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INTRODUCTION

Reiner Onken

Universitdt der Bundeswehr Mfinchen
Werner-Heisenberg-Weg 39

8014 Neubiberg
Germany

The objective of this Lecture Series is to present both the basic ideas and approaches of machine perception, here for
vision and speech understanding, and a number of related applications, in particular for guidance and control.

Machine perception has become a topic of increased interest to the guidance and control community since the r
capability of autonomous process management and control is in reach in many fields including aerospace guidance
and control. A great number of demonstration programs have been conducted worldwide and many new ones are
underway, encouraged by the advent of more and more powerful computational architectures and performance.

This can be viewed as one of the major technology push impacts to guidance and control. With increased awareness
of the potentials of these techniques exploitation in applications is demanded which will trigger the requirement pull
process with the effect of intensifying the application-oriented research and development on this field.

To a great extent, the basic approach to machine perception in vision and speech recognition and understanding is
developed upon what is known from animals and human perceptual mechanisms. Although the human perceptual
capabilities are by far not reached at the time being, the pace of progress is amazing and there are even aspects in
machine perception where the human capabilities are surpassed by the machine.

The task of vision, for example, whether for brains or for machines, is to extract useful information from light in a way
to infer relevant properties of visible objects, i.e. their light reflectances, the individual or the machine needs to interact
with in the world about it. One has identified in the brains of various creatures structures specialised for this kind of
goal-oriented job.

There is the understanding in process control that pursuing certain preestablished goals requires situational knowl-
edge, possibly the generation of a goal-oriented plan and certainly its execution. This, in turn, cannot be achieved
satisfyingly without perception, including a structure of anticipation. This knowlcdge structure of the socalled
perception-action cycle, where the gained information is to be embedded and represented, is often referred to as
'situation representation'. For all systems known so far, including the human brain, the situation representation has to
comply with requirements for computational efficiency. Information compression and condensation has to be achieved
for efficient handling of the knowledge (like content adressability), and the information being kept ready should be as
complete and detailed as possible with secure information retrieval capability.

The brain structures are representing more or less only one common design decision in terms of a kind of trade off
solution under the given biological constraints. As the machine can be diversified in architecture, complying to the
different application requirements, the machine might be more flexible through the combination of complementary,
dissimilar solutions serving the different performance aspects. This kind of representation in machine perception
could, in principal, be more complete and more detailed, and could therefore avoid mismatches and illusionary effects,
for instance, humans are suffering from. This can be taken as a promising perspective, although, since a comprehensive
representation would be much more complex, less easily manageable and considerably larger in size, computational
limitations still are prevailing.

Airborne missions have become more complex and stressful to the pilot. Scenarios now require threat avoidance, rapid
replanning and reconfiguration of navigation modes in the presence of electronic warfare like jammirg of navigation
aids such as GPS, management of electromagnetic energy emissions in heavily defended areas, and continuous
monitoring of avionics system status in terms of fault detection and isolation and fault tolerant reconfiguration. That
is the scene, activating the requirement pull process, looking for diagnostic and decision-making functions being
performed autonomously.



In airborne guidance and control both completely autonomous process control and autonomous knowledge-based
assistance for the pilot in process control are of prime interest, including autonomous situation assessment, planning
with decision-making and problem solving and execution services.

The lectures start on the first day with machine perception of speech, its recognition and understanding (Mangold).
This perceptual task is very essential for operator (crew) assistance in order to offer natural communication means
human individuals are used to. The source of information to be perceived is the human being himself. Speech
production is based on the specific sound generation which is possible using the articulatory organs. Man has developed
very special decoding and understanding mechanisms to extract from the speech signal all the information.

The remaining part of the lectures are exclusively devoted to vision, starting with approaches for sensing and
interpretation of 3D shape and motion (Kanade) and elementary functions to be implemented on an electronic retina
(Zavidovique).

The capabilities and performance of vision systems using monocular stereo, and image sequence analysis with pixel
and feature processing will be discussed in the third lecture (Baker), as will their respective utilities to vision-based
autonomous guidance. The principal focus will be on the relationship between optic flow technique for image pair
analysis of motion and depth and spatio-temporal manifold analysis.

The second day is more application-oriented. It starts with a lecture on 3D vision application for navigation and control
of mobile robots (Garibotto). This contribution describes a binocular stereo vision module for obstacle detection with
no precise calibration at fast rate, a trinocular stereo vision based on segment primitives for the reconstruction of free
space for navigation, and landmark detection for self-positioning and orientation of the mobile vehicle.

The following contribution adresses image sequence understanding with application examples like road vehicle
guidance with obstacle avoidance, vehicle docking and aircraft landing approach guidance (Dickmanns). High-level
spatio-temporal models of the processes of interest in the real world are exploited for automatic feature tracking.
Othcr properties like feature grouping through 'Gestalt'idea, fixation-type vision, feature adaptation to the actual
shape and feature selection in a situation context are incorporated in this approach.

The last lecture considers two scenarios of the application of 3D computer vision using passive imaging sensors (Evans).
First, a general scene is analysed without any prior information concerning its structure. This would be the case when
wishing to control, for example, a vehicle moving off-road across unknown terrain. Secondly, in the converse case the
motion is analysed of a well defined object, for example when tracking a known aircraft. A review of techniques used
will be presented followed by further description of particular systems.

The lecturers come from several of the participating AGARD countries, specifically France, Germany, Italy, the
United Kingdom and the United States. There are seven lectures followed by a round table discussion at the end of
the second day.
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Perception- Based and Kghinven-OL ted S al,_ .P19cezK g
Within Speech UnOsderstaing-stems

Helmut Mangold
Daimler-Benz. Research Center Ulm

Institute for Information Technology
7900 Ulm. Germany

uge. This terminology shows clearer that
many scientific areas are ccntributing to

Automatic recognition and understanding of these processes and have therefore to be
speech signals is one of the key issues of addressed if we want to compare human
advanced information technology. Language speech perception and machine perception of
and speech are the relevant topics of cog- spoken language. It is quite clear tha, due
nition and therefore to understand spoken to the inherent adaptation between speech
and written language offers basic capabili- production and speech perception a good un-
ties for universal processing of informa- derstanding of the generative processes ne-
tion. cessary to produce speech signals may be

helpful for designing and understanding all
Speech is man's generic communication me- the methods which are relevant for machine
dium. Information transfer is widely done perception of speech. and that of course a
by speech communication between humans, deep understanding of human speech percep-
There is a basic commonality of understan- tion may be helpful too.
ding each other's spoken messages. This
common understanding must be the basic of This multilevel process of speech percep-
machine understanding too. tion and understanding ranqes from low-

level signal processing up to high level
Automatic recognition and understanding of cognitive processes. Speech signals are our
spoken language is done in a multistep ap- natural tool for human information transfer
proach, which starts with the low level and, far beyond this, speech and language
signal processing. The output of the recog- are the basis of nearly all our cognitive
nition step is word recognition. Many pos- processes. We shall therefore have to care
sble words the so called word hypotheses about signal processing, parameter extrac-
are the basis for intensive linguistic F-o- tion, phonetic coding, linguistic structur-
cessing. ing and analyzing, and finally about all

the cognitive processes which we include
Linguistic processing cares for syntactic in realizing natural language dialogues.
analysis and semantic analysis. The seman-
tic analysis needs again many additional 2. The Speech Signal
parameters from spoken language, like into-
nation and prosody to derive the meaning of 2.1 Signal Characteristics Based on the Na-
a spoken phrase. tural Production Process

ali the nr-1-ssing -f natural speech is In a communication theoretic based view of
narrowly related to human inrormation pLo- the speech signal we may interpret it as a
cessing. It iJ therefore possible to learn complex coded signal which includes diffe-
much from our human processing or from mo- rent sorts of information that are coded in
dels of this processing. On the other side very specific manners. This may be easily
statistical methods of information proces- understood if we look at the natural speech
sing offer rather systematic and in many production process.
cases advanced methods for handling much of
the in.crmation contained in speech using
purely statistic approaches. T, u A.trinatc
the advantages of the more statistical app-
roaches or more rule based approaches will
be a great challenge for future research. sj*ee,

Hum'an perception will always be a guide how ~'
to process speech with machines. oil "t . [ [

Speech as man's generic communication med- / ,.p,,,,d ....
ium is fully adapted to the capabilities of , ,"
the human individual. Speech production is
based on the specific method of sound gene- Iremer
ration which is possible using the articu-
latory organs and, on the other side, per-
ception is based on very special methods to
extract all the relevant information from Fig.2.1: Principle of natural speech
the speech signal. which is encoded through production (voiced sounds).
the time- and frequency characteristics of
this signal. From Fig.2.1 we may see that the natural
But this level of signal processing is only articulation system first produces an exci-
a very small part cf *h-- human processes tat4' signal resulting from the larynx for
which are involved if we produce and per- voiced sounds like vowels, and a noise sig-
ceive speech. It has become rather common nal for unvoiced sounds like the fricati-
to call the speech signal as spoken lanyua- yes. This excitation signal covers a broad
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spectral range. It consists of a collection ception system is based on spectral ana-
of many harmonic frequencies in the case of lysis and higher level parametrical ana-
the voiced excitation signal and of a noise lysis of a similar manner.
spectrum in the unvoiced case. The basic
pitch frequency distinguishes male and fe-
male voices and gives a good deal of the 2.2 Natural Decoding of Speech Signal
information which is relevant for natural Information
intonation and for the prosodic part of the -
speech signal. For male voices this basic The decoding of the information contained
frequency is centered at around 100 Hz, for in the speech signal is done in a multile-
female voices it is about twice this value vel process. The primary processing is done
at around 200 Hz. within the different parts of our external

and internal ear. The sensitivity range
The actual sound information is modulated of the ear is extremely high. Its lower li-
on this basic excitation spectrum. The en- mit is given by the noise produced through
velope of the speech spectrum carries hydrogen molecules in the air. The whole
through its spectral resonance characteri- range reaches up to 120 dB. This huge range
stics, the formants, the information about is necessary to guarantee that the ear can
different sounds. So, we have mainly two perceive every sound or noise which is
parts in every speech signal,* the excita- practically possible.
tion, which carries much of the prosodic
information and the short term spectral en- Fig.2.3 gives a schematic overview about
velope, which is representing the phonemic the primary organ. The middle ear is main-
quality. ly responsible for a resistance adapta-

tion of the resistance of the air to the
This short term spectral envelope is per- resistance of the liquid within the inner
manently changed through the process of ar- ear. This inner part of the ear consists of o
ticulation. This has led to a vivid -opti-- a spiral tube which is separated into two
cal representation of speech signals as parts through the basilar membrane. This
three-dimensional spectrograms, called so- carries around tenthousand sensors to mea-
nagrams. Such a sonagram of the German word sure the movement of this membrane. The
"lesen" is shown in Fig.2.2. membrane itself realizes a sort of mechani-

cal short-time frequency analysis, produ-
cing nothing else than a spectral pattern
like that in Fig.2.2.

2d 1  .1 "r /.,a

2-

0- -_c .. (Unrolled

Fig.2.2: Sonagram of the German word "le-
sen" with indication of the se-
cond formant.

condformnt.Fig.2.3: Schematic drawing of the structure
The horizontal axis represents the- time of the inner ear with the cochlear
scale, the vertical axis the frequency tube stretched from spiral form to
scale. The energy of the different frequen- a linear form for clearness.
cies is represented through the darkness.
The darkest areas represent the formants,
which are the resonances of the vocal tract The endings of the auditory nerve are di-
and which represent different sounds. This rectly processing the signal from the basi-
means that the most important information lar sensors. The auditory nerves do not
is represented by these formants. only transmit the pulse frequency coded

signal, but through intensive interaction
The course of the second formant is manual- of neighbouring nerves many enhancements of
ly drawn into the sonagram. The positinn of the spectral resolution are realized. In
this formant is continuously changing as physics we have the basic principle thatthe sounds change during the articulation. the product of spectral and time resolution

Such a sonagram seems to be rather easily in spectral analysis is constant. This
readable and some attemps have been under- means that always a better spectral resolu-
taken to use spectrograms as another repre- tion requires worse time resolution and
sentation of speech, e.g. for deaf people, vice versa. The mechanical spectral analy-
but in practice spectrogram reading needs zer of the basilar membrane underlies of
extensive training and even then it is course the same rules. Only the very speci-
not possible to do it in realtime. This fic processing afterwards cares for a much
means finally that optical perception--'of -better spectral and time resolution than
relevant speech information is practically might be possible through the mechanical
not possible. But our natural speech per- analysis alone.
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We have already seen that the dynamic range characteristic defined through the maximal
of our hearing covers around 120 dB in sig- frequency energy within this band. Fig.2.5
nal energy. This loudness sensitivity is shows these bandfilter characteristics
nearly logarithmic, i.e. already the hear- which are based on the one side on the non-
ing cells on the basilar membrane have such linear frequency sensitivity along the mel-
an inherent logarithmic sensitivity. The scale and on the other side on the spectral
spectral sensitivity is not uniform over masking which is done in the low level ner-
the whole hearing range from around. 16 Hz vous processing (Pie85).
up to near to 20 kHz. Fig.2.4 shows the
frequency dependent amplitude sensitivity
of the ear which peaks in the 1 to 2 kHz
range. Especially in this frequency range
there is normally the important second for-
mant of the different sounds, which is re-
sponsible for distinguishing many sounds
from each other. Already a long time ago
psychoacoustic experiments have shown that .,
the transmission of the frequency range
between around 800 Hz and 2 kHz is suffici-
ent for getting a certain basic in- .20
telligibility (Zwi67).

0 " ~ ... T [- - --- FEOUENCY (kH,)

40 "Fig.2.5: Frequency characteristic of
18 channels of a mel-scale based

- -filter system as used for auto-
2 matic speech recognition (similar

to the filterin in the human
0:- jauditory system?.

-20 The whole frequency scale is covered by 24

o,02 005 01 02 0,5 1 2 5kHz 10 20 such frequency bands. Their bandwidths are
f- highly different depending on the mel-

scale. As we can see from the figure, where
the frequency scale is logarithmic, such
frequency masking works mainly upwards to

Fig.2.4: Frequency dependent, amplitude higher frequencies.
sensitivity of human hearing.

Besides this spectral masking, we can also
A very important aspect of differentiating experience a time-dependent temporal mask-
one spectral pattern from another one is ing. Such forward or backward masking is
frequency selectivity. This is usually mea- produced by stronger components coming be-
sured by psychoacoustic experiments asking fore or after a weaker component.
test listeners to detect small changes in
the frequency of test tones. This leads to
a perceptual frequency scale, which is con-
stant over the first few hundred Hertz and
which then decreases with increasing fre- .

resolution at higher frequencies is combi-

ned with improvement on temporal resolution
at these higher frequencies. This fact is
well adapted to the characteristics of the
speech sounds themselves. The higher for-
mants have usually higher bandwidth and it
is therefore not necessary to analyse their -

mid frequencies as precise as for the lower
formants. On the other side for sounds 1. cochlear nerve 3. trapezoid body
where the spectral energy is concentrated
on higher frequencies like voiceless plosi-
ves, spectral changes are happening much .
faster than e.g. for vowels. voiced sounds %
require therefore good spectral resolution,
while voiceless sounds need good time reso-
lution.

combined with this vary.ng spectral resolu-
tion is the spectral discrimination -of ... .. . ,--
neighbouring frequencies. It is highly am-
plitude dependent. This means that a fre- 2. nucleus dorualia 4. colliculus inerioriu
quency near to another one cannot be
discriminated from the first if it does not
reach a certain amplitude. Our hearing ca- Fig.2.6: Enhancement of spectral selectivi-

pabilities have a sort of band structure, ty on different positions of the

where all frequencies which are near to auditory nerve apart from the

each other are weighted with a ,bandfilter basilar membrane.
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The general idea of all these effects is to Very interesting again is the fact that
strengthen the strong components in the both curves have their crossover at around
signal. This again is necessary to care for 2 kHz, the frequency where already in
a good robustness of our human speech reco- Fig.2.4 we have seen the highest auditory
gnitlon process. Measurements in the lower sensitivity.
level auditory nerves have shown this too,
where the formants are systematically
enhanced in the run of the nerve from the -MahieRecoonition of
auditory cells. Fig.2.6 shows some spectral RecgDet-on
characteristics measured on auditory nerves
on different positions from the auditory 3.1 Structure of Word Recognition
cells, the top left image shows rpectral
sensitivity of the cochlea itself for some Most today available speech recognizers are
few tones. The second image and the further' word recognizers, which are based on pat-
images stem from nerves-in the lower level tern recognition of spectral patterns like
of the brain, measured within the acoustic that in Fig.2.2. The basic structure of
nerve. We can very clearly see, that the such a word recognizer is shown in Fig.3.1.
spectral sensitivity is more and more en-
hanced.

2 .3 Robustness of the Decoding Process .re..tion ynutck and• _ f~og,,0, .[ linguistic |

of course all the speech decoding done in
the human perception process is not only
based on the signal processing described. detwsiti
It includes much higher level processing, specu ind Pre ttern
but many of the processing steps are alrea-
dy responsible for the high level of ro-
bustness which is possible in the human de- basic
coding process. We shall later see, that apio LA
this robustness is by far better than the
robustness we can today realize with ma-
chine recognition of speech.

Robustness concerns many aspects of speech Fig.3.1: Basic structure of a word recogni-
perception, like tion system.

" wide dynamic range, First the speech spectrum is continuously
* tolerance against background noise, measured. Besides the static spectrum dy-
* recognition of a large variety of diffe- namic parameters like changes in the spec-
rent voices, dialects etc.. trum are measured too. In the last few

" tolerance against spectral changes, years the usage of a mel-spectrum based
* high recognition rate even with badly analysis has proven to deliver optimal re-
articulated speech signals, cognition results. Besides this approach

* resistance against nonlinear distortion. there are still adaptive spectral filtering
procedures used, where-the spectral enve-

Fig.2.7 gives an example for such a para- lope is approximated through least squares
meter dependency. Here the intelligibility approximation. This technique which is
for meaningless syllables is shown depen- called linear predictive coding LPC gives a

ding from the boarder frequency of a high- rather good approximation too (Ma76). Like
pass and a lowpass filter for different the perception based approach this offers
speech levels. We can see that even with the possibility to make a detailed analysis
very small bandwidth there is still a good of the spectral charadteristics in a fle-

intelligibility of such meaningless syllab- xible manner. Fig.3.2 shows such an LPC-

les possible. based spectral approximation for different
degrees of the approximating filter.

Is-

)( --.-
0 6P=2

100 200 !X~fz I Z S -lomtf 1  1
Fig.2.7: Intelligibility of meaningless

syllables (logatomes) depending Fig.3.2: LPC-Analysis of a speech spectrum
on the boarder frequency of a using different degrees of filte-
lowpass and a highpass filter, ring. Upper left: speech spectrum



Using such a method for spectral estimation ;eCogfltion rate
we get a spectral pattern for further pro- Intelhgbility
cessing like that in Fig.3.ci where we have I
shown a spectral r:,ttern tor the spoken
word "They". Her.- we can clearly see, how / ./
the changing fon:oiants of the speech spec- 0
trum are modelled. F /

time-12 -9 6 -3 0 6 .9 -12 + fB

ms signa-tr-nosse-ra io

Fig.3.4: Human and machine recognition of
100 speech under noisy conditions.

e Especially the recognition of sentences

uses a high degree of redundancy, while th- r
good results of human digit recogniti-n

20 comes from the few numbers of possibilities
0to be distinguished.

0 I kHz The classification stage itself makes a
0 2 more or less sophisticated comparison of a

- frequency sort .f reference pattern and the new pat-
tern to be classified. The reference
pattern ;S usually defined during the
training process. For this training a user

F_- 3.3: LPC-Spectrlm of the word "They". or many users have to utter every word to
be recognized or at least some representa-
tive words for the vocabulary to be recog-
nized. The system then stcres this word
patterns or special representations of the
infoimation contained within these Pat-
terns.

_'he Pattern Recoanition Process
As shown in Fig.3.5 every classification

After 'the primary parameter definition some makes a measurement of distances between a
normalization stages are usually important reference pattern and the new pattern.
ftr temporal and energy normalization.
Through this processing it is possible to
widen the dynamic range of the system. But

is of course possible too to include
here some normalization which goes far bey-
-nd such rather simple procedures. This
concerns mainly the normalization of dif-
ferent speakers' voices, to get a true
speaker independent recognition.

Such a speaker adaptation is first done for reference poltern., pattern tobe
the spectral parameters which define the , re'ognrzed
specific voice sound of different speakers.
One approximation may be used to adapt fe- "co
male and male voices to each other. But it ,
is not yet possibl to adapt all the dyna-
mic variations of different speakers to
each other. This will still be a topic for /
basic research. Some primitive approxima-
tions to this problem are already included ....
in some existing word recognizers using a firne
linear or a nonlinear time normalization of
the varying speed of articulation.

Another important aspect of preprocessing Fig.3.5: Pattern classfication through
is the enhancement of noise robustneFs. Due distance measurement.
to many levels of perception our human per-
ception of speech is highly robust against
environmental noise. Fig.3.4 compares the
capabilities of human perception and todays
existing speech recognizers. We can see Often the distance measurement includes
that existing word recognizers are still at some normalization procedures like in the
least 10 dB away from the SNR which people dynamic time warp approach. The principle
can tolerate. of this approach is shown in Fig.3.6.
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optimal distance (R,.c

reference pattern ~ .

frequency . tim '.0

pa ttern to e

t rOgnize Fig.3.7: Schematic draw of a neuron and itsrelectrical 
model.

make distance measurements between two-di-
mensional patterns. A schematic draw of

sl: ba n time such a network is shown in Fig.3.8. There r
are at least three signal layers necessary.

FIg.3.
6
: Principle of dynamic time warping iqhly hidd- I.yrDTW

DTW makes first a local comparison of all
short time spectra (10 ms-spectra) of the
reference pattern and the new pattern to be x. /,

recognized. In a second step the best path -
through the resulting distance matrix is 0..N

computed. This optimal distance path then
is a measure on the double time scale how
both spectral patterns may be optimally
adapted to each other through dynamic adap-
tation of the time scales. If we may assume
that the spe-tral deviations of both pat-
terns are to be ignored - which is only Fig.3.8: Schematic drawing of a n iral net-
allowed for speaker dependent recognition - work.
then the deviation from the linear path is
a good measure of similarity between both
patterns. The first one is the input layer where we

are inputting the result of the preoroces-
Word recognizers based on this principle sing, e.g. the spectral pattern of t e word
have brought the first breakthrough for to be recognized. Following is the network
practical applicability of word recognition of artificial neurons including the weight-
due to their good recognition results in ing factors w. from Fig.3.7. The hidden
speaker adaptive word recognition (Cla92). layer combine the information from the

training procedure. This means that we can
Another method of whole word based pattern interpret its function as a sort of refer-
recognition is done with artificial neural ence pattern. The output layer finally com-
networks. Here again some assumptions about bines the input from the input layer
the physiological perception of speech are weighted with the information from the hid-
the basis for the technical approach. A den layer to a measure of class membership.
neuron as the basic element of physiologi- The darkness of the neurons within the lay-
cal processing consists of the cell corpus ers gives first the spectral energy and fi-
which has many dendritrs arising from it. nally the membership. Neural networks are
These dendrites are ending on other cells nothing else than a distance measure scheme
making contacts on their surface, the syn- which usually includes some nonlinearity in
apses. So they form a network for exchange the behaviour of the weighting factors. It
of information. Fig 3.7 shows a schema of a is of course possible to include more than
physiological neuron and its electrical e- one hidden layer. But then the amount of
quivalent, the neural network basic element, training samples becomes very large. The

advance of neural network speech recogni-
zers lies in the fact that this technique

Through combination of many such neurons we concentrates on the discriminative aspects
can build a neural network which is able to of the different spectral parameters.
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Through intensive training the network is nal. Such units should fulfil at least the
therefore able to learn even rather small following criteria:
distances between different word classes,
e.g. to differentiate between phonetically * They should have phonological meaning.
rather similar words. The main drawback is * They should be easily separable out of
still that the amount of training to make the continuous speech signal.
such differentiations is often not toler- * They should not change too much if they
able and so presently there is not yet any are coarticulated with other units.
specific advantage of word recognizers * Coarticulation of such units should not
based on neural networks compared to con- be possible too much
ventional statistic methods.

We can at least identify two such units,
the speech sound with its abstract repre-

3.3 Capabilities and Limitations of Whole- sentation the phoneme and the syllable,
Word Recognizers which is mainly a unit used in written re-

presentation of language but which has si-
The recognizers thus far described are multaneously an important aspect in spoken
based on purely whole word patterns. There language.
is no knowledg included about the .struc-
ture of speech or words, which consist of The advantage of the phoneme as basic unit
single sounds to be articulated in concate- is the limited number of them. The usual
nation. The recognition process takes the large languages can be described by around
word as the basic element with all the pro- 40 phonemes. But the number of syllables is
blems which are arising from the fact that between 100 and 1000 times larger, from
e.g. normalization of rhythmic differences which many are rather seldom. The phoneme
in the articulation of a word is not so seems to be a rather recommendable basis P.
easy. DTW has found a nice technique for for a description of the language. A still
this, but it has on the other side problems pertinent problem is of course that there
with adaptation of spectral changes for is no direct and reversible transform be-
speaker independent or speaker adaptive re- tween phonemes in a word, its sound struc-
cognition. ture and the typing of the word. There are

rule based systems to do this, but these
Another problem is the recognition of con- sometimes miss the correct spelling. To use
nected words with the methods mentioned. lexica needs on the other side extensive
Here usually some parts of the words are human work and never will be complete.
coarticulated such that the single words
are no more articulated in the same manner The question for the selection of the best
as if they would have been spoken in isola- units can perhaps be answered if we ask for
tion. our human perception. Here the answer is

rather simple: It is surely not only a pure
A more detailed aoaptation to the structure phonemic decoding. We experience this fact
of the language itself would therefore of- clearly if we want to recognize meaningless
fer more possibilities to widen the scope words. Even to recognize such meaningless
of speech recognition to better word recog- syllables is complicated. On the other side
nizers and on the other side to recognition long experience from optical spectrogram
of continuous speech and thus to real reading has shown that trained users are
speech understanding systems. able to attain a correct phonetic decoding

of between 80 and 90 percent.

3. The Phonologic Structure of Speech
.Thehonolgic and uctue P4.2 Speech Structure and Perception Models

1.1_aounds and Phonemes

our daily experience shows rather clearly
Historically the first approaches to auto- that our speech perception process includes
matic speech recognition started with at- a huge amount of knowledge. The basic
tempting to recognize single sounds, or question will be if, and how this knowledge
still more easier to recognize single let- is practically combined with the existing
ters to make an automatic typewriter. But structure of the speech signal itself. Is
all these attempts have not been very suc- there e.g. a substantial amount of phono-
cessful and so the practical solution was logic knowledge directly influencing the
to make whole word pattern recognition for perception on a sound or word level?
command applications. This is mainly due to
the fact. that the word is the smallest Cole et.al. have described a basic collec-
unit which can easily be produced in iso- tion of rules for such a perception model.
lation. These are(Co8O):

On the other side the smallest unit pre- * Words are recognized through the interac-
sently used in spectral pattern matching is tion of sound and knowledge.
the 10 ms-spectrum. The usual speaking rate * Speech is processed sequentially word by
of human speaking is around 20 sounds per word. Each word's recognition locates the
second for even a fast speaker. If the onset of the immediately following word
spectrum of a word is calculated every 10ms and provides syntactic and semantic con-
then it is possible to describe every sound straints to recognize the immediately
with around 5 spectral patterns. So, also following word.
rather short sounds like plosive bursts are * Words are accessed from the sounds which
at least described by one spectrum. This begin them.
1ims unit is a rather artificial unit which * A word is recognized when the sequential
is only roughly oriented at the structure analysis of its acoustic structure elimi-
of the speech signal. nates all candidates but one.

Much better units are phonologically based In this terminology the phonologic struc-
on distinctive parts of the continuous siq- ture of the speech plays an important role.



Even if the definition does not include any sion how far speech based semantic proces-
intermediate structures like syllables, ses need speech perception as a basic. Fi-
these may be included in the recognition of nally this means that cognitive processes
word structures. The composition of words are ultimately based on a language and
from syllables and the relevance of syl- speech processing procedure.
lable perception is shown very clearly in
perception experiments. We have no problem The word fulfills many of these require-
to reconstruct missing sounds in a word ments. It has a semantic meaning. As we
but we have much more problems to recon- know from some conversations, especially in
struct missing syllables. Syllables may al- foreign languages it is widely possible to
ready have a certain semantic role, if we arrange a fully word based conversation.
look at prefixes which may change totally leaving out all the rest of the sentence.
the semantics of a word.

The stratification model of speech percep- 5.2 Syntactic and Semantic Structures
tion and speech structure in Fig.4.1 shows
this fact. The linear structure of the pho-
nemic chain is changed into a netstructure Words presented in a sentence context are
at the higher levels (Win83). more intelligible than presented in isola-

tion. The same is true if we present words
in a nonsense environment. Then the recog-
gnition of the word may be worsened. Some
traditional assumptions about the contri-
bution of syntax and semantics in the per-

eSemotactics ception process underestimated the rele-
vance of the cooperation of all the levels.

Conceptual This view gave them only the role to
fealizatoi rules texotactirs restrict the multitude of possible alterna- r,

tives. The process of speech perception was
Senrtlexenc in this model based on a strict serial or-
Reaiezaton rules eMorphotactcs ganization, where the phonemic characteris-

[ exn)mophemrrc tics of the speech signLl are more or less
Real urr les Phonolactlcs directly extracted from the acoustic pro-

perties of the signal.
Mo phophonet, c
RealIzation rules Phonetic experiments in transcription of

spoken language have shown in the meantime,
Plicruc that it is nearly impossible to decode the
Rnl,,at,,,rt, lecorrect phonemic representation of an utte-

So.nd rance without higher level lexical and syn-
tactical information.

Finally it is important not to forget the
Fig4.1: The stratification model of speech prosodic information which exists on a ra-

(from Win83). ther low word level, but which is mostly
relevant on the sentence or phrase level.
only in the last few years the importance
of prosody for human perception is investi-
gated deeper and this understanding then
offers new chances for machine perception
of speech.

5. The ole of Words and sentences 55.3 Spoken Language and Information
5.1 The Wecd as a Semantic Unit Processing

The bottom-up approach of speech perception Communication and information processing
which has been reflected in the existing are two very intensively connected topics.
work in automatic speech understanding has There is no information processing possible
stressed the importance of all these small without any communication and we know that
units, starting from a 10 ms feature vector this communication process does not only
over the phoneme, syllable up to the word. cover the internal process of communication
Other investigators, motivated chiefly by within the brain of a human but that the
developments in generative linguistics, ha- interpersonal communication is more or less
ve proposed much larger units for percep- the basic force for every advance in cogni-
ticon like clauses or sentences(Pis75). The tion. Spoken language communication is one
word plays here an intermediate role, as we of our basic communication media, it is at
already may see in the stratificational mo- least the most spontaneous medium. Compared
le! from Fig. 4.1. to written communication it offers so many

additional parameters like intonation, pro-
It is of course in the meantime clear that sody. stress to underline certain semantic
there is now sufficient psychologicai evi- facts and to give a much wider scope of in-
dence that all these layers of analysis are formation than it ever is possible through
available simultaneously. Many models of written language.
brain functions favour a layered model for
the processes done in the brain, and of There is some psychophysical evidence that
course these layers are permanently active written and spoken language use the same
during the process of perception. It has phonetic code which is derived in a
become clear from brain physiological similar way from written or spoken informa-
studies that only if all layers are active tion. This phonetic code could then be the
a perception of speech is possible. Of basis for most of our language based infor-
course the problem is still under discus- mation processing steps.



6. Machine Speech Understanding with a sufficient number of possible words
for the sentence to be analyzed.

6.1 Structures of Seech Understanding After the signal processing the linguis-
tic processing is following which is based

After these views into the structure of our mainly on syntactic and semantic ana-

human information processing, especially lysis. Of course the top level processing

related to speech perception, it will now is depending on all the pragmatics based

be interesting to look back again at the knowledge, which controls the dialogue

state of machine perception of speech. If and the internal knowledge processing. The

we try to make a true analogy to our models output channel is doing rather similar

of human speech perception we can have in things in a reverse manner. This means

principle two approaches, the strict serial that from semantic concepts via syntactic

system and the blackboard approach where design a text is created which then is

every part of processing can permanently transferred into an acoustic signal

access to all the steps. Fig.6.1 shows the through phonologic steps and signal

schematic structure of a serial speech un- synthesis.
derstanding system. This linear approach to speech understan-

ding gives good insight into the single
steps and offers good possibilities for
control of the different processing levels.
A totally A+f'erent approach is the black-

knowledge board based approach, where basically a si-
multaneous acces to all levels of signal
processing is possible, from low level
acoustic signals up to semantic and

pragmatic processing. This approach offers
IL----ic, the principal capability to make easy re-

seanOics quests between all these domains, but the
main problem is still, to decide, how all

"e(u these domains are to be coordinated.
Sentence (Language) \Fig.6.2 gives a rough schema of such a

lexicon blackboard based approach.

syrtox syntx

- ---- -Word
Word ,, "\ -- ACOUSTICS-PHONFTICS

template rt exic templote R

oitching rlsmthn ________.

