Sim/Stim integ SNWNSN | 0.123 | 1.30 2.0 1.1 0.990 0.021
€.023

THURDT | 0.123 | 1.30 2.0 1.1 1.154 0.024

0.037

THUADS 0.123 | 1.30 2.0 1.1 1.350 0.028

0.044

THPCON 0.123 | 1.30 2.0 1.1 0.933 0.019

0.030

Sim/Stim Unit SNWMSN | 0.123 | 1.30 2.0 1.1 1.013
THXRDT | 0.123 | 1.30 2.0 1.1 "1 2.000
THUADC | 0.123 | 1.30 2.0 1.1 2.0C0

THUSCN | 0.123 ] 1.30 2.0 1.1 1.000

SCENE Unit |SCANNER | 0.123 | 0.76 0.5 1.1 1.500
INFANSEN | 0.123 | 0.76 G.5 1.1 2.250

INPSAT 0.123 | 0.76 0.5 1.1 4.500

nvODE 1 0,123 ] 0.76 | 05 | 1.1 .250 ,
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b. To provide RPFOMs for test samples sclected from these systems for
compacison with both the original development fault densities and
experimental testing results.

For Sim/Stim the available PDL is not sufficiently dctailed to collect the Anomaly
Management (SA), Traceability (ST) and Quality Review (SQ) metrics. For SCENE,
detail design specifications are not available for most of the units. We were unable to
collect ST on any of them; SA and SQ could be collected on only 38 units. Still, this
incomplete condition of the project documentation is meaningful in our study since
such unavailability is factored directly irto the RPFOM computatio.s.

The SCENE detail design specifications are as-coded versions of the software. Thus.
they are nov appropriate to assess as “predictors” of that software's subsequent
r~liability during test and evailvation. They have been utilized in the current study
exclusivelv to assess the SRPEG and RDCI RPFOM methodology and to provide data for
future use in edtimating software reliability prediction efforts.

The Sim/Stim and SCENE projects can be reused to comparc and validate future
refinetaents to the current RADC/SAIC software reliability prediction methodology.
MC3 and NTC also can be utilized to produce additional data points on current and
future findings and conclusions. But the most effective application of this
methodology requires a closer adherence to DoD-STD-2167A than observed by projects
available for this study (and, in effect, by most software development projects in
general). The inverse is also true: i.e.,, a requirement for the RADC software
reliability prediction methodology on software deveiopment projects would force
closer adherence to 2167A. These requirements depend upon government policy and
enforcement, and on sponsorship of additional studies in these areas in order to gain
the desired cost benefits in the long run.

3.7.3 Data Collection and Calculation

Data collection and recording on the provided work sheets and answer sheets is
primarily a technical support process. It is guided by the preparcd instructions and
can be scheduled in terms of activity sequences, resource and personnel
requirements, and level-of-effort allocations. Essentially, all procedures can bc
performed by junior technical and administrative personnel, except for the
questions or Worksheet 2C. These need to be answered by a programmer/QA analyst.

Data entry and RPFOM  calculations utilizing the RPFOM Database are primarily
administrative support processes. Also guided by the prepared instructions, they can
be budgeted and scheduled similariy to data collection and recording.

Tables 3.8 through 3.11 show the estimated time spent c¢n the various RPFOM work
sheets and answer sheets for both projects utilized for this study. This information is
summarized in Table 3-19. As you can see, most of the time was spent on worksheets
1A, 1B, 4B and 11B. Data collection, when compared to data entry, represented most of
the total time. The average times for Worksheets 2A, 2B, 3A 3B, 3C, 10A and 10B
reflect the unavailability of requisite source documentation. These worksheets were
completed by entering '"no" answers directly into the database. consequeatly the
average time expended is considerabiy lower than if the answers had been extracted
from available documents. The average times for Worksheets 11A and 11B are low
since only two-thirds of the questions were answered using AMS. Future study can
orovide additional effort data for these particular waorksheets.




Using the information in Tables 3.7 and 3.11, it is possible to estimate the level of
effort which will be required to collect and compute RPFOMs for various sized
projects. Table 3.20 provices this information. These projections are simply
extrapolations of the level of effort expended in the current stady: first by estimated
worksheet times which are then factored by "1.8" in order to account for all
associated planning, supervision, set-up and administrative time. This weighting
derives from the 25 manweeks required to perform the complete task, of which 13.83
manweeks were spent specifically on data collection and data entry operations.
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Table 3.:0

Average RPFOM Effort by Work Sheet (Minutes)

Work Sheet Activity Average Time
0 DC 10.00
DE 0.50
1A oC 60.00
4 DE 0.25
18 DC 60.00
DE 1.00
2A oC 0.50
OE 1.00
28 OC 0.50
DE 1.00
20 DC 1.00
DE 1.00
3A DC 0.50
DE 0.50
38 DC 0.50
DE 0.50
3C oC 1.00
DE 0.50
48 DC 40.00
DE 1.00
10A DC 0.50
DE 1.00
108 oC 0.50
OE 1.00
10D DC 0.50
DE 1.00
118 DC 120.00
DE 3.00
2C 0C 0.53
DE 0.56
4A DC 10.00
DE 2.00
10C DC 1.30
DE 0.50
11A DC 3.00
DE 0.50
Total oC 5.17
Hours DE 0.28




Table 3.21 Estimated RPFOM Etfort for Projects (Manweeks)

Wark ~ Time —_Time Per Project (LOC
Sheet Level Per W/S 25K 50K 100K | 250

0 System 10.50 0.01 0.01 0.0° 0.01
1A 60.25 0.03 0.03 0.03 0.93
18 61.0 0.03 0.03 0.03 0.03
2A CSCl 1.50 0.01 0.01 0.01 0.01
28 1.50 0.01 0.01 0.01 0.01
20 2.00 0.01 0.01 0.01 0.01
3A 1.00 0.01 0.01 0.01 0.01
3B 1.00 0.01 0.01 0.01 0.01
3C 1.50 0.01 0.01 0.01 0.0t
48 4.00 0.03 0.05 0.09 0.23
10A 1.50 0.01 0.01 0.01 0.01
108 . 1.80 0.01 0.01 0.01 0.01
100 1.50 0.01 0.01 6.01 0.01
118 123.00 0.07 0.14 | 027 0.68
2C Unit 1.09 0.08 0.18 0.29 0.73
4A 12.00 0.81 1.62 3.23 8.08
10C 1.80 013 0.25 0.49 1.23
11A 3.50 2.35 4.70 9.40 23.50
Work Sheet Subtotal 3.63 6.94 13.93 34.54
Total (1.8) 6.53 12.49 25.07 62.17
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4.0 SOFTWARE TESTING EXPERIMENT

To date, intuition and the advice of experts have guided much of the work done in the
fields of software testing and software reliability measurement.  Controlled software
experiments requirec extensive capital commitment and a large level of effort and
thus have rarely been performed.

This formal ecxperiment in software testing and reliability is a major step in
providing much needed data, obtained in a controlled environment. Section 4.5.5.3
describes the raw test results data which was collected from the application of six
standard testing techniques at the unit and CSC integration test levels utilizing test
samples from two AF/DoD software projects. Descriptive and statistical analyscs ol
these raw results data are provided in Chapter 5.

4.1 Technical Approach

Software testing was conducted in accordance with the experiment desigr. s
specified in the SRTIP. Figure 4.1 illustrates the software testing process. Due to tme
and ecffort constraints, the unit and CSC integration test samples identified in the
SRTIP were replaced with test samples which could be easily removed from their
software build cnvironments and tested in a stand-alone manner with test drivers.

The principal elements of the software testing cxperiment which are described in
this report are:

a. The formal framework of the experimeni, involving applicaiion of six
commonly used software testing techniques at different test levels.
utilizing code samples from previously developed software test projects.

b. Conduct of the experiment

[¢]

Tester and testing technique performance measurecment and software
reliability estimation measurcment.

d. Collection, documentation and reporting of all tests, test conduct and test
results based on the DoD 2167 standard and the goals of the SRTIP.

Test techniques to be evaluated were divided into two categories: deterministic
techniques and nondeterministic techniques. Deterministic techniques are those for
which one can determine without doubt that applying a given test technique to a
given code sample will find a given error. (Note that while one can determine crror
without doubt, the potential for human crror in the determination process still exists.
Thus deterministic does not imply foolproof.) Nondeterministic techniques are those
in  which variability across such factors as test personnel apd softwarc
characteristics can have profound ecffects on the effectiveness of the technique.

This distinction between test techniques is made to conserve time and resourcces.
Techniques which can be highly and consistently automated and are less dependent
upon tester expertise were scen as deterministic and suitable for empirical study.
Nondeterministic techniques require experiments with several testers employing the
test technique to the best of their ability on a given code sample. Experimcnial
rcsults obtained show whether applying the technique standardly and consistently
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finds a given error. In this effort, four testers were employed to write test
descriptions and test procedures for each test technique in the experiments.

A pilot study was performed prior to the complete set of experiments. This initial
experimentation was conducted according 1o the developed design and protocol as a
small, integral portion of the entire experiment. The experimental process and
products were closely monitored during the pilot, and the knowledge gained was
applied to improve the process for the remainder of the experimentation.

The experiments are designed as Latin Squares and involved four testers repetitively
testing code samples with different test techniques. The variability in results due to
the nondeterministic nature of the techniques can be averaged over all the testers
and code samples. This increases confidence that what is measured is a test
techrique’'s performance, not a tester's performance.

Three of the experimental test techniques are dynamic, in that they involve
executing the code and failures arc discovered via testing. These techriques are
random testing, functional testing, and branch testing. The fourth experimental test
technique, code reading, is static, in that the code is not executed and faults are not
discovered via testing. Both empirical study test techniques (structure analysis, and
srror and anomaly detection) are static techniques. In order to standardize the test
recording process, faults and failures for both dynamic and static techniques were
reported similarly, as errors, on Software Problem Reports (SPRs) during testing.
The experiments spanned both the unit test and CSC integration test levels. They used
samples from 1wo Air Force/DoD software projects. CSCI level tests were not
performed due to cost, time, and requirements for a CSCI/System level test
configuration. Eight code samples, four from each of two projects, were used as
experimental subjects at the unit test levels. Four code samples from one project
were used at the CSC integration test level, Code samples were selected based ~1 error
proneness and accessibility to stand-alone testing with a driver. Table 4.1 shows the
software projects and test levels for which code samples were utilized.

Table 4.1. Test Projects and Levels

TEST TECHNIQUE
Test Experiment Empirical Study
Level Functional | Random Branch Code Error & Structure
Testing Testing Testing Review Anomaly Analysis

Sim/Stim]Sim/Stim]|Sim/Stim|Sim/Stim]Sim/Stim]|Sim/Stim
UNIT | sCENE SCENE SCENE SCENE SCENE SCENE

CSC Sim/Stim]Sim/Stim }Sim/Stim|Sim/Stim|Sim/Stim{Sim/Stim
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The Latin Square framework, applied on a test level basis, organizes the experiments
in a cohesive manner. Its benefits include the following:

a. Efficient, continuous scheduling of testers and operators for the duration
of the experiment conduct.

b. Incremental execution, so that a pilot experiment can be performed first.
¢. Fairly straightforward method of analysis of the resulting data.

A detailed instruction manual was prepared utilizing information in the STH, SRPEG
and SRTIP. These Instructions for Testers and Operators [l11] provided a uniform
standard for the application of the various testing techniques to each test sample by
each tester. Special emphasis was placed on collecting the necessary test execution
and error data to evaluate each test technique for its efficiency and effectiveness,
test effort and test coverage, and to compare the techniques based upon these factors.

The experiment activities were performed jointly by Science Application -
Intemnational Corporation (SAIC) personnel in San Diego, CA, and Research Triangle
Institute (RTI) personnel in Research Triangle Park, NC. As the prime contractor,
SAIC was responsible for the overall experiment conduct and provided the larger
level of effort. RTI, the principle subcontractor, supported each of the designated
experiment setup, pilot experiment, and extended experiment activities, and
performed an important advisory role.

4.2 Test Resources

The resources utHized to perform the experiment activities are described in this
section. Included are computing systems, support software, software project code
samples, personnel and tester instructions. All experiment activities were performed
at the separate facilities of SAIC in San Diego, California and RTI in Research
Triangle Park (RTP), North Carolina. Both facilities provided qualified technical
project personnel, necessary project background/research data, and combined
computation and documentation resources. There were no requirements or
provisions for classified processing or security-related tests.

4.2.1 Computing System

The same DEC and Apple computer systems used during the data collection activities
were also utilized at SAIC in San Diego and RTI in RTP in support of all experiment
activities throughout the performance of this task. SAIC provided alternate VAX
systems (a VAX 11/780, later replaced by a VAX 8550) to support software testing.
These systems operated under the VAX/VMS version V4.7 operating system. RTI
provided one VAX station 2000 running the VMS 4.7 operating system for the same
use. Electronic communications between the SAIC and RTI sites was provided via
ARPANET for VAX-t0-VAX communications.

The IRMS, were a Macintosh Il-based system, served as the automated workstation for
performing test data management, calculations and report generation.

Figure 4.2 shows the software test configuration for experimental testing. The test
project software samples and interfacing/support software programs were installed
on the VAX/MicroVAX systems at both of the test sites. All of the coilected test data
was entered into the Mac Il workstations where the descriptive analysis were




performed. Supplemental statistical analyses will be performed on the RTI MicroVAX
2000 utilizing SAS.

4.2.2 System Software

The following system software was utilized to conduct the software test experiment
and empirical studies.

4.2.2.1 Communications.

ARPANET was used for VAX-t0-VAX communications. Terminal emulation software
(e.g., Macterminal and Mac 240) was used for Mac II-to-VAX communications at RTI.

4.2.2.2 Operating Systems.
VMS relcase 4.7 was used on the SAIC and RTI VAX systems.
4.2.2.3 Compiler.

VMS FORTRAN release V4.7 was used to compile all software code samples and all
interfacing software developed by the testers.

4.2.2.4 Data Management and Anaiysis.

Three software tools were utilized to manage and evaiuate all test data. These toois are
shown in Table 4.2,

4.2.3 Test/Support Tools.

Three software testing and support tools were utilized to support each of the software
testing tcchniques. These tools were used in the same capacity at both sites and are
shown in Table 4.3.

4.2.3.1 DEC Test Marager

DTM [21] was used to organize online test information for the three dynamic testing
techniques.  Within the DTM, testers define test descriptions; cach test description
defines one test, by associating together the appropriate test sample, its ancillary
data files (if any), the sample driver, input case(s), expected outputs (the
benchmark), and actual test outputs. One or more test descriptions are organized into
a DTM test collection. The DTM automatically stores test outputs and compares them
with expected outpuic (the benchmark), flagging all mismatches between actual and
expected outputs.

4.2.3.2 SAIC SDDL

SAIC SDDL [23] was used in conjunction with the code review technique only. All
code samples were run through the SDDL tool by support personnel prior to the
beginning of this study. [Each tester received the printed outputs of SDDLs static
processing of their code samples. These outputs consist of:

a. Table of contents for SDDLs output.
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Table 4.2. wvata Managers & Statistical Analyzers
TOOL APPLICATION SOURCE
4th .
X . Manage test results Acius
Dimension
Statview Data analysis on Mac Il | Brainpower
SAS/GLM Data analysis on VAX SAS
Table 4.3. Software Test Support Tools
TOOL APPLICATICN SOURCE
DTM ‘Manage software samples, test DEC
cases, test data.
SDDL Support code reading. SAIC
RXVP-80] Support error and anomaly GRC
detection, structura! analysis,
and branch testing.
Also used to pravide path coverage
information.
Random Support Random Testing RTI
Number
Generator
Automated | Support Dynamic Test Analysis SAIC
Comparator
AMS Code Analysis, Metrics RADC
IRMS Data Analysis, Resuits Data Base s C




b. Source code, enhanced with indentation based on structure and with flow
line arrows in a two-dimensional representation.

c. Module cross-reference listing.
d. Module reference tree.

4.23.3 RXVP-80

RXVP-80 {22] was used to automate Structure Analysis and Error Anomaly Detection, to
process code samples to identify branch coverage for the branch testing technique,
and to instrument samples for path coverage information for all three dynamic
techniques. The RXVP-80 test tool combines static and dynamic analysis features.
Testers use its static features to obtain reports for the static analyses of the code
samples as required for error and anomaly detection, structure analysis, and branch
testing. They also instruct RXVP-80 to instrument the code under test with path
coverage commands for use in dyramic testing. These operations are performed by
running RXVP-80 independently of the DTM, whereas all dynamic testing takes place
under the organization of the DTM. Thus code samples which are instrumented with
the dynamic componeni of RXVP-80 are invoked from within a DTM test description
templaie file. '

The following steps summarize the use of RXVP-80 for all experiment testing.
a. All . Dynamic Techniques:

1. Instrument each sample with RXVP-80 to obtain path coverage
measurements.

2. Gather and record path coverage for each test case and for all test
cases in one technique application.

b. Branch Testing

1. Use RXVP-80 to produce source code listing with branches
identified.

2.  Convert branches to paths and use paths to create test cases that
will meet the stopping rule.

4.2.3.4 CPU Use Procedures

Two routines (begin & end CPU usage collection) written in FORTRAN were provided
by RTI. These routines are called from the sampie driver in order to measure CPU
time used for each test case execution.

4.2.4  Software Code Samples

Test project software for the present experiment consists of available life-cycle
versions of two selecied test projects. Their documentativn includes some or all of the
following: system and software specifications; test plans, specifications and reports:
standards and practices for specification, design, development, and test; and system
and Software Trouble Reports. The project software and documentaiion aie identified
in Volume 3 of the Task I/l Report [8].




It was originally assumed that code samples could be selected for each testing level
from archived tapes of actual code immediately prior to the test level of interest. This
assumption was based on preliminary reports of project characteristics. However,
when project tapes and documentation were received and evaluated, it became clear
that the projects were tested on a functional build basis, rather than secparate unit
testing, CSC integration and r1ssung, and CSCI testing. Thus, a given software build
might include some untested units, some partially tested units, some partially
complete or parrially tested CSCs, and so forth. The sample selection strategy was
then reworked to accommodate build testing.

The sample selection algorithm documented in the SRTIP for a given test level is as
follows:

a. Review error distributions among the four candidate projects and
construct, to the extent possible, error-prone sainple pools with (in
decreasing priority):

1. Similar average number of errors per component in each pool, and
2. Project pool size of at least twice as many components as will be
chosen as samples.

b. Randomly choose which projects will be sampled, if more than enough
qualifying sample pools are created.

¢. Randomly choose the neccessary number of samples from each pcol.

d. Validate cach sample by obtaining the ecarliest available version of the
sample code and ensuring it contains the required numober of errors (see
step a.l)

¢. Repeat the steps 2 to d on a sample-by-sample basis for any sample(s) that
fail step d.

This process yielded a set of unit samples from the Sim/Stim project which were
sufficiently high in the calling structure that they could not easily be separated
from the build environment to accommodate stand alone testing with an independent
driver.  This was unacceptable for our limited effort budget. A basis other than
random sclection from among the most error-prone code was needed whicl would
yield independently testable units and CSC-level integrations of units that meet the
following objectives:

a. Samples must be selected in a wuniform manner and have similar
characteristics.

"b. Samples must consist of error-prone portions of code.

The known error profiles for these projects indicated that the error counts for
sclectable samples would be considerably lower than before, but hopefully they
would be acceptable for our experiment. Accordingly, the following procedure was
established to reseclect code samples at the unit test and CSC integration and test levels.

a. Utlize project consuliants 10 identify a pool of units (and integrations of
units) for each project: :




1.  Which can be tested independently from the software build.
2. Whose driver development will not exceed ‘a few man-days of effort.
3. That contain as many known errors as possible.

b. Select the fouv samples from cach pool which have the most errors.

