
RL-TR-92-52, Vol I (of two)
Final Technical Report
April 1992 AD-A256 242

SOFTWARE RELIABILITY, MEASUREMENT,
AND TESTING Software Reliability and Test
Integration

Science Applications International Corp. (SAIC)
Research Triangle Institute (RTI)

James A. McCall and William Randell (SAIC)
Janet Dunham and Linda Lauterbach (RTI)Q DTi

Reproduced From
Best Available Copy

APPROVED FORPUBL/CRELEA4 ,/S T"R/BT770/ UNLI/MI"TED

92-27095

92 10 14 045

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base. NY 13441-570n

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-92-52, Vol I (of two) has been reviewed and is approved for publication.

APPROVED.

r.,

JOSEPH P. CAVANO
Project Engineer

FOR THE CtjMMANDER: ~

RAYMOND P. URTZ, JR.
Technical Director
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(C3CB), Griffiss AFB NY 13441-5700. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE MNo07418
PLk* rigt baomtc d* I , , d 1-toy~i mis a MMMto I to., pw c wm i~IU~ ia~~~~sWjh
gow' 0. rM -0w re d uide U WV MOf Wg MNAV th~eq Uuw1112 d 1 #uI I O Sv4Mwt ring ti bUCIN 002TWo or ",, cw ase ini

Q~W7d 11ur~ 1-4~ -1,,-m~ to' s.-,W bUrn to WWIW-1H10 Sanvbw ODm to! I-nuwu Opvwuwu udR%=z; 1215 Jd"@O-
0Z HW.I. SiuI. 124. Ar&tWr VA ZE4 wma to Urn Offim c9 Mwawrnwwi d BuV P~wuwk R4JO Preo (U7340 IM. WN**Vn DC 205M

1.- AGENCY USE ONLY (Learve Blani) Z2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

I ni 1992 Final Sep 36 - Dec 89
4. TITLE AND SUBTITLE 5 UDN UBR

SOFT14ARE RELIABILITY, MEASUREMENT, AND TESTING C - F30602-86-C-0269
Software Reliability and Test IntegrationPE-672

6. AUTHOR(S)PR-58
James A. M~cCall and William Randell (SAIC)TA-2
Janet Dunham and Linda Lauterbach (RTI) WU-6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &PERFORMING ORGANIZATION
Science App~.izations International Corp. (SAIC) REPORT NUMBER
19260 Campus Point Drive, San Diego CA 92121

Research Triangle institute (RTI) 1,/A
PO Box 12194, Research Triangle Park NC 27709

9. SPONSORINGIMoNrTORING AGENCY NAMIE(S) AND ADDRESS (ES) 10. SPONSOIRINGYvIONITORING,
AGENCY REPORT NUMBER

B.ome Laboratory (C3CB)

Griffiss A73 NY 13441-5700 RL-TR-92-52, Vol I (of two)

11 . SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Joseph P. Cavanu/C3CB/(315) 330-4063

1 ?&. DISTRIBU11ONiAVAiLABiU1TY S TATEMENT 1 2b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT cma-n.,fl

This effort integrated software reliability, measurement, and test techniques in
terms of prediction, estimation, and assessment. Experiments were conducted to
compare six testing techniques and to measure the effect of software product and
process rariables on software reliability A guidebook was produced to help pro-
gram managers control and manage softwar~e reliability and testing. Error/anomaly
and code reviews were the test techniques found to be the most effective at the
unit level; branch testing and code reviews were the most effective at the CSC
level.

NOTE: Rome Laboratory/RL (formerly Rome Air Development Center/R.ADC)

14. SUBJECT TERMS 11 NUMBER OF PAGES
246

Software Reliability, Software Measurement, Software Testing IaPIECD

17. SECURITY CLASSIFICATION 11&5~ EcuRrry CLASSIFICATION '19. SECURrTY CLASSIFICAT1ON 20. UIMITATION OF ABSTRACTOF LSSFE REPORTE OF ABSTRACT
NSNCASFE ?FNS Rf IE UNCLASSIFIED UL

NSN 740<n M65MStgrmuc Form 298 'N2-eg;
Pr b-s by ANSI Vzmg- 29-I
299-10

TABLE OF CONTENTS

1.0 INTRODUCTION 1

1.1 Purpose 1
1.2 Scope 1
1.3 Objectives of Project 2

1.3.1 Software Measurement and Reliability Prediction 2
1.3.2 Software Testing and Reliability Estimation 3
1.3.3 Data Analyses and Recommendations 3
1.3.4 Software Reliability and Testing Guidebook 3

1.4 Approach 3
1.4.1 Test Techniques, Tools and Projects 4
1.4.2 Experiment Goals and Design 4
1.4.3 Reliability Prediction Data Collection 10
1.4.4 Software Testing and Evaluation 12
1.4.5 Test Data Collection 13

1.5 Executive Summary 15
1.5.1 Software Reliability and Testing Data 16
1.5.2 Software Reliability Prediction Experiment 16
1.5.3 Software Testing Experiment 16
1.5.4 Integrated Guidebook for Software Reliability and Testing 17
1.5.5 Integrated Reliability Management System "IRMS" 17

1.6 Organization of Report 17

2.0 SURVEYS 20

2.1 Software Projects Survey 20
2.1.1 Candidate Projects for Consideration 20
2.1.2 Evaluation Criteria 21
2.1.3 Selected Software Projects 21
2.1.4 Software Project Materials 25
2.1.5 Deleted
2.1.6 Lessons Learned 28

2.2 Testing Techniques Survey 29
2.2.1 Candidate Techniques for Consideration 29
2.2.2 Evaluation Criteria 30
2.2.3 Selected Testing Techniques 34

2.3 Test & Support Tools Survey 36
2.3.1 Candidate Tools for Consideration 37
2.3.2 Evaluation Criteria 38
2.3.3 Selected Test & Support Tools 38

3.0 SOFTWARE RELIABILITY PREDICTION 44

3.1 Technical Approach 44
3.2 Data Collection Resources 46

3.2.1 Computer Systems 46
3.2.2 Support Software 46

i.

TABLE OF CONTENTS (CONTINUED)

3.2.2.1 Automated Measurement System 48
3.2.2.2 4th Dimension DBMS 48

3.2.3 ý-_rsonnel 48

3.2.4 Instruction Manual 51

3.2.5 Project Documentation 51

3.3 Reliability Prediction Methodology 51

3.3.1 Reliability Models 53

3.3.2 Reliability Computations 53
3.3.2.1 Application RPFOM 58

3.3.2.2 Development Environment RPFOM 58
3.3.2.3 Requirements and Design RPFOM 58
3.3.2.4 Implementation RPFOM 59

3.3.3 Software Reliability Prediction 60

3.4 Data Collection Framework 62
3.4.1 General Procedures 62

3.4.2 Life-Cycle Phase Worksheets 63
3.4.3 Database Development 63

3.5 Refinements to the SRPEG 65
3.6 Data Collection Results 69

3.6.1 Effort Summary 69
3.6.2 RPFOM Numbers 70A

3.7 Findings and Conclusions 70A
3.7.1 Support Tools and Database 75
3.7.2 Software Projects and Materials 75
3.7.3 Data Collection and Calculation 95

4.0 SOFTWARE TESTING EXPERIMENT 99

4.1 Technical Approach 99

4.2 Test Resources 102
4.2.1 Computing System 102
4.2.2 System Software 103

4.2.2.1 Communications 103
4.2.2.2 Operations Systems 103
4.2.2.3 Compiler 103
4.2.2.4 Data Management and Analysis 103

4.2.3 Test/Support Tools 103
4.2.3.1 DEC Test Manager 103
4.2.3.2 SDDL 103
4.2.3.3 RXVP-80 106

4.2.3.4 CPU Use Procedures 106
4.2.4 Software Code Samples 106
4.2.5 Personnel 108
4.2.6 Tester Instructions 108

4.3 Testing Techniques 110
4.3.1 Dynamic Techniques 112

4.3.1.1 Branch Testing 113

li

TABLE OF CONTENTS (CONTINUED)

4.3.1.2 Functional Testing 114
4.3.1.3 Random Testing 115

4.3.2 Static Techniques 115
4.3.2.1 Code Review 116
4.3.2.2 Error & Anomaly Detection 116
4.3.2.3 Structure Analysis 117

4.4 Reliability Estimation 118
4.4.1 Reliability Estimation Number (Model 2) 118
4.4.2 REN for Test Environments 120

4.4.2.1 Average Failure Rate During Testing (FT1) 120
4.4.2.2 Failure Rate at End of Testing (FT2) 120
4.4.2.3 Test Effort (TE) 120
4.4.2.4 Test Methodology (TM) 120
4.4.2.5 Test Coverage (TC) 121

4.5 Experiment Design and Conduct 121
4.5.1 Experiments 123

4.5.1.1 Unit Test Level 124
4.5.1.2 CSC Integration Test Level 124

4.5.2 Empirical Studies 125
4.5.3 Pilot Experiment 125
4.5.4 Communications and Monitoring 128
4.5.5 Applying the Techniques 129

4.5.5.1 Preparing and Executing the Tests 129
4.5.5.1.1 Test Preparation 129
4.5.5.1.2 Test Execution 133
4.5.5.1.3 Stopping Rules 133

4.5.5.2 Test Analysis 133
4.5.5.3 Data Collection and Organization 138

4.5.5.3.1 Data Collection 138
4.5.5.3.2 Datm Organization 138

4.6 REN ResvIts 142
4.6.! Average Test Failure Rate (FT1) .144
4.6.2 Test Effort (TE) 144
4.6.- Test Methodology (TM) 144
4.6.4 Test Coverage (TC) 146
4.6.5 REN Calculations 147

4.7 Tester Profiles 147

5.0 EXPERIMENT FINDINGS 150

5.1 Scope of Analyses 150
5.2 Analyses of the Test Data 150

5.2.1 Descriptive Analyses 150
5.2.1.1 Sample Description 150
5.2.1.2 Unit Testing 151

5.2.1.2.1 Single Test Technique Description 151

iiil

TABLE OF CONTENTS (CONTINUED)

ChaplterEL

5.2.1.2.2 Test Technique Pair Description 162
5.2.1.3 CSC Testing 166
5.2.1.3.1 Single Test Technique Description 166
5.2.1.3.2 Test Technique Pair Description 173
5.2.1.4 Tester Profiles 177

5.2.2 ANOVA Results 177
5.2.2.1 Process 184
5.2.2.2 Single Technique Eff,:ctiveness Results 186
5.2.2.3 Single Technique Coverage Results 187
5.2.2.4 Single Technique Effort Results 188
5.2.2.5 Single Technique Efficiency Results 190

5.2.3 General Observations 191
5.2.4 SAS Outputs: GLM Results 192
5.2.5 SAS Output: CH-SQUARE Results 192
5.2.6 Error Summary Tables 192

5.3 RPFOM Exploratory Analysis 192
5.3.1 Data 193

5.3.1.1 Error Data 193
5.3.1.2 Metrics Data 193
5.3.1.3 Missing Data 196

5.3.2 Analytical Approach 198
5.3.3 Results 198

5.3.3.1 Modularity 198
5.3.3.2 Complexity 201

5.3.4 Summary and Conclusions 201

APPENDIX C Unit-level Analysis Data Files 216
APPENDIX D CSC-level Analysis Data File :29

Acoession Por 0

NTIS GRA&I fW'
DTIC TAB Q
Unannounced 0
JustIIcaLlon

By

Dlstribution/
Availability Codes

Avail and/or
D1stt Special

iv
v'-r -7L_

EVALUATION

The concepts needed to understand reliability are not fully developed. Many
of the important issues are too broad for a single-focused treatment and must
be explored from different angles. This is especially true for understanding
software reliability because software is intangible and difficult to understand
in its own right-adding reliability only complicates the subject.

The goal of this report is to help bridge the gap between what management
can control and what production needs to do. Although the book addresses
software reliability and testing, the approach could be generalized to
producing quality in other domains. M)re precisely, this report lays the
foundation for the bridge to software reliability-it attempts to show how to
determine factcrs that affect reliability across the life cycle and how to
quantitatively evaluate the process of developing high reliability software so
that one can improve upon the process in the future. The prediction and
estimation numbers produced for software reliability are more valuable for
comparing with other projects and in tracking progress toward continual
quality improvement than in their absolute values. Further research in
experimentally applying reliability measures across software development,
review and test processes is necessary to validate the numbers. If you are not
interested in improving quality on a long-term basis, then this report may
not be especially helpful.

Aithough the measures described in this report produce exact software
reliability numbers for fault density or failure rate, these numbers must be
used with discretion because the proper relationship with specific levels of
reliability have not yet been proven. There is no magical formula for
deriving reliability predictions or assessments because software engineering
does not yet have the necessary theory upon which to develop such
equations. This does not mean that empirical observations cannot be used to
develop a discipline. Instead, the reader is cautioned that the empirical
observations made during this effort were not extensive enough to prove
their validity over all projects. For example, the measures related to the
development environment try to relate various characteristics of an
environment to their individual impact on reliability. In the projects
studied, there was not enough diversity in these characteristics to enable exact
predictions at that level. Although data analyses 'lead to equations, the results
are not appropriate across the complete range of possible outcomes-in fact,
low values for the 'Dc' metric produce erroneous negative numbers. It is
better to treat this metric at a more global level (i.e., organic, semi-detached or
embedded) as shown in Metric Worksheet IA.

In facing such situations, choices had to be made between the theoretical or
ideal state and providing suggestions on how a typical organization could

V

customize, develop and use reliability measures, tailored to their unique
procedures. This report leans to the practical side of measurement by
showing the role that reliability prediction and estimation could play in the
future. Purists might be disappointed in this.

The path to higher reliability and better testing is not always easy. To
improve a process, change is required. If you don't intend to change your
current procedures, this report may not be of much value. On the other
hand, if you plan to experimentally apply the techniques described in this
repurt, consistently observe results over several projects, and tailor the
techniques and measures for your organization, then, hopefully, you will see
an improvement in your software's reliability.

'2.

/

Joseph P. Cavano

Vi

1.0 INTRODUCTION

1.1 Purpose

The purpose of this report is to describe the results of a research and development
effort to integrate and improve the application of software reliability measurement
and testing techniques. This is the final report of the project. This effort was
performed under Contract Number F30602-86-C-0269 for the U.S. Air Force Rome Air
Development Center (RADC).

1.2 Scope

Science Applications International Corporation (SAIC) and Research Triangle
Institute (RTI) performed a formal software testing experiment utilizing code
samples from two previously developed AF/DoD software systems as the experimental
vehicles. These code samples were tested at the unit and Computer Software
Component (CSC) integration test levels in accordance with DoD 2167. Each code
sample was tested employing six different testing tecbniques which are
representative of the current state of the practice. A common set of test/support
tools were utilized. All testing was performed in accordance with an experimental
framework which inchlded formal experiments and empirical studies refined from
an initial pilot. The test results were measured and analyzed in order to make
recommendations about the error detection capability (effectiveness) of the testing
techniques, the test coverage achieved, and the test effort expended. An additional
part of the experiment was to compute the estimated reliability (REN, Reliability
Estimation Number) of the final software product.

An independent software reliability study was conducted to measure characteristics
of the software testing code samples and the complete software systems, and to
improve the software reliability data collection procedures and forms. The collected
metrics were used to compute the predicted reliability (RPFOM, Reliability Prediction
Figure of Merit) of the final software product. Exploratory analyses were performed
on these RPFOMs with resulting refinements to the metric multipliers, based on the
experiment and study results.

Testing strategies have been developed from the. analyses of the test results, and
limitations and weaknesses are identified in the testing techniques which were
utilized. Potentially useful new testing techniques are described. Finally,
recommendations are made for future experimentation in software reliability
testing.

Inputs to this effort were the RADC Software Test Handbook (STH) [2] and. the RADC
Software Reliability Prediction and Estimation Guidebook (SRPEG) [3]. The STH
provides guidance on selecting appropriate state-of-the-art- testing techniques to
achieve a chosen testing confidence level. The SRPEG provides a methodology to
predict software reliability based on software system characteristics, and analyzes
test results to provide an estimate of future reliability for the final product.

The final output of this effort is the RADC Software Reliability Measurement and Test
Guidebook, whicb is Volume 2 of this Final Report. Physically, the new guidebook
contains the entire SRPEG, in a revised format with appropriate metric and
procedural refinements, plus selected and apprcpriately revised sections of the STH.

Tools, techniques, raw data, analyses and software system documentation are being
delivered to RADC where they will form the basis of a repository for future
experimentation.

1.3 Objectives of Project

The objective of this research and development project was to integrate software
reliability measurement and testing techniques to provide improved techniques for
both software testing and reliability measurement in terms of prediction and
estimation. This includes the design and conduct of a software testing experiment
and empirical study for comparing test techniques and for measuring the effects of
software process and product variables on software reliability. The results of this
research also provide additional data for the refinement of the RPFOM and the REN.

Results of these experiments and studies provide a quantitative basis for
recommendations to Air Force acquisition managers concerning improved methods
for:

a. Choosing test techniques.
b. Allocating test effort among test levels and/or portions of software.
c. Determining cost trade-offs in testing.
d. Predicting and estimating software reliability.

These refinements and recommendations are incorporated into an integrated and
improved software reliability and testing guidebook for the acquisition managers.
This guidebook provides:

a. Instructions for collecting metric data on software systems and analyzing
the data to predict and estimate reliability.

b. Guidance on selecting appropriate state-of-the-practice testing techniques.

1.3.1 Software Measurl.ment and Reliability Prediction

The objectives of this activity were to perform and evaluate the software reliability
prediction methodology contained in the SRPEG, and to obtain quantitative data that
can be meaningfully analyzed and interpreted in order to:

a. Contribute to the RADC software reliability database.
b. Refine the reliability prediction model.
c. Integrate the software reliability prediction methodology with techniques

for software testing.

The primary elements of this study were to collect, compute and analyze software
measurement data on selected software test prcjects in accordance with the software
reliability prediction methodology as documented in the SRPEG. The data to be
collected includes measures of Application Type, Development Environment,
Anomaly Management, Traceability, Quality Review Results, Language Type,
Modularity, Complexity and Standards Review Results. Computations include the
RPFOM Numbers at the System and Computer Software Configuration Item (CSCI)
levels during applicable Software Development Life Cycle phases for entire test
projects. Computations also are performed for individual test samples. Analyses
in(ude exploratory regressions on. the computed RPFOM numbers in order to refine
the equations in the reliability model contained in the SRPEG.

2

1.3.2 Software Testing and Reliability Estimation

The objectives of this activity were to apply and evaluate commonly used software
testing techniques, as specified in the STH. in accordance with the Software
Reliability and Test Integration Plan (SRTIP) [6) and the Software Test Plan (STP) [7].
The SRTIP documents the design and conduct of the experiments and empirical
studies for comparing test techniques and for measuring the effects of softvare
process and product variables on software reliability. The STP describes the test
program required to implement the SRTIP.

To accomplish these objectives, code. samples were selected from two different
software development projects and then tested using six different test techniques.
The test techniques studied were random testing, functional tcesting, branch testing,
code review, error and anomaly detection, and structure analysis. In addition,
quantitative measures of software test effectiveness and efficiency were obtained
during the testing process. Measures were obtained for two levels o& testing: unit and

CSC

1.3.3 Data Analyses and Recommendations

Data analyses were conducted on the reliability data and on the test measurements
and results. These activities involved the graphical presentation of data from simple
descriptive statistics, analyses of variance (ANOVA), empirical analyses cf the test
zcchniques, and from comparisons of the software reliability numbers with test
f esults.

The analyses were oriented towards providing answers to specific questions of
interest which were formulated from primary goals of tnr. study. Test technique
effectiveness, test effort and test coverage were addressed both within a test level and
across test levels, for single techniques and for test strategies. Tester variability was
also addressed. Exploratory analyses of the reliability data were conducted with the
goal of making refinements to the software reliability prediction models.

Recommendations for testing strategies were made from the results of these analyses
with the goal of writing an integrated guidebook for the software reliability
measurement and testing.

1.3.4 Software Reliability and Testing Guidebook

Refinements to the present RADC methodologies for software reliability and testing,
and recommendations resulting from the experiments and empirical studies were
incorporated into an RADC Software Reliability and Testing Guidebook for Air Force
acquisition managers. This new guidebook represents the integration and updating
of the STH and SRPEG. The revised and integrated guidebook provides guidance on
selecting state-of-the-practice testing techniques, and provides instructions for
collecting metric data on software development projects and analyzing the data to
predict and estimate the future reliability of the final product.

1.4 Approach

The Statement of Work (SOW) [1] outlines the approach to be taken in achieving the
study goals and allocates the work to seven tasks (see Figure 1.1): selecting software
projects, tools, and test techniques; designing the software testing experiments and

3

empirical studies; collecting raw data for computing the RPFOM on software
development projects and code samples; gathering raw test data and measurements
during software testing: computing the REN and reducing and analyzing the
collected test data; interpreting the statistical results and making recommendations:
and documenting findings in the updated and integrated guidebook. The principal
activities for each of these tasks are shown in Figure 1.2.

1.4.1 Test Techniques, Tools and Projects

Our first task was to identify a candidate set of test techniques and tools to be used to
support the software measurement and software testing to be conducted for the
experiments. In order to best ensure the effectiveness of this selection, analysis was
conducted at the same time concerning the software systems to be used.

The detailed analysis for this task began with a survey of existing software

environments. Specifically, the survey collected data on:

a. Testing techniques used to achieve reliable software.

b. Tools used for software testing.

c. Existing Air Force and DoD software development projects to which these
tools and techniques may be applied.

We surveyed nine representative testing techniques as candidatcs for the
experiments, based on their usage in industry, their applicability to the modern
programming environment, and their ability to aid in the testing of computer
systems. These techniques perform either static analysis or dynamic analysis of the
software. They are described in Section 2.2.

Twenty-two candidate testing tools were surveyed for their applicability, power, and
availability. The tools we have identified are classified either by the testing
techniques they automate or as general test support tools. They are described in
Section 2.3.

Twelve software projects were identified as candidates for the experiments, based on
size, complexity, and type of application. They are a representative sample of Air
Force systems in general development today. Each project is described in Section 2.1.

1.4.2 Experiment Goals and Design

The de.gn adopted for this study was specifically geared toward providing results
useful to acquisition managers of Air Force software. To ensure a sound,
comprehensive design, the initial design was enhanced with inputs and reviews by
experts in experiment design with human subjects and statistics and enhanced with
inputs and review by industry and academic experts in the fields of computer
science, software testing, experiment design with human subjects, statistics, and
software metrics. [17]

A standardized approach to the experimental design was taken, based on earlier work
by Basili and Reiter [18]. In following this approach, a precise definition of
experimental goals in the form of specific questions to be answered was developed
from the objectives declared in the SOW and contents of the initial guidebooks. These
questions were organized into "questions of interest."

LM

4

z .ij

CN

C4'

Ga U .r

2 3

G- GCA®

asI Zi
_ Ca:

Li
z,

-~8 Lu r

I2' zCz CL CD CIO,

Co mu0~ nC

m0

8 0 -217- c

U ' '*Is
a f ca

cc 0 2 c6

wa

CC)

U,'

ww

ILI
C4I

Hil
C,,o

ccC
wC

ui C13

liDl
liii I:

Candidate statistical designs were evaluated in terms of how well they would test the
chosen questions of interest given the available projects, test techniques, tools, and
other resources. Experiments to address all aspects covered in the two input
guidebooks are beyond the scope and resources of this study. Thus, the design was
tailored to address as much of the information in these two documents as possible,
while controlling the experimental variables to the extent necessary to preserve the
statistical soundness of the design.

A combination of experiments and empirical studies were selected to best meet the
objectives of this study. These studies include application of the selected testing
techniques and measurement of their relative effectiveness and efficiency. They are
summarized here and detailed in Chapter 4.

Test techniques were separated into two categories: deterministic techniques and
nondeterministic techniques. Deterministic techniques are those for which one can
determine without doubt that applying a given test technique to a given code sample
will find a given error. (Note that while one can determine error without doubt, the
potential for human error in the determination process still exists. Thus
deterministic does not imply fool-proof.) Nondeterministic techniques are those in
which variability across such factors as test personnel and software characteristics
can have profound effects on the effectiveness of the technique.

This distinction between test techniques was made to conserve time and resources.
Techniques which can be highly and consistently automated and are less dependent
upon tester expertise were seen as deterministic and suitable for empirical study.
Nondeterministic techniques require experiments with several testers employing the
test technique to the best of their ability on a given Code sample. Experimental
results will show whether applying the technique usually an/or consistently finds a
given error.

The experiment addresses the following:

a. A study of three dynamic test techniques: functional, random, and branch
testing. Data analyses are by percent known errors observed at each test
level, and by percent known errors at each test level. (Absolute number of
errors are recorded for descriptive purposes. However, since each sample
most likely will not have the same total number of errors, meaningful
comparisons across samples can be made only on a percentage basis.)

b. A study of one static test technique: code review. Data analyses are by
percent of known errors detected and by percent of known errors detected
at a test level.

c. The measurement of each technique's relative efficiency, in terms of the
number of discrepancy reports filed, on a time reference basis.

The empirical study addresses the following:

a. A study of two static test techniques: structure analysis and error and
anomaly detection. Data analyses are by percent of known errors detected
and by percent of known errors detected at a test level.

9

b. The establishment of the predictive validity of the RPFOM for the code
samples tested by test technique.

c. The measurement of each techniques relative efficiency, in terms of the
number of discrepancy reports filed (errors located), on a time reference
basis.

These studies were performed initially as a small-scale pilot experiment. The overall
experiment design and methodology was verified in the pilot. This is done to increase
the validity of the subsequent full-scale experiment and attendant findings and
recommendations.

Since the empirical studies address deterministic procedures, only two testers are
needed to apply each test technique chosen for the empirical study. The experiments
address nondeterministic procedures and employ four testers. Samples consist of
code from the actual product development.

The experiments are designed as Latin Squares and involve four testers repetitively
testing code samples with different test techniques. The variability in results due to
the nondeterministic nature of the techniques can be averaged over all the testers.
This increases confidence that what is measured is a test technique's performance,
not a tester's performance.

The questions of interest to be addressed by the experiments and the empirical studies
span the static and dynamic testing techniques, the software reliability measures,
"and the experimzental and empirical studies. These questions are categorized by goals
and are easily converted to formal statistical hypotheses. General categories of test
technique evaluation questions to be answered include measures or dependent
variables to be used in the evaluation of test effectiveness, test effort, test coverage,
fault or-error source, and error severity within a test level. Evaluation across test
levels also is performed. Fault or error impact provides a measure of the extent to
which the software must be modified in order to correct the fault or error.

Data is collected to provide insight into the effectiveness and efficiency oil different
test techniques at different test levels, per the test objectives: i.e., the test effort
required, test coverage goals, and software error characteristics.

1.4.3 Reliability Prediction Data Collection

The framework for software reliability prediction and estimation is shown in Figure
1.3. Software reliability prediction is a static process which makes a quantitative
statement about future reliability as a function of metrics.. Software reliability
estimation makes a quantitative observation of attained reliability using dynamic test
data and extrapolates it to the operational environment. This part of the study is
concerned with reliability prediction. Reliability estimation is discussed in Section
1.4.5.

This study rzpresented the first independent application of the SRPEG and therefore
provided the basis for correcting deficiencies in the SRPEG methodology. The SRPEG
methodology for software reliability prediction data collection was simplified in
order to meet the study objectives. This involved condensing and integrating the
tasks, procedures, and worksheets of the SRPEG into a set of easy-to-follow detailed
instructions for data collectors that correlate precisely with the sequence of
availability of data sources that are customarily produced during the software

10

4 1 Cal

CC

* 4
Na=, •

low 40

7Z-1 >Z wa

--w

a I[ww[-.

.Oil

U,-

WO0. z L.

.- 4A

- -4.

its, a.

wII

development life cycle. A number of corrections, clarifications, and refinements to
the SRPEG were accomplished during this process. These changes provide a
foundation for revisions to the SRPEG which are incorporated in the integrated RADC
Software Reliability and Testing Guidebook.

The focus of software reliability data collection is a set of four equations, each
defining a RPFOM at a different stage of the software development life cycle. These
are discussed in detail in Chapter 3. Unlike the SRPEG, which provides techniques for
reliability prediction from system definition through operational testing and
evaluation, the simplified instructions are applicable only through the coding and
unit testing phase of the life cycle, as addressed by the experiments. They include
step-by-step instructions, worksheets and answer sheets which support RPFOM data
collection and computation. They were applied to the test projects in a manner
which emulates a real-world application. Consequently, only project data sources
were utilized which would have logically existed at the software life-cycle phase
corresponding to the metrics of interest. This approach was necessary in order to
meaningfully test the utility of the reliability prediction methodology.

The RPFOM data to be collected for each test project is specified in metric worksheets.
Each worksheet targets a specific metric, software life-cycle phase, and software
component level. The data collected was manually recorded on metric answer sheets
prior to entry into an automated database in order to facilitate data entry and thus
reduce the impact of multiple users accessing a single workstation. Each answer
sheet supports all worksheets corresponding to a specific software component level
and i'fe-cycle phase.

One Application-type RPFOM was calculated for each test project. This baseline
RPFOM, determined prior to initiation of software development, is an average fault
density based on the principle application of the test project. Then the Development
Environment RPFOM, which is a refinement of the baseline RPFOM, was calculated. It
incorporates informatior, pertaining to the software development environment of a
system.

The Requirements and Design RPFOM was computed next. This is a refinement of the
Development Environment piediction and incorporates information on software
characteristics provided by system requirements and design documentation. The last
RPFOM to be computed was the Implementation RPFOM. It represents a final
refinement to the reliability prediction at the CSCT level and incorporates
information on software characteristics derived from source code during coding and
unit testing. Data collection for this RPFOM involved utilization of the RADC
Automated Measurement System (AMS) on the Digital Equipment Corporation (DEC)
VAX computer system for collection of many of the unit-level metric elements.

1.4.4 Software Testing and Evaluation

Software testing quantifies the correctness and completeness of the final product and
its conformity to requirement. It also provides an environment in which software
reliability estimation may occur. See Figure 1.2. Software testing was performed in
accordance with ihe experiment goals and design described in Section 1.4.2.

Special tester instructions were prepared to ensure uniform application of the test
experiment framework. Testers applied each testing technique in the order specified
by the Latin Squares, utilizing the procedures contained in these instructions. Test
project consultants assisted in pre-test preparation and post-test evaluation activities.

12

Testers created test cases, test procedures and test drivers from specifications
provided by the consultants. A test harness was setup utilizing the DEL Test Manager
(DTM) to provide inputs to the test driver and to capture and compare test outputs
from the code samples under test. Chapter 4 contains a detail description of the
software testing and evaluation process.

Preparing for test execution for each test sample included development of a test
driver followed by test data preparation and formulation of expected results for each
test technique. Test data preparation formulates test cases and the data to be input to
the code sample. Test case preparation was not applicable to the static testing
techniques. For the dynamic testing techniques, test preparation was supported by
DTM and RXVP-80, a program code analyzer from General Research Corporation
(GRC). The Software Design and Documentation Language (SDDL) tool was utilized to
docume--nt the code sample source. The final step before test execution was to tailor
the test driver, if needed, to suit any particular needs of the test cases for a given
code sample and testing technique.

For the dynamic techniques test execution involved exzecuting each code sample with
prepared test cases and then collecting the results. For the static techniques, test
execution constituted the execution of RXVP-80, as appropriate, on each code sample
and the evaluation of the applicable hardcopy output according to the procedures of
the given technique.

Test evaluation was performed by the testers for each dynamic testing technique to
capture and report test effort and execution details (e.g., branch cxccution counts)
and to determine the thoroughness of the testing (i.e., test coverage). For the static
testing techniqties, evaluation is an integral part of their execution. The concluding
step was for each tester to evaluate the static and dynamic techniques to determine
the unique errors found, both individually and by more than one technique, and
whether each error found was a known development error or newly detected during
the experiment.

1.4,5 Test Data Collection

Careful thought was given to the test technique and Reliability Estimation (REN) data
to be collected and to the data collection procedures. General forms and procedures
that support the test technique data collection activities were prepared for use by
testers during test development and execution. They derive from requirements in
DoD-STD-2167A for Test Description, Test Procedure and Test Report, from the SRPEG
metric data collection forms for the REN; and from statistical data analysis
requirements in the SRTIP related to discrepancy reporting, execution time, failure
rate, test effort, test coverage and test methodology.

These collected test results and measurements were entered into a test database
utilizing 4th Dimension (4D) from Acius, Inc. From there a subset of the collected
data was converted to data analysis input files using StatView 512+ from Abacus
Concepts, Inc. These files support the REN calculations and descriptive and statistical
analyses. Their logical organizations were designed to meet the following objectives:

a. To parallel the distinction between experiment activities (i.e., reliability
measurement data collection vs. test technique and REN evaluation).

b. To permit easy file update associated with these activities by multiple
personnel at multiple sites.

13

Failure Data Fault and Failure Data

TET _TECHNIQJEDATA Project

DRPF-M Documentation
I Proceduresl" " [•Iyand Code,

RelabiityTest Technique Descriptive
EstmatonExperiment Attributes

u ASelected

and AllSoftware " ProetRecommendlations Project' Pr/ojects
SPredrictins • Data Pro°j~ecsti

Estimates ISelected for
1 / I I Testing/

SOFrWARE__EASUJRES PROJECTQATA

ANALYSISRESLLTS

SReliability Strategy•, I Software i

& Prediction Recommendations Test

I Reliability II
| & Test I[

! Guideboo~kii

Figure 1.4. Relationship Between the Experiment and Resulting Guidebook

14

c. Refine the software reliability models for RPFOM.

One goal of these descriptive analyses is to characterize the observations of unique
discrepancy reports detected as a percentage of known original project discrepancy
reports plus those discovered during testing for each tcst technique at each test level
it is applied. In addition, test effort and test coverage are evaluated both for test
techniques applied singly and in strategies, with in test levels and across test levels.
Tester variability is also addressed. These descriptive analyses were conducted using
data collected during the pilot, the empirical study and the formal experiment.
Specific questions that are answered are derived from the SRTIP. Descriptive
analyses were performed for both unit and CSC integration levels.

Descriptive analyses were conducted to provide insight into the characteristics of the
test data collected. The response variables of interest were then used with the ANOVA
models dictated by the Latin Square designs chosen for the experiment. The ANOVA
was conducted on the combined pilot and uhit data, but not on the single CSC latin
square. Identified data transformations were performed on the unit data before the
analysis to ensure the best possible results. ANOVA tests were conducted on the
effectiveness. effort and i.overage for 0 test techniques. Information from those
ANOVA results guides which further aaialyses are meaningful. These data are
analyzed in a manner that provides answers to the questions of interest for which an
ANOVA is specified. The same analyses were conducted for the formal experiment
and the empirical study.

The goal of the exploratory analysis of the RPFOM equations is to investigate and
improve the metric multiplier coefficients in the applicable software reliability
model. Multiple regression analysis and partial correlations were used. These
analyses take into account the metric data collected from the test projects during the
experiments.

The Statistical Analysis System (SAS) was used for all ANOVAs due to the flexibility of
the tool. StatView was used for descriptive and exploratory analyses for which it is
very well suited.

Descriptive analyses include preparing histograms and plots and other data
presentations for use in interpreting results into recommendations for testing
strategies and contribute directly to the updating of the guidebook.

Statistical analysis of the test techniques guides the formulation of effective test
strategies. Exploratory analysis of the soft' are reliability measurement numbers
provides the basis for refinements to the software reliability models for the RPFOM.
Conclusions from these investigations and resulting recommendations are
documented in Chapters 3 and 6. Chapter 6 also describes the application of these
results and recommendations to the existing SRPEG and STH in order to produce the
integrated Software Reliability and Testing Guidebook for Air Force acquisition
managers.

1.S Executive Summary

The important results of this effort can be summarized into five areas. Each area is
briefly highlighted here with reference to the sections of the report where details
can be found.

15

1.5.1 Software Reliability and Testing Data

Documentation and source code were collected for four software development
projects as experimental vehicles for software reliability and test.ng experiments.
Two of these software systems provided the basis for experimentally controlled
observations about software reliability and testing as documented in the RADC
Software Reliability Prediction and Estimation Guidebook [3] and the RADC Software
Testing Handbook [2]. These observations were directed toward the integration of
software and testing into a simple framework for use by Air Force acquisition
managers and software developers. The software system database supported the
conduct of the software testing experiments and the development of an integrated
guidebook for making reliability predictions and estimations, and for selecting and
applying state-of-the-practice testing techniques. Summary Software project data
are presented in Chapter 2 of this report.

1.5.2 Software Reliability Prediction Experiment

The SRPEG includes a comprehensive guide to the application of the RADC software
reliability prediction technology. It was recognized at the beginning of the current
task that this document also included considerable supplemental background and
application strategy in support of the technology. A detailed study of the RPFOM
tasks, procedures, computations and worksheets contained there further showed this
information to be far in excess of what would be needed in our study production
environment.

It was decided that these components of the document shouid be reorganized and
condensed into a straightforward set of step-by-step instructions for duta collectors.
Several discrepancies were found and corrected while evaluating this material. The
resultant instruction manual guided the data collectors through each worksheet and
answer sheet and presents the applicable equations (some of which are automated) in
a simple sequence of computations. Details of this work are discussed in Chapter 3.

These new instructions were followed and even improved upon by our data collectors.
Their application has shown them to be direct and easy to use. The only further
refinements being needed were alternate procedures for special cases, subdivision of
the procedures and forms by both metric and Life Cycle phase and an index table to
locate an correlate them with the metric computations.

Data collection included the effort required to collect data and use the methodology.
This is an important aspect of assessing the costs/benefits of the methodology.

All of these refinements are evaluated in Chapter 3 and are included in the new
guidebook. Chapter 5 includes a study of the computed metric multiplier coefficients
using the experiment data. The results of this study are included in the new
guidebook. Still, a more comprehensive item-by-item evaluation of the SRPEG
methodology is needed, but was outside the scope of the present study. The new
guidebook should be a living document and incorporate all future advancement of
the present software reliability prediction technology.