Sound RWATIONAL -CORD VERIFIATIONh

signal lexiconSsNTAX

processing phonologicol rules synthesis DATABASE

'./J PRAGMATICS

Speech HYPOTHESES IO

Fig.6.1: Steps in a serial speech under- H RETRIVAL I-
standing and dialog system.

Such a system includes not only the under-
standing stage up to the analysis of seman- Fig.6.2: Blackboard approach for speech
tics but it must have additionally the re- understanding.
verse information channel for outputting of
the answer.

The important part in every blackboard
All the steps which have to be treated approach is the database where all the hy-
start and end with the acoustic signal and potheses about the results of the different
they end with the semantic representation parts are represented. It must of course
of the content of the spoken signal. The include a measure for the vagueness of the
first steps in the analysis part are rather special results which again could be the
similar to a word recognizer, as was alrea- basis for interactions between the domains.
dy described. Such speech understanding
systems usually have to understand conti- Of course the basic question is and will
nuous speech and therefore it is never very be, which of both concepts offers the best
helpful to consider the words as isolated and on a long term basis the most possibi-
events but it will be much better to repre- lities for inclusion of much phonologic and
sent every word by a collection of much linguistic knowledge and has simultaneous-
smaller units, usually the phonemes. We ly good capabilities for getting enough in-
shall see in the following chapter, which sight into the behaviour of the models. As
methods are today existing to recognize we have already seen, psychoacoustics aid
words on the basis of phonemes and how it psycholinguistics offer some ideas about

is possible to care for different alterna- this question, but it seems that our human
tives of every word and simultaneously to information processing scheme does some-
provide the following linguistic processing thincl serially and some other things are
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done in parallel At least the higher le- use Hidden Markov Models HMM for every word
vels seem to have much parallelism using a and for every phoneme to be recognized,
sort of blackboard approach. while the ve- which can be trained through spoken speech
ry low level parameter extraction is done and thus become more and more representa-
serially. Technical solutions of course tive for the word to be recognized itself.
prefer systems where most of the steps can
be designed separately. This is the case in The basic structure which can be described
both examples, but the interaction in the by a Hidden Markov Model is shown in
serial system is much simpler. Therefore in Fig.6.4.
most technically realized cases the serial
approach is used and up to now is surely
more advanced, even if in a long term
sight this approach will be replaced statei

through more and more parallelism.

6.2 word Recognition in Speech Under- S1  S2  S3  S, S

standina systems

As we have aLready seen the most flexible ransition i.
way to describe continuous speech is on a
basis of the phonemes or the sounds which
describe the realization of the phonemes.
Every word to be recognized can be modelled -
using such a phoneme chain. The single pho- 2 -
neme again can be modelled on the basis of 0[ L

spectral patterns or special features of -'

such spectral patterns, like positions of duation

formants, voiced/unvoiced characteristics
or spectral energy distribution. Such a s ,
systematic model based approach is based on
the theory of Markov Models, which had
first been used to describe the statistical
characteristics of written language.
Fig.6.3 shows the results of a Markov Model
for German written text, where statistical
relations up to the degree 3 are used. The Fig.6.4: Basic structure of a Hidden Markov
statistical degree r=O uses only the dis- Model.
tribution of letters and blanks in German
texts, while r=3 includes the statistics of
the distributions of the three following There are states and transitions, both with
letters, probabilities for them. These states Sn can

be followed by another state but also by
themselves. The structure of the model de-
fines, which transitions are principally
possible. Of course the most general model

oiobnin*tarsfneonlpiitdregedcoo*ds*c+dbicastn offers possibilities for every transition,
dnirlarsls*omnkeu**svdleeoieeii ... but such models are practically not calcu-

"se lable due to restrictions in the statisti-

I er, agepleprteiniigeiltgereleIn*re*unktves*mkc cal representation in a limited training
nzerurbom* ... material. So, experience is requested about

the best structure for such models. Every

2. billiunen*zugen)*die*hin*se*sch*wel *wj* gel) state of a word model is again based on a
nidheleblaWl dierhiderstin* ... smaller sound model, which usually has at

least three states which model the onset,

eist(es*nichin, dei plosset*kaIfidrciget*wa the stationary part and the final part ofzufahr-* ... such a sound. The statistical model has to
include not only durational models for eve-
ry state but it must also have information
about the-probability of a selected spec-
tral pattern being in the position of any

Fig.6.3: Markov Chains based on statistics state. This is necessary because the spec-
of German texts. tral variations in the articulation of dif-ferent words are rather high. This can be

seen in formant maps, where the position of
Already with r=2 there are some short mea- the first two formants for the vowels have

ningful words received and this becomes been analyzed. Such a map is shown in
better and better with rising r. Fig.6.5.

On the basis of Markov chains for spectral If we look at such a plot, we can see, that
patterns we then model in a similar way there is much overlap of the different vo-
the signal characteristics of spoken lan- wel spectra. This means that it is not pos-
guage up to the word level. Of course, as sible to differentiate them clearly. This
Markov himself has done, such a becomes much more complex with more dynamic
statistical modelling ist still possible sounds, which consist mainly of changing
beyond the word level. It is principally parameters. Therefore the characteristics
possible to model whole sentences, even of the different states in the HMM must be
the characteristics of texts can be described by their probable distribution
included in a statistical model. within the set of parameters, e.g. the

spectrum. It has become usual to do this on
To recognize words it is then possible to a soft decision basis, meaning that the



ference between both speakers becomes mini-

. . .mal. Through this transformation better re-

-- F. sults are possible than through a single

'NO uF M3ALE D sided transformation of the new speaker in-

F . 3-* - to a reference speaker.

-Pattern spaCe
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FigS: 2/F-PFigt6.6: Principle of a two-sided trans-
Afterall.thpformation of speaker parameters.

l -rIf we look again on our human technique of
adaptation such spectral adaptation is su-

rely of minor importance, much more impor-
tant seems to be an adaptation to the dyna-

Fig.6s5: F2/F-Plot of the Swedish vowelsa mic articulation.
(Fan59)

After all these pattern oriented processing

thiseds to aocane ocara terizeg in the word recognizer itself has again to

moundevren in n spakreer ginde pn twa y identify the spoken word correctly. using

fthe asrtatist icel disiebt n ofal ty the Hidden Markov Technique it is again im-
paaetaeri measued ovseran spea . portant to measure distances between the
parameter. of course this needs immense trained model and the chain of spectral
statistic work with different voices and states of the word to be recognized. Usual-
dlfferent examples of speech, but finally ly we get many word hypotheses. Especiallythis leads to a chance to characterize the in the case of continuous speech these hy-
sounds even in a speaker independent way, potheses are defining a network of words

if the statistion of all the which ma all be possible at different time
parameters is measured over many speakers slotsh Fhg.67 shows the principle.

it is highly astonishing how we human re-

cognize speech in a widely speaker indepen-
dent way. There seems to be not a long

adaptation procedure necessary to recognize

totally different voices, e.g. during a sc....

conversation with very differnt people. It

is up to the moment not yet clear which

sort of spectral and phonologic adaptation -d _8

we can make to have a practically unlimitedcapability to recognize nearly every spea- wr od1

ker. It seems obvious that mainly higher
level processes are responsible for such a word I word I

capability because there is no signal pro- w.d7 - o,d

cessing known which could do ths. Since wore c 
wotdn Fo

many years speech research has looked for word2 word 9

the so called "distinctive features in pordh e reord
speech. These are parameters which could be word 3 odO word 16.

independent of the special speaker and of

the word where a special sound has been

spoken. But there has nothing been found
which fulfils all the expectations. For the

moment therefore the solution is to adapt a Fig.6.7: Word net as the result of the word
word recognizer in a short training phase recognition.

to a new speaker's voice. This is done
with a spectral transformation. Fig.6.6
shows the principle of such a transforma- In a serial understanding system it will

tion. in a bilateral transformation the pa- now be the task of the linguistic proces-

rameters (normally the spectral pattern) of sing to define first the correct word chain

the new speaker and of a well defined re- and in the following stage to analyze all

ference speaker are transformed into a new the contents of the phrase which had been

parameter area in such a way that the dif- spoken.
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6,3 Language Modelsnj__Parers relations within this sentence. If there is
a sentence with the same deep structure as

Similar to the definition of the most pro- another sentence it may be possible that
bable word, it is possible again to define they have different surface structures and
the most probable chain of words using vice versa. If we start with a syntactic
again statistical analysis of a huge col- analysis for the processing of the sentence
lection of texts, which should be as far as we may see very similar surface structures
possible representative for the texts to be for two sentences but the semantic content,
analyzed. Then alone statistics may help to represented by the deep structure is dif-
define from the word network the most pro- ferent.
Dable sentence, based on the statistics of
the moSt probable chain of words. We call Fig.6.9 shows a model of linguistic compe-
such a method a language model, even if we tence of the adult. This means that the

know that every language model is rather main language capabilities are in a mature

restricted to the texts that had been the state and the actual usage is dominating
oasis for the training of the model. So, if over the acquisition of language capabili-
for example a speech understanding system ties.
should be able to write special letters for
patent counselors, the training material
shculd come from many such letters.

Exira mg.wstrc

Such a statistics based approach has the
advantage that there are no rules and it
can be easily adapted to other applications
if the training material is changed. The
important drawback lies in the fact, that L ua Perlorrmance
the language model may fail totally if the r--co,,oo [
application domain is changed without new
training. In some cases the result of such r.
a recognizer may be worse than without any LinguisticCompetence

language model. ya Phng

Therefore a systematic, rule based ap-
proach is an alternative which often gives
better results on average texts, but of
course it may totally fail on syntactic ,a-an age
constructions tor which there is no rule d device

based model foreseen. Especially in the ca-
se of spontaneous speech understanding
there are often phrases used which are not
following any grammatical rule.

The approach of transformational grammar Fig.6.9: Model of the basic human language

had seemed to offer a rather easy capabili- capability. From (Win83).
ty to derive very different grammatical
structures from some basic principles.
Fig.6.8 gives an example from (Win83). This model has three main components, the

central linguistic competence, the language
acquisition device and the performance
mechanism. Linguistic competence is the
source of our intuitions about grammati-

sS cal structure. The language acquisition de-

VP vice is permanently bringing new informa-
" 1 s tion about deep and surface structures and

VP/ 'vP is permanently widening the linguistic com-
// petence. Of course as already mentioned in

NP .qp NP /"NP the adult user this is no more as active as
L, VeV A A A.. Ve b in the case of a child acquiring most of

.... 5- I'Y X the linguistic competence. The model has

the three main factors, semantics, syntac-
tics and phonology in parallel as we have
already seen in the blackboard model.

S Another rather important relation happens

VP within this model between the boxes for
S language use and the performance mechanism.

NP The permanent interaction between the
n Aux Adl P- V ,t speech production mechanism and the percep-

s -el lo W1111 tion mechanism has been stated many years
ago already in the Motor Theory of Speech
Perception. This theory says that every
perception process is in parallel connected
to an internal production process within
the brain of the human perceiving the

Fig.6.8: Sentences with different deep speech signal. All these theories very de-
structure transformed into the finitely state that there is an intensive
same surface structure, interaction between both sides and that it

is nearly impossible to perceive speech if
the internal production capability is dis-The deep structure of a sentence is related torted. Of course it is clear that this

to the semantic content, while the surface does not concern the external mechanisms
structure is describing all the syntactic of speech production.



It we look at Fig.6.1 the syntactic our discussions but far beyond this all theprocessing stage refers to the word lexicon knowledge from our life. Therefore oftenwhich is always the one basis of its analy- understanding via a telephone call is less
sis. The other thing are the necessary easier than a direct conversation, where werules which identify the relations of words can include behaviour of our partners too.
within a phrase or sentence. We can there-
fore state that the basic elements of a The model of Fig.6.9 covers thereforp onlysyntax are: the limited and narrow speech model. It has

for practical reasons to be widened with a
" a lexicon of allowed types of words, special channel providing the non-speech" a collection of allowed types of experience and a knowledge base for allsentences and these non-speech experiences.
" a rule system combining both,

In the schema of a linear speech understan-
As an example for the problems with ding system of Fig.6.1 this pragmatic andsyntactic analysis we can look at two application oriented processing and data-
different syntax types. But the contents base forms the top level processing part ofof the sentences are in this case totally the whole system. In our human processingsimilar, this knowledge is surely distributed over

the whole cognitive processes of the brain.Example sentemces (1):
"Are there new papers from Maier?" For a limited technical application of"Do you have five recently published re- speech understanding there are some chancesports from Mr. Miller?" to include such knowledge in a practical
"Zxizted there a new repoft from the accessible manner. It will then be intermi-
ministry?" xed with the semantic analysis part.

Equivalent syntactic description: Semantic analysis may rely on many diffe- V[presence][number][date[paper][author] rent aspects of the speech structure. The
most important of them are represented

Example sentences (2): through the following parameters:
"Has Mr. Maier recently written some new
papers?"
"Has Mr. Miller newly published five new Syntactic structure
reports?" The order of words within a phrase"Has the ministry presently published a defines widely the semantic content of
new paper?" a sentence. The main problem is that

there are extreme possibilities for am-
Equivalent syntactic description: biguities which may not be resolved
[auxiliary verb][author][date][verb][num- through a syntactic analysis alone, butber][paperl which need additional knowledge.

These two small examples may show that Vocabulary
there are very many possible descriptions The vocabulary can within technical
of the same fact. It is without any large systems be restricted to a rather limi-amount of effort possible to create some ted amount of words. If a user is able tothousand different versions of grammar de- handle such a limited amount of words andscribing the same content, but there are he can express all his ideas with thisthe same amount of versions which lead to lexicon, than it is possible to define
misunderstanding. the semantics of the words used in a ra-

ther consistent way, such that possibleWithin today existing speech understanding misunderstandings are rather limited.
systems the number of sentences allowed is
rather restricted, being a basic problem Prosody
how this can be permanently adapted to the This parameter characterizes all the
actual versions of speaking habits. Every relevant aspects of extra-linguistic
living language is permanently changing its but speech oriented behaviour of ahabits and this means that even the syntac- human. Examples are intonation, stresstic constructions allowed are changing per- for words or sentences, rhythm of spea-manently. Every syntactic rule system king, up to hesitations. A detailed
should therefore have the capability to analysis of such parameters is present-
adapt itself to new speaking habits. ly not yet possible in automatic sys-

tems, but there are many scientificThere are mainly two ways to realize adap- approaches to use much more of thesetive grammar systems in understanding, to parameters for semantic analysis.
include elements of generative grammar or
to do it in a sort of interactive learning Phonology and Articulation
through dialogue, which is in principle How sounds are spoken and how they
possible within a man-machine system. are combined to words characterizes

partly intonation and partly some
special knowledge about Lhe speaker

6.4 The role of semantics and ragmatics himself. We can detect from this in-
formation something about thingsWe know from our everyday experience that which are directly relevant on thewe do not only rely on our language know- background on which the speech to

ledge if we try to understand the meaning be understood is articulated. Here
of sentences spoken through a human part- non-speech articulations, like ah's
ner, but we include much unconscious know- and hm's etc. are relevant too.
ledge. These are elements which we call
world knowledge or more general pragmatic Acoustics -
knowledge. That is everything we know from External noise, distortions, limitedthe special application on which we make bandwidth give us some semantic in-
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formation about the speech signal and A good prosodic analysis will resolve some

its location of production and there- ambiguities, but most must be done by in-
fore about the speaker's present si- clusion of pragmatic knowledge coming di-
tuation. rect from the specific application and

additional usage of world knowledge. Both
Discourse structure can be gained within the understanding sys-
Every dialogue has a certain structure tem through the dialogue.
which depends on many factors, like
speaker habit, dialogue content, dial-
logue stress, relevance of content etc. 6.5 Dialogue with Speech Understanding
It is even for human auditors not easy S
to assess all these different aspects
from the speech signal alone. For ma- In our human communication we do many
chine speech understanding it is pre- clarification by dialogue. Within these
sently nearly impossible to rely on dialogues we learn not only the actual si-
such an analysis. Here still much re- tuation of information processing but the
search is necessary, which must include long term knowledge. That is the knowledge
ergonomic aspects as well as application which we build up during our life and which
oriented and phonologic details, we therefore call world knowledge. There

are nice examples for computer-man dia-
" Dialogue stile logues from the first start of artificial

People are used to adapt themselve under intelligence research and the first
different conditions to different stiles investigation into man-machine dialogue.
of dialogue. This aspect is narrowly re-
lated to the problems of analysis of dis- These first examples have been realized
course structure. It is more or less the with the system called Eliza at the MIT by
top level aspect of the dialogue Joseph Weizenbaum. It had been realized
6,enario. already in the sixties, when computers had

become enough powerful to handle nearly in
These aspects which should be included in realtime such linguistic problems (Wei66).
the semantic analysis task are widely Fig.6.10 gives an example of such a
intermixed with each other such that it is dialogue.
not so easy to separate them definitely and
to describe their influence under semantic
aspects in a very definite manner. Additio-
nally some parameters are often only occa- Men are all alike.
sionally changed and give some uncon-cious IN VAT WAY
information, but often do not reflect the
conscious intention of the speaker. Often They're always bugging us about something or other.
they reflect the special habits any special cAN YOU THINK OF A SPECIFIC L.AMPLE
speaker has, and so they characterize more
the speaker and not so much the semantics Well, my boyfriend made me come here.
of the speech itself. YOUR BOYFRIEND MADE YOU COME HERE

The basic tasks of semantic analysis are He says i'm depressed much of the time.

then: I ,.M SORRY TO HEAR YOU ARE DEPRESSED
I need some help, rhar much seems certain.

* to create a logic description of the con-

tent of a sentence, WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
Perhaps I could learn to get along wirh my mother

* to describe within this logic description TELL ME MORE ABOUT YOUR FAMILY
relations with a world model, and

* describe possible semantic alternatives Fig.6.10: Example of a man-machine dialogue

as a source for the future dialoge. with Eliza. Written language.

Practically this task needs very powerful The analysis of meaning was not really rea-
tools for describing all the possibilities Tie nlizai ha n re ress
and relations efficiently and in such a way lized in Eliza, it had been more or less
that definite semantics are coming out and only a pattern identification and we feel
not ambiguity spontaneously that the dialogue is rather

schematic and it turns around itself. Only
nthe examples given for syntactic an analysis of the deep structure may have

Within th xmlsgvnfrsnatcovercome all these problems.
analysis we can see where some difficul-
ties are. For example semantic rules may But of course the main problem was that no
be: real pragmatics was implemented. So the

dialogue itself was senseless and therefore

" Make a list of all words which have it looks like a typical party dialogue,

been attributed to [author]. where people who have nothing to say to
* If the word for the date is defined as a each other are speaking and have a nice en-

year, then check if this is a meaningful tertainment.
year (which should be between 1900 and
1992). A real pragmatik and semantic analysis,

which includes knowledge must be based on
Within the first example, the list of au- extensive databases and the correct inclu-
thors is not easy -e be implemented, be- sion of 711 the knowledge stored in these
cause authors are here not only people with databases. It is clear that this problem is
names but they can be an official agency, a again a language analysis problem because
confederation etc. All these can be the much of the knowledge in these databases
source of documents, and in the definition will again be stored using language as the
of our syntax they can be authors. adequate medium.



7. Speech rec _oition and understanding and must be carefully investigated, user beha-
viour must be modelled and the man-machine
dialogue must be designed as carefully.

7.1 Technical state of speech recognition

The application of speech understanding is
Speech recognition systems today available still not yet possible because practical
are corncentrating on very special tasks. In and applicable speech understanding systems
Fig.7.1 we have shown the available systems which can understand continuous speech in-
on a three dimensional specification map. put with naturally spoken sentences are not

yet on the market. There are speech dia-
logue systems available with word recogni-
tion as input and with a continuous speech

output. For most practical applications
such systems fulfill the need of the user,
if the user himself cares for a careful

..isolated or connected spoken input.

7.2 Forms of Dialogues

Fig.7.2 shows schematically how speech in-
put and output may bring a human and a

C m ,...... system together.

Common Speech System,
Sense Input Backgr-nd

(Gener~ Human Application
Znoede System

Fig 7 !: Three dimensional representation a I t '
of the major aspects of speech P mahc Speech System
recognition systems. Kno~dedye Output

The relevant parameters used for this

ilassification are.

" The system prize, which usually repre-
sents the technical capabilities of a
system. ie. a good recognizer for iso- Fig.7.2: Functional relations in speech
lated words with high recognition rate controlled systems.
is usually more expensive than one with
a limited recognition rate.

" The sort of speaking required, isolated
or connected or totally continuous.

" The degree of speaker dependence, adap- On the one side we find the human operator
tation or totally speaker independence, with its knowledge. based on very different

sources. On the other side there is the
The main areas of practical systems concern application system, which is containing
the recognition of isolated words for com- different forms of information and which
mard applications. These applications often will show very specific reactions.
require speaker independent recognition if
they are used over the telephone in public we have roughly two different forms of
applications. Another class of recognizers users, the occasional user and the pro-
addresses the problem of connected words. fessional user. The occasional user uses
Speaker independence is here still a prob- speech communication with machines only for
lem because the coarticulation problems of very specific applications and rather rare-
different speakers are not so easy to be ly. He is not trained to usage of speech
predicted and modelled. Another aspect, systems and handles them as if he would
which could only be described in terms of speak to a human. The professional user on
prize is robustness against background the other side is a daily user and is
noise, speaker variations, limited band- trained to do the right things, ie. speak
width etc. Finally we have not included in in the manner required and knowing the vo-
the presentation the vocabulary size, which cabulary allowed.
can vary from very few words (10 to 20) for
limited command input into machines up to We can distinguish two forms of dialogues,
many thousand words, when one wants to rea- the action dialogue and the information
lize a dictation machine, dialogue.

The recognition rates today possible differ Fig.7.3 shows the essential elements of an
very high. depending on the difficulty of action dialogue, where the user wants to
the recognition task. It can be near to get rather simple precise actions. The
100% for good quality speech, a limited vo- goals of this activity are rather clear,
cabulary with trained speakers, but it can the user has to command his request and
be 20% worse for untrained speakers in the gets then hopefully the correct system re-
same application task and it can even be as action. here syntactic and pragmatic pro-
low as some ten percent for larger cessing steps are mostly included covering
vocabulary under noisy conditions. very restricted and specific pragmatic
Therefore it does not make much sense to aspects. Simple examples of such dialogues
give here figures. Every application task are speech based machine control.



Deeper insight into the mechanisms of
speech will help us not only in systems for

I ise, speech nput / output appicaton system easy information processing, it will help

syn ia.ct,, actonus in speech translation and in cooperative

g re.. ognzer pr~amatc achtn a knowledge processing.
I ( precsa} a

h synthesizer processin g Speech interactive systems will offer us a
! - true human access to machine information

__ _ _and they will in such a way widen the scope
of practical applications of information
technology in the same way as the basic in-
sight into it.

Fig.7.3: Structure of an action dialogue.

In Fig.7.4 the basic elements of an infor-
mation dialugue are presented. Here the
user does not want to produce direct
actions but he wants to get information in
a more or less natural dialogue. The Class F, Katterfeldt H, Regel P: Methoden

primary goal of such a dialogue is to make und Algorithmen der Worterkennung. in Man-
a real informatiun exchange. gold H: Sprachliche Mensch-Maschine-Kommu-

nikation. Oldenbourg Minchen 1992.

(Co80):
Cole R A. Jakimik J- A Model of Speech Per

S.cepticn, in Perception ard Production of
Fluent Speech. Erlbaum. Hillsdale 1980.

... (Fan59)
ell Fant G: Acoustic analysis and synthesis of

Speech with application to Swedish.
Ericsson Technics 1,1 (19591

(Ma76)
Markel J.D ,Gray A H I tnear PreOilctiOn ot
Speech. Springer Berlin 1976

Fig.c 4: Structure of an information (Pie85)
dialogue. Pieraccini R Rainieri F. Giordana A La-

face P. Kaltenmaier A Mangold H:
UIsually here the level of information ex- Algorithms for Speech Data Peduction and
change goes much deeper than in the action Recognition. ESPRIT 85. Elsevier Science 85
dialogue. Therefore the analysis of meaning
is the additional component characterizing iPis75)
such a dialogue Examples of such dialoges Some Stages of Processing in Speech Percep-
are information systems. e.g. for flight tion. in Structure and Process in Speech
time tables or for general public infor- Perception. Springer Berlin. 1975.
mation like weather forecast. Such systems
will become more an! more important already (We166):
in the near future and they will then need Weizenbaum J:ELIZA. CACM 9819661, 36-45
good speech understanding.

(Win83)
Winograd T. : Language as a Cognltive Pro-

8. Future Dvelopmnts cess. Addison-Wesley, 1983 Reading Mass.

Machine perception of spoken and written (Zwi67):
language is surely one of the most advan- Zwicker E Feldtkeller R: Das Ohr als
ced challenges of information technology. Nachrichtenempfanger. Stuttgart 1967
Sppczh is the basis of most of our cogni-
tive processes. If we can get a deeper and
deeper understanding of all the processes
related to speech production and speech
understanding we will get access to much
better understanding of the understanding
process itself. It is clear from the
laborious research in speech understanding
in the past that we are presently only in
.he begin-ning to understand speech and
all the structure behind it better and
that there is still a long way to go.

Prcsent. availdble syztems which can be
useful tools for man-machine communication
have in many areas profited frcm models of
our human speech processing. Such models
will in the future help to understand all
the important processing steps better. A
system approach to integrate the different
steps into a more synergetic concept may be
better than the purely linear step-by-step
approach.
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Sensing and Interpretation of 3D Shape and Motion

Takeo Kanade
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213-3890, USA

Abstract method that can overcome this dilficultYv hx recovering
Shape and motion without computing depth as ain inter-

Robotics is where artificial intelligence meets the physical mediate step.
world. Computer vision provides robots with the perceptual An imuage stream can be represented bv the 21' x 1)
capabilities which are especially critical for robots which op- measurement matrix o] the imnage coordina'tes of P point.'
eratc In an unconstrained natural environment. '

In computer vision, recovery of 3D shape and motion is the trapked trougec frt e.ieoho that marnxer ofrthko-
kv * to understanding scenes. Thus, the problem has attracted gahcpoeto hsmti so ak3
much of the attention of vision researchers over the last decade, Using this oibservation, i'hefactorization mlt(id u we.\ the
and many sophisticated algorithms have been developed. I singular value decomposition technique to Jactor the rnea -
am going to talk about three recently developed methods for surement matrix into two matrices which represent object
sensi ng and interpreting 3D shape and motion: shape and camera motion respectively. The method can al~so

"It factorization method for image sequence analysis handle and obtain a lull solution froni a ipartiallY huled, in
" Ney fst angeimaingbv aalo VLI smrl hip measurement matri.t. which occurs when 'features appear
* 5e'~ astrane imgin inanaog ~l.S smrt hip and disappear in the image sequence due to 1)cclu~sjon. or

" T'he miulti-baselinie-stereo method. tracking failures.

It is interesting to ntote that while the performance of these The method giVes accurate results, and does not intr)-
msethods hasesceeded that or previous methods, the algorithms du-e . moothing in eithier shapeor miotion. 1,i'denon,%trate
themsdses are simpler and more straightforward. In addi- thi- with a series of exp~eriments on laboratoryand outdoior
tion to enhanced performance, these algorithmrs are suitable i mage streams, with and without occlusions.
for rtial-time parallel implementation by special hardware or
N~ I.SI.

f fie following three parts prov ide detailed descriptions ot I Introduction

Thei structure from motion problem - recovernc scene ge-
omnetrv and camera motion from a sequence of images
has attracted much of the attention of the vision commu-
nity over the last decade. Yet it is common knowledge
that existing solutions work well for perfect images. but are

T[he Factorization Method for very sensitive to noise. We present a new miethod called
the factoration method which can cobustly recov er shape

Shape and Motion Recovery and motion from a sequence of images without assumning a
model of motion, such as constant translation or rotation.from Image Streams, %lore specifically, an image sequence can be represented
as a 2F x P measurement matrix TV, which is made up of

Inferrini, wene i Pometrv and camera motion *from a the horizontal and vertical coordinates of P points tracked
01aa ofrnave i iN possible in principle, but is tin ill- through F fratmes. If image coordinates are measured with

'niditioned problem w hen the objec ts aire dis tant with re- respect to their centroid, we prove the rank theoremn: under
toit their vi:e We have developed a factonzation orthography, the measurement matrix is of rank~ 3. As a con-

sequence of this theorem, we show that the measurement
This research was prfoned by Carlo Tnrmasi and Takeo kanade. andc matrix can be factored into the~ product o- two matrices I?

^w sulpored hy the tDefense Advanced Research Projects Agency (ot)
anri initored by the Avionices laboratory. Air Force Wright Aeronautical and S. Here. R is a 2F x 3 m'tiix (hat represents camera
I aborat('rici. Aeronautical Syslena Fivision tAt SC i. Wright-Pitterson rotation, and S is a 3 x P matrix which represents shape in a

AFH-l. Ohio 4%411.6541 under Contract V11615-87-C-1499. ARPA Order coordinate system attached to the object centroid. The two
No 4976. Amendment 20 The views and conclusins contained in cmoet ftecmr rnlto ln h mg ln
ihis locunern are those of dhe author and should not he interpreted copasft~ aearnlainaogth mg ln
wrefesenting the official policies, either expressed or irnpiied, of DARPA are computed as averages of the rows of IV. When features
.r the V N governcnt appear and disappear in the image sequence due to occlu-



lowpas6 and a hiqhpass filter. ring. Upper left: speeh sPe-trum

sions or tracking failures, the resultant measurement matrix depth as an intermediate quantity, and leads to a simtple and
It is only partially filled-in. The factorization method can well-behaved solution. Furthennore, the mutual indepen-
handle this situation by growing a partial solution obtained dence of shape and motion in world-centered coordinates
from an initial full submatrix into'a full solution with an makes it possible to cast the structure-from-motion problem
iterative procedure. as a factorization problem, in which a matrix representing

The rank theorem precisely captures the nature of the image measurements is decomposed directly into camera
redundancy that exists in an image seqaence, and permits motion and object shape.
a large number of points and frames to be processed in a We first introduced this factorization method in I]KU <a.
conceptually simple and computationally efficient way to TK90b], where we treated the case of single-s 'anline fi
reduce the effects of noise. The resulting algorithm is based ages in a flat, two-dimensional world. In [TK91 ] we pie-
on the singular value decomposition, which is numerically sented the theory for the case of arbitrary camera motion
w ell-behaved and stable. The robustness of the recovery in three dimensions and full two-dimensional imacge. [hi,

algorithm in turn enables us to use an image sequence with paper extends the factorization method for dealing A ith
a .ery short interval between frames (an image stream), feature occlusions as well as pre.;enting more experimen
which makes feature tracking relatively easy. tal results with real-world images. Debrunner and Ahuja

We have demonstrated the accuracy and robustness of have pursued an approach related to ours, but using a dif-
the factorization method in a series ofexperiments on labo- ferent formalism [DA90, DA91 1. Assuming that motion is
r -ory and outdoor sequences, with and without occlusions, constant over a period, they provide both closed-form ex-

pressions for shape and motion and an incremental solution
(one image at a time) for multiple motions by taking advan-

2 Relation to Previous Work tage of the redundancy of measurements. Boult and Browsi
have investigated the facterization method for multiple rio-

In Iltinan's original proof ofexistence ofasolution [1l179] tions [BB91], in which they count and segment separate
for the structure from motion problem under orthography, motions in the field of view of the camera.
,is well as in the perspective formulation in [RA791. the
coordinates of feature points in the world are expressed in 3 The Factorization Method
a world-centered system of reference. Since then, how-
ever. this choice has been replaced by most computer vi- Given an image stream, supposethat we have tracked ' t ea
,ion researchers with that of a camera-centered representa- ture points over F frames. We then obtain u alectorie, of m-
tlion of shape [Pra80], [BH83], [TH841. [Adi85]. [WW85], age coordinates {(t p,/p) l f = I . . p, 1 = I ... !
[1313\87]. [HHN88J, [HJ891. [1tee89]. [MKS89], [SA89], We write the horizontal feature coordinates i, into an
[B(COOI. With this representation. the position -f feature F, x P matrix U: we use one row per frame, and one col
points is specified by their image coordinates and by their umn per feature poitt. Similarly an F x Pmatrix I is built
depths. detined as the distances between the camera cen- front the %ertical coordinates ,i lhe comhined mnatrix tf
tei and the feature points, measured aiong the optical axis size 2F × 1
t'tfonunatelv. although a camera-centered representation
,inipliftis the equations for perspective projection, it nakes F-i-"]

,hape estimation difficult. unstable, and noise sensitive. [V-
There are two fundamental reasons for this. First, when is called the mearime,itmatrii The ros,,, of the iamtc,

camera motion is small, effects of camera rotation and trans- U and V are then registered bt subtracting fiom each entrN
lation caan be confused with each other: for example, small the mean of the entries in the same ro"
rotation about the vertical axis and small translation along

the horizontal axis both generate a very similar change in Uf , f

an imtage. Any attempt to recover or differentiate between U
11

. i f-

these two motions, though doable mathematically, is natu where
rally noise sensitive. Second. the computation of shape as V

relati Ne depth, for example, the height of a building as the a, =

difference of depths between the top and the bottom, is very
,ensitive to noise, since it is a small difference between large
values. These difficulties are especially magnified when the hf fl p.
objects are distant from the camera relative to their sizes.
which is usually the case for interestikg applications such
as site modeling. This produces two new F x P matrices U' [ifj,] and

The factorization method we present in this paper takes " = ] . The matrix
advantage of the fact that both difficulties disappear when
the problem is reformulated in world-centered coordinates, =
unlike the conventional camera-centered formulation. This I

new (old - in a sense) formulation links object-centered is called the registered measuremei tatrix. This is the
shape to image motion directly, without using retinotopic input to our factorization method.