Table 4.4 and 4.5 identify, respectively, the code samples and Latin Squares from the
Sim/Stim and SCENE projects which were utilized during unit and CSC integration
testing levels.

4.2.5 Pei-sonnel

SAIC's experience in applied software reliability measurement and testing
techniques is complemented by RTIs research work in the field of sofiware tcst
experiment design and analysis. Both of these strengths have been augmented by
contributions during Task 2 of carefully selected consultants with knowledge of the
test techniques and the experiment design. Additional consultants were utilized
during the experiment conduct; each is an identified expert on one of the selected
software projects. Specific personnel qualifications for each of the experiments and
empirical studies were as follows:

a. Activity Leader (1). Key project person; responsible for activity
assignment, coordination, completion, and products,

b. Assistant Activity Leader (1). Key project person -- assists Activity
Leader. R

c. Tester (4). Programmer/test and evaluation specialist -- produces test
descriptions and test procedures; develops test drivers; performs tests for
all test techniques; analyzes test outputs and documents observed test
errors; records other required test data.

d. Consultant (2). Test project specialist; assists in preparations for all
testing; documents supplemental requirements as needed for selected code
samples and test drivers; verifies test results,

e. Data Entry (2). Administrative staff; enters test results data into the
database.

f. Analyst (3). Data analysis specialist; ensures test data is pure; reduces test
data for analysis; produces descriptive analyses of raw and tabulated data.

4.2.6 Tester Instructions

A special set of instructions [11] were prepared io guide testing. These instructions
provided information necessary for testers to conduct their tasks during
experimental testing activities.  The testing activities were part of an experimzntal
framework, so were geared toward meeting two goals of the experimenial study:

1) Ensuring each tester follows set procedures as closely as possible, so that
he/she conducts each testing technique in the same coatrolled manner:

2) Ensuring all data and other deliverables obtained are consistent and
complete.
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Table 4.4.

Unit Sample Characteristics

Sample Characteristics
Sample No.of SPRs | Tape
Project D (original) | Source
Sim/Stim|} SNWMSN 8 Build 1
THXRDT 2 Build 1
THUADC 3 Build 1
THUSCN 3 Build 1
SCENE SCANNER 2 Vers. 6.0
INFANSEN 4 Vers. 6.0
INPSAT 4 Vers. 6.0
INMODE 3 Vers. 6.0
Table 4.5. CSC Sample Characteristics
Sample Characteristics
. Sample No.of SPRs | Tape
Project iD (original) | Source
Sim/Stim{ SNWMSN 18 Build 1
THURDT 4 Buiid 1
THUADS 6 Build 1
THPCON 5 Build 1




These instructions were meant to encompass all information that testers and
operators would need during the software testing.  Respective roles of testers and
operators are defined. (In actual application, operators were minimally utilized and
testers performed most of prescribed r1oles.  Activities within those roles include all
aspects of testing software samples using six different test techniques (branch
testing, code review, error and anomaly detection, functional testing, random testing,
and structure analysis) at two test levels (unit and CSC). A description of each test
activity, the order of performing ecach activity, the resouices needed (inputs) to
accomplish the tasks, and the results (outputs) required at completion of those tasks
were provided.

In addition, instructions were provided outlining how to obtain answers to questions
and solutions to problems ecncountered during these activities. A schedule for the
entire testing task, and references for various aspects of the activities, e.g. test
techniques, test support tools, were provided. :

Chapter 1 of the tester instructions provides an overview of the purpose and scope of
the manual. Chapter 2 identifies the six test techniques to be applied by the testers.
and provides a high-level definition of each technique. Chapter 3 identifies and
describes usage of the resources available to this effort, including computing
systems, test support tools, forms., and management.

Chapter 4 documents procedures which tcsters and operators must follow in
performing their work for the experiment. These procedures range from the test
environment configuration stage (o the documenting results and act'vities phasc.
This section is in essence a tutorial; step-by-step procedures are given for cach tcst
technique.  All rules, such as required order of test level execution, required order of
test technique application within a level, and assignment of samples to testers arc
provided.

Chapter S includes a test schedule for each test level. Attachment A of the
instructions is unique for each tester. It identifies which samples the tester will test
at each test level. It also provides a required ordering in which the test techniques
must be applied to each assigned sample. Attachment B contains all of the test data
collection worksheets to be wutilizced 1o collect the necessary test specifications and
results.  Detailed instructions are provided there to complete each form. Attachment
C was dcveloped as the pilot experiment was performed. This attachment includes
some 23 Tester Iniormation Bulletins which were issued to clarify and/or supplement
information contained in the original instructions.

4.3 Testing Techniques

Eighteen test techniques are represented in the STH, including some that are not
commonly used in practice but are currcntly used in research (for example, mutation
testing). Still newer state-of-the-art test techniques were identified by testing
experts acting as consultants.

While including such promising tcchniques in this cxperiment would have provided
some much-desired data for ‘the testing community, it was beyond thc scope of the
study, given that there were alrcady more methods addressed in the STH than we
could include in our effort.  Further experiments of this type utilizing additional
techniques are rccommended.
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Table 4.6.

Testing Techniques and Automated Tools

TESTING TECHNIQUE

FUNCTIONAL SUMMARY

TEST TOOL UTILITIES

Branch Testing

Force exacution of all possible

program branches; detect deviations RXVP-80
from expscted program ou’ 1ifs.

Functional Testing Determine if the program performs
the intended functions fully and (None)

correctly.

Random Testing Utilize random comibinations of
inputs to isolate incorrect Randol::;rmtm:ber
algorithms and compgtatlons. generato
Code Raview Visually inspect a program using a
checkiist in order to identify types SDCL
of faults.
Error and Anomaly Perform syntax, data and physical
Detection units checking to detect program RXVP-80
faults.
i Evaluate control and code struc-
Structgre Analysis RXVP-80

tures and subprogram usage to
detect program faults.




Early in the present study, a survey was conducted to provide an analysis of thc usc.
advantages, and limitations of state-of-the-art testing techniques.  This survey was
conducted by reviewing various rcference documents and reviewing test documents
from different projects. A list of these reference documents and test documents is
presented in the Task I Repor: (5].

The following testing techniques were selected from the referenced study, and arc
evaluated in the present report:

a. Siatic Test Techniques
1.  Code Reviews
2. Error and Anomaly Detection
3.  Structure Analysis

b. Dynamic Test Technigues
1.  Branch Testing
2.  Random Testing
3. Functional Testing

Table 4.6 presents an overview of these testing techniques, and the software test tools
that were used to support and/or automate them. Four of the techniques (code
review, functional, random and branch testing) were performed as part of the
experimental study by all four testers at each test level. The remaining two
techniques (error & anomaly detection and structure analysis) were performed as an
empirical study by only two of the testers at each test level. See scction 4.5 for dectail
on ihc cxperiment design.

This section defines each testing technique and gives a high-lcvel description of
inputs to testing with a given technique, outputs from testing with the technique.
and an overview of the process of applying that technique. Fcr cach test technique.
the definition and description given has been customized for application in this
study. For example, the specific commercial test support tools used are listed as
inputs. Also, ccmpleted test data collection forms are listed as outputs; ihese forms arc
not innate to the test techniques, but are completed at precise points in the test
processes of this study to standardize data collection for post-study analyses. Detailed
instructions for applying each technique at the appropriate test lcvels are provided
in the tester instructions.

This information has been compiled with the analysis of the test results {Chapter 3
and associated testing strategy rccommendations (see Chapter 6) into a usecful
Guidebook (Volume 2) for acquisition managers and softwarc enginecrs. '

4.3.1 Dynamic Techniques
Dynamic test techniques are those which involve exccuting the code in the testing

prccess. Three of the test techniques in this study are dynamic techniques: branch.
functional, and random test techniques.

Black box techniques are those which do not involve knowledge of the source code:
instead, more abstract knowledge of the problem, such as that provided in functicnal
specifications and/or design documerts, is used to create tests. White box techniques
are those which require knowledge of the source code; tests for the software arc
designed based on knowledge of the characteristics of the specific implementation.




Two of the dynamic techniques, random and functional, are black box testing
wechniques, whercas branch testing is a white box testing technique.

Each technique is applied at the unit and CSC test lcvels. All three techniques are
summarized below in terms of their inputs, pirocess, and outputs.

Note that all dynamic techniques require an abstract specification of the program
function as an input. According to DoD-STD-2167A, the specifications applicable at
the unit and CSC test levels arc:

a. CSC level: Softwarc Top Level Design Document (STLDD) or equivalent.

b. Unit level: the Detailed Design Document (DDD) or equivalent.

For this study, equivalent specifications were produced by consultants

knowledgeable of the projects. For CSC integration samples, the consultants
identified a subset of the CSC functions to be tested within the budget and time
constraints for the study. The consultants also provided requirements for the

necessary test drivers.

4.3.1.1 Branch Testing

This rtesting technique combines static and dynamic techniques and deiects failures.
The sta:ic portion is used to determine test data that force selected branches 10 be
executed. The dynamic portion is used to actually run the code with these test data
and then obtain test outputs. Test personnel perform branch testing of the code
samples using the appropriate documentation and specifications. Test coverage
analysis is used to dectect untested parts of the program. Output data analysis is
applied to detect outputs that deviate from known or specified output values.

Procedure

Branch testing requires creating test cases that cause execution of a specified
percentage of all branches in the code. As applied in this e¢ffort, Branch testing
consists of two subset of techniques defined in the RADC Software Test Handbook.
These two techniques are 1) static input space partitioning by path analysis, and 2)
dynamic instrumentation-based path and structural analysis.

The first technique subset identifies all branches in the code under test. The tester
uses this information to create tests that will cause execution of each branch. RXVP-
80 is used to identify all of the branches in the code. The tester determines the
correct outputs expected from executing the code for each test case based on the
specifications. Then, ithe tester writes a test procedure for these test cases, tailors the

test driver as needed, and sets up the DEC Test Manager (DTM) test collections and
descriptions.

The second technique subset is used to execute the code under test with the tests
created, and to track the branch coverage for each test case and for the total of all
test cases. RXVP-80 is used to instrument the code under test. The tester executes the
code with the given test case inputs by running the DTM test collection, and uses the
DTM Review capability to find differences in actual and expected outputs. Executicn
of the sample code instrumented by RXVP-80 generates reports on branch coverage.
Testers review these reports to ensure that their test cases meet the stopping rule; if
they don't, the tester rcturns to the static activity of creating more test cases to



execute all branches at lcast twice. Testers compare expected outputs with outputs
obtained by dynamic testing, and log all errors found on SPRs.

Information Input

Inputs to the static portion of branch testing are: 1) the source code of the sample
and 2) the specifications of interest for the sample, and (3) the RXVP-80 tool.

Inputs to the dynamic portion are: 1) the source code of the sample, 2) the test cases
and test procedurcs generated during the static portion of branch testmg. and 3) the
RXVP-80 tool.

Information Qutput

Outputs from the static portion of branch iesting are: 1) test cases, 2) test
procedures, and 3) test activity worksheets.

Outputs from the dynamic portion are: 1) the actual outputs, from executing the
sample with each test case, 2) SPRs which document errors discovered in those
outputs, 3) test case branch coverage reports, and 4) test activity worksheets.

4.3.1.2 Functional Testing

This dynamic testing technique finds failures consisting of discrepancies between
the program and its specification. In using this testing technique. the program
design is viewed as an abstract description of the design and requirement
specifications.  Test data are generated, based on knowledge of the programs under
test and on the nature of the program's inputs. The test data are designed to ensure
adequate testing of the requirements stated in the specification. Test personnel
perform functional testing of the code sample using the appropriate documentation
and specifications. Functional testing is performed to assure that each unit correctly
performs the functions that it is intended to perform.

Procedure

Functional testing ecntails creating test cases to exercise all functions, or a given
percentage of all functions, that the software specifications include as functional
requirements. The tester consults the appropriate functional specifications
provided, and manually creates test cases and corresponding test procedures to test
all applicable functions. The test driver is tailored as needed, and the DTM is set up 1o
run the tests as a test collection. The test sample is instrumented with RXVP-80 in
order to gather path coverage information; note that this is not integral tc functional
testing, but is done to provide path coverage data of functional tests for experimantal
analyses. The tester executes the code with the given test case inputs by running the
DTM test collection, and usec the DTM Review capability to find differences in actual
and expected outputs. SPRs are logged for all errors found.

Information Input

Inputs to functional testing are: 1) an abstract specification of the program function
and 2) the source code. '



Information Output

Outputs of functional testing are: 1) test cases, 2) actual test outputs, 3) an SPR for
each error found, and 4) test activity worksheets.

4.3.1.3 Random Testing

This dynamic testing technique tests a unit by randomly celecting subsets of all
possible input values. The input subsets can be sampled according to the actual
probability distribution of the input sequences, thus characterizing the wusage; or
according to other probabiliiy distributions. Random testing invokes unusual
combinations of input values that are frequently not represented in test data
generated by using the other test techniques. Random testing is performed to detect
outputs from the random inputs that deviate from known or expected output values.
Test personnel perform randoin testing of code samples using the appropriate
documentation and specifications. Papers by Duran and Niafos [19] and Bell (20]
provide more information on random testing. ’

Procedure

Random (or statistical) testings consists of randomly choosing test cases as subsets of
all possible input values according to a uniform probability distribution over the
range of values specified for each input. Working from code sample specifications
which identify all valid inputs and outputs, .the testers code a test generator routine
that randomly selects inputs. This generator is then executed to provide test case
inputs.  Testers determine the corresponding correct outputs expected. Then test
tases are prepared from these test input o°nd output pairs, and a test procedure is
written to execute them,

The test driver is tailored as needed and the DTM is set up to run the tests as a test
collection. The sample is instrumented with RXVP-80 in order to gather path
coverage information. The tester executes the code with the given test case inputs by
running the DTM test collection, and uses the DTM Review capability to find
differences in actual and expected outputs. SPRs are logged for all errors found. If
the stopping rule has not been met, the tester rcturns to the static activity of
creating more test cares to achieve the required MTTF of 10 input cases.

Information Inpnt

Inputs are: 1) the source code of the sample; and 2) an abstract specification, or
equivalent, of the sample functions, including range specifications of inputs and
outputs.

Information Qutput

Gutputs are: 1) a set of test cases and corresponding test procedurz(s), 2) a complewed
SPR for each emror observed, and 3) test activity worksheets.

'4.3.2 Static Techniques

Static test techniques are those which do not involve executing the code in the
testing process; instead, the source code is inspected or reviewed. The remaining
three test techniques in this study are static techniques: code review, error and



anomaly detection, and structure analysis. All three are white box techniques, as
defined earlier in Section 4.3.1. These techniques are applied at the unit and CSC test
leveis and are described below.

4.3.2.1 Code Review

This static testing technique involves the visual inspection of a program with the
objective of finding faults. Test personnel perforin an inspection of the sample code
units using the appropriate documentation and specifications. These code
inspections are driven by checklists in order to identify common types of errors in
the code.

Process

Initially, the source code is statically processed by the SDDL tool. Thus the source is
enhanced with indentation based on structure logic and with f{low line arrows in a
two-dimensional representation.  Other outputs of SDDL for organizational use in the
code inspection are the table of contents, a module cross reference listing, and a
module reference tree. The tester works through the checklist sequentially,
referring to the annotated source listing and above mentioned organizational aids.

The tester looks for errors (and often for poor programming practices) in the source
code and comments by examining it for auributes noted in the checklist.  This
checklist identifies all aspects of the code to be studied for problems and all checks to
be made for agreement between the code and the specifications. Examples of code
attributes in the checklist are: 1) whether branch points and loop indices have been
coded correctly; 2) whether formal and actual parameters are consistent and correct;
and 3) whether specifications, inline comments, and code are consistent ang code is
complete with respect to the specifications. When a problem or error is found during
the code review, an SPR is completed.

Information Input

Inputs to code review are 1) the sample source code, 2) the code review checklist,
and 3) the relevant specifications.

Information Output

Outputs from code review are: 1) an SPR for each error found, and 2) test activity
worksheets,

4.3.2.2 Error & Ansmaly Detection

This static testing technique is applied to detect faults via syntax checking, data
checking and physical units checking of the source code. Syntax checking includes
checks for uninitialized variables and unreachable code. Data checking entails
identifying set-use anomalies, conducting a data flow analysis and unit consistency
checking. Physical unit checking looks for consistency in physical units usage. Test
personnel perform error and anomaly detection on the selected sample code units
using the appropriatc documentation and specifications.
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Process

Error and anomaly detection is applied using the following static analysis functions
of the automated tcol RXVP-80:

a. Syntax checking: uninitialized variable screening, and unreachable
code screening.

b. Data checking: data flow set/use anomalies, interface completeness and
consistency (CSC integration level).

c. Physical Units Checking: checking for consistency in physical units
(e.g. feet, gallons, liters, etc.) usage.

An SPR is completed for each error found; some errors may be reported directly in
the RXVP-80 reports, some may be found by visual inspection of the code, and some
by other means during thc error and anomaly testing activities.

Information Input

Inputs to error and anomaly detection are: 1) the source code to be analyzed, 2) the
specifications, and 3) the RXVP-80C testing tool.

Information OQutput

Outputs from error and anomaly detection are: 1) an SPR for every error found, and
2) test activity worksheets.

4.3.2.3 Structure Analysis

This static testing technique detects faults concerning the conirol structures and

code stiuctures of FORTRAN, and improper subprogram usage. Test personnel
perform structure analysis on the source code using the appropriate documents and
specifications. Structure analysis is performed to determine the presence of

improper or incomplete control structures, structurally dead code, possible recursion
in routine calls, routines which are never called, and attempts to cali non-existent
routinegs.

Process

The automated tool RXVP-80 is used to partially automate structure analysis. RXVP-80
processes the source code and parameters describing controi flow standards, and
provides error reports and a program call graph. For example. analysis of graph
cycles may indicate unintentionally recursive code:; presence of a disjoint subset of
the graph illustrates unreachable, or dead, code; and calls to nonexistent routines
will be illustrated by edges with no sink nodes. The tester lcgs RXVP-80 error reports
and errors illustrated by the call graph in SPRs. Apy errors found by other means
also are logged in SPRs.

Information Input

Inputs to structure analysis are: 1) the source code; 2) a specification of the control
flow standards to be enforced in the language; and 3) the RXVP-80 tool.
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Information Output

Outputs from structure analysis are: 1) an SPR for every error found, 2) a program
call graph or report, and 3) test activity worksheets.

4.4 Reliability Estimation

Measurement data for software reliability estimation was collected as an integral part
of the software testing experiment since reliability estimation is based on
performance resuits during test conditions. Once software is executing a failure rate
can be directly observed, thus avoiding a transformation of fault density necessary
in determining failure rate during pre-test software reliability prediction. The
failure rate of a program during test is expected to be affected by the amount of
testing performed, the methodology employed, and the thoroughness of the tes i-g.
An evaluation of each of these factors is included in the experiment design.

4.4.1 Reliability Estimation Number (Model 2)

The Reliability Estimation Number (REN) is an Estimated Failure Rate (F). REN Model
2 is specified in Task 201 of the SRPEG and provides the basis for our experimental
evaluation of software reliability estimation. It uses the failure raie observed during
testing and modifies that rate by parameters estimating the ihoroughness of testing
and the extent to which the test environment simulates the operational environment.
Tables 4.7 and 4.8 identify these REN data elements and procedures and their
respective data collection sources and metric worksheets, as specified for Task 201.