1.5.3 Software Testing Experiment

A plan and design was developed for the acquisition and analysis of software
reliability measurement and test data within the structure of a formal experimental
framework. Chapter 4 documents the design and conduct of these experiments and

16

empirical studies for comparing test techniques and for measuring the effects of
software process and product variables on software reliability. The experimental
design for the experiment was a significant element of the overall study. The
approach taken, the techniques and tools selected, the cooperative team effort
expended. the test instructions developed, the data requirements identified, the
automated environment and cross-country network established all contribute to an
excellent model for further experimentation. The assessment of each test technique
from an input, process, output viewpoint, the instructions for how each tester would
approach testing individual units and CSC's and the establishment of criteria
(stopping rules) for test completion offer valuable information for testers and have
been included in the test guidance portion of the guidebook (Vol II).

Results of these experiments and empirical studies are presented in Chapter 5. They
provide a quantitative basis for recommendations to Air Force acquisition managers
with regard to choosing test technique(s), allocating test effort among test levels
and/or portions of software, and determining cost trade-offs in testing for Air Force
software projects. These recommendations are incorporated into a guidebook for the
acquisition managers.

The software test project data described above (Section 1.5.1) and the present
experimental design may be reapplied to such studies, providing additional benefit to
the Government. The scope of such studies can be iiicreased by the utilization of data
from additional software systems.

1.5.4 Integrated Guidebook for Software Reliability and Testing

A guidebook (Volume II of this report) was produced to allow software reliability
engineers and software test engineers to practice the techniques developed during
this research effort. Utilizing the data collected and findings derived from analysis,
procedures are provided which allow reliability predictious and estimations to be
made at various mile.tones during a software development project: additional
procedures guide the selection and application of efficient and effective testing
techniques.

Figure 1.5 illustrates how this new Guidebook is an integ.ation and updating of two
existing guidebooks: RADC Software Test Handbook [2] and the RADC Software
Reliability Prediction and Estimation Guidebook [3]. The Software Test Handbook
provides guidance on selecting appropriate state-of-the-practice testing techniques
to achieve a chosen testing confidence level. The Software Reliability Prediction and
Estimation Guidebook provides instructions for collecting metric data on projects and
analyzing the data to predict and estimate the future reliability of the final product.

1.5.5 Integrated Reliability Management System (IRMS)

Enhancements to the IRMS were made during the contract effort and the IRMS was
used as the central data management, analysis, and reporting component of the
study. The IRMS is functionally illustrated in Figure 1.6.

1.6 Organization of Report

This document is Volume I of the Final Report. It is intended for those interested in
the objectives, process and results of the Software Reliability Measurement and Test
Integration Techniques Study (SRMTIT). It presents a structured view of the
research and development process employed by SAIC and RTI in the conduct of this

17

IP- x

I L

CL

I.

effort the form of the investigations made and all findings, conclusions and
recommendations. The product of this study effort is a Software Reliability
Measurement and Testing Guidebook which is intended for use by Air Force
acquisition managers when establishing guidance in the reliability and testing of
software systems. This guidebook is separately bound as Volume 2 of the Final Report.

Chapter 1 introduces the study effort and describes the study purpose, scope,
objectives, and technical approach. It also provides and executive summary of the
important results of this effort.

Chapter 2 describes the three surveys which were performed in order to select the
software projects, testing techniques and testing tools which were utilized in the
study. Selected projects, techniques and tools are identified here, along --ith
rationale for their selection. All surveyed and rejected projects, techniques and tools
are also identified.

Chapter 3 describes and discusses the software reliability prediction data collection
activity and the calculation of the RPFOM. It describes the software reliability
prediction metrics and detailed RPFOM computations at four software project levels:
application, development environment, requirements and design, and imple-
mentation. It also describes the refinement of the data collection computations,
procedures and forms as they were used in the experiment and are incorporated into
the final guidebook. The resources which were utilized in this data collection process
are identified here. In addition, this chapter contains the computed RPFOMs for the
four software. project levels and each of the test codes samples. It concludes with an
evaluation of the study resources, PPFOM procedures and computations, technical
activities and results. An effort Lable is provided to estimate and schedule
Government applications of this technology.

Chapter 4 presents the framework of the software testing experiments and empirical
studies. It discusses the conduct of the software testing procedures and the software
reliability and testing methodo'logies which underly the experiment design. Each of
the testing techniques are described there, along with test data and measures to be
collected for test technique evaluation and for computation of the REN for each test
sample. This chapter also identifies all of the resources utilized during the
experiment. It concludes with a summary of the test data collection and evaluation
by the testers and contains the computed RENs for each test sample.

Chapter 5 presents the form of the experiment data analyses, describes the findings,
and discusses conclusions which can be made. All descriptive analyses and Analyses
of Variance of the test technique data are described here. Also included in this
.hapter are exploratory analyses of the RPFOM for the test code samples.

Appendix A is a glossary of acronyms used in this report.

Appendix B is a bibliography of documents which are referenced or provide
guidelines for this report.

19

2.0 SURVEYS

Information contained in this chapter represents the results of three technical
surveys of available software development projects, testing techniques and tools for
use in the experiments which were performed during the present study.

2.1 Software Projects Survey

Forty-three software development projects were surveyed. Of these, twelve software
projects became candidates for the experiments, based on size, complexity, and type
of application. They are a representative sample of Air Force and Department of
Defense (DoD) systems in general development today.

2.1.1 Candidate Projects for Consideration

The candidate projects, in ascending order by size, are:

a. Advanced Field Artillery Tactical Data System (AFATDS)
Simulation/Stimulation (Sim/Stim) software. (10-50K) - Sim/Stim is
designed to drive/test the AFATDS System Model under Test (SMT) by
simulating nodes in the Brigade slice that are not present in the SMT and
stimulating equipment within the SMT.

b. Facility Automated Maintenance Management Engineering System
(FAMMES) (10-50K) - A warehouse inventory control program.

c. Mission Effectiven-ss Model (MEM) (10-50K) - MEM models th5
performance of the space segments of Strategic Defense Initiative (SDI)
ballistic missile defense concepts.

d. On-Board Electronic Warfare Simulator (OBEWS) (10-50K) - The OBEWS
designed for Armament Division and Tactical Air Command is a dynamic
simulation of a realistic Electronic Warfare (EW) threat environment
designed to provide real time simulated threats to existing aircraft EW
systems displays.

e. Radiological Release Information System (RRIS) (10-50K) - A very reliable
nuclear power plant safety system.

f. SCENE (10-50K) - SCENE is a space defense scenario generator that models a
variety of sensors and foreign launch missions under the Surveillance
Command & Control Design Analysis and Engineering (SCCDA&E) contract.

g. Boost Phase Stereo Processor (BPSP) (50-100K) - The BPSP is a realtime
sensor data fusion system under the SCCDA&E contract. It's purpose is to
accept observations of a booster in powered flight from multiple sensor
sources and fuse these observations into an estimate of the current state
(position and velocity of the booster, as well as projecting that state
through to booster burnout.

h. SIMSTAR Preprocessor (50-100K) - This program is a database
preprocessing system for a large nuclear weapon effects simulator system.

20

i. Automatic Test Control System (ATCS) (>100K) - The ATCS USAF project is a
key component of the Aeropropulsion systems Test Facility used to test air
breathing engines at the Arnold Engineering Development Center.

j. Mideastern Command, Control and Communications (C3) and
Communications Protection Plan (MC3 & CPN) (>100K) - The MC3 and CPN is
a program with the US Navy to design, develop and implement a C3 and
communications protection program for Saudi Arabia.

k. National Training Center (NTC) (1OOK) - A large, real-time, multi-
processor, range monitoring and control system.

1. Architecture Design and Assessment System (ADAS) (<70K) - A set of
engineering tools used for the simulation and study of electronic systems.
This system includes two tools: Adasim and Csim. Each tool contains
approximately 5K source lines. These two tools are functionally equivalent,
aiding in the performance of Random Testing. In addition, the Adasim
program is coded in Ada, which permits collection of information that will
impact testing strategies to be used in Ada developments.

2.1.2 Evaluation Criteria

In order to be potential candidates the following basic criteria had to be met by each
project surveyed:

a. The projects must be unclassified USAF or DoD systems, or similar in
mission characteristics.

b. Source code must be available at different "snapshots" in time during the
standard development process. This could include completed projects of
which there were historical copies kept or on-going projects whose source
code could be released.

c. Documentation must be available, including requirement specifications,
design documents and software test documents, or equivalent.

d. Development/target hardware must be accessible.

Table 2.1 gives an overview of the candidate projects in terms of these and additional
criteria that were considered for project candidacy.

2.1.3 Selected Software Projects

Four of these candidate projects were selected, two for use in the experiment and two
others available as backup. Table 2.2 categorizes these four projects by software
categories contained in the STH.

Advanced Field Artillery Tactical Data System (AFATDS)
Simulator/Stimulator (Sim/Stim) - AFATDS simulator/stimulator is a DoD
simulation and stimulation software system that is designed to drive and test the
system model under test (SMT) by simulating nodes in the Brigade slice that are not
present in the SMT and stimulating equipment within the SMT.

21

CNy ON[004-yu

-N - . , -

q 3

ONI5SAOG
'Mumwsa I)-~

_ _ __f

_ *1.10 NJOD
mcw"OsdV1

ION SSV Od_
_ _ _ _ _ _

V V.v o L(v M& zI-

xmw(N GI
U10I

SPS~

5O . ' O v ;
_ _ _ _I

I
- -

-

-r 0
p - - - -

a-~~~~2
' v i : v ~ .~ f ' .<- 2.

~~d C6- -

22)

cu LlS ! /Iij LI - - -40

f%""W M.QLW OSA3 >- >- I , 17

. LVO& . K =

< 3WVAUJOS

______ l zL1L
N~VMLOW >. ~

"-, -l b S

-O ~ dm~*~

; .SC.

Yams.a

JS31LDV. O -4.- --

Ils lt DI
- - - - t-

LSU.I 4Ilf340oou LL I
- I : I a

I IVA

- - - 56

-~23

Type of Project

PROJECTS Zi

M ,•

AFATOS
(Advanced
Field y y y Y Y Y y
Artillery
Tactical Data
System)

MC3
(Mideastern
C3 Communi-
cations Y
Protection
Plan)

NTC; (National
Training y V Y Y Y Y Y Y Y Y
Center)

(Scenario Y Y Y V
Generator) I

Table 2.2. Representation of STH Software Categories
by Chosen Projects

24

The system contains approximately 72K source lines of FORTRAN 77 code by actual
count. This is approximately double the earlier estimate. Although this project is
primarily a simulation type of project, it also contains attributes that would qualify it
for process control, procedure control, message processing, sensor and signal
processing, database management, diagnostic software, and system software. The
project was developed and run on a DEC VAX/VMS system. Project documentation is
complete except for the detailed design which is documented in a high-level Program
Design Language (PDL). The available source code is from Version 2.0, the first fully
integrated software build. A description of the tools and methodologies employed
during software development is documented in Volume 3 of the Task II Report [8].

Space Defense Scenario Generator (SCENE) - SCENE is an Air Force system that
models a variety of sensors and foreign launch missions under the Surveillance
Command and Control Design Analysis and Engineering (SCCDA&E) contracts. Its
primary purpose is to generate sensor observations of hypothetical foreign launches
and range safety operations (RSOs). The sensor's RSO and launch scenarios are user-
specifiable.

This software is written in FORTRAN and contains approximately 24K lines of source
code. It is a batch type of program that also contains the following functions: orbital
dynamics, diagnostic software, simulation, data presentation, and a decision and
planning aid. The program runs on a VAX/VMS system. Documentation is complete,
although the detailed design specification reflects the software as delivered. The
available source code is Release 6.0, prior to system turnover. A description of the
tools and methodologies employed during software development is documented in
Volume 3 of the Task II Report.

Additional Projects - Two additional projects were available for use: Mid-eastern
C3 Communications Protection Plan (MC3) and the National Training Center (NTC)
Core Instrumentation Subsystem (CIS). RPFOMs were collected for NTC-CIS in an
earlier software reliability study for RADC, thus making it redundant to do so again.
MC3 was too large for our present effort budget. As a result, the AFATDS Sim/Stim and
SCENE projects were utilized exclusively for the experiments.

2.1.4 Software Project Materials

Basic characteristics of the software projects which were utilized in this study are
shown in Table 2.3. Available metric data from the two selected projects is shown in
Table 2.4. Supplemental project information (particularly for system application
type) is available in Project Characteristics Work Sheets found in Volume 3 of the
Task 2 Report. Appendixes A through D of that volume contain matrices of the test
project software and associated Software Problem Report (SPR) histories.

25

Table 2.3. Characteristics of Selected Projects

Contract Program Environment
Type Size Development Taet MIL-STD

Followed
PROJECTS USAF DoD HW Sw HW SW

AFTATDS Y 72K VAX VMS VAX VMS None
Simulator/ 11/780 4.2 11/750 4.2
Stimulator

Table 2.4. Availability of Metric Data
METRIC SIM/STIM SCENE

Application Y X X

Development Environment I X X
Anomaly Management X

Traceablility

Quality Review X

Language Type X X

Modularity X X

Complexity X X

Standards Review X X

26

2.1.6 Lessons Learned

Several difficulties were encountered while performing the software development
project survey and subsequent evaluation of the project materials. They included:

a. Establishing a thorough survey questionnaire.

b. Qualifying a knowledgeable project contact for technical information.

c. Validating the completeness of the available project materials against the
questionnaire.

d. Establishing expedient procedures for evaluating the project materials and
for estimating the effort involved.

The following recommendations will resolve each of these cited difficulties:

a. Revise the survey questionnaire based on known desired information.

b. Identify the key technical project contact up fiont and ensure his/her
willingness to provide full support.

c. Personally travel to each project site and verify the availability and

applicability of all project materials.

d. Apply the evaluation me:hodology that has evolved from this study.

They are recommended for future efforts.

2.2 Testing Techniques Survey

A survey of the capability, advantages, and limitations of many of the static and
dynamic software testing techniques currently in use was conducted by reviewing
various reference documents and by interviewing test consultants. A list of these
reference documents is presented in Appendix A of the Task I Report [5].

2.2.1 Candidate Techniques for Consideration

Software quality should be a primary concern in software development efforts. The
traditional methods of asse'sing software quality are software evaluation and
software testing.

Software evaluation exmines the software and the processes used during its
development to see that its stated requirements and goals are met. Static analysis
techniques employ this method of software quality assessment. In these techniques.
the requirements and design documents and the code arc analyzed, either manually
or automatically, without actually executing the code.

Software testing involves actual execution of the program. Dynamic analysis
techniqt:es employ this method of software quality assessment. The principal
applications of dynamic analysis include program testing, debugging, and
performance measurement. This involves the processes of preparing for test
execution and analysis of test results.

The following static analysis techniques were surveyed for use in the experiments:

a. Code Reviews - Assesses conformance of the orogram implementation to a
prepared checklist.

b. Error and Anomaly Detection - Checks program syntax, coding standards,
data and interfaces for anomalies.

c. Structure Analysis/Documentation - Checks correctness of a program's
control and code structures.

d. Program Quality Analysis Measures a program's complexity and quality
attributes.

e. Input Space Partitioning Partitions the program inpu, space into path
domains to exercise selected paths.

f. Data-Flow Guided Testing - Partitions a program flow graph into intervals
for analysis of correct sequences of operation.

The following dynamic analysis techniques were surveyed:

g. Instrumentation-Based Testing - Inserts non-interfering probes into the
program to monitor execution behavior and performance.

h. Random Testing.- Samples the program input domain to find obscure
processing errors.

i. Functional Testing - Finds discrepancies between the program execution

and its specification.

2.2.2 Evaluation Criteria

In conducting the survey, the following evaluation criteria were used: usability of
the testing technique; use of the technique in the software life cycle; SAIC and RTI
projects that utilized the technique; and strengths, weaknesses, and special
considerations. Tables 2.5 and 2.6 present an overview of these criteria for each of
the testing techniques.

The column entitled USEABILITY summarizes the application of each testing
techrnique and the extent of its usage.

The column LIFE CYCLE identifies the applicable test phase in the software life cycle
when the test technique may be employed. The test phases for a program in
progressive order are:

a. Unit Test - The smallest compilable entity is tested.

b. Unit Integration and Test (CSC Test) - Multiple interfacing units are tested
to the component level.

c. Program Test (CSCI Test) - The entire CPCI is tested as a correct
implementation of the specified design; component interfaces are verified.

d. System Test - The entire System is tested to meet its system level
requirements; integrating software with the associated hardware.

Some of these techniques had been applied on specific SAIC/RTI software projects
(indicated in the middle column of Table 2.5) as follows:

a. Code Reviews were conducted through the entire life cycle of SAIC's
Performance Analysis and Test (PAT) Program. Peer Reviews audited unit
code and formal review tracked the software product across development,
design, coding, unit test, CSC test, and program/system test phases of the
project.

b. In providing Independent Verification and Validation (IV&V) support to
the Joint Cruise Missile Project Office, SAIC conducted metrics-directed
testing of the Mission Planning system (MPS) software for the Air-
Launched Cruise Missile (ALCM). An automated testing tool was used to
measure software complexity. Additionally, several test covers were
developed in order to determine the amount of testing required for each
test path. Each test cover provides information on the software complexity
value for each module, and indicates which paths are to be exercised with
greatest intensity, those to be exercised with less- intensity, and those
which will Lb- exercised least.

30

->

"C~C,
CAlL

;Ii CL U am C

cn 41 A .4 5
ou a*

t-j a Uuj Q. Q cn WO

W
U~z U 6

xw
wxC _

CL Go

z co
~1'** ___ CIO

Eiii>I
4 -1

~zCa

W ~. 0ui- I

x N

- x x

2152 00
~A

r I I

32

c. During both the Radiation Release Information System (RRIS) and the
National Training Center (NTC) Core Instrumentation Subsystem (CIS)
projects, Path Coverage Testing was used during integration and test of
modules.

d. Random Testing was conducted in NASA projects by RTI during which an
automated testing tool was utilized.

e. Functional Testing was performed during system testing of the B-IB
Bomber (B-1B) Technical Support Center (TSC) baseline system and during
software testing for the NTC CIS. In both cases, Requirements/Test Matrices
were used to determine the specification requirements that were not met
during testing. Additionally, the Digital Equipment Corporation (DEC) Test
Manager tool was used directly during Functional Testing of the
Architectural Design and Assessment System (ADAS) project.

The column STRENGTHS, WEAKNESSES, AND SPECIAL CONSIDERATIONS summarizes the
advantages and limitations of each test technique. Complementary characteristics
(an advantage gained by using a test technique with one or more others) and
available tools and/or methods are also described. Entries in this column are
expanded upon below.

a. Code Reviews (both Peer Reviews and Formal Reviews) are widely used,
applicable to large, and small projects, are not limited by project type or
complexity, and catch errors early in the life cycle. These reviews ass-st
and ease subsequent system level testing, but still require some static
testing for complete verification.

b. Error and Anomaly Detection techniques are highly effective, are
extensively automated (but language dependent), and are most applicable
during the unit test and CSC test periods of the life cycle.

c. Structure Analys:s/Documentation techniques and tools are widely
available and used. This technique's prime utility is in the early stages of
debugging, and is most applicable with complex program control flow, but
covers only a limited range of programming standards and possible error
situations.

d. Program Quality analysis (also known as Metrics-Directed Testing), can be
used both for software reliability analysis and for program Structure
Analysis. The latter usage will be in combination with the Path Analysis
test technique (which is an element of Input Space Partitioning).

e. Input Space Partitioning consists of three techniques:

1. Path Analysis (also known as Path Coverage) is recognized to have
some drawbacks in that determining the paths of a program and
selecting data to execute the chosen paths poses a difficult (if not
unmanageable) problem. However, by supplementing this testing
technique with other methods, it may be possible to select finite
subsets of test data for the chosen paths in order to detect certain type
of errors.

2. Domain Testing is limited to simple linear predicates and has difficulty
in selecting test cases for a program which has a large number of
input variables. It concentrates on path selection errors, which
requires other testing methods to be used to test a program
thoroughly.

3. Partition Analysis is more *a test support method than a reliability test
technique. The specification of a program is assumed to be correct,
while in practice, it may be incomplete or contaii, errors.

f. Data Flow Guided Testing: Test strategies for this testing technique are

more difficult to apply in practice than control-oriented strategies.

g. Instrumentation-Based Testing consists of four techniques:

1. Path and Structural Analysis (Branch) is very effective in detecting
data, logic and computation errors and is well complemented by
Functional Testing.

2. Performance Measurement is highly effective in identifying
performance problems in a program and is applicable during unit test
through CPCI test.

3. Executable Assertion Testing is effective in determining
computational, range, and flow errors in early life cycle testing, but is
constrained by its resource- and time-consuming complexity of use.

4. Debug Aids are also efficient, but complex. Its tools are language and
operating system dependent.

h. Random Testing possesses desirable and effective features. Generated test
data may provide near total branch coverage. Automated tools are readily
available to perform random testing.

i. Functional Testing techniques are based on state-of-the-art design analysis
techniques effective in finding errors. Tools are readily available to
perform functional testing.

2.2,3 Selected Testing Techniques

Three static analysis techniques and three dynamic analysis techniques were
selected for this study:

STATIC DYNAMIC

Code Review Branch Testing
Error and Anomaly Detection Random Testing
Structure Analysis Functional Testing

Code Review. This static testing technique involves the reading or visual
inspection of a program with the objective of finding faults. Test personnel perform

34

a code review of the sample code units using the appropriate documentation and
specifications.

Code reviews conducted consist of code reading and code ins ections. Code reading
includes the study and evaluation of compiled unit sourc, code line-by-line to
evaluate data availability and variable initiation. Code ins ections are driven by
checklists in order to identify common type of errors, including logic errors, on the
unit code.

Error and Anomaly Detection. This static testing technique is applied to detect
faults via interface checking, physical units checking, and data flow analysis. Test
personnel perform error and anomaly detection on the selected sample code units
using the appropriate documentation and specifications.

Interface checking analyzes the consistency and completeness of the information
and control flow between units. It checks for and detects:

a. Incorrect number of arguments.

b. Data type mismatches between actual and formal parameters.

c. Data constraint mismatches between actual and formal parameters.

d. Data usage anomalies.

Physical units checking is performed to detect operations performed on variables of
more than one type to determine if necessary conversions have been made.

Data flow analysis identifies paths in which there are variable set-use
inconsistencies.

Structure Analysis. This static test technique detects faults concerning the
control structures and code structures of FORTRAN, and improper subprogram usage.

Test personnel perform structure analysis on the sample code units using the
appropriate documents and specifications. Structure analysis is performed to
determine the presence of improper or incomplete control structures, structurally
dead code, possible recursion in routine calls, routines which are never called, and
attempts to call non-existent routines.

Branch Testing. This testing technique combines static and dynamic techniques
and detects failures. The static portion is used to determine test data that force
selected branches to be executed. The dynamic portion is used to actually run the
code with these test data and then obtain test outputs. Test personnel perform branch
testing of the sample code units using the appropriate documentation and
specifications.

Test coverage analysis is used to detect untested parts of the program. Output data
analysis is applied to detect outputs that deviate from known or specified output
values.

Random Testing. This is a dynamic testing technique which tests a unit by
randomly selecting a subset of all possible input values. This testing technique

35

detects failures. Random testing is performed to detect outputs from the random
inputs that deviate from known or expected output values. Test personnel perform
random testing of the sample code units using the appropriate documentation and
specifications.

Functional Testing. This is a dynamic testing technique which finds failures
consisting of discrepancies between the program and its specification. In using this
testing technique, the program design is viewed as an abstract description of the
design and requirement specification. Test data are generated, based on knowledge
of the programs under test and on the nature of the program's inputs. The test data
are designed to ensure adequate testing of the requirements stated in the
specification.

Test personnel perform functional testing of the sample code units using the
appropriate documentation and specifications. Functional testing is performed to
assure that each unit correctly performs the functions that it is intended to perform.
This is accomplished by:

a. Testing using nominal, extreme, and erroneous input values.

b. Testing for error detection and proper error recovery, including
appropriate error me' sages.

c. Testing with data output options and formats.

2.3 Test & Support Tools Survey

Software development/testing tools have formed the foundation of the modern
programmer's "workbench". As programming problems have become more complex,
increasingly sophisticated tools have been constructed to aid in development and
testing. Clearly, in the modem programming environment, useful tools coupled with
sound testing practices are key to the realization of reliable software systems.

A survey of many of the software testing tools currently and generally available was
conducted. This survey involved a review of the current literature (both
professional publications and vendor offerings) describing available software
testing tools (see Appendix B). Essentially, these tools may be divided into the
following three categories:

a. Static analysis tools.
b. Dynamic analysis tools.
c. Test Support Tools.

Static analysis tools support the static analysis techniques described in 2.2.1. These
tools automate all or portions of those test techniques and vary in scope and
functionality. A characteristic common to each of these tools is the processing and
evaluation of the program source code. They range from systems which simply
enforce coding standards to systems which carry out sophisticated structured
analysis.

Dynamic analysis tools are used to support the dynamic analysis techniques described
in 2.2.1. These tools directly execute the program being tested and perform a wide
range of functions including r werage analysis, the generation and evaluation of
test data, and the production of run-time statistics.

36

Test support tools facilitate the testing process and, as such, support all of the testing
techniques. They do not normally evaluate or execute the program code. Their
general function is to provide database, analysis and documentation support for
program requirements, design, code and test cases.

2.3.1 Candidate Tools for Consideration

Twenty-two representative and available tools were surveyed to automate the
candidate testing techniques and to support experimentation. Each of the candidate
tools which were identified by our survey are categorized into the appropriate test
category and test technique. A few of these test tools are applicable to more than one
category or technique, and this is identified.

The Static Analysis Tools surveyed for use in the experiments include:

a. Documentation, Analysis, Validation & Error Detection (DAVE) - Automates
Error/Anomaly Detection and Structure Analysis/Documentation.

b. Maintainability Analysis Tool (MAT) - Automates Error/Anomaly Detection.

c. FORTRAN-Lint - Automates Error/Anomaly Detection.

d. Source Code Analyzer (SCA) - Automates Error/Anomaly Detection.

e. Software Design and Documentation Language (SDDL.) - Automates
Error/Anomaly Detection.

f. Automated Measurement System (AMS) - Automates Program Quality
Analysis.

g. Metric Information Tracking System (MITS) - Automates Program Quality
Analysis.

The Dynamic Analysis Tools include:

a. RXVP-80 - Automates Error/Anomaly Detection, Static Structure
Analysis/Documentation, Static Path Analysis, Dynamic Path/Structural
Analysis, Assertion Checking, and Debugging.

b. FTN-77 Analyzer - Automates Dynamic Path/Structural Analysis,
Performance Measurement, Assertion Checking, and Debugging.

c. Status - Automates Performance Measurement and Debugging.

d. Trailblazer - Automates Dynamic Path/Structural Analysis and
Performance Measurement.

e. Lint-Plus - Automates Error/Anomaly Detection, Dynamic Path/Structural
Analysis and Debugging.

f. Path Analysis Tool (PAT) - Automates Dynamic Path/Structural Analysis.

g. Performance and Coverage Analyzer (PCA) - Automates Dynamic
Path/Structural Analysis and Performance Measurement.

The Testing Support Tools Surveyed include:

a. Requirements Tracing Tool (RTT) - Automates software requirements for
functional testing.

b. Database Management System (DBMS) - Automates program test and data

management.

c. LIBRARIAN - Automates program management.

d. Code Management System (CMS) - Automates program and module
management.

e. Change and Configuration Control Environment (CCC) - automates program
management.

f. Test Manager (TM) - Automates test management.

g. Metric Maintenance Manager (MMM) - Automates metrics management.

h. Statistical Modeling and Estimation of Reliability Functions for Software
(SMERFS) - Automates software reliability estimation.

Table 2.7 provides applicable purchase information for each candidate tool, including
vendor, price, terms and conditions, version and documentation.

2.3.2 Evaluation Criteria

The following criteria were used to select the necessary test and support tools for the
experiments from among the 22 candidates:

a. Timely availability of the tool.
b. Familiarity with the tool.
c. Applicability of the tool to candidate projects.
d. Applicability of the tool to candidate testing techniques.
e. Data collection and analysis of software measurements.
f. Acquisition, generation, and management of test data.
g. Statistical capabilities for analysis of experiments.
h. Vendor, host computer and applicable source languages.

2.3.3 Selected Test & Support Tools

The goal of the study was to measure effectiveness of test techniques. Tools were
chosen to support the techniques chosen. The experimental design approach taken
was to make the effect of the tools as negligible as possible and emphasize the test
technique. Comments were gathered from testers and operators on tools at the end of
the experiment and empirical study. To decrease impact of a tool effect, the best tool
available to support and/or automate a test technique was desired. Inputs from test
experts familiar with commercial tools aided the final selection of tools identified in
the survey in Task 1. Thus the same tools, the best available within budget, hardware,
and cperating system constraints, were used by all testers for a given technique.
Three software testing tools were selected. These tools are shown in Table 2.8 and are
described below.

38

-
-_ -__---

m_, ,... _ _ __, _ _ _ _ J --

* i .3+ +- .
i- •

S- ' i - ,I

"Z A

-e-

.---

' 4 1 6
-

n

"< 1 "= *'11

,, .
eN-• I

0 0 6

- . .,.

39

I-
*7

I-

- r

i I-- .

IN Sir

= .1
>a

N .

=-.
,ul .*

1

73
2aa - ?;4 -MS

. - - -40
.

= I!
--. 1

'•f- - ,, i iri .i -_ _ _ _" _ _ __I

- r -

1z .. -.. -

Ci
I..I

- I

Orak
aw -M

P4i

'- Lu CFO%

AN -A
-~ -~CC .2 f-

4 .4 .4
-< a: <

s A - A a A

Z~~ 13 .

Table 2.8. Software Test Support Tools

TOOL APPLICATION SOURCE

DTM Manage software samples, test
_ cases, test data.

SDDL Support code reading. SI

RXVP-80 Support error and anomaly GRC
detection, structural analysis,
and branch testing.
Also used to provide path coverage
information.

DEC Test Manager. The Dec Test Manager (DTM) is used to organize online test
information for the three dynamic testing techniques. Within the DTM testers define
test descriptions; each test description defines one test, by associating together the
appropriate test sample, its ancillary data files (if any), the sample driver, input
case(s), expected outputs (the benchmark), and actual test outputs. One or more test
descriptions are organized into a DTM test collection. The DTM allows test execution at
the test collection level. All tests for the dynamic test techniques are run as DTM test
collections. The DTM automatically stores test outputs and compares them with
expected outputs (the benchmark), flagging all mismatches between actual and
expected outputs.

SDDL. The Software Design and Documentation Language is used in conjunction
with the code review technique only. Neither testers nor operators use the SDDL tool.
All code samples were run through the SDDL tool by SAIC personnel prior to the
beginning of this study. Each tester received the printed outputs of SDDLs static
processing of their code samples. These outputs consist of:

a. Table of contents for SDDLs output.

b. Source code, enhanced with indentation based on structure and with flow
line arrows in a two-dimensional representation.

c. Module cross-reference listing.

d. Module reference tree.

RXVP80. The RXVP80 test tool combines static and dynamic analysis features. RXVP-
80 is used to automate structure analysis and error and anomaly detection, to process
code samples to identify branch coverage for the branch testing technique, and to
instrument samples for path coverage information for all three dynamic techniques.
Testers use the static features of RXVP-80 to obtain reports for static analyses of the
code samples as required for the static techniques. They instruct RXVP-80 to

42

instrument the code under test with path coverage commands to create an
instrumented version of the source code for use in dynamic testing. These operations
are performed by running RXVP-80 independently of the DTM. Subsequently, code
samples which are instrumented with the dynamic component of RXVP-80 are
invoked from within a DTM test description template file.

43

3.0 SOFTWARE RELIABILITY PREDICTION

The goal of software reliability prediction is the assessment of a software system's
ability to meet specified reliability requirements. The RPFOM is a statement of
predicted reliability based on software measurements collected during each phase of
software development prior to commencement of CSC integration and testing. The
RPFOM contributes to attainment of reliability goals by providing feedback for
improving software system design and implementation.

3.1 Technical Approach

The following objectives and constraints were considered when defining the
reliability prediction data collection activities for this project:

a. Objectives:

1. Gaining better records of code characteristics in a more usable and
realistic form.

2. Developing improved techniques for applying the consequent

knowledge to prediction in appropriate confidence settings.

b. Constraints

i. The ability to accumulate data of known validity for new applications.

2. The complexity of the prediction techniques.

There are four levels in which RPFOMs are collected:

a. Project initiation.
b. Project development environment.
c. Requirements and design.
d. Implementation.

Each of these is described in detail in Section 3.3. Table 3.1 identifies the project data
that is collected and used to compute the metrics on which these four RPFOMs arc
based. These RPFOMs are then computed using original project data from the
requirements, design, and implementation phases.

Careful thought was given to the data to be collected and to the data collection
procedures. Data for computing the RPFOM measures of software reliability were
collected utilizing exacting procedures especially prepared for the experiment. Then
the reliability predictions were update at the precise intervals specified during the
system development cycle. Special database management software was developed for
this application, utilizing 4th Dimension (4D). In addition, the RADC Automated
Measurement System (AMS) was utilized to automate the collection of raw
measurement data from the software project source code.

Software measurement data comprising the RPFOMs was collected on the software
development projects described in Section 2.1.3 based on refinements to applicable
worksheets and equations in the SRPEG. The RPFOMs were calculated both for the
entire projects and for the unit and CSC integration code samples selected for the

44

Table 3. 1 RPFOM Data Requirements

SRPEG Data Collection
Task Other [SRPEG]

Section Data Input Form Procedure

101 Application (A) System architecture diagram; 0 1
statement of need: required
operational capability; system
requirements statement-

102 Development Requirements document; 1 2
Environment (DE) Specifications document

103 System Level, S1
Charactenstics (S)

Requirements and Design SA x ST x SQ
Representation Metric (SI)

Anomaly Management (SA) All system documentation and 2 3
source code

Traceability (ST) Requiraments and design 3 4
documents with a cross-
reference matrix

Quality Review Results (SO) Requirements document: 10 5
preliminary design specification;
detailed design specification

Discrepancies (DR) Discrepancy reports 5 12

104 Software Implementation SL x SM x SX x SR
Metric (S2)

Language Type (SL) Requirements specification 4 6 and 8

Mo•ularity (SM) Module size estimates and 4 9
source code

Complexity (SX) Source code 4 1 0

Standards Review (SR) Source code 11 1

45

experiment. See Section 3.6.2 (Table 3.19) for the identification of the software test
samples.

Data collection and computational requirements for each RPFUM are summarized in
the following sections. Figure 3.1 summarizes the RPFOM data coliection process.
Some of the computations are automated by the RPFOM Database application software.
Reference Section 3.4.3 for details.

3.2 Data Collection Resources

Collection of extensive software measurements and computation of the variety of
software project RPFOMs proved to be an intensive computer-based application. A
medium- to large-sczle computer system with software support tools was essential to
automate source code measurement and the ancillary data base management
function. All levels of ovailable software test project development specifications,
including the unit source code, were utilized to collect the RPFOM metrics. A refined
set of metric equations, questions and answer sheets for data collection and RPFOM
calculations were extracted from the SRPEG and utilized by assigned data collection
personnel. While administrative and technical support personnel largely performed
this task, there was a need for a junior level programmer to perforni non-automated
measurements of the software source code. Each of these resources are discussed in
the following sections.

3.2.1 Computer Systems

Two Apple Macintosh 11 systems (one at each data-collection site, i.e., SAIC and RTI
and a Mac SE (at the SAIC site) served as automated workstations for performing
RPFOM data management, calculations and report generation. Each Mac II system
had the following configuration:

a. 2 Mbyte random-access memory.
b. 40 Mbyte hard disk drive.
c. 800 Kbyte floppy disk drive.
d. High-resolution monochrome monitor.
e. Dot-matrix printer.

The SAIC Mac II Workstation was linked to a DEC VAX 8650 on which tne AMS
automated metrics data-collection tool resides. The RTI Mac II Workstation was linked
to a network of DEC MicroVAX 2000 Workstations also containing AMS. The SAIC and
RTI VAXes were linked via Arpanet.

3.2.2 Support Software

The Integrated Reliability Management System (IRMS) was the basic support system
used in this project. A major capability added to the IRMS during this effort was the
ability to download automatic metric analyses from a host (VAX) to a data base
management system in IRMS (hosted on a Mac).

Two software support tools were selected to automate major portions of the RPFOM
data collection, entry and computation subtasks: AMS and 4th Dimension DBMS. They
are described in more detail in the following paragraphs.

46

I CEFINE

ESTABLISH
BASELINE

DEVELOPMFUT
ENVIRONMENT C(DSYTE

WIS I A __________

DEVELOPMENT MAGAI

4-VEPCNI~rNT
WIS 1Is_________

r MEASUREI ANOM.ALY
I MANAGEMdENT (SA)

j W/S 2A

I MEASURE
TRACEABILITY (ST)

W/S 3A

MEASRE EFL1E RFOM(2)
QUAL-TVaftor RPFOM (31
R~vI~ (SO)AT SSA

AJ~OMLY MAJABEMNT AJ0MALYMANAGEMENT (SAl sc

MEASUREI REFINE ArPom (2)
QUALITY~~~~~~~~ EVWOU fY VIW(iIoRPFOMI (3)

(FW UNITS) (FORCSCI) AT OCR
WIS 10C W/S 100ID

Figre 3.1.OR Summary RPFOM DaaCllcin2rcssFo
OU~r~rVIWDULIY EIE (Q rgir P47 3

3.2.2.1 Automated Measurement System

AMS reads files of FORTRAN unit source code on the VAX computer system, evaluates
22 of the 34 Standards Review questions in SRPEG worksheet 1 lA .(see Table 2-1), and
provides these answers on its own Worksheet E. AMS also automates the collection of
many questions on several of the other SRPEG metric work sheets, but requires that
the source requirements and design documentation be formalized by use of Software
Requirements Engineering Methodology (SREM), Requirements Specification
Language (RSL) and the Software Design and Documentation Language (SDDL). As
none of these requirements and design specification tools were utilized in our
available experimental projects, we were limited to the above mentioned capabilities
of AMS Worksheet E_

The Automated Measurement System (AMS) [24, 25] is resident on the DEC VAXes at
each data colle;ction site. AMS utilizes worksheets to provide automated measurement
of the unit-level metric elements from SRPEG Worksheets llA and 4A that are listed
in Table 3.2. This table also provides the corresponding metric acronyms that appear
in the AMS software evaluation report (i.e., Worksheet E) from which the metric
values are taken. These values are manually entered into the automated RPFOM
Database by the data collector. While AMS was available at both sites, it was utilized
exclusively at the SAIC site.