We can write a similar equation for if p. To summarize,
ifp -- If sP

(.v YP P1 fP = Jf Sp (3)

JBecause of the two sets of F x P equations (3), the regis-
tered measurement matrix W can be expressed in a matrix

bform:
kf IV =RS (4)

X where

Figure 1: Tne systems of reference used in our problem *T

formulation. = iT
R j (5)

3.1 The Rank Theorem
-T

We now analyze the relation between camera motion, shape, " iF

and the entries of the registered measurement matrix W. represents the camera rotation, and

This analysis leads to the key result that WV is highly rank- S = [ s1 -.- Sp ] (6)
deficient. C

Referring to Figure 1, suppose we place the origin of the is the shape matrix. In fact, the rows of R represent the
world reference system x - y - z at the centroid of the P orientations of the horizontal and vertical camera reference
points sp = (.rP, yp, z)T, p = 1, .., P}, in space which axes throughout the stream, while the columns of S are
correspond to the P feature points tracked in the image the coordinates of the P feature points with respect to their
stream. The orientation of the camera reference system centroid.
corresponding to frame number f is determined by a pair Since R is 2F x 3 and S is 3 x P, the equation (4) implies
of unit vectors, if and j, pointing along the scanlines and the following.
the columns of the image respectively, and defined with
respect to the world reference system. Under orthography, Rank Theorem: Without noise, the registered
all projection rays are then parallel to the cross product of measurement matrix W is at most of rank three.
i rand jf: The rank theorem expresses the fact that the 2F x P image

kf = if x if measurements are highly redundant. Indeed, they could all

From Figure 1 we see that the projection (ufp, vfp), i.e., bedescribedconciselybygivingF frame reference systems
the image feature position, ofpoint sp = (xP, Yp, zP)T onto and P point coordinate vectors, if only these were known.
frame f is given by the equations From the first and the last line of equation (2), the original

it = ifT - t1 ) unregistered matrix W can be written as
SS s - W=RS+tep, (7)

where tf = (a,, bf, Cf) T is the vector from the world origin where t = (a, .... aF, bl,.. ,bF)T is a 2F-dimensional

(a 1 ,b.e 1 )Tvector that collects the projections of camera translation
to the origin of image frame f. Here note that since the alor theat le s e eqations of c an enT
origin of the world coordinates is placed at the centroid of along the image plane (see equation (2)), and e T =

object points, (I1..., I) isavectorofPones. In scalar form,
I P U = iTSp +-af

SE Sp = 0. ufP f

p=l = j SP + bf. (8)
We can now write expressions for the entries ifp and ! fp Comparing with equations (1), we see that the two com-

defined in (1) of the registered measurement matrix. For ponents of camera translation along the image plane are
the the registered horizontal image projection we have simply the averages of the rows of W.

i fp = ufp - af In the equations above, if andjr are mutually orthogonal
a1  unit vectors, so they must satisfy the constraints

= 1Pi(SP tf) :ifT(Sq -tf) i~j 1 =0. (9)if~s -tl -P lifl = IUll = I and i~f =(O.

q=
_ Also, the rotation matrix R is unique if the system of ref-

= if T P - erence for the solution is aligned, say, with that of the first
\if "S-PL.. camera position, so that:

= ifTsp . (2) 11= (1,0, 0 )T and J= - (0, 1,O)T (10)= ifSP () an (10



The registered measurement matrix W must be at most of Rank Theorem for Noisy Measurements: All
rank three without noise. When noise corrupts the images, the shape and rotation information in i is
however, W will not be exactly of rank 3. However, the contained in its three greatest singular values,
rank theorem can be extended to the case of noisy measure- together with the corresponding left and right
ments in a well-defined manner. The next subsectionintro- eigenvectors.
duces the notion of approximate rank, using the concept of Now if we define
singular value decomposition [GR7 1].

R = Of[Z]1/2

3.2 Approximate Rank S = [1111/20,

Assuming 2 that 2F > P, the matrix IV can be decomposed we can write
[GR711 into a 2F x P matrix O1, a diagonal P x P matrix W = RS. (13)
E, and a P x P matrix 02, The two matrices R and S are of the same size as the desired

" = O1Z2, (I I) rotation and shape matrices R and S: R is 2F x 3, and S
is 3 x P. However, the decomposition (13) is not unique.

such that 0'01 = (9T 0 2 = 02 OT = 1, where I is In fact, if Q is any invertible 3 x 3 matrix, the matrices RQ
the P x P identity matrix. Y is a diagonal matrix whose and Q 1S are also a valid decomposition of W, since
diagonal entries are the singular values al > ... > ap
sorted in non-decreasing order. This is the Singular Value (RQ)(Q-S) = R(QQ-)S = RS = W.
Decomposition (SVD) of the matrix iV. Thus, R and S are in general different from R and S. A

Suppose that we pay attention only to the first three striking fact, howeveristhatexceptfornoisethematrixRis
columns of 01, the first 3 x 3 submatrix of Y and the first a linear transformation of the true rotation matrix R, and the
three rows of 02. If we partition the matrices 01, E, and matrix S is a linear transformation of the true shape matrix
O, as follows: S. Indeed, in the absence of noise, R and R both span the

Of column space of the registered measurement matrix W =

W = W. Since that column space is three-dimensional
*because of the rank theorem, R and R are different bases for

3 P-3 the same space, and there must be a linear transformation

f 0_ 01 between them.
0 1" 1 }P-3 Whether the noise level is low enough that it can be

(12) ignored at this juncture depends also on the camera motion
, (12 and on shape. Notice, however, that the singular value

3 P-3 decomposition yields sufficient information to make this
1 oqL }3 decision: the requirement is that the ratio between the third

0- Ojff P-3 and the fourth largest singular values of V be sufficiently
02J large.

P

3.3 The Metric Constraints
we have

We have found that the matrix R is a linear transformation

0 O1 2 = V0 2 + O''y"02' of the true rotation matrix R. Likewise, S is a linear trans-
formation of the true shape matrix S. More specifically,

Let Ir' be the ideal registered measurement matrix, that there exists a 3 x 3 matrix Q such that
is, the matrix we would obtain in the absence of noise.

Because of the rank theorem, i'V has at most three non-zero S = Q- . (14)
singular values. Since the singular values in Z are sorted in
non-increasing order, ' must contain all the singular valuesofV; that exceed the noise level. As a consequence, In order to find Qwe observe that the rows of the true rota-
the tion matrix Rare unit vectors and the first F are orthogonal

hto corresponding F in the second half of R. These metric
best possible rank-3 approximation to the ideal registered corr in Fi n the econ d alf o T sem

measremnt atrx TVis he rodct:constraints yield the over-constrained, quadratic systemmeasurement matrix Wis the product:
i7TQQTi7 = 1

14 = 002 j_ TQQTj 7  = 1 (15)

We can now restate our rank theorem for the case of noisy 1?TQQTj" = 0

measurements, in the entries of Q. This is a simple data fitting problem
2

Thisasumptlon isnotcrucial: If2F < P,everythlng can be repeated which, though nonlinear, can be solved efficiently and re-
for he trampose of W/. liably. Its solution is determined up to a rotation of the
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whole reference system, since the orientation of the world their appearance changed too much. The trajectories of the
reference system was arbitrary. This arbitrariness can be remaining 388 features are used as the measurement matrix
removed by enforcing the constraints (10), that is, selecting for the computation of shape and motion.
the x - y axes of the world reference system to be parallel The motion recovery is precise. The plots in figure 4
with those of the first frame. compare the rotation components computed by the factor-

ization method (solid curves) with the values measured me-
3.4 Outline of the Complete Algorithm chanically from the mobile platform (dashed curves). The

differences are magnified in figure 6. The errors are ev-
Based on the development in the previous sections, we erywhere less than 0.4 degrees and on average 0.2 degrees.
now have a complete algorithm for the factorization of the The computed motion follows closely also rotations with
registered measurement matrix W derived from a stream of curved profiles, such as the roll profile between frames 1
images into shape S and rotation R as defined in equations and 20 (second plot in figure 4), and faithfully preserves all
(4) - (6). discontinuities in the rotational velocities: the factorization

method does not smooth the results.
I. Compute the singular-value decomposition W = BL ween frames 60 and 80, yaw and pitch are nearly

0 1 702 . constant, and the camera merely rotates about its optical

. axis. That is, the motion is actually degenerate duringthis period, but still it has been correctly recovered. This
primes refer to the block partitioning defined in (12). demonstrates that the factorization method can deal without

3. Compute the matrix Q in equations (14) by imposing difficulty with streams that contain degenerate substreams,
the metric constraints (equations (15)). because the information in the stream is used as a whole in

the method.
4. Compute the rotation matrix R and the shape matrix S The shape results are evaluated qualitatively in figure 7,

as R = RQ and S = Q- I S. which shows the computed shape viewed from above. The
view in figure 7 is similar to that in figure 8, included for

t.hefwdsiredflignctesfirsmcamerarefereceesystmuwith visual comparison. Notice that the walls, the windows on
the world reference system by forming the products the roof, and the chimneys are recovered in their correct
BRo and P1t'S, where the orthonormal matrix Ro = pstos

[il j, ki] rotates the first camera reference system into positions.
the identity matrix. To evaluate the shape performance quantitatively, wemeasured some distances on the actual house model with a

ruler and compared them with the distances computed from
4 Experiment the point coordinates in the shape results. Figure 9 shows

the selected features. The diagram in figure 10 shows the
We test the factorization method with two real streams of distances between pairs of features measured on the actual
images: one taken in a controlled laboratory environment model and those computea by the factorization method.
with ground-truth motion data, and the other in an outdoor The measured distances between the steps along the right
environment with a hand-held camcorder, side of the roof (7.2 mm) were obtained by measuring five

steps and dividing the total distance (36 mm) by five. The
differences between computed and measured results are of

4.1 "Hotel" Image Stream in a Laboratory the order of the resolution of our ruler measurements (one

Some frames in this stream are shown in figure 3. The millimeter).
images depict a small plastic model of a building. The Part of the errors in the results is due to the use of or-
camera is a Sony CCD camera with a 200 mm lens, and is thography as the projection model. However, it tends to
moved by means of a high-precision positioning platform. be fairly small for many realistic situations. In fact, it has
Camera pitch, yaw, and roll around the model are all varied been shown that errors due to the orthogrphic distortion are
as shown by the dashed curves in figure 4. The translation approximately about the same percentage as the ratio of the
of the camera is such as to keep the building within the field object size in depth to the distance of the object from the
of view of the camera. camera [Tom91].

For feature tracking, we extended the Lucas-Kanade
method described in [LK81] to allow also for the automatic 4.2 Outdoor "House" Image Stream
selection of image features. The Lucas-Kanade method
of tracking obtains the displacement vector of the window The factorization method has been tested with an image
around a feature as the solution of a linear 2 x 2 equation stream of a real building, taken with a hand-held camera.
system. As good image features we select those points for Figure 11 shows some of the 180 frames of the building
which the above equation systems are stable. The details stream. The overall motion covers a relatively small ro-
are presented in [Tom91, TK92]. tation angle, approximately 15 degrees. Outdoor images

The entire set of 430 features thus selected is displayed are harder to process than those produced in a controlled
in figure 5, overlaid on the first frame of the stream. Of environment of the laboratory, because lighting changes
these features, 42 were abandoned during tracking because less predictably and the motion of the camera is more dif-
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ficult to control. As a consequence, features are harder '2 P, P

to track: the images are unpredictably blurred by motion,
and corrupted by vibrations of the video recorder's head,
both during recording and digitization. Furthermore, the

camera's jumps and jerks produce a wide range of image f3

disparities. f .

The features found by the selection algorithm in the first F.f

frame are shown in figure 12. There are many false features. F+ f

The reflections in the window partially visible in the top left F.! 3

of the image move non-rigidly. More false features can be
found in the lower left comer of the picture, where the F, 9

vertical bars of the handrail intersect the horizontal edges
of the bricks of the wall behind. We masked away theseto theriks of the malbeh .e anaskd aFigure 2: The Reconstruction Condition. If the dotted
two parts of the image from the analysis. entries of the measurement matrix are known, the two un-

In total, 376 features were found by the selection a- known ones (question marks) can be reconstructed.
gorithm and tracked. Figure 13 plots the tracks of some
(60) of the features for illustration. Notice the very jagged
trajectories due to the vibrating motion of the hand-held ment matrix W, but we can even hallucinate the unknown
camera. entries of IW by projecting the computed three-dimensional

Figures 14 and 15 show a front and a top view of the feature coordinates onto the computed camera positions.
building as reconstructed by the factorization method. To
render these figures for display, we triangulated the com- 5.1 Solution for Noise-Free Images
puted 3D points into a set of small surface patches and
mapped the pixel values in the first frame onto the resulting Suppose that a feature point is not visible in a certain frame.
surface. The structure of the visible part of the building's If the same feature is seen often enough in other frames, its
three walls has clearly been reconstructed. In these fig- position in space should be recoverable. Moreover, if the
ures, the left wall appears to bend somewhat on the right frame in question includes enough other features, the cor-
where it intersects the middle wall. This occurred because responding camera position be recoverable as well. Then
the feature selector found features along the shadow of the from point and camera positions thus recovered, we should
roof just on the right of the intersection of the two walls, also be able to reconstruct the missing image measurement.
rather than at the intersection itself. Thus, the appearance Formally, we have the following sufficient condition.
of a bending wall is an artifact of the triangulation done for
rendering. Condition for Reconstruction: In the absence

This experiment with an image stream taken outdoors of noise, an unknown image measurement pair
with the jerky motion produced by a hand-held camera (uf , vfp) in frame f can be reconstructed if point
demonstrates that the factorization method does not require p is visible in at least three more frames f1, f2, f3,

a smooth motion assumption. The identification of false and if there are at least three more pointspl, P2, p 3
features, that is, of features that do not move rigidly with that are visible in all the four frames: the original
respect of the environment, remains an open problem that f and the additional fl, f2, f3.

must be solved for a fully autonomous system. An initial Referring to Figure 2, this means that the dotted entrieseffort has been seen in [BB91].ReerntoFgr2,timastathedtdetrs
must be known to reconstruct the question marks. This is
equivalent to Ullman's result [U179] that three views of

5 Occlusions four points determine structure and motion. In this sub-
section, we prove the reconstruction condition in our for-

In reality, as the camera moves, features can appear and malism and develop the reconstruction procedure. To this
disappear from the image, because of occlusions. Also, a end, we notice that the rows and columns of the noise-free
dsear rkinmth wimae becwas o ccsin. traln measurement matrix W can always be permuted so that
feature trackinghmethod will notalways succeed intracking fl = PI = 1, 12 = P2 = 2, f3 = P3 = 3, f = p = 4.
features throughout the image stream. These phenomena We can therefore suppose that u44 and v44 are the only two
are frequent enough to make a shape and motion computa- unknown entries in the 8 x 4 matrix

tion method unrealistic if it cannot deal with them.

Sequences with appearing and disappearing features re- U11 u 12 U13 U1 4

suit in a measurement matrix W which is only partially U21 U22 U23 U2 4

filled in. The factorization method introduced in section3 U3 1 U32 U33 U34
cannot be applied directly. However, there is usually suffi- W= riU-.i u 4 1 U42 U43 ?

cient information in the stream to determine all the camera V v 11  v12 Vi3 V14

positions and all the three-dimensional feature point coor- V21 v22 V23 V2 4

dinates. If that is the case, we can not only solve the shape V3 1 V32 V33 V3 4

and motion recovery problem from the incomplete measure- v41 V42 V43 ? J
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Then, the factorization method can be applied to the first derived from equation (4). The second equation in (17) and
three rows of U and V, that is, to the 6 x 4 submatrix the solution to (19) yield the entire rotation matrix R, while

shape is given by equation (18).
U11  U 12 U13 U14  The components a4 and b4 of translation in the fourth
U21 U22 U23 U24 frame with respect to the centroid of all four points can

W×= U31 U32 U33 U3 (16) be computed by postmultiplying equation (7) by the vector
VII V1 2  V13 V14 774 = (1, 1, 1,0):

V21 V2 2  V23 V2 4

V31 V32  V33 V34 WrI4 = RS 14 + teT

to produce the partial translation and rotation submatrices Since e4 = 3, we obtain

-T-

al Ia2iT t = -(W - RS)714. (20)

a3 3and fR6,3 j (17) In particular, rows 4 and 8 of this equation yield a4 and b4 .

b2  jT Notice that the unknown entries u44 and v44 are multiplied

b3 jFT by zeros in equation (20).
Now that both motion and shape are known, the missing

and the full shape matrix entries u4, v44 of the measurement matrix W can be found
by orthographic projection (equation (8)):S= s 2 s:. s 4,] (18)

U44 = i 4TS4a4

such that 
V4=jS

IV 6 . 4 = R 6 x3 S + t 6 xeT = js 4 b 4 .

where e4 = (1, 1, 1, 1). The procedure thus completed factors the full 6 x 4 sub-
To complete the rotation solution, we need to compute matrix of W and then reasons on the three points that are

the vectors i4 and j4 . However, a registration problem must visible in all the frames to compute motion for the fourth
be solved first. In fact, only three points are visible in the frame.
fourth frame, while equation (18) yields all four points in Alternatively, one can start with the 8 x 3 submatrix
space. Since the factorization method computes the space
coordinates with respect to the centroid of the points, we U1 U12 u 13

have s, + S2 + s3 + s4 = 0, while the image coordinates in U21 U22 U23

the fourth frame are measured with respect to the centroid U31  U32 U33

of just three observed points (1, 2, 3). Thus, before we can V8 x 3 = U41 U42 U43 (21)
compute i4 andj 4 we must make the two origins coincide V11 V12 V13

by referring all coordinates to the centroid V21  V22 V23

'31 "V32 V3 3

C 1(S + S2 + S3) 
L UV41 V 4 2 V43

In this case we first compute the full translation and rotation
of the three points that are visible in all four frames. In the submatrices, and then from these we obtain the shape coor-
fourth frame, the projection of , has coordinates dinates and the unknown entry of 1V for full reconstruction.

+ In summary, the full motion and shape solution can be
a 4  = - (U41 + U42 + 1143) found in either of the following ways:

( + V43) I . row-wise extension: factor W6 ×4 to find a partial mo-
+ 42 tion and full shape solution, and propagate it to include

so we can define the new coordinates motion for the remaining frame (equations (19)). This
will be used for reconstructing the complete IV by

s= s. - c for p = 1,2,3 row-wise extension.

in space and 2. column-wise extension: factor W8 1x3 to find a full mo-
tion and partial shape solution, and propagate it to

4p u4p - a 4  for p = 1,2, 3 include the remaining feature point. This will be used
t N- a4  for for reconstructing the complete W by column-wise

extension.
in the fourth frame. Then, i4 and J4 are the solutions of the

two 3 x 3 systems 5.2 Solution in the Presence of Noise

U41 U42 U13  4 = il[ s1 s s ] The solution propagation method introduced in the previous
1[, 142 v4 3 ] = iT [ S s s s; ] (19) subsectioncanbeextendedto2FxPmeasurementmatrices



with F > 4 and P > 4. In fact, the only difference is that and a row to a frame. Shaded regions denote known entries.
the propagation equations (19) for row-wise extension and The fill matrix shown has 226 x 829 = 187354 entries, of
those for column-wise extension become overconstrained. which 30185 (about 16 percent) are known.
If the measurement matrix W is noisy, this redundancy is To start the motion and shape computation, the algorithm
beneficial, since equations (19) can be solved in the Least finds a large full submatrix by applying simple heuristics
Square Error sense, and the effect of noise is reduced. based on typical patterns of the fill matrix. The choice

In the general case of a noisy 2F x P matrix W the of the starting matrix is not critical, as long as it leads to
solution propagation method can be summarized as follows, a reliable initialization of the motion and shape matrices.
A possibly large, full subblock of W is first decomposed by The initial solution is then grown by repeatedly solving
factorization. Then, this initial solution is grown one row overconstrained versions of the linear system corresponding
or one column at a time by solving systems analogous to to (19) to add new rows, and of the system for the column-
those in (19) in the Least Square Error sense, wise extension to add new columns. The rows and columns

However, because of noise, the order in which the rows to add are selected so as to maximize the redundancy of
and columns of 11" are incorporated into the solution can the linear systems. Eventually, all of the motion and shape
affect the exact values of the final motion and shape solution. values are determined. As a result, the unknown 84 percent
Consequently, once the solution has been propagated to of the measurement matrix can be hallucinated from the
the entire measurement matrix IV, it may be necessary to known 16 percent.
refine the results with a steepest-descent minimization of Figure 19 shows two views of the final shape results,
the residue taken from the top and from the side. The missing features

1111 - RS -I 7-teT1 at the bottom of the ball in the side view correspond to the
" -part of the ball that remained always invisible, because it

see equation (7)). rested on the rotating platform.
There remain the two problems of how to choose the To display the motion results, we look at the if and jf

initial full subblock to which factorization is applied and in vectors directly. We recall that these unit vectors point along
what order to grow the solution. In fact, however, because the rows and columns of the image frames f in 1,..., F.
of the final refinement step, neither choice is critical as Because the ping-pong ball rotates around a fixed axis,
long as the initial matrix is large enough to yield a good both if and jf should sweep a cone in space, as shown
starting point. We illustrate this point in the next sectionof in Figure 2t) The tips of ir and jf should describe two
experiments, circles in space. centered along the axis of rotation. Figure

21 .hows to 6 iess of these vector tips, from the top and
from th- 4;J:- hose trajectories indicate that the motion

6 More Experiments recover, vo , , rrectlv Notice the double arc in the
top part of tiguc: - i Crresponding to more than 360 degrees

We will first test the propagation method with image streams rotation If the m ;., vi reconstruction were perfect, the two
which include substantial occlusions. We first use an image arcs would be indit,rg: utshable
stream taken in a laboratory. Then, we demonstrate the
robustness of the factorization method with another stream 6.2 "Cup and Hand" Image Stream
taken with a hand-held amateur camera.

In this subsectionwe describe an experiment with a natural

6.1 "Ping-Pong Ball" Image Stream scene including occlusion as a dominant phenomenon. A
hand holds a cup and rotates it by about ninety degrees in

-N ping-pong ball with black dots marked on its surface is front of the camera mounted on a fixed stand. Figure 22
rotated 450 degrees in front of the camera, so features appear shows four out of the 240 frames of the stream.
and disappear. The rotation between adjacent frames is 2 An additional need in this experiment is figure/ground
degrees, so the stream is 226 frames long. Figure 16 shows segmentation. Since the camera was fixed, however, this
the first frame of the stream, with the automatically selected problem is easily solved: features that do not move belong
features overlaid. to the background. Also, the stream includes some nonrigid

Every 30 frames (60 degrees) of rotation, the feature motion: as the hand turns, the configuration and relative po-
tracker looks for new features. In this way, features that sition of the fingers changes slightly. This effect, however,
disappear on one side around the ball are replaced by new is small and did not affect the results appreciably.
ones that appear on the other side. Figure 17 shows the A total of 207 features was selected. Occlusions were
racks of 60 features, randomly chosen among the total 829 marked by hand in this experiment. The fill matrix of figure

found by the selector. 24 illustrates the occlusion pattern. Figure 23 shows the
If all measurements are collected into the noisy measure- image trajectory of 60 randomly selected features.

ment matrix W, the U and V parts of W have the same fill Figures 25 and 26 show a front and a top view of the cup
pattern: if the x coordinate of a measurement is known, so and the visible fingers as reconstructed by the propagationis the y coordinate. Figure 18 shows thisfill matrix for our method. The shape of the cup was recovered, as well as

experiment. This matrix has the same size as either U or the rough shape of the fingers. These renderings were
V, that is, F x P. A column corresponds to a feature point, obtained, as for the "House" image stream in subsection4. 1,
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by triangulating the tracked feature points and mapping
pixel values onto the resulting surface.

7 Conclusion

The rank theorem, which is the basis of the factorization
method, is both surprising and powerful. Surprising be- .- y.- (dX)

cause it states that the correlation among measurements -
made in an image stream has a simple expression no matter 5.00 -

what the camera motion is and no matter what the shape 0.00 -

of an object is, thus making motion or surface assumptions -5.00 -.. __

(such as smooth, constant, linear, planar and quadratic) -10.0- f.,, numb.

fundamentally superfluous. Powerful because the rank the- 0 so 100 150

orem leads to factorization of the measurement matrix into
shape and motion in a well-behaved and stable manner. .... M roll (d-.gr.)

The factorization method exploits the redundancy of the 5.00 -...
measurement matrix to counter the noise sensitivity of
structure-from-motion and allows using very short inter- 0.00-

frame camera motion to simplify feature tracking. The -5_00 _

structural insight into shape-from-motion afforded by the V0 -r number

rank theorem led to a systematic procedure to solve the 0 50 100 ISO

occlusion problem within the factorization method. The
experiments in the lab demonstrate the high accuracy of the - pih (d g )

method, and the outdoor experiments show its robustness. 500 - .! ..

The rank theorem is strongly related to Ullman's twelve 0.,00 - _ _"

year old result that three pictures of four points determine
structure and motion under orthography. Thus, in a sense, 5.00

the theoretical foundation of our result has been around for -,o.00 n

a long time. The factorization method evolves the applica- 0 so 100 5o
bility of that foundation from mathematical images to actual
noisy image streams. Figure 4: True and computed camera yaw, roll, pitch.

60

120 150

Figure 3: Some frames in the sequence. The whole se-
quence is 150 frames. Figure 5: The 430 features selected by the automatic detec-

tion method.
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y-~ diff--nc in degre.

-02

03 - -------- __

0 50 to0 150

004

fram nuniber
0 50 100 150

0----~--------~--Figure 8: A real picture from above the building, similar to
I - -____ Lfigure 7.

050 100 IS0

Figure 6: Blow-up of the errors in figure 4.

-120.00 -

140.00

-60.00 -

-8000-

2D000-

220.00 -

-240.00

_Z000

100 -

W 000 - -

400.00 -T

20D.0)30.0 0 4MD 500 Figure 9: For a quantitative evaluation, distances between
the features shown in the picture were measured on the
actual model, and compared with the computed results.

Figure 7: A view of the computed shape from approxi- The comparison is shown in figure 10.
mately above the building (compare with figure 8).
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$ 33314 v20

117 76/75.7 102 919.1 47

'2.4

7 2 7.2
1 7.2 / 71

533 2072/72 3/53.2

25/7,2/ 7A

Figure 10. Comparison between measured and computed :
distances for the features in figure 9. The number before the '
slash is the measured distance, the one after is the computed
distance. Lengths are in millimeters. Computed distances "

were scaled so that the computed distance between features
117 and 282 is the same as the measured distance. Figure 13: Tracks of 60 randomly selected features from

the real house stream (figure 11.)

1 60 1 7u

Figure 14: A front view of the three reconstructed walls,
with the original image intensities mapped onto the resulting
surface.

120 180

Figure 11: Four out of the 180 frames of the real house
image stream.

Figure 15: A view from above of the three reconstructed
Figure 12: The features selected in the first frame of the walls, with image intensities mapped onto the surface.
real house stream (figure 1)

Fiue1:Ave rmaoeo h he eosrce
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Figure 16: The frst frame of the ping-pong stream, with
overlaid features.

Figure 19: Top and side views of the reconstructed ping-
pong ball.

Figure 17: Tracks of 60 randomly selected features from
the stream of figure 16.

Figure 20: Rotational component of the camera motion for
the ping-pong stream. Because rotation occurs around a

Figure 18: The fill matrix for the ping-pong ball experiment, fixed axis, the two mutually orthogonal unit vectors if and
Shaded entries are known. je pointing along rows and columns of the image sensor,

sweep two 450-degree cones in space.
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Figure 23: Tracks of 60 randomly selected features from
the cup stream.

Figure 21 Top and side views of the if and jf vectors
identifying the camera rotation. See Figure 20.

Figure 24: The 240 x 207 fill matrix for the cup stream

.. (figure 22). Shaded entries are known.

1 80

160 240

Figure 22: Four out of the 240 frames of the cup image
stream.

Figure 25: A front view of the cup and fingers, with the
original image intensities mapped onto the resulting surface.
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185 curate. Furthermore, range image acquisitiun time is made

independent of the numbcr of data points in each frame.
By fully exploiting the capability of VLSI to both sense
and process information, we have built a smart sensor that
acquires a complete frame of 10-bit range image data in a
millisecond.

A VLSI Smart Sensor
for Fast Range Imaging 2 A Cell-Parallel Approach to Light-

Stripe Range Imaging

Range information is crucial to many robotic applications.

We have built a range-image sensor that acquires a corn- A range image is a 2-D array of pixels, each of which
plete 28 32 range frame in as little as one millisecond represents the distance to a point in the imaged scene. Manysing VLSi, sensi ang an ssin are combined into a techniques for the direct measurement of range images haveunique sensing element that measures range in a fulv- been developed[Bes88]. Of these, the light-stripe methods

parallel fashion. The accuracy and repeatability of the have proven to be among the most robust -ind practical.

sensed data is 0. 1% or better In this paper, we review the Fig. I illustrates the principle on which a light-stripe

cell-parallel method used, describe our VLSI implemen- sensor is based. The scene to be imaged is lit by a stripe -
tation, outline procedures for calibrating the cell-parallel a plane of light formed by fanning a collimated source in
vensor and present some experimental results. We conclude one dimension. The stripe is projected in a known direction

using a precisely controlled mirror. When viewed by an
This reearch was done by Andrew Gruss. Shigeyuki Tada and Takeo imaging sensor, it appears as a contour which follows the

Kanade. and was Rupported in part by an AT&T Foundation Grant, the profile of objects. The shape of this contour encodes range
Natimnal Science Foundation, under grant MIP-8915969, and the Defense i
Advanced Research Projects Agency, ARPA Order No. 7511, mnitored information. In particular, if projector and imaging sensor
by the NSF under grant MIP-9047590. geometry are known, the distance to every point lit by the



shape to image moton directly, without using retnotopic input to our factorization method.
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Il, jectedonto a scene, as described above, and one column World ,r

f rang[e image data is measured. The stripe is stepped to Coordinate VIA Fa

fe
r 
position and the process is repeated until the entire Frame

,,:ene ha. been scanned.
Itfortunately, step-and-repeat implementations are Figure 3 Cell-paallel s.stet geoinctr,

.hs In order to build a complete range image using data
i ,i .% stripe positions. V intensity images are required
I lic t t il tine " to acquire the range frame is determined at the intersection of the line -ol-sichi is Ilt

with the stripe plane at Ol, (t) on the surface of the obje. I
.T

5" I A sensorhich collects a dense range i triage 1, ltfiled h,.
arraing'ng identical sensing elements into a t,, o-di iieien.ihoil

\ssiting '' = I /30 second and N = 100, If" ' = array. The cells of the array work in parallel. galte ii i
I seconds is required. range image during a single pass of the light stripe lie

I he frame time of a step-and-repeat sensor has been time required to acquire the range frame is independent ot
unproed by imposing additional structure on the light its spatial resolution -

i-urce For example, the gray-coded sources used by
Inkuchi[ISM841 reduce the factor of N in (1) to log A T .
I I..eer. achievable frame rates are still too slow and
lie fundamental problem remains - range frame time in- The frame tie I"" of a cell parallel sensor i, sci
,eases s% ith spatial resolution. by the bandws idth of the photo-receptir used in its scnsin

elements. Very high frame rates (I / I}"
i
u

j can be achiev ed
The photodiodes used in our cell design has e band, idth il

2.1 The Cell-Parallel Method the megahertz. They can detect a stripe to ins at angular

I he cell-parallel technique is an elegant modification of the %elocities in excess of 6,000 rpm
basic light-smpe algorithm. The technique is a dynanic
one. with time an important aspect of the range measure- 2.2 Cell-Parallel System Geometry
nient process[ASP87J.

Consider the geometry of a three-pixel, single-row cell- Cell-parallel system geometry can be described using I,,
parallel range sensor, seen from above in Fig. 2. In the mogeneous coordinate transformationslB3g2. NS79] Re-
tigure, the stripe plane is perpendicular to the page. The ferning to Fig. 3. the origin of the frame O.s s placed at
stripe is quickly swept across the scene from right to left, the optical center of the in ager. The stripe is a half-plane
hriefly illuminating object features. A sensing element. say which radiates out from an axis-of-rotation aligned ,% ith the
S,. nionitors the light intensity , returned to it along a fixed y-axis of the frame and passing through the poitt
line-of-sight ray R2. When the position of the stripe is such
that it intersects R2 at a point on the surface of an object, a Xt.= [h 0 0 1 ]. 3
"flash" will be observed by the sensing element.