Utilizing the SRPEG procedures, two RENs are computed for the code samples iested
during the unit and CSC test levels for the dynamic test techniques only. They are
referred to as REN_AVG (based on average failure rate during test) and REN_EOT
(based on failure rate at end of test). Computation of these RENs is presently
infeasible for the static test techniques. We were unable to compuie REN_EOT due to
the low levels of testing and the design decision 10 not repair detected errors.

REN_AVG and REN_EOT, also referred to as estimated failure rates (F), are
computed as follows:

REN_AVG =FT1 *Tjor
REN_EOT =Fr2* T2

where: FT)] is the average observed failure rate during testing.
FT2 is the observed failure rate at end of test.

Ti=.02*T
T2=.14*Tand
T=TE*TM*TC

where: TE is a measure of Test Effort
TM is a measure of Test Methodology
TC is a measure of Test Coverage




Table 4.7. REN Data Collection Procedures

SRPEG DATA
METRIC DATA (TASK 201) COLLECTION
PROCEDURE

Average Failure Rate During Test (FT1) 12, 13, 14

Failure Rate at End of Test (FT2) 12, 13, 14
Test Effort (TE) 15
Test Method (TM) 16
Test Coverage (TC) 17

Table 4.8. REN Data Sources

METRIC SRPEG
DATA INPUT DOCUMENTS METRIC
WORKSHEETS
SPRs 5, 6
F OS Reports
T1 Tester Logs
SPRs
Fro 0S Reports 5. 6
Tester Logs
TE Tester Logs 6
Test Plans 7
™ Test Procedures
Software Development Plan
Software Test Handbook
Source Code
8
TC Test Plans
Test Procedures
Requirements Document




4.4.2 REN for Test Environments

The influence the test enviroument has on the estimated failure Rate (F) is described
by three metrics. These metrics are in the form of multipliers. The product of all of
these metrics is used to adjust the Observed Failure Rate (FT) up or down depending
on the level of confidence in the representativeness and thoroughness of the test
environment.

4.4.2.1 Average Failure Rate During Testing (FT1)

FT1 can be calculated at any time during testing. It is based on the current total
number of SPRs recorded and the current total amount of test operation time ’
expended. It is expected that the failure rate will vary widely depending on when it
is computed. For more consistent results, average failure rates are calculated for
each test phase.

4.4.2.2 Failure Rate at End of Testing (FT2)

FT2 is based on the number of SPRs recorded and amount of computer operation time
expended during the last three test periods of testing.

4.4.2.3 Test Effort (TE)

Three alternatives are provided for measurings TE and are based upon data
availability:

a. The preferred alternative is based on the labor hours expended on
software test. As a baseline, 40 percent of the total software development
effort should be allocated to software test. A higher percentage indicates
correspondingly more intensive testing, a lower percentage less
intensive testing.

b. The second alternative utilizes funding instead of labor hours.

c¢. The third zltemative is the total calendar time devoted to test.

Calculate TE, based on these three characteristics, as follows:

TE = .9 if 40/AT < 1, or
TE = 1.0 if 40/AT > 1

where: AT = the percent of the development effort devoted tc testing.

4.4.2.4 Test Methodology (TM)

TM represents the use of test tools and test techniques by a staff of specialists. The
STH specifies a technique to determine what tools and techniques should be applied to
a specific application.  That technique results in a recommended set of testing
techniques and tools. The approach is to use that recommendation 1o evaluate the
techniques and tools applied on a particular development.




Calculate TM as follows:

T™ = .9 for TU/TT > .75
T™=1for.75>TUMT > .5
T™ = 1.1 for TU/TT <5

where: TU is the number of tonls and techniques used.
TT is the number of tools and techmiques recommended.

4.4.2.5 Test Coverage (TC)

TC assesses how thoroughly the software has been exercised during testing. If all of
the code has been exercised then there is some level of confidence established that
the code will operate reliably during operation. Typically however, these programs
do nor maintain this type of information and a significant portion (up w0 40%) of the
software (especially error handling code) may never be tested.

“alculate TC as follows:

TC=1/VS
where: VS = VS1 during unit or CSC testing
VS = V82 during CSC integration and test, and

VSt = (PT/TP + IT/TI)/2

where: PT = executicn paths tested

TP = iotal execution paths
IT = inputs tested
TI = total number of inputs

V82 = (MT/NM + CT/TC)/2

where: MT = units tested
NM = total number of units
CT = interfaces tested
TC = tiotal number of interfaces

4.5 Experiment Design and Conduct

The design adopted for this study is presented here and in the SRTIP. It is
specifically geared toward providing results useful to acquisition managers of Air
Force software. To ensure a sound, comprehensive design, the initial design was
enhanced with inputs and reviews by RTI experts in experiment design with human
subjects and statistics and enhanced with inputs and review by industry and
academic experts in the ficlds of computer science, software testing, experiment
design with human subject, statistics, and software metrics [17].

As illustrated in Figure 4.3, an adaptation of a figure developed by Basili and Reiter
[18], 2 standardized approach to the experiment design, was taken. In following this
approach, a precise definition of experimental goals in the form of specific questions
to be answered was developed from the objectives declared in the SOW and the
contents of the input guidebooks. These questions were organized into “questions of
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interest” and are documented in the SRTIP. Candidate statistical designs wcre
evaluated in terms of how well they would test the chosen questions of interest, given
the projects, test techniques, tools and other resources available.

Experiments to address all aspects covered in the two input guidebooks were beyond
the scope and resources of this study. Thus, the design was tailored to address as
much of the information in these two documents as possible, while conirolling the
experimental variables to the extent necessary to preserve the statistical soundness
of the design.

A combination of experiments and empirical studies were selected to best meet the
objectives of this study. The empirical studies address deterministic procedures, so
only two testers are required to apply each test technique chosen for the empirical
study. The experiments address nondeterministic procedures and empley four
testers. Samples consist of code from actual software product development.

During experimentation, the software project code samples were tested using six
different test techniques. Measures were obtained for unit and CSC integration levels
of testing. The test techniques studied were random testing, functional testing.
branch testing, code review, error and anomaly detection, and structure analysis.
The study obtained quantitative measures of software test effectiveness and
efficiency during the testing process.

The experiment was performed initially as a small-scale pilot experiment. The
overall experiment design and methodology was verified in the pilot.  This stcp
ensured the validity of the remaining experimentation and attendant findings and
recommendations. Data was collected to provide insight into the effectiveness of test
techniques for different application types at different test levels, per the test
objectives.  Included are the test effort required, test coverage goals, and software
error characteristics.

4.5.1 Experiments

Experiments were designed for each of the four deterministic testing techniques.
These experiments address:

a. A study of three dynamic test techniques: functional, random, and branch
testing. Dawa analysis is by percent known errors observed at each tcst
level, by percent known errors observed by test technique, and by
percent known errors observed by test technique at each test level.
(Absolute number of errors are recorded for descriptive purposes. Since
each sample does not have the same total number of errors, meaningful
comparisons across samples are made on a percentage basis.)

b. A study of one static test technique: code review. Data analysis is by
percent of known errors detected, by percent of known errors detected at
a test level.

¢. The measurement of each technique's relative efficiency, in terms of thc
number of discrepancy reports filed, on a cost and time reference basis.

The experiments are grouped by test level; a portion of the unit test level experiment
is run first, as a pilot study, followed by the remainder of the unit testing, then CSC
integration and test experiments.




Since the experimental test techniques are nondeterministic, different testers design
different test cases when applying a technique to a given sample. Four experienced
testers are utilized to minimize differences among testers' abilities and the amount
that chance plays in the creation of a given test case. [Each tester uses all four
techniques on his or her assigned code samples. This is done at each test level, and
techniques are applied in a predefined sequence utilizing Latin Squares, thus
assuring that every technique precedes every other technique an equal number of
times.

A feature of the Latin Square design is that every row and every column is a
complete replication; that is, in every row and in every column, each test method is
applied exactly once. This grouping has the benefit of removing from the generic
error term all differences among rows (test periods) and all differences among
columns (software sample/tester pairs).

The Latin Squares used in this design were specifically chosen so that the treatments
(test techniques) are balanced with respect to residual effect in the sense that every
treatment is preceded by every other treatment an equal number of times (once per
square). Thus, the residual effects, or the learning about the software and its faults
or errors that the tester may experi nce by applying a test technique to that
software, are evenly distributed. If a tester creates better test descriptions for
functional testing, and if he has already created the test descriptions for branch
testing, that effect is not hidden among all experimental runs, since the order of
testing is varied in a controlied manner. This setup also allows measurement of the
combined tester/sample effect.

4.5.1.1 Unit Test Level

Four testers were cmployed at the unit test level. Both software projects have units
preserved on build tapes. The Sim/Stim and SCENE were chosen for use at ihis level
because their sample pools were the most error-prone units for cach project, as
described in Section 4.2.4. Table 4.9 ideniifies the test samples utilized from Sim/Stim
and SCENE. One sample from each project was randomly assigned to each tester. Each
tester applied each test technique to each of his or her samples.

A predetermined order in which the tester applied each test tehnique was assigned
by Latin Square experiment design (as denoted by the Session designation in Table
4.9), This defines the order in which the tester created test descriptions, and then
test procedures, for that sample. It is also the order in which testers evaluated test
outputs for errors.

As shown in Table 4.9, the unit level experiment has been displayed in two Latin
Squares. In each Latin Square, the row is associated with the order of testing and the
columns are associated with testers and software types. The square using the SCENE
project comprised the remainder of the unit project.

4.5.1.2 CSC Integration Test Level

Four testers were employed at the CSC integration and test level. Sim/Stim was used at
this level. Four CSC unit integration samples were chosen froin a pool of error-prone
CSCs, as described in Section 4.2.4. Table 4.10 identifies the samples utilized. One
sample was randomly assigned to each tester. [Each tester applied each test technique




to his or her sample, in the order prescribed by the design. Table 4.10 provides this
ordering.

4.5.2 Empirical Studies

Empirical studies were designed for both of the nondeterministic testing techmiques.
These empirical studies address:

a. A study of two static test techniques: structure analysis and error and
anomaly detection. Data analysis is by percent of known errors detected,
by percent of known errors detected at a test level.

b. The measurement of each technique's relative efficiency, in terms of the
number of SPRs filed (errors located), on a cost and time reference basis.

As shown in Table 4.11, empirical studies were conducted at the unit and CSC test
phases using the two deterministic, static test techniques: structure analysis and
error and anomaly detection. Two testers applied each technique to the same code
sample which was utilized in the experiments in Section 4.5.1, as shown in Table 4.11.
Note that since the test techniques are deterministic, only two testers were required
and the order of test technique application is unimportant. The first two testers who
completed their experiment testing duties were employed as the empirical study
testers.

4.5.3 Pilot Experiment

A pilot study was performed prior to the complete set of experiments. This initial
experimentation was conducted on the AFATDS Sim/Stim unit code samples in Tables
4.9 according to the established design and protocol. The pilot study is a small,
integral portion of the entirc experiment.

The experimental process and products were closely monitored during the pilot, and
the knowledge gained was applied to alter and improve the process for the extended
experimentation.  Specifically, the results of the pilot were originally intended to:

a. Fine tune the protocol. Tester Information Bulletins (TIiBs) were
instituted as a mechanism to clarify the (ester instructions (see Section
4.5.4).

b. Further reduce any remaining tester lecaming effects related to the test
techniques, test tools, ard hardware and software environments. No
further refinements to the design were needed.

c. Provide initial data on whether significantly different results are
obtained at the two different test sites. Test results for the single tester at
RTI correlated with similar resulis for the three testers at SAIC. This data
is incorporated in Chapter §

d. Provide initial data on how many of the known errors are found by the
testers employing each of the prescribed test techniques. This was
reported at the pilot briefing and is incorporated in Chapter 5.

¢. Provide initial data on whether significantly different results are
obtained from the different testers working on different samples. It was




Table 4.9. Unit Test Latin Squares

Pilot Latin Square:

SinvStim PROJECT
Unit THUSCN SNWMSN THUADC THXRDT
Tester | l il v
Session 1 F C_ R _B
Session 2 C R B F j
Session 3 B F C R
Session 4 R B F C

Unit Latin Square:

SCENE PROUECT

Unit SCANNER INFANSEN INPSAT INMODE
Tester | I i v
Session 1 F B R c
Sassion 2 B _ R _C F
Session 3 C. F B_ R
Session 4 R C F B

B denotes the branch testing technique.

C denotes the code review testing technique.

F denotes the functional testing technique.

R danotes the random testing techniqus.

|

.,IV are tester identifications. Each tester must be a
unique individual.

Session denotes the order in which a tester applies the

prescribed test method to the assigned sample.




Table 4.10. CSC Test Latin Square

Sim/Stim PROJECT
cC THURDT THUADS SNWMSN THPCON
Tester | e Hi v
Session 1 C F B R
Session 2 R B c F
Session 3 B R F C
Session 4 F C R B

B denotes the branch testing technique.

C denotes the code review testing technique.

F denotes the functionai testing technique.

R denotes the random testing technique.

I,...,IV are tester identifications. Each tester must be a
unique individual.
actually tested by Tesier ill because of Tester |l
unavailability.

Session denotes the order in which a tester applies the

prescribed test method to the assigned sample.

w

Table 4.11. Empirical Study Design

Unit Phase CSC Phase

Software AFATDS | SCENE Software AFATDS
Tester X SE SE Testar X SE
Tester Y SE SE Tester Y SE

S denotes the static structure analysis technique.
E denotes the static error & anomaly dstection test
technique.
AFATDS is a unit code sample from project
AFATDS Sim/Stim.
SUENE is a unit code sample from project SCENE.

X & Y denote first two testers to complete experimental
testing.
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found that there were considerable differences in test resuits between
different testers/samples. This data is incorporated in Chapter 5.

Several additional evaluations were made of the pilot experiment process, each
resulting in a practical refinement to the experimental testing procedure. No
revisions to the formal experiment framework were needed. Changes tnat were made
are:

a. Mid-Pilot changes
1. 23 TIBs were issued:
a) Worksheeis and instructions were clarified.

b) A uniform Code Review Checklist was extracted from the original
list of code checks and rational.

¢) Stopping Rules were restored to revised estimates in the SRTIP.
d) Tool use and anomaly reporting was clarified.

2. Operator Roles were deleted per tester choice, as it was more efficient
for testers to perform those activities themselves.

b. Post-Pilot Changes

1. The Code Review Checklist was split into two lists (unit and CSC) and
reverted to less formal ‘guidelines’ to accommodate the testing
technique objectives for applicable test levels.

2. DTM utilization was dropped following unit testing since its use was
time consuming and there was no experiment design requirement to
benchmark expected outputs.

4.5.4 Communications and Monitoring

During the conduct of the experiments and empirical studies at SAIC and RTI,
communication lines were maintained to ensure that all questions regarding setup,
procedure, and so forth were resolved quickly, and to keep the experimental
environment and conditions as similar as possible across the two sites. This
communications scheme supported rapid resolution of questions and provided
electronic, telephone, and mail paths to both sites and all test personnel.

Any experiment-related issue, or question that was initiated by testers, was
investigated by the activity managers at both sites. When an answer was obtained, it
was documented in a Tester Informaiion Bulletin (TIB), then distributed and filed at
both sites.  This included the resolution of questions which had any impact on
instructionus o testers.

The experiment documentation produced by testers was subjected a quality assurance
(QA) review by the pilot and extended experiment activity managers for
acceptability. Activity managers provided testers with scheduled review points;
when these points were reached, testers informed the activity manager that
materials were ready for review. The activity manager then checked the materials




for adherence to the standards set forth in the guiding documents and for
completeness. These guidelines for determining acceptability were derived from the
SRPEG and 2167 DIDs for test descriptions and test procedures. They were distributed
to testers as instructions for completing the test data collection worksheets. All
materials were reviewed in a timely fashion for appropriate content.

In addition to scheduled QA monitoring, regular evaluation of the general testing
activities was conducted by the activity managers. Any irregularitiecs were corrected
as they occurred by applicable TIBs.

4.5.5 Applying the Techniques

Figure 4.4 illustrates the various facets of testing teclinique application. Essentially.
testers applied each testing technique in the order specified by the Latin Squarcs.
utilizing the procedures contained in the tester instructions. Test project consultants
assisted in pre-test preparation and post-test evaluation activities. Testers created
test cases, test procedures and test drivers from specifications provided by the
consultants. A test harness was setup utilizing DTM to provide inputs to the icst
driver and to capture and compare test outputs from the code samples under test.
During unit testing DTM was found to be of no actual assistance for this type of
experimentation, so it was not used during CSC integration testing.

4.5.5.1 Preparing and Executing the Tests

Figures 4.5 and 4.6 illustratc the overall flow of test case preparation and execution
for each of the testing techniques. Test driver development was ireated as dynamic
test setup activity and was not an integral part of the preparation of the tests
themselves.

4.5.5.1.1 Test Preparation

Preparing for test execution included test data preparation and formulation of
expected results. Test data preparation formulates test cases and the data to be input
to the program. Test case preparation was not applicable to the siatic testing
techniques. For the dynamic testing techniques, test preparation was accomplishcd
through both manual and automated methods.

Test cases were chosen as the rcsult of analyzing the requiremenis and design
specifications and the code itself. Test data was prepared to demonstrate and exercisc
externally visible functions, program structures, data structures, and internal
functions. Each test case included a set of input data and the expected results. The
expected results were expressed in terms of final values or intermediate states of
program e¢xecution.

Testers developed test cases, test data and expected results through examining the
program specifications (in particular, the design and program code) according to the
procedure of a particular testing technique. Test cases had the objective of
demonstrating that the functions, interface requirements, and solution constraints
are satisfied according to the objectives of a given testing technique. Test cases were
determined from the inputs, functions and structures of the design and code. Test
data were determined from the program to exercise computational structures
implemented within the program code.
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The final step before test execution was to tailor the test driver (if needed) to suit any
particular needs of the test cases for a given test sample and testing technique.

4.5.5.1.2 Test Execution

For the dynamic techniques. test execution involved executing a program with
prepared test cases and then collecting the results. For the static techniques, test
cxecution involved the execution of RXVP-80 or SDDL, as appropriate, and the
evaluation of the applicable hardcopy outputs according to the procedures of the
given technique.

Dynamic testing was performed in a bottom-up fashion. Bottom-up testing consisted
of testing individual units and small collectiors of units in that order, as though they
were not yet integrated into the total program. This required the use of test drivers
and stubs or dummy routines for interfacing units not under test.

4.5.5.1.3 Stopping Rules

Stopping rules are not well defined, in general, for testing techniques. The existing
options include the following: wall clock time, reaching a specified mean time to
failure (MTTF), number of errors found, and exhausting the test technique. An
important consideration in choosing stopping rules for the techniques was the desire
to compare technique effectiveness and effort across techniques.

The stopping rules shown in Table 4.12 were carefully devised as the best
determinable to support these experiment goals. They are derived from the 'Revised
Estimates’ data in Table 4.13. These estimates which were projected during Task 2 are
the total number of hours from Tables 4.14 and 4.15 to complete each step of a given
testing technique.

Duec to ecffort budget constraints, it became evident as the experiment conduct
progressed that we would have to restrict the amount of effort available to CSC
integration leve! testing. This was accomplished by adopting the unit test lcvel
stopping rules for CSC integration testing. The results of this reduced effort arc
assessed in Chapter S.

4.5.5.2 Test Analysis

Test analysis was performed by the testers for each dynamic testing technique to
capture and report exccution details (c.g., branch execution counts) and to determine
the thoroughness of the iesting. For the static testing techniques, analyses is an
integral parnt of their exccution as described in Section 4.5.5.1.2.