3.2.2.2 4th Dimension DBMS

The 4D DBMS [26, 27, 28] manages files of data on the Apple Macintosh computers. It
was a new product which provided user-friendly screen generation and associated
relational file definition, creation, maintenance, query, computation and reporting
facilities. All of these capabilities were deemed necessary to the development of
databases to record, manage and analyze both the experiment RPFOM and software
testing results data. The IRMS which is a Mac II based software reliability
workstation was previously acquired by RADC under separate contract. Figure 3.2
shows the interfaces between AMS and 4D that were developed for our study.

Our initial approach with the data base management system was to prototype an
Entity-Relationship model of the RPFOM worksheets and answer sheets, with
corresponding data entry screens and computational procedures. Following this, the
complete RPFOM application was developed, including some of the calculations
needed for RPFOM computation. Section 3.4.3 describes the level of automated support
provided. The user interface to this database is described in Volume 2 of the Task III
Report.

3.2.3 Personnel

Contractor experience in applied software reliability measurement test and
integration techniques was augmented by contributions of carefully selected
consultants with knowledge of the test projects and metric data collection software
support tools. Specific personnel roles during the conduct of this task were as
follows.

a. Activity Leader (1). Key project person; responsible for activity
assignment, coordination, completion, and products.

48

Table 3.2. Cross- reference of automated Metric elements from
Metric Work Sheet IIA and AMS Software Evaluation
DCF Report (Phase E, unit level)

Work Sheet AMS Work Sheet AMS
IIA _______ A

MO. 1(3) MO.1(4e) SI.4(3)a SI.4(4e)

MO. 1 (4)a MO. 1 (5)e SI.4(4)a SI.4(6e)

MO. 1(5) MO.1(7e) S1.4(5) SI.4(8e)

MO. 1(7) MO.1(9e) SI.4(6)a SI.4(9e)

Mo. 1(9) MO. 1(3e) SI.4(8)a SI.4(I e)

SLI.(2) SI.1(2e) SI.4(9)a SI.4(12e)

SI.1(3) SI.1(3e) SI.4(9)b SI.4(13e)

SLI.(4) SLI.1(4e) SI.4(1)a SI.4(1 4e)

SI. 1(5)a S1.1 (5e) SI.4(1O)b SI4(1 Se)

S I.1(5)b SI. 1(6e) SI.5(3) SI.5(4e)

51.4(1) SI.4(le)

49

ILL

.IL Ul

w - L

1-- 8~o~ 0

zz
0 4cia

w 0 _w
0

IL

zo z wU

CIl)

* uJ
CC -

CL

2

IL.U

zI-a

cc50

b. Data Collector (4). Technical support staff and junior engineer; completes
data collection forms on a per-project basis; executes metrics collection tool
and produces measurement reports.

c. Data Entry (2). Admipistrative staff; enters metric data into the database
and performs metric computations.

d. Project Consultant (2). Senior engineer; advises in the acquisition and
evaluation of the test project materials.

e. Software Consultant (2). Engineer; advises in the application and operation
of the metrics collection tool (AMS) and the DBMS software (4D).

3.2.4 Instruction Manual

An instruction manual was developed for RPFOM data collection and computation.
The purpose of this manual was to provide a concise set of easy to use instructions,
based upon the SRPEG and tailored to the objectives of our experiment.

This tailoring involved organizing applicable worksheets of the SRPEG into a set of
simplified detail instructions, worksheets and answer sheets that correlate precisely
with the sequence of availability of data sources (i.e., documentation and code) that
are customarily produced during the Software Development Life Cycle. Table 3.3
shows the correlation between the SRPEG and these worksheets and answer sheets.

A number of useful corrections, clarifications, and refinements are described in
Section 3.5 and are incorporated in the Volume 2 guidebook. along with appropriate
revisions to the worksheets plus all of the newly developed answer sheets. These
changes to the SRPEG and the resulting instruction manual provided the
instructions, work sheets, and answer sheets necessary to support RPFOM data
collection and computation. Data sources, input and output requirements, and
automated tools for data collection and management are described there. A
prerequisite to applying these instructions is a breakdown of the project software
into CSCIs, CSCs, and units.

3.2.5 Project Documentation

All available metric source documentation was acquired and utilized for each of the
software development projects which had been selected for the experiments. Two
projects, the AFATDS Sim/Stim and SCENE project were utilized, due to the intensive
nature of the reliability prediction data collection process and the available effort
for this study. Table 3.4 describes these documents and source tapes.

3.3 Reliability Prediction Methodology

The Reliability Prediction Methodology begins with an architectural diagram. The
software components allocated to hardware components can be identified on the
system architecture diagram. This allocation should be overlayed on the hardware
reliability block diagram. The reliability block diagram shows interdependencies
among all elements or functional groups of the system. The purpose of the reliability
block diagram is to show by concise visual shorthand the various series - parallel
block combinations (paths) that result in successful mission performance. A
complete understanding of the system's mission definition and service use profile
(operational concept) is required to produce the reliability diagram.

51

m (e -I - w -

4A*

066

e- to T go

9. elle[" W" ' ,

IW' : E- : : : n

I4 d N o

9 w a :-. < 4

•MW u * a 4

52 4 a

0::

"a- • 4 4 4

a : 4 •4

4 0

6 - -_ _ _ _ _ _ _ _,_ _ a• _ __.,

06 4 . 2

3.3.1 Reliability Models

Tasks 101 through 104 of the SRPEG and of the Volume 2 Guidebook provide the
procedures for calculating a predictive RPFOM for each component identified in the
block diagram according to the following equation:

RPFOM = A * D * S

where: RtPFOM is the predicted fault density
A is the application type metric
D is the software development environment metric
S is the software characteristic metric

This is Reliability Model I as described in the SRPEG. A is expressed in (fractional)
faults per line of code, and examples of actual values are presented in Task 101. D and
S are modification factors, and each of these can have a value that is less than one (1)
if the environment or implementation tends to reduce the fault density. These
factors are equivalent to pi factors in MIL HDBK 217E. The Application Area metric
represents an average or baseline fault density which can be used as a starting point
for the prediction.

Tasks 101 through 104 are preliminary procedures for prediction. Their tables,
coefficients, and algorithms are updated in Chapter 5 as a result of data collection and
statistical analyses performed on two additional software systems during the present
experiments.

For specified software components, a detailed model based on a functional flow
analysis can be developed. This Reliability Model 2 was not evaluated in the present
study.

3.3.2 Reliability Computations

The functional definition of RPFOM for Reliability Model I is:

RPFOM = Predictive Fault Density = Faults/LOC (Eq. 1-1)

where Fault is a condition that causes a functional unit to fail to perform its required
function, and LOC is executable line of code. The RPFOM can be computed for an
entire software system and/or its components (e.g., CSCIs). The RPFOM can be
converted to a failure rate or calculated as a failure rate also. Four successive RPFOM
equations, each representing a refinement to its predecessor, are given:

RPFOM = A (Eq. 1-2)

where "A" is a metric for System Application Type;

RPFOM = A * D (Eq. 1-3)

where "D" is a metric for System Development Environment;

RPFOM = A * D *S1 (Eq. 1-4)

53

Table 3.4. List of Project Documentation Available
for Metrics Data Collection

PROJECT METRIC METRIC SPECIFICATION
TYPE WORK SHEET NAME

AFATDS APPLICATION 0 A. System Specification for AFATDS.

SIM/STIM (A) Simulator/ StimulatorDraft 1
April 1986

B. AFATDS Simulator/ Stimulator,
Software Overview
FriaI
February 10, 1987

C. Subcontractor Statement of Work
Revision F
May 26, 1986

DEVELOPMENT 1 Refer to A
ENVIRONMENT

(D) D. PDL Tapes

ANOMALY 2A, 28, Refer to A. D
MANAGEMENT 2C, 2D

(SA)

TRACEABILITY 3A, 3B, Refer to A, D

(ST) 3C

QUALITY REVIEW 10A, 10B, Refer to A, D
RESULTS 10C, 10D

(SO)

LANGUAGE 4A, 4B E. Source Code, AMS Work Sheet E
TYPE
(SL)

MODULARITY 4A, 4B Refer to E
(SM)

COMPLEXITY 4A, 4B Refer to E
(L-X)

STANDARDS 1 IA, 11B Refer to E
REVIEW

(SR)

54

Table 3.4. List of Project Documentation Available
for Metrics Data Collection (Continued)

PROJECT METRIC METRIC SPECIFICATION
TYPE WORK SHEET NAME

MC3 APPLICATION 0 A. Command Center System
(A) 15-May-1985

B. Program Performance Specification
for the RSNFC 3 Program

DEVELOPMENT 1, 1A Refer to Specifications A, B
ENVIRONMENT

(D) C. Program Design Specification for the
RSNF C0 4-OCT-1985

ANOMALY 2A, 2B, Refer to Specifications B, C
MANAGEMENT 2C,2D

(SA)

TRACEABILITY 3A, 3B, Refer to Specifications A, B, C
IST) 3C

QUALITY REVIEW 10A, 10B, Refer to Specifications A, B, C
RESULTS 10C, 1OD

(SO)

LANGUAGE 4A, 4B D. Source Code, AMS Work Sheet "E"
TYPE
(SL)

MODULARITY 4A, 4B Refer to Specification D
(SM)

COMPLEXITY 4A, 4B Refer to Specification D
(SX)

STANDARDS 11A, 118 Refer to Specification D
REVIEW

(SR)

55

Table 3.4. List of Project Documentation Available
for Metrics Data Collection (Continued)

PROJECT METRIC METRIC SPECIFICATION
TYPE WORK SHEET NAME

SCENE APPLICATION 0 A. Space Defense Simulator Program
(A) Development Plan

30-July-1984

B. SPADCCS Space Defense Simulation
Users Manual
22-April-1987

C. SPADCCS Scenano Generator (Scene)
Detailed Design Document
Versions 1 and 2

17-September-1984

DEVELOPMENT 1, 1A D. Scene Engineering Manual
ENVIRONMENT 24 April-1987

(D)
Refer to Specification C

ANOMALY 2A, 2B, Refer to Specifications C, D
MANAGEMENT 2C,2D

(SA)

TRACEABILITY 3A, 3B, Refer to Specifications C, D
(ST) 3C

QUALITY REVIEW 1 OA, 1 OB, Refer to Specifications C, D
RESULTS 10C, 10D

(SO)

LANGUAGE 4A, 4B E. Source Code and AMS Work Sheet "E"
TYPE
(SL)

MODULARITY 4A, 4B Refer to Specification E
(SM)

COMPLEXITY 4A, 4B Refer to Specification E
(sP)

STANDARDS 11A, 11B Refer to Specification E
REVIEW

(SR)

56

Table 3.4. List of Project Documentation Available
for Metrics Data Collection (Continued)

PROJECT METRIC METRIC SPECIFICATION
TYPE WORK SHEET NAME

NTC APPLICATION 0 A. Requirements Design Specification Vol. 1
(A)

Sections 1.2, 1.3,1.4, 1.5, 2.0, 3.1
12 August 1985
NTC-1221-18

DEVELOPMENT 1 Refer to A, Sections 3.1, 3.2
ENVIRONMENT

(D) B. Requirements Design Specification, Vol. II
Sections 4.0, 5.0, 16 Sept 83, NTC-1221-18

ANOMALY 2A, 2B, Refer to A, Section 3.2
MANAGEMENT 2C, 2D

(SA) Refer to B, Sections 4.0, 5.0

TRACEABILITY 3A, 3B, Refer to A, Sections 3.1, 3.2
(ST) 3C Refer to 8, Sections 4.0. 5.0

C. Accept. Test Plans, 15 Feb 84, NTC-1252-62

QUALITY REVIEW I OA, 1 0B, Refer to A, Section 3.2
RESULTS 10C,10D

(SO) Refer to B, Sections 4.0, 5.0

LANGUAGE 4A, 48 D. Source Code
TYPE
(SL) E. AMS Work Sheet "E"

MODULARITY 4A, 4B Refer to Specification D, E
(SM)

COMPLEXITY 4A, 4B Refer to Specification D, E
(Sx)

STANDARDS 11A, 11B Refer to Specification 0, E
REVIEW

(SR)

57

where "SI" is a metric of Software Characteristics during software Requirements and

Design Specification;

RPFOM = A * D * S2 (Eq. 1-5)

where "S2" is a metric of Software Characteristics during software Implementation.
"A" is expressed as a baseline fault density, whereas "D," "Si," and "S2" are
modification factors for which values can range from <1 (decreased fault density) to
>1 (increased fault density).

The "SI" metric is derived from "SA" (Anomaly Management), "ST" (Traceability), and
"SQ" (Quality Review) metrics:

SI =SA*ST*SQ (Eq. 1-6)

The "S2" Metric is derived from "SL" (Language Type), "SM" (Modularity), "SX"
(Complexity), and "SR" (Standards Review) metrics:

S2 =SL *SM * SX * SR (Eq. 1-7)

3.3.2.1 Application RPFOM

The Application-type RPFOM (Eq. 1-2) is calculated for each test project. This
baseline RPFOM, determined prior to initiation of software development, is an
average fault density based on the principle application type of the test project (e.g.,
Airborne System). Metric Worksheet 0 provides a list of six application types for
selection.

3.3.2.2 Development Environment RPFOM

The Development Environment RPFOM, which is a refinement of the baseline RPFOM,
incorporates information, summarized in the "D" metric, should be available during a
software pre-developmcnt phase of the life-cycle. Although this RPFOM is defined by
a single expression (Eq. 1-3), one or two worksheets (either 1A, or IA in combination
with 1B) can be utilized to compute "D" depending on the level of detail of project
environment data available. In order to eval 'ate the general applicability of each of
these work sheets, Development Environment RPFOM was calculated twice for each
tr.st project.

Worksheet IA provides a quick approximation of "D" based upon selection by the data
collector of one of three development environment categories. Worksheet 1B
provides a more precise determination of "D" based upon a checklist of 38
development environment characteristics:

D = (0.109Dc - 0.04) / 0.014 if Embedded from W/S IA
((0.008Dc + 0.009) / 0.013 if Semi-detached from W/S IA

= (0.018Dc - 0.003) / 0.008 if Organic from W/S IA

where Dc = (# characteristics in W/S 1B not applicable to system)/38.

3.3.2.3 Requirements and Design RPFOM

This RPFOM (Eq. 1-4), a refinement of the Development Environment prediction,
inccrporates information on software characteristics provided by system

58

requirements and design documentation to determine the SA, ST. and SQ metric
components of SI (Eq. 1-6). Any of three sets of worksheets, each set specific to a
particular Life-cycle phase, is used to derive these three metric components. Three
Requirements and Design RPFOM values corresponding to SSR, PDR, and CDR were
determined for each CSCI of the two software test projects in order to evaluate the
usability of each set of worksheets. Derivation of SA, ST, SQ is summarized below.

Anomaly Management (SMA): The "SA" metric is equated to one of three values
based on the value of "AM," which is derived from responses by data collectors to
questions in Worksheets 2A (SSR), 2B (PDR), and 2C/2D (CDR) that apply to the
capabilities of a system to respond to software errors and other anomalies:

AM= Number of "NO" responses/Total number of "YES" and "NO" responses

"SA" is then computed automatically as follows:

SA = 09 if AM < 0.4
= 1.0 if 0.6 > AM > 0.4
= 1.1 if AM > 0.6

Traceability (ST): A value for "ST" is selected by the data collector using
Worksheets 3A (SSR), 3B (PDR), or 3C (CDR) which encompass traceability of
requirements from system level through unit level.

Quality Review (SQ): The "SQ" metric is equated automatically to one of two values:

SQ -= 1.1 if DR / Total # Y and N responses > 0.5
- = 1.0 if DR / Total # Y and N responses < 0.5

DR is a count of "NO" responses from Worksheet during Software Requirements
Analysis 10A (SSR), 10B during Preliminary Design (PDR), or 1OC/lOD during Detailed
Design (CDR).

3.3.2.4 Implementation RPFOM

The Implementation RPFOM (Eq. 1-5). which represents a final refinement to the
reliability prediction at the CSCI level, incorporates information on software
characteristics derived from source code during Coding and Unit Testing (C&UT) to
determine the SL, SM, SX, and SR components of S2 (Eq. 1-7). Unit-level metrics are
collected for Worksheets 4A and llA, and then summed for corresponding CSCIs using
Worksheets 4B and 1iB. Data collection for this RPFOM begins with the utilization of
the AMS on the VAX for collection of many of the unit-level metric elements. The
values obtained from the AMS hard-copy report are then transferred to an answer
sheet along with values for non-automated metrics as indicated in the worksheets.
Derivation of SL, SM, SX, and SR components of S2 is summarized below.

Language Type (SL): The "SL" metric is derived as follows:

SL = (HLOC/LOC) + (1.4 ALOC/LOC)

where: HLOC = higher-order-language line of code for CSCI
ALOC = assembly language lines of code for CSCI

LOC = total executable lines of code for CSCI

59

Values for HLOC, ALOC and LOC are determined in Workshcet 4B based upon unit-level

values for these variables Worksheet 4A.

Complexity (SX): The "SX" metric is derived as follows:

SX = (1.5a + b + 0.8c)/NM

where: a = # units in CSCI with sx ;. 20
b = # units in CSCI with 7:5 sx < 20
c= # unit in CSCI with sx < 7

NM-= # units in CSCI
sx = complexity for unit

Values for a, b, and c are determined in Worksheet 4B based upon unit-level data
provided in Worksheet 4A.

Modularity (SM): The "SM" Metric is derived as follows:

SM = (0.9u + w + 2x)/NM

where: u-= # units irn CSCI with MLOC <. 100
w= # units in CSCI with 100 < MLOC < 500
x= # units in C8CI with MLOC > 500

MLOC= lines of code in unit
NM-= # units in CSCI

Values for u, w, and x are determined in Worksheet 4B based upon unit-level data
provided in Worksheet 4A.

Standards Review (SR): The "SR" metric is derived as follows:

SR =1.5 if DF > 0.5
= 1.0 if 0.5 > DF > 0.25
- 0.75 if DF < 0.25

where: DF = (# "No" responses) / (# "No" + "Yes" responses)

Values for # "No" responses and # "yes" responses are determined in Worksheet 111B
based upon unit-level data provided in Worksheet l A.

3.3.3 Software Reliability Prediction

The results of using Reliability Model I is a prediction of software reliability for each
block in the system/hardware block diagram. A description of the format and
documentation required for a block diagram is in MIL-STD 756B, Task Section 100.
The software reliability prediction numbers should be entered on the block diagram
and incorporated into the mathematical model of that diagram. The use of these
procedures and assumptions made should be documented under paragraph 2.3.8.1,
Software Reliability Assumptions, in that task section.

When using Model 1. the predicted software reliability figure of merit is a fault
density as described above. The predicted software reliability figure of merit is a

60

probability that the software will not cause failure of a mission for a specified time
under specified conditions. The probability of failure for a specified period of time is
given by the failure rate, the expected (average) number of failures per unit time,
usually taken as a computer-or CPU-hour. Because the failure rate has a direct
correspondence to the definition of software reliability, it is selected as the primary
unit of measure for software reliability.

The fault density predicted by Model 1 is used as an early indicator of software
reliability based on the facts that: (1) the number of problems being identified and
an estimate of size are relatively easy to determine during the early phases of a
development and (2) most historical data available for software systems support the
calculation of a fault density, but not failure rate. Fault density is the number of
faults detected (or expected to be detected) in a program divided by the number of
executable lines. Fault density was found to range from 0.005 to 0.02 in high quality
software, in early research on software reliability. The prediction of fault density is
suitable for the early stages of software development. As information about the
intended execution environment becomes available, the predicted fault density can
be translated into a p-edicted failure rate.

The fault density cannot be used directly in the system block model. Instead it can be
used as an indicator for unreliable components or critical reliability components.
The fault density derived by the prediction merthods can be compared to Table 3.5
which contains industry averages or with the specified fault density requirement, if
stated in the Requirement for Proposal (RFP). Actions can then be taken in ,he early
phases of development to remedy pinpointed -unreliable components through
redesign, reimplementation or emphasis and rework during test.

6 1

APPLICATION TRANSFORMATION
TYPE RATIO

AIRBORNE 6.2

STRATEGIC 1.2

TACTICAL 13.8

PROCESS CONTROL 3.8

PRODUCTION CENTER 23

DEVELOPMENTAL NOT AVAILABLE

AVERAGE 10.6

Table 3.5 Transformation for Fault Density to Failure Rate

3.4. Data Collection Framework

The RPFOM data collection process should be applied to software projects during their
development. In the present study it was necessary to apply these procedures to
completed projects in a manner which emulated their development. Only project data
sources which (would have) exist(ed) at the software life-cycle phase corresponding
to the metrics of interesi were referenced for each RPFOM. This careful attention to
the timeliness of all data sources was necessary ip order to meaningfully apply and
evaluate the reliability prediction methodology in the present study.

3.4.1 General Procedures

General procedures that supported the RPFOM data collection activities are described
in the following task sections of the SRPEG:

a. Task Section 101: pp. TS-9-TS-10: Software Reliability Prediction based on
Application,

b. Task Section 102: pp. TS-11-TS-13: Software Reliability Prediction based on
Development Environment.

62

c. Task Section 103: pp. TS-14-TS-17: Software Reliability Prediction based on
CSCI Level Software Characteristics.

d. Task Section 104: pp. TS-18-TS-20: Software Reliability Prediction based on
CSCI/Unit Level Characteristics.

3.4.2 Life-Cycle Phase Worksheets

Detailed worksheets for each task procedure can be found in the body of the task
section. Refined task worksheets and answer sheets as actually used in the
experiment are contained in the instruction manual. These worksheets were
extracted directly from the SRPEG, with the goal of simplifying their organization,
clarifying many of the individual worksheet questions, and resolving several points
of inconsistency in worksheets and equations. These refinements are discussed in
Section 3.5 and are incorporated into Tasks 101 through 104 of the Volume 2
guidebook.

The instruction manual was organized as a stand-alone document for use by data
collectors. Metric worksheets and answer sheets are arranged there in the sequence
of their utilization. Associated detailed instructions also appear there. The RPFOM
data collected for each test project is specified in the metric worksheets. Each work
sheet targets a specific metric(s) (e.g., Quality Review), software life-cycle phase
(e.g., Detailed Design), and software component level (i.e., System, CSCI, or Unit) as
illusirated in Table 3.6. The collected data can be recorded manually on mctric
answer sheets prior to entry into the RPFOM Database, as was done during the present
study. Answer sheets were prepared to support all worksheets corresponding to a
specific software component level and life-cycle phase.

These worksheets and answer sheets were used as directed. Then the collected
answers were entered into the RPFOM Database.

3.4.3 Database Development

The RADC software prediction methodology requires the co!lection of a significant
amount of measurement data from software project documents and source code.
Further, the necessary computations of these raw metrics and their summarization
into meaningful system and CSCI-level RPFOMs is itself significant. Such could not bc
economically accomplished without the support of an automated DBMS. It was
determined early that a DBMS-based application package was needed which would:

a. Provide data entry capability for every metric answer sheet in the
instruction manual.

b. Automatically perform as many of the computations on the corresponding
worksheets as our effort and schedule budget would permit.

c. Permit the user to enter answers from any remaining computations on the
worksheets.

d. Retain all original data and computed answers.

63

Requirements & Design Implementation
S/W Characteristics (S) S/W Characteristics (S2)

X x

~~a ca > • .c• • 8 . ,1•.'< >
Uj < >*

M 0j

a i U U .. 0-

-, ,____

•=~~2 ° IIIi
*.• •• 4 , .4

....... . . .
N. C t

C4 COI) 4

4 4 44

, • l:: * , , . --
, , • 444•• • •

,.4.414. 4 " 4 4 4 - - -4

• 4 6 44I

< #LL4 4

00
E04

4 4

44
M 0

- - 4 4 4 44 4 4

CO) 4A 4 44
* U 4

Ct ~ ~ 6 44

e. Automate as many combinations of system and CSCJ-Ievel RPFOMs from the
SRPEG and instruction manual as are meaningful for subsequent
evaluation.

f. Perform interactive computation of user-selected RPFOMs and retain the
results.

The resulting RPFOM database is a close model of the RPFOM worksheets/answer
sheets and it implements the natural entity relationships between them. This data
base was implemented within the IRMS. Figure 3.3 illustrates the RPFOM database
relational structures. These structures implement the various worksheets and
answer sheets in Table 3.3. They also parallel the system, CSCI and unit hierarchy of
each software project in order to record applicable metric data. Volume 2 of the Task
III report provides definitions for all of the data items in these structures.

All RPFOMs and a few of the calculations on raw metric data are performed
automatically (i.e., Si, S2, A, D1 , D2 , SL, SM, SX and SA). The remaining calculations
must be computed manually and the results entered into the database. We were not
able to automate as many of the basic computations as originally planned due to
budget constra;nts but the potential for doing so exists.

In summary, the RPFOM database is comprehensive and fully automates the RPFOM
data management functions for Tasks 201 through 204. excluding the calculations for
Worksheets 2C and 10C. These can be added in future experimentation. The database
is user friendly, as it is based on the standard Mac-user interface through 4D.

Primary areas to consider during future software reliability experimentation are
automation of the remaining Worksheet 2C and IOC calculations, as noted above, and
the interface between the RPFOM Database and AMS which feeds it. Right now the
latter is a manual interface and need not be. The majority of SRPEG Worksheet 1iA is
derived presently from the AMS Worksheet E. New effort can be directed to
automating this interface and to enhancing AMS to automatically provide the
remaining Workshcet 1 1A metrics while it processes software project source code.
Additional candidates for such enhancement are SRPEG Worksheets 2. 3 and 10 (all
phases) which could be similarly interfaced to equivalent AMS Worksheets. This will
accommodate software development projects which utilize SREM, RSL and SDDL to
formalize these metric inputs to AMS.

3.5 Refinements to the SRPEG

Refinements made to the SRPEG during this study can be classified into global
changes, worksheet changes and equation changes. They are made in Volume 2.

a. Global Changes

1. All occurrences of "NA" were deleted for components of metric
questions which require a numeric response. If a value cannot be
determined for a numeric question, the corresponding item on the
answer sheet (and in the data base) should be left blank. All other
"NA" responses for non-numeric questions should be addressed as
being "Not Applicable to Sample Project."

65

RPFOM Worksheet 0 RPFOM SUMMARY

CSjd A Parpen CSme A
xDate DPaetCI A
Analyst A Project A
Source Document T Level A
Application A DEl R ________

AVG FAULT DENS R System Level CH R RPFOM Worksheet 11 A
S1 -SSR R CSId A

PFMWrsetISASSR Fi Parent CSCI A
CSO WoIsee 1 ST_-SSR R Parent CSC A

CSdASQ.SSR R xData D
DaaCllco D RPFOM WS 2ABC Discrepancies R AnalystA

xDate Number of Requi I MO_1_3 A
Dev Environment A Analyst A S2MO1A
DI CS - d A RM0-1-4A
02 R Phase AIMO14

TC 1 1 A RPFOM Worksheet 4AB
TOC12 A O.SId A_______

RFMWoacsheet2A STR la- L RPFOM Worksheet 11 B
xDate D xDate 0 l b IOSId A
Analyst A 1c L M0_1 -2 A
CS -Id A 2a I MO I3AI
AM 1IA I 2b I MO 13B
AMi1_18 1 2c f Mý1-30 R
AM 1 1C R MO1 30, A
AM-12A I FRPFFM Worksheet 1OCA MO__1-4,A
Am 1 23 C I ~d A MO 14B
AMl*12C R AC71 3 A

A01-4 A
A71-5 A

______ _____ A
RPFOM Worksheet 2B PMWokhe2DA-11A
x~ate D AU-21 A ______

Analyst A xDate D0 AU 2 2 A RPFOM Worksheat 10OD
CS_-Id A Analyst A CS~ld A
AM_3_-1 A CS..Id A RFMWrset1C A_12 I
AM_4_1 A AM), 3A R PO okhe 0 AU_1_2BA
AM5 ! A AM . -3B P CS-ld A AU 1 2C
AM_6_1 A AM)130 R ParemtOSCI A AU_1_20 A
AM_6_2 AML.-3D A Parent CSC A _W1D
AM.3 A AM22 A xDate D _13I
AM-6 -34 A Analyst A AU -130

AM-64 ACP 1_ A IAU 13C R
44-11 A Cpij-A

AM72A ~RPFOM Worksheet 1013PI B

RPFOM Worksheet 2C CSjld A
x~ate D Analyst A
Analyst A ACý_1_7 A
Parent 0501 A AU-11 A
CS Id A AUI14A R
AM_ 1_3 A AU_-48 R
AM-2-7 A AU..1.4C R

AU.)30D A[

Figure 3.3 RPFOM Database Relational Structures

66

2. An option of "UNK", or unknown, has been added to the answer sheets
and data base for most of the non-numeric metric questions. This is
used when a "Yes" response may be warranted, but cannot be chosen
with certainty due to the unavailability of information.

3. Questions IG and 1H on Worksheet IB, Developmental Environment,
were vague regarding average levels for both education and
experience. This was resolved by placing the average experience
level at three years and the average educational level at a bachelors
degree.

4. Worksheets for Standards Review were established for data collection
at the CSCI lkyel, Unit level, and CSC levels. It was determined that
only the CSCI and Unit level worksheets were appropriate.

5. For Quality Review Results there was an issue of whether we could use
AMS answered questions for this phase of the life cycle. It was
determined that these three metrics should be based solely on
documentation as a data source, since source code does not exist at this
point in the life cycle.

6. The size requirements for a unit set by the SRPEG seemed to be
excessively large for the modularity metric. Unit size set by the SRPEG
list a small unit as under 200 lines of code, a medium size unit had
between 200 and 3000 line of code, and a large unit was over 3000 lines
of code. Our changes resulted in lowering the size of a small unit to
under 100 lines of code, a medium size unit has between 200 and 500
lines of code, and a large unit is over 500 lines of code.

b. Worksheet Changes

1. Worksheets 2A, 2B, 2C, 2D names were changed as follows:

From: Checklist 121 To: Worksheet 2A
Checklist 122 Worksheet 2B
Checklist 123 Worksheet 2D
Checklist 134 Worksheet 2C

2. Woiksheet 2A. Question AM.l(4) - The word 'exist" was omitted in the
question. Both possible responses were"no." One of these was changed to
"yes.

3. Worksheet 2B, Question AM.6(1) - Ambiguity in this question was corrected.
The duplicate CP.I(l) question was deleted.

67

5. Worksheet l A - Only the following questions are answerable utilizing AMS
Worksheet E as source:

MO.1(3) SI.1 (5a) SI.4(4a) SI.4(10b)
MO.I(5) S1. 1(5b) SI.4(5) SI.5(3)
MO.1(7) SI.1(5c) SI.4(6a)
MO. I(9) SI.1(5d) SI.4(8a)
SI.1(2) S1.1(10) SI.4(9a)
SI.1(3) SI.4(1) SI.4(9b)
SI.1(4) SI.4(3a) SI.4(10a)

Consequently, only corresponding questions in Worksheet l1B can be
answered. The equation remained the same but the total number of
responses are lessened to "23."

6. Worksheet lIB -. The equation at the end of the work sheet asks for no/(no +
yes) and assigns this value to DR. However, none of the questions in this
work sheet gave a yes/no response. We evaluated all of the questions
inserted an equation that would give a valid yes/no response into the
questions noted below:

MO.l(5) SI.1(2) SI.4(1)
MO.1(3) SI.1(3) SI.4(5)
MO.1(6) SI.1(4) SI.4(12)
MO.1(7) SI.1(5) SI.4(13)
MO.l(8) SI.2(l) SI.5(3)
MO. 1(9)

The following additional changes were made to specific questions on
Worksheet liB:

MO.1(9) This question did not have a corresponding question in
I 1B. An appropriate question with yes/no conclvsion
was inserted.

MO.2(2),(3) Both are hardware questions and were consequently

deleted.

SI.4(9)c. An omitted minus sign was restored in the calculation.

c. Equation Changes

1. Development Environmcnt eqtuations (SRPEG: TS-I1; RDC.: 2-5):

SRPEG: Dc = No. of methods and tools applicable tc system (i.e.
"yes")/38.

New Equation: Dc = No. of methods and tools not applicable to system
(i.e., "no")/38.

68

Anomalyx: The SRPEG Dc results in a larger fault-density multiplier
correlated with an increase in number of beneficial methods and tools
used.

2. Anomaly Management - SA (SPREG: TS-13; RDCI: 2-5):

SRPEG: SA= 0.9 if AM > 0.6
= 1.1 if AM< 0.4

New Equation: SA = 0.9 if AM < 0.4
- 1.1 if AM> 0.6

Anoma ly".: An increase in AM (proportion of "no" responses)
corresponds to a decline in the SRPEG SA (fault-density multiplier), thus
incorrectly effecting a bigher predicted reliability.

3.6 Data Collection Results

The results of this study classify into two major subjects:

a. Effort expended on each study activity and on the individual work sheets
for each test project.

b. RPFOM Numbers computed for each test project: first as complete software
systems, then for each test sample at the PDR and Code and Unit Test (,C&UT)
phases.

Findings and Conclusions are discussed in Section 3.7 and are based on our utilization
of available resources, application of refined RPFOM worksheets and equations, and
conduct of the required study activities.

Analysis and recommendations regarding the RPFOM metric multiplier coefficients
are provided in Chapter 5.

3.6.1 Effort Summary

Table 3.7 provides a summary of the combined effort expended by project personnel
in the performance of the study activities. These numbers are estimates and are
based on project records and notes.

69

ACTIVITY MANWEEKS PERCENT
OF EFFORT

AMS Familiarization 4 6

4D Familiarization 4 6

Instruction Preparation 21 30

Database Development 10 14

Material Set-up and Control 3 4

Orientation and Training 3 4

Data Collection and Calculation 25 36

Task III Total 70 100

Table 3.7 Task II! Activity Effort Summary

The products of this work for future RADC experimentation ii. software reliability
prediction can be categorized into:

a. Documentation and source code for four software development projects to
be maintained in the RADC software reliability project repository for
future experimental use.

b. Recorded effort data for two of these projects (Sim/Stim and SCENE) upon
which to estimate future efforts to measure and predict software reliability.

c. Raw measurement data from Lhese two projects to incorporate into the
RADC software reliability data base for I ture experimental analyses.

d. Computed software reliability data from these project test sampiecz for
comparison with software testing results.

e. Simplified instructions for software reliability prediction, and experience
gained - both a basis for recommendations and revisions to the SRPEG.

70

f. Enhancements to the IRMS utilizing a modem DBMS. The enhancements
included an automated SRPEG worksheet management and RPFOM
computation capability.

g. An IRMS workstation interface to the RADC Automated Measurement System
Worksheet E for automated source code reliability measurement.

Tables 3.8 through 3.11 provide an estimate of the effort expendcd to process each
RPFOM worksheet for both software projects utilized in the study. Tables 3.8, 3.9 and
3.10 show the separate data collection and data entry effort for each worksheet at the
System, CSCI and Unit levels, respectively. Estimates for the system level worksheets
are approximations. The remaining estimates are based on timing a few samples of
each worksheet and then averaging. Similarities on the average times for several of
the CSCI level worksheets in Table 3.9 are due to the unavailability of detail design
specifications and the generic answering of "no" to applicable questions.

In Tables 3.8, 3.9 arid 3.10, the total number of CSCIs and Units are shown for each
software project, and average worksheet time is accumulated accordingly. In the
right-hand columns of these tables, this information is averaged and accumulated for
both projects in combination. Table 3.11 summarizes all of this information into
accumulated effort for data collection and data entry for all worksheets for the
individual and combined projects.

Based on the personnel and software projects utilized, we believe these effort tablcs
to be useful predictors of future software reliability prediction efforts for similar
applications. SAIC and RTI data collection personnel qualifications wer.- quite
representative of those called for in Section 3.2.3. Sim/Stim is representative of a
medium software development project. having a total 72K LOC and an average of 154
LOC per unit. SCENE is representative of a small project, having a total of 24K LOC and
a very wide range of unit sizes which average 142 LOC each. Combined, Sim/Stim and
SCENE represent sinall-to-medium project whose units average about 148 LOC. For
larger projects, one can extrapolate effort estimates based on the information
contained herein. A table is provided for this purpose in Section 3.7.

3.6.2 RPFOM Numbers

RPFOMs were computed both for the two test projects and for the unit and CSC
integration test samples selected from these projects. The complete set of
computations specified in Section 3.3.2 were performed for all four Software
Development Life Cycle phases on each software project. This yielded the Application
(A) and Development Environment (A*D) RPFOMs at the System level, and the refined
Requirements and Design (A*D*S1) and Implementation (A*D*SI*S2) RPFOMs at the
CSCI level. The Implementation RFOM also was computed for each individual test
sample. All RPFOMs and their underlying metrics are documented in Tables 3.13
through 3.17. Table 3.12 provides an index of their organization and content. Table
3.18 contains a summary of the test sample RPFOMs.