Range to the object is measured by recording the time t, Stripe rotation Ot. is measured counter-clockwise about its
at which the flash is seen. The location of the stripe as a axis when viewed from the positive y direction and defined
function of time is known because its projection angle 0_ (t) to be zero when the stripe lies in the yz-plane. In a homo-
is controlled by the system. The "time-stamp" t, acquired geneous representation, a plane is described in terms of a
by the sensing element measures the position of the stripe column vector P that satisfies the scalar product xP = 0,
when its light is reflected back to the sensor. The three- where x is a homogeneous point that lies in P. In the sensor
dimensional coordinates of one object point are uniquely coordinate frame defined above, the stripe plane is modeled

1-
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The position xs =(.rs. ys. zs) of a sensing element on
the ensor image plane defines the line-of-sight ray Rs. The 2 w

parametric equation for a line in three dimensions is used ,..
to represent Rs as

X = - (Xs - Os) + Os (5) . . ..
7 s

,here - =xl ,,/ s + ys + zs. The line parameter Figure 6: Sensing element circuitry.

, hen normalized by rs, is simply the distance along Rs
measured from Os heading toward the object. The multi-pixel cell-parallel range sensor we have devel-

The point of intersection xo, between the stripe and the oped is shown in Fig. 5. This chip consists of 896 sensing
te-of-sight, is found by solving xPL =0 for r: elements arrangedin a28x 32 array. It was fabricated using

brs a 2pum p-well CMOS, double-metal, double-poly process
- - t(6) and measures 9.2 mm x 7.9 mm (width x height). Of the

X s - Zs tan OL total 73 mm 2 chip area, the sensing element array takes up

In the coordinate frame of the sensor, this point is 59 mm2, read-out column-select circuitry 0.37 mm 2 and the
output integrator 0.06 mm2 . The remaining 14 mm2 is used

xo=[ Xs 1-Ys -1zs 1]. (7) for power bussing, signal wiring, and die pad sites.

Thus, the 3-D position x0 of imaged object points can be 3.2 Sensing Element Design
recovered from the scalar distance measurement r.

The architecture chosen for the range sensing elements is
shown in Fig. 6. Areas of interest in the diagram include

3 VLSI Range Sensor the photo-receptor (PDiode), the photo-current transimpe-

dance amplifier (PhotoAmp), threshold comparison stage
A practical implementation of the cell-parallel range imag- (n2Comp), stripe event memory (RS.Flop), time-stamp
ins algorithm requires a smart sensor-one in which optical track-and-hold circuitry (PGateI/CCell) and cell read-out
sensing is local to the required processing. Silicon VLSI logic (PGateO/TokenCell).
technology provided the means for building such a sensor. In operation, sensing elements cycle between two phases

Fig. 4 summarizes the operation of elements in the smart -acquisition and readout.
cell-parallel sensor array. Functionally, each must convert During the acquisition phase, each sensing element im-
light energy into an analog voltage, determine the time at plements the cell-parallel procedure of Fig. 4. The photodi-
which the voltage peaks and remember the time at which ode within a cell monitors light energy reflected back from
the peak occurred. the scene. Photocurrent output is amplified and continu-

ously compared to an external threshold voltage Vth. When

3.I A 28 x 32 Cell-Parallel Sensor Chip photoreceptor output exceeds this threshold, the "stripe-
detected" latch in the cell is tripped. The value of the
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Figure 7: Non-linear transimpedance amplifier. Figure 8: The cell-parallel range-finding system.

time-stamp voltage at that instant is held on the capacitor Table 1: CELL-PARALLEL SENSOR SYSTEM SUM-
CCell, recording the time of the stripe detection. MARY

The acquisition phase is synchronized with stripe motion Baseline 300 mm
and ends when the stripe completes its scan. At that time,
the array sensing elements recorded a range image in the Laser Source Laser Diode (Collimated)

form of held time-stamp values. This raw range data must Wavelength 780nm

now be read from the chip. Stripe Width 31mm

A time-multiplexed read-out scheme off loads range im- Stripe Spread 400 (3 dB)
age data in raster order through a single chip pin. One bit of Sweep Assembly Rotating Mirror
token state is passed through the sensing element array, se-SweAnl 0
lecting cells for output. Dual n/p-transistor pass gate struc-
tures are used throughout the time-stamp data path. They Sensor Optics l/2"-FormatCCD Zoom Lens

permit the use of rail-to-rail time-stamp voltages, maximiz- Focal Length 12.5 to 75 mm

ing the dynamic range of the analog time-stamp data. f-number f/1.8

AMi Precision 12 bits

3.3 Stripe Detection

One of the more challenging aspects of the cell design in- sensing elements use analog circuitry to amplify the photo-
volved the circuitry which detected the stripe, current, to detect the stripe and to record the per-cell time-

A photodiode forms the light sensitive area within each stamp information. Stripe timing is represented in analog
cell. This diode is a vertical structure, built using the n- form as a 0-5 V sawtooth broadcast to all cells of the array.
substrate as the cathode and the p-well of the CMOS process This allowed the time-stamp value to be stored as charge
as the anode. An additional p+ implant, driven into the well, on the I pf capacitor within each cell. The digital equiva-
reduces the surface resistivity of the anode and increases the lent of latching a count into a multi-bit register would be
device bandwidth. significantly larger in area and would require that the dig-

The non-linear transimpedance amplifier of Fig. 7 was a ital time-stamp counters run during the acquisition phase.
key element c i the sensor cell design. Reflected light from Thus, analog processing kept cell area small and minimized
the swept stripe source generates nano-amp photo-current digital switching noise during photo-current measurements
pulses and thus a very high-gain amplifier is required to in the acquisition phase.
convert this current into a usable voltage. In addition, very
little die area could be devoted to photo-current amplifica-
tion if cell area was to be kept small. The three transistor
amplifier design of Fig. 7 satisfies both requirements. Its
logarithmic transfer characteristic provides freedom from 4 Prototype Range Image Sensor
output saturation even when input light levels vary over
several orders of magnitude. The output rise-time of pho-
todiode/amplifier test structures in response to a stripe was The 28 x 32 element VLSI sensor prototype described in
measured to be a few microseconds. the previous section was incorporated into the light-stripe

range system shown in Fig. 8. System components visible in

3.4 Analog Signal Processing the photograph include (from the left) the stripe generation
assembly, the VLSI sensor chip and its interface clectron-

Analog signal processing techniques played an important ics, a calibration target and the 3-DOF positioning system.
role in the design of this smart sensor. As shown in Fig. 6, Table I provides details of the configuration shown.
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Figure 10: Cell (13,15) measured line of sight.5 Cell-Parallel Sensor Calibration ,

Calibration provides the complete specification of system Calibrating
geometry necessary for converting cell time-stamp data into CCU
range images. Two sets of calibration parameters must be
measured. First, 3-D sensor chip geometry and optical Line-of-Sight Rays
parameters must be measured- the imager model. Next, a M
mapping between time-stamp values 0s and distance r for S_-_ Modeled
all sensing elements is developed - the stripe model. : oe

5.1 Imager Model Calibration I n e

This method measures component model geometry using otagel
reference objects. manipulated in the sensor's field of view Center

with an accurate 3-DOF (degree of freedom) positioning de-
vice. The following two-step procedure is used (Fig. 3): Figure 11: "Pinhole" line-of-sight approximation.

" the line-of-sight rays Rs for a few cells are measured,
and

" a pinhole-camera model is fit to measured line-of-sight the process. The line-of-sight for a single cell can then be

rays in order to approximate line-of-sights for all sens- identified by fitting a 3-D line to these points. Experimental

ing elements, data from the calibration of one sensing element's line-of-
sight is shown in Fig. 10.

A planer target out of which a triangular hole has been Mapping the line-of-sight rays for all 896 sensing ele-
cut as shown in Fig. 9 is used to map out sensing element ments in this manner is too time consuing. In practice,
line-of-sight rays. The target is mounted on the positioner line-of-sight information is measured for 25 cells, evenly
so that its surface is parallel to the world-xy plane. spaced in a 5 grid. The geometry of the remaining cells is

A single 3-D point on the line-of-sight of a particular approximated using a pinhole-camera model.
sensing element is found as follows. The target is moved
to some z-position in world coordinates and held. The The pinhole-camera model[WCH90] constrains all sens-
bottom edge of the triangular hole is located by moving ing element line-of-sight rays to pass through a single point
the target around in x and y as indicated in Fig. 9. When focus of expansion at the optical center of the camera.
a small motion in either x or y causes a large change in Fig. 11 graphically illustrates the process. Sensing element
the time-stamp value reported by the cell, occlusion of the locations are assumed to lie in some sensor plane, at loca-
line-of-sight at an edge of the triangular cut is indicated. tions evenly spaced in a 2-D grid on the plane. Eleven model

Once many points along the bottom edge are located, a parameters must be determined that identify the transforma-
line, known to lie in the plane of the target, is fit. The tion matrix Tsw and the geometry of the the sensor plane.
location of the top edge is found in a similar fashion. The A least-squares procedure is used to fit pinhole-model pa-
intersection of the top and bottom edge lines define one 3-D rameters to line-of-sight information measured in the first
point that lies on the cell's line-of-sight. A number of these calibration step. Imager model geometry is now fully cali-
points are located by moving the target in z and repeating brated.



5.2 Advanced Imager Model Calibration

Unfortunately, calibration of the imager model via line-of-
sight measurement is not suitable for use outside of the
laboratory environment. "One-at-a-time" measurement of
sensing element geometry, as outlined above, is slow and
cumbersome.

We are developing a faster, more precise method for
imager model calibration. In this new calibration method,
the 3-DOF positioning system is replaced with a liquid
crystal display (LCD) mask that need only be accurately
positioned along one degree of freedom. The LCD mask
is used to define precise black-and-white images that are t /
seen" by the range sensor. The method relies on intensity Z, -Z

image information, measuring geometry through analysis Target Zw= 
Z

3 o 0 o

of reference object images[ABA+87]. 0hf 0 0

The LCD mask is placed between a diffuse planer target Stripe 0 0'"

and sensor chip at a known position and is backlit by shining 0 0
the system stripe source on the planer target. The pattern Sensor Plane
displayed on the LCD forms a black-and-white image on
the sensor. Only illuminated sensing elements will latch
the stripe-detected condition (Section 3-3.2). A single-bit Figure 12: Time-stamp calibration.
intensity image is derived by identifying the time-stamp
output of illuminated sensing elements.

Sensing element line-of-sight geometry is found by vary-
ing the LCD mask pattern in a controlled fashion. For ex-
ample, a circular pattern, whose 3-D center is known, can
be projected. A calibration point is found by measuring the
2-D location of this circle's center in the intensity image
returned by sensor. Additional calibration data is measured i "
by varying the position of the circle on the LCD mask and -

the position of the LCD along zs. Also, by measuring the a ',3,S

center different radii of the circle at a fixed position, we . ...-
can compensate for the low spatial resolution of the current ', \
sensor. The new sensor chip design, discussed in Section 7, a ,
returns multi-bit intensity image data which further assists ,
imager geometry calibration. ' ,

Use of the LCD mask significantly reduces the time re- . *

quired to perform imager-model calibration. In the previous '

method, two edges of a triangular hole had to be mapped
out, via accurate back-and-forth movement, in order to yield
a single calibration point. In the new method, one calibra- \
tion point is measured from a single LCD-generated pattern a
without mechanical X-Y movement. Precise calibration of ,
the low-spatial resolution range sensor is possible because a.
high-precision patterns are generated by the LCD mask. t: J-

The use of an LCD mask to project precise 2-D patterns al-
has application beyond the calibration of our light-stripe 1 I::," ' '

range sensor. For example, this technique could be used - : ---- a ,
to assist more traditional camera calibration procedures or
to present training data to image-based neural net systems. a a
LCD displays have several advantages over CRT displays a

for applications like these - they are fast, they are static 6" . .. . . .. .. . .
(not refreshed), and they form images which are stable and
well defined. Figure 13: Time-stamp calibration result.

5.3 Stripe Model Calibration
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Figure 14: Cell (13,15) range-data histograms.

mean absolute error, expressed as a fraction of the world-
z position and averaged for the 25 elements at zw. One

The second part of the calibration procedure determines standard deviation of "spread", also normalized with zw, is
the mapping between time-stamp data and range along all shown (1) above and below each box.
sensing element line-of-sight rays. As shown in Fig. 12, a The experiments show the mean measured range value
planer target with no hole replaces the target used in step to be within 0.5 mm at the maximum 500 mm z - an ac-
one. The new target is held at a known world-z position, curacy of 0.1%. The aggregate distance discrepancy be-
parallel to the zy plane, and time-stamp readings 0s from tween world and measured range values remains less than
all sensors are recorded. This process is repeated for many 0.5 mm over the entire 360 mm to 500 mm z range. The
: positions. Using this information, the function which cell-parallel sensor repeatability is found by computing the
maps cell time-stamp values Os into line-of-sight distance standard deviation of the distance measurements. The mea-
r for each sensing element is approximated by fitting a sured repeatability of histogram data is less than 0.5 mm
parabola to each. Experimental data, showing the fitted T - 0.1% at the maximum 500m positioner translation.
verses Os functions for several sensing elements, is shown The 0.5 mm repeatability decreases with the distance to the
in Fig. 13. Calibration of the cell-parallel range sensor i sensor - essentially with the slope of the time-stamp to
now complete. distance mapping function (Fig. 13).

6 System Performance 6.2 Range Image Acquisition

6.1 Range Accuracy and Repeatability Fig. 16 shows a wire-frame representation of one 28 x 32
range imagr produced by the sensor. The imaged object

The quality of the range data produced by the cell-parallel is the cup shown in the figure, approximately 80mm in
range sensor was measured by holding a planer target at diameter at its opening and 80 mm high. The range sensor
a known world-z position with the 3-DOF positioning de- is looking directly at the object from a distance of 500 mm.
vice. In the experimental setup, the world-z axis heads The viewpoint of the plot is at a point directly above the
almost directly toward the sensor with the zw = 0 point optical center of the sensor. The complete range image
roughly 500 mm away. Analog time-stamp values from the was acquired during a 3 msec stripe scan. The intersection
sensor array were digitized, using a 12-bit analog-to-digital points of the wire-frame plot are positioned on cell line-of-
converter (A/D), and recorded for 1,000 trials. Light-stripe sight rays at the measulred distance along the ray and the
sweep (acquisition phase) time for each scan was 3 msec. focus of expansion is located in front of the cup. Thus, the

A histogram of the range data reported by one cell is smaller "squares" represent object surface patches closer to
plotted in Fig. 14. The horizontal axis represents the dig- the sensor. This is opposite the manner in which straight
itized time-stamp value, converted to world-z distance via perspective would make an object with a grid painted on
the calibration model. Data for six world-z positions are it appear, and at first glance gives the false impression that
combined in this plot. The vertical axis shows the number the "mold" us-d to make the cup has been imaged.
of times (plotted logarithmically), out of the 1,000 trials, The curved smooth front surface of the object is clearly
that the sensing element reported that world-z distance. visible in the range data. The 20 mm handle of the cup is
The sharpness of each peak is an indication of the stability readily distinguished, as is the planer background behind
(repeatability) of the range measurements. the cup. The curved surface of the object halfway down the

Averaged statistical data for 25 evenly-spaced sensing cup directly across from the bottom of its handle includes
elements is plotted in Fig. 15. In order to measure accuracy a slight shift of the wire-frame. The imaged cup is slightly
and repeatability, the position of the target, as reported by narrower at its base by about 2 mm. The cell-parallel sensor
the cell-parallel sensor, is compared to the actual target is measuring this small 3-D feature at the 500 mm object

z position. The "boxed" points in the plot represent the distance.



Table 2: CELL-PARALLEL SENSOR PERFORMANCE
SUMMARY

Spatial Resolution 28 x 32
Frame Time Up to I msec

Operating Distance 350 to 500 mm
Accuracy < 0.5 mm

Repeatability < 0.5 mm

Figure 17: Second-generation range sensor integrated cir-
cuit.

6.3 Sensor Performance Summary

A summary of the cell-parallel sensor system performance
is given in Table 2.

7 A Second Generation Sensing Ele-
ment

A second-generation implementation of the light-stripe sen-
sor array has been fabricated. This new chip, seen in
Fig. 17, incorporates several advantages over the first de-
sign. The die area of the new cell, show.i in Fig. i8, is
216plm x 216 lm, 40% smaller than that of the cells of the
first-generation sensor (photoreceptor area has been kept
constant). Stripe detection is done in a more robust manner
and range data read-out circuitry has been simplified. In
addition, the new cell provides a means to record and read
out the value of the peak intensity seen when it acquires a

Figure 16: Range data wire frame, range data sample. The peak intensity information provides
a direct measure of scene reflectance because snipe output
power is known and distance to the object point is mea-
sured. In addition, the availability of intensity information
allows for efficient sensor calibration (Section 5-5.2).

Peak detection is done using the circuit of Fig. 19. Oper-
ation of the circuit is straightforward. The source following
transistor Qp enables capacitor 1 to track the rising inten-
sity input voltage transitions. No path is provided for CP to
discharge when photoreceptor output transitions downward.
At the end of a scan, the largest intensity reading observed
will be held. Stripe detection is easily accomplished by
comparing the peak-intensity value Vf with the amplified
photodiode output V,. When V. falls below the Vf, the
output from the comparator is red to record a time-stamp
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Figure 20: Second-generation sensing element simulation
~result.

Figure 18: Second-generation sensing element layout. value.

Using Spice[HSp90], operation of of the second-
generation sensing element design was simulated. The
simulation results are plotted in Fig. 20. The output from
the peak-following circuit XLSCELL. 30 acts as a dynamic
threshold for each cell, replacing the externally applied
global threshold of the first-generation design (Section 3-
3.2). Comparator input offset mismatch made setting a
global threshold level, valid for all cells in the array, dif-
ficult. Thus, stripe detection is made more robust by this
modification. In addition, the "true" peak detection of the
new design provides better quality range data because the

v new stripe detection scheme identifies the location of the

Vp- peak in time more accurately than simple thresholding.

Sv pd__) MThe peak-intensity value held within the second-

V generation cell is an important artifact of the ranging process
::_r and, in the new design, is provided as an additional sensing

j --o element output. The illumination source in the system, the
.stripe, is of known power. Intensity reduction from l/r-

v d- type losses can be accounted for because range to the object

is measured. The intensity value therefore provides a direct
n te.nsty measure of scene reflectance properties at the stripe wave-

, clength. It is an image aligned perfectly with range readings
Stam from the cell array.

p
.  'The area in each cell dedicated to time-stamp read out is

Vr v much smaller in the new design. Direct addressing of the
- V.-cell to be read, using row and column selects, eliminates

t tthe token state necessary in the first-generation design. The
N x M array is read using N row select lines and Ml col-

Figure 19: Second-generation sensing element circuitry. umn select lines. A given cell is enabled for read out by
asserting the row and column select lines that correspond
to the location of the cell in the array. The two-level bus hi-
erarchy has been maintained, however, to keep bus loading
at a minimum. The area savings of the new read selection
method has made cell area of the second-generation design
smaller despite the additional peak detection circuitry.
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8 Conclusion [KGC91] T. Kanade, A. Gross, and L. R. Carley. A
very fast VLSI rangefinder. In Proceedings

We have presented the design and construction of a very of the 1991 IEEE International Conference
high-performance range-imaging sensor. This sensor ac- on Robotics and Automation, pages 1322-29,
quires a complete 28 x 32 range-data frame in a few millisec- Sacramento, CA, April 1991.
onds. Its range accuracy and repeatability were measured
to be less than 0.5 mm on average at half-meter distane,. [NS79] William M. Newman and Robert F. Sproull.
The success of this implementation can be attributed to the Principles of Interactive Computer Graphics.
use of a VLSI smart sensor methodology that allowed a McGraw-Hill Book Company, 2nd. edition,
practical implementation of the cell-parallel technique. 1979.

While the advantages of processing at the point sensing [WCH90] J. Weng, P. Cohen, and M. Herniou. Calibra-
have been advocated by many, few practical smart-sensor tion of stereo cameras using a non-linear distor-
implementations have been demonstrated. The cell-parallel tion model. In Proceedings of the 10th Inter-
range imager presented here bridges the gap between smart national Conference on Pattern Recognition,
sensor theory and practice, demonstrating the impact that pages 246-253, Atlantic City, NJ, June 1990.
the smart sensor methodology can have on robotic percep- IEEE Computer Society Press.
tion systems, like automated inspection and assembly tasks.

Sn..rt VLSI-based sensors, like the high-speed range
image sensor presented here, will be key components in
future industrial applications of sensor-based robotics.
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called the SSSD-in-inverse-distance. We show that the camera. The matching technique, however, is based on
SSSD-in-inverse-distance function exhibits a unique and the idea tha: global mismatches can be reduced by adding
clear minimum at the correct matching position even when the sum of squared-difference (SSD) values from multiple
the underlying intensity patterns of the scene include ambi- stereo pairs. That is, the SSD vaiues are computed first for
guities or repetitive patterns. An advantage of this method each pair of stereo images. We represent the SSD values
is that we can eliminate false matches and increase precision with respect to the inverse distance l/z (rather than tic
without any search or sequential filtering, disparity d, as is usually done). The resulting SSD func-

This paper first defines a stereo algorithm based on tions from all stereo pairs are added together to produce the
the SSSD-in-inverse-distance and presents a mathematical sum of SSDs, which we call SSSD-in-inverse-distance. We
analysis to show how the algorithm can remove ambiguity show that the SSSD-in-inverse-distance function exhibits a
and increase precision. Then, a few experimental results unique and clear minimum at the correct matching position
with real stereo images are presented to demonstrate the even when the underlying intensity patterns of the scene
effectiveness of the algorithm. include ambiguities or repetitive patterns.

There have been stereo techniques that use multiple im-
age pairs taken by cameras which are arranged along a line

1 Introduction [10][11][12], in the form of a triangle [13][14][15] (called
trinocular stereo), or in the other formation [16]. How-

Stereo is a useful technique for obtaining 3-D information ever, all of these techniques, except [10] and [16], decide
from 2-D images in computer vision. In stereo matching, candidate points for correspondence in each imago pair anid
we measure the disparity d, which is the difference between then search for the correct combinations of correspondences
the corresponding points of left and right images. The among them using the geometrical consistencies that they
disparity d is related to the distance z by must satisfy. Since the intermediate decisions on corre-

spondences are inherently noisy, ambiguous and multiple,
d = BF-, (1) finding the correct combinations requires sophisticated con-

sistency checks and search or filtering. In contrast, our
where B and F are baseline and focal length, respectively, method does not make any decisions about the correspon-

This equation indicates that for the same distance the dences in each stereo image pair; instead, it simply accumu-
disparity is proportional to the baseline, or that the baseline lates the measures of matching (SSDs) from all the stereo
length B acts as a magnification factor in measuring d in pairs into a single evaluation function,ie., SSSD-in-inverse-
order to obtain z. That is, the estimated distance is more distance, and then obtains one corresponding point from it.
precise if we set the two cameras farther apart from each In other words, our method integrates evidence for a final
other, which means a longer baseline. A longer baseline, decision, rather than filtering intermediate decisions. In
however, poses its own problem. Because a longer disparity this sense, Tsai [161 employed strategy very similar to ours:
range must be searched, matching is more difficult and thus he used multiple images to sharpen the peaks of his over-
there is a greater possibility of a false match. So there is all similarity measures, which he called JMM and WVM.
a trade-off between precision and accuracy (correctness) in However, the relationship between the improvement of the
matching. similarity measures and the camera baseline arrangement

One of the most common methods to deal with the prob- was not analyzed, nor was the method tested with real im-
lem is a coarse-to-fine control strategy [1] - [5]. Matching agery. In this paper we show both mathematical analysis
is done at a low resolution to reduce false matches and then and experimental results with real indoor and outdoor im-
the result is used to limit the search range of matching at ages, which demonstrate how the SSSD-in-inverse-distance
a higher resolution, where more precise disparity measure- function based on multiple image pairs from different base-
ments are calculated. Using a coarse resolution, however, lines can greatly reduce false matches, while improving
does not always remove false matches. This is especially precision.
true when there is inherent ambiguity in matching, such In the next section we present the method mathematically
as a repeated pattern over a large part of the scene (eg., and show how ambiguity can be removed and precision in-
a scene of a picket fence). Another approach to remove creased by the method. Section 3 provides a few experi-
false matches and to increase precision is to use multiple mental results with real stereo images to demonstrate the
images, especially a sequence of densely sampled images effectiveness of the algorithm. Section 4 presents Lonclu-
along a camera path [6] - [9]. A short baseline between a sions.
pair of consecutive images makes the matching or tracking
of features easy, while the structure imposed by the camera
motion allows integration of the possibly noisy individual 2 Mathematical Analysis
measurements into a precise estimate. The integration has
been performed either by explo" g constraints on the EPI The essence of stereo matching is, given a point in one
[6][7] or by a sequential Kalman filtering technique [8][9]. image, to find in another image the corresponding point,

The stereo matching method presented in this paper be- such that the two points are the projections of the same
longs to the second approach: use of multiple images with physical point in space. This task usually requires some
different baselines obtained by a lateral displacement of a criterion to measure similarit% between images. The sum
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PO P1 P2 PN
0 0 0 0 where No is the number of the points within the window.

BI alFor the rest of the paper, E[] denotes the expected value of
, _ __ a random variable. In deriving the above equation, we have

B2 assumed that d,.(i) is constant over the window. Equation
Bn (6) says that naturally the SSD function ed(i)(x,d(I)) is

expected to take a minimum when d(i) = dr(i), i.e., at the
, . fo. stereo right dispaity.

Let us examine how the SSD function ed(i)(x, d(j)) be-
of squared differences (SSD) of the intensity values (or haves when there is ambiguity in the underlying intensity
values of preprocessed images, such as bandpass filtered function. Suppose that the intensity signal f(x) has the
images) over a window is the simplest and most effective same pattern around pixel positions x and x + a,
criterion. In this ection, we define the sum of SSD with
respect to the inverse distnce (SSSD-in-inverse-distance) f r + .) = f(x + a + j), j E W (7)
for multiple-baseline stereo, ana mathematically show its where a $ 0 is a constant. Then, from equation (6)
advantage in removing ambiguity and increasing precisit-n
For this analysis, we use 1-D stereo intensity signals, but E[ed(i)(x,dr(i))] = E[ed(i)(x,d,(j)+a)] = 2N,,2. (8)
the extension to two dimensional images is straightforward. This means that ambiguity is expected in matching in terms

of positions of minimum SSD values. Moreover, the false
2.1 SSD Function match at dr(i) + a appears in exactly the same way for

Suppoe, that we have cameras at positions Po, Pl,..., P all i; it is separated from the correct match by a for all

along a line with neir optical axes perpendicular to the the stereo pairs. Using multiple baselines does not help to
line and a resulting set of stereo pairs with baselines disambiguate.

B1. B2.. . , B,, as shown in figure 1. Let fo(x) and fi(x)
be the image pair at the camera positions P0 and Pi, respec- 2.2 SSD with respect to Inverse Distance
Lively. Imagine a scene point Z whose distance is z. Its
disparity dr(j) for the image pair taken from Po and Pi is Now, let us introduce the inverse distance C such that

dr(i = -- 7 (2) ( = -. (9)z

We model the image intensity functions fo(x) and f;(x) >From equation and (2),
near the matching positions for Z as

fo(x) = f(x)+no(x) d(j) = BjF ,
fi(x) = f(x - dr(i)) + ni(x), (3)

assuming constant distance near Z and independent Gaus- where Cr and ( are the real and the candidate inverse dis-
sian white noise such that tance, respectively. Substituting equation ( 1) into (5), we

sa have the SSD with respect to the inverse distance,
no(x), ni(x) ,', N (O, o') . (4) (j( 1 f x ) -fi +B F j) , 12

The SSD value ed(i) overawindow t at a pixel position eE(()(x,C) - (fo(x+j)-fi(x+B2 FC+j))2 , (12)
x of image fo(x) for the candidate disparity d(j) is defined
as at position x for a candidate inverse distance C. Its expected

',(1) (x.dW, ) -(o(x + j) - fj(x+d() +j))2, (5) value is

jE 1w Eje0(j)(x, ()] = ( (x+j)-f (x+BiF((-,)+j))+2N,. c2

where the E, E means summation over the window. The jEW
4(j) that gives a minimum of ed(i) (x, d(i)) is determined as (13)
the estimate of the disparity at x. Since the SSD measure- Finally, we define a new evaluation function
ment ed(t)(x.d(j)) is a random variable, we will compute e((12...n)(x, (), the sum of SSD functions with respect to
its expected value in order to analyze its behavior: the inverse distance (SSSD-in-inverse-distance) for multi-

(I.) r ple stereo pairs. It is obtained by adding the SSD functions
E,(, ( x, d )] e (j) (x, () for individual stereo pairs:

= E I(t(X+)-f(x+di-dr(±j) e<(12...),(X, )= _e((()(x,). (14)

i=1i

+no(x + j) - ni(x + d( - j)) 2] Its expected value i&

= , (f(x + j) - f(x + d(,) - r,(j) + j))2 + 21Vw
i(6) E[e(oi'".)(x, C)] = Z Eje((j)(x, C)]

(6) l
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two baselines B, and B 2 (BI 5 B2 ). >From equation (15)

X E[e((2) (X, )

= ((x + j) -f(x+BjF((- )+j))2

jE 15
+ E (f(x + j) -f(x + B2F(( - )+ j)) 2

10 5 20
d  jEW'

FI dl2]+ 4,,U (17)

We can prove that
S 10 15 2'0

2 b E[e((j2)(x,(O] > 4N, 2 = E[e<(I)(x,(,)] forC ,
E[ ''I: '-...- (18)

(d (refer to appendix A) In words, e o(2)(x, ) is expected to
" ___-_____have the smallest value at the correct (,. That is, the ambi-

guity is likely to be eliminated by use of the new evaluation
function with two different baselines.

(e) .We can illustrate this using synthesized data. Suppose

ta the point whose distance we want to determine is at x = 0
i r i 20 e  and the underlying function f(.r) is given by

cos(Qx)+2 if-4< x<12
f(X) 1 ifx<-4or12<x. (19)

t) i Figure 2 (a) shows a plot of f(x). Assuming that drii = 5,

a = 0.2, and the window size is 5, the expected values of

5izeta the SSD function ed, 1,(, d(j)) are az ghown in figure 2 (b).
We see that there is an ambigui:y: the minima oo-or Pt the

Figure 2: Expected values of evaluation functions: (a) correct n,,! h d(1  = 5 and at the false match dwj = 13.
Which match will be selected will depend on the noise,

Underlying function; (b) E[ed())]; (c) Efed(2)]; (d) E[e (()]; search range, and search strategy. Now suppose we have a
(e) E[c (2)]; (f) E[ei 2 )] longer baseline B 2 such that -' = 1.5. >From equations

B1
(6) and (10), we obtain Efed(2)] as shown in figure 2 (c).
Again we encounter an ambiguity, and the separation of the

- _(Z(x + j) -- f(x + BiF(( - (,) + j)) 2  two minima is the same.
,= JEW Now let us evaluate the SSD values with respect to the
+ 2nri .a, . (15) inverse distance ( rather than the disparity d by using equa-tions (12) through (15). The expected values of the SSD

In the next three subsections, we will analyze the character- measurements E[eC(1)] and E[e(( 2)] with baselines B, and

istics of these evaluation functions to see how ambiguity is B2 are shown in figures 2 (d) and (e), respectively (the plot

removed and precision is improved, is normalized such that B 1 F = 1). Note that the minima at
the correct inverse distance (C = 5) does not move, while
the minima for the false match changes its position as the

2.3 Elimination of Ambiguity (1) baseline changes. When the two functions are added to
produce the SSSD-in-inverse-distance, its expected values

As before, suppose the underlying intensity pattern 1() E[e((12)] are as shown in figure 2 (f). We can see that the
has the same pattern around r and £ + 0 (equation (7)). ambiguity has been reduced because the SSSD-in-inverse-

Then, according to equation (13), we have distance has a smaller value at the correct match position
than at the false match.