The process of analyzing the dynamic test results included comparing the actual to
expected outputs. This analysis required a specification of the expected outputs for
each test case. Since the output data for all non-interactive tests was machine
readable, an automated comparator was used. Interactive outputs were evaluated
visually while the tests ran. Upon completion of the test outputs analyses for all
dynamic tests for a given code sample, further analyses of test coverage were made
and recorded on the Test Coverage Summary Worksheet for all execution paths,
inputs, units, interfaces and requirements, as applicable to the test level.

The concluding step was for each tester to cvaluate the static and dynamic techniques
to determine the unique error found, both individually and by more than one
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Table 4.12. Stopping Rules

TEST TEST STOPPING TEST LEVEL

TECHNIQUE | PERSONNEL | RULE __UNT__]_ Csc*
Branches identified through static
Branch analysis, test descriptions & procedures
Testing Tester complete, test case outputs determined, X=21 | X=42

& on line environment configured. Not
to exceed X hours.

Operator 100% of branches executed (with a

minimum of 2 traversals per branch) and| X =8 X =16
MTTF = 10 input cases. Not to exceed
X hours.

Code Tester All required aspect‘s of the method have' «

Review been evaluated using SDDL where possible] X =8 X =16

manually where not. Not to exceed X hours
Driver in place and online environment

Functionai Tester oonfg:red. Not to exceed X hours. X =12 X =24 B
Testin
esting Operator All test procedures executed. Notto exceed] x . 4 X=8
X hours.
Random Tester Test descriptions & procedures written,
Testing test driver & test case generator ready, X = 16 X = 32
test case outputs determined, online
environment configured. Not exceed to
X hours.
Minimum number, Y, samples from input | x - ¢ X =12
Operator | space executed, and MTTF = 10 input v=25 |Ya=50
cases. Not to exceed X hours.
Error & Tester All required aspects of the method have eL X=6 [ X=12
Anomaly been evaluated. using automated too! wher
Detection possible, manually where not. Not to
X X h
All required aspects of the method have eJ X =4 X =8
,S\::;t:i;e Tester been evaluated, using automated tool wher

possible, manually where not. Not to
exceed X hours.

* Unit test level stopping rules utilized for CSC Integration Test Level
due to effort budget constraints.
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Table 4.13.

Test Effort Estimates (Hours)

TEST TEST ORIGINAL REVISED
LEVEL TECHNIQUE ESTIMATE ESTIMATE
TASK | TASK 1 4 TASK| TASK 1 4-
3 4 | TESTER [TESTERS| 3 4 |TESTER | TESTERS|
Cc 27 5 32 128 0 8 8 32
F 21 1 22 88 12 4 16 64
R 40 4 44 176 16 6 22 88
UNIT 8 14 4 18 72 21 8 29 116
TEST E 20 | s 25 251 0 6 6 6
S 20 | 2.5 | 22.5 | 22.5 0 4 4 4
(Totals) |! samplo/tester [ 142 [21.5 |163.5 |511.5°| 49 | 36 85 310
2 samples/tester og4 | 43 327 1023 j 98 | 72 170 620
m_— —————— —m—
C 0 12 12 48 0 16 16 64
csc F 21 2 23 22 24 8 32 128
R 40 1€ §6 224 32 12 44 176
TEST B 3 18 70 280 42 16 58 232
E 0 6 6 6 0 12 12 12
S 0 6 6 6 0 8 8 8
(Totals) |! sample/tester | 113 60 173 656 98 72 | 170 620
2 samples/tester] 226 | 120 346 | 1312 |196 144 | 340 [1240
CSCl F 24 3 27 108 | 48 | 16 64 256
TEST R 44 | 40 | 84 336 | 64 | 24 88 | 352
(Totals) |1 san:.ie/tester | €8 43 111 444 112 40 152 608
2 samples/tastej 136
o _
Total estimated hours
Max. available hour**®

*Note: Only 1 tester for Error and Anomaly detection (E) and Structure Analysis (S)

** Note* 4 te-

C-Code Review

iull-time for 5 months (Jan through May, 1988)

F-Functional Te:59
R-Random Tesiy

B-Branch Testing
E-Error and Anomaly
S-Structure Analysis
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Table 4.14. Unit Test Effort Worksheet A: Driver & Static Techniques

Technique Time ' Step
(Hr)
Driver 2 familiarization with code and specifications**
Development 2 document driver requirements**
4 document driver design
4 develop and test driver**
12 All steps
Co 1 familiarization with materials*®*
R S’e 1 run SDDL*"’
eview 4 review code and documentation with checklist***
2 write SPRs***
8 All steps
Error and 1 famitiarization with materials**
Detection 2 review tool results***
2 write SPRs**"
6 All steps
Structure 1 tamiliarization with materials®*
Analysis 1 run RXVP-80"*
1 Review tool results™™~
1 enter log and write SPRs***
4 All steps

Prorated, as 4 hours were added to the Task 3 portion of each dynamic
test technique.

Designates Task 3 Activities.

* * * Designates Task- 4 Activities.

* &




Table 4.15.

Unit Test Effort Worksheet B: Dynamic Techniques

Technique

Time (Hr)

Step

Functional
Testing

N = =2 a PNDINON -

—t
N

tamiliarization with materials**
write inputs to test description™
write inputs to test procedure®*
adapt test driver'*

set up test harness®*

execute tests***

review results**”

write SPRs***

All steps

Random
Testing

NN =MD =

ey
(o]

familiarization with materials**
determine random data (specify generator)**
write inputs to test description®”

write inputs to test procedure*‘®

develop |/O data (write generator)**

adapt test driver®*

set up test harness®”

execute tests™*"

review results**”

write SPRs""™

All steps

Branch
Testing

N WW—=0WLwwdw-—=

N
U

tamiliarization with materials**
determine branch data**

write inputs to test description™
write inputs to test procedure®*
davelop /O data*”

adapt test driver*”

set up test harness™™

execute tests***

review results**"

write SPRs***

All steps




technique, and whether each error found was a known development error or newly
detected during the experiment. This information was recoded on the Error Summary
Worksheet, with the ID and description of each error and the total number of errors
for each technique.

4.5.5.3 Data Collection and Organization

Collection of the preceding data was designed and conducted with the goal of
providing valid quantitative data that can be meaningfully analyzed, interpreted,
and referenced during the writing of an integrated software reliability measurement
and test technique guidebook. The analysis of these data will provide insight into
selecting software testing techniques, determining how much test effort should be
planned, and making decisions concerning the level of software reliability attained.

The collected raw test tecchnique data is in the Task 4 Report. The following sections
contain a discussion of the data collection and organization methodology utilizing
worksheets, the 4th Dimension DBMs and StatView data analysis tools.

4.5.5.3.1 Data Collection

Careful thought was given to the data to be collected and to the data collection
procedures. General forms and procedures that support the test technique data
collection activities are described in the Software Test Plan. They are derived in part
from DoD-STD-2167 for Test Description, Test Procedure and Test Report; from the
SRPEG metric data collection forms for the REN; and from statistical data analysis
requirements related to discrepancy reporting, execution time, failure rate, test
effort, test coverage and test methodology. The resulting test data collection
procedures and forms for the SRMTIT experiment are provided in Volume 2 of this
report.

Thirtcen data collection worksheets were developed for use. Table 4.16 identifies
these worksheets by name and ID, lists who was responsible for completing them, and
lists the activities for which they were used. Note that Worksheets T2 and TI12 were
not needed and were dropped from the experiment. Tabie 4.17 shows a correlation
between the test worksheets and their data collection counterparts in the SRPEG. All
of the information on these worksheets was entered into the Test Database as
indicated in Figure 4.16 (except for the final text field on worksheets T1, T4, T6 and T8.
duc to an anomaly in the DBMS. All of these worksheets except T13 are included in
the applicable Test Description, Test Procedure and Test Report documents in their -
entirety.

Worksheet T13, Experiment Error Summary. is included in Chapter 5.. All detected
errors of each test technique for each code sample were summarized into tables as a
means of gathering this information to input into the StatView database. All detected
errors were correlated with the original development SPRs and entered into
worksheet T13.

4.5.5.3.2 Data Organization

Figures 4.7 and 4.8 provide an organizational overview of the data that was collected
as a part of this effort. These figures depict the data structures around which the
data collection effort is organized. Figure 4.7 shows the 4th Dimension raw test data
files. Figure 4.8 shows the tabulated StatView data files. These logical organizations
of data were chosen for the following four reasons:




Table 4.16. Test Worksheet Summary

: P
WorIszheet Vgairslzeet Resgso:rslble . FAoghcébl Ems . usad| Auto
T1 Test Activity Log T.C XIXPXIX[X X Y 4,8
T2 Test Configuration & Data Eval. T X| N
T3 Software Requirements List A X1 X{ X Y
T4 Test Name & Objectives T X1 X| x Y 4,8
TS5 Test Case Description T X1 X{x Y
T6 Test Procedure Specification T X1 X] X Y 4,8
T7 Test Execution Summary T.C X§ X X Y 4,5
T8 Test Execution Log T Xt X)X Y 4,8
T9 Software Problem Report T X{X]I XXX ]|X Y 4,8
T10 Test Coverage Summary T x| x| x y | 45
T11 Test Technique Selection T X{ v 4,8
T12 ‘Test Problem Summary T XE x| XIxIxlix N
T13 Experiment Error Summary T X x| XIXixX1x Y S
Responsible User: Used: Automation:
A: Analyst Y:Yes 4: 4th Dimension
T: Tester N: No S: Statview
C. Consuitant
Applicability:
B: Branch Testing F: Functiona! Testing
R. Rangom Testing C: Code Review
E: Error & Anomaly Detection S: Structure Analysis

G: General Use

Table 4.17. Cross-reference of Test Data Worksheets
and SRPEG Metric Worksheets and Procedures.

SRPEG DATA| SRPEG SRMTIT
METRIC DATA (TASK 201) COLLECTION|] METRIC TEST DATA

PROCEDURE | WORKSHEETS | WORKSHEETS

Average Failure Rate During Test (FT1)] 12, 13, 14 5, 6 T7, T8, T9

Failure Rate at End of Test (FT2) 12. 13, 14 5 6 T7, T8, T9

Test Effort (TE) 15 6 T1

Test Method (TM) _ 16 7 T11 <
Test Coverage (TC) 17 8 T10
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a. To parallel the distinction between experiment activities (i.e., reiiability
measurement data collection vs. test technique evaluation).

b. To permit easy file update associated with these activities by multiple
personnel at multiple sites.

c¢. To facilitate data selection for combined analysis.

d. To provide a2 foundation for reuse of the reliability measurement and test
technique data for future experiments.

All raw test results data recorded on the worksheets by each tester were entered
manually into the Test Database. From here these data were converted into StatView
data files for detail analyses.

The test data files are organized by type of test worksheet and are provided separately
in the Task 4 report, in the companion 2167A test documents, and in electronic form
compatible with the IRMS.

Data tabulated in StatView to support analysis are derived from the RPFOM database
(i.e., Lines of Code and Complexity), and nonautomated test worksheets. They are
provided separately in the Task 4 report and in electronic form, and appear in tables
identified by corresponding StatView file names. A detailed requirements
specification for the StatView databasc also is provided in the Task 4 report. These
requirements specify seven data files organized by level of analysis, level of detail,
and level of software component.

Five StatView files are designated for descriptive analyses (see Figure 4.8) of Unit and
CSC data at the following levels of detail: test sample, test technique (single and
paired), test case, and software problem report (SPR). The remaining two StatView
files are designated for Analysis of Variance (ANOVA) of unit data at the test
technique level. One file is specified for data on single techniques, and the other file
is specified for data on paired techniques.

4.6 REN Results

A Reliability Estimation Number (RENAVG) was computed for each test sample unit
and CSC (i.e., "integrated unit") based upon average observed failure rate during the
software testing experimeat. Computation of RENEQT., based on end-of-test failure
rate, was considered infeasible due to the absence of regression testing and the
difficulty in defining a "test period."

Formal testing is usually accompanicd by "regression testing” in which software
components are tested, debugged, and then tested again in an iterative fashion. This
technique, which tends to minimize incidences of recurring errors and thus lead to
improved reliability as testing progresses, was not employed during the experiment.
Consequently, recurring errors were often prevalent.

The ¢ .cst analogy to "test period” in the present study is "test case.” Due to the small
time intervals involved, tracking of computer operation time for individual test cases
was not feasible. Although CPU time was measured for test cases, values were
generally negligible and often unmeasurable (i.e., equal to zéro).
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Determination of the REN component metrics values - FTi, TE, TM, and TC - is detailed
below, foilowed by the REN calculations.

4.6.1 Average Test Failure Rate (FTy)

The average failure raie observed during testing, which may be determined at anv
point in the testing process, serves as a baseline for the RENA v G calculation:

FT1-= Total no. SPRs during testing / total test time

The denominator, total test time, may be measured in computer operation time or CPU
time. Computer operation time, measured in hours, was selected for the test sampic
RENs. This unit of measurement is considered by the SRPEG to be preferable 1o CPU
time. In addition, as noted above, CPU times recorded for experimental testing were
us:ally negligible due to the small sizes of the unit and "integrated unit" (i.e., CSQC)
test samples.

Since computcr operation time is unavailable for the static test techniques, FTjg
reflects dynamic testing only. The test sample SPR counts and test times for dynamic
testing are presented in Table 4.19. The Dynamic Technique SPRs represent a subsct
of the total Experiment SPRs generated for both dynamic and static testing. The
Dynamic Technique Test SPRs, in tum, represent the subset of Dynamic Technique
SPRs logged during actual test conduct and during comparison of actual test output Lo
expected test output.

The Dynamic Technique Test Time values represent computer operation times
recorded by testers for dynamic testing. The rclatively high values logged for the
four SCENE unit test samples reflect interactive processing of tester inputs, which
contrast with the batch processing of inputs for the AFATDS anit and CSC test
samples. The relatively low values recorded for AFATDS CSC test samples probably
reflect in part the discontinuation at CSC testing of production of benchmark files
containing expected output values, and the possibility of fewer test cases submiited
compared to AFATDS unit testing.

The average test failure rates (FT1) in Table 4.19 are expressed as errors (SPRs) per
hour. At least one test sample from each of AFATDS unit testing, SCENE unit testing.
and AFATDS CSC testing expericnced a zero failure rate due to the absence of SPRs
logged during dynamic testing. Failure rates for AFATDS CSCs appear relatively high
compared to those of the other test samples. Empirically, this seems due 10 the lower
test times for the CSCs, rather than to a greater number of SPRs.

4.6.2 Test Effort (TE)

Test effort is based on percent of development cffort devoted to testing, which is
unavailable for the SCENE and AFATDS projecis. Consequently, the assumption is
made that a minimum of 40% of development cffort was devoted to testing, resulting
in a test effort of 1.0.

4.6.3 Test Methodology (TM)
The Test Methodology metric is ossigned one of three values (i.e., 0.9, 1.0, or 1.1) based
on the proportion of testing techniques actually cmployed (TU) that are

recommended (TT) by one of three technique selection paths in the Software Tcst
Handbook (STH). The higher the proporiion of technigues used, the lower the value
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of the TM multiplier, resulting in a lowering of the estimated failure rate (REN). The
TU/TT proportions and corresponding TM values for test samples appear in Table 4.20.

Differences in TU/TT among test samples for a particular technique selection
path(e.g., TU/TT(1) in Table 4.20) reflect differsntial utilization of two static test
techniques, Error and Anomaly Detection (EA) and Structure Analysis (SA). Thus, test
sample UASNWMSN, which was not tested using EA or SA techniques, exhibits lower
TU/TT values across technique selection paths than UATHUADC, for which EA and SA
testing were employed.

Differences in TU/TT across technique selection paths for a particular test sample -
(e.g., values of 0.56, 0.54, and 0.46 for USINPSAT) reflect variation in nuriber of
techniques recommended. In the case of paths 2 and 3, TT = 13, which explains the
equivalency of values observed for most test samples. The difference in values for
TU/TT(2) and TU/TT(3) for USINPSAT and USSCANNER is due to the omission of SA
from recommendations in path 3; this technique is recommended in path 2, and is
employed in testing of both test samples.

The a priori selection of test techniques, as occurred in this study, posss an
interesting dilemma with regard to utilization of the STH test tcchnique selection
procedures. In some instances, techniques employed (TU) are not among thosc
recommended (TT). In computing the values in Table 4.20. techniques that were not
recommended by a technique selection path but that were nevertheless applied in
testing a sample were excluded from determination of TU for that sample within that
selection path, resulting in relatively lower TU/TT values and potentially higher TM
values. Although consistent with the STH selection procedures, this approach
ignores the possible contribution to greater software reliability of application of
testing techniques excluded from the recommendations.

The zliernative’ approach of including as viable components of TU the non-
recommended techniques employed in  testing can take two directions. The
recommended and non-recommended techniques can be weighted equally (i.e., in
either case, TU is incremented by one for each technique added), or the latter can be
weighted less (e.g.. TU is incremented by 0.5 for each non-recommended technique
added). Either method can potentially result in a TU/TT value exceeding 1.0, but this
does not violate the existing model for determining TM. Fractional weighting of non-
recommended techniques is attractive since, while this approach recognizes the
potential contribution to software reliability of any addition to testing methods
employed, it takes into consideration the relatively greater contribution expected
from methods recommended from technique selection analysis.

4.6.4 Test Coverage (TC)

Three procedures are available for computing Test Coverage. Seclection of procedure
depends primarily on the subject software component level, which determines the
data available for the calculation. In each approach, TC represents the inverse of the
extent of test coverage. Thus, as test coverage declines, TC increases, resulting in a
higher estimated failure rate. Computation of Test Coverage for the unit and "CSC"
(i.e., integrated units) test samples is based on proportions of total execution paths
(measured using RXVP-80) and total inputs that were tested.

Results of Test Coverage determinations for test samples are presented in Table 4.21.
Complete test coverage (TC = 1.0) is evident only in the three test samples which
possess the smallest number of execution paths. Differences in TC for the remaining
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test samples is entirely due to variation in proportion of total execution paths tested,
since all inputs were successfully tested for all test samples.

4.6.5 REN Calculation

Values of RENAVG for test samples appear in Table 4.22. Average test failure rates
(FT1) are listed for comparison. The most striking observation of these resuits is the
drastic reduction in average test failure rates represented by the estimated failure
rates. Given the values derived for TE, TM, and TC, the principle factor contributing
to the differences in values between these failure rates is the 0.02 coefficient. This
constant represents an attempt to adjust for the inherent tendency of software
testing environments to increase the potential for detecting errors.  Specifically, this
coefficient is derived from empirical evidence that suggests average test failure rates
exceed operational failure rates by 50 times. Aside from the FTj baseline values, the
operational failure rate coefficient is by far the primary determinant of the RENA v G
values for the test samples relative 0 the other metric multipliers.

Mean RENAvG values for AFATDS unit samples, SCENE unit samples, and AFATDS CSC
samples are given in the last column of Table 4.22. Similar means, which appear
equivalent after rounding off, for AFATDS and SCENE unit samples suggest that the
nature of the testers' interaction with the system (batch for AFATDS. interactive for
SCENE) does not influence estimated failure rate. The relatively larger mean RENA v G
values for CSC samples are undoubtedly a consequence of lower test times (Table 4.19),
which resuited from cessation of benchmark file generation during CSC testing.
Consequently, these data probably do not effectively demonstrate a difference
between unit and CSC test samples in average estimated failure rate.