3.7 Findings and Conclusions

Analysis of the computed RPFOM values is documented in Chapter 5. This section
prest'nts conclusions regarding the RADC software reliability prediction
methodology, based on the technical activities which were performed for this task
and the effort expended. In addition, recommendations are made for continued

79A

Table 3.8. System Level Worksheet Effort (Minutes)

SIM/STIM SCENE COMBINED
Work - s
Sheet Activity #SYS TIME #SYS TIME #SYS AVG CUM

0 DC 1 10.0 1 10.C 2 10.0 20.0
DE 0.5 0.5 1.0

1A DC 60.0 60.0 60.0 120.0
DE 0. 25 0.25 0.25 0.5

1B DC 6 0. 0 60.0 60.0 120.0
DE 1.0 1.0 1.0 2.0

Total DC 1 130.0 1 130.0 2 260.0
DE 1.75 1.75 3.5

Legend: DC- Data Collection
DE - Data Entry

7 1

Table 3.9. CSCI Level Worksheet Effort (Minutes)

SIM/STIM SCENE COMBINED
Work -
Sheet Activity #C's AVG CUM #C's AVG CUM #C's AVG CUM

2A DC 4 0.5 2.0 1 0.5 0.5 5 0.5 2.5
DE 1.0 4.0 1.0 1.0 1.0 5.0

2B DC 0.5 2.0 0.5 0.5 0.5 2.5
DE 1.0 4.0 1.0 1.0 1.0 5.0

2D DC 1.0 4.0 1.0 1.0 1.0 5.0
DE 1.0 4.0 1.0 1.0 1.0 5.0

3A DC 0.5 2.0 0.5 0.5 0.5 2.5
DE 0.5 2.0 0.5 0.5 0.5 2.5

3B DC 0.5 2.0 0.5 0.5 0.5 2.5
DE 0.5 2.0 0.5 0.5 0.5 2.5

3C DC 1.0 4.0 1.0 1.0 1.0 5.0
DE 0.5 2.0 0.5 0.5 0.5 2.5

4B DC 40.0 160.0 40.0 40.0 40.0 200.0
DE 1.0 4.0 1.0 1.0 1.0 5.0

10A DC 0.5 2.0 0.5 0.5 0.5 2.5
DE 1.0 4.0 1.0 1.0 1.0 5.0

10B DC 0.5 2.0 0.5 0.5 0.5 2.5
DE 1.0 4.0 1.0 1.0 1.0 5.0

10D DC 0.5 2.0 0.5 0.5 0.5 2.5
DE 1.0 4.0 1.0 1.0 1.0 5.0

11B DC 120.0 480.0 120.0 120.0 120.0 600.0
DE 3.0 12.0 3.0 3.0 3.0 15.0

Total DC 4 11.0 1 2.8 5 13.6
Manhours DE 0.8 0.2 1.0

72

Table 3.10. Unit Level Worksheet Effort (Minutes)

SIM/STIM SCENE COMBINED
Work - - - - -

Sheet Activity #U's AVG CUM #U's AVG CUM #U's AVG CUM

2C DC 466 38* 4.75 181 620
DC 0.25 117 116 0.25 29 0.53 329
DE 0.5 233 38* 1.5 57 0.56 347
DE 116 0.5 58

4A DC 10.0 4660 154 10.0 1540 10.0 6200
DE 2.0 932 2,0 308 2.0 1240

10C DC 38* 13.0 494
DC 0.5 233 116 0.5 58 1.3 806
DE 0.5 233 38* 0.5 19 0.5 310
DE 116 0.5 58

11A DC 3.0 13980 154 3.0 4260 3.0 18600
DE 0.5 2330 0.5 770 0.5 3100

Total DC 466 39.6 154 14.4 620 54.0
Mandays DE 7.8 1I/ 2 / 10.5

Documentation existed for these units only

73

Table 3.11. Worksheet Effort Summary by Level (Manweeks)

SIM/STIM SCENE COMBINED
Work 1 - -

SSheet Ativity # GUM cUM # cUM

System DC 1 0.27 0.27 2 0.54
D E 0.00.00 0.01

CSCI DC 4 0.28 1 0.07 5 0.35
DE 0.02 0.01 0.03

Unit DG. 466 7.92 154 2.88 620 10.80
DE 1.56 -54 2.10

Total DC 8.47, 3.22 11.69
Manweek DE V/,/ 1.58 .5 2.14

74

research in the applied software reliability prediction technology specified in the

SRPEG.

3.7.1 Support Tools and Database

The IRMS workstation (a Mac I1-based system) was a very effective and low-cost
mechanism for the management of large volumes of software project measures.
Operationally, the RPFOM Database application has been easy to use and maintain, and
has yielded high productivity. It is strongly recommended that the metrics which
were not automated and the manual interface to AMS Worksheet E be automated in
future versions of the IRMS in order to increase this productivity.

Developmentally, AMS and the DBMS were difficult to learn to use and were
unpredictable in some aspects of their operation. Both were acquired in iheir first
release versions, and to some extent we were field testing them. Documentation was
minimal and no formal user training was available for either product. We worked
through these difficulties and our subsequent operational application ran smoothly.

AMS is a very useful and sophisticated measurement automation tool. Its Worksheet E
should be enhanced to extract all of the software measures required by SRPEG
Worksheet IIA. In addition, it would be potentially very useful to correlate the other
AMS worksheets with the SRPEG worksheets, and automate their interfaces. This
would provide the mechanisin to fully iategrate the IRMS workstation developed
under the current contract into the Software Life Cycle Support Environment
(SLCSE) facility at RADC.

A number of faults were encountered with the AMS and they were reported.

It is expected that the fault in AMS which prevents it from reliably precessing
FORTRAN IlTCLUDE files will be corrected in a subsequent revision. Meanwlrile, it is
essential that these statements be removed (or commented out) in source files when
running Worksheet E. Further, our experience with this function of AMS shows it to
be both expedient and economical to run AMS on large mainframe systems.
Operation on a multi-user VMS VAX 780 or single-user MicroVAX 2000 was
unacceptably slow. On the VAX 8650 the production rates were very acceptable for
this heavily compute-bound source language processor.

The present study has demonstrated the utility of a Macintosh-based DBMS for
-oftware reliability prediction data management and analysis, and the potential for a
Ma(. interface to VAX-resident software reliability tools. This interface could be
realized by completing an automated connection between IRMS and AMS, and by
incorporating IRMS enhancements to automate all metrics calculations.

3.7.2 Software Projects and Materials

The total available documentation arid source code for Sirmz/ý,k.:1 and SCENE includes
the specially prepared detail design specifications (by project consultants) for each
of the experiment test samples. These software development project materials
adequately support the two primary objectives cf the current task:

a. To evaluate the software reliability prediction methodology in the SRPEG by
utilizing the specially derived instructions for data collectors on complete
software systems.

75

Table 3.12 RPFOM Number Index

Type Level Project Table Page

Project CSCI Sim/Stim 5-7 5-9
SCENE 5-8 5-13

Samples Integ Sim/Stim 5-9 5-14

Unit Sim/Stim 5-10 5-18
SCENE 5-11 5-22

7

76

C~j Ln - l - ~ CV 0 N

-L -9 6 ci c'0 ci) C5 C

0)~ 0 0) 0c 0q 0 0 0 0

a.C

in

0 0-

in0 0

00

U. c

C. 0 7oE
m0 - -n-

mgf . 1 r r w

CL -

Cu

Cu.C/ '. 4l -V -nC) C) n c l

07 0 0i 0 0

Cr'
LL C. C') C'

- C') C) C') U) C') co) C) C) C' '

.2; Q) NC' COY CJ N

C') a:

77) C'

I .0 INj Uo') N Cm CD N
0 a ~ C\- -. N Cl) C Cl) N~ cn l t
LJ 5 a 0 0 0 C. 00 <

04C a- -W6 6ci6 c

ccc~ crIq U

CLC!, C

W Q

0.

U. co
CLu

CC.

A-~

C-i

CD T ~ C, C, C ~ C ' ' C', C C, C CM)

a 0 0 0 0 02 0 0

- N CC',CC,

Cl) Cl) cn l) l) l .)) Uf)
0iC C~ 00j CCj -~ N

<~ I C c

<<

0o 0 c
Cu& cc_ _ (a_

C0 L _ _ _ I _ _ - _ _ _ 1_ _ _

78

C l
0 ~ CM 0n v 0~ 0 0I,-

'L CV co F4 ') (1) .1NC' '0L 02 0 0 0 0 0 0 0

C) (0 CD C)ý U

0-u

(3)

Cf)Cl) cw)

0 Q

CC.

U-J

0F E

0-

Cl) -n -n -l -q C. -. l l l

C' C0 0 0

cm CV N

I-. N C') C') C') T' T

CLC

0 cc

C-)V CV

79V C ') C) U

-1E. M c\J IM 04 C
LL C! C! ') C

wcl

as

x U) Ul)

0 C

LL#

Cu-ý

U.l

-a l .) c) C) c) l O l

04 CUcf M ~ -I 1-J -N -I -M (

CL0 0 0l

ujC
_

(n cc
CL' ' l C' I C ' C) C) C) C

C' C U U U C'J U C' 80U '

C7 -9 6-i

T C
3 (n

ca Mu

a- 2M

0 ~ 04
co w

m0

0 cu

U._ _ __ _

w (n

Cfj)

ci o

li C) m cr) cn) Cl) C ~C) C ') l n Cn C) Cl)
CJ . N cI C-\, C'J C1 ('M CJc"j

U) U)

'CZC' C')

- (NU) U C') C')

91R

M .2 CY - N N- C% -4
(1 C) N VC) Z;) N; C,0 16 0 0 0 0

C0a

).c

LL.

U)U

Cu

oc

CM 0

C.- -i Ci Ci -

0.

COC

0 0 0
F-J N cn N

CCD
0 ~&J<

Cui2.

I-c) C L UC ~ ~ C' ~ (~ (

N) EE N ISa (N N N

N- NL U) ccj1

CM -~ Nl N C) C') CN C") N C')
C! 0 0) 0 0

00

a-

to (.0
to (D

C, C'O C')

0C.) C')
C') C')

0 0

CD

(00 >

oc

Clu

0 20

CU

m L 0 C)) 0n 01 r .

asm CY C N Nv N C N

N u~

<2C) ' C', i (n U') Ct) Cl) C/) C') C'

w 0 0(0 00 0 M

< ;j

C.) CL/a

83 C) '

oL Z Q 0 0 a 0 0 0 a

(TA U):

s2.

U-U

00

CL

cc

m) > R .: -

CD

0 00
* N N N 4w

C'

.07

I-.L 0
Q -> C- Cl c C0 C l) C f) C T Cr) C

M Nu

U) U
- ~~ ~ U L-CJ N ' '

_ _- 6M cm cvc c c

<< 6~) () U) Z

00r
cCu

84

CDC

a. a

0 0c

0' w O

ClU)

C- 0

0.C C'
00 0

o> -

0.

0 '4 'II) .

<.

LL
<, Kn co - -

I - - -

0CD
C- 0c

CL

0 U) U) 1 -. - -85

CC

N~~~L LO)**- ~ . ~

00

CD U

((a

um-

Q

Cl)

UE -

0 000

> i Ci C', C')

C/)

C' C) ') C' C) C') C\A C') C') T' '
<

0 z

6 0 0 00 0 0806

Z; CM C-4 m~ cy C) CMj m' ' co
0 0 00 0 0D 0 0 0 0 CD

a. -9 d 6 c

CC

0 cc

C,,

0,

cn 0c

IR q
C,,:

0 0 0

>

CDU

-i cn cr) CV) c') C.) ce) Cl) C') C") Cl) C
CMj NM c CM CMj CMj N CM CMj CMj CM

C'J CM
(I) (j) T

a: O (I l C') C')

4< CCD CMl

0 0

87

cm Ln qT CY NY -I 04 W) N
C- - C.) N C') C')0L 0i 0I 0 0 0 0 0 0 0 0LL 0S

0L __ _ _ ____ ____ __ _ __a__;

CCO

Cl)
0& 0

0.

Cl)D

0

> 'C') Cl) C') C')C'

CL

-~~4 IV ' ') C) C) ' C.) C.) ') C')

C~~U 0) cozo
< - Nn N 'nC

C5 cc\ ;

CO O C) O ' '

. . -88

-~ LI -r CY -Y NY -

- 5(n

00

(OU 0

0 *l

4o 00

LU

QI

ClU)

0 -O

-u- - 4

I

0U
cn m

C. LC

U89

cm.' 0 0 0M 0o 0l 0o 0 Go 0 0V

0L 02 0 0 0 c; 0 0 0 0 06

0r. m, U

c~J &

CL L

0
0L.- - - - - - -

E
'Ur

uj

U,) U, Ui U,

C#) cm

0 0 2

cv) CV)CW)v C)C') C.) Cl) C') C.)
cu C~ Y Ycm Cl J CMJ C~j

~ 0 0 0 0 0 0;

C'J CMJ

<44 1ý4 cT T TJ

90

CliC

IU cc U

CL,

NL &
CLo

C.) 0 0
0) .) -

LLC0.2
-IJ

C,,4
w (CD

0 V-

0~ 1-

I m a)O (0 (V~ 0o cm co N o (DJ

a 'a
(aS 0 n

a.

E In
0M 0

c., Cý.

0cc

o7

U) - - - - - - -

2

LuI

C.) 7 7 7 7

- 0U) 10 LO) LO)

0
CV Vr'.() l V c n c

I- CD. 0 ci

C IY

0 0

92

N~ m~ to IN co N~ co N go t-. ()

S0o e - a a6 a C a
09 oLL

(j)

Nl 8.
(n)

U)U

0

cc 0

(n

z '

V.L U)U)q U) U

a C.a 6

0 0 00

m c o) c n) m) Cl) c) CV) cn ') o ~ Cl Cl)
C'J N N NU W CU CY CY Nl cm N

00 00 0 0

N C

0) 0 r

CL 2 1 N (' 1-)

93) C'

Table 3.18. Task III RPFOM Summary

Test Test Sample RPFOM Components RIFCM
Project Level Name A D1 D2 S2 Number

SIm/Stim Integ SNWrv;SN 0.123 1.30 2.0 1.1 0.990 0.021
C.023

THURDT 0.123 1.30 2.0 1.1 1.154 0.024
0.037

THmUAS 0.123 1.30 2.0 1.1 1.350 0.028
0.044

"THF:O3N 0.123 1.30 2.0 1.1 0.933 0.019
0.030

Sim/Stim Unit SNWMSN 0.123 1.30 2.0 1.1 1.013

THXRDT 0.123 1.30 2.0 1.1 2.000

THUADC 0.123 1.30 2.0 1.1 2.000

THUSCN 0.123 1.30 2.0 1.1 1.000

SCENE Unit SCANNER 0.123 0.76 0.5 1.1 1.500

INFANSEN 0.123 0.76 0.5 1.1 2.250

INPSAT 0.123 0.76 0.5 1 .1 4.500

INMODE 0.123 0.76 0.5 1,1 2.250

94

b. To provide RPFOMs for test samples selected from these systems for
compa:ison with both the original development fault densities and
experimental testing results.

For Sim/Stim the available PDL is not sufficiently detailed to collect the Anomaly
Management (SA), Traceability (ST) and Quality Review (SQ) metrics. For SCENE,
detail design specifications are not available for most of the units. We were unable to
collect ST on any of them; SA and SQ could be collected on only 38 units. Still, this
incomplete condition of the project documentation is meaningful in our study since
such unavailability is factored directly into the RPFOM computatio,,s.

The SCENE detail design specifications are as-coded versions of the software. Thus,
they are not appropriate to assess as "predictors" of that software's subsequent
r-liability during test and evaluation. They have been utilized in the current study
exclusively to assess the SRPEG and RDCI RPFOM methodology and to provide data for
future use in estimating software reliability prediction efforts.

The Sim/Stim and SCENE projects can be reused to compare and validate future
refineiaents to the current RADC/SAIC software reliability prediction methodology.
M C3 and NTC also can be utilized to produce additional data points on current and
future findings and conclusions. But the most effective application of this
methodology requires a closer adherence to DoD-STD-2167A than observed by projects
available for this study (and, in effect, by most software development projects in
general). The inverse is also true; i.e., a requirement for the RADC software
reliability pre~diction methodology on software development projects would force
closer adherence to 2167A. These requirements depend upon government policy and
enforcement, and on sponsorship of additional studies in these areas in order to gain
the desired cost benefits in the long run.

3.7.3 Data Collection and Calculation

Data collection and recording on the provided work sheets and answer sheets is
primarily a technical support process. It is guided by the prepared instructions and
can be scheduled in terms of activity sequences, resource and personnel
requirements, and level-of-effort allocations. Essentially, all procedures can be
performed by junior technical and administrative personnel, except for the
questions or Worksheet 2C. These need to be answered by a programmer/QA analyst.

Data entry and RPFOM calculations utilizing the RPFOM Database are primarily
administrative support processes. Also guided by the prepared instructions, they can
be budgeted and scheduled similarly to data collection and recording.

Tables 3.8 through 3.11 show the estimated time spent on the various RPFOM work
sheets and answer sheets for both projects utilized for this study. rhis information is
summarized in Table 3-19. As you can see, most of the time was spent on worksheets
IA, 1B, 4B and liB. Data collection, when compared to data entry, represented most of
the total time. The average times for Worksheets 2A, 2B, 3A 3B, 3C, IOA and lOB
reflect the unavailability of requisite source documentation. These worksheets were
completed by entering "no" answers directly into the database. consequently the
average time expended is considerably lower than if the answers had been extracted
from available documents. The average times for Worksheets IIA and liB are low
since only two-thirds of the questions were answered using AMS. Future study can
provide additional effort data for these particular worksheets.

95

Using the information in Tables 3.7 and 3.11, it is possible to estimate the level ow
effort which will be required to collect and compute RPFOMs for various sized
projects. Table 3.20 provides this information. These projections are simply
extrapolations of the level of effort expended in the current study: first by estimated
worksheet times which are then factored by "1.8" in order to account for all
associated planning, supervision, set-up and administrative time. This weighting
derives from the 25 manweeks required to perform the complete task, of which 13.83
manweeks were spent specifically on data collection and data entry operations.

96

Table 3. ýo Average RPFOM Effort by Work Sheet (Mlnutes)

Work Sheet Activity Average lime

0 DC 10.00
DE 0.50

1A DC 60.00
DE 0.25

1B DC 60.00
DE 1.00

2A DC 0.50
DE 1.00

2B DC 0.50
DE 1.00

2D DC 1.00
DE 1.00

3A DC 0.50
DE 0.50

3B DC 0.50
DE 0.50

3C DC 1.00
DE 0.50

4B DC 40.00
DE 1.00

10A DC 0.50
OF. 1.00

10B 0C 0.50
DE 1.00

10D DC 0.50
DE 1.00

11B DC 120.00
DE 3.00

2C DC 0.53
DE 0.56

4A DC 10.00
DE 2.00

10C DC 1.30
DE 0.50

11A DC 3.00
DE 0.50

Total DC 5.17
Hours DE 0.28

Table 3.-1 Estimated RPFOM Effort for Projects (Manweeks)

Work Time " Time Per Proect (LOC)
Sheet Level Per W/S 25K 50K 100K 250K"

0 System 10.50 0.01 0.01 0.01 0.01
IA 60.25 0.03 0.03 0.03 0.03
1B 61.0 0.03 0.03 0.03 0.03

2A CSI 1.50 0.01 0.01 0.01 0.01
28 1.50 0.01 0.01 0.01 0.01
20 2.00 0.01 0.01 0.01 0.01
3A 1.00 0.01 0.01 0.01 0.01
38 1.00 0.01 0.01 0.01 0.01
3C 1.50 0.01 0.01 0.01 0.01
4B 4.00 0.03 0.05 0.09 0.23

10A 1.50 0.01 0.01 0.01 0.01
10B 1.50 0.01 0.01 0.01 0.01
10D 1.50 0.01 0.01 0.01 0.01
118 123.00 0.07 0.14 0.27 0.68

2C Unit 1.09 0.08 0.15 0.29 0.73
4A 12.00 0.81 1.62 3.23 8.08

10C 1.80 0.13 0.25 0.49 1.23
11A 3.50 2,35 4.70 9.40 23.50

Work Sheet Subtotal 3.83 6.94 13.9.1 34.54

Total (1.8) 6.53 12.49 25.07 62.17

98

4.0 SOFTWARE TESTING EXPERIMENT

To date, intuition and the advice of experts have guided much of the work done in the
fields of software testing and software reliability measurement. Controlled software
experiments require extensive capital commitment and a large level of effort and
thus have rarely been performed.

This formal experiment in software testing and reliability is a major step in
providing much needed data, obtained in a controlled environment. Section 4.5.5.3
describes the raw test results data which was collected from the application of six
standard testing techniques at the unit and CSC integration test levels utilizing test
samples from two AF/DoD software projects. Descriptive and statistical analyses ol
these raw results data are provided in Chapter 5.

4.1 Technical Approach

Software testing was conducted in accordance with the experiment desigr, is
specified in the SRTIP. Figure 4.1 illustrates the software testing process. Due to time
and effort constraints, the unit and CSC integration test samples identified in the
SRTIP were replaced with test samples which could be easily removed from their
software build environments and tested in a stand-alone manner with test drivers.

The principal elements of the software testing experiment which aie described ini
this report are:

a. The formal framework of the experiment, involving application of six
commonly used software testing techniques at different test levels.
utilizing code, samples from previously developed software test projects.

b. Conduct of the experiment

c. Tester and testing technique performance measurement and software
reliability estimation measurement.

d. Collection, documentation and reporting of all tests, test conduct and test
results based on the DoD 2167 standard and the goals of the SRTIP.

Test techniques to be evaluated were divided into two categories: deterministic
techniques and nondeterministic techniques. Deterministic techniques are those for
which one can determine without doubt that applying a given test technique to a
given code sample will find a given error. (Note that while one can determine crror
without doubt, the potential for human frror in the determination process still exists.
Thus deterministic does not imply foolproof.) Nondeterministic techniques are those
in which variability across such factors as test personnel arid software
characteristics can have profound effects on the effectiveness of the technique.

This distinction between test techniques is made to conserve time and resources.
Techniques which can be highly and consistently automated and are less dependent
upon tester expertise were seen as deterministic and suitable for empirical study.
Nondeterministic techniques require experiments with several testers employing the
test technique to the best of their ability on a given code sample. Experimental
results obtained show whether applying the technique standardly and consistently

99

xxxxxx

I-Cfl(n b C

C, w'4 x a)

(D (ID

CC
a. CL E
CLo 1- <

Ec 2 c

Q 0
ca-c =4-

CL c

I S S

0 0Wcfl

100:

finds a given error. In this effort, four testers were employed to write test
descriptions and test procedures for each test technique in the experiments.

A pilot study was performed prior to the complete set of experiments. This initial
experimentation was conducted according to the developed design and protocol as a
small, integral portion of the entire experiment. The experimental process and
products were closely monitored during the pilot, and the knowledge gained was
applied to improve the process for the remainder of the experimentation.

The experiments are designed as Latin Squares and involved four testers repetitively
testing code samples with different test techniques. The variability in results due to
the nondeterministic nature of the techniques can be averaged over all the testers
and code samples. This increases confidence that what is measured is a test
technique's performance, not a tester's performance.

Three of the experimental test techniques are dynamic, in that they involve
executing the code and failures are discovered via testing. These techniques are
random testing, functional testing, and branch testing. The fourth experimental test
technique, code reading, is static, in that the code is not executed and faults are not
discovered via testing. Both empirical study test techniques (structure analysis, and
,rror and anomaly detection) are static techniques. In order to standardize the test
recording process, faults and failures for both dynamic and static techniques were
reported similarly, as errors, on Software Problem Reports (SPRs) during testing.
The experiments spanned both the unit test and CSC integration test levels. They used
samples from two Air Force/DoD software projects. CSCI level tests were not
performed due to cost, time, and requirements for a CSCI/System level test
configuration. Eight code samples, four from each of two projects, were used as
experimental subjects at the unit test levels. Four code samples from one project
were used at the CSC integration test level. Code samples were selected based -'- error
proneness and accessibility to stand-alone testing with a driver. Table 4.1 shows the
software projects and test levels for which code samples were utilized.

Table 4.1. Test Projects and Levels

TEST TECHNIQUE

Test Experiment Empirical Study
Level Functional Random Branch Code Error & Structure

Testing Testing Testing Review Anomaly Analysis

Sim/Stim Sim/Stim Sim/Stim Sim/Stim Sim/Stim Sim/Stim
UNIT SCENE SCENE SCENE SCENE SCENE SCENE

CSC Sim/Stim Sim/Stim Sim/Stim Sim/Stim Sim/Stim Sim/Stim

101

The Latin Square framework, applied on a test level basis, organizes the experiments
in a cohesive manner. Its benefits include the following:

io. Efficient, continuous scheduling of testers and operators for the duration

of the experiment conduct.

b. Incremental execution, so that a pilot experiment can be performed first.

c. Fairly straightforward method of analysis of the resulting data.

A detailed instruction manual was prepared utilizing information in the STH, SRPEG
and SRTIP. These Instructions for Testers and Operators [111 provided a uniform
standard for the application of the various testing techniques to each test sample by
each tester. Special emphasis was placed on collecting the necessary test execution
and error data to evaluate each test technique for its efficiency and effectiveness,
test effort and test coverage, and to compare the techniques based upon these factors.

The experiment activities were performed jointly by Science Application
International Corporation (SAIC) personnel in San Diego, CA, and Research Triangle
Institute (RTI) personnel in Research Triangle Park, NC. As the prime contractor,
SAIC was responsible for the overall experiment conduct and provided the larger
level of effort. RTI, the principle subcontractor, supported each of the designated
experiment setup, pilot experiment, and extended experiment activities, and
performed an important advisory role.

4.2 Test Resources

The resources utilized to perform the experiment activities are described in this
section. Included are computing systems, support software, software project code
samples, personnel and tester instructions. All experiment activities were performed
at the separate facilities of SAIC in San Diego, California and RTI in Research
Triangle Park (RTP), North Carolina. Both facilities provided qualified technical
project personnel, necessary project background/research data, and combined
computation and documentation resources. There were no requirements or
provisions for c!assified processing or security-related tests.

4.2.1 Computing System

The same DEC and Apple computer systems used during the data collection activities
were also utilized at SAIC in San Diego and RTI in RTP in support of all experiment
activities throughout the performance of this task. SAIC provided alternate VAX
systems (a VAX 11/780, later replaced by a VAX 8550) to support software testing.
These systems operated under the VAX/VMS version V4.7 operating system. RTI
provided one VAX station 2000 running the VMS 4.7 operating system for the same
use. Electronic communications between the SAIC and RTI sites was provided via
ARPANET for VAX-to-VAX communications.

The IRMS, were a Macintosh II-based system, served as the automated workstation for
performing test data management, calculations and report generation.

Figure 4.2 shows the software test configuration for experimental testing. The test
project software samples and interfacing/support software programs were installed
on the VAX/MicroVAX systems at both of the test sites. All of the collected test data
was entered into the Mac II workstations where the descriptive analysis were

102

performed. Supplemental statistical analyses will be performed on the RTI MicroVAX

2000 utilizing SAS.

4.2.2 System Software

The following system software was utilized to conduct the software test experiment
and empirical studies.

4.2.2.1 Communications.

ARPANET was used for VAX-to-VAX communications. Terminal emulation software
(e.g., Macterminal and Mac 240) was used for Mac Jr-to-VAX communications at RTI.

4.2.2.2 Operating Systems.

VMS release 4.7 was used on the SAIC and RTI VAX systems.

4.2.2.3 Compiler.

VMS FORTRAN release V4.7 was used to compile all software code samples and all
interfacing software developed by the testers.

4.2.2.4 Data Management and Analysis.

Three software tools were utilized to managc and evaluate all test data. These tools are

shown in Table 4.2.

4.2.3 Test/Support Tools.

Three software testing and support tools were utilized to support each of the software
testing techniques. These tools were used in the same capacity at both sites and are
shown in Table 4.3.

4.2.3.1 DEC Test Maynager

DTM [21] was used to organize online test information for the three dynamic testing
techniques. Within the DTM, testers define test descriptions; each test description
defines one test, by associating together the appropriate test sample, its ancillary
data files (if any), the sample driver, input case(s), expected outputs (the
benchmark), and actual test outputs. One or more test descriptions are organized into
a DTM test collection. The DTM automatically stores test outputs and compares them
with expected outputs (the benchmark), flagging all mismatches between actual and
expected outputs.

4.2.3.2 SAIC SDDL

SAIC SDDL [23] was used in conjunction with the code review technique only. All
code samples were run through the SDDL tool by support personnel prior to the
beginning of this study. Each tester received the printed outputs of SDDLs static
processing of their code samples. These outputs consist of:

a. Table of contents for SDDLs output.

103

p >

2 CI

Cd0

A"NAN-T

U Ld

Cd,4

I Dwam

104

Table 4.2. uata Managers & Statistical Analyzers

TOOL APPLICATION I Sou
4th

Dimension Manage test results Acius

Statview Data analysis on Mac II Brainpower

SAS/GLM Data analysis on VAX SAS

Table 4.3. Software Test Support Tools

TOOL APPLICATION SOURCE

DTM Manage software samples, test
cases, test data.

SDDL Support code reading. SAIC

RXVP-80 Support error and anomaly GRC
detection, structural analysis,
and branch testing.
Also used to provide path coverage
information.

Random Support Random Testing RTI
Number
Generator

Automated Support Dynamic Test Analysis SAIC
Comparator

AMS Code Analysis, Metrics RRADC

FIRMS Data Analysis, Results Data Base S C

105

b. Source code, enhanced with indentation based on structure and with flow

line arrows in a two-dimensional representation.

c. Module cross-reference listing.

d. Module reference tree.

4.2.3.3 RXVP-80

RXVP-80 [22] was used to automate Structure Analysis and Error Anomaly Detection, to
process code samples to identify branch coverage for the branch testing technique,
and to instrument samples for path coverage information for all three dynamic
techniques. The RXVP-80 test tool combines static and dynamic analysis features.
Testers use its static features to obtain reports for the static analyses of the code
samples as required for error and anomaly detection, structure analysis, and branch
testing. They also instruct RXVP-80 to instrument the code under test with path
coverage commands for use in dynamic testing. These operations are performed by
running RXVP-80 independently of the DTM, whereas all dynamic testing takes place
under the organization of the DTM. Thus code samples which are instrumented with
the dynamic component of RXVP-80 are invoked from within a DTM test description
template file.

The following steps summarize the use of RXVP-80 for all experiment testing.

a. All Dynamic Techniques:

1. Instrument each sample with RXVP-80 to obtain path coverage
measurements.

2. Gather and record path coverage for each test case and for all test
cases in one technique application.

b. Branch Testing

I. Use RXVP-80 to produce source code listing with branches
identified.

2. Convert branches to paths and use paths to create test cases that
will meet the stopping rule.

4.2.3.4 CPU Use Procedures

Two routines (begin & end CPU usage collection) written in FORTRAN were provided
by RTI. These routines are called from the sample driver in order to measure CPU
time used for each test case execution.

4.2.4 Software Code Samples

Test project software for the present experiment consists of available life-cycle
versions of two selected test projects. Their documentativn includes some or all of the
following: system and software specifications, test plans, specifications and reports;
standards and practices for specification, design, development, and test; and system
and Software Trouble Reports. The project software and documentation aie identified
in Volume 3 of the Task ii Report [8].

106

It was originally assumed that code samples could be selected for each testing level
from archived tapes of actual code immediately prior to the test level of interest. This
assumption was based on preliminary reports of project characteristics. However,
when project tapes and documentation were received and evaluated, it becamt clear
that the projects were tested on a functional build basis, rather than separate unit
testing, CSC integration and t-.sung, and CSCI testing. Thus, a given software build
might include some untested units, some partially tested units, some partially
complete or partially tested CSCs, and so forth. The sample selection strategy was
then reworked to accommodate build testing.

The sample selection algorithm documented in the SRTIP for a given test level is as
follows:

a. Review error distributions among the four candidate projects and
construct, to the extent possible, error-prone sample pools with (in
decreasing priority):

1. Similar average number of errors per component in each pool, and

2. Project pool size of at least twice as many components as will be
chosen as samples.

b. Randomly choose which projects will be sampled, if more than enough
qualifying sample pools are created.

c. Randomly choose the necessary number of samples from each pool.

d. Validate each sample by obtaining the earliest available version of the
sample code and ensuring it contains the rcquired number of errors (see
step a. 1)

e. Repeat the steps a to d on a sample-by-sample basis for any sample(s) that
fail step d.

This process yielded a set of unit samples from the Sim/Stim project which were
sufficiently high in the calling structure that they could not easily be separated
from the build environment to accommodate stand alone testing with an independent
driver. This was unacceptable for our limited effort budget. A basis other than
random selection from among the most error-prone code was needed whicL would
yield independently testable units and CSC-level integrations of units that meet the
following objectives:

a. Samples must be selected in a uniform manner and have similar
characteristics.

b. Samples must consist of error-prone portions of code.

The known error profiles for these projects indicated that the error counts for
selectable samples would be considerably lower than before, but hopefully they
would be acceptable for our experiment. Accordingly, the following procedure was
established to reselect code samples at the unit test and CSC integration and test levels.

a. Utilize project consultants to identify a pool of units (and integrations of
units) for each project:

107

1. Which can be tested independently from the software build.
2. Whose driver development will not exceed a few man-days of effort.
3. That contain as many known errors as possible.

b. Select the fou samples from each pool which have the most errors.

Table 4.4 and 4.5 identify, respectively, the code samples and Latin Squares from the
Sim/Stim and SCENE projects which were utilized during unit and CSC integration
testing levels.

4.2.5 Personnel

SAIC's experience in applied software reliability measurement and testing
techniques is complemented by RTIs research work in the field of sohware test
experiment design and analysis. Both of these strengths have been augmented bv
contributions during Task 2 of carefully selected consultants with knowledge of the
test techniques and the experiment design. Additional consultants were utilized
during the experiment conduct; each is an identified expert on one of the selected
software projects. Specific personnel qualifications for each of the experiments and
empirical studies were as follows:

a. Activity Leader (1). Key project person; responsible for activity
assignment, coordination, completion, and products.

b. Assistant Activity Leader (1). Key project person -- assists Activity
Leader.

c. Tester (4). Programmer/test and evaluation specialist -- produces test
descriptions and test procedures; develops test drivers: performs tests for
all test techniques; analyzes test outputs and documents observed test
errors; records other required test data.

d. Consultant (2). Test project specialist; assists in preparations for all
testing; documents supplemental requirements as needed for selected code
samples and test drivers; verifies test results.

e. Data Entry (2). Administrative staff; enters test results data into the
database.

f. Analyst (3). Data analysis specialist; ensures test data is pure; reduces test
data for analysis; produces descriptive analyses of raw and tabulated data.

4.2.6 Tester Instructions

A special set of instructions [11] were prepared to guide testing. These instructions
provided information necessary for testers to conduct their tasks during
experimental testing activities. The testing activities were part of an experimental
framework, so were geared toward meeting two goals of the experimental study:

1) Ensuring each tester follows set procedures as closely as possible, so that
he/she conducts each testing technique in the same controlled manner;

2) Ensuring all data and other deliverables obtained are consistent and
complete.

108

Table 4.4. Unit Sample Characteristics

Sample Characteristics

Sample No. of SPRs Tape
Project ID (original) Source

Sim/Stim SNWMSN 8 Build 1
THXRDT 2 Build 1
THUADC 3 Build 1
THUSCN 3 Build 1

SCENE SCANNER 2 Vers. 6.0
INFANSEN 4 Vers. 6.0
INPSAT 4 Vers. 6.0
INMODE 3 Vers. 6.0

Table 4.5. CSC Sample Characteristics

Samp!e Characteristics

Project Sample No. of SPRs Tape
ID (original) Source

Sim/Stim SNWMSN 18 Build 1
THURDT 4 Build 1
THUADS 6 Build 1
THPCN 5 Build 1

109

These instructions were meant to encompass all information that testers and
operators would need during the software tcsting. Respective roles of testers and
operators are defined. (In actual application, operators were minimally utilized and
testers performed most of prescribed roles. Activities within those roles include all
aspects of testing software samples using six different test techniques (branch
testing, code review, error and anomaly detection, functional testing, random testing,
and structure analysis) at two test levels (unit and CSC). A description of each test
activity, the order of performing each activity, the resources needed (inputs) to
accomplish the tasks, and the results (outputs) required at completion of those tasks
were provided.

In addition, instructions were provided outlining how to obtain answers to questions
and solutions to problems encountered during these activities. A schedule for the
entire testing task, and references for various aspects of the activities, e.g. test
techniques. test support tools, were provided.

Chapter I of the tester instructions provides an overview of the purpose and scope of
the manual. Chapter 2 identifies the six test techniques to be applied by the testers.
and provides a high-level definition of each technique. Chapter 3 identifies and
describes usage of the resources available to this effort, including computing
systems, test support tools, forms, and management.

Chapter 4 documents procedures which testers and operators must follow in
performing their work for the experiment. These procedures range from the test
environment configuratioa stage to the documenting results and actv-.,ities phase.
This section is in essence a tutorial: step-by-step procedures are given for each test
technique. All rules, such as required order of test level execution, required order of
test technique application within a level, and assignment of samples to testers arc
provided.

Chapter 5 includes a test schedule for each test level. Attachment A of the
instructions is unique for each tester. It identifies which samples the tester will test
at each test level. It also provides a required ordering in which the test techniques
must be applied to each assigned sample. Attachment B contains all of the test data
collection worksheets to be utilized to collect the necessary test specifications and
results. Detailed instructions are provided there to complete each form. Attachment
C was developed as the pilot experiment was performed. This attachment includes
some 23 Tester Information Bulletins which were issued to clarify and/or supplement
information contained in the original instructions.

4.3 Testing Techniques

Eighteen test techniques are represented in the STH, including some that are not
commonly used in practice but are currently used in research (for example, mutation
testing). Still newer state-of-the-art test techniques were identified by testing
experts acting as consultants.

While including such promising techniques in this experiment would have provided
some much-desired data for ýhe testing community, it was beyond the scope of the
study, given that there were alreadý more methods addressed in the STH than we
could include in our effort. Further experiments of this type utilizing additional
techniques are recommended.

110

Table 4.6. Testing Techniques and Automated Tools

TESTING TECHNIQUE FUNCTIONAL SUMMARY TEST TOOL UTILITIES

Branch Testing Force execution of all possible
program branches; detect deviations RXVP-80
from exp3cted program ou' its.

Functional Testing Determine if the program performs
the intended functions fully and (None)
correctly.

Random Testing Utilize random oombinations of Random number
Inputs to Isolate incorrect
algorithms and computations, generator

Code Review Visually Inspect a program using a

checklist in order to identify types SDDL
of faults.

Error and Anomaly Perform syntax, data and physical

Detection units checking to detect program RXVP-80
faults.

Structure Analysis Evaluate control and code struc-
tures and subprogram usage to RXVP-80

detect program faults.