E[e¢(,)(x,()] = E[e((,)( ,+-F ]= 2N,1,. (16)

2.4 Elimination of Ambiguity (2)
We still have an ambiguity; a minimum is expected at a

false inverse distance (f = + I.. However, an impor- An extreme case of ambiguity occurs when the underly-

tant point to be observed here is that this minimum for the ing function f(z) is a periodic function, like a scene of a
false inverse distance ( changes its position as the base- picket fence. We can show that this ambiguity can also be

line Bi changes, while the minimum for the correct inverse eliminated.
distance C, does not. This is the property that the new evalu- Let f(x) be a periodic function with period T. Then,

ation function, the SSSD-in-inverse-distance (14), exploits each e,(i) (x, () is expected to be a periodic function of (
to eliminate the ambiguity. For example, suppose we use with the period T . This means that there will be multiple
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Figure 3: "Town" data set: (a) Image0; (b) Image9 Figure 4: "Town" data set image
F r 3sequence

minima of e, it(x, ) (i.e., ambiguity in matching) at inter- (a)
vals of " in . When we use two baselines and add their
SSD values, the resulting ef 12) (x, () will be still a periodic 10 isr2
function of (, but its period T1 2 is increased to (b)

T T i(20)
T12.= LC.1M(T ,r T2F (20) (c) /

where LC'M() denotes Least Common Multiple. That is,
0 310 is 20the period of the expected value of the new evaluation func- M

tion can be made longer than that of the individual stereo Ad

pairs. Furthermore, it can be controlled by choosing the
baselines B, and B 2 appropriately so that the expected
value of the evaluation function has only one minimum (e, ,
within the search range. This means that using multiple-
baseline stereo pairs simultaneously can eliminate ambi- a10 i 20

guity, although each individual baseline stereo may suffer (f) -
from ambiguity.

0 1 0 is 20

We illustrate this by using real stereo images. Figure 3(a) (g) ,
\hows an image of a sample scene. At the top of the scene
there is a grid board whose intensity function is nearly pe- ,-
riodic. We took ten images of this scene by shifting the (h)

camera vertically as in figure 4. The actual distance be-
tween consecutive camera positions is 0.05 inches. Let this

distance be b. Figure 3 shu'vs the first and the last images 0 10

of the sequence. We selected a point x within the repetitive Figure 5: SSD values vs. inverse depth: (a) B = b; (b)
grid board area in image9. The SSD values ect (.r, () over B =2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b;
5-by-5-pixel windows are plotted for various baseline stereo (g) B = 7b; (h) B = 8b. The horizontal axis is normalized
pairs in figure 5. The horizontal axis of all the plots is the such that 8bF = 1.
inverse distance, normalized such that 8bF = 1. Figure 5
illustrates the trade-off between precision and ambiguity in
terms of baselines. That is, for a shorter baseline, there are
fewer minima (i.e. less ambiguity), but the SSD curve is to 12 to o inches in distance. Though the SSD values take
flatter (i.e. less precise localization). On the other hand, a minimum at thr correct answer near ( = 5, there are also
for a longer baseline, there are more minima (i.e. more other minima for both cases. The solid curve shows the
ambiguity), but the curve near the minimum is sharper; that evaluation function for the multiple-baseline stereo, which
is, the estimated distance is mo.e precise if we can find the is the sum of the dashed curve and the dotted curve. The
correct one. solid curve shows only one clear minimum; that is, the

Now, let us take two stereo image pairs: one with B = 5b ambiguity is resolved.
and the other with B = 86. In figure 6, the dashed curve
and the dotted curve show the SSD for B = 5b and B = 8b, So far, we have considered using only two stereo pairs.
respectively. Let us suppose the search range goes from 0 We can easily extend the idea to multiple-baseline stereo
te 20 in the horizontal axis, which in this case corresponds which uses more than two stereo pairs. Corresponding to
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lw B.5b +no(x + j) - ni(x + BiF. + j))
2. (22)

laaw -- 
B 5b kS

-.. , 5b& By taking the Taylor expansion aboutC = Cr up to the linear
terms, we obtain

f(x +-BiF(Y,-(,)+j) ;, f(x+j)+B F(C-r)f'(x+j).
o ,. .

(23)

WOO. Substituting this into equation (22), we can approximate
" " e()(x,() near ( by aquadratic formofC:-_ -, I

\ / ~ *~ % e((j) (X,)
0 a* ,, (- B iF ( ( - ,)f '(x + j )

Inverse depth jEW

Figure 6: Combining two stereo pairs with different base- +no(x + j) - ni(x + BiFC + j))2

lines = B F2a(x)(( - (,)2 + 2BiFb8 (x)(( - C) + ci(x),

9 (24)

b where

' ,m_ - a (x) = L (f'(x + j))2 (25)

2jEW

20000- B--Zb.Sb.6b.Sb bi(x) = E f'(.r + j)(ni(x + B;FC +j) - flo(x + j))
15000jEW

10000 i(26)

SM, ci(x) = _(ni(x+ BiF+ j) - no(x+j))2. (27)
o 

jEW

05$ 20

Inver"e depth The estimated inverse distance cr() is the value C that makcs

Figure 7: Combining multiple baseline stereo pairs equation (24) minimum;

h'o i(x) (28)
r(i) Cr ,- BiFa(x)"28

equation (20). the period of E[e(2 .)(x, ()] becomes

. T T -T ) Since E[bi(x)] = 0, the expected value of the estimate ,(i)

=L T T - TF (21) is the correct value Cr, but it varies due to the noise. The
TBF' B 2F "... variance of this estimate is:

where B1, B2 ,... B are baselines for each stereo pair. Var(bi (x))
We will demonstrate how the ambiguity can be further Var( r(i)) = B2F2(a(x))2

reduced by increasing the number of stereo pairs. >From
the data of figure 4, we first choose image I and image9 as a - 2a2 (29)
long baseline stereo pair, ie. (1) B = 8b. Then, we increase BF2a( (2"

the number of stereo pairs by dividing the baseline between Basically, this equation states that for the same amount of
imageI and image9, i.e. (2) B = 40 and 8b. (3) B = 2b, image noise o.2, the variance is smaller (the estimate is more
4b, 6b and 8b, (4) B = b, 2b, 3b, 4b, 5b, 6b, 7b and 8b. precise) as the baseline Bi is longer, or as the variation of
Figure 7 demonstrates that the SSSDs-in-inverse-distance intensity signal, a(x), is larger.
shows the minimum at the correct position more clearly as We can follow the same analysis for e((l 2. ,)(X, C) of
more stereo pairs are used. (14), the new evaluation function with multiple baselines.

Near (, it is
2.5 Precision

We have shown that ambiguities can be resolved by us- e((t 2 ..-fl)(xC) n B ) F 2a(x)((- C)
2

ing the SSSD-in-inverse-distance computed from multiple i=1

baseline stereo pairs. The technique also increases precision +F EB iW+ c x.(0
in estimating the true inverse distance. We can show this i ) -.
by analyzing the statistical characteristics of the evaluation
functions near the correct match. The variance of the estimated inverse distance 4-( -, that

>From equations (3), (10), and (12), we have minimizes this function is

e,)(., = E (ftx+j)-f(x + BF(C -C) + j) Var( r(1..n)) = ((31
JEW$ 

(E ? 0 r



when its light is reflected back to the sensor. Ihe three- where x is a homogeneous point that lies in P. In the sensor
dimensional coordinates of one object point are uniquely coordinate frame defined above, the stripe plane is modeled

>Fron equations (29) and 3 1). we see that function. the SSSD-in-inerse-ditance. ,,hihit, an unain-
biguous and sharper minimum at the correct mathing po-

(32) sition. As a result there i, no need oi ".'ai,:Ii ,i cquenntal
1, " r r <,.i r estimation procedures.

The key idea of the method is to clate SSI) alue, to
'he inverse of the variance represents the precision ot the the inverse distance rather than the dispaiit, ..\, an af-

estimate. Therefore, equation (32) means that by using terthought, this idea is natural. Whereas dispartt , a func-
the SSSD-in-inverse-distance with multiple baseline stereo tion of the baseline, there is only one true (inerse, distance
pairs, the estimate becomes more precise. We can confirm for each pixel position for all of the stereo pairs. Therefore
this characteristic in figures 6 and 7 by observing that the there must be a single minimum for the SSI) values when
curve around the correct inverse distance becomes sharper they are summed and plotted with respect to the imetse
as more baselines are used. distance. We have shown the advantage of the proposed

method in removing ambiguity and improsing preciaion by

3 Experimental Results analytical and experimental results.

[his section presents experimental results of the tnultiple- Acknowledgment
baseline stereo based on SSSD-in-inverse-distance with real
ci- images A complete description of the algorithm is The authors would like to thank John Krumnii fot hi u,!ulincluded in Appendix B. comments on this paper. Keith Gemban. in Rehg and

The tirst result is for the "Town" data set that we showed Carol Novak have read the areibscopt and Jii Rohed it,
in figure 3. Figures 8 (a) and b) are the distance map and
its isometric plot with a shoi baseline, B = 31. The result r u
with a single long baseline. B = 9h, is shown in figure
, (ompatiing these two results. we observe that the dis-
tanCe map computed by using the long baseline is smoother
on fltt urfaces. i e . more precise, but has gross errors in biguous Pattern
tntching at the top of the scene because of the repeated
pattern. These results illustrate the trade-off between am- Proposition: Suppose that there ate to aand 11ls 1%%
biguity and precision. Figure 10, on the other hand, shows repetitions of the same pattern around position, .M t , - ,
the distance map and its isometric plot obtained by the new wkhere a: 0 is a constant. That is, for I tt
algorithm using three different baselines. 3h. 6h, and 91). For
conparison, the corresponding oblique view of the scene is f(.r+j) = f(C+-j), if and only if ' .. or i r - .1.
shown in fiure II. We can note that the computed distance
map is less ambiguous and more precise than those of the Then. if B, 5 B,, for V'. , : 4,..
ingle baseline stereo.

Figure 12 shows another data set used for our experi- E[e 1 2)(.r.)]

Ment Figures 13 and 14 compare the distance maps com- . .f-

puted from the short baseline stereo and the long baseline
,lereo the longer baseline is five times longer th-n the
,hart one For comparison, the actual oblique view roughly + S (f(.r + j) - (a + 13'J -(,. -. + 4N,
corresponding to the isometric plot is shown in figure 15. JEW
Though no repetitive patterns are apparent in the images, we > 4N,,,0 , = Ej 12,1 .r.( ,.).

can still observe gross errors in the distance map obtained
w ith the long baseline due to false matching. In contrast, the
result from the multiple-baseline stereo shown in figure 16
denonstrates both the advantage of unambiguous matching
with a short baseline and that of precise matching with a Proof: Tentatively suppose that for 3Q,. 4f - 4,.
Ihmg ba seline

(f(.r + i) - f(Y + 13i I(4 - +

4 Conclusions
+ (f(x +j)-f(r ' -. 13, R

In this paper, we have presented a new stereo matching jEW

method which uses multiple baseline stereo pairs. This 0. (35)
method can overcome the trade-off between precision and
accuracy (avoidance of false matches) in stereo. The Then, it must be the case that
method is rather straightforward: we represent the SSD
values for individual stereo pairs as a function of the in- f(- + j) = f(.r + at + )
verse distance, and add those functions. The resulting and f(x" + j) = f(.r + ii + j). (36)



2-31

(a) (b)

Figure 8: Result with a short baseline, B = 3b: (a) Distance map; (b) Isometric plot of the distance map from the upper
left comer. The matching is mostly correct, but very noisy.

correct distance

: ::;; . ,-¢ wrong
Sdistance

(a) (b)

Figure Result with a long baseline, B = 9b: (a) Distance map; (b) Isometric plot. he matching is less noisy when it is
correct. However, there are many gross mistakes, especially in the top of the image where, due to a repetitive pattern, the
matching is completely wrong.



(a) (b)

Figure 10: Result with multiple baselines, B = 3b, 6b, and 9b: (a) Distance map; (b) Isometric plot. Compared with
figures 8(b) and 9(b), we see that the distance map is less noisy and that gross errors have been removed.

Figure 11: Oblique view
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0I

(a) (b)
Figure 12: "Coal mine" data set, long-baseline pair

(a) (b)

Figure 13: Result with a short baseline: (a) Distance map; (b) Isometric plot of the distance map viewed from the lower
left comer
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(a) (b)

Figure 14: Result with a long baseline: (a) Distance map; (b) Isometric plot

Figure 15: Oblique view

(a) (b)
Figure 16: Multiple baselines: (a) Distance map; (b) Isometric plot
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forj E It, where Iterative Estimation at Sub-pixel Resolution
a,-- Bt F((- ) Once we obtain disparity at pixel resolution for the longest
a2 = B2F(( - baseline stereo, we improve the disparity estimate to sub-

2= BiF(Cf- Ce). pixel resolution by an iterative algorithm presented in

[12][17]. For this iterative estimation, we use only the
Since B1 $ B2 and (. # C, image pair fo(x) and f,(x) with the longest baseline. This

is due to a few reasons. First, since the pixel-level esti-
a1 # a2. (37) mate was obtained by using the SSSD-in-inverse-distance,

the ambiguity has been eliminated and only improvement
So, we have of piecision is intended at this stage. Second, using only

the longest-baseline image pair reduces the computational
f( + j) = f( +j), for =x, x + a l , orx + a 2. requirement for SSD calculation by a factor of n, and yet

(38) does not degrade precision too significantly.
Since this contradicts assumption (33), equation (35) does In the experiments shown in section 3, we used the fol-
not hold. Its left hand side must be positive. Hence (34) lowing algorithm for sub-pixel estimation: Let do( ) be
holds. the initial disparity estimate obtained at pixel resolution.

Then, a more precise estimate is computed by calculating
the following two quantities:

B Multiple-Baseline Stereo Algorithm Adt)

We present a complete description of the stereo algorithm , w (fo(x+3) -f(x+do() +j))f (X+do(,) +)

using multiple-baseline stereo pairs. The task is, given n ZEW(f,(X + do(,) + j))2

,rereo pairs, find the ( that minimizes the SSSD-in-inverse- (43)
distance function. 2 2a"4

'Ad(_) = ,jE1w(f(X + do(n) +j))" (44)

r.) Z _(fx+j) - f(x + !iF( + j)) 2 . The value Ad',.) is the estimate of the correction of the
,I; psw disparity to further minimize the SSD, and a 2  is its

(39) variance. We iterate this procedure by replacing do(.) by
We will perform this task in two steps: one at pixel res-
olution by minimum detection and the other at sub-pixel do,) -- d + Ad1 ) (45)
resolution by iterative estimation. until the estimate converges or up to a certain maximum

number of iterations.

Minimum of SSSD at Pixel Resolution
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Building and Using Scene Representations
in Image Understanding

H. Harlyn Baker*
Artificial Intelligence Center

SRI International
Menlo Park, CA 94025, USA

I. SUMMARY 2.1 Knowledge for Analysis
A major component of the vision efforts seen today still

T'he task of having computers able to understand their parallels approaches taken throughout the years - the
environments through direct imaging has proved to be building in to the system of specific knowledge of the do-
formidable. With its beginnings about 30 years ago (1), main it will encounter. Vision does not take place without
the ield of computer vision has grown as a major part memory. As sighted individuals, we have a great deal of
of the pursuit for artificial intelligence Most elements expertise, accumulated over years of observing and inter-
of this pursuit - language understanding, reasoning and acting with our 3D dynamic environments. Undoubtedly,
planning, speech - are very difficult challenges, but vi- certain capabilities appear with us at birth. Experience,
sion, with its high dimensionality of space, time, scale, however, and the memory that it accumulates, is equally
color. dynamics, and so forth, m-y be the most challeng- critical to our performance. It enables us to rapidly and
ing. Early attempts to develop computer vision focused robustly interpret situations and events, recognize the fa-
on restricted situations in which it was feasible to pro- miliar, and react opportunely to what we see. Since expe-
vide the computer with fairly complete descriptions of rience appears so necessary to our performance, it seems
what it would encounter. In such cases, single images essential that a computer charged with seeing also have
provided the sensory information for analysis. As the access to some equivalent sort of background knowledge.
domains of applicatioii grew, the requirements for more Although seldom enunciated, how this knowledge is given
competent descriptions of the world increased. Dealing to the system, how it is represented, and how it is used
with three-dimensional (3D) dynamic structures (the real in analysis of the visual imagery turn out to be principal
world) from 3D dynamic platforms (we humans) calls for issues in computer vision.
greater capabilities on both the analysis and synthesis
sides of the issue. The analysis side is the processing of These knowledge issues occur at all levels of the analysis,
sensory data for such tasks as recognition and navigation, from deciding what useful information from small parts
and a number of techniques are discussed here for dealing of individual images to extract for subsequent process-
with these two-, three-, and higher-dimensional data. The ing (e.g., brightness values, gradients, contour elements),
synthesis side is the construction of 'internal' descriptions to considering what is relevant for identifying a striding
of what is seen in the environment constructed now so distant silhouette as one's Uncle Bob. At some levels of
that they may be used subsequently for the above tasks. the analysis there are generally accepted definitions of
[his latter issue is the underlying theme we pose in this the knowledge that is appropriate (for example, the use
pat'er - developing representations from vision that will of spatial-frequency-tuned filters), but, mostly, very little
later enable effective automated operation in our 3D dy- is understood and very little is agreed upon about these
namic environments. matters.

2.2 Representational Limitations
2. INTRODUCTION My discussion here relates to this knowledge-source issue.

I phrase it as building and using computational represen-Vision, which appears so easy for all of us, has proved to tations in the task of understanding what is presented in
be an extremely complex task when addressed with coin- an image of a scene. I present a number of pieces of work,
puters. Despite early expectations in the field for realiza- indicating the capability they were designed to provide,
tion of machine vision capabilities, it has grown to occupy the role of this capability in a vision system, and the level
a large proportion of the continuing artificial intelligence of initial-state knowledge provided to the system along
research effort. Understanding the coarse structure, let with its ability to augment this through time. The main
alone the nuances, of our environment continues to be a point I draw out is that all computer vision systems begin
large and, in many parts, elusive challenge. with 'an alphabet of operational primitives used to repre-

sent the image data. They have a vocabulary of combina-
tions of these that they can deal with for scene interpreta-
tion. The capability of the system is set by its expressive

*The SI research discussed here has been sponsored by power in this vocabulary, while its utility in a broader
DARPA under contracts DACA-76-85-C-0004, DACA-76- context is determined by the breadth of these definitions
90-C-0021. and DACA-76-:g2 -C-0003, and by Fujitsu System and its ability to grow beyond their limiting bounds. The
Integration Laboratory.



3-2

latter issue pushes up against generic 'learning,' an area Binocular views, image pairs captured simultaneously

of artificial intelligence probably unparalleled in both its from different locations (as the eyes provide), can give

potential and the ratio of its promise to its realization.' sufficient information to enable 3D interpretation of both

However, the issue of a system's repertoire of expression - static and dynamic elements of a scene. That is, simple

its ability to build representations from imaged data and triangulation (back projection) can be applied to corre-

use them in understanding the visual situation - provides spending points in two images from known viewing po-

a key measure of its contributions: its contribution in sitions to determine the location of the observed point

solving the particular problem it addresses as well as its in three-space. The biggest problem in stereo - one that

contribution to the computer vision task in general. has been with us from the beginning - is developing reli-

able techniques for determining which point in one image

Two major determinants of the capabilities of a vision corresponds to a point in the other. This is the 'corre-

system are (1) the modes of imaging used, and (2) the el- spondence' problem - matching elements 3 between views.

ements on which it bases its analysis. In the next section I Although static binocular viewing is unusual - in human

will provide a reference framework for these by discussing vision most binocular perception is dynamic - it is cer-

the principal modes of image data acquisition (single im- tainly effective, as viewing Figure 5 (subsection 6.3.3) will

ages, binocular stereo, and dynamic sequences) and the show. Depth is a powerful aid to scene understanding.

two choices for processing styles - homogeneous versus

structured. The comparisons of image understanding sys- 3.3 Single Images
tens I make in the following sections will be framed by With a stationary sensor viewing a nonchanging scene,
these categories. a single snapshot view may be all that is available, and

alone must be the basis for scene interpretation. That

humans can operate with such a deficiency of informa-

3. IMAGING MODALITIES tion, for example in viewing photographs, lacking dynam-

ics and explicit three-dimensionality, reveals the power of
Imagery for scene analysis comes in three principal forms: our processing and the value of memory and experience.
monocular views; binocular views, and multi-iniage se-

quc;.ces of views - looking at a pixotograph, looking with Most early theses in computer vision dealt with analysis

your two eyes without being able to move your head, and of single images, and their failings immediately taught us

the gt ieral situation of two eyes on a mobile head. Each the lesson of extensibility, Lacking access to the rich in-

form of data contributes differently to the scene represen- formation of depth and motion, systems for single-image

tation and image understanding tasks. analysis were initialized with specific knowedge of the sim-
ple objects with which they could deal, and had no way

3.1 Dynamic Scenes to grow beyond this aside from reprogramming.

Image sequences may provide information about scene dy- If all that is presented is a single image, and never in the
namics (other moving objects), or give differing perspec- context of a dynamic sequence, any interpretation will

tives on a scene viewed as the sensor moves around. This ho feex plic emprlc r an ai. Sic
is a mode of operation that people are clearly very capa- have to forego explicit temporal or 3D analysis. Since

ble of using, as we observe our dynamic world and move we presumably do not begin life with explicit knowledge

around in it, exploring. The relatively new area oi 'ac- of 3D structures, such as houses and cars, yet develop

tive' vision (as in a sensor that adjusts its perspective to tsaderstanding of them over time (with both stereo and

satisfy its requiLements) studies acquiring and exploiting temporal data available), it is inconceivable that memory

these sorts of data. Since, from the viewpoint of sur- could operate without temporal analysis.

vival, anything that is in motion in our vicinity is of spe-
cial interest to us, the analysis of dynamic imagery may 3.4 Processing Elements

be expected to play a critical part in a computer vision A distinction wit' the different modes of operation that

system.2 Taking the more active role in data acquisition will be contrasted throughout this article is the choice of
moving around and collecting information from a va- analytic element used in the analysis - image pixels or

riety of perspectives - leads to considerably more robust 'higher-level' features such as contrast edges or extended

and more precise scei.e measurements. The cost is con- contours. These are often termed pixel-based and feature-

siderably more processing. based processing. At the pixel level, image intensity val-
ues are treated in an undifferentiated way, and the result-

3.2 Binocular Viewing ing representation is often termed "retinotopic" for its re-
hmving semblance to a retinal layout. Feature-based processing

W~hat a single moving sensor does not provide is precise addsrpinwrswt itnuse usto h

3D measurement of moving objects. To determine the

three-space position of an object requires seeing it from image information, and leads to scene descriptions that

several (at least two) known perspectives simultaneously. are more sparse but, through better localization, are also

A moving object viewed by a moving sensor is viewed more precise. Although in truth this dichotomy is more
of a continuum, I will exclusively consider the latter as
structured abstractions from the imagery - the features

will be edge elements or parts of contours.

t The question of learning is probably at the root of the ques-

tion of intelligence.
An immediate question with such analysis lies in what is
being tracked through the dynamic sequence, and we will
return to a discussion of this. 3 A variety of choice of 'element' have been developed.
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4. SINGLE IMAGE ANALYSIS ply 'foliage,' they can be made more reliable. At the same
time, generic contexts can be defined that may be satis-

A common task in computer vision is to identify or clas- fled when more specific ones cannot. Context sets may
sify items in a single image taken of some scene. For include components that are both positive (for example,
example, the task may be to identify and assemble com- tree trunks tend to be vertical), and negative (ground can-
ponents of a small machine, or to identify targets in an not extend above the skyline). A variety of grouping and
aerial view of a military installation. Clearly, single snap- segmentation techniques are used over a variety of scales
shot images of such a scene will lack 3D and dynamic in- to produce candidate scene regiou labceings - estimates
formation. The processing must rely on some comparison of pixel groupings (similar intensity or color), similar tex-
of what the computer expects to see with descriptions it ture, horizontal or vertical orientation, line-like structure,
extracts from the single image. and so forth. Robust operation is attained through use of

overlapping or redundant filters. For example, sky may
At the pixel level, the comparison may aim to group parts be either an untextured homogeneous region of high in-
of thle scene based on textural and other classifications. tensity or an area of smoothly varying general brightness
For example, a region that exhibits high spatial intensity above most other areas in the image. Cliques - mutu-
variation (texture) may be classified as vegetation if the alo

ally consistent sets of classifications - are sought over the
scene is expected to contain vegetdtiun. Homogeneous re- image. The clique providing the greatest reliability and
gions may be sky if, again, the domain is known to be a

natural scene out of doors. Anticipated relations between coverage is chosen as the best interpretation of the scene.

classified regions may provide use of mutual consistency Using an auxiliary knowledge representation system (the
to make the interpretation more robust. For example, if Core Knowledge System, CKS (3)), a sequence of images
sky must be above vegetation, which is generally above may be processed, accumulating and sharing constraints r4
the ground, then the-e spatial relations should be required from their individual interpretations. This, together with
of the classified rtgions. The major determinants of the a coarse use of stereo (4), enables Strat's system to build
capability of the system are the quality of the classifiers up a rough symbolic 3D map of the area being viewed.
and the suitability of the relations. One may appreci-
ate that determining effective classifications and relation- The examples Strat presents are in outdoors scenes of
,,hips, valid across a wide range of realistic situations, trees, rolling hills, and pathways. Figure 1 shows a 3D
might be difficult, reconstruction of an outdoor scene analyzed with this sys-

tein.
At the feature level, 2D shape descriptors are typically
extr .

z from such imagery, for example straight lines,
curves, and smooth contours, grouped into contiguous
pieces. Some previous automated or interactive process
has led to the development of a 'model vocabulary' - a
set of feature groupings that can be composed together
to represent the range of objects anticipated in the scene.
Recognition involves comparing the extracted features
(eg., lines, arcs) and their interrelationships with those
represented by the models.

What is probably most important to observe in this
single-itnage analysis is that the processing must be pre-
ceded by defining what is expected to be seen in the im-
ages. Since 3D shape and motion are not available to
the analysis, recognition must be based solely on the 2D
information that can be obtained. Fig. 1. Ground and veetation interpreted

from a single inage.

4.1 Initerpretation through Pixel Classification While demonstrating a good capability at classifying im-
Strat (2) has demonstrated an impressive capability at in- age components in dumains where the relationships have
terpreting natural scenes with a pixel-based classification been prespecified, this approach is unlikely to provide the
system along the lines outlined above. Ie points out that depth of interpretation needed for general scene under-
most recognition schemes are based on geometric repre- standing. One factor in this is that the system would
sentations and matching of discrete features, yet natural require a significantly larger vocabulary of objects with
scenes are neither well described by geometry nor char- increasingly tight constraints on their interpretation to
acterized by specific localizable features. Taking a more distinguish, for example, among different types of trees
eclectic approach, he develops a battery of filters that at- or, more critically, to recognize specific trees, such as the
tempt to classify image regions, and builds a relational one with a broken branch on the top of a certain hill. This
network among these descriptors. What brings the clas- requires geometric understanding rather than an under-
sifiers together is 'context' - the expected relationships standing of certain relationships. In addition, no mecha-
between labeled components. These contexts are estab- nism is presented for abstracting the required rules from
lished manually in advance of any processing, and are the data. If one wants the system to show a utility be-
individually constructed for specific domains. yond simple domains, this generative aspect is essential,

and geometry probably cannot be avoided. Nevertheless,
By making the recognition context sets very specific, for an mer pr cane avid. Neers
example identifying 'foliage against sky' rather than sim- relati on ssae gn miss freomtioabased recognition systems, and the use of this relational
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approach in a partnership with the more metric approach tures - both in the scene and in the model - are two-
of shape- and structure-based techniques should lead to dimensional contours (each classified by its shape) and
more reliable operation for both. their endpoints, if a straight contour, or midpoints oth-

erwise. A model is a set of 3D points forming triangles

4.2 Shape from a Single Image (planar facets), and the contours of which they are part.

A difficulty in trying to obtain information about shape or Alignment is the process of selecting pairs of correspond-

3D structure from a single image is that a particular single ing triangles (from the model base and from the imagery)

image could arise from an infinity of scene configurations. and using the transformation implied by their match to

The simplest example of this is an image of the image map the rest of the contour description. The transfor-

itself, where there is clearly no three-dimensionality to be mations are simple translations, rotations, and scalings.

observed, only interpreted. Interpretation requires knowl- Estimating the goodness of fit of the resulting transforms

edge, including knowledge of the physics of the imaging enables selection of a 'best' interpretation.

process and the local implications of intensity variation
with respect to the shape of the imaged surface. Never- 4.3.2 2D Models and Image Matching
theless, we all have the ability to interpret single images Chen and Mulgaonkar (7) address the problem of model-
as 3D scenes, and there has been considerable effort in matching using 2D image data in a more methodical an I
the field to develop similar capabilities in the computer. practical manner. While using a related approach to
Using iterative optimization techniques and models of il- the matching - hypothesizing 'alignment' transforms and
utnination, reflectance, and variations including albedo, mapping the related constraints for validation with the
Leclerc and Bobick (5), and others, have demonstrated data, the detail of their strategy offers considerable ad-
the ability to recover surface height from simple measures vantage.
on the imagery.Ththsuchanays Two characteristics of their work stand out. First, they
That such analysis cannot be guaranteed correct is ap- build their models in a semiautomated way by showing
parent from its fundamental assumptions. The interplay the system parts from various perspectives and under dif-
of reflectances and shadowing could cause havoc with the ferent lighting conditions. Model acquisition is a crucial
anodling. which presumes fairly simple relationships be- and potentially 4 very time-consuming component of set-

tween light source and reflecting surface. Any variation ting up a recognition task, and a which technique that
is interpreted as either surface shape or simple albcdo automates this using the results of its own analysis imme-
change. Such shading analysis probably will have its diately has more utility. Each model is structured as a set
greatest use where other depth measurement techniques, of classified contour elements - straight and curved seg-
,: -" ir ular stereo, have insufficient info.mation to ments - ordered by their relevance to the matching task.

operate, yet can provide 3D constraint to limit ambiguity. Features that are detectable most often in the training
set and are found most likely to be correctly identified in

4.3 Models in Interpreting Single Images the data are ranked higher in importance. These should
Undoubtedly, much of the world is quite well described be the first to be sought in the matching. This 'learning'
geometrically or by discriminable aspects of coloring, tex- strategy enables each model to be organized in a man-
ture, or structure. Since the world is three-dimensio-,al, ner that is most effective for establishing its presence or
a critical element of scene analysis must be the ability to absence in the scene. In effect, a model is a sequence
represent and recognize 3D objects. In these cases, recog- of instructions for validating an object's presence in the
nition may be attained by locating specific scene features image - it is a program.
and comparing their parameters with those chosen in ad-
vance to represent specific objects. Recognition, here, Thi ersidtoasyems2Danasngebjcvance toirepeden serciicthroughasetofD objects. Rwill be composed of several perspective models, with each
may be viewed as searching through a set of 3D object cvrn ml ag fveigage lso iu
descriptions and finding the mapping of position, orienta- covering a small range of viewing angles - plus or minus

esption s and findethatping the m gof sitio. ore- perhaps 15 degrees in each direction. This is not as sat-
lion, and scale that provides the most satisfactory corre- isfying a solution as building a unified 3D model of each
sp o nd ence . A sid e from the selectio n o f featu re d escrip tors obj ect; h oso ru t as p acti a n t ag e i n a t h
and the inevitable question of how to acquire the object object; however, it has practical advantages in that it
dlescriptions in the first place, the major challenge in this simplifies both the modeling task and recognition.
work is effective search through the potentially enormous The system was developed and demonstrated on an in-
.et of match possibilities, dustrial assembly operation, involving about two dozen

Two pieces of research can highlight the approaches taken parts, and has since been used for identifying objects in
to this shape-based or structural recognition. While ad- a dynamic context (see subsection 6.3.3).

dressing 3D recognition, each uses information from single
itnages for its recogniti n. The first represents objects as 4.4 Prospect Beyond Single Images
integrated networks of 3D points. The second provides The techniques described above have relied primarily, if
toverage of the 3D situation by storing a range of rep- not totally, on 2D information, both in their models and
resentations, each pertaining to a small set of viewing in their image understanding. The use of 3D information
perspectives. for model representation and recognition has had less and

generally more recent investigation. The principal differ-
4.9.1 3D Models with Image Matching in 2D ence in these works arises from the necessity of obtaining

3D information from the scene. This cannot be done fromHuttenlocher and Ullman (6) introduced the term 'align-
ment' - a method to match stored models with features
obtained from a view of a scene. In their work the fea- haveobject recognition systemobtanedfroma vew f a cen. Inther wrk, he en- have any sizeable model repertoire
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single images, and requires either active ranging (for ex- the correspondence problem generally involve correlation

ample, structured lighting, ,nar, radar) or at least two - estimating the similarity between image regions in the

simultaneous perspectives from passive sensors such as two views. This similarity is usually measured as a local

cameras, difference in intensity value between corresponding parts
of the two images, with secondaTy constraints being in-

This step to three dimensions lays the foundation for the troduced to enforce global consistency. The former, lo-
distinction I wish to make in approaches to image under- cal measure, uses a small support function - typically a

standing. If the system has no recourse to 3D temporal or square or circular region centered on a pixel - with the
spatial information, then its knowledge is limited to what similarity being either a simple sum-of-squared differences
the developer programs in: if the system has an ability (SSD), or a correlation coefficient measure. The correla-
to integrate information across space or time, then it can tion coefficient measure may be normalized to eliminate
begin to meaningfully augment its knowledge base. Ac- the effect of linear vaiiations that might arise, for ex-
quisition of this 3D information is the focus of the next ample, from viewing at different times of the day, under

two sections. differing light conditions, or with separate automatic gain
adjustments on the two cameras.