4,7 Tester Profiles/Feedback

Tester Profile questionnaires were completed by each tester prior to the conduct of
the software testing experiment. The questionnaire summarized the education and

experience of each tester prior to the experiment. These results are prescated in
Chapter §.

A survey was also performed upon completion of the pilot experiment. Each
participating tester was queried informally for his/her opinions regarding the test
techniques and tools, test environment and process, and the test worksheets. They
were asked to comment on these topics based on their own experience as gained

during the pilot. The results of this survey are contained in the Task 4 Report [14]
and are included in discussions in Section 6.2.5 and 6.2.6.




Table .21

TEST COVERAGE

SAMPLE pT TP T | T1 PT/TP | 1T/TI TC
1 { URSNWMSN 8 g| 13| 13f{ 1.000| 1.000| t.000
2| UATHUADC 8 8 7 ?1 1.000| 1.000| 1.000
3] URTHUSCN 9 9 3 3{ 1.000( 1.000| 1.000
4| UATHHRDT 271 31 3 3 .871| 1.000! 1.069
S|USINFANSEN| 97| 108] 10{ 10 .898( 1.000| 1.054
6| USINMODE 93| to6| 27| 27 .87?| 1.000| 1.065
7] USINPSAT 134} 155] 28| 28 .865| 1.000| 1.073
8 | USSCANNER 7?71 79 3 3 .975| 1i.000] 1.013
9| CASNWMSN 20| 22| 20] 20 909 1.000] 1.048
10| CATHPCON 39| 49 5 5 .796| 1.000| 1.114
11} CATHUADS 19| 24 9 9 .792| 1.000] 1.116
12| CATHURDT 46| 82 1 1 .561( 1.000]| 1.281
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Table +.22.

REN Calculations

Test Sample Fri REN ,va AVG
UASNWMSN 1.41 0.03
UATHUADC 0 0 0.03
UATHUSCN 0 0
UATHXRDT 4.57 0.10
USINFANSEN 0.92 0.02
USINMODE 3.30 0.08 0.03
USINPSAT 0.55 0.01
|__USSCANNER 0 0
- CASNWMSN 7.14 0.15
CATHPCON 11.00 0.25
CATHUADS 1.89 0.05 0.11
CATHURDT 0 0
= (F 002 (TE * ™ * TC
REN, o L { )

TE = 1.0
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5.0 EXPERIMENT FINDINGS

This chapter reports upon the work undertaken to analyze the experiment's results.
Analyses were performed on the test data from six experimentally controlled testing
techniques and on the reliability prediction methodology.

5.1 Scope of Analysis

Analyses completed on the test data include descriptive and more formal analyses.
Descriptive analyses consist of bar charts and tables which present the raw and
reduced data in visual form. Bar charts are provided that describe static properties of
the code samples such as lines of code and complexity. For example, tables arc
provided which show percent of 3oftwarec Problem Reports (SPRs) found by
technique and percent of SPRs found by each pair of techniques. Descriptive
analyses were done at both the unit and Computer System Component (CSC) levels.

Formal statistical analyses were nerformed at the unit level. At that level sufficient
data points were obtained to justify such analyses. Analyses of variance (ANOVAs)
were conducted to test whether differences exist among test techniques in 1) their
effectiveness in finding errors, 2) their branch coverage performance, 3) the
effort needed to apply them, and 4) the efficiency with which they uncovered
errors.

The data used in the analyses are stored in two formats: 1) in online files and on
diskette, for use with the Macintosh software package StatView 512+ and 2) in the
error summary tables completed by the testers, and validated by project consultants
(the tables appear in Section 5.2.6). There appear to be minor discrepancies across
these iwo data repositories; the contract completion schedule precluded resolving
those discrepancies, so we suggest a data validation across the two repositories as a
starting point for future work with these data. The inconsistencies appear minor, so
it is likely analysis results contained herein are correct or very nearly so.

5.2 Analyses of the Test Data
5.2.1 Descriptive Analyses

These analyses provide a summary description of the samples, Software Problem
Reports (SPRs) logged against the samples, and test technique performancc
overviews. The descriptive analysis of the test technique data involves the
construction of tables and frequency histograms desrribed in Appendix V of the Task
2 Report (SRTIP) (6]. Many analyses include the two deterministic techniques: Error
and Anomaly Detection and Structure analysis, as well as the four nondeterministic
techniques: Branch, Code Review, Functional, and Random testing.

5.2.1.1 Sample Description

Samples were chosen from the two softwarc projects shown in Table S5.1. Additional
information describing thc projects is available in the Chapter 2.



Table 5-1 Characteristics of Samaple Projects

Contract Program Size Environment
Tvpe (Lines of Source) Development Target MIL-STD | Metric
T
USAF | DoD | 10-50K |50-100k| -100k | Hw | sw | uw | sw |Tollowed}| Data
AFATDS (Advzanced|
Field Artillery Y Y VAX VMS | VAX | VMS None
Tactical Data ) 11/7780] 4.2 J11/750] 4.2
System)
SCENE
(Secenario Y Y vaxX VMS | VAX | VMS NONE
Generator)

At the unit test level, four samples were chosen from each project for use in the latin
square experiment design. The four unit samples chosen from the AFATDS project
are: SNWMSN, THUADC, THUSCN, and THXRDT. the four unit samples from the SCENE
project are: INFANSEN, INMODE, INPSAT, and SCANNER. At the CSC test level, four
samples were chosen from the AFATDS project. They are:  SNWMSN, THPCON, THUADS,
and THURDT. Additional information describing how the samples were chosen can be
found in Chapter 4.

The histogram in Figure 5.1 shows lines of code (LOC) for each sample. The LOC
measure was taken from AMS tool output, which computed a LOC value cqual to the
sum of all lines in the files, excluding blank, comment and D (dcbug) lines. Note that
lines of include files were not included in the LOC total for a sample; however, a
FORTRAN statement continued onto a seccond line in the file would count as two LOC.

With this measure, the AFATDS units all exhibited noticeably smaller LOC than the-
SCENE units which contained from 292 to 680 LOC. The CSC samples from AFATDS are
noticeably larger than the unit samples from AFATDS; however, the SCENE units are
larger than the AFATDS CSCs. This highlights apparent differences in the design of
the two systems. AFATDS was designed to have smaller functional entities as units
than was the SCENE system.

The histogram in Figure 5.2 shows sample complexity, as measured by branch
complexity, or the sum of wunconditional and conditional code branches in each
sample. This complexity measure was chosen because it was 2lso specified for use in
the Reliability Prediction Figure of Merit (RPFOM) equation. (See Chapter 3 for more
information on the RPFOM.)

The complexity histogram takes on the same g=neral shape as the LOC histogram.
This shows that the SCENE unit samples are much more complex than the AFATDS
units and CSCs. The AFATDS CSCs are only slightly more complex than the AFATDS
units,

5.2.1.2 Unit Testing

5.2.1.2.1 Single Test Technique Description

Single Technique Effectiveness

Table 5.2 illustrates the categories that SPRs fall into and how many SPRs fell into
each category for each sample. The numbers in the cells of the table represent SPR
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counts. Each column in this table provides information for the sample named at the
heading of the column. Rows are dcfined as follows:

Table 5.2: Breakdown of SPRs by Unit Sample

UNITS

SPRS SNWMSN | THUADC | THUSCN | THXRDT IN}‘ANSENI INMODE | INPSAT | SCANNER
Found
In -

6 20 1
Exper 4 2 0 13 13 7
Newly "
Foundin ‘ 0 0 3 . 2 3 6
Exper
Orig
Findable 0 3 ! ! 4 1 1 2
Exper
Findable" * 3 1 14 10 21 14 18
% of
Exper . )
Findable 100% 67% 0% 93% 60% 95% 93% 94%
Found
ia Exper

Found in Exper: The number of SPRs that were found during the experiment for
this sample.

Newly Found in Exper: Whereas the above measure includes any SPRs found in
the experiment that had already been found during the original code
development, this count represents only those SPRs found during the
experiment runs that reported new errors not previously found during the
development testing.

Orig Findable: Original Findable SPRs or that subset of the origiral development
SPRs that the project consultant deemed could be found during unit testing.
(This category is an anifact due to original development testing not being
conducted at the unit level, but at a higher "software build" level. Thus some
errors found during original development testing and mapped to a sample may
only be findable when testing interfaces.)

Exper Findable: Experiment findable SPRs, or the sum total of ail known errors
for a sample that could have been found by unit-level testing. tEqual to the
sum of "Newly Found in Exper” + "Orig Findable.")

% of Exper Findable Found in Exp: The pcrcent of the SPRs dcemed findable
that were actually found during our experimental testing by any one or more
tcst techniques applied in the experiment,

(See also the Unit Error Summary Tables in Section 5.2.6; they present a more detailed
view of these SPRs.)

As shown in Table 5.2, the units contained from one to twenty-one known errors that
could possibly be found by unit testing; unit testing found from none (0 100% of these
errors. with an average percentage found of approximately 75% across the eight
units.  Thus whiie on average three quarters of the errors in a sample were found,
the variance (from 0 10 100%) is large. Also, the number of errors known per sample
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has a large variance (from 1 to 21). These large variances and somewhat small
absolute numbers are less than ideally suited for statistical analyses. The analyses
below thus assume the data are adequate; repetition of this study to add data points to
the analyses would improve coufidence in results.

It is also interesting to note that for the most part the experiment unit testing found
new errors not previously found in original development testing. Conversely,
experiment testing did not find many of the original development crrors. This
observation leads to two interesting hypotheses:

a. The difference may point out that more formal uait testing should be
advocated to find crrors earlier in the development life cycle.

b. The difference may point out that techniques used in this cxperiment were
different and found different errors than techniques used in the actual
development.

Item a) above is raised because the original development SPRs were logged against
system “build" testing, not unit level testing. In itcrative system builds, a harness
surroundcd the incomplete system, which inciuded completed pieces of code with
uncompleted seciions stubbed out. Thus unit level testing was never performed on
the units of the systems (unless done informally by programmers, and this was not
documented). An interesting corollary to the issue making unit testing more formal
is whether any of the new errors were critical errors. Investigating this question is
suggested for future work.

Item b) is likely not the case. Documentation from original system testing implies
that mainly functional testing was used. As noted in the above paragraph, it was
performed on a higher level than the unit level. So we conclude the test level (and
perhaps testers) was likely a more important factor than the techniques used in
explaining the difference between experiment and original development errors
found.

Whereas Table 5.2 addresses overall test cffectiveness from a code sample viewpoint,
Table 5.3 addresses effectiveness from the individual test technique viewpoint. This
tabie shows that averaged over all samples at the unit test level, Code Review found
the largest percentage of errors, followed by Error and Anomaly Detection, Branch,
Functional, Random, and Structure Analysis. This descriptive data suggest that Code
Review may be the best ecrror-finding technique at the wunit level. Since the
experiment was designed as a latin square that allows us to test this hypothesis while
accounting for other influences upon the data, such as tester variability, order of
applicaiion of the techniques, it is premature to make this as a final judgment. See
Section 5.2.2, which documents initial analysis of variance (ANOVA) results.

Table 5.3: Percent Findable SPRs Found by Test Technique

Level B R F C EA SA
Unit 25% 19% 23% 36% 29% 3%
CSC 68% 17% 33% 35% 25% 10 %
Legend
B Branch Testing C Code Review
R Random Testing EA Error & Anomaly Detection
F Functional Testing SA Structure Analysis

155




Single Technique Effort

Tables 5.4 and 5.5 show the wall clock time in hours needed, by each tester on each
sample to set up for and execute test techniques during the experimental runs. In
these tables, the field "Initial DTM Driver Development” represents the time needed
for any one of the dynamic techniques only (B, F, R) to develop a test driver and to
prepare the DEC Test Manager (DTM) tool for test execution. Thus, comparing time
values among the techniques in this table shows time spent using the techmique but
not writing drivers, seuting up the online environment, and so forth. This is one way
of comparing time between the dynamic and static techniques listed in the table. The
column labeled "Estimated Hours” shows the amount of time the principal
investigators estimated each technique would take prior to the experimeut runs.

These tables show that applying the techniques took approximately the same relative
amount of time across samples, but that the SCENE sample did take more time in
general than AFATDS. This may be accountable to the larger size and complexity of
the SCENE unit samples. ‘

In comparing the "Estimated Hours” with the observe = "Average Effort" entries for
all but one comparisun, the observed was slightly less than estimated. The
application of Code Review on the AFATDS project samples took on average over 20
hours -- well over the 8 hours estimated. A look at the individual applications shows
that Tester II spent much more time on code review than the others. This was due to
the tester having trouble interpreting when he had adequately addressed items on
the checklist. No other tester had this difficulty; an apparent difference in approach
to problem solving and/or judging “completion” of a code review task may account
for this outlying data point. See also the section on Tester Profiles (Section 5.2.1.4).
Table 5.6 shows data from the two previous tables reduced into cne table; data values
represent the average time for a tester to test two samples with a given technique f{or
to set up two drivers and online test environments).

Tables 5.7 and 5.8 present test time in a different way than the two previous tables.
In these tables, the ficld "Initial DTM Driver Development” has been added to the
technique time value, for the dynamic techniques. Thus entries in this table reflect
how much time :t would have acrually taken a tester to test with any one technique
independently of any others in this experiment. Thus they can be recommended as a
starting point for estimating time to test other, similar code units. Embedded in these
times are the fact that the testers used the DTM tool and developed drivers for code of
a given complexity; another test support tool and code of different complexities might
necessitate  altering these times.

Table 5.9 shows data from the two previous tables reduced into one table; data values
represent the average time for a tester to test two samples with a given technique.
Note that the average cffort across eight samples for F, C, B, and R test techniques and
across six samples for the E and SA test techniques is higher than the principal

investigators originally estimated. The original estimates were good at predicting
test tiine as shown above in Table 5.6, thus, the estimates seem to best reflect test
application time excluding driver and online environment development. Additions

for thesc activitics can be separately cstimated and added to the cxisting estimates.
taking into account the driver complexity and number and types of tools used in
setting up the test environment.

Comparing zpplication effort across techniques shows that the static techniques took
much less time than the dynamic techniques. Qf the three static techniques, two
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Tables 5.4 AFATDS UNIT DATA: SETUP & EXECUTION EFFORT

AFTDS PROJECT

Unit THUSCN | SNWMSN | THUADC | THNRDT
Tester I 11 81 187 AVERAGE
Estimated Hours* EFFORT
Initial DTM N/A 35.25 32.50 19.00 9.50 24.06
Driver Dev.
F 16.00 24.00 3.75 3.50 5.9% 9.06
C 8.60 7.25 64.00 6.00 3.50 20.19
B 29.00 15.00 2.00 7.00 12.00 9.00
R 22.00 10.75 18.50 8.50 8.00 11.44
E 6.0 N/A N/A 0.25 1.00 .63
SA 4.0 N/A N/A 0.50 0.25 .38
Tables 5.5 SCENE UNIT DATA: SETUP & EXECUTION EFFORT
SCENE PROJECT .
Unit SCANNER|JINFANSEN| INPSAT | INMODE
Tester I I 111 Iv AVERAGE
Estimated Hours* ] EFFORT
Initial DTM N/A 35.50 13.75[  16.25 7.00 18.13
Driver Dev.
F 16.00 23.50 6.75 14.20 18.00 15.61
C 8.00 8.00 5.75 8.00 4.00 25.75
B 29.00 35.75 31.50 21.50 11.50 25.06
R 22.00 16.00 16.25 17.25 16.50 16.50
E 6.0 .50 N/A 6.00 N/A 325
SA 40 .50 N/A 4.00 N/A 2.25

Tables 5.6 ALL UNIT DATA: AVERAGE SETUP & EXECUTION EFFORT

THUSCN | SNWMSN | THUADC | THNRDT
Unit SCANNERJINFANSEN|] INPSAT | INMODE
Tester 1 II 111 1v AVERAGE
Estimated Hours* EFFORT
ﬁﬁ% N/A 536 FERE 17.63 8.25 21.10
Driver Dev.
F 16.00 2375 5.25 8.85 11.50 12.34
C 8.0C 763 34.88 7.00 3.7¢5 13.32
B 29.00 25.38 16.75 14.25 11.75 17.03
R 22.00 13.38 17.38 12.88 12.25 13.97
E 6.0 0.25 N/A 3.13 0.50 0.97
SA - 4.0 0.25 N/A 2.25 0.13 0.66
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Croie 30 AFATDS UNIT DALY APPLICATION FFFORT

AFATDS PROJLECT

Unie THUSCN " sSNWMSN - THUADC THXRDT -
T Tester I Il I IV AVERAGE
Estiniates Hones*® ) " EFFORT’
I3 16.00 ¢ 39.23 - 50.25 2250 14.30 . 2313
( <00 i 725 651.00 R 3.50 |l 20.19
B '.-‘().OOL! 30.25 3150 ¢ 2600 21.50 33.06 -
R 22.00 16.00 : 51.00 o 2750 . 17.50 1 33.30
£ 6.0 || N/A NSA L 0.25 1.00 1] 63
A 1.0 | NA G NiA 0.50 1 0.25 1 B
Tabie 5.3 SCENE UNIT DATA - APPLICATION EFFORYT
SCENE PROJECT
Unit d SCANNER  INFANSEN - INPSAT D INMODE ¢ i
Tester - 1 [l 11 [AY 4+ AVERAGE |
Estimatec Hours* ; : - EFFORT:
| 16.00 1 39.00 ¢ 20.30 i 3045 i 25.00 || 33,74
C 5.60 | ~.00 ¢ 575 .00 i +.00 ] 644
B - 29.00 i 7123 3325 3773 1%.50 || 13.19
R - 22.00 531.30 i 30.00 ¢ 33.30 23.50 34.63 .
E 6.0 1 50 1 NSA 6.00 : NFA G 3.25 7
A 4.0 1 30 NSA +.00 - NJA 223

Table 510 ALL UNIT DATA : AVERAGE APPLICATION EFFORT

Units | THUSCN | SNWMSN | THUADC | THXRDT | i

| SCANNER | INFANSEN ' [NPSAT | INMODE i A\-’ERAGEI

Tester q i i : 111 : IV EFFORT |

. Tecnmique | Esumated Hours® i | | : |
F 16.00 | 39.13 2838 26.48 19.30 33.37

C - $.00 || T.63 | 34.88 7.00 | 3.75 i 13.32 |

3 29.00 60.75 i 39.8% | JLRR 20.00 i 3R 13!

R 22.00 48.75 | 40.30 | 30.50 ! 20.50 35.07 |

E 6.00 | 0.25 | N/A 3.13 | 0.50 | 0.97 |

SA _ .00 || 0.25 | N/A 2.25 | 0.13 | 0.66 |




(Eand SA) were fully automated and thus took very little time; conversely, code
review involved manually reviewing the code against a checklist. Branch testing
seemed to take the most time on average, followed by Random and then Functional.

Statistical tests were conducted to provide a more rigorous interpretation than this
reduced data allowed: an ANOVA for the application effort data in the latin square is
contained in Section 5.2.2. Also, an ANOVA was conducted for technique efficiency,
with efficiency defined as technique effectiveness relative to technique effort.  This
analysis is also contained in Section 5.2.2.

Singie Technique Branch Coverage

For all testing at the unit level, the code under test was instrumented with RXVPS80.
RXVPE0 recorded the branch coverage during test e¢xecution, to three decimal places.
Table 5.10 shows the percent of branches, as identified by RXVP80 for a sample, that
were executed by a given technique for each sample.