'' II

Early in the present study, a survey was conducted to provide an analysis of the tsc.
advantages, and limitations of state-of-the-art testing techniques. This survey was
conducted by reviewing various reference documents and reviewing test documents
from different projects. A list of these reference documents and test documents is
presented in the Task I Report [5].

The following testing techniques were selected from the referenced study, and are
evaluated in the present report:

a. Static Test Techniques
1. Code Reviews
2. Error and Anomaly Detection
3. Structure Analysis

b. Dynamic Test Techniques
1. Branch Testing
2. Random Testing
3. Functional Testing

Table 4.6 presents an overview of these testing techniques, and the software test tools
that were used to support and/or automate them. Four of the techniques (code
review, functional, random and branch testing) were performed as part of the
experimental study by all four testers at each test level. The remaining two
techniques (error & anomaly detection and structure analysis) were performed as an
empirical study by only two of the testers at each test level. See section 4.5 for detail
on thc experiment design.

This section defines each testing technique and gives a high-level description of
inputs to testing with a given technique, outputs from testing with the technique,
and an overview of the process of applying that technique. Fcr each test technique.
the definition and description given has been customized for application in this
study. For example, the specific commercial test support tools used are listed as
inputs. Also, completed test data collection forms are listed as outputs; these forms are
not innate to the test techniques, but are completed at precise points in the test
processes of this study to standardize data collection for post-study analyses. Detailed
instructions for applying each technique at the appropriate test levels are provided
in the tester instructions.

This information has been compiled with the analysis of the test results (Chapter 5)
and associated testing strategy recommendations (see Chapter 6) into a useful
Guidebook (Volume 2) for acquisition managers and software engineers.

4.3.1 Dynamic Techniques

Dynamic test techniques are those which involve executing the code in the testinig
process. Three of the test techniques in this study are dynamic techniques: branch.
functional, and random test techniques.

Black box techniques are those which do not involve knowledge of the source code:
instead, more abstract knowledge of the problem, such as that provided in functional
specifications and/or design documerts, is used to create tests. White box techniques
are those which require knowledge of the source code; tests for the software arc
designed based on knowledge of the characteristics of the specific implementation.

112

Two of the dynamic techniques, random and functional, are black box testing
techniques, whereas branch testing is a white box testing technique.

Each technique is applied at the unit and CSC test levels. All three techniques are
summarized below in terms of their inputs, process, and outputs.

Note that all dynamic techniques require an abstract specification of the program
function as an input. According to DoD-STD-2167A, the specifications applicable at
the unit and CSC test levels are:

a. CSC level: Software Top Level Design Document (STLDD) or equivalent.

b. Unit level: the Detailed Design Document (DDD) or equivalent.

For this study, equivalent specifications were produced by consultants
knowledgeable of the projects. For CSC integration samples, the consultants
identified a subset of the CSC functions to be tested within the budget and time
constraints for the study. The consultants also provided requirements for the
necessary test drivers.

4.3.1.1 Branch Testing

Ti:.: ,esting technique combines static and dynamic techniques and deects failures.
The sta:ic portion is used to determine test data that force selected branches to he
executed. The dynamic portion is used to actually run the code with these test data
and then obtain test outputs. Test personnel perform branch testing of the code
samples using the appropriate documentation and specifications. Test coverage
analysis is used to detect untested parts of the program. Output data analysis is
applied to detect outputs that deviate from known or specified output values.

Procedure

Branch testing requires creating test cases that cause execution of a specified
percentage of all branches in the code. As applied in this effort, Branch testing
consists of two subset of techniques defined in the RADC Software Test Handbook.
These two techniques are 1) static input space partitioning by path analysis, and 2)
dynamic instrumentation-based patti and structural analysis.

The first technique subset identifies all branches in the code under test. The tester
uses this information to create tests that wvill cause execution of each branch. RXVP-
80 is used to identify all of the branches in the code. The tester determines the
correct outputs expected from executing the code for each test case based on the
specifications. Then, the tester writes a test procedure for these test cases, tailors the
test driver as needed, and sets up the DEC Test Manager (DTM) test collections and
descriptions.

The second technique subset is used to execute the code under test with the tests
created, and to track the branch coverage for each test case and for the total of all
test cases. RXVP-80 is used to instrument the code under test. The tester executes the
code with the given test case inputs by running the DTM test collection, and uses the
DTM Review capability to find differences in actual and expected outputs. Execution
of the sample code instrumented by RXVP-80 generates reports on branch coverage.
Testers review these reports to ensure that their test cases meet the stopping rule; if
they don't, the tester returns to the static activity of creating more test cases to

113

execute all branches at least twice. Testers compare exvected outputs with outputs

obtained by dynamic testing, and log all errors found on SPRs.

Information Input

Inputs to the static portion of branch testing are: 1) the source code of the sample
and 2) the specifications of interest for the sample, and (3) the RXVP-80 tool.

Inputs to the dynamic portion are: 1) the source code of the sample, 2) the test cases
and test procedures generated during the static portion of branch testing, and 3) the
RXVP-80 tool.

Information Output

Outputs from the static portion of branch testing are: 1) test cases, 2) test
procedures, and 3) test activity worksheets.

Outputs from the dynamic portion are: 1) the actual outputs, from executing the
sample with each test case, 2) SPRs which document errors discovered in those
outputs, 3) test case branch coverage reports, and 4) test activity worksheets.

4.3.1.2 Functional Testing

This dynamic testing technique finds failures consisting of discrepancies between
the program and its specification. In using this testing technique, the program
design is viewed as an abstract description of the design and requirement
specifications. Test data are generated, based on knowledge of the programs under
test and on the nature of the program's inputs. The test data are designed to ensure
adequate testing of the requirements stated in the specification. Test personnel
perform functional testing of the code sample using the appropriate documentation
and specifications. Functional testing is performed to assure that each unit correctly
performs the functions that it is intended to perform.

Procedure

Functional testing entails creating test cases to exercise all functions, or a given
percentage of all functions, that the software specifications include as functional
requirements. The tester consults the appropriate functional specifications
provided, and manually creates test cases and corresponding test procedures to test
all applicable functions. The test driver is tailored as needed, and the DTM is set up to
run the tests as a test collection. The test sample is instrumented with RXVP-80 in
order to gather path coverage information; note that this is not integral to functional
testing, but is done to provide path coverage data of functional tests for experimental
analyses. The tester executes the code with the given test case inputs by running the
DTM test collection, and uses the DTM Review capability to find differences in actual
and expected outputs. SPRs are logged for all errors found.

Information Input

Inputs to functional testing are: 1) an abstract specification of the program function
and 2) the source code.

114

Information Output

Outputs of functional testing are: 1) test cases, 2) actual test outputs, 3) an SPR for
each error found, and 4) test activity worksheets.

4.3.1.3 Random Testing

This dynamic testing technique tests a unit by randomly selecting subsets of all
possible input values. The input subsets can be sampled according to the actual
probability distribution of the input sequences, thus characterizing the usage; or
according to other probabiliLy distributions. Random testing invokes unusual
combinations of input values that are frequently not represented in test data
generated by using the other test techniques. Random testing is performed to detect
outputs from the random inputs that deviate from known or expected output values.
Test personnel perform random testing of code samples using the appropriate
documentation and specificatioins. Papers by Duran and Ntafos [19] and Bell [201
provide more information on random testing.

Procedure

Random (or statistical) testings consists of randomly choosing test cases as subsets of
all possible input values according to a uniform probability distribution over the
range of values specified for each input. Working from code sample specifications
which identify all valid inputs and outputs, -the testers code a test generator routine
that randomly selects inputs. This generator is then executed to provide test case
inputs. Testers determine the corresponding correct outputs expected. Then test
cases are prepared from these test input .nd output pairs, and a test procedure is
written to execute them.

The test driver is tailored as needed and the DTM is set up to run the tests as a test
collection. The sample is instrumented with RXVP-80 in order to gather path
coverage information. The tester executes the code with the given test case inputs by
running the DTM test collection, and uses the DTM Review capability to find
differences in actual and expected outputs. SPRs are logged for all errors found. If
the stopping rule has not been met, the tester returns to the static activity of
creating more test cares to achieve the required MTTF of 10 input cases.

Information Inpit

Inputs are: 1) the source code of the sample: and 2) an abstract specification, or
equivalent, of the sample functions, including range specifications of inputs and
outputs.

Information Output

Outputs are: 1) a set of test cases and corresponding test procedure(s), 2) a completed
SPR for each error observed, and 3) test activity worksheets.

4.3.2 Static Techniques

Static test techniques are tmose which do not involve executing the code in the
testing process; instead, the source code is inspected or reviewed. The remaining
three test techniques in this study are static techniques: code review, error and

I 1 1

anomaly detection, and structure analysis. All three are white box techniques, as
defined earlier in Section 4.3.1. These techniques are applied at the unit and CSC test
levels and are described below.

4.3.2.1 Code Review

This static testing technique involves the visual inspection of a program with the
objective of finding faults. Test personnel perform an inspection of the sample code
units using the appropriate documentation and specifications. These code
inspections are driven by checklists in order to identify common types of errors in
the code.

Process

Initially, the source code is statically processed by the SDDL tool. Thus the source is
enhanced with indentation based on structure logic and with flow line arrows in a
two-dimensional representation. Other outputs of SDDL for organizational use in the
code inspection are the table of contents, a module cross reference listing, and a
module reference tree. The tester works through the checklist sequentially,
referring to the annotated source listing and above mentioned organizational aids.

The tester looks for errors (and often for poor programming practices) in the source
code and comments by examining it for attributes noted in the checklist. This
checklist identifies all aspects of the code to be studied for problems and all checks to
be made for agreement between the code and the specifications. Examples of code
attributes in the checklist are: 1) whether branch points and loop indices have been
coded correctly; 2) whether formal and actual parameters are consistent and correct:
and 3) whether specifications, inline comments, and code are consistent and code is
complete with respect to the specifications. When a problem or error is found during
the code review, an SPR is completed.

Information Input

Inputs to code review are 1) the sample source code, 2) the code rcview checklist,
and 3) the relevant specifications.

Information Output

Outputs from code review are: 1) an SPR for each error found, and 2) test activity
worksheets.

4.3.2.2 Error & Anomaly Detection

This static testing technique is applied to detect faults via syntax checking, data
checking and physical units checking of the source code. Syntax checking includes
checks for uninitialized variables and unreachable code. Data checking entails
identifying set-use anomalies, conducting a data flow analysis and unit consistency
checking. Physical unit checking looks for consistency in physical units usage. Test
personnel perform error and anomaly detection on the selected sample code units
using the appropriate documentation and specifications.

116

Process

Error and anomaly detection is applied using the following static analysis functions
of the automated tool RXVP-80:

a. Syntax checking: uninitialized variable screening, and unreachable
code screening.

b. Data checking: data flow set/use anomalies, interface completeness and
consistency (CSC integration level).

c. Physical Units Checking: checking for consistency in physical units
(e.g. feet, gallons. liters, etc.) usage.

An SPR is completed for each error found; some errors may be reported directly in
the RXVP-80 reports, some may be found by visual inspection of the code, and some
by other means during thc error and anomaly testing activities.

Information Input

Inputs to error and anomaly detection are: 1) the source code to be analyzed, 2) the
specifications, and 3) the RXVP-80 testing tool.

Information Output

Outputs from error and anomaly detection are: 1) an SPR for every error found, and
2) test activity worksheets.

4.3.2.3 Structure Analysis

This static testing technique detects faults concerning the control structures and
code st,-uctures of FORTRAN. and improper subprogram usage. Test personnel
perform structure analysis on the source code using the appropriate documents and
specifications. Structure analysis is performed to determine the presence of
improper or incomplete control structures, structurally dead code, possible recursion
in routine calls, routines which are never called, and attempts to call non-existent
routines.

Process

The automated tool RXVP-80 is used to partially automate structure analysis. RXVP-80
processes the source code and parameters describing control flow standards, and
provides error reports and a program call graph. For example. analysis of graph
cycles may indicate unintentionally recursive code; presence of a disjoint subset of
the graph illustrates unreachable, or dead, code; and calls to nonexistent routines
will be illustrated by edges with no sink nodes. The tester logs RXVP-80 error reports
and errors illustrated by the call graph in SPRs. Any errors found by other means
also are logged in SPRs.

Information Input

Inputs to structure analysis are: 1) the source code; 2) a specification of the control
flow standards to be enforced in the language; and 3) the RXVP-80 tool.

117

Information Output

Outputs from structure analysis are: 1) an SPR for every error found, 2) a program
call graph or report, and 3) test activity worksheets.

4.4 Reliability Estimation

Measurement data for software reliability estimation was collected as an integral part
of the software testing experiment since reliability estimation is based on
performance results' during test conditions. Once software is executing a failure rate
can be directly observed, thus avoiding a transformation of fault density necessary
in determining failure rate during pre-test software reliability prediction. The
failure rate of a program during test is expected to be affected by the amount of
testing performed, the methodology employed, and the thoroughness of the tes g.
An evaluation of each of these factors is included in the experiment design.

4.4.1 Reliability Estimation Number (Model 2)

The Reliability Estimation Number (REN) is an Estimated Failure Rate (F). REN Model
2 is specified in Task 201 of the SRPEG and provides the basis for our experimental
evaluation of software reliability estimation. It uses the failure rate observed during
testing and modifies that rate by parameters estimating the thoroughness of testing
and the extent to which the test environment simulates the operational environment.
Tables 4.7 and 4.8 identify these REN data elements and procedures and their
respective data collection sources and metric worksheets, as specified for Task 201.

Utilizing the SRPEG procedures, two RENs are computed for the code samples tested
during the unit and CSC test levels for the dynamic test techniques only. They are
referred to as RENAVG (based on average failure rate during test) and RENEOT
(based on failure rate at end of test). Computation of these RENs is presently
infeasible for the static test techniques. We were unable to compute REN_EOT due to
the low levels of testing and the design decision to not repair detected errors.

RENAVG and RENEOT, also referred to as estimated failure rates (F), are
computed as follows:

RENAVG = FTI * TI or
REN EOT = FT2 * T2

where: FT1 is the average observed failure rate during testing.
FT2 is the observed failure rate at end of test.

TI = .02 * T
"T2 = .14 * T and
T = TE * TM * TC

where: TE is a measure of Test EffortTrM is a measure of Test Methodology

TC is a measure of Test Coverage

118

Table 4.7, REN Data Collection Procedures

SRPEG DATA
METRIC DATA (TASK 201) COLLECTION

PROCEDURE

Average Failure Rate During Test (FTl) 12, 13, 14
Failure Rate at End of Test (FT 2) 12, 13, 14
Test Effort (TE) 15
Test Method (TM) 16
Test Coverage (TC) 1 7

Table 4.8. REN Data Sources

METRIC SRPEG
DATA INPUT DOCUMENTS METRIC

WORKSHEETS

SPRs 5 6
F OS Reports
TI Tester Logs

SPRs
F T 2 OS Reports 5, 6

Tester Logs _

TE Tester Logs 6 .
ITest Plans 7

TM Test Procedures

Software Development Plan
Software Test Handbook
Source Code 8

TC Test Plans

Test Procedures
Requirements Document

4.4.2 REN for Test Environments

The influence the test environment has on the estimated failure Rate (F) is described
by three metrics. These metrics are in the form of multipliers. The product of all of
these metrics is used to adjust the Observed Failure Rate (FT) up or down depending
on the level of confidence in the representativeness and thoroughness of the test
environment.

4.4.2.1 Average Failure Rate During Testing (FT1)

FTI can be calculated at any time during testing. It is based on the current total
number of SPRs recorded and the current total amount of test operation time
expended. It is expected that the failure rate will vary widely depending on when it
is computed. For more consistent results, average failure rates are calculated for
each test phase.

4.4.2.2 Failure Rate at End of Testing (FT2)

FT2 is based on the number of SPRs recorded and amount of computer operation time
expended during the last three test periods of testing.

4.4.2.3 Test Effort (TE)

Three alternatives are provided for measurings TE and are based upon data
availability:

a. The preferred alternative is based on the labor hours expended on
software test. As a baseline, 40 percent of the total software development
effort should be allocated to software test. A higher percentage indicates
correspondingly more intensive testing, a lower percentage less
intensive testing.

b. The second alternative utilizes funding instead of labor hours.

c. The third alternative iG the total calendar time devoted to test.

Calculate TE, based on these three characteristics, as follows:

"TE = .9 if 40/AT , 1, or
TE = 1.0 if 40/AT > 1

where: AT = the percent of the development effort devoted to testing.

4.4.2.4 Test Methodology (TM)

TM represents the use of test tools and test techniques by a staff of specialists. The
STH specifies a technique to determine what tools and techniques should be applied to
a specific application. That technique results in a recommended set of testing
techniques and tools. The approach is to use that recommendation to evaluate the
techniques and tools applied on a particular development.

120

Calculate TM as follows:

TM = .9 for TUIT ;) .75
TM = 1 for .75 > TUWIT ; .5
TM = 1.1 for TU/IT <.5

where: TU is the number of tools and techniques used.

TT is the number of tools and techniques recommended.

4.4.2.5 Test Coverage (TC)

TC assesses how thoroughly the software has been exercised during testing. If all of
the code has been exercised then there is some level of confidence established that
the code will operate reliably during operation. Typically however, these programs
do not maintain this type of information and a significant portion (up to 40%) of the
software (especially error handling code) may never Oe tested.

Calculate TC as follows:

TC = 1/VS

where: VS = VSl during unit or CSC testing
VS = VS2 during CSC integration and test, and

VSI = (PTrI'P + ITiTI)/2

where: PT = execution paths tested
TP = total execution paths
IT inputs tested
TI = total number of inputs

VS2 = (MT/NM + CTITC)/2

where: MT = units tested
NM = total number of units
Clr = interfaces tested
TC = total number of interfaces

4.5 Experiment Design and Conduct

The design adopted for this study is presented here and in the SRTIP. It is
specifically geared toward providing results useful to acquisition managers of Air
Force software. To ensure a sound, comprehensive design, the initial design was
enhanced with inputs and reviews by RTI experts in experiment design with human
subjects and statistics and enhanced with inputs and review by industry and
academic experts in the fields of computer science, software testing, experiment
design with human subject, statistics, and software metrics [17].

As illustrated in Figure 4.3, an adaptation of a figure developed by Basili and Reiter
[181, a standardized approach to the experiment design, was taken. In following this
approach, a precise definition of experimental goals in the form of specific questions
to be answered was developed from the objectives declared in the SOW and the
contents of the input guidebooks. These questions were organized into "questions of

121

0C

Uc
con

rA6

interest" and are documented in the SRTIP. Candidate statistical designs were
evaluated in terms of how well they would test the chosen questions of interest, given
the projects, test techniques, tools and other resources available.

Experiments to address all aspects covered in the two input guidebooks were beyond
the scope and resources of this study. Thus, the design was tailored to address as
much of the information in these two documents as possible, while controlling the
experimental variables to the extent necessary to preserve the statistical soundness
of the design.

A combination of experiments and empirical studies were selected to best meet the
objectives of this study. The empirical studies address deterministic procedures. so
only two testers are required to apply each test technique chosen for the empirical
study. The experiments address nondeterministic procedures and employ four
testers. Samples consist of code from actua~l software product development.

During experimentation, the software project code samples were tested using six
different test techniques. Measures were obtained for unit and CSC integration levels
of testing. The test techniques studied were random testing, functional testing.
branch testing, code review, error and anomaly detection, and structure analysis.
The study obtained quantitative measures of software test effectiveness and
efficiency during the testing process.

The experiment was performed initially as a small-scale pilot experiment. The
overall experiment design and methodology was verified in the pilot. This step
ensured the validity of the remaining experimentation and attendant findings and
recommendations. Data was collected to provide insight into the effectiveness of test
techniques for different application types at different test levels, per the test
objectives. Included are the test effort required, test coverage goals, and software
error characteristics.

4.5.1 Experiments

Experiments were designed for each of the four deterministic testing techniques.
These experiments address:

a. A study of three dynamic test techniques: functional, random, and branch
testing. Data analysis is by percent known errors observed at each test
level, by percent known errors observed by test technique, and by
percent known errors observed by test technique at each test level.
(Absolute number of errors are recorded for descriptive purposes. Since
each sample does not have the same total number of errors, meaningful
comparisons across samples are made on a percentage basis.)

b. A study of one static test technique: code review. Data analysis is by
percent of known errors detected, by percent of known errors detected at
a test level.

c. The measurement of each technique's relative efficiency, in terms of the
number of discrepancy reports filed, on a cost and time reference basis.

The experiments are grouped by test level; a portion of the unit test level experiment
is run first, as a pilot study, followed by the remainder of the unit testing, then CSC
integration and test experiments.

123

Since the experimental test techniques are nondeterministic, different testers design
different test cases when applying a technique to a given sample. Four experienced
testers are utilized to minimize differences among testers' abilities and the amount
that chance plays in the creation of a given test case. Each tester uses all four
techniques on his or her assigned code samples. This is done at each test level, and
techniques are applied in a predefined sequence utilizing Latin Squares, thus
assuring that every technique precedes every other technique an equal number of
times.

A feature of the Latin Square design is that every row and every column is a
complete replication; that is, in every row and in every column, each test method is
applied exactly once. This grouping has the benefit of removing from the generic
error term all differences among rows (test periods) and all differences among
columns (software sample/tester pairs).

The Latin Squares used in this design were specifically chosen so that the treatments
(test techniques) are balanced with respect to residual effect ir; the sense that every
treatment is preceded by every other treatment an equal number of times (once per
square). Thus, the residual effects, or the learning about the software and its faults
or errors that the tester may experi nce by applying a test technique to that
software, are evenly distributed. If a tester creates better test descriptions for
functional testing, and if he has already created the test descriptions for branch
testing, that effect is not hidden among all experimental runs, since the order of
testing is varied in a controlled manner. This setup also allows measurement of the
combined tester/sample effect.

4.5.1.1 Unit Test Level

Four testers were employed at the unit test level. Both software projects have units
preserved on build tapes. The Sim/Stim and SCENE were chosen for use at this level
because their sample pools were the most error-prone units for each project, as
described in Section 4.2.4. Table 4.9 identifies the test samples utilized from Sim/Stim
and SCENE. One sample from each project was randomly assigned to each tester. Each
tester applied each test technique to each of his or her samples.

A predetermined order in which the tester applied each test tc:.hnique was assigned
by Latin Square experiment design (as denoted by the Session designation in Table
4.9). This defines the order in which the tester created test descriptions, and then
test procedures, for that sample. It is also the order in which testers evaluated test
outputs for errors.

As shown in Table 4.9, the unit level experiment has been displayed in two Latin
Squares. In each Latin Square, the row is Pssociated with the order of testing and the
columns are associated with testers and software types. The square using the SCENE
project comprised the remainder of the unit project.

4.5.1.2 CSC Integration Test Level

Four testers were employed at the CSC integration and test level. Sim/Stim was used at
this level. Four CSC unit integration samples were chosen from a pool of error-prone
CSCs, as desciibed in Section 4.2.4. Table 4.10 identifies the samples utilized. One
sample was randomly assigned to each tester. Each tester applied each test technique

124

to his or her sample, in the order prescribed by the design. Table 4.10 provides this

ordering.

4.5.2 Empirical Studies

Empirical studies were designed for both of the nondeterministic testing techniques.
These empirical studies address:

a. A study of two static test techniques: structure analysis and error and
anomaly detection. Data analysis is by percent of known errors detected,
by percent of known errors detected at a test level.

b. The measurement of each techniques relative efficiency, in terms of the
number of SPRs filed (errors located), on a cost and time reference basis.

As shown in Table 4.11, empirical studies were conducted at the unit and CSC test
phases using the two deterministic, static test techniques: structure analysis and
error and anomaly detection. Two testers applied each technique to the same code
sample which was utilized in the experiments in Section 4.5.1, as shown in Table 4.11.
Note that since the test techniques are deterministic, only two testers were required
and the order of test technique application is unimportant. The first two testers who
completed their experiment testing duties were employed as the empirical study
testers.

4.5.3 Pilot Experiment

A pilot study was performed prior to the complete set of experiments. This initial
experimentation was conducted on the AFATDS Sim/Stim unit code samples in Tables
4.9 according to the established design and protocol. The pilot study is a small,
integral portion of the entire experiment.

The experimental process and products were closely monitored during the pilot, and
the knowledge gained was applied to alter and improve the process for the extended
experimentation. Specifically, the results of the pilot were originally intended to:

a. Fine tune the protocol. Tester Information Bulletins (TIBs) were
instituted as a mechanism to clarify the tester instructions (see Section
4.5.4).

b. Further reduce any remaining tester learning effects related to the test
techniques, test tools, an4 hardware and software environments. No
further refinements to the design were needed.

c. Provide initial data on whether significantly different results are
obtained at the two different test sites. Test results for the single tester at
RTI correlated with similar results for the three testers at SAIC. This data
is incorporated in Chapter 5

d. Provide initial data on how many of the known errors are found by the
testers employing each of the prescribed test techniques. This was
reported at the pilot briefing and is incorporated in Chapter 5.

e. Provide initial data on whether significantly different results are
obtained from the different testers working on different samples. It was

125

Table 4.9. Unit Test Latin Squares

Pilot Latin Square:

I_._Sim/StIm PROJECT

Unit TI-USCN _______ ______ TI-ORDT

Tester ! I I____ I 1_ -, IV

Session 1

Session 2 C R B______ _______

Session 3 / F I RI__

Session R B I _F IC

Unit Latin Square:

[___________ S3CENE PROJECT _ _ _ _ __ _ _ _ _ _

Unit SCANN*~ER [INFANSEN INPSAT j INMODE
T__ester I ' I I I III I 'V

Session1 F B R __,__i__!

Sossion 2 R C F

Session 3 F B R._!__

Session 4 R. C F _

B denotes the branch testing technique.
C denotes the code review testing technique.
F denotes the functional testing technique.
R danotes the random testing technique.
!,...,IV are tester identifications. Each tester must be a

unique individual.
Session denotes the order in which a tester applies the

prescribed test method to the assigned sample.

126

Table 4.10. CSC Test Latin Square

Sim/Stim PROJECT

__ _ THURDT THILIADS [SNWMSN THPCON
Tester II I *II I IV

r i

Session1 C F B R

Session 2 R B C F

Session 3 B R F C

Session 4 F C R B

B denotes the branch testing technique.
C denotes the code review testing technique.
F denotes the functional testing technique.
R denotes the random testing technique.
1, ..., IV are tester identifications. Each tester must be a

unique individual.
• actua!ly tested by Tester IIl because of Tester i1

unavailability.
Session denotes the order in which a tester applies the

prescribed test method to the assigned sample.

Table 4.11. Empirical Study Oesign

i I
Unit Phase SCPhaseJ

Software IAFATSI SI'E I
Tester X S,E S,I Tester X S.E

Tester Y SE S,E I Tester Y SE

S denotes the static structure analysis technique.
E denotes the static error & anomaly detection test

technique.
AFATDS is a unit code sample from project

AFATDS Sim/Stim.
SkENE is a unit code sample from project SCENE.
X & Y denote first two testers to complete experimental

testing.

127

found that there were considerable differences in test results between
different testers/samplcs. This data is incorporated in Chapter 5.

Several additional evaluations were made of the pilot experiment process, each
resulting in a practical refinement to the experimental testing procedure. No
revisions to the formal experiment framework were needed. Changes that were made
are:

a. Mid-Pilot changes

1. 23 TIBs were issued,

a) Worksheets and instructions were clarified.

b) A uniform Code Review Checklist was extracted from the original
list of code checks and rational.

c) Stopping Rules were restored to revised estimates in the SRTIP.

d) Tool use and anomaly reporting was clarified.

2. Operator Roles were deleted per tester choice, as it was more efficient
for testers to perform those activities themselves.

b. Post-Pilot Changes

1. The Code Review Checklist was split into two lists (unit and CSC) and
reverted to less formal 'guidelines' to accommodate the testing
technique objectives for applicable test levels.

2. DTM utilization was dropped following unit testing since its use was
time consuming and there was no experiment design requirement to
benchmark expected outputs.

4.5.4 Communications and Monitoring

During the conduct of the experiments and empirical studies at SAIC and RTI,
communication lines were maintained to ensure that all questions regarding setup,
procedure, and so forth were resolved quickly, and to keep the experimental
environment and conditions as similar as possible across the two sites. This
communications scheme supported rapid resolution of questions and provided
electronic, telephone, and mail paths to both sites and all test personnel.

Any experiment-related issue, or question that was initiated by testers, was
investigated by the activity managers at both sites. When an answer was obtained, it
was documented in a Tester Information Bulletin (TIB), then distributed and filed at
both sites. This included the resolution of questions which had any impact on
instructions to testers.

*rhe experiment documentation produced by testers was subjected a quality assurance
(QA) review by the pilot and extended experiment activity managers for
acceptability. Activity managers provided testers with scheduled review points;
when these points were reached, testers informed the activity manager that
materials were ready for review. The activity manager then checked the materials

128

for adherence to the standards set forth in the guiding documents and for
completeness. These guidelines for determining acceptability were derived from the
SRPEG and 2167 DIDs for test descriptions and test procedures. They were distributed
to testers as instructions for completing the test data collection worksheets. All
materials were reviewed in a timely fashion for appropriate content.

In addition to scheduled QA monitoring, regular evaluation of the genetal testing
activities was conducted by the activity managers. Any irregularities were corrected
as they occurred by applicable TIBs.

4.5.5 Applying the Techniques

Figure 4.4 illustrates the various facets of testing technique application. Essentially,
testers applied each testing technique in the order specified by the Latin Squares.
utilizing the procedures contained in the tester instructions. Test project consultants
assisted in pre-test preparation and post-test evaluation activities. Testers created
test cases, test procedures and test drivers from specifications provided by the
consul•ants. A test harness was setup utilizing DTM to provide inputs to the test
driver and to capture and compare test outputs from the code samples under test.
During unit testing DTM was found to be of no actual assistance for this type of
experimentation, so it was not used during CSC integration testing.

4.5.5.1 Preparing and Executing the Tests

Figures 4.5 and 4.6 illustrate the overall flow of test case preparation and execution
for each of the testing techniques. Test driver development was treated as dynamic
test setup activity and was not an integral part of the preparation of the tests
themselves.

4.5.5.1.1 Test Preparation

Preparing for test execution included test data preparation and formulation of
expected results. Test data preparation formulates test cases and the data to be input
to the program. Test case preparation was not applicable to the static testing
techniques. For the dynamic testing techniques, test preparation was accomplished
through both manual and automated methods.

Test cases were chosen as the result of analyzing the requirements and design
specifications and the code itself. Test data was prepared to demonstrate and exercise
externally visible functions, program structures, data structures, and internal
functions. Each test case included a set of input data and the expected results. The
expected results were expressed in terms of final values or intermediate states o1
program execution.

Testers developed test cases, test data and expected results through examining the
program specifications (in particular, the design and program code) according to the
procedure of a particular testing technique. Test cases had the objective of
demonstrating that the functions, interface requirements, and solution constraints
are satisfied according to the objectives of a given testing technique. Test cases were
determined from the inputs, functions and structures of the design and code. Test
data were determined from the program to exercise computational structures
implemented within the program code.

129

0 E

03,

o

o CE --

-*....l * - • _

- 0- _

Lu -

inn
ccU * A7

uj,

130

• "46

.m.

13L

itt

A hi

3 131 1

z z

W W

Z Z

C2 C2 C2~ C2 C2

.2.

13 0

It

6 C6e a '0

a132

The final step before test execution was to tailor the test driver (if needed) to suit any

particular needs of the test cases for a given test sample and testing technique.

4.5.5.1.2 Test Execution

For the dynamic techniques. test execution involved executing a program with
prepared test cases and then collecting the results. For the static techniques, test
execution involved the execution of RXVP-80 or SDDL, as appropriate, and the
evaluation of the applicable hardcopy outputs according to the procedures of the
given technique.

Dynamic testing was performed in a bottom-up fashion. Bottom-up testing consisted
of testing individual units and small collections of units in that order, as though they
were not yet integrated into the total program. This required the use of test drivers
and stubs or dummy routines for interfacing units not under test.

4.5.5.1.3 Stopping Rules

Stopping rules are not well defined, in general, for testing techniques. The existing
options include the following: wall clock time, reaching a specified mean time to
failure (MTTF), number of errors found, and exhausting the test technique. An
important consideration in choosing stopping rules for the techniques was the desire
to compare technique effectiveness and effort across techniques.

The stopping rules shown in Table 4.12 were carefully devised as the best
determinable to support these experiment goals. They are derived from the 'Revised
Estimates' data in Table 4.13. These estimates which were projected during Task 2 are
the total number of hours from Tables 4.14 and 4.15 to complete each step of a given
testing technique.

Due to effort budget constraints, it became evident as the experiment conduct
progressed that we would have to restrict the amount of effort available to CSC
integration level testing. This was accomplished by adopting the unit test level
stopping rules for CSC integration testing. The results of this reduced effort arc
assessed in Chapter 5.

4.5.5.2 Test Analysis

Test analysis was performed by the testers for each dynamic testing technique to
capture and report execution details (e.g., branch execution counts) and to determine
the thoroughness of the iesting. For the static testing techniques, analyses is an
integral part of their execution as described in Section 4.5.5.1.2.

The process of analyzing the dynamic test results included comparing the actual to
expected outputs. This analysis required a specification of the expected outputs for
each test case. Since the output data for all non-interactive tests was machine
readable, an automated comparator was used. Interactive outputs were evaluated
visually while the tests ran. Upon completion of the test outputs analyses for all
dynamic tests for a given code sample, further analyses of test coverage were made
and recorded orn the Test Coverage Summary Worksheet for all execution paths,
inputs, units, interfaces and requirements, as applicable to the test level.

The concluding .step was for each tester to evaluate the static and dynamic techniques
to determine the unique error found, both individually and by more than one

133

Table 4.12. Stopping Rules

TEST TEST STOPPING
RUECHNKXIE DaM ILE UNIT [I Csc*1

Branches identified through static
Branch analysis, test descriptions & procedures
Testing Tester complete, test case outputs determined, X - 21 X - 42

& on line environment configured. Not
to exceed X hours.

Operator 100% of branches executed (with a
minimum of 2 traversals per branch) and X 8 X = 16
MTTF = 10 input cases. Not to exceed
X hours.

Cod Tester All required aspects of the method have

Review been evaluated using SDDL where possible, X - 8 X . 16
1 manually where not. Not to exceed X hours -

Tester Driver in place and online environment X = 12 X - 24
Functional , configured. Not to exceed X hours.
Testing Operator All test procedures executed. Not to exceed X - 4 X - 8

X hours.

Random Tester Test descriptions & procedures written,

Testing test driver & test case generator ready, X - 16 X - 32
test case outputs determined, online
environment configured. Not exceed to
X hours.
Minimum number, Y, samples from input X = 6 X - 12

Operator space executed, and MTTF - 10 input Y = 25 Y -50
, cases. Not to exceed X hours.

Error & Tester All required aspects of the method have X = 6 X- 12
Anomaly been evaluated, using automated tool where
Detection possible, manually where not. Not to

exceed X hours.

Structure Tester All required aspects of the method have X - 4 X - 8
Analysis been evaluated, using automated tool wherpossible, manually where not. Not to

exceed X hours.
•- -

* Unit test level stopping rules utilized for CSC Integration Test Level

due to effort budget constraints.

134

Table 4.13. Test Effort Estimates (Hours)

TEST TEST ORIGINAL FEVISED
LEVEL JECHNXIUE ESTIMATE ESTIMATE

TASK TASK 1 4 TASK TASK 1 4-
3 4 TESTER TESTERS 3 4 TESTER TESTERS

C 27 5 32 128 0 8 8 32
F 21 1 22 88 12 4 16 64

UNIT R 40 4 44 176 16 6 22 88UNST 8 14 4 18 72 21 8 29 116

TEST E 20 5 25 25 0 6 6 6

S 20 2.5 22.5 22.5 0 4 4 4

(Totals) 1 sample/tester 142 21.5 163.5 511.5 49 36 85 310
2 samples/tester 284 43 327 1023 98 72 170 620

C 0 12 12 48 0 16 16 64

CSC F 21 2 23 92 24 8 32 128
TEST R 40 16 56 224 32 12 44 176

T 3 18 70 280 42 16 58 232

E 0 6 6 6 0 12 12 12
S 0 6 6 6 0 8 8 8

(Totals) 1 sample/tester 11 3 60 1 73 656 98 72 1 70 620
2 samples/tester 226 120 346 1312 196 144 340 1240

CSCl F 24 3 27 108 48 16 64 256

TEST R 44 40 84 336 64 24 88 352

(Totals) 1 sar:ý,ie/tester 68 43 111 444 112 40 152 608
2 samples/tester 136 86 222 888 224 80 304 1216""-" T-- •

Total estimated hours 3223 3076
Max. available hour*" 3200 3200

*Note: Only 1 tester for Error and Anomaly detection (E) and Structure Analysis (S)

** Nota* 4 te. iull-time for 5 months (Jan through May, 1988)

C-Code Review B-Branch Testing
F-Functional Tt.z.,!n, E-Error and Anomaly
R-Random Tefix.. S-Structure Analysis

135

Table 4.14. Unit Test Effort Worksheet A: Driver & Static Techniques

Technique Time Step
(Hr)

Driver 2 familiarization with code and specifications"
Development 2 document driver requirements"

4 document driver design
4 develop and test driver*

12 All steps

1 familiarization witn materials"
Code 1 run SDDL'

Review 4 review code and documentation with checklist**

2 write SPRs**

8 All steps

Error and familiarization with materials"

Anomaly 1 run RXVP-80**

Detection 2 review tool results*
2 write SPRs""

6 All steps

Structure 1 familiarization with materials"

Analysis 1 run RXVP-80*
1 Review tool results**
1 enter log and write SPRs**_

4 All steps

"* Prorated, as 4 hours were added to the Task 3 portion of each dynamic
test technique.

"" Designates Task 3 Activities.
"" ' Designates Task. 4 Activities.