5. SCENE MODELING FROM STEREO In SSD matching, the expression to be minimized at any
pixel (X, Y) is:

Image pairs, providing two perspectives of a scene, pro-
vide the data for inferring the range to points in a scene. SSD ,, = Y [IL(+r_, y+rv)-IR(X+d.+r., y+d,+r,)]2

This is termed binocular 'stereo' processing, after its re- rX ,ry

suIting solid three-space description of the scene. The
goal of stereo analysis is to obtain the best estimate pos-
sible of the range to points in the scene. 'Best' may de- where (d., dv) is a displacement from the source image

pend on a number of req, ",ements, including speed. The pixel IL(Z, y), and (r , r,) defines a region of integration

point to observe about these systems, however, is that in the destination image, IR(z + d , y + dw). This sum

they have some knowledge about the state of the world may be weight-d to diminish the effect of brightness vari-

t are looking at -- knowledge that serves to constrain auic with radius. The vector (d,d,) with minimal sum

the solution they present and they have the common SSD .y is selected as the image of the pixel at (x, y) in

gwal of developing a ID description of the scene- It is the second frame.

coninion in stereo research to produce a range map, but lIn nornialized correlation, optimization is based on the
very uncommon to do anything further with it, for exam-

pie, navigating or controlling a robot arm.

Once the camera position and correspondences are .... ,[IL(z, Y) - -Jl[IR(z,y) - 1RI

known, estimating the range to some featu.- in the scene E = -

is a simple matter of triangulation. An effective mecha- \/Z,....,[IL(X, y) -IL]
2 Z, ... IR(X,1l y-

nism for limiting the cost of determining these correspon-
dences lies in using the 'epipolar constraint.' Knowing
the two camera relative positions and attitudes enables where I is the mean brightness over the image region

definition of the expected pattern of disparity on the im- (r,rv) centered at (x,y).

ages. For cameras directed in parallel, the disparities will
only be lateral, while for converging cameras the patterns 5.2.1 Normalized Cross Correlation

will be radial. This camera information is used to shape A typical approach to pixel-based stereo analysis is that
the search window for possible corresponding elements, so of tfannah(4). Here, normalized correlation provides the
it both reduces ambiguity and decreases computational matching metric, and processing in a resolution hierar-
cost. chy provides a global consistency constraint. This use

of a resolution hierarchy is fairly common in computer

5.1 Pixels verstus Features vision. It involves building a pyramid-like structuring

Within stereo processing, two major approaches are taken of the image data, with the bottom level being the full-

in selecting correspondences, one based at the pixel level dimensioned image, and successively higher levels being

and the other at the feature level. The objective within the half-resolution versions of the one below them. The

the two is the same, however - recovering the 3D struc- top level is a small, very highly reduced, and subsampled

t ure of the -ene as represented by the 3D location of its version of the original image - it has only very low spatial

components. "he main distinction lies in what tonsti- frequency components, with the higher frequencies being

tutes these 'components.' removed by the successive averagings.

A strategy often used in computer stereo vision is to

5.2 Scene Geomietry from Image Pair Pixels match coarse features first (low spatial frequencies), and

In pixel-based stereo processing, the objective is to la- then use the results at this scale to constrain finer scale
bel each point in an image (w',., ! - -4*! ) ""'A" ga ,.*ing (higher spatial frequencies). 5 Beyond this con-
value. If the relative positions of the cameras are known strant, Hannah also requires that her correspondences

and corresponding pixels can be found in the two views, are the same in left-to-right matches as they are in right-
then relative range can be estimated directly by trian- to-left matches. Analysis of the correlation coefficient and
gulation. Absolute range comes from knowing absolute It is always possible to show images in which such an arbi-
camera displacements. The techniques used for solving trary direction of progression will give the wrong answer.
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an autocorrelation measure enables this process to ignore (32 levels), while with the SSD method it was about 3
matches that have insufficient evidence for reliable esti- bits (8 levels). Any change in this precision incurs added
mation. This has the benefit that hallucinations, such as computational cost. Hannah's method delivered subpixel
giving range to the sky, do not occur often. This tech- correlation measures, and was precise down to small frac-
nique, however, is costly in computation. tions of a pixel unit.

5.2.2 Stochastic Stereo 5.3 Structured Stereo Processing
An alternate that is particularly suitable for implementa- Another approach to stereo analysis for obtaining 3D in-
tion on a SIMD parallel processor is a stochastic method, formation about a scene involves the processing of not
developed by Barnard, using a simulation of the physi- pixel values but abstracted features - contour elements as
cal process of annealing to enforce global consistency (8). produced by zero-crossing operators. Marr and Poggio,
This method uses a composite similarity measure - image Baker, and Mayhew and Frisby were the early developers
intensity difference and a gradient constraint that biases of this feature-based approach to stereo matching.
the solution in favor of a flat dsparity map. The stochas-
tic eliment enters the analysis in the way the individual Marr and Poggio (10), later joined by Grimson (11),
difference measures are combined in looking for a global worked with zero crossings of the Laplacian of a Gaus-

solution for the image pair. As in annealing, the system sian (LOG), and progressed from large Gaussians to small
is injected with energy (heat), allowed to cool, heated Gaussians in a hierarchic-pyramid manner. Matches ob-

up again although less - then cooled again, repeating tained at the coarse level constrained the possible matches

until there is very little change between these heat/cool at finer levels. A consistency measure was implemented
cycles. The measured change is this similarity measure - by insisting that disparities over a small region were iden-

a weighted sum of intensity difference and implied dispar- tical. An unfortunate artifact of this is that their re-
itv gradient for the selected pixel matches. The different suIts tend to represent the scene as planar chunks at
.heat' settings allow a varying range of disparity adjust- different ranges. Mayhew and Frisby (12), later joined

ments in the pixel matching, by Pollard (13), used a figural continuity constraint to
enforce connectivity of depth estimates for LOG fea-

The measure minimized for optimization in stochastic tures that were connected in projection. They also used
ster,'o is: peaks and troughs of this signal, presenting evidence from

psychophysics supporting human use of these in vision,
and introduced a variation of the scale analysis )i Marr

Eli= Z(i A I~jI + AIVD,J), and Poggio - looking for consensus in neighboring bands
'I rather than in successive coarse-to-fine levels. Baker (14)

used a form of figural continuity as well, and followed his
with .\1,) = 1R(tj + D,,), where 1L and IR are the left feature matching (extrema of intensity gradient related
and right brightness values, and VD,, is the gradient of to zeros of the LOG) with constrained intensity matching
the associated disparity estimate; A balances the bright- to provide a dense range map. Grimson used a surface-
n',, and smoothness constraints, fitting technique to interpolate between matched features

to estimate this map.
Even when a parallel processor is used, the cost of iter-
ation makes this a fairly time-consuming technique. Im- The fact that feature-based stereo results in sparse range
ages of size 512 by 512 pixels require about 10 minutes measures has been raised as a criticism. Dense results are
tof processing time on an 800)-1,ro:essor Connection Ma- preferred. Feature-based approaches have greater preci-
hirle (CNM) sion, however, as they focus on the more localizable parts

of the imagery. Scale processing is felt to be a key to pro-
5 2_3 Ru Ta; fi ic SSD Matching viding dense results. Pixel-based techniques have been

more easy to implement on SIMD parallel processors, so
a third te hnique worth exaniing for its simplicity they may have an inherent advantage for real-time devel-
anid effectiveness is an SSD) method implemented ott opment.

both a 16 0 0 0-processor CM and on a coarse-grained (5-

processor) i860 parallel processing system (9). Much ef- Much other research has addressed pixel-based and
fort was invested in making this process run as rapidly as feature-based stereo, including using a third camera to
possible to support real-time control, and it can perform provide an ambiguity-resolving perspective and introduc-
-tervo matching on images 256 pixels square at about 40) ing other constraints (a recent survey paper covers much
ttz on the CM and 10 lIz on the i860 configuration. The of this area well (15)). Among some dozen and a half sys-
>;l) phase gives velocity estimate, for each pixel, mode tens evaluated competitively a few years ago (16), Han-
analysis of this velocity distribution selects the major dis- nah's system was ranked first across a majority of the
,rt, motions, and an adjustment phase tracks regions categories (17).
over time. It has been used to control a robotic arm in
tasuks such as maintaining entered view on pedestrians 5.4 Differential Techniques: Motion and Range
atd on another robot arm. A different approach to disparity estimation has been

developed for motion processing - optic-flow analysis -
5. 2.4 (,'ousmderutmou.q where the objective is to estimate movements in a scene
Both of these parallel approaches share a common draw- (18). Under certain conditions these techniques may
back. They process only in integer units of disparity, so also be used for stereo range estimation. Two principal
deliver just a small number of bits of range resolution, points distinguish this work from pixel- and feature-based
In the I dse of the stochastic stereo, this was about 5 bits

I
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matching approaches. First, the presumption is that
there is very little difference from one image to the next-
motion processing allows this, whereas typical stereo has .: -,. .,/- ' ;

a sufficiently large baseline that images mav differ signif- . -t/: [-- L
icantly. Second, differential techniques are used that do -

not depend on feature localization in tl,e image. ,

5_4.! Optic- Flow A-loolysis

Horn and Schunk (19) developed the brightness-
constancv constraint, which relates variation of intensity . . * & * .• " - .

between successive images with the underlying variation

in the scene. The principle behind this differential tech- Fig. 2. Optic Flow for Moving Sedan and Van.
nique is that derivatives of the spatiotemporal intensity
data indicate rate of image change. If the image change is 5.4.2 Hierarchic Optic-Flow Computation
due only to camera displacement, then simple derivative H ach c Op to forietein
convolutions on the spatiotemporal intensity data can be Hanna has presented a method for extending the appli-
used to estimate scene distances. If the change is due cability of the gradient-hthd technique to images ;tl,

to scene motion, then the technique estimates velocities. significant variation between frames (20). This operates

.;ince the expres-,.A,!:: ariation at a single point through a hierarchic-pyramid analysis, beginning with
is underconstrained, the solution involves a least-squares low-resolution coarsely sampled imagery, and progressing

approximation that integrates over some local neighbor- through to the full resolution data. A unit of pixel mea-

hood. and this makes the result sensitive to the density sure in the coarse imagery corresponds to a 2' by 2' pixel

of discrete motions in the viciity, The estimates are best region at highest resolution n ilevels finer, so a gradient

where there is strong local t,-xture (surface detail) with computed at this single unit can identify the predomi-

a single velocity. Where the texture is weak (there is lit- nant motion over that much larger window. Recursive

tie distinctive detail) or the local vicinity contains more processing of this motion estimation followee by image

than oie motion (such as occurs at rbject boundaries), remapping - to bring the corresponding image locales into

tie estimate can be rather neaningless. Despite this, the alignment for the next 6 dient analysis - may be viewed

results tend to be generally credible, as delivering the n-bit motion vector a bit at a time, start-
ing from the highest-order bit. What is important to note

With the differential approach, image disparity (or veloc- is that with this hierarchic approach, gradient-based op-

ity) (d_, d ) at frame t caa, be determined by minimizing tic flow can also be used for stereo range estimation -

the following expression: large disparities ..re handled by the coarser scales. The
major difficulty remains, however, that there can be no

' [dI;(z, , t) + d 5 (r, y, t) + I'(x, y, t)]2,  guarantee this coarse-to-fine progression will give correct
results. A small feature that is moving to the left while
the predominant region motion at a coarse level moves

to the right will be 'mapped' in the wrong direction for
wlhere l1;, l',. and I are spatial and temporal derivatives being detected at any of the succeeding levels.
of image intensity I(r, y, t)+

An iterative remapping method very similar to Hanna's
The summation is again taken over a local region of the was used much earlier by Quam in his hierarchical warp
image (r,, r.), One finds the least-squares solution, in stereo process (21). The matching metric in this work was
closed form, by taking derivative of thiq ,-vpression with correlation, rather than gradient-based optic flow.
respect to d. and d1,. The least-squares estimate is given
by: 5.5 Issues in Stereo Processing

d -M-b A number of questions must follow any depth recovery
process, such as: Are there measures of confidence r.sso-

where ciated with individual estimates? Is the result conclusive?
= (Z' "  ZJ" )Are there errors of omission (gaps) or commission (range

M=\ t 2 /' estimates where there can be none)? Does the process
and deliver a description of objects or just an array of num-

b= lf'I"' bers that represent a range 'map?' How relevant is the
1I ; "resulting description to the intended use? Since the pur-

pose of range recovery is tied to some other task, such

This expression has minimum error when as understanding the scene or moving about in it, these

d, !' + d, l'u + I; = 0, questions can determine the utility of the whole exercise.

One of the principal dissatisfactions in stereo analysis has
that is, when the observed image gradient vector been in its reliability. Perhaps 90% of a scene can be
(I', JI, I,) is orthogonal to the observed disparity (or ve- adequately modeled with the above techniques, but the

locity) vector (d.,dy, 1). Figure 2 shows the optic flow remaining 10% failure can make the results almost un-
computed for the motions of a sedan and van against a usable. Higher reliability is needed before one can trust
stationary background, the imagery of which is shown at an autonomous device for guidance. There is very lit-

the top of Figure 5. tIe opportunity to obtain better accuracy when presented



with only two perspectives of a scene. Ambiguities are rately and reliably, features that appear in two views of

difficult to detect, and cannot be resolved without the a scene. Determining the correspondence is an ill-pc ied

introduction of more information. This information has problem: ambiguity, occlusion, image noise, and other

often taken the form of a priori knowledge about scene influences resulting from the differing appearance of ob-

and object types (for example, that the scene contains jects in the two views make feature matching difficult. lit

static opaque rectilinear structures). sequence analysis, where rapid image sampling produces
images that change little from one to the next, matching

Better additional information that is not domain specific, is less problematic. In some approaches this is taken to

is provided by "trinocular stereo," which involves acquit- an extreme, with sampling sufficiently rapid that images

ing a third view of the scene. This was first introduced vary smoothly between views. The following sections de-

by Burr (22) and later followed by Faugeras's group in scribe how this temporal continuity has been developed

France (23). This third view, if noncollinear with the and exploited for robust tracking and estimation of scene

other two, provides a second epipolar constraint that can features.
disambiguate potential match uncertainties.

Almost without exception, stereo techniques have diffi- 6.2 Pixel-Based Sequence Analysis

culty in correct handling of occlusion (where a feature As was the case with stereo analysis (cross-correlation and

does not have a match in the cdrresponding view), image gradient analysis), there are two principal approaches to

reversals (where feature left-to-right ordering is inverted pixel-based motion analysis. In correlation, the objec-

between views), transparency (where multiple ranges are tive is to determine for each pixel in one frame, its ia-

associated with individual view points), and canopy phe- age in the next frame. Techniques as described in sec-

nomena (where there are a few predominant and quite tion 5.2 are used for this. SSD is more typical than nor-

different depth ranges over a small region of the view). malized -orrela:ion in sequence analysis. With temporal

These are significant issues for depth estimation and nat- sampling sufficiently fine that brightness changes are of

ural scene interpretation, a smaller magnitude than changes due to motion, there

is little -, k iement for accommodating to varying illu-

A more general comment on two- or three-view stereo is mination. With the optic-flow approach, on the other

that the resulting descriptions are not of the same qual- hand, explicit matching is avoided, and motion is derived

ity as: those we perceive when we as humans observe a directly through differential analysis, as described in sec-

scene Stereo results look like cut-outs, with a series of tion 5.4.

ranges computed for certain directions of the camera. The

same can be observed in looking at a stereo pair of pho- Another problem both correlation aid optic-flow analyses

tographs - the perception is likely to have a flat, disjoint, encounter is that they are designed for pair-wise compu-

and chunky appearance. The perception we have under tation rather than for sequential tracking. Since they are

natural conditions is more continuous and connected, and referenced on the center of a pixel in one image, their dis-

this results from our ability to observe in the continuum placements are not easily chained with precision through

through time. We change our viewing position to suit a sequence. Range estimates will be imprecise over a short

our demands for fill-in and clarification, and integrate in- baseline, so the reliability and precision obtainable for

formation through active control of the viewing process, matches over a long baseline become crucial questions.

such as obtaining a description of some novel 3D object Pixel-based and point-based reconstruction techniques.

by grasping it and manipulating it before the eyes. where they have been developed to the stage of integrat-

ing measures over a sequence (for example, (24, 25)), do
not exploit the continuity of observations. Rather, they

6. SCENE MODELING FROM SEQUENCES treat observations from different perspectives as disjoint,
and pool them in (more or less estimation-theoretic) vol-

Recent approaches to 3D vision have addressed this pro- ume sets
'essing of image sequences, where a sequence comprises

inany views from different positions. This more closely A recent innovation - the use of a singular value decom-

resembles the operation of the human system, where we position procedure - uses intermediate feature trackings

observe with eyes that are free to move, collecting in- to synthesize a long baseline through many small changes.

formation from various perspectives. This multiple-view It recosers both the shape and motion observed in trans-

approach could provide considerably more complete de- formation of a rigid body (26). The tracking employed

scriptions of a scene, revealing, for example, what the uses an autocorrelation measure to select distinctive im-

back side of an object looks like, and could do so with age features (in a spirit similar to that of Hannah). By

much less ambigilty. Aside from restricted cases, how- tying observations together through the sequence, it ob-

ever, it has proved difficult to exploit this extra data in tains the benefits of a large baseline with the reduced

the coherent manner required. One of the problems lies in error of small-increment image variation.

organizing and maintaining coherent descriptions of the

rather massive amount of data involved - sequences could A difficulty with local-support integration techniques

be hundreds of frames long, or more. (pixel-based approaches in general) is that when the lo-
cal region of integration overlaps different range distribu-

6.1 Correspondence Through Time tions, the estimate may be quite meaningless. Since these
Sequence processing shares many of the computational is- bounding areas are of particular interest in most 3D tasks
seuenofserocen s he coincipalproble m uttion ro sis- - such as grasping and navigating - this deficiency can be
sues of stereo. The principal problem in stereo processing

has been identified as putting into correspondence, accu- quite severe. The issue is particularly salient in motion
analysis, where an intermediate velocity estimate is much

____ ______________________________



more misleading than an intermediate range (stima... In- r \

telligent window shaping may improve the situation, a-

though at significant cost (27).

6.3 Structured Processing EPI Analysis

There is much inore in an image sequence than is being ' ~
processed by tctdhniques such as those described above. \
Selecting only highly localizable features leads to sparse

scene descriptions, while use of the full iimage contets. ". "

as in optic-flow and correlation arproacl!cs, leads to much -. \_ _\ /,___" _\

uncer -inty, weak localization, and fragmented tracking.

An altem natilve exists in utilizing the threc- pacC correlate / 7

of 2D iiimage contours. [he notivatui of this 'structured'/ - .

approach to sequence analysis is that dynamic imagery

has both spatial and temporal structure, while pixel-

based techniques represent neither and must determine
them both during it- operation. Pixel-based techniques Fig. 3. Epipolar Configuration for Moving Camera.
compute the temporal structure by 'tracking' features us-
ing correlation or optic-flow analysis, and determine the
,patial structure by grouping results after temporal track-
, And Yet the structure is there in the data. " r

Epipolar Plane Image (EPI) Analysis is such a technique
that holds p'rt! -,ar promise for scene reconstruction _

2x . It i .tegrates thrughout the data acquisition and
ha, several major advantages over other approaches, such
as itot reoiuiring correlation or any similar matching strat-
.gy. and ealing explicitly with spatial and temporal con-

tijuity ae features utilized are at object and texture
discontinuitit s, so do not involve iitegration across dif-
ferent range distributions This technique was the first to
exploit small increments over a large integrated continu-
ous baseline for the ideal mix of reliability and precision
in motion analysis. T'. geometry and intuition of imag-
irg in this situation ,r- a little unusual, so I will review L (vme)
the implications of th, generally used epipolar constraint Fig. 4. Spatiotemporal Image Volume.
in the cuntext of sequence processing.

6.3.2 Spatioternporal Manifolds
6.3. 'Epipolar Geometry To expand the technique to more complex viewing situa-
In Figure 3 (left), a camera is shown at two different posi- tions such as nonlinear and varying-velocity camera paths
tioris along a linear path. At each of the sites the camera with varying camera orientations, as would be found when
is looking at right angles to the path, and a feature such a human moves through a scene (Figure 3 (right) shows
as P will appear displaced to the right in the second view pat terns of epipolar lines that arise for linear motion aid
with respect to the first. This displacement is along the varying view direction), it was necessary to generalize the
plo c i on of the pla nte for ed b s. P n d thle tivo Ca miera geometric represent:tions used. In the earlier work, EPI-
(titers. This platne is teritedh an "eipolar plane." For based linear features -- representing the evolution of indi-
a continuing sequence of such images, the point P will vidual features over time were detected and processed.
stay ott the same image scati line from frame to frame. In generalizing the approach, spatiotemporal manifolds -
Because of this epipolar structuring, we t.an confine our representing the time evolution of whole spatial contotrs
depth analyses in right-angled linear motions to single - were constructed and used in inferring scene structure
sets of scan lines. Figure 4 shows a volume formed by (29)
stacking up the data collected in an image sequence and
slicing horizontally to reveal such a set of scan lines. The ']'his reformulation brought another advantage: Repre-
pattern of streaks in this slice makes the lateral displace- senting the time-evolution of contours rather than indi-
ment character quite apparent and their interpretation vidual features would produce connected 3D space curves
quite direct: Near features have streaks with low slopes, rather than isolated points. Grouping of scene measures
more dis*ant features have higher slope. Stereo process- into meaningful and related structures remains one the
ing of s, a a scene would correspond to comparing fea- largest problems in vision. Since even the most reliable
tures between, say, the first and the last frame, or the and precise depth map is only another input to the scene-
first and last line of this image. The continuity evidenced uidertanding process, any techntique that can deliver di-
here takes the uncertainty out of the matching process. rect segmentation and grouping information with its mea-
Analysis of these slice images, termed epipolar-plane ii- sures will have a great impact on the use and reliability
ages (EPI images) after their composition from samples of its data.
of a single epipolar plane, led to an ef1fective techniqt e for

estimating the range to feattires in a secure.



6.3.3 Tracking and Identification used for their recognition. An exception to this lack of

Figure 5 shows a composite development in tracking and acquisition and use of 3D information in computer vision

identification using the spatiotemporal manifolds for fea- is in autonomous navigation systems (35, 36), although

ture localization in space and time, and the 2D modeling most systems use active ranging. Some of these systems

facility of Chen (7) for object recognition. The figure are capable of extracting 3D scene features and then using

shows in successive steps the strongest zero-crossing con- these in obstacle-avoiding traversal of the area. Again,

tours in three adjacent frames (the first and last of which however, the representations tend to be simple (boxes,

are shown at the top), with the final view showing the points) and not adequate for representing anything of the

results of identifying a van and sedan in these data. The sophistication and detail of our environments. A good re-

bottom of the figure shows the models used in the recogni- view of 3D object description techniques may be found in

tion. These were constructed in a earlier training phase. a paper by Besl (37). Some of the works he cites address

An added benefit in this figure is that it demonstrates the issue of model building within a recognition context.

the value of stereo in perception: The paired figures are

presented for crossed-eye viewing and, when fused into

a single percept, will reveal a considerably more coher-

ent interpretation, one that may be impossible to obtain

monocularly.

6.4 Stereo and Motion
Undoubtedly, simultaneous stereo and motion analysis

must he obtained for us to hope to achieve the capa-

bilities of the human mobile-binocular system. Stereo is

essential, as motion can only compute range to stationary N- -,

objects and for known camera motion. At the same timne,.
motion and sequence analysis are essential, as the active .
elenent in exploring an environment, both for modeling it - -

and for navigating through it, cannot be met from a single c-.

perspective or even a set of predetermined perspectives.
While the number of research efforts addressing stereo

aid notion analysis is small (9, 24, 25, 30), a coherent -

approach to integrating these two related modalities will IT I i
be essential to capturing the true three-dimensionality of

our environment. Figure 6 shows an integration of this

sort of stereo range estimation and sequence processing
operating on a field of rocks. The initial description (mid-
dle) is refined from subsequent views resulting in better - .

definition on object 3D shape (bottom). The computa-
tional requirements for this data-intensive challenge are

now being met by multi- and parallel-processors, with a _
number of research groups investigating stereo sequence
analysis in high-performance computing environments.

6.5 Recognition of 3D Shape

li he techniques described above have addressed the is-

sue of obtaining estimates of scene 3D structure from two

or more views. The major purpose of this is to provide

the third dimension for tasks involving recognition and

navigation. Unfortunately, very little has been done in r
using the 31) estimates produced. An early effort that

took on this problem was my modeling research in Edin-

burgh (31 l. Models of 3[) shape were constructed through - -

analysis of objects observed rotating about a known axis.

Vsing a 3D alignment technique, models built from cur-
rent imagery were compared with models stored in the

training phase, and the closest 3D fit was selected as the

match.,111~ l
Although more refined techniques have been developed in _____\-- -- __ -_ ------_-

the interim, for example the work of Szeliski (32) in build-i.g 3Drepresentations using rotation, the majority of re-
search in 3D model matching has used either very simple 0 Q -

representations, such as rectilinear blocks (33), or direct

ranging techniques, such as provided by structured light Fig. 5. Object RecogPition in Spatiotemporal Tracking.

or laser devices (34). Where 3D objects have been recog-

nized, they have rarely been modeled by the s-rsz process
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SILICON VISION: ELEMENTARY FUNCTIONS TO BE

IMPLEMENTED ON ELECTRONIC RETINAS

B. ZAVIDOVIQLJE & T. BERNARD

Une 'rktine intelligente" est un dispositif associant de mani~re intime une couche
optoklectronique A des moyens de calcul. Le rapprochement "acquisition/transformation des
donn~es" favorise l'~mergence Woun nouveau type dinteraction entre traitements massifs
analogiques et digitaux. Nous listons donc, pour discussion, plusicurs tentatives de calcul
analogique, voire neuronal, dans le cadre du processus de vision. Mais l'analogique ne suffit pas
A rendre les rktines rkellement "intelligentes". Si bien que nous d~crivons une couche
suppikmentaire de traitement itkratif cellulaire boolken, plausible dans de telles machines de
vision "A dimension humaine", kvalue A travers quelques exemples.

Vision capteurs intelligents intkgris - traitement cellulaire et neuronal - operateurs visuels
de base -implantation analogique vs digitale

A smart retina is a device which intimately associates an optoelectronic layer with
processing facilities. The rapprochement between acquisition and processing is particularly
suited for the emergence or novel kinds of interaction, between analog and digital massive
computations. Therefore, several attempts of analog, possibly neural, computations linked to
the vision process are listed and discussed. But analog is not enough for really smartening
retinas . Then, an additional plausible coat of cellular boolean iterative processing in these
"human size" vision machines is described, and commented on through examples.

Vision -integrated smart sensors - cellular and neural processing -basic vision operators-
anlog vs digital implementations
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I - A GLANCE AT VISION

Visual perception performed by computers is human case, a major part in robot perception.
usually decomposed as a chain of processes, as A smart retina is a device which intimately
shown on Fig.1. associates an optoelectronic layer with some

Le H vel e.* processing facility. The closeness definitelyA im0z, Uw 10ziaiI.. i .c imagI.41 Fsuggests a VLSI implementation approach,
i opossibly monolithic. But, so far, only elementary1 Csl s efeature extraction, up to limited object

Figure I : Classical Visual Perception. identification, has been proved technologically

Low-level image processing is meant to extract feasible.
pertinent informations like edges and regions, In that case, why should "smart retina" imply
depths, movements... However, in most realistic "integrated retina"? Here is a non exhaustive list
enough robot vision applications only candidate- of possible answers:
feature subsets are extracted at this level. Then * vision usually means immense amounts of
these parts remain to be cleaned, gathered and input data
organized into features which are 2-D projections • the current state of wiring technology causes
of some at least 3-D phenomenon. So, at low the signal/noise ratio to fall drastically at circuit
level, the processed objects (images) are output
characterized by their 2-D topology, the local • in any case, changing the computing
nature of inter-pixel correlation, and the a priori topology is often very power consumming I,

even distribution of information among pixels. • the tradeoff to be made between precision
Processes are thus shift-invariant with supports and quantity of information is likely to benefit
limited to small neighborhoods. They can hence from massive loose computational style rather
take great advantage of specific computer than the common precise computational style
architectures featuring massive spatial parallelism • analog to digital conversion is a waste in
and simple processor interconnections, many respects:

Once the information from the original image .. there is a loss of information due to
has been filtered and concentrated into structural conversion,
or semantic knowledge, the 2-D topology .. there is a loss in speed and functionality
disappears. This is where high-level processing (artificially added operations to calculus),
starts. The objects become arbitrary graphs, .. exploiting the natural correlation in
whose processing poses serious connectivity images will require rebuilding the initial topology,
and/or programmability problems on .. it puts processing apart from data flow
multiprocessor architectures. • real external conditions for vision require fast

Let us underline the clear semantic gap feedback loops (from adapting to light, up to
between the so-called low and high level feature extraction)
processings : as soon as it is somewhat fancy, To propose a more definitive answer, we first
any feature extraction has to be controlled by a give a slightly wore precise definition together
more intelligent procedure which takes advantage with
of explicit description of an object model, or first properties (§11), we then explain some
structure, or situation... While not compensating very primitive examples (§Ilia) to illustrate:
for this gap in a permanent and fundamental • first, the concept of smart retinas
manner*, the "smart retina" concept brings a * second, the input-output problem
solution; it is at least a technological solution, but In these examples, the outside world is
some of its instances show cheering features of simplified (either exhaustively described or in
optimality, when they are embedded in the translation). Then, a bit of analog processing
context of the whole pattern recognition process. followed by a uniform result gathering performs

Now, current robotics is not only moving the intended task, and only one or two global
towards involving complicated senses such as outputs are produced.
vision or aerial acoustics but it aims at associating However, the preceding experiences suggest
several of them within sensor fusion schemes. potential benefits from "analog thinking" when an
Theoretical results like the so called "multiarmed algorithmic concept comes to cohabit with analog
bandit" theorem tend to prove that it is worth implementations of early vision processes.
implementing some local computing power closer Descriptions of analog phenomena inside the
to sensors, when the communication bandwidth system provide a language which helps to
necessary for control is already causing drastically compact any design, and enforces
problems. some interesting improvements at the algorithmic

This makes another reason to focus on smart level. This fact is illustrated in (§IlIb) by
retinas, vision being likely to play, as in the comparisons between implementations of the

convolution or other basic operations like
* there is no clear evidence, however, that this differentiation. Indeed, in less toy-like cases than

gap be anything but artificially added by § lila's, current robot vision does not allow
techniques. routine actions in such a direct manner and
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anyway, such actions would be triggered on a to a binary image representation, most otten
larger set of parameters. based on a one-to-one mapping between analog

This shows integrating is not enough, even and binary pixels. If the sole spatial correlation is
associated with analog thinking, hence taken advantage of, the analog-to-binary encoding
introducing the concept of "rough vision", based procedure is called "halftoning". We will show in
on separating the structure of the image from the section IVb this can be neatly implemented in
semantics it refers to. It applies first to object silicon. But a tradeoff occurs: more pixels for less
recognition thanks to neighborhood combinatorial grey levels, or the opposite.
logic which is easy enough to implement on - Though halftoning can be considered as an
retinas. Logical implies binary, but in this process unavoidable quantization operation implying a
the adapted binarization will be made a true loss of information, which has to be minimized
processing operation, possibly a feature with respect to some peculiar signal processing
extraction and not only an A/D conversion. This criterion (as we do in section IV), it actually acts
is described and commented on in § IV before as an information filter, which can enhance
conclusion. specific early vision features, such as edges,

regions, movements, optical flow, depth... (cf
I1- THE "RETINA CONCEPT" : A .[Mea 881 &[Hut88]). Processing inside the

PANACEA ? retina thus appears as a close cooperation between
an analog layer and a boolean one.

Let us define more precisely "smart retinas" as - The analog information representation, right
tentative "human-size" vision machines, after acquisition, is so heavy that arbitrary
intimately associating optoelectronic devices with interactions between pixels cannot be
analog-to-digital converters and (minimal) digital implemented easily to be programmable. Only
processors to be integrated on monolithic information processing structures provided with a
(CMOS) circuits. highly physical meaning that map straight into

Such circuits can be viewed then as stacks of silicon, leave some hope to avoid the burden of
"3" intermixed functional layers: storing, duplicating and moving analog pixels.

oolan Processors Array - By massive parallelization of both
information flows and processings, operations

Non standard A/D Conversion inside the retina are brought closer in space and
time. This emphasizes the interest of bidirectional

Optoclectronic Devices (instead of only bottom-up) information flows,
because the top-down feedback can be fast

Figure 2 : The "Retina" circuit (cross section). enough to ensure some convergence properties.