Table 5.10: UNIT DATA: BRANCH COVERAGE BY TECHNIQUE

Units THUSCN SNWMSN THUADC THXRDT AVERAGE
SCANNFR | INFANSEN | [NPSAT INVIODE || cOVERAGE
Tester I 11 111 0%
Technique
F 100 500 1.00 935 810
810 ' 787 865 585
B 100 1.00 1.00 100 232
899 898 865 792
R 889 875 875 968 808
924 620 729 585

The four samples listed on the first row in the table are from the AFATDS project.
while the four listed in the second row are from the SCENE project. Coverage vaiucs
in the ceclls are listed in a respective fashion. It appears that higher coverage may
have been achieved on the AFATDS samples than the SCENE sampies, in general.
Average branch coverage was highest (over 93%) for branch testing; functional
testing achieved slightly higher coverage (81%) than did random testing (just under
§0%). although whether this is really a difference is quesi‘onable. One would expect
branch testing to achieve high coverage, since branch coverage is an explicit goal
and forms the basis of the stopping rule for this technique (100% of every executablc
branch executed twice was the primary stopping rule in this study). (See Table 5.11,
which documents the stopping rules for each technique.) It is interesting to notc
that functional and random did as well as they did, since neither has a stopping rule
explicitly based on branch coverage. These resuits are shown in Figure 5.3a.

Single Technique Efficiency

Test technique efficiency is the percent of findable SPRs found when the stopping
rule was reached, divided by the time taken applying the technique when the
stopping rule was reached. For the experiment, at the unit level the techniques rank
"in decreasing efficiency as follows: Error & Anomaly Detection, Structure Analysis.
Code Review, Functional Testing, Branch Testing and Random Testing. A plot of unit
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Table 5.11: Stopping Rules

TEST

TECHNIQUE !

STOPPING
RULE

TEST LEVLL

Uit Uses

100 “% of branches

fx:zs)lszsx-

Branch ~executed (with a minimum
Testing " of 2 traversals per branch)
and MTTF = 10 inpur cases.
" Not to exceed X hours.
All required aspects of tie
Code method have been evaiuated N => X = {v:
Review using SDDL where possibie.
manually where not. Not to
" exceed X hours.
Functional ¢ All test procedures
Testing _executed. Not to “NXN= 6N = g2
. exceed X hours.
¢+ Minimum number. Y. i
Random samples from input space "N=2'X=14
Testing | executed, and Y =230 Y =50
{ MTTF = 10 input cases. ! i 5
" Not to exceed X hours. ;
. All required aspects of i i
Error & the method have been ' f
Anomaly evaluated. using automated N=bt N=1i2
Detection tool where possible,
, manuaily where not. Not 10 . ,
i exceed X hours. 5 j
i All required aspects of _'
Structure  the method have been
Analysis ! evaluated, using automated =~ X =4 | X =2

tool where possible,
manually where not. Not to
exceed X hours.

constraints.
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level efficiency is given in Figure 5.3b. The only trend or relationship apparent
here is that static techniques found a larger percentage of the known crrors per unit
time than did the dynamic techniques.

5.2.1.2.2 Test Technique Pair Description
Paired Technique Effectiveness

As shown in Table 5.12, the six test techniques: Branch (B), Code Review (C),
Functional (F), Random (R), Error and Anomaly Analysis (E), and Structure Analysis
(S) can be combined to represent 15 technique pairs. Technique error-finding
effectiveness, as denoted by percent of SFRs found, is shown for each technique pair
applied to each sample. The rightmost column shows the average percent of SPRs
found for each technique pair, across all samples.

In decreasing effectiveness, ihe pairs are: CE, FE, BE, CR, RE, CF, CS, BC, ES & FR, BR,
FS, BF, BS, and RS. Thus it appears that while Code Review did the best at finding
errors at the unit level, it formed the most effective pair combined with Error &
Anomaly Detection. The static technique of Error & Anomaly Detection combined
with Functional or Branch testing did almost as well as the CE pair.  Structure
Analysis did not do well by itself and did not rate high in the pair analysis; it is
interesting to note, however, that it performed best when paired with another static
technique, Code Review. Of the pairs of dynamic techniques, FR found the most with
39%, followed by BR with an average of 38%, and BF with an average of 36%. Note
that these dynamic pairs arc rated in inverse order from the CSC level pairs. {Sce
Table 5.19.)

Paired Technique Effort

Based on the singie technique effort results, which showed static techniques took less
time than the dynamic ones, technique pairs of two static techniques will also take
less time than other pairs of techniques. This finding is reflected in Tabie 5.13. The
pairs, listed in order of increasing cffort necessary to apply a technique pair, are:
ES, CS, CE, RS, RE, CF, FR, FS, CR, FE, BS, BE, BR, BF, and BC.

An ANOVA ocn pairs of techniques is not wholly appropriate from a statistical
standpoint. Conducting a chi-square test on the data is one option for further
analyses. A first iteration on conducting a chi-square test on these paired technique
effort data is contained in the Task 5 report.

Paired Technique Coverage

Table 5.14 shows the average branch coverage attained by each pair of dynamic
techniques. (Static techniques cannot be inciuded here because their application
does not involve executing the code, and therefore executing branches.) In direct
translation from the single technique coverage results, BF obtained the highest
coverage with over 91%, fcllowed by BR with approximately 90% and FR with
approximately 89%. :

An ANOVA on pairs of techniques is not wholly apprepriate from a statistical
standpoint. Conducting a chi-square test on the data is one option for further
analyses. A first iteration on conducting a chi-square test on these paired technigue
cffort data is contained in the Task 5 report.
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Table 512 Unnt Pawed Techuique Etfectiveness .0 SPR~.
"Techuique 1 THUSCN . SSWAMSN T THUADC ' THNRDT
Par " SCANNER INFANSEN ! INPSAT ! INMODE ~ AVERAGE
Tester | i Il 7| IV PERCENT
BC 0.0, 0.50 ! 0.67 R ’
i 0.11 0.60 | 07l .67 0.43
! BF ! 0.0 : 0.25 7 0.33 0.57
. 0.0 . .30 | e S 0.30
BR ‘ 0.u 0.50 4 .33 .50 B
: 0.06 0.60 | 0.30 . 0.3 0.3
BE NJA N/A 0.33 ; .30
| 0.72° NJA | 0.79 NOA 0.59
. BS NTA NJA 0.33 ! .43 -
| | 0.06 | N/a | 0.50 | NiA 0.33
, CF ‘ 0.0 0.30 | 1.0 0.79 il
! i 0.11! 0.20 : 0.71 0.81 " 052"
. (R 0.0 | 10] 1.0 0.79 &
| ) 0.17 0.40 | 0.57 | 0.67 i 0.55
i CE NTA N/A 0.67 | 0.43 4
. 1 0.33 i NJA 0.64 1 N/A Y 0.64
S N/A NTA 0.67 | 043
! 017 N/A 0.50 NiA 0.44
FR | 00 - 075 . 0.33 0.57 .
| 0.06 ! 0.20 | 0.50 | 0.67 i 0.39 -
| TE N/A N/A 0.33] 0.57 ;
: | 0.72 | N/A | 0.86 | N/A 0.62
o FS N/A N/A 0.33 | 0.5C |l
} | 0.06 | N/A | 0.57 | N/A | 0.37
| RE | N/A N/A | 0.33 | 0.50 | :
; I 0.75 1 N/A | 0.50 | N/A 0.53 -
| RS | N/A N/A 0.33 | 0.43 || i
/ 0.11 | N/A | 0.21 | N/A | 0.27
I ES | N/A N/A 0.33 | 0.07 ;
i i 0.75 | N/A | 0.36 N/A 0.30




Pables i3 Uant Parea lechuugue Lion

Techgue - THUSCN © SSWNISN  THUADC  THXRDT 7
. Pair  SCANNER i INFANSEN . INPSAT / INMODE § AVERAGE ;
Toster [ ¥ T v LEFFORT

BC 136.75 149,50 - ST 1150 0 5144 -
BF 169.00 - 90.25 U5, 3000 30,40
' BR 14823 114,50 $950, 6450 & 2605 .
BE 122,00 . N/ 70.00, 4100 | 2530
BS 122,00 | N7A 63.25 10.25 | 2361
CF 133.50 | 126,50 1 66.95 1 47.00 § BENE
CR__ 11275 15075 500 1 4550 § ONER
CE 15.75 : NTA 20.25 530 i $95
S 1515 N/A S 75 157
FR 115.00 | 91.50 . TS0 . 64.00 | 2350
FE 375 | N/A G 5920 1030 | 307
FS 1375 N/A 5745 39.5 ¢ 2399 -
RE 98 00 | N/A 6725 1 42.00 | 23.03
RS 93.00 NTA | 03.50 | 1135 22735
. ES | NJA] NJA ] 0.75 | .25 | ;
. 1 1.00 | N/A 10.00 | N/A | 21T

Table s 11: PAIRED UNIT DATA . BRANCH COVERAGE BY TLCH.
NIQUE

i Cnits Ifmusc.\' SNWMSN | THUADC | THXRDT | i
| SCANNER | INFANSEN | INPSAT | INMODE || AVERAGE |
Tester ! I : [l v COVERAGE
Techmque |
BF | 1.00 1.00 1.00 971 913

| 962 898 | 365 708
| BR 1.00 1.00 1.00 &7
i | 724 893 365 3
FR | 1.00 $75 1.00 87
1 975 .306 865 75

904 |

i
T
1 393
) N




In comparing the descriptive paired technique data for effort and coverage, it is seen
that the coverage is inversely related to the effort: the technique-pair that took the
longest to apply attained the best branch coverage, and vice versa. These results are
shown in Figure 5.3c.

5.2.1.3 CSC Testing

As described in Section 5 2.1.1, one latin square was used in the experiment at the CSC
level. The samples for use in this latin square were four CSCs from the AFATDS
project: SNWMSN, THPCON, THUADS, and THURDT. See Section 5.2.1.1 for information
on these samples. In addition to the latin square experiment, the twe deterministic
test techniques, Error & Anomaly Detection (E) and Structure Analysis (SA), were
applied to two of the samples by two of the testers.

5.2.1.3.1 Single Test Technique Description
Single Technique Effectiveness

Table 5.15 shows the categories that SPRs fall into, and how many SPRs fcll into each
category, for each CSC sample. The numbers in the ceils of the table represent SPR
counts. Each column in this table provides information for the sample named at the
heading of the column. Refer to the text accompanying Table 5.2 for a definition of
the rows in this table.

(See also the Unit Error Summary Tables in Section 5.2.6; they present a more detailed
view of these SPRs.)

Az shown in Table 3.15, the CSCs contained from 2 to 17 known errors that could
possibly be found by CSC tesung, and CSC tcsting found from 20% to 100% of these
errors with an average percentage found of approximately 75% across the four CSCs.
Thus while on average three quarters of the errors in a sample were found, the
variance (from 20 to 100%) is large. Also, the number of errors known per sampie
has a large variance (from 2 to 17). This mirrors the properiies of the unit data, with
the additional fact that the CSC level has orly balf the data points as the unit level.
These factors make the data less than ideally suited for siatistical analyses and
unsuitable for an ANOVA. Repetition of this study to add data points to the analyses
would improve confidence in results.

As at the unit testing level, C5C testing found new crrors not previously found in
original development testing. Conversely, CSC experiment testing found only one of
the criginal development errors.

Whereas Table 5.15, addresses overall test cffectiveness from a code sample viewpoint,
Table 5.3 addresses effectiveness from the individval test technique viewpoint. This
table shows that averaged over all samples, at the CSC test level, Branch Testing found
the largest percentage of errors, followed by Code Review, Functional, Error and
Anomaly Detection, Random, and Structure Analysis.

These descriptive data suggest that Branch Testing may be the best crror-finding
technique at the CSC level. Since the experiment was designed as a latin square that
allows us to test this hypothesis while accounting for other influences upon the data,
such as tester variability, and order of application of the techniques, it is premature
to make this as a final judgment. Due to time and budget constraints, the minimum
number (two) of latin squares needed to support an ANOVA at the CSC level was not
obtained. Therefore we cannot conduct ANOVAs on these data. However, conducting
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Table 5.153: Breakdown of SPRs by ('SC Sample

C'SCs
“SPRs TSNWMSN | THPCON - THUADS i THURDT ¢
. Found in

. Expertment 6 5 | 2
P Newly | l ;
(

u Found 6
rOriginai ;
* Findable i
. Experiment ) I
| Findable |
\ % Experiment | |
' Findable, Found 36% |
; in Experiment i

i
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a chi-square test on the data is one option for further analyses. A first itcration on
conducting a chi-square test on these CSC effort data is contained in the Task 5 report;
further work needs to be done with these data analyses.

Single Technique Effort

Table 5.16 shows the average cffort (in hours) to execute each technique on cach
sample. The times listed for dynamic techniques does not include driver development
and online environment setup time in this table; this time is listed separately in the
"Initial DTM Driver Development” fields.

Table 5.17 presents test time in a different way than the previous table. In this table,
the field "Initial DTM Driver Development" has been added to the tcchnique time
value for the dynamic tcchniques. Thus entrics in this table reflect how much time
it would have acrually taken a tester to test with any one technique independently of
any others in this experiment. Thus they can be recommended as a starting point for
estimating time io test other, similar code CSCs. The three dynamic iechniques all
took betwcen 35 and 40 hours. Branch and Random tied for consuming the most
effort, with Functional the third most time consuming. The static techniques all took
much less time (2-7 nours) than the dynamic ones. Code Review took the most, with
Error & Anomaly Detection and Static Analysis tied for the least amount of time.
(Since 1the latter two techniques involve using ecrror rcports from the same
automated tool, the cqual average effort is not surprising.)

Testers did not use the DTM tool at the CSC test level, so DTM tool usage time is not
embedded in these times as it was for the unit effort times. However, as with the unit
effort, CSC times included time to develop drivers for code of a given complexity; code
of different complexities might necessitate altering these times.

For both methods of measuring effori, the average effori, across four samples for F, C,
B, and R test techniques and across two samples for the E and SA test techniques is
lower than the principal investigators originally estimated. In opposition to what
was scen at the unit level, the original estimates were beiter at predicting test time as
shown above in Table 517; thus the estimates scem to best reflect test application time
including driver and onlinc environment development. This is likely becausc only
partial CSCs were actaally tested; the original cstimates were made for CSC test effont
i1 gencral.

Single Technique Coverage

Table 5.18 shows the branch coverage achieved by the thrce dynamic techniques at
the CSC level. The relative ranking in decreasing coverage: B, F, R, mirrors the
coverage performance seen at the unit level. (Refer to Tabie 5.10.) These results are
shown in Figure 5.3d.

Single Technique Efficiency

Test technique efficiency is the percent of findable SPRs found when the stopping
rule was rcached, divided by the time taken applying the tecchnique when the
stopping rule was reached. For the experiment, at the CSC level the techniques rank
in decreasing efficiency as follows: E, §, C, B, F, R. A plot of unit level efficiency is
given in Figure 5.3c. The only trend or rclationship apparent here is that suatic

techniques found a larger percentage of ihc known errors per unit time than did the
dynamic techniques.
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Table5 . i6: ALL CSC DATA : sLTUP AND €XECUTION EFFORT

CSCs [ THURDT | THUADS [ SNWMSN - THPCON | AVERAGE |
_ Tester ; i 1. 11V | EFFORT!
! Technique 1| Estimated Hours* | | i ! !
“Tmitial DTM | N/A 55.50 | 11.50 | 24.00 | 9.50 213
| Driver Dev. : : ’ | i i! |
i F 1 32.00 1 11.00 | 00 | 10.75 | 6.50 i SN
C : 16.00 | 330 | 5.00 | 5.00 | 350 i 6.25 | .
] 3 i 58.00 | 19.50 | 950 | 16.25 | 7.00 1 13.06 |
; R . : 14.00 - 16.00 | 13.25 1 12.75 | 10.25 | 13.06 |
' E i 12.00 | N/A | N/A | 3.00 | 1.50 | 715
SA i %90 | N/A N/A 100 1.5C | 27

TableS (70 ALL CSC DATA : TOTAL APPLICATION EFFORT

(nits " THURDT : THUADS * SNWNISN THPCON i AVERAGE |

Tester I [ . T iV ] EFFORT! o

~ Technique || Fstiuated Hours® i, : ; : ' : '
L F 32.00 | 65.56 | 15.50 i 34.75 16.00 & 33.94
C : 16.00 1] 3.50 | 5.00 | <00 | 3.50 1 6.25 i
Ty 38.00 || 75.00 | 21.00 | 10.25 . 16.30 © 3319

R 14.00]  71.50 2155 3655 | 19.15 & 3519 | :

" 12.00 || NTA NTA 100 730 11 255 ‘
v 200 il NTA NTA 400 . 150 | 155

Tabie 5.13: CSC DATA - BRANCH COVERAGE BY TECHNIQUE

| CSCs | THURDT | THUADS I SNWNSN T THPCON 1 AVERAGE

Tester | N T 7 IV 1 COVERAGE |

- Technique _' | ] ; !

L 361 | 708 | 73 694 | 684 |
J ' i f

: -~ - l ‘
B ) 36l 792 364 B3| 764

|

! |

i I :
730 | 64 ! 510 | 623 |

| I |
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5.2.1.3.2 Test Technique Pair Description
Paired Technigue Effectiveness

As shown in Table 5.19, the six test techniques: Branch (B), Code Review (),
Functional (F), Random (R), Error and Anomaly Analysis (E), and Structurc Analysis
(S) can be combined to represent 15 technique pairs. Technique error-finding
effectiveness, as denoted by percent of SPRs found, is shown for each technique pair
applied to each sample. The rightmost column shows the average percent of SPRs
found for each technique pair, across all samples.

In decreasing effectiveness, the pairs are: BE & BS, BC & BF, BR, FE, FS, CE & CS, CF, CR
& RE & RS, FR, and ES. Thus it appears that while Branch Testing did the best at
finding errors at the CSC level, it also complements errors found by the static
techniques:  Error & Anomaly Detection, Structure Analysis, and Code Review, in
decreasing order. However, Error & Anomaly Detection and Structure Analysis did
not do well by themselves at finding errors and did not complement each other well,
which led to that pair (ES) rating the lowest. Of the pairs of dynamic techniques, BF
found the most with 74%, followed by BR with an average of 69%, and FR with an
average of 35%. Note that these pairs arc rated in inverse order from the unit-level
pairs. (FR found an average of 39%, foliowed by BR with an average of 38%. and BF
with an average of 36% at the unit level.) ,

Paired Technique Effort

The single umnit and CSC technique effort results showed stautic techniques took less
time than the dynamic ones, and technique pairs of two static techniques also took
less time than other pairs of techniques. This finding is reflected in Tabie 5.20. The
pairs, listed in order of increasing effort necessary to apply a technique pair, are:
ES, CE & CS, CF, CR, FE & FS, RE & RS, BE & BS, BC, BF & FR, and BR.

An ANOVA on pairs of techniques is not wholly approoriate from a statistical
standpoint. Conducting a chi-square test on the data is one option for further
analyses. A first iteration on conducting a chi-square test on these paired technique
effort data is contained in the Task 5 report.

Paired Technique Coverage

Tole 5.21 shows the average branch coverage attained by each pair of dynamic
techniques. (Static techmiques cannot be included here because their application
does not involve executing the code, and thersfore executing branches.) BF obtained
the highest coverage with over 76%, followed by BR with approximately 72% and FR
with approximately 73%.

An ANOVA on pairs of techniques is not whelly appropriate from a statistical
standpoint. Conduc:ing a chi-square test on the data is one option for further
analyses. A first iteration on conducting a chi-square test on these paired technique
coverage data is contained in the Task 5 report.