136

Table 4.15. Unit Test Effort Worksheet B: Dynamic Techniques

Technique Time (Hr) Step

Functional 1 familiarization with materials"
Testing 2 write inputs to test description"

2 write inputs to test procedure**
2 adapt test driver"
1 set up test harness"*
1 execute tests***
1 review results**
2 write SPRs***

1 2 All steps

Random I familiarization with materials"
Testing 2 determine random data (specify generator)"

2 write inputs to test description*
2 write inputs to test procedure"
2 develop I/O data (write generator)*"
2 adapt test driver"
1 set up test harness"
2 execute tests***
2 review results**
2 write SPRs°**

1 8 All steps

Branch 1 familiarization with materials*
Testing 3 determine branch data**

3 write inputs to test descr'ption**
3 write inputs to test procedure"
3 develop I/O data**
3 adapt test driver"
1 set up test harness"
3 execute tests**
3 review results**
2 write SPRs***

25 All steps

137

technique, and whether each error found was a known development error or newly
detected during the experiment. This information was recoded on the Error Summary
Worksheet, with the ID and description of each error and the total number of errors
for each technique.

4.5.5.3 Data Collection and Organization

Collection of the preceding data was designed and conducted with the goal of
providing valid quantitative data that can be meaningfully analyzed, interpreted,
and referenced during the writing of an integrated software reliability measurement
and test technique guidebook. The; analysis of these data will provide insight into
selecting software testing techniques, determining how much test effort should be
planned, and making decisions concerning the level of software reliability attained.

The collected raw test technique data is in the Task 4 Report. The following sections
contain a discussion of the data collection and organization methodo!ogy utilizing
worksheets, the 4th Dimension DBMs and StatView data analysis tools.

4.5.5.3.1 Data Collection

Careful thought was given to the data to be collected and to the data collection
procedures. General forms and procedures that support the test technique data
collection activities are described in the Software Test Plan. They are derived in part
from DoD-STD-2167 for Test Description, Test Procedure and Test Report; from the
SRPEG metric data collection forms for the REN; and from statistical data analysis
requirements related to discrepancy reporting, execution time, failure rate, test
effort, test coverage and test methodology. The resulting test data collection
procedures and forms for the SRMTIT experiment are provided in Volume 2 of this
report.

Thirteen data collection worksheets were developed for use. Table 4.16 identifies
these worksheets by name and ID, lists who was responsible for completing them, and
lists the activities for which they were used. Note that Worksheets T2 and T12 were
not needed and were dropped from the experiment. Table 4.17 shows a correlation
between the test worksheets and their data collection counterparts in the SRPEG. All
of the information on these worksheets was entered into the Test Database as
indicated in Figure 4.16 (except for the final text field on worksheets TI, T4, T6 and T8.
due to an anomaly in the DBMS. All of these worksheets except T13 are included in
the applicable Test Description, Test Procedure and Test Report documents in their
entirety.

Worksheet T13, Experiment Error Summary. is included in Chapter 5. All detected
errors of each test technique for each code sample were summarized into tables as a
means of gathering this information to input into the StatView database. All detected
errors were correlated with the original development SPRs and entered into
worksheet T13.

4.5.5.3.2 Data Organization

Figures 4.7 and 4.8 provide an organizational overview of the data that was collected
as a part of this effort. These figures depict the data structures around which the
data collection effort is organized. Figure 4.7 shows the 4th Dimension raw test data
files. Figure 4.8 shows the tabulated StatView data files. These logical organizations
of data were chosen for the following four reasons:

138

Table 4.16. Test Worksheet Summary

Worksheet Worksheet Responsible ' Applicability Used Auto
ID .Name User B F R COE S G

Ti Test Activity Log T,C X XX X X X I y 4,S

T2 Test Configuration & Data Eval. T X N

T3 Software Requirements List A X XX X- Y

T4 Test Name & Objectives T X X . X- Y 4,S

T5 Test Case Description T X XX aX I

T6 Test Procedure Specification T X X X I y 4.S

T7 Test Execution Summary T. C X X X - Y 4,S

T8 Test Execution Log T X XX Y 4,S
T9 Software Problem Report T X XX X X X Y 4,S

T10 Test Coverage Summary T X X - y 4,S

T 11 Test Technique Selection T X Y 4•S
T12 Test Problem Summary T X X X X X X N

T13 Experiment Error Summary T X X X X X X Y S

Responsible User: Used: Automation:

A: Analyst Y: Yes 4: 4th Dimension
T: Tester N: No S: Statview
C: Consultant

Applicability:

B: Branch Testing F: Functiona! Testing
R. Rarnaom Testing C: Code Review
E: Error & Anomaly Detection S: Structure Analysis

G: General Use

Table 4.17. Cross-reference of Test Data Worksheets
and SRPEG Metric Worksheets and Procedures.

SRPEG DATA SRPEG SRMTIT
METRIC DATA (TASK 201) COLLECTION METRIC TEST DATA

PROCEDURE WORKSHEETS WORKSHEETS

Average Failure Rate During Test (FT1) 12, 13, 14 5, 6 T7, T8, Tg
Failure Rate at End of Test (FT2) 12. 13, 14 5, 6 T7, T8, T9
Test Effort (TE) 1 5 6 T1
Test Method (TM) 1 6 7 Ti 1
Test Coverage (TC) 1 7 8 T10

139

ujZ

U4

-i LU

V) LULU* LI

w~ b- -

Uj Z

_____ 444AA -a

- Low
0- x

Im
* 0 -L

-~u ww~ -O

I-.'I

(/JcI

0 C-)
.-

0-I-

L4:
I-r

wn
(

LLU

>J4
4

w I

LU Li >-c:

>~ LU >.
0.. I-- CO

141

a. To parallel the distinction between experiment activities (i.e., reliability
measurement data collection vs. test technique evaluation).

b. To permit easy file update associated with these activities by multiple

personnel at multiple sites.

c. To facilitate data selection for combined analysis.

d. To provide a foundation for reuse of the reliability measurement and test
technique data for future experiments.

All raw test results data recorded on the worksheets by each tester were entered
manually into the Test Database. From here these data were converted into StatView
data files for detail analyses.

The test data files are organized by type of test worksheet and are provided separately
in the Task 4 report, in the companion 2167A test documents, and in electronic form
compatible with the IRMS.

Data tabulated in StatView to support analysis are derived from the RPFOM database
(i.e., Lines of Code and Complexity), and nonautomated test worksheets. They are
provided separately in the Task 4 report and in electronic form, and appear in tables
identified by corresponding StatView file names. A detailed requirements
specification for the StatView database also is provided in the Task 4 report. These
requirements specify seven data files organized by level of analysis, level of detail,
and level of software component.

Five StatView files are designated for descriptive analyses (see Figure 4.8) of Unit and
CSC data at the following levels of detail: test sample, test technique (single and
paired), test case, and software problem report (SPR). The remaining two StatView
files are designated for Analysis of Variance (ANOVA) of unit data at the test
technique level. One file is specified for data on single techniques, and the other file
is specified for data on paired techniques.

4.6 REN Results

A Reliability Estimation Number (RENAVG) was computed for each test sample unit
and CSC (i.e., "integrated unit") based upon average observed failure rate during the
software testing experiment. Computation of RENEOT, based on end-of-test failure
rate, was considered infeasible due to the absence of regression testing and the
difficulty in defining a "test period."

Formal testing is usually accompanied by "regression testing" in which software
components are tested, debugged, and then tested again in an iterative fashion. This
technique, which tends to minimize incidences of recurring errors and thus lead to
improved reliability as testing progresses, was not employed during the experiment.
Consequently, recurring errors were often prevalent.

The c .est analogy to "test period" in the present study is "test case." Due to the small
time intervals involved, tracking of computer operation time for individual test cases
was not feasible. Although CPU time was measured for test cases, values were
gtnerally negligible and often unmeasurable (i.e., equal to zero).

142

I-rOl(. CM~t a.LO

.-%

LA. dome-

Z cc E(N CDLO M

LU 0 0 .. ,-
0~ __ __ V_ __ __ Cf1

0 0r

CD 0 Lo V

coi V-0

a..
.LU 20c i

LO LOl

Lw I

>0 E. 0
10,J C' ON 0 (O 0)j cLU 70 - 04V- - T

Imx CLa
0
LU C

LU))

-L 00001r- a

143

Determination of the REN component metrics values - FTI, TE, TM, and TC - is detailed

below, followed by the REN calculations.

4.6.1 Average Test Failure Rate (FTI)

The average failure rare observed during testing, which may be determined at any
point in the testing process, serves as a baseline for the RENAVG calculation:

FT I = Total no. SPRs during testing / total test time

The denominator, total test time. may be measured in computer operation time or CPU
time. Computer operation time, measured in hours, was selected for the test sample
RENs. This unit of measurement is considered by the SRPEG to be preferable to CPU
time. In addi:ion, as noted above, CPU times recorded for experimental testing were
usnally negligible due to the small sizes of the unit and "integrated unit" (i.e., CSC)
test samples.

Since computer operation time is unavailable for the static test techniques, FTI
reflects dynamic testing only. The test sample SPR counts and test times for dynamic
testing are presented in Table 4.19. The Dynamic Technique SPRs represent a subset
of the total Experiment SPRs generated for both dynamic and static testing. The
Dynamic Technique Test SPRs, in turn, represent the subset of Dynamic Technique
SPRs logged during actual test conduct and during comparison of actual test output to
expected test output.

The Dynamic Technique Test Time values represent computer operation times
recorded by testers for dynamic testing. The relatively high values logged for the
four SCENE unit test samples reflect interactive processing of tester inputs, which
contrast with the batch processing of inputs for ihe AFATDS unit and CSC test
samples. The relatively low values recorded for AFATDS CSC test samples probably
reflect in part the discontinuation at CSC testing of production of benchmark files
containing expected output values, and the possibility of fewer test cases submitted
compared to AFATDS unit testing.

The average test failure rates (FT1) in Table 4.19 are expressed as errors (SPRs) per
hour. At least one test sample from each of AFATDS unit testing. SCENE unit testing.
and AFATDS CSC testing experienced a zero failure rate due to the absence of SPRs
logged during dynamic testing. Failure rates for AFATDS CSCs appear relatively high
compared to those of the other test samples. Empirically, this seems due to the lower
test times for the CSCs, rather than to a greater number of SPRs.

4.6.2 Test Effort (TE)

Test effort is based on percent of development effort devoted to testing, which is
unavailable for the SCENE and AFATDS projec~s. Consequently, the assumption is
made that a minimum of 40% of development effort was devoted to testing, resulting
in a test effort of 1.0.

4.6.3 Test Methodology (TM)

The Test Methodology metric is ,ssigned one of three values (i.e., 0.9, 1.0, or 1.1) based
on the proportion of testing techniques actually employed (TU) that are
recommended (TT) by one of three technique selection paths in the Software Test
Handbook (STH). The higher the proportion of techniques used, the lower the value

144

to

0

0 ~ 0 0

C 0

CM 4)0

I-~(CLtt CL~'~v

(D 5 C

FS F- ZiZ
I- <

of the TM multiplier, resulting in a lowering of the estimated failure rate (REN). The
TU/TT proportions and corresponding TM values for test samples appear in Table 4.20.

Differences in TU/TT among test samples for a particular technique selection
path(e.g., TUITT(1) in Table 4.20) reflect differ.ntial utilization of two static test
techniques, Error and Anomaly Detection (EA) and Structure Analysis (SA). Thus, test
sample UASNWMSN, which was not tested using EA or SA techniques, exhibits lower
TU/TT values across technique selection paths than UATHUADC, for which EA and SA
testing were employed.

Differences in TU/TT across technique selection paths for a particular test sample
(e.g., values of 0.56, 0.54, and 0.46 for USINPSAT) reflect variation in nurmber of
techniques recommended. In the case of paths 2 and 3, TT = 13, which explains the
equivalency of values observed for most test samples. The difference in values for
TU/TT(2) and TU/TT(3) for USINPSAT and USSCANNER is due to the omission of SA
from recommendations in path 3; this technique is recommended in path 2, and is
employed in testing of both test samples.

The a priori selection of test techniques, as occurred in this study, poses an
interesting dilemma with regard to utilization of the STH test technique selection
procedures. In some instances, techniques employed (TU) are not among those
recommended (MT). In computing the values in Table 4.20, techniques that were not
recommended by a technique selection path but that were nevertheless applied in
testing a sample were excluded from determination of TU for that sample within that
selection path, resulting in relatively lower TU/TT values and potentially higher TM
values. Although consistent with the STH selection procedures, this approach
ignores the possible contribution to greater software reliability of application of
testing techniques excluded from the recommendations.

The alternative approach of including as viable components of TU the non-
recommended techniques employed in testing can take two directions. The
recommended and non-recommended techniques can be weighted equally (i.e., in
either case, TU is incremented by one for each technique added), or the latter can be
weighted less (e.g., TU is incremented by 0.5 for each non-recommended technique
added). Either method can potentially result in a TU/TT value exceeding 1.0, but this
does not violate the existing model for determining TM. Fractional weighting of non-
recommended techniques is attractive since, while this approach recognizes the
potential contribution to software reliability of any addition to testing methods
employed, it takes into consideration the relatively greater contribution expected
from methods recommended from technique selection analysis.

4.6.4 Test Coverage (TC)

Three procedures are available for computing Test Coverage. Selection of procedure
depends primarily on the subject software component level, which determines the
data available for the calculation. In each approach. TC represents the inverse of the
extent of test coverage. Thus, as test coverage declines, TC increases, resulting in a
higher estimated failure rate. Computation of Test Coverage for the unit and "CSC"
(i.e., integrated units) test samples is based on proportions of total execution paths
(measured using RXVP-80) and total inputs that were tested.

Results of Test Coverage determinations for test samples are presented in Table 4.21.
Complete test coverage (TC = 1.0) is evident only in the three test samples which
possess the smallest number of execution paths. Differences in TC for the remaining

146

test samples is entirely due to variation in proportion of total execution paths tested,

since all inputs were successfully tested for all test samples.

4.6.5 REN Calculation

.Values of RENAVG for test samples appear in Table 4.22. A-verage test failure rates
(FTI) are listed for comparison. The most striking observation of these results is the
drastic reduction in average test failure rates represented by the estimated failure
rates. Given the values derived for TE, TM, and TC, the principle factor contributing
to the differences in values between these failure rates is the 0.02 coefficient. This
constant represents an attempt to adjust for the inherent tendency of software
testing environments to increase the potential for detecting errors. Specifically, this
coefficient is derived from empirical evidence that suggests average test failure rates
exceed operational failure rates by 50 times. Aside from the FTI baseline values, the
operational failure rate coefficient is by far the primary determinant of the RENA V G
values for the test samples relative to the other metric multipliers.

Mean RENAVG values for AFATDS unit samples, SCENE unit samples, and AFATDS CSC
samples are given in the last column of Table 4.22. Similar means, which appear
equivalent after rounding off, for AFATDS and SCENE unit samples suggest that the
nature of the testers' interaction with the system (batch for AFATDS, interactive for
SCENE) does not influence estimated failure rate. The relatively larger mean RENA V G
values for CSC samples are undoubtedly a consequence of lower test times (Table 4.19).
which resulted from cessation of benchmark file generation during CSC testing.
Consequently, these data probably do not effectively demonstrate a difference
between unit and CSC test samples in average estimated failure rate.

4.7 Tester Profiles/Feedback

Tester Profile questionnaires were completed by each tester prior to the conduct of
the software testing experiment. The questionnaire summarized the education and
experience of each tester prior to the experiment. These results are presented in
Chapter 5.

A survey was also performed upon completion of the pilot experiment. Each
participating tester was queried informally for his/her opinions regarding the test
techniques and tools, test environment and process, and the test worksheets. They
were asked to comment on these topics based on their own experience as gained
during the pilot. The results of this survey are contained in the Task 4 Report [14]
and are included in discussions in Section 6.2.5 and 6.2.6.

147

Table

TEST COVERAGE

SA•MPLE PT TP IT TI PT/TP IT/Ti TC

I UASNWMSN 8 8 13 13 1,000 1.000 1.000
2 UATHUAOC 8 81 7 7, 1.000 1.000, 1.000
3 UATHUSCN 9 9 3 3 1.000 1.000 1.000

4 UATHHRDT 27 31 3 3 .871 1.000 1.069
5 USINFANSEN 97 108 10 10 .898 1.0o0 1.054
6 USINMODE 93 106 27 27 .877 1.000 1.065
7 USINPSAT 1341 155 28 28 .865 1.000 1.073
8 USSCANNER 77 79 3 3 .975 1.000 1.013
9 CRSNWMSN 20 22 20 20 .909 1.000 1.048

10 CATHPCON 39 49 5 5 .796 1.000 1.114
"11 CATHUROS 19 24 9 9 .792 1.000 1.116
12 CRTHURDT 461 82 1 1 .561 1.000 1.281

148

Tb.ble -.22. KE~T Ca.cula.wns

Test Sample FT1 REN AVG REN AVG

TestSam le i Ti

UASNWMSN 1.41 0.03
UATHUADC 0 0 0.03
UATHUSCN 0 0
UATHXRDT 4.57 0.10
USINFANSEN 0.92 0.02
USINMODE 3.30 0.08 0.03
USINPSAT 0.55 0.01
U0SCAbLJNER 0 0
CASNWMSN 7.14 0.15
CATHPCON 11.00 0.25

CATHUADS 1.89 0.05 0.11

CATHURDT 0 0

RENAVG (F 1) 0.02 (TE TM TC)

TE = 1.0

149

5.0 EXPERIMENT FINDINGS

This chapter reports upon the work undertaken to analyze the experiment's results.
Analyses were performed on the test data from six experimentally controlled testing
techniques and on the reliability prediction methodology.

5.1 Scope of Analysis

Analyses completed on the test data include descriptive and more formal analyses.
Descriptive analyses consist of bar charts and tables which present the raw and
reduced data in visual form. Bar charts are provided that describe static properties of
the code samples such as lines of code and complexity. For example, tables are
provided which show percent of Software Problem Reports (SPRs) found by
technique and percent of SPRs found by each pair of techniques. Descriptive
analyses were done at both the unit and Computer System Component (CSC) levels.

Formal statistical analyses were performed at the unit level. At that level sufficient
data points were obtained to justify such analyses. Analyses of variance (ANOVAs)
were conducted to test whether differences exist among test techniques in 1) their
effectiveness in finding errors, 2) their branch coverage performance, 3) the
effort needed to apply them, and 4) the efficiency with which they uncovered
errors.

The data used in the analyses are stored in two formats: 1) in online files and on
diskette, for use with the Macintosh software package StatView 512+ and 2) in the
error summary tables completed by the testers, and validated by project consultants
(the tables appear in Section 5.2.6). There appear to be minor discrepancies across
these two data repositories; the contract completion schedule precluded resolving
those discrepancies, so we suggest a data validation across the two repositories as a
starting point for future work with these data. The inconsistencies appear minor, so
it is likely analysis results contained herein are correct or very nearly so.

5.2 Analyses of the Test Data

5.2.1 Descriptive Analyses

These analyses provide a summary description of the samples, Software Problem
Reports (SPRs) logged against the samples, and test technique performance
overviews. The descriptive analysis of the test technique data involves the
construction of tables and frequency histograms described in Appendix V of the Task
2 Report (SRTIP) [6]. Many analyses include the two deterministic techniques: Error
and Anomaly Detection and Structure analysis, as well as the four nondeterministic
techniques: Branch, Code Review, Functional, and Random testing.

5.2.1.1 Sample Description

Samples were chosen from the two software projects shown in Table 5.1. Additional
information describing the projects is available in the Chapter 2.

150

Table 5-1 Characteristics of Sample Projects

Contract Program Size Environment

T Te (Lines of Source) Development Target MIL-STD Metric
- Followed Data

USAF DoD 10-50K 50-IOOK)I00K HW SW HW SW

AFATDS (Advanced
Field Artillery Y Y VAX VMS VAX VMS None
Tactical Data 11/780 4.Z 11/750 4.2
System)

SCENE
(Secenario Y Y VAX VMS VAX VMS NONE
Generator) -

At the unit test level, four samples were chosen from each project for use in the latin
square experiment design. The four unit samples chosen fiom the AFATDS project
are: SNWMSN, THUADC, THUSCN, and THXRDT. the four unit samples from the SCENE
project are: INFANSEN, INMODE, INPSAT, and SCANNER. At the CSC test level, four
samples were chosen from the AFATDS project. They are: SNWMSN, THPCON, THUADS,
and THURDT. Additional information describing how the samples were chosen can be
found in Chapter 4.

The histogram in Figure 5.1 shows lines of code (LOC) for each sample. The LOC
measure was taken from AMS tool output, which computed a LOC value equal to the
sum of all lines in the files, excluding blank, comment and D (debug) lines. Note that
lines of include files were not included in the LOC total for a sample; however, a
FORTRAN statement continued onto a second line in the file would count as two LOC.

With this measure, the AFATDS units all exhibited noticeably smaller LOC than the-
SCENE units which contained from 292 to 680 LOC. The CSC samples from AFATDS are
noticeably larger than the unit samples from AFATDS; however, the SCENE uinits are
larger than the AFATDS CSCs. This highlights apparent differences in the design of
the two systems. AFATDS was designed to have smaller functional entities as units
than was the SCENE system.

The histogram in Figure 5.2 shows sample complexity, as measured by branch
complexity, or the sum of unconditional and conditional code branches in each
sample. This complexity measure was chosen because it was also specified for use in
the Reliability Prediction Figure of Merit (RPFOM) equation. (See Chapter 3 for more
information on the RPFOM.)

The complexity histogram takes on the same g-:neral shape as the LOC histogram.
This shows that the SCENE unit samples are much more complex than the AFATDS
units and CSCs. The AFATDS CSCs are only slightly more complex than the AFATDS
units.

5.2.1.2 Unit Testing

5.2.1.2.1 Single Test Technique Description

Single Technique Effectiveness

Table 5.2 illustrates the categories that SPRs fall into and how many SPRs fell into
each category for each sample. The numbers in the cells of the table represent SPR

151

700 680

600

500

400

328

300 292

200 2010

100 -- 79

rn u
4 CL

LO z z

(nI

Figure 5. 1: Sample Lines of Code

152

100
90 91

70

66

60 58

50

40

30

20

10- 6 6 9

U) in (LL L Z

I-- Li
Loi

Z

Figure 5.2. Sample Coniplexit.y

153

counts. Each column in this table provides information for the sample named at the
heading of the column. Rows are defined as follows:

Table 5.2: Breakdown of SPRs by Unit Sample

UNITS
SPRS SNWMSN THUADC THUSCN THXRDT INTFANSEN INMODE INPSAT SCANNER

FoundIn-
In 4 2 0 13 6 20 13 17
F! er ___________ __ __

Newly
Found in d4 0 0 13 6 20 13 16
Eiver
Orig 0 3 1 ! 4 1 1 z
Findabt _

Exper
Findable 3 1 14 10 21 14 18

. of
ExperIIIjIFindable 100% 67% 0% 93% 60% 95% 93% 947.

Found I
in Exper

Found in Exper: The number of SPRs that were found during the experiment forthis sample. -

Newly Found in Exper: Whereas the above measure includes any SPRs found in
the experiment that had already been found during the original code
development, this count represents only those SPRs found during the
experiment runs that reported new errors not previously found during the
development testing.

Orig Findable: Original Findable SPRs or that subset of the original development
SPRs that the project consultant deemed could be found Juring unit testing.
(This category is an artifact dlue to original development testing not being
conducted at -he unit level, but at a higher "software build" level. Thus some
errors found during original development testing and mapped to a sample may
only be findable when testing interfaces.)

Exper Findable: Experiment findable SPRs, or the sum total of ail known errors
for a sample that could have been found by unit-level testing. kEqual to the
sum of "Newly Found in Exper" + "Orig Findable.")

% of Exper Findable Found in Exp: The percent of the SPRs deemed findable
that were actually found during our experimental testing by any one or more
test techniques applied in the experiment.

(See also the Unit Error Summary Tables in Section 5.2.6; they present a more detailed
view of these SPRs.)

As shown in Table 5.2, the units contained from one to twenty-one known errors that
could possibly be found by unit testing; unit testing found from none to 100% of these
errors. with an average percentage found of approximately 75% across the eight
units. Thus while on average three quarters of the errors in a sample were found,
the variance (from 0 to 100%) is large. Also, the number of errors known per sample

154

has a large variance (from 1 to 21). These large variances and somewhat small
absolute numbers are less than ideally suited for statistical analyses. The analyses
below thus assume the data are adequate; repetition of this study to add data points to
the analyses would improve confidence in results.

It is also interesting to note that for the most part the experiment unit testing found
new errors not previously found in original development testing. Conversely,
experiment testing did not find many of the original development errors. This
observation leads to two interesting hypotheses:

a. The difference may point out that more formal uait testing should be
advocated to find errors earlier in the development life cycle.

b. The difference may point out that techniques used in this experiment were
different and found different errors than techniques used in the actual
development.

Item a) above is raised because the original development SPRs were logged against
system "build" testing, not unit level testing. In iterative system builds, a harness
surrounded the incomplete system, which included completed pieces of code with
uncompleted sections stubbed out. Thus unit level testing was never performed on
the units of the systems (unless done informally by programmers, and this was not
documented). An interesting corollary to the issue making unit testing more formal
is whether any of the new errors were critical errors. Investigating this question is
suggested for future work.

Item b) is likely not the case. Documentation from original system testing implies
that mainly functional testing was used. As noted in the above paragraph, it was
performed on a higher level than the unit level. So we conclude the test level (and
perhaps testers) was likely a more important factor than the techniques used in
explaining the difference between experiment and original development errors
found.

Whereas Table 5.2 addresses overall test effectiveness from a code sample viewpoint.
Table 5.3 addresses effectiveness from the individual test technique viewpoint. This
table shows that averaged over all samples at the unit test level, Code Review found
the largest percentage of errors, followed by Error and Anomaly Detection, Branch,
Functional, Random, and Structure Analysis. This descriptive data suggest that Code
Review may be the best error-finding technique at the unit level. Since the
experiment was designed as a latin square that allows us to test this hypothesis while
accounting for other influences upon the data, such as tester variability, order of
application of the techniques, it is premature to make this as a final judgment. See
Section 5.2.2, which documents initial analysis of variance (ANOVA) results.

Table 5.3: Percent Findable SPRs Found by Test Technique

Level B -1R IF J C IEA _1SA

ULnit 25% 19% 23%1 36%I 2 9 %1 3%1
CSC 68% 17% 33% 35% 25% 10o

Legend
B Branch Testing C Code Review
R Random Testing EA Error & Anomaly Detection
F Functional Testing SA Structure Analysis

155

Single Technique Effort

Tables 5.4 and 5.5 show the wall clock time in hours needed, by each tester on each
sample to set up for and execute test techniques during the experimental runs. In
these tables, the field "Initial DTM Driver Development" represents the time needed
for any one of the dynamic tcchniques only (B, F, R) to develop a test driver and to
prepare the DEC Test Manager (DTM) tool for test execution. Thus, comparing time
values among the techniques in this table shows time spent using the technique but
not writing drivers, setting up the online environment, and so forth. This is one way
of comparing time between the dynamic and static techniques listed in the table. The
column labeled "Estimated Hours" shows the amount of time the principal
investigators estimated each technique would take prior to the experiment runs.

These tables show that applying the techniques took approximately the same relative
amount of time across samples, but that the SCENE sample did take more time in
general than AFATDS. This may be accountable to the larger size and complexity of
the SCENE unit samples.

In comparing the "Estimated Hours" with the observt" "Average Effort" entries for
all but one comparison, the observed was slightly less than estimated. The
application of Code Review on the AFATDS project samples took on average over 20
hours -- well over the 8 hours estimated. A look at the individual applications shows
that Tester II spent much more time on code review than the others. This was due to
the tester having trouble interpreting when he had adequately addressed items on
the checklist. No other tester had this difficulty; an apparent difference in approach
to problem solving and/or judging "completion" of a code review task may account
for this outlying data point. See also the section on Tester Profiles (Section 5.2.1.4).

Table 5.6 shows data from the two previous tables reduced into one table; data values
represent the average time for a tester to test two samples with a given technique (or
to set up two drivers and online test environments).

Tables 5.7 and 5.8 present test time in a different way than the two previous tables.
In these tables, the ficld "Initial DTM Driver Development" has been added to the
technique time value, for the dynamic techniques. Thus entries in this table reflect
how much time it would have actually taken a tester to test with any one technique
independently of any others in this experiment. Thus they can be recommended as a
starting point for estimating time to test other, similar code units. Embedded in these
times are the fact that the testers used the DTM tool and developed drivers for code of
a given complexity; another test support tool and code of different complexities might
necessitatw altering these times.

"fable 5.9 shows data from the two previous tables reduced into one table; data values
represent the average time for a tester to test two samples with a given technique.
Note that the average effort across eight samples for F, C, B, and R test techniques and
across six samples for the E and SA test techniques is higher than the principal
investigators originally estimated. The original estimates were good at predicting
test time as shown above in Table 5.6; thus, the estimates seem to best reflect test
application time excluding driver awd online environment development. Additions
for these activities can be separately estimated and added to the existing estimates,
taking into account the driver complexity and number and types of tools used in
setting up the test environment.

Comparing epplication effort across techniques shows that the static techniques took
much less time than the dynamic techniques. Qf the three static techniques, two

156

Tables 5.4 AFATDS UNIT DATA: SETUP & EXECUTION EFFORT

AFTDS PROJECT

Unit THUSCN SNWMSN THUADC THNRDT

Tester I II III IV AVERAGE

lEstimatcd Hours* EFFORT

Initial DTM N/A 35.25 32.50 19.00 9.50 24.06

Driver Dev.

F 16.00 24.00 3.75 3.50 5.00 9.06

C 8.00 7.25 64.00 6.00 3.50 20.19

B 29.00 15.00 2.00 7.00 12.00 9.00

R 22.00 10.75 18.50 8.50 8.00 11.44

E 6.0 N/A N/A 0.25 1.00 .63

SA 4.0 N/A N/A 0.501 025 .38

Tables 5.5 SCENE UNIT DATA: SETUP & EXECUTION EFFORT

SCENE PROJECT

Unit SCANNER INFANSEN INPSAT INMODE

Tester I I I III IV AVERAGE

_Estimp.ted Hours* EFFORT

Initial DTM N/A 35.50 13.75 16.25 7.00 18.13

Driver Dev.
F 16.00 23.50 6.75 14.20 18.00 15.61

C 8.00 8.00 5.75 8.00 4.00 25.75

B 29.00 35.75 31.50 21.50 11.50 25.06

R 22.00 16.00 16.25 17.25 16.50 16.50

E 6.0 .50 N/A 6.00 N/A 3-25

SA 40 .50 N/A 4.00 N/A 2.25

Tables 5.6 ALL UNIT DATA: AVERAGE SETUP & EXECUTION EFFORT

THUSCN SNWMSN THUADC THNRDr

Unit SCANNE INFANSEN INPSAT INMODE

Tester II III IV AVERAGE

Estimated Hours* EFFORT

Initial DTM N/A 35.36 23.13 17.63 8.25 21.10

Driver Dev.

F 16.00 21.75 5.25 8.85 11.50 12,34

C 8.00 7 63 34.88 7.00 3.75 13,32

B 29.00 25.38 16.75 14.25 11.75 17.03

R 22.00 13.38 17.38 12.88 12.25 13.97

E 6.0 0.25 N/A 3.13 0.50 0.97

S A 4.0 0.251 N/A 2.25 0.131 0.66

157

3' .. -:.ATDS [.'\' \D.\ \ll'l.t '\A ()\ I .i " I

A FA -I)S P1P O.)LJ AT
I',itscN ' SN .mISN I il! Dl)t III XRDT '
l'•tlr I it1 IV AV .\VERA(;E
- a,,: ~Hours""I EFFORT

F 16.00 5 59.25 3b.2 5 . 0 14.50 i .!.13
':00 ;1 72- '. 6I.00 h0O 1.50 IW 20.19

13 2') 0 . 1 50.25 H.50 2(..00 '21.50 ,I 33.06
R 22.00 I! 46.00 ti.00 27.50 17.50 11 3 .50
E 6.0 II NiA i .kA 0..25 1.00 II 63

4.0 N.-A I N 'A 0.50 0-2.5 1.

Tabie 5.ý. S(CENE I -lIT DATA:\ .A\PPLIC.\TION ELF.FORT

SCENE PROJECT
VI/it ,1 ')CANNFR INFANSEN INPSA1. INMODE '

Tester I 1 II I11 I" V AVERAGE
Estimaioc Hours' l EFFORT

F 16.00 59.00 20.50 30.4.5 25.00 II :3:3.74c ".O0 11 '.00 .5.75 1 s.00 4.00 II 6 44

B 29.00 I 71:25 4.5-25 37.75 1s..;0 :1 4:3.19

R 22.00 I 51.50 1 30.00 33.50 23.50 1 .34.63
E 6.0 :1 501 N!,'A 6.00 N./I A ; 1.25

4.0 50 NA• 4.00 Ni.A 2.25

T.aTle 5.": ..-LL UNIT DATA " AVERAGE .\P'I_. l(AlON EFFORT

Units THUSCN I SNW\"SNj TH'UADC THXRDT 1{

SCANNER I INFANSEN INPSAT INMODE ii AVERAGE
Tester ,I I II II IV EFFORT I

Tecnique I Etimated Hours' I ,
F 16.00 I1 59.13 2S.3S 26.48 19.30 1 33.37
" S.00 11 7.63 1 34.S 7,.00 3.75 ii 13.32

b 29.00 i 60.75 i n19.. I j .SS 20.00 ;i :38. 13

R 22.00 ,11 48.7.5 i 4 .0 1 30.50 20.50 1 .3.5.0 -1
E 6.00 1 0.225 1 N/.A 3.13 1 0.50 0.97

4.00 11 0.25 .* ,A 2.2.5 1 0.13 I1 0.66

158

(E and SA) were fully automated and thus took very little time; conversely, code
review involved manually reviewing the code against a checklist. Branch testing
seemed to take the most time on average, followed by Random and then Functional.

Statistical tests were conducted to provide a more rigorous interpretation than this
reduced data allowed: an ANOVA for the application effort data in the latin square is
contained in Section 5.2.2. Also, an ANOVA was conducted for technique efficiency,
with efficiency defined as technique effectiveness relative to technique effort. This
analysis is also contained in Section 5.2.2.

Single Technique Branch Coverage

For all testing at the unit level, the code under test was instrumented with RXVP80.
RXVP80 recorded the branch coverage during test execution, to three decimal places.
Table 5.10 shows the percent of branches, as identified by RXVP80 for a sample, that
were executed by a given technique for each sample.

Table 5.10: UNIT DATA. BRANCH COVERAGE BY TECHNIQUE

Units THUSCN SNWMSN THUADC THXRDT AVERAGE
S CA ,-14NER I NIF.A NS N- IXPS AT INMODF COVERAGETester I II III IV

F 100 500 1 00 933 Stu
810 787 865 585

B 1 00 1.00 1.00 100 932
899 898 865 792

R 889 875 875 968 808
924 620 729 585

The four samples listed on the first row in the table are from the AFATDS project.
while the four listed in the second row are from the SCENE project. Coverage vaiucs
in the cells are listed in a respective fashion. It appears that higher coverage may
have been achieved on the AFATDS samples than the SCENE samples, in general.
Average branch coverage was highest (over 93%) for branch testing; functional
testing achieved slightly higher coverage (81%) than did random testing (just under
80%), although whether this is really a difference is quest;onable. One would expect
branch testing to achieve high coverage, since branch coverage is an explicit goal
and forms the basis of the stopping rule for this technique (100% of every executable
branch executed twice was the primary stopping rule in this study). (See Table 5.11,
which documents the stopping rules for eaLh technique.) It is interesting to note
that functional and random did as well as they did, since neither has a stopping rule
explicitly based on branch coverage. These results are shown in Figure 5.3a.

Single Technique Efficiency

Test technique efficiency is the percent of findable SPRs found when the stopping
rule was reached, divided by the time taken applying the technique when the
stopping rule was reached. For the experiment, at the unit level the techniques rank
in decreasing efficiency as follows: Error & Anomaly Detection, Structure Analysis,
Code Review, Functional Testing, Branch Testing and Random Testing. A plot of unit

1.59

1-able 5 .11: Stoppim! I? t I,-

TEST S FOPPING TEST 1.EVEL.
FECHNIQUE RULE Unit (S(

100 ;', of branchesi
Branich executed (with a minimum X = 29 X =
Te'stinl ot 2 traversals per branch I

,11d MTTF = 10 input cases.
Not to exceed X hours.
All required aspects of the

Cude method have been evaluated X = - N = i
Review 'nsine SDDL where possible.

manually where not. Not to
exceed X hours.

runctiotial All test procedures
Testing executed. Not to XN = i N = Q2

exceed X hours.
M.inimum number. Y.

R.4nidont samples from input space X = 22 X = -t4
Testing executed, and Y = 25 Y = .50

Y MTTF = 10 input cases.
Not to exceed X hours.
All required aspects of

Error , the method have been
Anomaly evaluated, using automated 6 = u N =2
Detection tool where possible.

manuaily where not. Not to
exceed X hours.
All required aspects of

Structure the method have been
Analysis evaluated, using automated X = 4 =X

tool where possible, I

manually where not. Not to I

exceed X hours.

Note: Unit test level stopping rules were used for ('SC testing. due to budget
constraints.

160

0.920

0915 (50.46, 0.913)

BF

0-910

BRANCH 0 905 (26.05,0.904)
.BR

COVERAGE
0 900 -

0.895
FR

0.890 (23.70,0.893)

0 865

0.880

15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0

EFFORT (hours)

Figure 5.3a Paired Unit Data: Effort versus Coverage

161

level efficiency is given in Figure 5.3b. The only trend or relationship apparent
here is that static techniques found a larger percentage of the known errors per unit
time than did the dynamic techniques.

5.2.1.2.2 Test Technique Pair Description

Paired Technique Effectiveness

As shown in Table 5.12, the six test techniques: Branch (B), Code Review (C),
Functional (F), Random (R), Error and Anomaly Analysis (E), and Structure Analysis
(S) can be combined to represent 15 technique pairs. Technique error-finding
effectiveness, as denoted by percent of SPRs found, is shown for each technique pair
applied to each sample. The rightmost column shows the average percent of SPRs
found for each technique pair, across all samples.