From a VLSI point of view, a Retina structure For example, a complex problem like matching
is up-to-date. It exploits today's abilities of successive images of a moving scene, is reduced

submicronic technologies to allow a to its simpler expression when the sampling
rapprochement between acquisition and frequency is high enough.Another example is
processing (up to few 100's x 100's elementary neural interactions between analog and boolean
processors, with few dozens transistors each, can layers.
be gathered on a monolithic circuit using a ljIm
CMOS technology). The intimate association of Thanks to these advantages, it becomes

different functional layers however is subject to possible to output meaningful results in
strong topological constraints. These are accordance with the claim of smartness, but due

suggested to be naturally satisfied on fig. 1. to technology, there still remains an additional
While certainly related to existing biological price to pay: either to deal with very specific

visual systems (but still very far and caricatural), applications or to particularize vision in some

the "retina concept" features numerous and other manner like restricting it to a rough type
fruitful advantages considering § I: (see § IVa). On top of that, the above list shows

- The classical serial bottleneck separating anyway a need for a fair share of analog

acquisition from processing is replaced by a contribution to meet the constraints of rapidity
parallel conversion layer. Instead of artificially and compacity as imposed by real time robot

breaking and then reconstructing the 2-D vision. This makes the layers in fig.2 become the

topology (because of limited I/O bandwidth), the 3 mousqueteers of robot vision as they are

analog-to-digital conversion is harmoniously actually four, being joined by an analog
"sandwiched" between analog acquisition and processing layer of prime importance. We now

digital processing. analyze significant research results within that
- A/D conversion is non-standard but well perspective, prior to detailing more of our own

managed. Image sequences are known to be work.
locally correlated both in the space and time
domain. This can be advantageously exploited to III - ANALOG ELECTRONICS AND
encode the analog image flow into compact digital RETINAL FUNCTIONS
representations. For the sake of topology, this
naturally leads 111a - Specific attempts
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As tar as we know, the first significant attempt the intormation present on the image. In ['in88j,
to introduce some intelligence within the sensor only the areas of interest are output from the
chip goes back to [Lyo811 with the desire for a sensor. The image may be also binarized or
high-reliability mouse (used to track the halftoned as in [Mar89]. Three-dimensionnal
movement of a workstation user's hand) with no integration as presented in [Kio88] and [Kat86],
moving parts. As the "optical mouse" is is also a possible way allowing the superposition
downward looking at the special pattern of a pad of different processing levels on the input image,
on which it is moved around, motion is detected and thus allowing the output of only high-level
and measured. The "optical mouse" is a mostly compact information.
digital sensor used in a very cooperative
environnement : an hexagonal grid. However,
important features like the local automatic gain
control (AGC) are already present through the use
of self-timed circuit techniques nd mutua!!y
inhibating light sensors. The tracking algorithm,
which compares 2 successive 4x4 images is Illb - A more structured approach
based on a case by case approach, dealing with towards vision
the 900 possibilities of image couples.

The theme of motion detection on uniformly Transducing light into current.
moving scene has generated a fair amount of Standard CMOS technologies are well-adapted
work since then. In [Bis84], the stress is put on to visible light detection : when an optical signal
high resolution 1-D motion detection, in order to impinges on a p-n junction operated under reverse
determine 3-D motion from several sensors. In bias, the depletion region' serves to separate
[Tan84], a "paperless" version of the optical photogener-'-d electron-hole pairs, and an electric
mouse is integrated, to deal with less cooperative current flow, in the external circuit. This light-
environnements. An image of an arbitrary scene matter interaction has to be considered as the very
is sensed by the array of photodiodes, stored and start of the vision process. Several configurations
correlated with the next image taken on the next using different devices are available, of which the
cycle. The position of maximum correlation choice is not neutral and can be more or less
indicates the relative motion of the image during adapted to the subsequent hardware and/or
the time between samples. A global AGC is used, software vision layers.
and correlation computations are both analog and The simplest light detector is the photon flux
digital. Finally, a fully analog and time- integration mode photodiode used in CCD
continuous version has been integrated, as cameras. It is simply constructed by diffusing a
described in [Tan88] and [Mea88], that makes highly n-doped area at the surface of a p-type
full use of global collective neural computations substrate (an NMOS technology is sufficient).
to output the velocity vector of the image. After being initially reverse biased, the junction

For these applications, the output problem is capacitance is discharged by the photogenerated
implicitely solved because only one or two global current. At the end of the exposure, the voltage
informations about the scene are actually extracted decrease is about exponentially related to the
from the sensor chip. This is also the case for illumination level and integration time : log[
sensors that deal with simple target tracking V(t)/V(O) ] - - (D.t.
applications, like following the brightest spot on When response speed is not critical, but power
an image [DeW88] or following a spot among is needed, a natural byproduct of the CMOS
other bright spots [Umm89], and for which only process [Mea88] can be used : the vertical bipolar
a couple of coordinates have to be output. transistor. The base is an isolated section of well,

However, early vision, which takes full the emitter is a diffused area in the well, and the
advantage of collective computation based on collector is the substrate. Electron-hole pairs are
only local connections within VLSI circuits, generated at the well-substrate interface where the
generally does not change the topology of the p-n junction is reverse-biased. For every
processed objects : an image is transformed into photogenerated majority carrier arriving into the
another image. In this context, CCD technologies thin base (from the collector), about a thousand
can support a large family of linear operations, minority carriers pass through it (from emitter to
,rticularly needed for spatial and temporal collector) before the necessary recombination

convolutions as in [Bea89]. These operators can finally occurs : this is the phototransistor action.
be completed by simple saturation based non- This natural current gain can be used before
linearities as thresholding or magnitude subjecting the signal to any noise from
comparison as done in (Eid88]. Early vision has subsequent amplification stages. It can also be
also been integrated in standard CMOS
technologies, from compact spatio-temporal
differentiation in the "silicon retina" described in
[Siv87I and [Mea88], up to expensive optical When a p-n junction is formed between two
flow computation in [Hut881. oppositely doped semiconductor, a charge depleted region

At last, various approaches try to deal more or appears at the interface in which very high electric fields
are encountered. Instead of getting recombined, electron-

less successfully with the problem of outputting hole oairs generated in this zone are violently seoarated.
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controlled making the vision sensitivity possibly linearities play key roles from simple yet time
dynamically shifted. consuming operations like thresholding up to

Incident light on a region of the surface of a advanced neural optimization algorithms like
semiconductor is also known to cause a local neural halftoning [Ber90] or optical flow
change in that region's conductivity. As noticed computation involving line processes [Hut88].
in [Her89], this effect can be exploited to
construct a global representation of incident Linear functions.
images, which possibly allows faster pattern Besides the use of tricky non linear devices,
recognition processes by implicitely solving the analog implementations of vision processes rely
image output problem. on the existence of a "library" of (hopefully)

compact cells that embed more regular
Logarithmic representation of illumination transformations, such as storage, duplication,

intensity, addition, substraction, multiplication but also
In order to properly operate in outdoor scenes piecewise linear functions like the absolute value,

(say from moonlit to sunlit scenes), electronic and more generally conditional functions like the
photoreceptors must give meaningful outputs maximum or minimum functions. However,
over several orders of magnitude of illumination implementations depend on wether the input
intensity. The linear light to intensity conversion signal is a voltage, a current or a charge. One of
occurring within depleted devices like the skill of the designer is to find the right
photodiodes and phototransistors thus must be information supports to embed a particular vision
followed by some further non-linear conversion, algorithm efficiently. This is nothing but the
Moreover, as pointed out in [Mea88], it is very equivalency for type conversion of variables in
desirable to make the voltage difference between programmed image processing !
two points depend only on the contrast ratio The charge domain, taking full advantage of
between the two corresponding points in the CCD processes [Boy70] in which a charge can be
image. Indeed, in a simply modeled scene, this stored or spatially shifted at negligible loss, is
contrast ratio is a ratio between reflectances, usurprisingly suited to linear image processing
which are independent of the relative ,tiumination [Tie74]. Charge mixing or sharing are the basic
level. This mathematically implies the use of an operations for additive functions, we will see in
exponential law. Fortunately, exponential the next paragraph how they can naturally
phenomena exist in a semiconductor like silicon : implement very useful spatial convolutions. But
the appearance of the source-to-drain channel in substraction can also be implemented thanks to 3-
MOS transistors is ruled by the Fermi-Dirac D coupling as used in [Fos84] : besides the usual
distribution (stastistical physics & Boltzmann lateral coupling used in charge transfer devices,
law) which ensures that charge carrier the vertical coupling between the charge on the
concentrations within the channel depend electrode and the charge in the channel embeds a
exponentially on the gate voltage along about a natural differencing phenomenon. Charge
half volt wide interval, which is called the weak splitting, which is equivalent to multiplying by a
inversion (or subthreshold) region. This has been positive coefficient less than one, can also be
used by [Mea88] where the current from a implemented as explained in [Ben84]. If CCD's
phototransistor is fed into two diode-connected are used in conjunction with active CMOS
MOS transistors in series operating in the weak transistors, they can implement up to charge
inversion region, and providing a 0.2 volt output magnitude comparison and non destructive
voltage decrease per decade increase in current sensing and amplification (cf [Col87] &
(see Fig.3). [Fos87]). Time delaying is also easily embedded

as it is controlled by external clocking sequences :
this is a definite advantage for motion detection
applications. However, clocking requirements
and difficulties to implement non-linear operators
in the charge domain, other than saturation
nonlinearities, suggest that currents and voltages

Figure 3 : Logarithmic Photoreceptor. are indispensable alternative system variables for
Using the MOS transistor in the weak the analog implementation of vision processes.

inversion region to exploit its exponential Linearity in the current/voltage domain looks
behavior is a first example of the search (among less natural since operators generally involve the
the wide variety of analog VLSI phenomena) for use of MOS transistors, possibly associated with
adequate non linear operators, which are finally bipolar transistors (BiCMOS technology), all of
the ones to extract the important information from which are all but linear. Ranges of linearity are
the input image signal. Among others, non consequently narrower than in the charge domain,
linearities that easily map into silicon are the with widths possibly as small as 0.2V in the case
square law, the sigmo'd function, saturation and of [Mea88]. A common operation is the
hysteresis phenomena, and comparison duplication of a signal, illustrated on fig.4, either
operators. For example, hysteresis inverters are by a current mirror or by a voltage follower. As
fundamental devices in the "analog toolbox" as can be noticed, the price to pay for the same
shown in [Ber881 and [Smi89].These non-
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operator can seriously cutter, depending on the
type of the input signal. Li F l E

1t Figure 5 : 2-D Parallel and Pipelined Binomial
Convolution

The left part of the cell performs a binomial
Figure 4 : Current Mirror (12 = I1 = 10 convolution along the vertical axis, while the right

), Voltage Follower ( lout = 0 =* Vout = Vin ) part convolves along the horizontal axis in a
and Gilbert Multiplier ( lout manner which is similar to implementations of

Ibias * [VI-V21 * IV3-V41 FIR filters in classical signal processing pipelined

Another important operation is the four- architectures. The image is input column after
quadrant multiplication that can be implemented column on the left side. The final network's
thanks to the "two-stage" differential pair shown heigth matches the number of rows in the image,
on fig.4, and known as the CMOS version of the while its width depends on the gaussian kernel's
Gilbert multiplier [Gi168] : A triple product is variance to be implemented. Finally an input
actually performed, between two algebraic image is massively convolved in a parallel
quantities (VI-V 2 ) and (V3 -V4 ) and a positive pipelined fashion, and the I/0 problem is
quantity Ibias, which is the current flowing in the degenerated from 2-D to l-D. Moreover, the
lower transistor and set by Vbias. However, variance a of the gaussian kernel can be r
image processing often involves the interaction of controlled by using a partial width of the
larger sets of input signals. The fundamental network, hence adapting the resolution which the
autocorrelation proper;ies of images are image is processed at.
responsible for the central importance of Whereas the choice of the binomial filter is just
smoothing and differentiating operators in both one efficient way to iteratively approach the
the spatial and temporal domain. As far as motion gaussian shape, there are other diffusion or
detection is concerned, electronic time constants relaxation processes that are more typical of
must fit the time scale of motion events in the fundamental electric equilibria found in VLSI,
observed scene : unfortunately, the largest RC and that we present now.
constants that can be controlled in silicon are
smalber than 0. Ims = l0MQ x lOpF, which is too Diffusion-Based Spatial Convolution.
fast for our real world. This problem can be Static image processing is fundamentally based
avoided by discretizing time, or using peculiar on spatial interactions between pixels or sub-
controllable resistive circuits such as the one structures that are more or less far apart in the
presented in [Siv871. After this general and brief processed image. This corresponds to the
presentation of a starting repertoire of general structural approach of vision, which can actually
analog operators that can be used in "analog take place at every level of vision. When
vision", we now present a few examples where performed at the lowest level anyway, these
physical laws inherent in electronic have met the spatial interactions are extremely computationally
operating or computionnal need of certain aspects intensive and would definitely benefit from
of vision. "natural" physical interaction phenomena.

When statistically considered, images have to
Gaussian Spatial Convolution. be processed in a shift-invariant manner, without
Gaussian kernels have been shown to be of privileging any particular direction. Moreover, it

primary importance in edge detection algorithms makes sense to weaken their interaction as pixels
(cf [Can861). Thanks to the Central Limit get further apart from each other. We are thus
Theorem, the repeated binomial convolution of a looking for a shift-invariant phenomenon
signal or an image is a good approximation to allowing the isotropic but radially decreasing
gaussian filtering. Sharing and halving charge diffusion of a physical quantity towards its
packets is easily performed in the charge domain, neighborhood. This can be implemented thanks to
particularly with the help of charge coupled current diffusion in resistive materials, which is a
devices. So binomial convolution can be linear process : if a current is injected at some
performed in a CCD imaging array clocked by an point of a resistive sheet of conductive material
unconventional method as described in (Sage851 featuring a uniform surfacic leakage resistance
and generalized in [MIT881. Fig.5 shows a novel towards some source of potential (e.g. ground),
2-D CCD convolution cell to be used in an the induced voltage profile or impulse response is
hexagonal tiling. The boundary of the cell is indeed a rotation-invariant kernel (cf [Ber88])
indicated by a shaded area. The structure of the whose radial shape is given by the first modified
cell is simplified : after a certain clock sequence, Bessel function : V(r) -c K0(r) , where r is an
charges are transferred from bucket to bucket absolute normalized radius. Before discussing the
according to the arrows. relevance of the "diffusion kernel" shape for

vision purposes, let us characterize it more
precisely. To get some physical intuition about
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&o(r), we can consider tme current cittusion in +4
the adjacent dimensions : 1-D and 3-D. For a -
resistive line V(r) - exp(-r), and for a resistive
volume V(r) , exp(-r)/r .As expected KO(r)
shows an intermediate behavior that we can Figure 7: Laplacian Kernels in the rectangular
precise thanks to equivalent forms for small and case Ar and the hexagonal case Ah.
large arguments: K0(r) V -log(r) and K0(r) Bi
: exp(-r)/',r By using the dirac distribution and the

In a VLSI circuit however, we are bound to rectangular laplacian Ar = 4.80,0 -81,0 8,-1
spatially discretize this current diffusion process -50,1 (shown on fig.7), Kirschoff laws yield:
onto a resistive ladder network of the type shown
n fig.6. This network is shift-invariant. X = (8/RI+A/Rd)*V, where * stands for

Horizontal resistors are called diffusion resistors convolution. But V = K*X , so:
with value Rd. Vertical resistors are connected to
ground, and called leakage resistors with value K*- = ( /RI+A/Rd ) (1)
R1. Input injected currents Xi diffuse all over the We can now switch to the frequency domain to
network contributing to the output node voltages get the periodic Fourier transform of K*-1 and
V,. This process is linear such that we get finally K, with frequency coordinates cox and Oy:
V=K*X, where K is a characteristic convolution
kernel depending on the sole ratio RI/Rd. If this FT(K*-I) =/R+4R1 .[sin 2(oX/2)+sin 2 (Oy/2)]
ratio is variable, this is truly a multiresolution = FT(K) = (I/R1+4/Rd.[sin2((Ox/2)
facility which is available to the analog vision +sin2((0y/2)]) "1 (2)
algorithm designer ! Recent devolopments about We have just been characterizing 2-D
the use of wavelet.) (cf [Mal89] & [Mal90]) in "diffusion kernels" in many aspects. We have
image processing still enhance the importance of now gathered enough information about them to
such a feature. show their relevance for vision purposes.

11 xi X1 x12Within recent years, much work has been
devoted to the optimization of smoothing
diffusion kernels allowing the removal of noise
before edge detection. Beside the "gaussian
hegemony" mentionned in the previous section,
exponential filters have also been proved in

Figure 6 :A Resistive Dif[usion Network (ID She86] and [She87], to be optimal for a
version). multiedge model. Now, when a straight edge is

In the 1-D case, the kernel voltage profile is convolved by a 2-D diffusion kernel K, K is
simply exponential (as in the continuous model), actually projected according to :he direction
that is K(r) , exp(-r) or K(x) - exp(-Ixl) because perpendicular to the edge into ... an exponential
Kirschoff laws can be written in a recurrent filter ! The edge detection capabilities of the
manner. In the 2-D case however, there is no 'silicon retina" described in [Mea88] are the
closed form giving K(x,y). There are actually at straightforward application of this property. We
least 2 network topologies that can be i"sed : have also proposed (but not implemented) a more
either rectangular or hexagonal. The continuous sophisticated edge detection algorithm
model proves useful to understand the asymptotic implementation based on diffusion kernels in
behavior (towards -c). Unlikewise, close to 0, [Be1881.
that is for the central pixel on which the unity We will also show in § IVb that diffusion
current is injected and for its neighbors, infinite kernels are particularly suited to the halftoning
voltages iorecasted by the continuous model problem, that is the analog-to-binary conversion
vanish ; the node voltages are finite and have to of images, as mentioned in [Ber90].
he estimated thanks to iterative algorithms. Though the fully 2-D parallel implementation

It is fairly easy however to derive analytically of diffusion kernels seems much more "natural"
K-1, the inverse of K for convolution (regardless than that of gaussian kernels, there remains a few
of the dimension or the network topology) which difficulties to solve before it can be really mapped
in turn yields FT(K), the Fourier transform of K into silicon. As previously mentioned , it is very
(with K considered as a distribution). This is a desirable to implement controllable resistors (at
door to understanding the effect of the discrete least the leakage resistors which are the less
current diffusion in terms offrequential analysis. numerous) in order to benefit from an analog

By expressing Kirschoff laws for each node of multiresolution facility. This apparently requires
a rectangular 2-D extension of the network shown the use of active resistors. The natural compacity

of the diffusion network allows a large number ofon fig.6, we get (qie Z) (VjE Z) pixels to be integrated on the same circuit,
Xij =(l/RI+4/Rd).Vi however it also raises severe power consumption

- l/Rd.(Vi-l.i+li+l i+Vid - +Vi,ji 1)  problems. Using transistors in the weak inversion

region is a potential solution to lower current



values, as explained and applied in [Meab8]. In convolution is only asymptotically obtained alter
that case, resistors are controlled thanks to the a sufficient number of elementary switching
tunable transconductance of a CMOS differential cycles. About 10 are necessary to reach a 0.1%
amplifier used as a unity-gain follower. Yet, the precision when Cd=Cl . The ouput voltages are
linearity range is not larger than 200mV. When somewhat immaterial since only I'mif of them are
the device gets saturated, it turns out to perform a available each time clock y5 is high in the clock
simple but automatic segmentation of the input cycle. "Neurons" (pixels) are indeed separated
image by preventing two neighbor pixels from according to their parity. This iterative aspect
exchanging more than a fixed current upper allows to share a single leakage capacitor between
bound, a pair of odd and even neurons. This neatly

However, considering the uncertainty on each generalizes to 2-D, where neurons are separated
transistor characteristics in the weak inversion in a checkerboard fashion. Now only tl-e
region (up to an equivalent gate voltage elementary cycle is presented on fig.8. Though
uncertainty of a few tens of millivolts), the linear capacitances have static values, a discrete
range narrowness seems more undergone than multiresolution facility is recovered thanks to the
desired : it requires dynamic selfcorrecting use of more complex cycles in order to obtain
circuitry or static a posteriori analog narrower diffision kernels or even different types
compensation by EPROM-like techniques2 , all of (e.g. gaussian-like) of kernels at no further
which may be area-consumming. Further more, implementation cost!
such analog voltage precision seems to prevent We have just been comparing different
the cohabitation with digital layers which requires implementations of regular diffusion networks.
external clocks, inducing significant amounts of However, when resistors can be separately and
noise, dynamically controlled, resistive networks can

We have been studying an alternative snlution have much broader early vision applications (cf
to the implementation of diffusion filters based on [Hor861JKoc86I,[Hut88J and [Koc891). The
an unconventionnal use of switched capacitors (cf price to pay is area, but also algorithm complexity
[Ber88] and [Ber90]). This approach leads to : for example, negative resistors, which are area-
reasonnable power consumptions : To give an consumming, can also pose convergence
order of magnitude, if a (fairly large) lpF problems.
capacitor was to be charged and discharged from
OV to 5V at a 1MHz frequency at every pixel site, From edge to motion detection
a lOOxlO0 pixels retina would demand a power The above examples have made tangible the
of about 0.1W. However, either it requires an intuition that vision car, be fruitfully thought
analog CMOS process providing a double about in an analog manner. But even more
polysilicium layer, or "slightly" non-linear p- exciting are the unifying "short cuts" that simple
junction capacitances have to be used (cf analog devices, within a continuous range of
I Ber89]). In the latter case, it is amazing to notice operating conditions, can provide between
how rmany roles the same simple device can play : usually well separated vision concepts.
a strip of n-diffusion over the p-substrate will be The silicon retina described in [Mea88] is an
used a) to connect two pixels, b) to act as a examplary case embedding into a regular resistive
switched capacitor and c) to convert light into and capacitive network both edge and motion
current. detection, in a tunable manner. A schematic and

Finally, a globally better precision can be linear version is shown on fig.9.
achieved with comparable silicon area, partially I I  

X, - I X,+2

because capacitors are really easy-to-use
bidirectional media to perform "type conversion"
between charges and voltages.

_ ..............- L......-- Figure 9 A I-D linearized version of the
Z5 . "silicon retina" (cf lMea881)

Figure 8 4 cells from I-D switched capacitor The resistive part is just an equivalent version
diffusion network and associated clocking of the current diffusion network shown on fig.6,

cycle, but inputs are now voltages, which dynamically

Fig.8 shows how a 1-1) image X, input through represent the light intensity falling on each pixel
voltages sources, can be convolved by a diffusion (this was actually an intermediate step of the
kernel on a switched capacitor network. metamorphosis of the resistive network shown on
Horizontal and vertical capacitors are called fig.6 into the switched capacitor network shown
respectively diffusion and leakage capacitors. A on fig.8). The equivalence is a direct consequence
few peculiarities have to be emphasized. The of the Nornhon-Thevenin theorem. Besides, one

capacitor has been added to each network node,
in order to perform temporal differentiation. The

2Such techniques provide long term analog storage of Outputs of the network are the voltages across the
charvcs.

I



leakage resistors. The spatial and temporal order, for example, to perform an adequate noise
network behavior is described by its space and removal on the input image.
time constants. The space constant depends on
the sole ratio Rd/R1 (if diffusion resistance are cut,
Rd gets infinite and the space constant becomes
0), whereas the time constant varies linearly with
RI and Rd. So the same simple network used with
different resistance values can continuously IIIc - Does "analog" mean "smart
switch from edge to motion detection. Beyond enough" ?
this linearized view of the "silicon retina", the
devices saturability also plays a significant role in We have just been browsing from the most
the overall computation. specific analog attempts to integrate vision up to

more structured approaches, putting in evidence
From mean to median filtering may be unexpectedly strong relationships
The saturation of a unity gain follower, when between analog techniques and "high level"

used as a resistor between the output node and the vision concepts. We have illustrated the versatile
input node (which appears as a voltage source), power of analog hardware within VLSI circuits,
can be clearly interpreted from a vision point of but also its limitations due to technological and
view when used in a 'follower aggregator circuit" more generally physical constraints, which, for
(cf [Mea88]) as shown on fig.10 (The Gi are the example, can make the cohabitation with digital
respective conductances of the voltage followers hardware uneasy.
in their linear region). However, very few people have proposed

%out even partial solutions to solve the output problem
for general enough applications. Many research

[, ,groups in the field do claim that this problem of
", ;2 ,G, [ "-( " input output in vision is smartly solved thanks to
I 2 3 .,windowing i.e. reducing the field of processing,

then the number of processed pixels, by
approximately two orders of magnitude. Thus

Figure 10: Folloiwer aggregation circuit, processing inside the shrunk data may be more
As explained in [DeW88I, if all the Vi voltages sophisticated. They dangerously underestimate

are within the same 200 mV wide interval, all the the control problem of positioning the window,
voltage followers are operated in their linear now well-known as the problem of "narrow in
region. As the sum of the currents at the output wide angle", or of attention focusing. In the
node must be zero, a weighted mean of the input research about multisensor fusion, most proposed
voltages is computed: Vout = Y Gi.Vi / Gi solutions to it ask for advanced stochastic control

(Bar84, Mer88 ) or extended linear
On the other hand, if the Vi voltages are to filtering(Bar89). Other smart attempts closer to

further apart from each other, a large majority of smart sensors deal with fovealisation
voltage followers will be saturated, that is they (multiresolution in silicon) and or active vision
will act as current sources. The saturation current i.e. short loop between camera actuators and data
is known to be proportional to the processors to come up with natural regularisation.
transconductance Gi. If all voltage followers were - YET ANOTHER MESH ARRAY
saturated, the SA SENORR
final output voltage would be such that : SMART SENSOR?

XGi = XGi IVa - Rough vision
Vt<Vout Vi>Vout

This computation defines a weighted median. In order to get to some programmable or
adaptative recognition, on top of analog thinking

Finally the quantities on which the we still had to adapt the retina concept jointly
computation is performed appear to be the from the technical point of view of the
conductances Gi. They are set by the bias voltage implementation, and the more fundamental one of
of the differential amplifiers, and can represent vision.
the incident light as is the case in [eW881. On On the technical ground:
the other hand, the input voltages ae used to - As far as the digital layer is concerned (the
control the type of computation. If a spatially top one on fig.2), the choice of a binary image
increasing profile of voltages is input to the representation is the crux of the matter. First, the
network (such that voltages differences Vi+I-V i  maximization of computational power at fixed
ore constant), Vout will naturally indicate the area implementation cost is likely to strongly benefit
on which the incident light is maximal. from the boolean nature of the quantized images.
Depending on the slope of the voltage profile, the The complexity of a processor as a function of the
precise value of the "pointer" Voul will result of a number of bits it processes is at least quadratic
weighted mean (small slope) or weighted median (e.g. for a multiplication operation). By its deep
(lare slope) or a tunable combintion of both. in homogeneity, the binary representation
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(Ibit/pixel) allows the use ot really "bare" Therefore, NCP's can be decompoied along a
monobit processors (about only 25 transistors). noise and distorsion tolerant structure revealing
Their interconnection with their four closest process, according to the scheme shown on
neighbors turns the top layer into a cellular mesh fig. 11. We note ± this decomposition operation
array that can implement any shift-invariant based on a context specific pattern base, as
boolean function (cf. Gar88). The larger the detailed in (§IVc)
function support, the longer its computation. The
function support is indeed scanned thanks to -t ,

iterative image shifting. So supports are r " -

why we have called those boolean operators : -] o -*

NCP's, standing for Neighborhood Base

Combinatorial Processings. Figure 11: N.C.P. Functional Decomposition.
- NCP's are well-adapted to low-level image

processing. More generally, NCP's allow the So, if all semantics or context handling is
implementation of a "rough but complete" type of "subcontracted" to a controller which could be
vision, for which NCP algorithms results can be nothing more than a boolean pattern base
output from the retina in a concentrated fashion manager, then in many well delimited cases (up to

(such as the image integral, higher order target tracking and more!) recognition is merely a
moments, or sparse pixel coordinates) thus tolerant dot pattern matching at some point
avoiding a potential communication bottleneck generalizing both the notion of interest (say area
with the external wor'd, of) and multiresolution. Figure 12 displays som

- Last but not least, the binary representation suggestive graphic examples:
provides a fruitful duality between operators and
objects. Any NCP can be simply interpreted as t
the alternative recognition of a set of boolean
patterns. Now, on the one hand, any image 4 4 h
portion it side the retina is a potential NCP
pattern. On the other hand, any pattern can be
processed as an image inside the retina. This
confers autoprogramnmation abilities on the retina, 4 +
which are of particular ii'terest for tracking
purposes (Oar88). The above set of letter A in the edges Of or a sport [,am

On the !ision ground: dots can be ... automatic reading, a tree foliage, Organization.

The magic in the previous section becomes the
halftoning process which makes the whole NCP Figure 12 : Structure, Semantics and
concept available and sensible. Now there is Multiresolution ...
again certainly something to pay for it. Let us
explain right away the trade-off hiding behinda It is easy to understand that such
rough but complete" vision, by giving first more considerations hold only for very restricted cases,

fora) definitions and properties. making up the "rough" vision. The direct

I NCP's (Neig'hborhood Combinatorial counterpart of the rough character of the retina
vision is its completeness, i.e. the ability to carry

Processings) are exactly the shift-invariant out vision processes from acqui-itin to decision
op,.crators on binary images. We have concisely (cf fig. ).
defined them using set theory, where binary'i-a-cs -in be represented as finite subsets of Z2. This h ghly pragmatic u-adeoff remains most

caZe- rngorepreset as finite subsets of Z2 valuable compared to other potentially monolithic
P(Z standing for the set of finite subsets of' Z- and complete vision systems, such as pattern

(binary images), NCP t u~v is defined thanks to recognition neural networks. As far as Hopfield

two parameters, Ve IP)(Z)2 and UCP(V) (set of networks are concerned, it is currently admitted

thle subsets of V), bv that at least 10 neurons are required per basin of
he ' subsets oVvattraction. Similar properties hold for the Hebb's
lP(Z 2) -+ FP(Z 2) rule. Now VLSI technologies currently limit the

I I -+ t l) = z Z/ (-z+I) n V E U} number of highly interconnected neurons on the
same circuit from a few tens up to a few hundreds

2) NCP's are stable through the composition (when interconnection tricks are exploited). So

operation o: the number of patterns that can be recognized by
today's integrated neural networks is bound to a

VVIeFP(Z), VU 1 CP(VI), VV2eFP(Z 2 ), few tens, and it is not likely to increase
significantly but if a radical mutation occurs to

VU2CP( V2l, solve the "it .,jrconnection" problem. On the
t UI~iVI U2,v2 is an NCP t u.v whoe contrary, the Retina concept makes a better use of

parameters are today's integrating facilities. Due to the "vision

V = VI(pV and U = t u.vt 1(1.2).



roughness", there is no need tor more than about I he retina structure provides a one-to-one
a hundred of patterns, that are to be provided by a mapping between analog (bottom layer on fig.2)
robust enough controller. Pattern recognition is and binary pixels (top layer). So, for any site in
certainly slower than when performed by analog the retina array, whose index is k (k E Z2, where
neural networks, since computations are iterated Z is the integer set), an analog signal X(k)E_ [0,1
inside the Retina. However it is so easy for the is received from a photosensitive device and
retina to pass from one context to another by binary information B(k)c f0,1 is produced by
changing the pattern base, whereas neural the halftoning conversion.
networks have to enter a long learning phase. We want to keep B close to X according to a

If integrated neural pattern recognition is still tonal/spatial fidelity criterion. We choose to
several orders of magnitude ahead, a neural minimize a frequency-weighted squared error
approach however is of immediate interest for between X and B. Through Parseval equality, it
simpler and more regular operations like non- is mathematically equivalent to perform the
standard A/D conversions within the Retina minimization of the following quadratic energy E
context. The section IVb explains why, ( . stands for image dot product and * for
displaying an exemplary application. As already convolution product) :
mentioned in § 11, the filtering associated to E = 1/2 . [ L*(B-X) . f L*(B-X)
halftoning does influence NCP to be used and L must be considered as an intermediate
determines the "retina vision". So in § IVc, we convolution kernel whose coefficients are related
finally come to grey level picture processings to the above frequency weights through Fourier
inside the retina, transform. We mainly use kernel K = L'L, which

is of immediate meaning for the actual
implementation of the procedure.