In comparing the descriptive pairea technique data for effort and coverage, it is seen
that the coverage is inversely related to the effort: the technique-pair that took the
longest to apply attained thc best branch coverage, and vice versa. These rcsults are
shown in Figure 5.4.




Tabie 5 190 CSC DATA: PAIRED TECHNIQU B FFFRCTINVENDSS -
~PRs)

Techmique «

Pair ' THURDT : THUADS | SNWAISN - THPCON  AVERAGE

Tester | : T il IV PERCETT
BC 1.00 0.40 0.30 0Tl 074
BF 1.00 I 0.20 ! 0.56 i 0.88 = 07
BR K 1.00 | 0.20 : 0.36 ! 071 ey -
BE i N/A Y N/A .56 ¢ 0.76 i VR
BS N/A ] N/A | 0.56 | 0.76 NS
CF ; 0.00 0.40 i 0.56 | 0.63 0.4
CR ; 0.00 ! 0.40 ! 0.36 : 0.47 TS
CE iy N/A N/A 0.71 1 0.33 .33
'S " N/A N7AG 071 0.33 ! 0.53
FR ; 0.00 i 0.20 ! J.57 U.6s - 1).30 .
FE : N/A N/A 0.71 ¢ 0.63 {.ox
FS ! N/A NiA G 0.57 0.65 0.61 .
: RE | N/A | N/A 0.57 0.29 0.43
i RS N/AT] NT/A 0.57 | 029 1 REE
ES | N/A N/A | 0.57 | 0.06 i 0.32 1

Table 5.20: CSC DATA: PAIF ED TECHNIQUE EFFORT

" Technique | , ; . y
Pair ‘ THURDT : THUADS : SNWMSN ' THPCON I AVERAGH

Tester | 0 M I ] IV EFFORT
BC 3.30 26.00 | 18.25 | 20.00 | .

BF 36.00 23.00 | 51.00 | 23.00 1l 17 00

. BR . 91.00 34.25 1 53.00 26.73 |l 5125
. BE N/A N/A 14.25 15.00 1] 3113
. BS N/A N/A 44.25 | 13.00 | 3113
~CF | 75.00 | 2350 | 42.75 19.50 | 1556
' CR I 30.00 | 29.75 | 44.75 23.25 | 17.00
. CE | N/A N/A 12.00 5.00 | 3.50
s N/A | N/A | 12.00 5.00 | 3.50
. FR | 3250 31757 4750 26.25 | 17.00 |
. FE | N/A N/A 38.75 17.50 2813
. FS 1 N/A N/A 38.75 ] 17.50 2813
RE | N/A | N/A 40.75 21.25 | 31.00 ¢
. RS | N/A] N/A | 40.75 21.25 | 31.00 -
 ES ] N/A | N/AT 8.00 3.00 | 5.50 |




Tabie 5 21: CSC DATA: PAIRLD TECHNIQUE BRANCH COVERAGE

f Technique | ; i _
Pair “ THURDT | THUADS i SNWAMSN  THPCON il AVERAGE -
Tester i i 1 [V || PERCENT
BF 961 | 192 i 909 . 796 !I 63 .

i | : : ;! !

BR ! 476 | 92 364 | 735 ;i TR

FR ., 3611 30 09 ] FRON
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Figure 5.4: Paired CSC Data: Effort versus Coverage



§.2.1.4 Tester Profiles

Prior to testing software for this experiment, each tesier was asked to complete a
software cngineering questionnaire. The results of this questionnaire arc shown
below in a scries of histograms which compare tester backgrounds and experience.

In the education and experience category (see Figure 5.5), the four testers all have
college degrees: one earned a Masters while the other three hold bachelors degrees.
All have at least three years of general softwarz expericnce and between one and
five years of software testing experience.

Experience with test techniques used in this study is as follows (see also Figure 5.6
and 5.7): all use functional testing frequently; two had used random testing before
and two had not. two use code review frequentiv. cne uses it occasionally, and one
had never used 1it; one occasionally uses structure analysis, while three had never
used it; none had ever used ecrror and anomaly detecticn, althcugh one had read about
ity and nonme unad =ver used branch iesting, ‘“although (wo had read aboutr it
(Interestingly enough, when interviewed after the experiment, all four testers liked
branch testing. Their confidence in their results increased due 10 having the
"concrete” measure of branch coverage against which to judge their progress, and
they had no problems identifying test cases to exercise thc branches.)

All had experience using bigh level languages (see Figure 5.8 and 5.9). Ounc¢ had used
FORTRAN over 15 years, while one had uscd it under five years and two had never
used it. Other languages one or more of the testers were familiar with include: C, Ada,
Pascal, Assemblers, and others.

Testers for the most- part did not have exper.eace with the software tools used i this
experiment (see Figure 5.10). None had used RXVP80, though ail said they liked this
ool after the experiment: only one had used DEC Test Manager (DTM). The testers
were given time before the experiment began to familiarize themselves with both
ools, in an effort to elizninate a tool learning effect in the results.

5.2.2 ANOVA Results

ANOVAs were conducted for the unit test level data, for hypotheses concerning single
test techniques. The STATISTICAL ANALYSIS SYSTEM (SAS2) software tool's General
Linear Models (GLM) procedure was used to automate the computations. AMNOVAs run
and interpreted on the unit level data inclvde:  test technique effectiveness (% of
SPRs found), test techniques branch coverage, test technique effort (hours), and test
technique efficiency (SPRs found relative to the time it took to find them). The
actual SAS output for these runs can be found in the Task 5 report.

Below is a cescription of the ANOVA model, followed by ANOVAs in each category
listed above. Within each category is the analysis description taken from the Task 2
Report, (SRTIP) [1], Appendix B, and ihe interpretation of the SAS output results.

The analysis descriptions taken from the SRTIP have been modified to fit the
terminology and expectations that have been adopted since its production. Refer to
thc SRTIP, Appendix B for an explanation of svmbols and conventions used in these
analysis descriptions.  Refer to the document “"Data liems Required for Analysis” in
Appendix C of the Task 4 report {12]) for definition of elements such as "total unique
findable SPRs.” '
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5.2:2.1 Process
To comparatively evaiuate the effectiveness of the test techniques, the data collected
during the experiment were analyzed using the ANOVA associated with this design, as
described below:
Yijk = g = Pi + Tj + (PT)ij + Sk + Mijk + Rijk + jjk
where
i is the project index
J is the tester/code sample index
k is the session index
P; is the project effect
Tj is the combined tester and code sample effect
(PT)jj 1is the interaction effect among project, tester, and code sample
Sz is the test session effect

M jjk is the test technique or method effect

Rijk is the effect of the previously applied or residual test rechnique

ijk is the error tem

The design used is that for estimating residual effects (in this case "learning” effects)

when treatments are applied in sequence as described in Cochran and Cox [5] on
pages 133-139.

In the ANOVA for the unit test level experiment, we have m=2 Latin Squares and n=4
trcatments or test techniques with the sources of variation partitioned as shown in
Table 5.22. Due to the nature of these experiments, we anticipate that if session,
treatment, and residual effects arc present, then they will be similar for each square;
hence, it seems reasonable to pool the corresponding interactions into an error
source of variation. On tne other hand, because of the way the columns are defined,
it would be appropriate to group the squares, columns, and squares by columns
sources of variation into a single component (referred to as "columns” in the
resultant ANOVA table given in Table 5.22) that can then be partitioned into the more
meaningful subcomponents of testers and software project.




Table 5.22 Unit Test Level Experiment:

Analysis of Variance

(assumes some
errors are ne&g‘ible)

Sources of Dﬁgrecs of
Variaton Freedom
Sequence or Columns 7
Tester Effect T 3
Software Project Effect 1
‘ Testers x Software 3
™ Rows
Test Session Effect Sk 3
‘Treatments
Test Technique Effect Mijk 3
Residual Effects
Learning Effect Rijk 3
Error Effect ¢ijk 15

TOTAL




5.2.2.2 Single Technique Effectiveness Results

Analysis Description from the SRTIP:

Identifier: TT_SINGLE_EFFECTIVENESS_0!

Question of Interest: Is there a difference in the PERCENT TECHNIQUE SPRs*
found by all testers using any one test technique (R, F, B, C, S, E) at the {unit,
CSC} test level?

Analysis: Analysis of Variance Model F Test

NOTE: 1. * PERCENT TECHNIQUE SPRs = TECHNIQUE SPRs/

(ORIGINAL FINDABLE SPRs + TECHNIQUE NEW SPRs")

or 'the number of SPRs written for this technique’ divided by ‘the
number of "findable” SPRs for the sample.’

2. The effect of the tools will be confounded.
Interpretation of SAS output:
DEPENDENT VARIABLE: P_SPR
FORMULA: Percent of known, findable at the current test level, SPRs that were
detected by a techanique. Specifically, SPRs detected by the technique divided by all
unique experiment findabie SPRs known (whether from .original development or

newly found during experiment).

F TEST FOR MODEL SIGNIFICANCE:

F o Significance?
2.90 10 Yes
05 Yes
, 01 No
INTERPRETATION: Model is significant. Conduct all analyses at 95% confidence level ,
or lower. g

F TESTS FOR SOURCE SIGNIFICANCE (TYPE IID):

SOURCE F Significance?
10 | 05-] 01
SWTYPE 0.32 | No | No | No
TESTER 10.11 | Yes| Yes| Yes f
SWTYPE*TESTER 222 | No | No | No
SESSION 066 | No | No | No
TECHNIQUE 179 | No | No | No
RESIDUAL 258 | Yes| No | No

10 ¢
28



INTERPRETATION:  The 1ester effect is highly significant and the order of application
is marginally significant and the order of application is marginally significant. This
result indicates that once the tester variability is isolated, nothing can be said about
technique effectiveness. Thus, the effectiveness at testing is based on the tester only
and testers should be selected with this information in mind. This result also implies
that we should continue to focus on defining test techniques and tools to minimize
the tester's impact on reliability achievement.

T TESTS OF PAIRED MEANS: Avg. P_SPR's

INTERPRETATIONS:
SWTYPE + Not significantly different betweea projects.
TESTER » T1 has significantly fewer Avg. P_SPR's. This result may be

due to code sample difficulty or tester skill level/experience.
» T2 performance is indistinguishable from T3 and T4.
+ T4 performance is indistinguishable from T3.
SESSION + Not significantly different between sessions.

TECHNIQUE « Not significantly different between techniques,

5.2.2.3 Single Technique Coverage Results
Refer also to SAS data in the Task 5 report.
Analysis Description from the SRTIP:
Identifier: TT_SINGLE_COVERAGE_01

Question of Interest: Is there a difference in the percent of execution branches
tested by each test technique (R, F, B) at the {unit] test level?

Analysis: Analysis of Variance Model F Test

Interpretation of SAS output;

DEPENDENT VARIABLE: PT_PATH

FORMULA: Percent of branches through the sample that a technique executed.
Specifically, the number of branches executed by the test cases generated using a

technique divided by number of branches in the code sample being tested.

F TEST FOR MODEL SIGNIFICANCE:

F @ Significance?
30.77 10 Yes
05 Yes
01 Yes
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INTERPRETATION:  Branch coverage for code rcading assumed zero to avoid handling
of missing cells. Model is highly significant.

F TEST FOR SOURCE SIGNIFICANCE:

SOURCE | F Significance?
! 10| 051 .01
SWTYPE 7.14 | Yes| Yes| No
TESTER 1.32 | No | No | No
SWTYPE*TESTER 132 | No | No | No
SESSION 143 | No | No | No
TECHNIQUE 13755 | Yes| Yes| Yes
RESIDUAL 118 | No | No | No

Interpretation:  The technique effect is highly significant and the application type is
significant at the 95% level. This significance may be due to the code rexding
branch coverage values and needs to be explored further.

T TESTS OF PAIRED MEANS: Avg. PT_PATH

INTERPRETAi/ONS:

SWTYPE e SCENE Project has significantly lower averages. This
observation may be related to complexity of the code samples
used.

TESTER * T1 and T2 show significantly different average coverage. This
observation may be related to code sample complexity.

SESSION * Not significantly different between sessions.

TECHNIQUE « Branch obtains significanily higher coverage. Code reading

obtains significantly lecwer (zero) coverage.
5.2.2.4 Single Technique Effort Resuits
Refer also to SAS data in the Task 5 repon.
Analysis Description from the SRTIP;
Identifier: TT_SINGLE_EFFORT_01
Question of Interest: Is there a difference in the effort (hours) required to meet
;l;icsltgpping rules by each test technique (R, F, B, C, S, E) at the {unit, CSC} test

Analysis: Analysis of Variance Model F Test

Interpretation of SAS output:

DEPENDENT VARIABLE: P_TTIME




FORMULA: P_T.IME is technique time divided by sample time. Let technique time
for the dynamic techniques be setup time + technique ‘execution' time, where setup
time is driver developmen: and DTM setup and static techniques have 0 sewp time.
Let sample time = I1*setup time + each of the techniquc execution times for the 4
techniques in the latin square. (Note the sum of P_TTIMEs adds up to greater than 1
due to the addition of the setup time for each of the dynamic technique times. This
quantity still reflects ACTUAL time to do things. Specifically, it reflects the time it
would take to complete one technique in isolation (e.g.. if you didn't already have a
driver dcveloped) divided by the actual time to complete the 4 sessions on the latin
square for one sample.)

F TEST FOR MODEL SIGNIFICANCE:

F o |Significance?
12.62 10 Yes
.05 Yes
0l ! Yes

INTERPRETATION: Model is highly significant.

F TEST FOR SOURCE SIGNIFICANCE:

SOURCE F Significance?
10 | .05 | .01

SWTYPE 1294 | Yes| Yes| Yes
TESTER 1.75 { No | No | No
SWTYPE*TESTER 068 [ No | No | No
SESSION 2.02 | No | No ] No
TECHNIQUE 47.1 | Yes| Yes| Yes
RESIDUAL 0.76 | No | No | No

INTERPRETATION: The technique effect is highly significant and the application
type is significant at the 95% level.

T TESTS OF PAIRED MEANS: Ave. PT_TIME

INTERPRETATIONS:

SWTYPE * SCENE Project has significantly lower average. This
observation may be related to complexity of the code samples
used.

TESTER « TI1 and T2 show significantly differemt average coverage. This
observation may be related to code sample complexity.

SESSION . » First session had significantly larger effort.

TECHNIQUE + Code Reading had significantly lower effort.
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§.2.2.5 Single Technique Efficiency Results

Refer also t0o SAS data in the Task 5 report.

Analysis Description from the SRTIP:

Identifier: TT_SINGLE_EFFICIENCY_02 ~

Question of Interest: Is there a difference in the effort (hours) required to detect
a percent of total discrepancy reports by ecach test technique (R, F, B, C, §, E) at
the unit test level?

Analysis: Analysis of Variance Model F Test

Interpretation of SAS output:

DEPENDENT VARIABLE: EFFIC

FORMULA: EFFIC IS SPRs found by a technique divided by technique time
(P_TTIME).

F TEST FOR MODEL SIGNIFICANCE:

¥ o [Significance?
2.48 10 Yes
05 Yes
01 No

INTERPRETATION: Medel is significant. Conduct all analyses at 95% confidence level
or lower,

F TEST FOR SOURCE SIGNIFICANCE:

SQURCE 3 Significance_?;
: J0 | 05| .01
SWTYPE 43 | Mo | No | No
TESTER 3.47 | Yes| Yes| No
SWTYPE*TESTER .14 | No | No | No
SESSION 63 | No | No | No

TECHNIQUE 7.32 | Yes| Yes| Yes
RESIDUAL © 127 { No | No | M

INTERPRETATION:  Both the tester and the technique have a significant effect on test
efficiency. This result implies that we should concentrate on streamlining the
techniques and on providing better training for testers.

190



T TESTS OF PAIRED MEANS: Ave. EFFIC

INTERPRETATIONS:

SWTYPE * Not significantly different between projects.

TESTER « T4 has significantly different effect on average efficiency
than the other testers. This effect may be due to the
complexity of the code samples tested by T4.

SESSION « Not significanrtly different between sessions.

TECHNIQUE + Code Reading had a significantly higher effect on efficiency.

.23 General Observations

As noted in Section 5.1, while using these data, a few data discrepancies were found in
the StatView data base, as well as between’ the StarView data base and the error
summary tables provided in Section 5.2.6. Many werc resolved. The project effort did
not permit looking into the rest. While these discrepancies are believed to be minor,
they also should be resolved before further analyses are performed.

The descriptive analyses present the data in a reduced form: they in ¢ssence are the
first iteration in understanding the data and resuits. For example, the dzscriptive
data showed it was possible that code review is the best techanique to use at the unit
level and that branch testing is the best technique to use at the CSC level.

The statistical analyses of variance, modeled according to the latin square experiment
design, are the next iteration in understanding the data and results.

This report presented preliminary analysis of variance results for several
performance measures - namely, P_SPR, PT_PATH, PT_TIME, and EFFICIENCY. A basic
assumption underlying the analysis of variance model is that the error (deviations
from the model) have a homogensous variance. In particular, the magnitude of the
error variance should not be dependent on the magnitude of the variate.

With a change in the PT_TIME variate (which represents percentage of total sample
test time taken to setup and execute a given test technique) to a TTLTIME variate,
where TTLTIME is defined as the time to sectup and execute a test technique, this
appears to be a reasonable assumption. However it is not reasonable for the other
three dependent variables, for two reasons. First, the variates are percentages, and
as such, the variation is dependent on their magnitude (i.e. variation tends to be
smaller for percentages near 0 or 100 than those near 50 percent). Second, the base
(i.e. denominator) for ‘calculating the percentages (e.g. potential number of SPRs)
varies drastically among the 32 ceus, and the variance of the peccentages is
inversely related to these base numbers. The analysis of variance results shown
herein for the two variables should therefore be interpreted with caution.

Categorical data analysis techniques offer a more appropriate approach for analysis
of these type of performaice measures, because these techniques properly account
for the variance heterogeneity. The data for application of such a procedure can be
regarded as a contingency table in which the 32 rows correspond to the 32 cells of
the design and the columns correspond to a dichotomous response variable- e.g., SPRs
found versus not found. The data are frequency counts. The proportions (analogous
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to P_SPR), or some transformation of the proportions, can then be modeled as a
function of the experiment design variables and tests of hypotheses concerning the
effects can be performed.  The estimation is usually performed by wecighted least
squares or by maximum likelihood techniques. (The latter would be preferred in this
case due to the small counts.) In contrast to the F tests associated with the usual
analysis of variance, the categorical data analysis approach employs a series of chi-
square tests for the significance of the various design factors. Software for these
analyses is available in SAS using the FREQ and morec preferably the CATMOD
procedures.  Section 5.5 shows chi-square output using the FREQ procedure for test
technique combinations.  This output has not been rcviewed for appropriateness and
should also be interpreted with caution.

While carrying these analyses further is outside the scope of this contract, it is
recommmended that further work be done. In summary, complete and appropriate
experimental data analysis often involves several iterative steps. Further analysis of
these cxperiment results, under the guidance of a well-qualifiecd statistician, is
highly recommended. '

5.24 SAS Outputs: GLM Results

Appendix A of the Task 5 report contains the output from the GENERAL LINEAR
MODELS (GI.M) procedure of the STATISTICAL ANALYSIS SYSTEM (SAS) software tool to
analyze experiment data from the unit test level latin squares. Four GLM procedures
were run on the following data sets: test technique effectiveness (SPRs), test
technique effort, test technique branch coverage, and tcst technique cfficiency.