In decreasing effectiveness, the pairs are: CE, FE, BE, CR, RE, CF, CS, BC, ES & FR, BR,
FS, BF, BS, and RS. Thus it appears that while Code Review did the best at finding
errors at the un;t level, it formed the most effective pair combined with Error &
Anomaly Detection. The static technique of Error & Anomaly Detection combined
with Functional or Branch testing did almost as well as the CE pair. Structure
Analysis did not do well by itself and did not rate high in the pair analysis; it is
interesting to note, however, that it performed best when paired with another static
technique, Code Review. Of the pairs of dynamic techniques, FR found the most with
39%, followed by BR with an average of 38%, and BF with an average of 36%. Note
that these dynamic pairs arc rated in inverse order from the CSC level pairs. (See
Table 5.19.)

Paired Technique Effort

Based on the single technique effort results, which showed static techniques took less
time than the dynamic ones, technique pairs of two static techniques will also take
less time than other pairs of techniques. This finding is reflected in Tabie 5.13. The
pairs, listed in order of increasing effort necessary to apply a technique pair, are:
ES, CS, CE, RS, RE, CF. FR, FS, CR, FE, BS, BE, BR, BF, and BC.

An ANOVA on pairs of techniques is not wholly appropriate from a statistical
standpoint. Conducting a chi-square test on the data is one option for further
analyses. A first iteration on conducting a chi-square test on these paired technique
effort data is contained in the Task 5 report.

Paired Technique Coverage

Table 5.14 shows the average branch coverage attained by each pair of dynamic
techniques. (Static techniques cannot be included here because their application
does not involve executing the code, and therefore executing branches.) In direct
translation from the single technique coverage results, BF obtained the highest
coverage with over 91%, followed by BR with approximately 90% and FR with
approximately 89%.

An ANOVA on pairs of techniques is not wholly appropriate from a statistical
standpoint. Conducting a chi-square test on the data is one option for further
analyses. A first iteration on conducting a chi-square test on these paired technique
effort data is contained in the Task 5 report.

162

I-" 96 --

0-94 (38.13,0.932)

0.92

BRANCH 0.90 -

COVERAGE .8 ±
0.86 --

0.84 -4-

0.82 (33.37,0.810) (31;.07,0.808)
F R

I' •,I I I • l I i I

31.0 "32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40-0

EFFORT (hours)

Fig:ireS.3b Single Technique Detta. U'mt Test Level Coverik-e vs Time

163

lahle 5.1" U L'iit Paird I((i Iuique I'Iffe.tivelicss I, 5P --

TO'cique :Il fiP.CN .'NW'ISN FHI.AD(I TIIXR)T
Pair. SCANNERl iNFANSEN INPSAT INODE A1ER. -(;E

Tester 1' Iif II IV " PER(1:NT
BC 0.0 0.50 0.67 o..!1)

0.11 0.60 0 71 1.(7 013
B F 0.0 0.25 o.33 0.57

o.0 0. 150 o. ..5 , .62 0.:tO
B R 0 IJ 0.50. 0.33 1 0.50

0.00 0.60 i 0.50 ,)._51 u. 3:6
13 E N:A N/- 0.33 o.50

1 0.72 N/A 0.79 : " N 0.59
BS NiA N/A 0.13 0.43.,

' 0.06 N'/A 0.50 1 N. A , 0.33
'CF 0.0 0.50 I1.0 0.79 i.

I . 0.11 0.20 0.71 0.S1" 0.2
R 0.01 1.0! 1.0 0.79 os

.17 o0.40 0. 0.67 0. . S
C 'E N./ N/A 1 0.671 0.4:31

0.S:3 N! A 0.64 N/A 0.64
I('S N/A N /A 0.67 0.43

0 17 N/A 0.50 N 'A 0.44
FR 0.0 J7.5 . o.3:3 0.57

0.06 0.20 1 0.50 0.67 il 0.39
FE I N/A N/A 0.331 0.57

0.72 N/A 0.86 N/A i 0.62
FS N/A A 0.33 0.50 II

0.06 NI/A 0.57 N/A 0.37
RE T N*/A N/A 0.33 0,0I

i 0 o.7S N/AA 0.30 N/A I 0..53
Rs T /A/A 1 0.331 0.43 11

-_,I 0.11 N/A 0.21 N'A ii 0.27
ES N /A N/A 0.33 0.07 !1

0io.78 N/A 1 0:36 N/. /A 0.39

164

Techitiue fHU('. WNWVSN . I5. t l AI)(•' FI{XRDT
Pair 5('ANNER INVA.\NSEN INPSA F I.NMODE A.-E.-\ v E

Lir I 1 Ill I V EFFORT
BC 136.75 149.50 . 7.- -17..50 ii Wi.4
BF 16V.00 90.25 .Si .- 5 63.00 i 50.40
BR 148.25 114.50 S9.50 64.50 i 26.05
BE 122.00 N/A 70.00 41.00 11 2_._
BS 122.00 N i A 6,.S25 40.25 1 25.61
C-F 133.50 1 126.5u t;6.95 -47.00 2i 3:3.
CR 112.75 t.50.75 75.00 I 46.0 .50 2 .1.I
CE 1.5.7.5 \/A 20.25 i S.50 :1 4 95
CS 15.7.5 Ni/A 18.50 : 7.73 4.67
FR 145.00 91.50 75.70 . 64.00 '1 '23. 70
FE 118.75 i N/A 59.20 40.50 ;I 24.27
FS t118.7.5 N/A 57.4.5 39.75 ."-3.99
RE 9800 N A 67.25 42.00 II 230
RS 9S.00 N /A 1 o5.50 1 41.25 5
ES N/A N A 0.75 1.2.5

1.00o N/A0 N/A 1 .217

Table 5 1 PAIRED VN!T D.\TA . BRANCH COVERAGE BY TE(.'H-
"NIQUE

Units I THUSCN ".WMSN THU.ADC THXRDT "
SCANNER INFANSEN INPSAT INMODE AVERAGE

Tes-r. _______ i 11 Ill IV COVERAGE. I
Tech niq ue

BF 1.00 1.001 1.00 .971 .913
__ _ _ _ I.962 .8S9 1 .86.5 .10SBR 1.00 1.00 1oo .,8 - - - - 90-

_____ i____ .724 .S98 .865 .s77 _I_ _

- FR 1.00 S5 .00 .sI .S93
__ __ _ .975 .806 .863 .75.5.,

165

In comparing the descriptive paired technique data for effort and coverage, it is seen
that the coverage is inversely related to the effort: the technique-pair that took the
longest to apply attained the best branch coverage, and vice versa. These results are
shown in Figure 5.3c.

5.2.1.3 CSC Testing

As described in Section 5 2.1.1, one latin square was used in the experiment at the CSC
level. The samples for use in this latin square were four CSCs from the AFATDS
project: SNWMSN, THPCON, THUADS, and THURDT. See Section 5.2.1.1 for information
on these samples. In addition to the latin square experiment, the two deterministic
test techniques, Error & Anomaly Detection (E) and Structure Analysis (SA), were
applied to two of the samples by two of the testers.

5.2.1.3.1 Single Test Technique Description

Single Technique Effectiveness

Table 5.15 shows the categories that SPRs fall into, and how many SPRs fell into each
category, for each CSC sample. The numbers in the cells of the table represent SPR
counts. Each column in this table provides information for the sample named at the
heading of the column. Refer to the text accompanying Table 5.2 for a definition of
the rows in this table.

(See also the Unit Error Summary Tables in Section 5.2.6; they present a more detailed
view of these SPRs.)

As shown in Table 5.15, the CSCs contained from 2 to 17 known errors that could
possibly be found by CSC testing, and CSC testing found from 20% to 100% of these
errors with an average percentage found of approximately 75% across the four CSCs.
Thus while on average three quarters of the errors in a sample were found, the
variance (from 20 to 100%) is large. Also, the number of errors known per sample
has a large variance (from 2 to 17). This mirrors the properties of the unit data, with
the additional fact that the CSC level has orly half the data points as the unit level.
These factors make the data less than ideally suited for statistical analyses and
unsuitable for an ANOVA. Repetition of this study to add data points to the analyses
would improve confidence in results.

As at the unit testing level, CSC testing found new errors not previously found in
original development testing. Conversely, CSC experiment testing found only one of
the original development errors.

Whereas Table 5.15, addresses overall test effectiveness from a code sample viewpoint,
Table 5.3 addresses effectiveness from the individual test technique viewpoint. This
table shows that averaged over all samples, at the CSC test level, Branch Testing found
the largest percentage of errors, followed by Code Review, Functional, Error and
Anomaly Detection, Random, and Structure Analysis.

These descriptive data suggest that Branch Testing may be the best error-finding
technique at the CSC level. Since the experiment was designed as a latin square that
allows us to test this hypothesis while accounting for other influences upon the data,
such as tester variability, and order of application of the techniques, it is premature
to make [his as a final judgment. Due to time and budget constraints, the minimum
number (two) of latin squares needed to support an ANOVA at the CSC level was not
obtained. Therefore we cannot conduct ANOVAs on these data. However, conducting

166

40
13.32, 36)35 - C

.30 -(0-97,29g)

25 --
(35.13, 25)

XSPRs
(33.37,F3 •

FOUND 2 -

I -- (3S.07, 19)

(0.66, 3)
5

- 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0

EFFORT (hours)

Figure 5.3c Singin Tedmcique Data: Unit Test Level Efficiency

167

Table S. i: Breakdowvn of SPR,; 'U\ CSC Sample

C SC's
SPRs jS.NIWISN i THPCON -IHU.-WS THURDT
Fomid in I

SExperimein if 6 1 16 1 21
NewivI

SFound i61 !6!1 21
Originai
Findablelji41C
Experiment
Findable 7 17 .5 _ _ _ _

IExperi'ment

Findlable, Found 8%9 4% (A,00
in Experiment _________ ______

168

a chi-square test on the data is one option for further analyses. A first iteration on
conducting a chi-square test on these CSC effort data is contained in the Task 5 report;
further work needs to be don.e with these data analyses.

Single Technique Effort

Table 5.16 shows the average effort (in hours) to execute each technique on each
sample. The times listed for dynamic techniques does not include driver development
and online environment setup time in this table; this time is listed separately in the
"Initia! DTM Driver Development" fields.

Table 5.17 presents test time in a different way than the previous table. In this table,
the field "Initial DTM Driver Development" has been added to the technique time
value for the dynamic techniques. Thus entries in this table reflect how much time
it wodld have actually taken a tester to test with any one technique independently of
any others in this experiment. Thus they can be recommended as a starting point for
estimating timt to test other, similar code CSCs. The three dynamic techniques all
took between 35 and 40 hours. Branch and Random tied for consuming the most
effort, with Functional the third most time consuming. The static techniques all took
much less time (2-7 hours) than the dynamic ones. Code Review took the most, with
Error & Anomaly Detection and Static Analysis tied for the least amount of time.
(Since the latter two techniques invo!ve using error reports from the same
automated tool, ihe cqual average effort is not surprising.)

Testers did not use the DTM tool at the CSC test level, so DTM tool usage time is not
embedded in these times as it was for the unit effort times. However, as with the unit
effort, CSC times included time to develop drivers for code of a given complexity; code
of different complexities might necessitate altering these times.

For both methods of measuring effort, the average effort, across four samples for F, C,
B, and R test teciniques and across two samples for the E and SA test techniques is
lower than the principal investigators originally estimated. In opposition to what
was seen at the unit ie',el, the original estimates were better at predicting test time as
shown above in Table 5 17; thus the estimates seem to best reflect test application time
including driver and online environment development. This is like!y because only
partial CSCs were actaally tested; the original estimates were made for CSC test effort
i-t general.

Single Technique Coverage

Table 5.18 shows the branch coverage achieved by the three dynamic techniques at
the CSC level. The relative ranking in decreasing coverage: B, F, R, mirrors the
coverage performance seen at the unit level. (Refer to Table 5.10.) These results are
shown in Figure 5.3d.

Single Technique Efficiency

Test technique efficiency is the percent of findable SPRs found when the stopping
rule was reached, divided by the time taken applying the technique when the
stopping rule was reached. For the experiment, at the CSC level the techniques rank
in decreasing efficiency as follows: L, S, C, B, F, R. A plot of uniL level efficiency is
given in Figure 5.3e. The only trend or relationship apparent here is that static
techniques found a larger percentage of ihe known errors per unit time than did the
dynamic techniques.

!69

Table$.i6: ALL C(•" DATA tLTVP AND EXECTTION EFFORT

CSCs TU'RDT I THUADS I SNWMSN THPCON "I AVERAGE
Tester I [III I V EFFORT

Technique !I Estimated Hours' , Iq
Initial DTM l N/A I 5Z.50 11.501 24.00 1 9.50 I1 21.13

rve Dev.' ,

F I 32.00 !1 11.00 7.00 i 10.75 I 6.50 ilS.
C, 1_.oo I1 s..'50 1 5.00 1 8.00 1 3.50 il 6.2.5

9 -5S.Oij 19.50 1 9.50, 16.25 1 7.00 II _3.0(6 j
R -_._ 4.00 :1 16.00 1 13.25 1 12.75 10.25 Ih i.3.061

E 12.00 11 N/A I N/A j 4.00 1.50 11 2.751
SA ioo I "/ N/A N/A I 4.00 1.150 2.75J

abheS 7: ALLL CSC CDATA 1OTA.L APPLI(.\TION EFFORT

nits '.THURDT THUADS S.,S. HPC'ON ',, A,,ERAGE
Tester 1 1 11 I iV EFFORT

T cchln-,ue , [:Lt' 1ated Ifours* i'
F .i 32.00 !1 65.56 1 i.50 i 34.7.5 16.00 13:3.94
C 16.00 II 8.50 5.00 1 .00 i 3.50 Ii 6.2.5

.58.00 I! 7.i.00 21.00 -'0.2.5 16-.50 ;: 3.-.19
R 44.00 !1 71.50 1 24.75 .36.75 !9.-5 :: 3.J 19

12.00 II N/A ., YA 4.00 1.50 11 2.75
_ _ _ _.00 i i N/A N /A 4.00 .'.50 ,I 2.75

Table 5.:S: C'C [)-\ I\ : 1l3 A.N(H COVERAGE BY TECHNIQUE

CSCs 'I THURDTr I T'HUADS I SNW\.ISN I THPCON 1i AVERAGET
Tester ' 11 11 I IV I COVERAG;E

Technique

561 i .708 1 .77:. .6941 .6841

B .561 .- 2 .864 F .837 1I .764 I
___________________ I __________________ ii _________________

R .3661 750 7 .86 4 .5 623

I I . .

170

(38.19,0.764)
076 --

074+

072 72

BRANCH 0 7 0 T-
COVERAGE 0r

0.68 T (33.94,0.684)

O66--

0.64

I R
S62 (38.19,0.623)

' I I I , I

31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0

EFFORT(hours)

Figure 5.3d Single Technique Data: CSC Test Levdl Covcrage vs Time

171

70 (38.19, 68)

60-

%SPRs Co

FOUND 401
06 25. 35.

0 E
30. , (33.94, 33)(2.75, 25)

0

20 E R
038.19, 17)

10 30

(2.75S, 10)
I I

4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0

EFFORT(hours)

Figure 5.3e Single Technique Dati.: CSC Test Level EfficiencY

172

5.2.1.3.2 Test Technique Pair Description

Paired Technique Effectiveness

As shown in Table 5.19, the six test techniques: Branch (B), Code Review (C),
Functional (F), Random (R), Error and Anomaly Analysis (E), and Structure Analysis
(S) can be combined to represent 15 technique pairs. Technique error-finding
effectiveness, as denoted by percent of SPRs found, is shown for each technique pair
applied to each sample. The rightmost column shows the average percent of SPRs
found for each technique pair, across all samples.

In decreasing effectiveness, the pairs are: BE & BS, BC & BF, BR, FE, FS, CE & CS, CF, CR
& RE & RS, FR, and ES. Thus it appears that while Branch Testing did the best at
finding errors at the CSC level, it also complements errors found by the static
techniques. Error & Anomaly Detection. Structure Analysis, and Code Review, in
decreasing order. However, Error & Anomaly Detection and Structure Analysis did
not do well by themselves at finding errors and did not complement each other well,
which led to that pair (ES) rating the lowest. Of the pairs of dynamic techniques, BF
found the most with 74%, followed by BR with an average of 69%, and FR with an
average of 35%. Note that these pairs are rated in inverse order from the unit-level
pairs. (FR found an average of 39%, followed by BR with an average of 38%, and BF
with an average of 36% at the unit level.)

Paired Technique Effort

The single unit and CSC technique effort results showed static techniques took less
time than the dynamic ones, and technique pairs of two static techniques also took
less time than other pairs of techniques. This finding is reflected in Table 5.20. The
pairs, listed in order of increasing effort necessary to apply a technique pair, are:
ES, CE & CS, CF, CR, FE & FS, RE & RS, BE & BS, BC, BF & FR, and BR.

An ANOVA on pairs of techniques is not wholly appropriate from a statistical
standpoint. Conducting a chi-square test on the data is one option for further
analyses. A first iteration on conducting a chi-square test on these paired technique
effort data is contained in the Task 5 report.

Paired Technique Coverage

T"'.le 5.21 shows the average branch coverage attained by each pair of dynamic
techniques. (Static techniques cannot be included here because their application
does not involve executing the code, and therefore executing branches.) BF obtained
the highest coverage with over 76%, followed by BR with approximately 72% and FR
with approximately 73%.

An ANOVA on pairs of techniques is not wholly appropriate from a statistical
standpoint. Conduc.ing a chi-square test on the data is one option for further
analyses. A first iteration on conducting a chi-square test on these paired technique
coverage data is contained in the Task 5 report.

In comparing the descriptive paired technique data for effort and coverage, it is seen
that the coverage is inversely related to the effort: the technique-pair that took the
longest to apply attained the best branch coverage, and vice versa. These results are
shown in Figure 5.4.

173

!,v~i,.5 s (-WC D.LX.T PAIRED TI"liNjol l. I Il(-1 \ i.N[.
"-PRs)

Pair THURDT THUADS S NISN . FIIP(().N A,\RA(C-
Tester I1 111 I[.I E\([F 1

BC 1.00 0.40 o 0.71 0 T)74
BF 1.00 1 0.20 0.S6 6 0.88 0 74
BR 1.00 I 0.20 0.66 0-71 0 69
BE '/A N \/A 0.$6 0.76
BS N•/A N/A 0.-6 1 0.76 i- I0.1
CF 0.00 1 0.40 0.S6 0.i5 0.4z
CR 0.001 0.40 0.S6 0.47 1) H
CE N/A i N/A 0.71 0..,.
CS N/A N/A 0.71 0.3.5 T 53
FR 0.00 i 0.201 0.7 5U.65 .i6)
FE N/ A N/iA 1 0.71 0.6.5 ;u.6
FS N /A iN/A. 0.57 0.6.5 0.61
RE C N/A I N/Ai 0.57 0.29 0.43
RS N/A I N/A I 0.57 0.2, '-1 0.4:1

ES N/A I N/AI 0.57 0.06 0.32

Fable 5.20: CSC' DATA: PAIl ED TECHNIQUE EFFORT

Technique ,ili,

Pairt, TIIRDT THU'ADS SNWVMSN THPCON : A\ERA(;
-rTe•ter . __________ III IV il EFFOR F
8c, S3.50 26.00 48.25 20.00 II 44.44

BF 86.00 28.00 51.00 23.00 i1 4T 00
BR I 91.001 34.25 53.00 26.735 il 51.225
BE N/A N N/A 44.25 I1.00 1 ..11 .
BS N/A N/A 44.25 18.00 . 31.13
CF 75.00 213.50 1 42.75 19.50 if 15.30
CR 80.00 1 29.75 1 44.75 23.25 __ 17.00
CE 11 N/A I N./,/A 12.00'1 5.00 11 8.50
cs /1 .',/A I N/A 12.00 5 3.00 S.50
F R S .2.50 :31. 73 47.50 1 26.25 4700

-FE N/A 7 N/A 38.75 1 17.50 2 2S.13
FS N/AA N/A 38.75 17.50 28.13:
RE N/A I N/A 40.75 21.25 L 3100
RS N/AI N/A 40.75 I 21.25 I 31.00

, ES N /Al NAI 8.00] 3.00 - T.550

174

Table 5 21: CSC DATA: PAIRED rECIINIQUL BR.ANCH CO\ERAGE

lecnique

Pair THURDT THUADS 1 SNW.ISN THPCON il AVERAGE
Tester :, I III III IV 1 PERCENT

BFI .561 .792 .909 7-96 Ii .765

BR .476 .792-1 S64 .7.55 :, .

FR .561 .750 '09 .694 I .729

175

0 79

078

0 77 (47.00,0.765)

BIF0 76 OF

BRANCH o 75
COVERAGE

074

073 FR
(47.00,0.729) OR

072(5 (51.25,0.722)

0.71

t t I I I I I--
46.0 47.0 46.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0

EFFORT(hours)

Figure 5.4: Paired CSC Data: Effort versus Coverage

176

5.2.1.4 Tester Profiles

Prior to testing software for this experiment, each tester was asked to complete a
software engineering questionnaire. The results of this questionnaire are shown
below in a series of histograms which compare tester backgrounds and experience.

In the education and experience category (see Figure 5.5), the four testers all have
college degrees: one earned a Masters while the other three hold bachelors degrees.
All have at least three years of general software experience and between one and
five years of software testing experience.

Experience with test techniques used in this study is as follows (see also Figure 5.6
and 5.7): all use functional testing frequently; two had used random testing before
and two had not: two use code review frequentiy, one uses it occasionally, and one
had never used it; one occasionally uses structure analysis, while three had never
used it; none had ever used error and anomaly detection, although one had reýad about
it; and none ihad ,ever used branch testing, 'although two had read about it.
(Interestingly enough. when interviewed after the experiment, all four testers liked
branch testing. Their confidence in their results increased due to having the
"concrete" measure of branch coverage against which to judge their progress, and
they had no problems identifying test cases to exercise the branctes.)

All had experience using high level languages (see Figure 5.8 and 5.9). One had used
FORTRAN over 15 years, while one had used it under five ycars and two had never
used it. Other languages one or more of the testers were familiar with include: C, Ada,
Pascal, Assemblers, and others.

Testers for the most- part did not have exper'ence with the software tools used in this
experiment (see Figure 5.10). None had used RXVP80, though all said they liked this
tool after the experiment: only one had used DEC Test Manager (DTM). The testers
were given time before the experiment began to familiarize themselves with both
tools, in an effort to eliminate a tool learning effect in the results.

5.2.2 ANOVA Results

ANOVAs were conducted for the unit test level data, for hypotheses concerning single
test techniques. The STATISTICA,- ANALYSIS SYSTEM (SAS 2) software tool's General
Linear Models (GLM) procedure was used to automate the computations. ANOVAs run
and interpreted on the unit level data inclvde: test technique effectiveness (% of
SPRs found), test technique branch coverage, test technique effort (hours), and test
technique efficiency (SPRs found relative to the time it took to find them). The
actual SAS output for these runs can be found in the Task 5 report.

Bclow is a description of the ANOVA model, followed by ANOVAs in each category
listed above. Within each category is the analysis description taken from the Task 2
Report, (SRTIP) [1], Appendix B, and the interpretation of the SAS output results.

The analysis descriptions taken from the SRTIP have been modified to fit the
termin.o!ogy and expectations that have been adopted since its production. Refer to
tac; SRTIP, Appendix 5 for an explanation of symbols and conventions used in these
analysis descriptions. Refer to the document "Data hiems Required for Analysis" in
Appendix C of the Task 4 report [12] for definition of elements such as "total unique
findable SPRs."

177

TESTER PROFILE

ifi

~17

I : ue55 TetrPoieIEuainIdWokEpIec

TESTER PROFILE
TEST TECHNIQUE EXPERIENCE

(NONDETERMINISTIC TECHNIQUES)

4.

S 2

1S1

Figure 5.6: Tester Profile: Nondeterministic Test Techniques

TESTER PROFILE
TEST TECHNIQUE EXPERIENCE

(DETERMINISTIC TECHNIQUES)
4.

C',IS2

1(A

Figure 5.7: Tester Profile: Deterministic Test Techniques

T E S T P R F ; .

Ii:

Figure 5.3: Trester Profile: Program m ing La g ge E p i nc

4. PQOngnage EAperieni

TESTER PROFILE
PROGRAMMING LANGUAGE

4 EXPERIENCE

3

S 2

Itj

0 iII

Figure 5.9: Tester Profile: Programming Langaage Experience (cont)

?R

TESTER PROFILE

TEST TOOL EXPERIENCE
4

1 2

rI .
0E

IJ

.0 T

Figure 5.10: Tester Profile: Test Tool Experience

133

5.2.2.1 Process

To comparatively evaiuate the effectiveness of the test techniques, the data collected
during the experiment were analyzed using the ANOVA associated with this design, as
described below:

Yijk = u_ = Pi + Tj + (PT)ij + Sk + Mijk + Rijk + ijk

where

i is the project index

j is the tester/code sample index

k is the session index

Pi is the project effect

Tj is the combined tester and code sample effect

(PT)ij is the interaction effect among project, tester, and code sample

Sk is the test session effect

M ijk is the test technique or method effect

Rijk is the effect of the previously applied or residual test technique

ijk is the error term

The design used is that for estimating residual effects (in this case "learning" effects)
when treatments are applied in sequence as described in Cochran and Cox [5] on
pages 133-139.

In the ANOVA for the unit test level experiment, we have m=2 Latin Squares and n=4
treatments or test techniques with the sources of variation partitioned as shown in
Table 5.22. Due to the nature of these experiments, we anticipate that if session,
treatment, and residual effects ar,. present, then they will be similar for each square;
hence, it seems reasonable to pool the corresponding interactions into an error
source of variation. On tne other hand, because of the way the columns are defined,
it would be appropriate to group the squares, columns, and squares by columns
sources of variation into a single component (referred to as "columns" in the
resultant ANOVA table given in Table 5.22) that can then be partitioned into the more
meaningful subcomponents of testers and software project.

184

Table 5.22 Unit Test Level Experiment:
Analysis of Variance

Sources of Degrees of
Variation Freedom

Sequence or Columns 7
Tester Effect Ti 3
Software Project Effect I

. Testers x Software 3
R~ows

Test Session Effect S k 3
Treatments

Test Technique Effect Mi pc 3
Residual Effects

Learning Effect Rijk 3
Error Effect Eijk 15

(assumes some
errors are negligible)

TOTAL 31

5.2.2.2 Single Technique Effectiveness Results

Analysis Description from the SRTIP:

Identifier: TTSINGLE_EFFECTIVENESS_01

Question of Interest: Is there a difference in the PERCENT TECHNIQUE SPRs*
found by all testers using any one test technique (R, F, B, C, S, E) at the {unit,
CSC) test level?

Analysis: Analysis of Variance Model F Test

NOTE: 1. * PERCENT TECHNIQUE SPRs = TECHNIQUE SPRs/

(ORIGINAL FINDABLE SPRs + TECHNIQUE NEW SPRs')

or 'the number of SPRs written for this technique' divided by 'the
number of "findable" SPRs for the sample.'

2. The effect of the tools will be confounded.

Interpretation of SAS output:

DEPENDENT VARIABLE: P_SPR

FORMULA: Percent of known, findable at the current test level, SPRs that were
detected by a technique. Specifically, SPRs detected by the technique divided by all
unique experiment findable SPRs known (whether from .original development or
newly found during experiment).

F TEST FOR MODEL SIGNIFICANCE:

F a Significance?

2.90 .10 Yes

.05 Yes

.01 No

INTERPRETATION: Model is significant. Conduct all analyses at 95% confidence level
or lower.

F rESTS FOR SOURCE SIGNIFICANCE (TYPE III):

SOURCE F Significance5?
.10 .05- .01

SWTYPE 0.32 No No No

TESTER 10.11 Yes Yes Yes

SWTYPE*TESTER 2.22 No No No

SESSION 0.66 No No No
TECHNIQUE 1.79 No No No

RESIDUAL 2.58 Yes No No

I I

INTERPRETATION. The tester effect is highly significant and the order of application
is marginally significant and the order of application is marginally significant. This
result indicates that once the tester variability is isolated, nothing can be said about
technique effectiveness. Thus, the effectiveness at testing is based on the tester only
and testers should be selected with this information in mind. This result also implies
that we should continue to focus on defining test techniques and tools to minimize
the tester's impact on reliability achievement.

T TESTS OF PAIRED MEANS: Avg. PSPR's

INTERPRETATIONS.

SWTYPE 0 Not significantly different between projects.

TESTER a TI has significantly fewer Avg. PSPR's. This result may be
due to code sample difficulty or tester skill level/experience.

0 T2 performance is indistinguishable from T3 and T4.

• T4 performance is indistinguishable from T3.

SESSION • Not significantly different between sessions.

TECHNIQUE 0 Not significantly different between techniques.

5.2.2.3 Single Technique Coverage Results

Refer also to SAS data in the Task 5 report.

Analysis Description from the SRTIP:

Identifier: TTSINGLECOVERAGE_01

Question of Interest: Is there a difference in the percent of execution branches
tested by each test technique (R, F, B) at the {unit) test level?

Analysis: Analysis of Variance Model F Test

Interpretation of SAS output:

DEPENDENT VARIABLE: PTLPATH

FORMULA: Percent of branches through the sample that a technique executed.
Specifically, the number of branches executed by the test cases generated using a
technique divided by number of branches in the code sample being tested.

F TEST FOR MODEL SIGNIFICANCE:

F o ,Significance?

30.77 .i0 yes
.05 Yes

_.01 Yes

187

INTERPRETATION: Branch coverage for code reading assumed zero to avoid handling
of missing cells. Model is highly significant.

F TEST FOR SOURCE SIGNIFICANCE:

SOURCE F Significance?

.10 .05 .01

SWTYPE 7.14 Yes Yes No
TESTER 1.32 No No No
SWTYPE*TESTER 1.32 No No No
SESS ION 1 43 No No No
TECHNIQUE 137.55 Yes Yes Yes
RESIDUAL 1I18 No No No

Interpretation: The technique effect is highly significant and the application type is
significant at the 95% level. This significance may be due to the code rea.ding
branch coverage values and needs to be explored further.

T TESTS OF PAIRED MEANS: Avg. PTPATH

INTERPRETA i*ONS:

SWTYPE * SCENE Project has significantly lower averages. This
observation may be related to complexity of the code samples
used.

TESTER • TI and T2 show significantly different average coverage. This

observation may be related to code sample complexity.

SESSION * Not significantly different between sessions.

TECHNIQUE * Branch obtains significantly higher coverage. Code reading
obtains significantly lower (zero) coverage.

5.2.2.4 Single Technique Effort Results

Refer also to SAS data in the Task 5 report.

Analysis Description from the SRTIP:

Identifier: TT-SINGLEEFFORT-01

Question of Interest: Is there a difference in the effort (hours) required to meet
the stopping rules by each test technique (R, F, B, C, S, E) at the (unit, CSC} test
level?

Analysis: Analysis of Variance Model F Test

Interpretation of SAS output:

DEPENDENT VARIABLE: P-TTIME

188

FORMULA: PJ .'IME is technique time divided by sample time. Let technique time
for the dynamic techniques be setup time + technique 'execution' time, where setup
time is driver development and DTM setup and static techniques have 0 setup time.
Let sample time = isetup time + each of the technique execution times for the 4
techniques in the latin square. (Note the sum of PTTIMEs adds up to greater than 1
due to the addition of the setup time for each of the dynamic technique times. This
quantity still reflects ACTUAL time to do things. Specifically, it reflects the time it
would take to complete one technique in isolation (e.g.. if you didn't already have a
driver developed) divided by the actual time to complete the 4 sessions on the latin
square for one sample.)

F TEST FOR MODEL SIGNIFICANCE:

F a Significance?
12.62 .10 Yes

.05 Yes

L .01 Yes

INTERPRETATION: Model is highly significant.

F TEST FOR SOURCE SIGNIFICANCE:

SOURCE F Significance?
.10 .05 .01

SWTYPE 12.94 Yes Yes Yes
TESTER 1.75 No No No
SWTYPE*TESTER 0.68 No No No
SESSION 2.02 No No No
TECHNIQUE 47.1 Yes Yes Yes
RESIDUAL 0.76 No No No

INTERPRETATION: The technique effect is highly significant and the application
type is significant at the 95% level.

T TESTS OF PAIRED MEANS: Ave. PTTIME

INTERPRETATIONS:

SWTYPE • SCENE Pruject has significantly lower average. This
observation may be related to complexity of the code samples
used.

TESTER • TI and T2 show significantly different average coverage. This

observation may be related to code sample complexity.

SESSION . First session had significantly larger effort.

TECHNIQUE • Code Reading had significantly lower effort.

189

5.2.2.5 Single Technique Efficiency Results

Refer also to SAS data in the Task 5 report.

Analysis Description from the SRTIP:

Identifier: TT-SINGLE-EFFICIENCY-02

Question of Interest: Is there a difference in the effort (hours) required to detect
a percent of total discrepancy reports by each test technique (R, F, B, C, S, E) at
the unit test level?

Analysis: Analysis of Variance Model F Test

Interpretation of SAS output:

DEPENDENT VARIABLE: EFFIC

FORMULA: EFFIC IS SPRs found by a technique divided by technique time
(PTTIME).

F TEST FOR MODEL SIGNIFICANCE:

FF a Significance ?

2.48 .10 Yes
.05 Yes
01 No

INTERPRETATION: Medel is significant. Conduct all analyses at 95% confidence level
or lower.

F TEST FOR SOURCE SIGNIFICANCE:

SOURCE F Significance?

.10 .05 .01

SWTYPE .43 DTO No No
TESTER 3.47 Yes Yes No
SWTYPE*TESTER .14 No No No
SESSION .63 No No No
TECHNIQUE 7.32 Yes Yes Yes
RESIDUAL 1.27 No No fi

INTERPRETATION: Both the tester and the technique have a significant effect on test
efficiency. This result implies that we should concentrate on streamlining the
techniques and on providing better training for testers.

190

T TESTS OF PAIRED MEANS: Ave. EFFIC

INTERPRETATIONS:

SWTYPE • Not significantly different between projects.

TESTER • T4 has significantly different effect on average efficiency
than the other testers. This effect may be due to the
complexity of the code samples tested by T4.

SESSION * Not significartly different between sessions.

TECHNIQUE 0 Code Reading had a significantly higher effect on efficiency.

5.2.3 General Observations

As noted in Section 5.1, while using these data, a few data discrepancies were found in
the StatView data base, as well as between: the StatView data base and the error
summary tables provided in Section 5.2.6. Many were resolved. The project effort did
not permit looking into the rest. While these discrepancies are believed to be minor,
they also should be resolved before further analyses are performed.

The descriptive analyses present the data in a reduced form; they in essence are the
first iteration in understanding the data and results. For example, the dzscriptie
data showed it was possible that code review is the best technique to use at the unit
level and that branch testing is the best technique to use at the CSC level.

The statistical analyses of variance, modeled according to the latin square experiment
design, are the next iteration in understanding the data and results.

This report presented preliminary analysis of variance results for several
performance measures - namely, P__SPR, PTPATH, PT TIME, and EFFICIENCY. A basic
assumption underlying the analysis of variance model is that the error (deviations
from the model) have a homogeneous variance. In particular, the magnitude of the
error variance should not be dependent on the magnitude of the variate.

With a change in the PTTIME variate (which represents percentage of total sample
test time taken to setup and execute a given test technique) to a TTLTIME variate,
where TTLTIME is defined as the time to setup and execute a test technique, this
appears to be a reasonable assumption. However it is not reasonable for the other
three dependent variables, for two reasons. First, the variates are percentages, and
as such, the variation is dependent on their magnitude (i.e. variation tends to be
smaller for percentages near 0 or 190 than those near 50 percent). Second, the base
(i.e. denominator) for calculating the percentages (e.g. potential number of SPRs)
varies drastically among the 32 ceils, and the variance of the petcentages is
inversely related to these base numbers. The analysis of variance results shown
herein for the two variables should therefore be interpreted with caution.

Categorical data analysis techniques offer a more appropriate approach for analysis
of these type of performauce measures, because these techniques properly account
for the variance heterogeneity. The data for application of such a procedure can be
regarded as a contingency table in which the 32 rows correspond to the 32 cells of
the design and the columns correspond to a dichotomous response variable- e.g., SPRs
found versus not found. The data are frequency counts. The proportions (analogous

191

to P_SPR), or some transformation of the proportions, can then be modeled as a
function of the experiment design variables and tests of hypotheses concerning the
effects can be performed. The estimation is usually performed by weighted least
squares or by maximum likelihood techniques. (The latter would be preferred in this
case due to the small counts.) In contrast to the F tests associated with the usual
analysis of variance, the categorical data analysis approach employs a series of chi-
square tests for the significance of the various design factors. Software for these
analyses is available in SAS using the FREQ and more preferably the CATMOD
procedure3. Section 5.5 shows chi-square output using the FREQ procedure for test
technique combinations. This output has not been reviewed for appropriateness and
should also be interpreted with caution.

While carrying these analyses further is outside the scope of this contract, it is
recommended that further work be done. In summary, complete and appropriate
experimental data analysis often involves several iterative steps. Further analysis of
these experiment results, under the guidance of a well-qualificd statistician, is
highly recommended.

5.2.4 SAS Outputs: GLM Results

Appendix A of the Task 5 report contains the output from the GENERAL LINEAR
MODELS (GL.M) procedure of the STATISTICAL ANALYSIS SYSTEM (SAS) software tool to
analyze experiment data from the unit test ievel latin squares. Four GLM procedures
were run on the following data sets: test technique effectiveness (SPRs), test
technique effort, test technique branch coverage, and test technique efficiency.

5.2.5 SAS Output: CHI-SQUARE Results

Appendix B of the Task 5 report contains SAS outputs for the following four Chi-
Square runs: unit effectiveness (SPRs), unit branch coverage, CSC effectiveness
(SPRs), and CSC branch coverage. The outputs are available as a first iteration
analysis for use in further work.