5.2.5 SAS Output: CHI-SQUARE Results

Appendix B of the Task 5 report contains SAS outputs for the following four Chi-
Square runs: unit effectiveness (SPRs), unit branch coverage, CSC effectiveness
(SPRs), and CSC branch coverage. The outputs are available as a first iteration
analysis for use in further work.

5.2.6 Error Summary Tables

The following error summary tables document all known unique errors in each
sample, both for the unit and CSC testing. (A count of the rows in a table yields the
total of all known unique errors for a sample.) The tables show which errors were
found during experimental testing and by which test technique(s) (see the columns
B, C, F. R, EA, SA), as well as showing which errors were from the original
development testing. Only a portion of the original development SPRs (see column
Devt SPR ID) were determined to be findable at the unit and/or CSC levels; those
errors are marked with a Y in the column Dev’t Findable SPR?

The column labeled Error Source represents the testers and project consultants best
estimate of where thc ercor was introduced: for the dynamic techniques, failures
were not traced to faults so the exact source of the error has not been verified.

5.3 RPFOM Exploratory Analysis

This section presents methods and results of exploratory analysis of selected RPFOM
metrics components.  Specifically, the rclationships between software reliability and
two RPFOM metrics, modularity and complexity, are investigated. Thesc analyses
focus upon the following questions of interesi:




1. Is the occurrence of ecrrors for a software conponent independent of the
size of the component?

2. Is the occurrence of errors for a software component indcpendent of the
complexity of the component.

These quesiions were examined by applying simple linear regression to data
compiled for the SCENE project. These data include error counts, size, and complexity
obtained for individual units (i.e., subroutines) and combined for CSCs. A similar
anaiysis of AFATDS SIM/STIM project data was not completed due to problems
encountered which are detailed below, Regression analysis was conducted on a
Macintosh using the Statview+ statistics package,.

5.3.1 Data

Two Statview+ data files were constructed, one for unit-level analysis (Appendix C)
and one for CSC-level analysis (Appendix D). Tables 5.23 and 5.24 provide descriptions
of these data files.

Error. size (i.e., lines of code), and complexity values for units were available from
existing SRM/TIT data sources described below. Remaining unit data, such as error
density, were derived from the existing data. CSC data were derived from unit data:
error, size, and complexity for CSCs represent sums of the values for the
corresponding units.

5.3.1.1 Error Data

Error counts were compiled from the SCENE Error Density Matrix appearing in
Appendix D of the SRM/TIT Task 2 Report, Volume 3. These error counts were
originaily logged from Software Problem Reports (SPRs) provided by SCENE project
personnel. Each error for a unit represents a reference to that unit in a SPR. Each
SPR may reference one or more units, and thus may account for multiple errors.

Two sets of error counts are recorded in the Statview unit and CSC data files. One sct.
labelled V6_ERRORS, represents SPRs logged against Version 6.0 (and versions
thereafter) of SCENE; size and complexity metrics (see below) for units were extracted
from Version 6.0 of the SCENE software. The other set, labelled ALL ERRORS.
comprises all errors (including pre-Version 6.0 errors) from the SCENE Error Density
Matrix for specified units and CSCs. Although pre-Version 6.0 errors for a software
module cannot be directly associated with Version 6.0 metrics if the module has
undergone change, this second set of error counis was also incorporated in analyses
since it provided a larger sample size.

The organization of units into CSCs as represented in the Statview daia files parallels
that depicted in the SCENE Error Density Matrix. This scheme originates in
documentation provided by SCENE pioject personnel (sse Task 2 Report, Volume 3).

5.3.1.2 Metrics Data

Size and complexity measurements of SCENE units, collected automatically using the
AMS tool, were imported into the Statview unit data file from the DBMS. Several
functional definitions of these metrics are reported in the literature. For example,
module size is defined variously as number of 1) lines of code, 2) executable lines of
code, and 3) executable siatements. These definitions themselves can be ambiguous.
Since unambiguity and consistency in units of measuremeni are necessary for
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Tabie 5.23 RPFOM Analysis Unit Dcta File Description
Field Description

Unit Unit Name

cSC CSC Name

LOC Unit Lines of Code from AMS

$X Unit Complexity from AMS

All Errors Total SPR Count for unit

V6_Errors Vers. 6.0 or later SPR count for unit

All Errors/LOC

V6_Errors/LOC

€rror density (Errors/Lines of Code) for unit
based on total SPR count

Error density for unit based on SPRs for
Version 6.0 or later of code
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Table 5.24 RPFOM Analysis CSC Data File Description

Description

CSC

LOC

SX

All Errors
N_Units

V6_Errors

LOC/Unit

All Errors/LOC

sx/N_Units

V6_Errors/LOC

CSC Name

Total lines of Code for all units of CSC
Sum of unit complexities for CSC
Total SPR counts for units of CSC
Number of units (subroutines) in CSC

SPR counts for units of CSC lcgged against
Version 6.0 or later of code.

Mean lines of code'for units of CSC

Error density (Errors/Lines of Code) for CSC
based on total SPR counts

Mean unit complexity for CSC

Error density for CSC based on SPRs logged
against Version 6.0 (or later vers.) of code




proper interpretation of results and for comparison of results with those of other
studies, a precise functional definition of these metrics was sought.

The AMS tool reports module size as lines of code (LOC). Source code from four SCENE
units was examined visually to establish the precise meaning of LOC as provided by
AMS. The results indicate that ecach counted line of code, including each
continuation line of a Fortran statement, increments the value of LOC by one. The
only lines of code not counted are blank lines and Comment lines. Thke manner in
which AMS treats Include siatements is uncertain. These were converted to Comment
lines for SCENE following questionable measurements obtained for AFATDS (scc
below), in which case very large values for LOC indicated that AMS may have countcd
lines of code in the Include files themselves.

The measure of complexity employed in the SRPEG for software units is the sum of
conditional and unconditional branch statements. This measurement is one of
several provided by AMS under headings of complexity and simplicity. Visual
examination of the four SCENE units referenced above indicates that the AMS branch
statement complexity number includes ali IF and ELSE IF, DO and DO WHILE, GOTO.
CALL, and RETURN statements.

5.3.1.3  Missing Data

Metrics data was unavailable for about 15 of the approximately 150 units listed in ‘he
SCENE Error Density Matrix. Four of these excluded units each represented an entire
CSC. Difficulties encountered in collecting data with AMS is the primary reason for
absence of this data.

Seventeen units for which AMS provided metrics data are missing from the SCENE
Error Density Matrix, and consequently cannot be associated with any error counts.
These units, included in the Statview database but excluded from the analyscs.
apparently were nonexisteat when the SCENE project documentation (see Task 2
Report, Volume 3) outlining software components was produced.

The AFATDS SIM/STIM project was not included in these analyses due to spurious data
from AMS on LOC and complcxlty (Table 5.25), lack of association between version ol
source code from which metrics were collected and versions against which SPRs
were logged, and difficulties encountered when importing metrics data from the 4ih
Dimension RPFOM Database into Statview data files.

Table 5.25 presents LOC, unit complexity (sx), and CSC complexity (SX) values for
AFATDS test sample units and CSCs (.c., "integrated units"). High values for LOC and
unit complexity (indicated in bold face) from late-build AFATDS source code, which
served as the source of metrics data collection for all AFATDS units, raised suspicions
concerning validity of AMS measurements. Since valid metrics data wers necessary
for test samples in order to complete analyses of results of the sofiware testing
experiment, AMS was run on the early-build versions of test sample units which
were actually utilized in the testing experiment. Re-runs of AMS were also conducted
on the late-build versions of three of the units. Based on the newly-generated
metrics values, which are listed under "Sample Build,” and visual examination of latc-
build versions of selected test-sample units, it was conciuded that AMS had provided
anomalous LOC and unit complexity values for an undetermined number of AFATDS
units. The most likely explanation for this problem is that AMS processed INCLUDE
files for units in which INCLUDE statements had not been ‘converted to Comment
lines.
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§.3.2 Analytical Approach

Simple linear regression was utilized to investigaie relationships between software
error occurrence as the dependent variable, and software component size and
complexity as independent variables. Of interest is the degree to which results of
these analyses support or refute the CSC/CSCI Modularity and Complexity models
incorporated in the RPFOM computation. The equations representing these models
are reviewed below (revisions made to original SRPEG values during the¢ course of the
SRM/TIT study are indicated in brackets):

SM (Modularity) = (0.Su + w + 2x)/NM

where u= no. of units with LOC < 200 [100]
w=  no. of units with 200 {100] < LOC < 3000 [500]
x=  no. of units with LOC > 3000 [500]
NM=  no. of units

S§X (Complexity) = (1.5a + b + 0.8c)/NM

where a= no. of units with sx > 20
b= no. of units with 7 < sx < 20
¢= no. of units with sx < 7

The following null (HO) hypotheses are tested:

1. The number of software errors is independent of 1he size (measurcd. by
LOC) of a software component.

2. Error density is independent of the size (measured by LOC) of a software
component.

3. The number of software errors is independent of the complexity (sx) of a
software component.

4. Error density is independent of the complexity (sx) of a software
component.

The F-test is employed to accept or reject these hypotheses at a .05 level of
significance.

5.3.3 Resalts "

§.3.3.1 Modularity

The graphical results for linear regression of errors (dependent variable) and lines
of code (independent variable) for SCENE CSCs presented in Figure 5.11 (Version 6.0
errors used) and Figure 5.12 (total errors used) suggest a significant positive
association between these two wvariables. High correlation coefficients (R = 971 in
Fig. 5.11; R = .968 in Fig. 5.12) verify this association. and results of F-tests indicate a
probability exceeding 99% that CSC ecrror counts are dependent upon CSC size
measured by lines of code (p = .0001 that the observed association between these
variables is due to chance). Values for the coefficient of determination (R2 = 943 in
Fig. 5.11; R2 = .937 in Fig. 5.12) demonstrate that a high proportion of the total
variation in error couni values is explained by the association of numbers of errors
with lines of code.
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Results of linear regression of these same variables for the unit components of the
CSCs, illustrated in Figure 5.13 (Version 6.0 errors used) and Figure S5.14 (total errors
used), support the findings presented above for CSCs. Although the correlation
between error count and module size is weaker (R = .78 and .81) and less of the
variation ‘in error count is explained by the fitted regression (R2 = .61 and .66), the
probability of a dependent relationship of number of errors on lines of code remains
greater than 99% (p = .0001 from F-test).

The positive correlation oetween error count and modul: size does not provide
insight into the relationship between error frequency and module size. This was
investigated by performing linear regression on errors per lines of code as the
dependent variable, and lines of code as the independent variable. The results for
CSCs presented in Figure 5.15 (¥Version 6.0 errors used) and Figure 5.16 (all errors
used) indicate that error density cannot be predicted by CSC size (p > .45 that these
variables are independent based on F-test). Similar results were obtained with error
density and unit size, illustrated in Figure 5.17.

5.3.3.2 Complexity

The results of linear regression analysis of errors (dependent variable) and
complexity (independent variable) for CSCs shown in Figure 5.18 (Version 6.0 errors
used) and Figure 5.19 (all errors used) indicate a positive correlation between errors
and complexity (R > .90 for both regressions). Results of F-tests imply a statistically
significant dependence of error counts on complexity (p = .0001 that observed
relationship is due to chance).

Analogous results were obtained when regressions were performed on error counts
and complexity for units (Figures 5.20 and 5.21). However, as occurred in unit-level
regressions of errors and module size described above, the correlations are not as
high for units as for CSCs, and only half of the variation in error counts is
attributable to its association with complexity (R2 < .50).

To investigate the relationship of error frequency to complexity, linear regressions
were conducted on error density (errors per lines of code) and complexity for CSCs
(Figures 5.22 and 5.23) and units (Figures 5.24 and 5.25). The results indicate no
significant relationship between error density and complexity except when error
density for units was based on total error count (Figure 5.25). In this case, error
density dcclined significantly with increased unit complexity according to F-test
results (p = .0111 that this relationship is due to chance).

5.3.4 Summary and Conclusions

Resulis of linear regression analysis on SCENE wunits and CSCs indicate that
occurrence of errors in software is not independent of module size or complexity.
Specifically, it is shown that size of units or CSCs measured as lines of code, and
complexity measured as number of branch statements, are determinants of error
occurrence measured as number of Software Problem Reports (SPRs). Th:se findings
lead to rejection of null hypotheses #1 and #3 descrit d in Section 5.3.6.2 above. That
is, an increase in size or complexity of a software component (i.e., unit or CSC) will
cffect an increase in number of errors for that component.

Converseiy, the results suggest that larger or more complex software units and CSCs
do not experience a higher frequency of errors when frequency is measured as
error density (errors per lines of code). In fact, when error density is based on total
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Source OF: __Sum Mesn Squars:  F-lest. .
REGRESSIOMN 1 2.3235-5 2.323-S 621 !
RESIDUAL 15 001 3.743€-5 pe 4431
TOTAL 16 001
No Residual Statistics Computed __,‘

Figure 5.22

Simple Regrassion Xy:3x Y j: VG_ERRORS/LOC

Geta Coetilclent Table |
Parsmetar: Value: Std. Err: Std. Vaiue: t-Velus: ity !
INTERCEPT ] 005 . il 1|
SLOPE 4.793k-6 6.08%-6 199 788 4431 i
Confidencs Intervais Table ‘ i
Parameler: 958 Lower: 95% Upper: 0% Lower: 0% Upper:

MEAN (X.Y) 003 009 004 009
SLOPE ~8.177€-6 i.776E-S -587&-6 1.546€-5 2 l

SCENE CSC Regression of Error Density (based on
Version 6.0 SPRs) and Complexity (sum for units).
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[ Yy = -6.428E-6x + .024, R-seusrsd; 008 |

09
- 08
8 o7
b 079
g 06
E .OS< .
§ 0 ®
034 ® o
g OZJ -8 —
& [ )
o] oe® )
0§ty v v oy e - -
0 100 200 300 400 SO0 600 700 800 9S00 1000
COMPLEXITY (sum of sx)
|
Simpie Regressien X1: 3x Y{: ALL ERRORS/LOC '
DF: R: H-sousred: Adj. R~ ed: Std. Error: s
16 1092 | .008 1- 058 To18 | |
. |
Anslysis of Varience Table i
Sowrce OF: Sum Squares: _ Ilean Square:  F-test: '
REGRESSION 1 4.178€-S 4.178€-S 128
RESIDUAL 1S 005 32674 p= 7256
TOTAL 16 005
Mo Residual Statistics Computed !

Simpie Regreasion Xj: s Yq: ALL ERRORS/LOC
Beta Coefficient Table
Poromeier:  Veive: _Std. Err.: Sid. Vaive: t-Vaive: Probability:
INTERCEPT 024
SLOPE -6.428£-6 1.797¢-5 =092 .358 1256
Confldence inlervals Tadle

Paramster: 95X Lower: 958 Upper: 90% Lower: 90X Upper:

MEAN (X.Y) 013 032 018 03

SLOPE -4.474-5 3.189€-5 -3.794-5 2.500€-5 2

SCENE CSC Regression of Error Density (based on all

Fiéure 5.23 (
SPRs) and Complexity (sum for unmits).
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y = -4 858E-5x + 012, R-squared: .007

ERROR DENSITY (SPR3/1LOC)

250 300 350

Simple Regression X1: 3% Y. YO_ERRORS/LOC

OF: R: R-squared: Adj. R-squared: Sid. Error:
(138 Loss [00? T-i3276-4 023 |

Anglysis of Varisnce Tsbie

- Source OF: Sum : Fggﬁgo: F-test: -
. | REGRESSION | | 001 001 982
RESIDUAL 135 073 001 p s 3235
TOTAL 136 _|.074

No Residusl Statistics Computed

I —7

Simple Regreasies Xi:3x  Y: V6_ERRORS/LOC
Geta Coefficient Table
Perameter: Valve: Std. Err.: Std. Vaiue: t-Vaive: Probability:
INTERCEPT 012
R OPE -4 858£-5 4.902¢-5 -.08S 991 3235
Confldence intervals Table

Parameter: 95K Lowsr: PSR Uoper: 0% Lower: 908 Upper-

MEAN (X.Y) 007 018 008 01S

SLOPE ~1.455¢-4 4.838¢-5 -1.200¢-4 3.262¢-5 2

Figure 5.24 SCENE Unic Regression of Ecrror Densicy (based on
Version 6.0 SPRs) and Complexity.
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y = ~3.001E-4x + .049, R-squeresd: .047

ERROR DENSITY (SPRs ALOC)

[ 1 ] Y
Y

250 300 350

-

0 50 100 150 200
COMPLEXITY (sx)

Simpie Regresston X1: 3x  Y1: ALL ERROR3/LOC
OFf : R: R-squared: Ad{. R-squared: Sid Error:
(136 1216 [ 047 .04 | oss ]
Anglysis of Varisnce Tabie
Source DF : . Sum Squares:  Mean Square:  F-lest: L
a REGRESSION | 02 _ 02 6.634
RESIDUAL 138 413 003 pe 0111
TOTAL 136 433
Mo Residus! Statistics Computed !

Simpie Regression X3: 38  Yq: ALL ERRORS/LOC

Bete Cosfficient Table
Parameter: Valus: Std. Err.: Std. Vaive: t-Value: Probability:
INTERCEPT 049
SLOPE =3.001€-4 1.165¢-4 -216 2576 o111

Confidercs intervals Table
Parameter: 958 _Lower: 958 Upper: 908 Lower: 90% Uoper:
MEAN (X.Y) 033 052 034 05
SLOPE -.001 -6.964&-5 -4.931E-4 ~1.071€E-4 2
Figure 5.25 SCENE Unit Regression of Error Deansicy (based on
all SPRs) and Complexity.
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errors (in contrast to subset of Version 6.0 errors) for units, a statistically significant
association between declining ecrror density and increasing complexity is shown
based upon F-iest results (Figure 5.25). However, in view of low correlation (R = .216)
and determination (R2 = .047) coefficients (Figure 5.25), and the absence of statistical
significance when error density is based on Version 6.0 errors alone (Figure 5.24), it
is concluded that significantly higher error density cannot be meaningly correlated
with lower complexity. These results of regression analyses on error density, and
module size and complexity lead to acceptance of null hypotheses #2 and #4 proposed
in Section 5.3.6.2. Specifically, error density is independent of software component
size and complexity.

The results presented here are consistent with those from analyses conducted on
other software development projects and reported in Volume 1 of the SRPEG. The
relationship of these results to the concepts of modularity and complexity is open to
interpretation.  If "increase in errors” is defined as greater number of errors, then
increasing the size or complexity of modules can be expected to result in an increasc
in errors per module. 1If, on .he other hand, "increase in errors” represents greater
error frequency measured as error density, than larger or more complex modules are
not expected to experience an increase in errors.

From a software project management perspective, a system comprising 100,000 lines
of code with 10,000 branch statements distributed among 1000 modules can be
expected to experience the same number of errors as would an equivalent system
distributed among 100 modules, all other factors remaining equal. In this simplistic
example, a reduction in module size and complexity will only result in a reduction in
errors if the frame of reference is the individual module (unit, CSC, eic.). A reauction
in errors for the overall system could be achieved if total lines of code or total
number of branch statements could be reduced without sacrificing functional
capabilities. These observations do not support the modularity and complexity models
presented in Section 5.3.2 since, instead of considering size and complexity of a CSC or
CSCI, these models are based on numbers of component units exhibiting certain size
and complexity characteristics. It is recommended that new measures of module size
and complexity be investigated, and that new models relating sofiware reliability to
these metrics be derived from these new measures.




APPENDIX C

Unit-level Analysis Data File
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APPENDIX D

CSC-level Analysis Data File
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