5.2,6 Error Summary Tables

The following error summary tables document all known unique errors in each
sample, both for the unit and CSC testing. (A count of the rows in a table yields the
total of all known unique errors for a sample.) The tables show which errors were
found during experimental testing and by which test technique(s) (see the columns
B, C, F, R, EA, SA), as well as showing which errors were from the original
development testing. Only a portion of the original development SPRs (see column
Dev't SPR ID) were determined to be findable at the unit and/or CSC levels; those
errors are marked with a Y in the column Dev't Findable SPR?

The column labeled Error Source represents the testers and project consultants best
estimate of where tht er:or was introduced: for the dynamic techniques, failures
were not traced to faults so the exact source of the error has not been verified.

5.3 RPFOM Exploratory Analysis

This section presents methods and results of exploratory analysis of selected RPFOM
metrics components. Specifically, the relationships between software reliability and
two RPFOM metrics, modularity and complexity, are investigated. These analyses
focus upon the following questions of interest:

192

1. Is the occurrence of errors for a software component independent of the
size of the component?

2. Is the occurrence of errors for a software component independent of the
complexity of the component.

These questions were examined by applying simple linear regression to data
compiled for the SCENE project, These data include error counts, size, and complexity
obtained for individual units (i.e., subroutines) and combined for CSCs. A similar
anaiysis of AFATDS SIM/STIM project data was not completed due to problems
encountered which are detailed below. Regression analysis was conducted on a
Macintosh using the Statview+ statistics package.

5.3.1 Data

Two Statvie'+ data files were constructed, one for unit-level analysis (Appendix C)
and one for CSC-level analysis (Appendix D). Tables 5.23 and 5.24 provide descriptions
of these data files.

Error. size (i.e., lines of code), and complexity values for units were available from
existing SRM/TIT data sources described below. Remaining unit data, such as error
density, were derived from the existing data. CSC data were derived from unit data:
error, size, and complexity for CSCs represent sums of the values for the
corresponding units.

5.3.1.1 Error Data

Error counts were compiled from the SCENE Error Density Matrix appearing in
Appendix D of the SRM/TIT Task 2 Report, Volume 3. These error counts were
originally logged from Software Problem Reports (SPRs) provided by SCENE project
personnel. Each error for a unit represents a reference to that unit in a SPR. Each
SPR may reference one or more units, and thus may account for multiple errors.

Two sets of error counts are recorded in the Statview unit and CSC data files. One set.
labelled V6-ERRORS, represents SPRs logged against Version 6.0 (and versions
thereafter) of SCENE; size and complexity metrics (see below) for units were extracted
from Version 6.0 of the SCENE software. The other set, labelled ALL ERRORS.
comprises all errors (including pre-Version 6.0 errors) from the SCENE Error Density
Matrix for specified units and CSCs. Although pre-Version 6.0 errors for a software
module cannot be directly associated with Version 6.0 metrics if the module has
undergone change, this second set of error counts was also incorporated in analyses
since it provided a larger sample size.

The organization of units into CSCs as represented in the Statview data files parallels
that depicted in the SCENE Error Density Matrix. This scheme originates in
documentation provided by SCENE ptoject personnel (see Task 2 Report, Volume 3).

5.3.1.2 Metrics Data

Size and complexity measurements of SCENE units, collected automatically using the
AMS tool, were imported into the Statview unit data file from the DBMS. Several
functional definitions of these metrics are reported in the literature. For example,
module size is defined variously as number of 1) lines of code, 2) executable lines of
code, and 3) executable statements. These definitions themselves can be ambiguous.
Since unambiguity and consistency in units of measuremeni are necessary for

i93

Table 5.23 RPFOM Analysis Unit Dcota File Description

Field Description

Unit Unit Name

CSC CSC Name

LOC Unit Lines of Code from AMS

sx Unit Complexity from AMS

All Errors Total SPR Count for unit

V6_Errors Vers. 6.0 or later SPR count for unit

All Errors/LOC Error density (Errors/Lines of Code) for unit
based on total SPR count

V6_Errors/LOC Error density for unit based on SPRs for
Version 6.0 or later of code

194

Table 5.24 RPFOM Analysis CSC Data File Description

Field Description

CSC CSC Name

LOC Total lines of Code for all units of CSC

sx Sum of unit complexities for CSC

All Errors Total SPR counts for units of OSC

N_Units Number of units (subroutines) in CSC

V6_Errors SPR counts for units of CSC lcgged against
Version 6.0 or later of code.

LOC/Unit Mean lines of code for units of CSC

All Errors/LOC Error density (Errors/Lines of Code) for CSC
based on total SPR counts

sx/NUnits Mean unit complexity for CSC

V6_Errors/LOC Error density for CSC based on SPRs logged
against Version 6.0 (or later vers.) of code

195

proper interpretation of results and for comparison of results with those of other
studies, a precise functional definition of these metrics was sought.

The AMS tool reports module size as lines of code (LOC). Source code from four SCENE
units was examined visually to establish the precise meaning of LOC as provided by
AMS. The results indicate that each counted line of code, including each
continuation line of a Fortran statement, increments the value of LOC by one. The
only lines of code not counted are blank lines and Comment lines. The manner in
which AMS treats Include statements is uncertain. These were converted to Comment
lines for SCENE following questionable measurements obtained for AFATDS (see
below), in which case very large values for LOC indicated that AMS may have counted
lines of code in the Include files themselves.

The measure of complexity employed in the SRPEG for software units is the sum ot
conditional and unconditional branch statements. This measurement is one of
several provided by AMS under headings of complexity and simpliLity. Visual
examination of the four SCENE units referenced above indicates that the AMS branch
statement complexity number includes all IF and ELSE IF, DO and DO WHILE, GOTO.
CALL, and RETURN statements.

5.3.1.3 Missing Data

Metrics data was unavailable for about 15 of the approximately 150 units listed in !he
SCENE Error Density Matrix. Four of these excluded units each represented an entire
CSC. Difficulties encountered in collecting data with AMS is the primary reason for
absence of this data.

Seventeen units for which AMS provided metrics data are missing from the SCENE
Error Density Matrix, and consequently cannot be associated with any error counts.
These units, included in the Statview database but excluded from the analyses.
apparently were nonexistent when the SCENE project documentation (see Task 2
Report, Volume 3) outlining software components was produced.

The AFATDS SIM/STIM project was not included in these analyses due to spurious data
from AMS on LOC and complexity (Table 5.25), lack of association between version Of
source code from which metrics were collected and versions against which SPRs
were logged, and difficulties encountered when importing metrics data from the 4th
Dimension RPFOM Database into Statview data files.

Table 5.25 presents LOC, unit complexity (sx), and CSC complexity (SX) values for
AFATDS test sample units and CSCs ki.c., "integrated units"). High values for LOC and
unit complexity (indicated in bold face) from late-build AFATDS source code, which
served P the source of metrics data collection for all AFATDS units, raised suspicions
concerning validity of AMS measurements. Since valid metrics data were necessary
for test samples in order to complete analyses of results of the software testing
experiment, AMS was run on the early-build versions of test sample units which
were actually utilized in the testing experiment. Re-runs of AMS were also conducted
on the late-build versions of three of the units. Based on the newly-generated
metrics values, which are listed under "Sample Build," and visual examination of latc-
build versions of selected test-sample units, it was concluded that AMS had provided
anomalous LOC and unit complexity values for an undetermined number of AFATDS
units. The most likely explanation for this problem is that AMS processed INCLUDE
files for units in which INCLUDE statements had not been 'converted to Comment
lines.

196

L = Wl WI -I ' II

(J) -11

c-0

0~~

(o3C

z
CM0 0 0-c ~

0I 0y 0 a) oc

(DU !6 0 0 C%0)
00 -

E E n c
C,, ~ (U=Q00(

&n-

xn -ý(oG mU o ,u
m V *0r-V-c)V

0CZ0O~ai~'

W a0 cmJ

0

IV 0CM V M m0 M N00 r V W (0iO c
a 3 (aJ (0 NV- O V (

m m ___a_4ga C 4 W-P

cn rCJ) ><C a:E/b

jOfQ az 0 cn__ _ __ _ _2_ _ o L

a < U CA cc c CC0
3: cn0

197

5.3.2 Analytical Approach

Simple linear regression was utilized to investigate relationships between software
error occurrence as the dependent variable, and software component size and
complexity as independent variables. Of interest is the degree to which results of
these analyses support or refute the CSC/CSCI Modularity and Complexity models
incorporated in the RPFOM computation. The equations representing these models
are reviewed below (revisions made to original SRPEG values during the course of the
SRM/TIT study are indicated in brackets):

SM (Modularity) = (0.9u + w + 2x)/NM

where u= no. of units with LOC < 200 [100]
w= no. of units with 200 (1001 < LOC < 3000 [500]
x= no. of units with LOC > 3000 [500]

NM= no. of units

SX (Complexity) = (1.5a + b + 0.8c)/NM

where a= no. of units with sx > 20
b = no. of units with 7 < sx < 20
c = no. of units with sx < 7

The following null (HO) hypotheses are tested:

1. The number of software errors is independent of the size (measured by
LOC) of a software component.

2. Error density is independent of the size (measured by LOC) of a software
component.

3. The number of software errors is independent of the complexity (sx) of a
software component.

4. Error density is independent of the complexity (sx) of a software
component.

The F-test is employed to accept or reject these hypotheses at a .05 level of
significance.

5.3.3 Results

5.3.3.1 Modularity

The graphical results for linear regression of errors (dependent variable) and lines
of code (independent variable) for SCENE CSCs presented in Figure 5.11 (Version 6.0
errors used) and Figure 5.12 (total errors used) suggest a significant positive
association between these two variables. High correlation coefficients (R = .971 in
Fig. 5.11; R = .968 in Fig. 5.12) verify this association. and results of F-tests indicate a
probability exceeding 99% that CSC error counts are dependent upon CSC size
measured by lines of code (p = .0001 that the observed association between these
variables is due to chance). Values for the coefficient of determination (R2 = .943 in
Fig. 5.11; R2 = .937 in Fig. 5.12) demonstrate that a high proportion of the total
variation in error count values is explained by the association of numbers of errors
with lines of code.

198

y * .008X - .949, R-squew¢d: .943
60

55

p'45

4035

30

25

20

10

5

0 500 1000 1500 20D0 25W060000350 4000 450 50"00 5500 6000
LINES OF CODE (from AlS)

Simple Regresslen X I: LOC Y1 : V6JMRRORS

OF. Q: -squ"red: Adj. P-sOuared: Std. Error-
116 971 1943 1.94 13.sos 7

Anilysis of Voiance Table
Source DFSw Squares: Mean Soutre: F-test:

REGRESSION ! 13069.296 3069.296 249.897
4SIDUAL. is 14.234 12282 p#.0001

TOTAl 16 3253.529

No Residual SLaUslcs Comp/uted

Simpil Reg-esslio X 1: LOC Y I: V6.IRRORS

Bta Coefficient Tae

Parsmtar,: Vaue: Std. Err.: SW. Value: L-Value: Pre;oblIlty:

IIN,.EPT 1-949 I I - I
ISLOP 1 r008 1oo, 1.971 1-S.808 t.000 1

CoUflfem arvals Table

Pwn•et•r: X5 Lower- 953 Uppr: 903 Lower: 00 Llooer

t*AN (XY) 17482 111.106 7A04 110.784
,1. .007 l.01 1.007 .-009 2

Figure 5.11. SCENE CSC Regression of Errors (Version 6.0 SPRs)

and Lines of Code.
199

y - .023x - 2.77. R-suwreg: .937

140

d120g100
80

6 0

400

20
0 41

0 So0 1000 1500 200 2,00 3000 3500 4000 450 000 5500 6000
LINS OF CODE (from ArtS)

Simple Regression X 1: LOC Y 1: ALL ERRORS

Of: Q: P-seurel: Adi. R-souarea: Std. Error-
1,6 968 1.937 1.933 110-08

Analysis of Variame Table
Sorwce DF: -sum Squw-r: a'mn Sec: F-Lest:

GMSSION 1 22656.925 22656.925 222.999
PISIDUAL Is IS24.016 l01-601- P..0001

MOTAL 16 24180 .941

No Pasidus! Statstics Comonuud

Simple Rolressis X I: LOC Y 1: ALL ERRORS

beta Coefficient Table

Paltar: Vslak Std. Err.: Std. Value: t-Velue: I~betlity.

IIINTERCET 1-2.77 1 11.023,.002 .)968 14.3 0! t

Parameter 95% Lower: 95- Upper 903 Lower- 903 lIPer ,
IPEAN (XMY) 1 191848 13027 120.773 =29.50,
FSLOPE [.02 1026 .02 .062

Figure 5. 12. SCENE CSC Regression of Errors (AUI SPRs) and

Lines of Code.

200

Results of linear regression of these same variables for the unit components of the
CSCs, illustrated in Figure 5.13 (Version 6.0 errors used) and Figure 5.14 (total errors
used), support the findings presented above for CSCs. Although the correlation
between error count and module size is weaker (R = .78 and .81) and less of the
variation *in error count is explained by the fitted regression (R2 = .61 and .66), the
probability of a dependent relationship of number of errors on lines of code remains
greater than 99% (p = .0001 from F-test).

The positive correlation oetween error count and modulý. size does not provide
insight into the relationship between error frequency and module size. This was
investigated by performing linear regression on errors per lines of code as the
dependent variable, and lines of code as the independent variable. The results for
CSCs presented in Figure 5.15 (Version 6.0 errors used) and Figure 5.16 (all errors
used) indicate that error density cannot be predicted by CSC size (p > .45 that these
variables are independent based on F-test). Similar results were obtained with error
density and unit size, illustrated in Figure 5.17.

5.3.3.2 Complexity

The results of linear regression analysis of errors (dependent variable) and
complexity (independent variable) for CSCs shown in Figure 5.18 (Version 6.0 errors
used) and Figure 5.19 (all errors used) indicate a positive correlation between errors
and complexity (R > .90 for both regressions). Results of F-tests imply a statistically
significant dependence of error counts on complexity (p = .0001 that observed
relationship is due to chance).

Analogous results were obtained when regressions were performed on error counts
and complexity for units (Figures 5.20 and 5.21). However, as occurred in unit-level
regressions of errors and module size described above, the correlations are not as
high for units as for CSCs, and only half of the variation in error counts is
attributable to its association with complexity (R2 < .50).

To investigate the relationship of error frequency to complexity, linear regressions
were conducted on error density (errors per lines of code) and complexity for CSCs
(Figures 5.22 and 5.23) and units (Figures 5.24 and 5.25). The results indicate no
significant. relationship between error density and complexity except when error
density for units was based on total error count (Figure 5.25). In this case, error
density declined significantly with increased unit complexity according to F-test
results (p = .0111 that this relationship is due to chance).

5.3.4 Summary and Conclusions

Results of linear regression analysis on SCENE units and CSCs indicate that
occurrence of errors in software is not independent of module size or complexity.
Specifically, it is shown that size of units or CSCs measured as lines of code, and
complexity measured as number of branch statements, are determinants of error
occurrence measured as number of Software Problem Reports (SPRs). Tl-.-se findings
lead to rejection of null hypotheses #1 and #3 descriz d in Section 5.3.6.2 above. That
is, an increase in size or complexity of a software c.omponent (i.e., unit or CSC) will
effect an increase in number of errors for that component.

Converseiy, the results suggest that larger or more complex software units and CSCs
do not experience a higher frequency of errors when frequency is measured as
error density (errors per lines of code). In fact, when error density is based on total

201

S~ y - .O07-, .121, R-.Guaure: .606

;i•10 .

10

4
6

0
0 .10 00 600 800 10 20 W

LINlES OF(OD (frein AMI)

Sliple Reqression X !: LOC Y I: V6_ERROR!S

DF: Q. P-Slswled: Adj. P-souarea. SLJ. Error

1136 78 1 608 60o 1.242

Analysis or Variance Table
'ce F- Sum SQuw.es: --. Suwe. F-test.

RE61_SSlON ,323.S64 323W64 1209.772
IPESIOUAL 135 208.232 11.542 10. 0001
TOTAL 1136 531.796

No Residual StaUstics Cwonutsd

Simple Remyeise X I: LOC Y 1: V6..ERRORS

Wet Coefficient Tabe

Poirvnew: Value: SW. Err.: 51. Value: t-Valu": Probabilitv
INTERPT 1.121 I 1 ' 1I
SLOPE 0.007 [4.8M-,-4 • o

Cmflece Intervals Table

Partwer: 95X Lower: 95 UPpe: 902 Lower: 90, Upsr:
rem MxY) 1965 11.3M5 I Qcn 1,351
SLOK .0 008 1.006 1008 2

Figure 5.1.3. iCENE Unit Regression oi Errors (Verson 6.0 SPRs
and Lines of Code.

202

y . .4 ,x + .972. R-squarea: .655

20,-i 18
16

14 0

00

* 2 00.4i• 0 Oq
60

00

0 200I 400 600000IO~ 12,00 14,00

LlfNES OF CODE (from AMS)

Simpli Regression X l: LOC Y I: ALL ERRORS

OF. P-soutred: Adi. R-sqjared: Std. Error:

1136 1809 1655 1.652 12.294

Analysis of Variance Table

Source OF: Sum Squures: ,ean Squar, F-test:

W-ESSON T •i i'348._n89 1248.n8%r.593
PESIDUAL ,135 710.701 5.264 p -0001

TOTAL 1_36 2058•891

No Residual Statistics Computad

Simple Regressle XI: LOC Y 1: ALL ERRORS

Beta Coeffliclent Table

Parameter: Value Std. Err.: SW. Value: t-Value: Probabllltv

INTECIPE 1.2 1 .E -- I 01
SOPl . .001 I .. 9 16.003

Confdence Int'rvols Table

Parameter: 5 Lower: 9%53 tioe: 903 Lower: 90i Upper:

[tEAN MXY) 12.736 13.512 12.799 13.449
SLOPE 1.013 1.016 1.013 1,01 2

Figure 5.".` SCENE Unit Regression of Errors (ALL SPRs) ana

Lines of Code.
203

" 7.020E-7x + .005, R-squarea: .036
022,
02.

U 018.

016.
at

014.

.01.

0 500 100 150tS0 20o00 250 3000 350 4000 4500 5000 5.500 60
LIES CCODE• (from AilS)

SimCAe Regressl Xl: LOC Y.. : V6...R..R.ILOC

0•': R --rqaar~d; Adj. R-s~ae-.l: Std. Error:

kAbjiqs of V~runce Table

0TOT2 16 ' "1

No Resilaal Sttsjc r~qt~ -

Simple Reqressem X1 : LOC Yj : ..EIRRORWSLOC

Beta C, e~fflhm Table.a: V u : Std. Err. i _ Std. Vabw: t-Vai: .r.obabh1g

116 l .191 I 1.03 6 1 -on 1 006

Ccffide• bierso ,i Table

Pram~eter : 5B Lower.: 95% UpJer: 90l%.Lover : 90%l Upe:

Iv•Mi(,Y) 1.00 Ioo . 0-0- 1009I

Figure 5. -S SCENE resajon u f Erroren (based ,n

Verion 6o SPRs) a Line f Code.

204

II ~II T11I

y -7.932E-7x * .023. g-voguree: .005

09

.08

.076

~06
05 0

04 *

S03

02

.01

0i
0 500 10-00 15-00 20-00 2500 3000 35 .00 400 45 .00 5000 5500I 6000

LINES OF CO f rorom AMS)

Simple Regre~ssuo X 1: LOC Yl: ALL ERRO5ILOC

DF: R: P-squared: Ad. P-souared: Std. Error:
116 T074 1.005 I06 01a

Analysis of Variatme Table
Source Dun SquaeM: Hem Square: F-tesL:
WMRESSION I i 2.716E-5 12.716E-5 1.083
WSIDLIAL 115 OOS 13.276E-4 h.0.1773
TOTAL. .16 .005 1

No ResiduM StaIusUcs Conrm-Wad

Simple Reyessies X 1: LOC YVI: ALL ERRORS/LOC

sots coefficimnt table
araFeter: Value: Std. Err.: td. Value: t-Value: Pr.Ilityo

IINMMCET 1.023 - J
SLOPE "oL-7.32o-7 .- o,74 _M 1.7773

Conldyeica Intervals Table

Sou tre 95. Lower: 95X Sqore: X03 Lower- • 0 U-Ps -
I SIAN .Y) 12..!3 1.032 .1i5 1.03

1-6666-6 5.079E-6 .-5h23E-6 4.037E-6 2

Figure 3 16 SCENE CSC Regression of Error Dens. iy (based on al
-SPRs) and Lines of Code.

205

y - - 1 .09E-5x + .013. R-sauared: .0 11
14

We~ .08

06

04

.02 ¶*
0 .
0 200 400 600 800 1000 1200 1400

LINES OF CODE (from AIS)

Simple Regression X 1: LOC Y 1: V6..-ERRORS/LOC

DF: R: Q-squared: Adi. R-souarec: Std. Error:

1736 103 1.011 003 023

Analysis of Variance Table

Source OF .. wn •ere • u -test:

WGRESSION I, .001 .00 =1 48

_RSIDUAL 135 .073 .00 1 p - .2,-94

TOTAL _ 136 1.074 L

No Residual S~tbstics Cotnu.ted

Simple Regression X,: LOC Y 1: V6_ERROPS/LOC

Bets Coeffcient Table

Porwrow: value: Std. Er.: SW. Value: I-Value: ProbabilILty

IINTERCEPT 1.013 , 1 1 1
SLOPE -l 091E-S 9.034-6 -. 103 11207 - 2294

Confidence Intervals Table

Pwmwter: 95X Lower: 95X tIpper: 903 Lower: 90. tIW,,r:

MAN MY). .007 .- 015 .. 008 .015

IO ' -2._7SE- I _6.9W-6 -2._7E-5 4.06 2

Figure 5.17 SCENE Unic Regression of Error Density (based on
Version 6.0 SPRs) and Lines of Code

206

y - .064X - 1.217. R-s0qureo: .91
60

55• 0

35
30

2S
20

5 4LOW

0 100 200 300 400 500- 600 700 800 900 !000
CO"PLEXI'Y (Sum or sx)

Simple Regressi X j: sx Y j: V6.2RRORS

DF: P -souared: Adi. P-souaro0: Std. Error-

16 954 .91 904 ,4.427

Analysis of variance Table
Source OF: SuM.. Squar". one Square: F-Ltt:

REGRESSION I 2959.494 2959.494 1IS0.976

RESIDUA.L is 294.036 119.602 p 6.0001
TOTAL 16 3253.s29

No Residual StaUsUcs Comonted

Simiple Regressle X 1: ix YI: V6OERRORS

Sell Coemclent Table

Parametmr: Valut: WS. Err.: Std. Value: L-Vlue: Praaility

INTERCEPT 1-1.217 I I I I
0• .004 ., 954 112287 .10001 .

C kldef Intervals Table

Parof.etr: 953 Lower: 9X3 LUper 903 Lower: 903 Uppr:,

I ENM) 1.0 11.58W 17.411 111.177
SL(WE ,045 01 L"4 1.0622

Figure 5. 18 SCENE CSC Regression of Errors (Version 6.0 SPRs)

and Complexity (sum for units).

207

aj .146x - 3.234, R-squared: .087
160,

140.

12o0

40.

20

D
0 i 00 200 300 400 500 6ý0 700 8W a,0 W 000

COMPLEX ITY (Sum of sx)

Simple Royesslee XI: sx YI : ALL ER!1R-

DFr: Q : R-sqOred: 7 Ad. R-sur.aed: Std. Error:

116 9142 1.887 1.879 13.515

Anaksis of Varuce Table

Sour@ ': S.wmSquar--es: Man Square. F-test.

RREGFSSKON 1 121441.257 12144 1257 1117.393
RESVUAL 152739.684 1102.646 I-.010101
TOTAL 16)2418.9 II

No Resmdul Statistis C•n•pted

Nolt: I cise deleted with missuq values. K

Stmpl.e Re•resin X1 sx Y I : ALL EMLORS

Otis Coefficint Table

Parmeter' Va)We Std. Err.. Std. Valu-: i-Value: Probabilitu

ITr ,PT 1-3.234 - I I
SLOPE 1.14 1.013 1.942 110.83 1.0001

Confideoe htervals Table

Parameter 95% Lower: 95% Uppr 9• % Lower: I PW:

I WAN (XY) 118.072 132.046 119.312 30.806
ISLOPE 1.117 1.174 .122 .69

Figure 5.19 SCENE CEC Regression of Errors (all SPRs) and

CompLexicy (sum for units).

208

y - .034x + .354. R-squarea: .491
12

10

6,

2,

0 so too IS0 200 250 300 350
COlM.EXITY (sx)

- Simple Regression X 1: sx Y 1: V6_IfRRORS

OF: P: P-squared" Adj. P-squared: Std. Error-

1136 1701 10491 1.487 11.416

Analysis of Variance Table
Source OfSu Squares: laeun Swr&e: F-lest-

REGRESSION 1 261.147 261.147 130-26

RESIDUAL 135 270.649 2.005 p .000I
TOTAL 136 531.796

No Residual StaUsUcs Computed

Simple Aegressio XI: $x Y 1: V6.JERRORS

Seta CoeflcienL Table
Parameter: Value: Std. Err.: Std. Value. t-value: Probabilitv

INTERCEPT .354 1 1 .

3SLOPE .034 .. 003 .701 11.413 1.0001

C{Adlieace Intervals Table
Psrateter: 95X Lower: 95 Upper: 903 r: 9 Up :.

MAN (X,Y) 1.936 11.414 1.97S i1.376
ISLOPE .028 1.04 1.039 120I

_ _ 7

Figure 5.20 SCENE Unit Regression of Errors (Version 6 .0 PRs
and Complexity.

209

y - .067x + I .52 1. R-squarer: .484
241

20

14 "

2 ~~CcW9lI•EXITY (sx) 25 3 0 0

0 100 50 10

f Smple Repression I !: 3 Y I: ALL ERRORS

OF: •:I-'suarsd: Ad:. _A-,square: StW. Error:
1,36 696 484* .48)2.805

Analysis of Vat'lnce Table
Source F:Sum Svpg•. te*:_•_ qi F-t~esL

•RE6I•SSIOi4 Ii 996.454 996.454 126.616 1
I_•SIDUAL. = 135 I1062.437 7.87 .. * P .0001

TOTAL 136 2058.89 !

No ReIduakl SLiUsUcs Conwuxtad

Simple Raylesulsai X I: ix Y I: ALL ERRORS

Beta Coefficient Table

Pu OFtr: Paue SW. Err1.: S A. V A-lue: L-Vaued: Std.Err .vr
~ 1136 21 7 6 1 A

Confidence Inofrvals Table

Parmrr •5 Lower: 953 Upper: 90 Lower: ,9O3 Upper:

IREWSIN IY I26 996.S 996.454 126716
SLPES L .05 1062478 7087 0.076TOA 1136 .o89 . _ I.o

-L re 5.2.1 SCENE UnimleRegressi on oX Errors (aLL. SPRs) aa

CBmp fiextLy.
210

y *4.793E-6x. .005, R-squiared: .04
022

02

.012

.016

0 1OO 200 300 400 SOO 600 700 800 900 1000
CMr~EXITV (sum~ of sx)

311mple Regression x~ 1.sx T I: V8.E~RRORWILOC

DF. R. P-, werd: Adj. 14-siuared: St~d. Error-

Analysis of Variance rable
Source DF: Suim Souares: Meg Swuart: --lest:

REGESION I 2.33E5 2.323E-5 1.621
I ESIMIAL i5 .001 13.743E-5 I P-.4431
TOTAL 16 1.001

No ReskduaI Statistics Conwited __

Slm?1 RegrxsssIo*X;: sz Y,: VELERR0RS/1L0C

Dets Coefilclaot Table
Parwmetar' Value: SW. Err.: SW. Value: L-Volue: Probability

Confkldmce Intervals Table
Porameter: 95X Lower: 95 Uppe 903 Lower- 90 UPper
MrAN(XMY) 1.00.3 (.009 1.004 (.00
SLOPE 1-8. 177E-6 I .776E-5 1-5.871-6 1I1546E-5 2

Figure 5.22 SCENE CSC Regression of Error Densicy (based on
Version 6.0 SPRa) and Couplex~ity (sum for units).

211

y , -6.428E-6x *..024, R-sluweed: .008
09,

.08

.07

-06

.05,

03 0

.02 -

.01 *, 0

0 ~
0 100 200 300 400 500 600 700 800 900 1000

COlWLEXITY (sum of su)

5ltiO Regression X 1: sx Y I: ALL ERRORSILOC

DF: P-OUarhd: AdM. A-squreld: Std. Error,
116 1.092 1.008 -,058 08le

Analysis or Var~loae Table
DF: Swn SouOs: anew sQuare Ftet

RESIDUAL is .005 3267E-4 .7256

TOTAL 16 .005

No Reskual SUUSUtcs CoWmVAd

Simple Reg.rssion X: sui Y: ALL EARORS/LOC

Oela Co*tcknL rawe

Valua: .Vw: St. Err.: St. Valu: .-Vaiw: Prebability"

,INTIRCET .024 I I
SLOE "-6.42-6 1 .797E-5 1-.092 1.38 ..L6

c¢mklw• IMlarval Table

Pwwrwtar: 95X Lower' 953 .Ue: 90 Lower: 903 ID

1-4.474-5 13. 18%- 1-3.794E-s 2.5ME-5 2

Figure 5.23 SCENE CSC Regression of Error Density (based on a31

SPRs) and CompLexity (sum for units).

212

y - -4.85BE-5. .012. R-squared: .007
14,

.2P

.061

.06

02 ..

0 so 1O0 ISO 200 250 300 350
CO1IVEXITY (U)

S3ime Reyession X 1: SX T I: Y0.IDERROR3ILOC

OF: P: R-sQred: Ad 1. P-squred: Std. Error-
1136 .08 1.007 -1 .327E-4 1.023

Anuelysig of Verience Tsble
Soirce O- . _ S~urme.: an Sumie. F-test:

EGlSSI0N I -0-- T.o01 .982
IRSIDUAL 135 .1.073 , ,.00l -.3235
TOTAL 136 .074

No Pesidual StaUsUcs CoWutd-

Simple Rtressib. X I: sx Y I: V...ERCORS/LOC

B*W Coeffcient Table

Parwnetwr: Valu: 5S4. Err.: SW. Value: t-Vale: P"oabililty:
INT,. . -T 1.012 I s
SLOPE 1-4.M8-5 4.92E- -08991 1.3235

Cnfldwe Wntrv*l Table
PaWaoto-. 953 Lower: 9X Uner. 903 Lower: 90I Upper.Ire ,xx,, -(.oo lt l.oo lot
II4I II 1 4.&20-6 -1 -4 13.262f -S 2

Figure 5.24 SCENE Unit Regression of Error Density (based on

Version 6.0 SPRs) and Complexity.

213

y -3.OOlE-4x + .049. R-sQuared: .047
4

35

S 3

.25

2a

.05
'a

0o .

0 s0 100 ISO 200 250 300 3;0
COIPLEXITY (sx)

Simei Regresseio x 1: sx T1I: ALL E•PORS/LOC

DF. Q: R-laurod: AdI. R-sauared: SWL. Error--

1136 1216 .o47 1.04 1055

Analysis of Variance Table
Source OF: .- .•wa-es: an Soure: F-test:

RE61MSSION 1 1.02 1.02 16634
RES!AL 135 1 .413 .003 Ip2-otlI
TOMTA 136 1.433 1 1

No Ridual StaUsbcs Computed

Simple Ragresslle X I: i Y I: ALL EAAORS/LOC

6.1. Coefflcleo Tabl
,armr*W:ta Vale: Std. Err." Std. Value: 1-Value: Probability:
llNTEOPT 1.049 1 1 1
SLOPE -3.00 1E-4 11.16SE-4 1-216 12576.01

Cmoidue Mnarevls Tabl
P-unitor: 95X Lower: 95 UDW:. 901 Lower- 90 Upper"

,*AN (XY) 1.033 1.052 1.-O4 1.05
SLOME -.001 [-6.964E-5 -4.931E-4 1-1.071E-4 2

Figure 5.25 SCENE Unit Regression of Error Density (based on

all SPRs) and Complexity.

214

errors (in contrast to subset of Version 6.0 errors) for units, a statistically significant
association between declining error density and increasing complexity is shown
based upon F-test results (Figure 5.25). However, in view of low correlation (R = .216)
and determination (R2 = .047) coefficients (Figure 5.25), and the absence of statistical
significance when error density is based on Version 6.0 errors alone (Figure 5.24), it
is concluded that significantly higher error density cannot be meaningly correlated
with lower complexity. These results of regression analyses on error density, and
module size and complexity lead to acceptance of null hypotheses #2 and #4 proposed
in Section 5.3.6.2. Specifically, error density is independent of software component
size and complexity.

The results presented here are consistent with those from analyses conducted on
other software development projects and reported in Volume I of the SRPEG. The
relationship of these results to the concepts of modularity and complexity is open to
interpretation. If "increase in errors" is defined as greater number of errors, then
increasing the size or complexity of modules can be expected to result in an increase
in errors per module. If, on ,he other hand, "increase in errors" represents greater
error frequency measured as error density, than larger or more complex modules are
not expected to experience an increase in errors.

From a software project management perspective, a system comprising 100,000 lines
of code with 10,000 branch statements distributed among 1000 modules can be
expected to experience the same number of errors as would an equivalent system
distributed among 100 modules, all other factors remaining equal. In this simplistic
example, a reduction in module size and complexity will only result in a reduction in
errors if the frame of reference is the individual module (unit, CSC, etc.). A reauction
in errors for the overall system could be achieved if total lines of code or total
number of branch statements could be reduced without sacrificing functional
capabilities. These observations do not suppo-t the modularity and complexity models
presented in Section 5.3.2 since, instead of considering size and complexity of a CSC or
CSCI, these models are based on numbers of component units exhibiting certain size
and complexity characteristics. It is recommended that new measures of module size
and complexity be investigated, and that new models relating software reliability to
these metrics be derived from these new measures.

215

APPENDIX C

Unit-level Analysis Data File

216

00 0,0"1= 0 CNuz T mNIN O - t

r Ii

rc-4-i 1 ~_

6m v

N -LM coLnF

% Ot %a~ N C7 ,fT- . .--. '

r~kai0 Lm V0 LM Ul) CO N. -= e

~ -Or

-

NW .-N e w IA C.- .. I.. I.. I..

zzz z z z ýz z z- z z z w- - - tz 2 =2 = = =

LA. 6w 6W4V iW 6W IM 6

i z ---------------------------------------
P- - I=

f- - - CL CL W. cc -CC - - a - -

z~~~ ~ ~ z z z Zi

m N _

- q - - * - - -° * - ° - - U - ° ° • -• - ° - a° * * -2 1 -

0 - -
"- O I'.L

S I
,I'

218
,...

mi i n m v U r- in N 0 N 0 % C I Lmm

I m

I• I � I I I I-I I t t ,I -I I 1 ! ! !,° ' I i N I ! l
e N tN - n~ 1 0 N 1 9 1 1 0 I - v Ft- -- a cM -` c % . -.

"oil
SI- " , I-•1- N• .•=- -. ~ -I 1 1-' ' -" -- I=

- i ,I N P. t C m II~' ~ ~ ' U,, , U, 0

-I--.. cc -6W- = b- C-C

D- !-

'A I.nIf 6

Il l I
C- I -= • Z 1 (A> • - •l':,.

S(T n a co ; m 0 LA w t CPM II Ij, ° •o , -o (17 = (-k

219

F- I 0 0 "c

N P

(14 •,1 W V LM , o %0 r o c% -: r •in vv W) 0 o, cy 0• pm TP M l- I .
220

- U.--m ~ "- U ' mm - .- *,'- a u >i • .
NI' N IqC"0 N0 (4 Lo r%.

Ii

6r Jj N m

6 6 6 i SI~v~I

I I• • l

- zzzz z z

,9 ' 1 1 fil
(M

-"w - --; ;- i- w -w w Z Z Z Z X

ZI -NZ*N ww 0 P cc& W
(*- IZ ----- ------- wd 1~ 6- W (A C6

1- 6" Z1 IN 16b- 4A

Z Z X Z221

r~~~~~~~~ Ch r n -*--~ o

L~r- . - I .-Ir-Ir % % %

= I I ý
s...rjh-..~~~~~~~ 2, 2 - - I

0 0 -0 0 0 p - p 0 0 - pt -. p -c rm - l -r %Q Fr LM m C pM

*0 ml le *N * w N Nr L'IIId ,H,

L6.J

010 0 0 * *NyN ~ I

I , 0 c l l I It - j i -

6WI

%Q Lo C IZ O l i l Q 14L
1021 I I I I

a 66J

G s0 cm C 00
Z ZZ ZZ ZZ Z Z Z ZZ Z Z~

_d u. u'

z z
= ~~~1 =-,==== "(

40 t0 &A ~ I

TL?

1M I) 0

I=

:1 I~1

224

- ~ ~ ~ ý N v - .- p p p I- . I TI I * m- U7 Fn p1 Ul

i i I_ 0

6i i

%a. v N

w1 : %A W 6W 6.
LIi = =-== = =

~ L) Li W ! u + W' w 6j w w GiwwL

I I

w cc

,,=Z/= •= •=1 =.

(•, , (b'= = = = '= = = • 1

IM Iwo GA u. - t - d ' - .. c - j CL CD w ,

NiNI I(Hn~ TrI 4 Ld %o r-c N nN
---- ., - -- ,�-2 5- - . -,

2,25

W M 0C C3 I~0 VW)0 0 0CC =C

0 -

J __4i

Lin - - c 1 FM V - W ((N W ViNN~Nrdp'n o Ii w) PM In W? iljWLIZ "' 1 :
2L.1)226

0

ol,

L Z-II

-- -'I.m--

m; 1N I

- -9" W

0 w u

m'•

227

* ~28

APPENDIX D

CSC-level Analysis Data File

229

w -. N V - - -~ ~

. .= .1 = . •.

LMCN (, - 0 a

&d.I

"o r- ; i•- 0% r-o o - --"

W 0 OlN 0 *a In 0% -
z 0 C14 cc LML

Z w = 0 - 0 - cm; 1 z 6.•

4A .Z. S
._

Li,

I- "I I I-- I I I':- •eq [o- Il c

230.

230 I

I --

cc - -* - t g

00

0 'o i n C2 0 6i.4 -0mP
v~ Vc o n V V V N 0 V PM

I0 I0

z

x