As shown in [Bet90], local minima of E prove
to be fixed points of a compact evolution equationINb - Analog-to binary conversion and

halftoning B -, HinvK(0) o iK*(B-X)] (2)

Again, the whole structure and in particular the Hinv, which stands for Hysteresis Inversion,
conversion layer can take full advantage of the appears as a f'indancntal non-!inearity in the
cIputational abilities of highly interconnected "analog toolbox". It is illustrated on fig. 13. Theanalog networks. In particular, the homogeneity hysteresis
of the binary representation is determinative. The clnvergence properties of the whole network.
even distribution of information over all bits (each c
one will support an information of physically HI .L Hse Hinvre7
equivalent importance) has a direct influence on KXO) Hystesis
the energetic landscapes" used in early vision inver
optimization problems. This especially prevents _5 Symbol.
local minima from being too shallow and hence
Iip rves the performances of neural Figure 13 : Hysteresis inversion : a

,on0puiations. A well -kown counter-example is fundamental non-linearity.
the 4-bit AiD converter studied in ITan861 and Along with compactness, the choice of a
ISmi8hI where the presence of such undesirable diffusion based neural interconnection satisfies
local minima is put in evidence, two natural physical constraints in the world of

Halftoning techniques deal with the bilevel images : shift-invariance and isotropy. No
rendition of continuous tone pictures. The retina halftoning technique has ever gathered both
.tructure requires a fast and parallel halttoning properties. Based on threshold matrices, ordered
echlnique with good fidelity at low dither methods (cf. [Bay73) ignore both of them
i'pPlct n tation cost' Unfortunately, arn ng usual which contributes to their poor spatial and tonal
. ttin ug tchniques, none meets all these fidelity. Currently considered as the best, random
.n A:r~it, \ tare of the art can he found in 2-D error diffusion methods (cf IUli88]) are shift-

BilX3I and [I UhI. Error diffusion methods, invariant but naturally anisotropic due to the raster
:,nidered to he the best, are inherently order c processing, triggering the appearance of
stcJU etial, hence u;appropriate. Ordered dicher undesirable correlated artifacts. So, unlike the
w ayt 3la-7,11) is ,hc only 'cheap' parallel other techniques, our method features sine qua
teC,_hiquC, hut with quite i poor fidelity non properties to reach a really high fidelity. Only

We have dealt v, ith halftoning as a first its isotropy is imperfect due to rectangular grids
g ciera',-purposL nmi lcstone for the conversion not being radially symmetric.
'.iaer (f our retina , towards a more advanced Moreover, the corresponding minimized
%ision system. As reported in preotious Work quadratic energy can be advantageously
ili-t-88 analog neural networks provide a very inteMreted in the frequency domain, where it has
,1ttra,._we altcrnatrc to the h,nf; ing prohCm . an exact and simple mathematical expression,

regardless of the dimension ( 1-D or 2-D for us).
'11 in're;'Y jil9 prouah Fig. 14 displays some interesting samples. Due to
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the decreasing shape ot their F-ouner transtorm, The shape of the diffusion kernel K is derived
diffusion kernels are able to keep faithfully low from Kirschhoff laws. Using ratio Cd/C1
frequencies by hiding the quantization noise (switched capacitor) instead of R/Rd, we get: K-
within higher frequencies. 1 = Cd/Cl.A + 5 (see § diffusion based

Frequency weight for different ratios Cd/CI. convolution in Ilb)
I - If we spread kernel K by making Cd/C larger

0,9 - and larger, (2) bccymes asymptciaiy equal to
0,8 (3) and global minima of (2) become optimally
o,7 halftoned images. The relationship K -I = Cd/C1.,

0,6 + 8 actually characterizes resistive diffusion
networks regardless of the dimension. However,

0.5 when kernel K gets wider, the local minima of (2)
0,4 become more numerous and subsequently of a
0.3 4lesser quality. The problem is that the neural
0,2 1 optimization can get stuck in any of them : this is
o. the very limitation of our method. We need to

0 make a trade-off between the quality of criterion
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 (2) and the quality of its local minima. After

Normalized frequency. having extensively experienced the procedure, it
empirically appears that suitable ratios Cd/Cl go
from 2 to 8.

Figure 14 : Frequency Weights for various
Kernels K. .Resistive & switched capacitor

But are these curves optimal for halftoning implementations.
purposes ? The answer is in the affirmative. Equation (3) is so neat that the choice of K is

Tonal resolution is the only potential definitely the crux of the matter. We have insisted
weakness of shift-invariant halftoning techniques in the previous setion on the key role played by
(like ours). Its separate (but constrained) simple resistive networks (as presented on fig.6)
optimization with respect to kernel K is not likely for a highly compact implementation of
to spoil an already excellent existing spatial appropriate shift-invariant synaptic weights. So,
resolution. Now if we restrict ourselves to 1-D much of the work is done, and the transcription
,onstant images, !-A modulation can be shown of the transformation equation (2) into the
both to be optimal for halftoning purposes and to resistive electronic circuit shown on fig.15 is
perform the optimization of the MSE between the strditihiforward. The resistive implementation
integrals fX(k) and JB(k), with k varying in Z. proves extremely simple and regular. The
This again justifies previous attempts (of [Uli88) switched capacitor implementation is detailed in
to extend -A modulation to 2-D. A major IBe,901.
contribution of our work is that we have done so
without introducing an arbitrary order on Z2 " x(1) x(i+l) Analogfunlike existing 2-D error diffusion methods).] ]Im age '

.et us note 8(k) the dirac distribution in site k, Ig
D = 5( 1 )-8(0) the derivation filter, and Synap

_%=D* D=2.5(0)-6(- 1 )-8( 1) the laplacian filter. Difus:.

Besides, a -I exponent means the inverse for

convolution. Y_-A modulation on constant images 1 Neurons Linear

thus appears as the minimization of the tollowing (Schridi Voltage-

frequency weighted MSE criterion Triggers) Conrollcc

Current[Al~B )(B )]Binary Source
I D'*(B-X) 112 = 1/2 [A 'I*(B-X)I.(B -X) Imag

(3) Be.I) R(,) BO+1)

Though physically unrealizable, (3) has a sense
from a formal calculus point of view and turns all Figure 15 I-D resistive neural halftoning
the closer to (2) as we show K-1 to be a slightly network.
modified laplacian filter !

Picture Processing Examples.



Synthetic Sunset(1) (2) (3)
biack=O white-I,
sun=0.46 sky=0.54

(1) Traditional error w

diffusion with Floyd
and Steinberg filter.
(2) Our method with '
inverted laplacian"

spatial !dters.
(3) Failure of q

gaussian filters. ' k' W VA 4

IVc - More about NCP and retinian respectively P and (R\P) by a square of size n.
visions The pictures this template matches, are

geometrically similar to [R,P,R\P].
To begin with, let us explain the way A more sophisticated approach relies in the

combinatorial boolean operators can be used on continuous plane RxR, where R is the set of real
thresholded images (see [Pre79] and [Ros82]). A numbers, on Hausdorff's distance. Between two
template (element of U) is determined thanks to compact subsets of RxR it is given by the
two parameters 0 and Z, which are two disjoint following equation: r
subsets of V: the template jV, 0, Z] is the set of I(A,B)=inf{£ e R, (B ( Dp) : A and (A (
all subsets of V which include 0 and are disjoint
from Z. It can be conveniently represented by a DE) D B)
picture displaying l's at the sites of 0, O's at the where ( is the Minkowski's sum and Dp a
sites of Z and "don't care" at the sites of V which
belong neither to 0 nor to Z. In this case, the disk of radius c.
application of the NCP with parameters IV, (IV, Thus, the Hausdorff distance of A and B is
O i, Zi])i) to a binary picture I (considered as a less than E as soon as (B ED Dc) D A and (A E)
subset of ZxZ) is the following subset of ZxZ: D) D B. By analogy, consider an elementary

) z E ZxZ. (-zl) r-) V e ,(Visquare Sn of size n. Then we will mark the pointst~l)= {z e xZ,(-zI) V e i[VOii]. Z where

Now, let us explain how to use a NCP
sequence for boolean template matching. First, (z+P) (D Sn D (z+V) n I, (I ( Sn) D (z+P)
consider a small binary picture P included in a
rectangular window R. The picture t(I) which This does not exactly check whether the
results from the application of the NCP whose Hausdorff distance between (z+V) n I and (z+P)
parameters are (R, [R,P, R\P])to a binary picture is less than n, but this approximation gives good
I is given by the following equation: results and remains easy to compute on the fly.

To go further, we want to introduce some
t) = {z E ZxZ, (-z+l) r- R c [R,P, R \P} structural similarity between templates while still

relying on NCP operations. For that purpose, let
Se ZAZ, (-z+I) r R I Pus choose two square windows RI, R2 such that

This means that the pixels of t(l) are located at R = Ri ( R2. Let G be a regular square grid
the sites z whose neighborhood (z+R) matches included in R2. Now, consider the windows
pixel by pixel the template IR,P, R\PI. Of course, extractedi at the sites of G in P, i.e. for each site z
if one performs this matching process to match of G, l, t Wz be RI (-) (-z+P). Let Tz be the
copies of a window of an acquired picture P in an template IRI, Wz, RI\Wz] and tl the NCP
acquired picture I, then the resulting picture will
be black i.e. no match will occur. Thus, one defined by the template (Tz)ze G. Besides, let t2
needs a way to handle some similarity relation be the NCP defined by the template [R2,G,0I.
between templates. A conventional template Now, let us choose the grid step and the size
matching approach is to define some similarity of R I, such that in the one hand the windows
measure between pictures [Bar 721. Now, the
point is that as NCP operate through logical Wzl, Wz2 in G overlap and such that P :
operations exclusively, to compute some Uz Ci(Z+Wz).
numerical distance with them is not very
welcome, and thus one has to rely on some
geometric similarity.

A first approach consists in substituting to the
template [R,P,R\PJ the template. [R,Pn,(R\P)nl,
where Pn and (R\P)Tn are the erosion of



Result of t: first NCP iteration

Image nita image dntermdiaire image finale

Result of t2: second NCP iteration

Structural NCP decomposition Numbers of suitable operators can be
implemented, not only straight recognition. Of

Through the successive application of t1 and course, as it is, the retina can perform

t2, one matches pictures which are generated by combinatorial cellular logic operations [Pre79].
swapping the windows (Wz) between the sites of These include erosion, dilation, and their

G (fig.l I and 16 ): for real pictures, most often iterations as opening, closing, ... All operations

the only permutation which meets overlaping and relying on template matching are easily

P-covering results in P. Now let us introduce implemented too: they include primarily binary

some geometrical similarity between t1 templates edge detection, shrinking and thinning.Other

as previously. Then introduce some structural useful primitives like binary propagation [Duf86],

similarity by matching points which are located in turn out to require supplementary memory points.

the neighborhood of G sites and by allowing The addition of extra memory points (one or

some of G sites to have no match. For this two per PE) allows implementing number of

purpose, the picture ti (1) resulting from the other algoiithms which are better (fully and
aprpion te pitu to a pictreIslt fm Se systematically) investigated considering a precise
application of t1 to a picture I is dilated by Sn designed device. Now, the power of a full
before the application of t2. Moreover, t2 is preprocessing stage for binary pictures towards
modified to aliow that no match occur at a small statistical pattern recognition could be reached
number of G sites (introduction of "don't care"). thanks to a global counte-. It allows the

Thus, a unique process of NCI. decomposition computation of the area of patterns and thus
into a map product, holds an elastic match combining geometric operators with counting
between patterns. Moreover, this process may be yields the full range of numerical features as area,
iterated according to stuctural picture complexity. intercept number, connectivity number, and also
Examples on tank pictures aie given below. varioUs histograms and granulometries. After
...... ..: .......:.:.:.:.: ..........:.:.:.: ...........:: illustrating that point, through a non trivial

. .... example, let us show how to perform a counter in

.................. ..... ' I ... the sm art sensor itself.

...... ..... ....... '..... Ex. 1 an N CP pseudo-euclidian- : .: .. : : : .. .... . . . . . : : : : : : : : : : : : . ... . io
. .. . . . . skeletonization

x. 'A local operation as the pseudo euclidian
skeletonization may be done inside a smart

. •sensor. In the algorithm described in [Lev 751,
.........._ ....... _ aa _ __ __ height templates Ti are given (A l, BI .... A4,

B4), and must be applied successively.

Initial sequence of half-toned pictures 00. .00 .1. . I.
000 1.0 .11 D..

l 011 0 110 011
.1. 110 .1. 011
11. . 0 000 0.1
. 1. .1. .00 00.
At A2 A3 A4

BI B2 B3 B4
For one iteration, all the points of an image I

zorresponding to the template Ti must be removed
to perform the image J ( -, , 1, & stand
respectively for negation, logical or and logical
and):
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It we consider a composition ot projection pi,
J = I & ( Ti (1) ) then the stability region of semi-planes will be the

intersection of stability regions Rpi of each pi.
= I ( Ti (I) ) Now, map multiplying elementary projections pi

to concentrate all the black pixels of the binary
= f (t2 (1)) picture I upon a bound of the retina, consists in

So, this operation is the composition of two operating one or more cycles of n projections ck
NCP tl Iand t2i, defined as: = (P,kO..Opn,k), and iterating ck until

tI =-- convergence. The choice of the projections is
t2i = - + critical, becaust, there are invariant pictures under

two projections. For instance, the stability region
The application of the eight templates Ti is of projections p5 and p7 is not empty [Rei85 ].

implemented by NCP composition. It makes the The convergence will be obtained with
main loop of this pseudo-euclidian skeletonization projection without stability region, and a good
to be performed by our smart retina. convergence is experimentally got with cO and c 1

cycles. In that case, the counter algorithm needs
Ex. 2 : An NCP counter four cycles, cO, cI, cO, ci.
In the resulting image of counter

algorithm, all the black pixels will be concentrated co = p0 o p7-o p6

upon a border of the sensor. To count the number ci = p4 o p5 o p6

of black pixels, we only use the output of the ,
number of black points along its edges. Real pictures are not well captured by

thresholding; and introducing a threshold does
The projection of the binary picture I upon the not fit exactly the flavor of autonomy. To perform

bound B of the sensor, translates all the black recognition from grey level images, two avenues
pixels with a given direction GD, up to the make sense a priori:
resulting image J, where all the black pixels are • to rend automatically a picture under a fono
concentrated on B, This algorithm is presented in of black and white compact regions. Such a
[Tof871. Here is a NCP equivalency. For a blackening process is again a cellular automaton
projection from east to west, NCP p is as: implementable as NCP ([Rei88J) which can be

p = 10x + xl added directional properties to. It allows to
= .1 + 12 execute all previously defined operators although

tolerance in decomposing is harder to justify.
Templates 1. 1 and .2 represent respectively But, learning vanishes here in a way or is

a progression of one unit to the right, and the drastically changed up to contradict our approach
meeting with an obstacle. The projection consists of direct learning by the image itself.
of iterating p, up to a constant image. - to generalize the NCP decomposition

algorithm to multilevel images so as to analyze
All the Freeman vector projection may be directly halftoned images. A new step is required:

given by rotation of p. These projections will use to extract key structures related to grey levels,
a reduced support (3x3 pixels). The projection p' grey level sets or density gradients... Then,
from north-west to south-east is recognition comes as before from the control of

key juxtaposition, which at that point fits
lxx xxx perfectly a search for optimal equilibrium between

p x0x + xlx B-coding (halftoning) and NCP. The approach
xxx xxl relies on detecting regions as they gather some

repartition of grey levels, knowing that a given
/ -4 / \ halftoning process greatly constrains the possible

repartitions. Particular NCP's made of sub-
T templates which get the same density in templates

p 1 pO p7  p6 p5  p4  p3  are true spatial counters, and give a hint on grey
p2 level repartition inside a region. Technically a

inarge is introduced again under the form of don't
Elementary projections pi. care pixels in the sub-templates. This

fuzzyfication is shown to result into a potential
If no border constraint exists, black spatial shift of key-templates. So, in practice, if

propagated pixels will progressively disappear templates T as given through windows, are
(translation effect of l1). Contrarily, if one subdivided into wj's which number of occurences
border B is black, B will be an obstacle (effect of are rendered by a given dot configoration Mj, the
4n2) tolerance on grey level configurations is made of

If n is the number of pixels of I, and L = 'n both don't care pixels in Wj and little shifts in Mj.
the width of the retina, the number of iterations is We illustrate the results by tracking the same

n. tanks as before.



valuable source ot inspiration, as it might be
translating some fundamental laws where physics
encompasses information prort,.ssing.
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1 SUMMARY the high cost and lack of robustness of the algorithms,
but the recent progress in theoretical issues, availabil-

This note is aimed to investigate how much visual sen- ity of special hardware architectures and the increase
sors may be effective in supporting autonomous navi- in complexity of applicative tasks and scenarios make
gation of mobile robots. Although in practical realiza- computer vision a key technology also from an indus-
tions, with robustness and reliability constraints, it is trial exploitation point of view.
always necessary to integrate multi sensor modalities,
the discussion here is just limited to analyze computer This paper is intended to give an overview of the re-
vision advantages and disadvantages, with particular search activities of Elsag Bailey in the field of visual
attention to: navigation. Particular emphasis is given to the exper-

imental evaluation of the different approaches and a
" a binocular stereo vision module for obstacle de- critical analysis of engineering trade-offs which make

tection, with no precise calibration (reactive pro- it possible to implement computer vision techniques
cess to operate at fast rate, from 5 to 10 Hz.). in real applications.

" trinocular stereovision based on segment primi-
tives for the reconstruction of free space for navi- A further goal of this work is to discuss how to insert
gation, in which case an accurate calibration prr- different perception, planning and control modules in
cedure is requested. a coherent logical architecture and how to implement

" landmark detection for self-positioning and ori- this architecture on real time hardware.

entation of the mobile vehicle, using perspective Visual navigation modules can be classified in many
invariants, for indoor navigation, ways: a classical approach consists in considering the

operative range, that is the distance of the workspaceSome comments are also provided on computer vision from the vehicle, which leads to split the general nay-

architectures to support real time implementations. A

real-time front end vision subsystem is described, be- igation task in three levels: long-range, intermediate-

ing able to compute 3D segment based stereovision range and short-range. A different but related tax-
at 51'-s and segment token tracking at 10 Hz. Fi- onomy concerns the temporal updating rate of each

nally, some demo arrangements are briefly referred, module, according to real time requirements in real

where an intense experimentation of such results is in applications.

progress, as a test bed for different industrial applica- An alternative approach [1] suggests to consider vi-
tions. sual competencies instead of modules, that is to de-

compose the navigation s,,stem in behaviour layers in-
2 INTRODUCTION stead of functional modules. This idea, as discussed in

[2], embodies some advantages such as a more direct
The interest in free-ranging mobile robots is no more integration of perception and actuation.
limited to the classical industrial AGV market, but is The paper is organized as follows: the next section
increasing in a wide range of potential appl;-ations re- presents the applicative scenario and introduces the
quiring great operational flexibility in less structured experimental evaluation criteria, sections 4 to 6 de-
environments. Hence, it turns out that typical exter- scribe visual modules and techniques, from the short
nal sensors, guidance methodologies and control ar- range to global navigation. Each part refers to exper-
chitecture are no more satisfactory for the new set of iments and industrial evaluation with respect to alter-
challenging requirements. native solutions, including some literature references.

Passive computer vision has been traditionally con-
sidered non-competitive against other sensors due to



3 APPLICATIVE SCENARIO AND TECH- bility in reconfiguring pre-planned routes, safety even
NOLOGY EVALUATION in peopled areas, and a simple man-machine interface.

Helpmate@ from TRC [4] is one of the first service

Industrial AGVs (Autonomous Guided Vehicles) are indoor robot in use. It exploits multiple sensors to
already an in-use technology, with known limits and achieve the required autonomy: ultra-sounds are used
problems. Vision is likely to provide the basis for the for safety and guidance (wall following), flashing IR
second generation AGVs, the so-called "free ranging" lamps and a CCD camera are arranged to form a
AGVs. Currently AGVs navigate using the inductive structured light obstacle detector. Monocular pas-
guidance principle, that implies expensive and unflex- sive vision is also used to maintain the heading di-
ible buried wires, or following reflective tape sealed on rection by following the ceiling lamps in long and
the floor, that does not resist to the harsh conditions homogeneous corridors. Algorithms and system ar-
of the industrial environment. chitectures presented below will be evaluated against

generic tasks, but representative of the mentioned ap-
Safety is achieved by ultrasound belts, which limit the pnictass e

vehicle maximum speed and create problems of en-

cumbrance in cramped environments. Moreover, cer-
tain types of obstacles like holes, steps, smooth sur- 4 SAFETY LEVEL: GROUND PLANE OB-

faces, thin metallic objects such as chair legs, are not STACLE DETECTION

detected at all, underlining the limits of current tech- The safety level refers to the capability of detecting
nology. unexpected, possibly moving, objects which can ob-

GEC Electrical Projects marketed on a Caterpillar ye- struct the navigation path. An obstacle can be defined
hicle [31 one of the few commercially available free as everything with a positive or negative height with
ranging AGV, that will be considered as a reference respect to the ground level, whose amount exceeds
for the experimental evaluation of our passive vision the robot capability to overcome it. Negative heights
based system. GEC vehicle makes use of triangu- refers to holes, stairs and any abrupt interruption of
lation laser systems with retro-reflective bar-coded the ground, which is as dangerous for navigation as
targets spread all over the workspace. Security is any other obstacle.
achieved through IR proximity sensors and niechani- The general problem definition is usually completed
cal bumpers. The main reported drawbacks includes by a few simplifying hypotheses:
the loss of maneuvering capability in constrained envi-
ronments due to the encumbrance of the bumpers, the * the vehicle moves on a flat floor;
necessary limit to the maximum velocity due to the * the tilt angle between the cameras and the floor
short operative range for a reliable IR obstacle detec- is known and constant.
tion, the difficulty to cperate in scarcely structured or In the domain of indoor navigation those constraints
cluttered environments, such as warehouse or in lorry are usually verified, therefore algorithms are still valid
loading, where targets could be occluded or difficult in operative conditions as well.
to be placed. Moreover the process of docking work-
stations or loading/unloading in unconstrained condi- A generalization of the obstacle detection problem in-
tions are tasks still too hard for standard technologies. cluding also navigation planning and control aspects is

A novel, promising market sector potentially irter- called obstacle avoidance, that is the robot capability
Ser- to plan and execu.e locally a trajectory to overcomeestedointadvancedmobile robotis rersnted by n the obstacle and recover the originally planned path.

viceRobtic [4. Srvie rootis rfer toa nvel In the following we focus on the sensory technologies
concept and usage of industrial robots in tasks that are an aloim to r theseno p ems.

not highly repetitive and not too much constrained.

Service robots therefore require much more intelli- Obstacle detection modules, regardless the adopted
gence, flexibility and sensory capabilities than their sensory technology, have to be evaluated with refer-
industrial ancestors and the application opportunities ence to some established design specifications and per-
and potential markets of this emerging technology lie formance parameters:
outside the domain of traditional industrial robots. * Fast computation: the module response rate

Mobile robots with relatively simple locomotion can affects, together with the field-of-view (FOV) of
be used in indoor environments to automate routine the sensor, the vehicle cruise velocity, which is a
transport activities. The main examples include hos- major system parameter.
pitals where samples, specimens, medicines and meals a Interface with planning: some modules just
have to be carried around, and large offices, banks or detect obstacles, others return an estimation of
postal offices where mail, documents and other items their positions and dimensions to be fed to a plan-
have to be transported through corridors, hallways ner in order to compute an avoidance trajectory.
and other pre-assigned routes. Specifications for these a Fobustness and reliability: a safety module
mobile robots include free ranging capabilities, flexi- m ust be highly reliable. False alarms just delay
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navigation but failures in detecting objects af- disparity in the "no obstacle" case to check whether
fects the vehicle integrity and the safety of people the correlation is good, otherwise a collision alarm is
around. Crucial parameters to evaluate are the generated (see Figure 1).
dependency on the obstacle appearance (shape,
colour, texture) and the algorithm sensitivity to
drifts of the a priori hypotheses (flat floor, set-up
angles, etc.).

Obstacle detection and avoidance are deemed to be
critical in autonomous navigation, therefore there ex-
ist many different approaches, using passive vision,....... 4 i''
laser, ultrasonics, IR proximity sensors or some com-
bination of them, to solve the problem but none is
considered fully satisfactory. Here we try to demon-
strate that passive vision is a feasible and powerful
sensor compared to alternative current technologies
and can be the core of a safety subsystem.

Proposed approaches range from binocular stereo to
monocular dynamic systems. Binocular stereo sys-
tems [6, 5] reconstructs the world in order to detect 3

3D structures in an alarm zone ahead the robot within
the FOV. The knowledge of the position of the ground
plane with respect to the cameras is commonly used
to speed up processing and to focus on 3D data not
lying on the ground. Figure 1: On-line obstacle detection mechanism: the

disparity map of the ground floor is used to select the
patches in the stereo pair to correlate.

4.1 A stereo Ground Plane Obstacle Detector

The algorithm, originally developed at the University
of Genoa [7]. is based on a fast comparison between This approach solves the problem of obstacle detection

the current stereo disparity and a reference disparity very efficiently and rapidly even if the 3D structure of

map of the ground floor, the obstacle is not explicitly reconstructed and, there-
fore, a local map of the free-space cannot be available

An automated off-line procedure is necessary to pro- for path planning.
duce a reference map of the ground floor, which is
supposed flat. However there is no need of an explicit Actually a qualitative obstacle avoidance strategy has
calibration of the stereo rig parameters as requitred been implemented: it is possible to roughly evaluate
by stereo matching algorithms, the position of the obstacle by looking at the image

parts where the expected disparity has been violated,
The calibration process consists of a correlative stereo and to decide whether the occlusion is on the left, on
. 1gorithm, based on a coarse-to-fine correlation proce- the right or straight ahead of the vehicle.
dure. The disparity map is computed iteratively and
averaged by including new stereo views of some rL.n-
dom patterns placed on the ground floor, until the
variance of the disparity points is low enough. During The pressing computational performance require-
on-line operations, to check the presence of an obsta- ments, estimated in about 10 Hz to cope with the stan-
cle inside the selected windows a correlation approach dard speeds of mobile robots, leads to the need for a
is used. dedicated hardware implementation of the GPOD al-

Tfhe left image of the stereo pair is subdivided in gorithm. Currently two real time implementations are
square patches of size 16 x 16; each one has an ex- available: at the University of Genoa on a '.'DS 7001

pected disparity value given by the pre-computed dis- Eidobrain workstation, equipped with a special image

parity map of the ground floor. Making the correla- processing board where the kernel of t.ie algorithm

tion between a patch of the left image and the cor- has been microcoded and at Elsag Bailey on the mul-

respondent patch on the right image shifted of the tiprocessor EMMA2 where the algorithm has been

expected ground plane disparity it is possible to verify parallelized.

whether an upstanding object violates the expected The Eidobrain image processing board supports the
match of the two image patches. In practice, the usual contemporary acquisition of a stereo pair and - 'igh
stereo matching process is reversed: instead of corre- communication throughput among frame buffers and
lating many patches to detect the right disparity for the Arithmetic Unit. Therefore, although sequentially
each patch, it is used the a priori knowledge of the implemented, the algorithm runs at 10 Hs.
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A parallelisation study, preliminary to the develop- the prerecorded disparity map constraints, gen-
ment of a more appropriate hardware front-end, has crating false alarms. The use of polarizing filters
been conducted on the MIMD EMMA2 computer. on the cameras improves the performance by cut-
A three-processor module is involved in the compu- ting down some highlights. Anyway, the problem
tational part of the algorithm. Each of the 3 Intel is not completely solved because polarizing filters
iAPX286 performs the same task, by means of a data are optimised on a particular incidence angle and
partitioning approach. The computation of the cor- cannot entirely remove these effects.
relation value is speeded up by a custom mathematic the implemented process is without memory and
coprocessor, made by Elsag Bailey, associated to each does not support common path planning algo-
processing element. rithms. Such purely reflexive navigation strategy

There is also another level of temporal parallelism: a can cause problems while maneuvering in narrow

pipeline scheme allows the master processor to control environments.

acquisition of a new stereo pair while the previous on,
is still in the processing phase. 5 Exploratory level: free space map building

This implementation runs at about 4 Hz, due to de- and local path planning
lays on the transmission of images on the system bus,
which is not P. video bus, but guarantees the parallel The task is to build local representations of the robot
procesini, of the whole images and, therefore, an in- environment to map free space which can be used to
creased celiabLity as compared to the sequential ver- plan and update suitable trajectories to reach a se-
sion which stops the iazter scan as soon as a single lected target position. The final goal of this task is to
pa.ch detects an alarm. improve incrementally this 2D map by including new

data acquired by visual sensors and keeping memory

4.3 rechnical evaluation of the GPOD of the past viewpoints. Of course a prerequisite is
to perform such a process quickly enough to support

The requirements of a safety module for navigation real-time navigation. The present implementation de-
are very strict in terms of robustness if it h- Lo be scribed in the paper is performed at discrete steps,
integrated on a real vehicle, particularly in apptication by stopping the vehicle and exploring the scene to do
involving the presence of people. map integration and decide the next robot action.

Basically we can recall the following advantages: The obtained 2D represeptation is local both in space

the method allows fast implementations, up to and time with no semantic information. It is just a
10 Hs, even on a limited amount of hardware, boundary of the free space around the robot, to pro-

and good computational perfoT nances leading to vide the current state of the environment, including

safe navigation at a relatively high speed of the unforeseen events or unpredictable objects and obsta-

vehicle; cles. This local representation is passed to the higher
level, slower process, which is supposed to plan a safe

the algorithm does not require complex, time- medium range trajectory. Otherwise, this information
consuming or frequent re-calibration procedures can be sent directly to a remote station and displayed
and so it may be continuously run, without ' i to the human operator, for teleguidance control super-
man intervention; vision. This is a very simple and reliable way to close

vision based corre'ative stereo permits to navi- the loop at a higher level, on the basis of a very nar-
gate in constrained environments and detect thin row bandwidth channel. An example of this approach
metallic obstacles (such as stool legs) and smooth is briefly referred in the following sections.
edges which typically are critical for ultrasonic
sensors; Different approaches are referred in the literature to

compute this local map. In [8] a volumetric recon-
and the following drawbacks: struction of the scene is obtained through dense stereo

the success rate depends on the amount of tex- correlation. Voxels are integrated in the vertical di-

ture on the obstacle. Complete absence of texture rection and the results are then projected onto the

or pictorial evidences causes a failure as, for in- floor, with selected resolution, to achieve an occu-

stance, in front of a white wall. However, this pancy map of the environment. Major limitations of

criticism is valid for any passive vision system this approach are the computation cost of the volu-

and can be easily removed by using some active metric reconstructica and the large amount of data

sensor, such as IR or ultrasoinds, in combination produced, which require additional compression of in-

with vision formation to find out free space in front of the vehicle.

polished floors with particular illumination con- In fact it is always necessary to reach a compromise

ditions, prevent a correct behaviour since high- between the required resolution and a manageable size

lights on the floor hold a disparity, as opposed of the volume of data.

to markings on the ground plane, and violatcs The approach proposed here consists in computing



sparse 3D segments which are representative of visible Besides, also 3D reconstruction is improved by reduc-
features in the scene, using a suitable stereo arrange- ing data uncertainty from three different viewpoints.
ment and then projecting to the floor the most rele-
vant part of them. In fact these data are cut between
a lower value (a few centimeters above the floor) and 5.2 Real-time processing srchitecture
a higher value (slightly above the height of the robot).

hi t is ase e a sume the gro nd p ane to b al ost The hardware architecture, depicted in figure 3, re-f it th is c a s e w e as s u m e th e g r o u n d p la n e to b e a lm o s t l c s t e a g r h m c t u t r . T i s f o - n d n tflat. Segment primitives are considered appropriate flects the algorithmic structure. This front-end unit
flat Semen priities re cnsiere appoprate has been developed within the framework of the ES-to describe an indoor environment with man-made

PRIT Project P940. This computer vision machine
objects and furniture. Of course appropriate light- is called DMA from the acronym of the project it-
ing conditions are required to provide the necessary
image contrast for feature detection. In the follow-
ing the adopted stereovision process is briefly recalled Telerobotic experiments as described in [11].

as well as the real-time processing architecture which The video-bus for image transfer at video-rate is the
has been realized to implement it at rates faster than Datacube MAXBUS, which connects all modules deal-
1 Hz. ing with raster image data. The system bus for data

transfer, system control, and host interface is the
5.1 Trinocular stereovision VME bus; all the boards are connected to it and follow

the interfacing and arbitration VME standard.
A trinocular stereovision approach i9], based on the Edge detection is implemented at TV rate according
matching of line segment tokens has been imple- to Canny's approach. Two boards have been pro-
mented for depth computation. The preprocessing is
arranged in a pipeline fashion, that is, a sequence of duced: the f es m e byp4FIRnbildineachone labratig te ouput blocks (LSI logic L64240); the latter implements, on
cascaded algorithms ededicated hardware, the "Non-maxima Suppression"
of the previous stage. algorithm.

The major processing steps are: The edge linker board is based on 2 fixed point digital

" non-maxima suppression edge detection as an ex- signal processors (Analog Devices ADSP-2100) with 2
tension of the original Canny appro,.ch 10; piggy-back coprocessors to provide fast implementa-

* edge linking using a two-step procedure for list tion of a set of primitives (detection and analysis of 8-

making in a raster scanning and fusion and merg- connected edge pixels and memory occupancy checks).
ing of the generated edge lists (G.Giraudon). Polygonal approximation and trinocular stereo math-

" polygonal approximation of edge chains using a ing make use of symbolic information instead of image
modification of a Sklansky approach. data. Moreover the stereo matching algorithm struc-

The stereo algorithm is based on three cameras placed ture requires different data partitioning, among the

at the vertices of a almost equilateral triangle, and DSPs working in parallel, at the various steps of the

roughly converging to a common fixation area. The process. For these reasons the two algorithms reside
on a flexible multi-DSP architecture based on Mo-

processing chain of the trinocular stereovision process oroa Dlexible Datarflow ctr aon t d-

is recalled in figure 2. torola DSP56000. Data flow control among the dif-
ferent DSPs and the execution of sequential process-

the matching algorithm follows a prediction/- ing steps are performed by a standard 68020 CPU,
verification scheme; at first, a match hypothesis be- which in this case plays also the role of master board.
tween two segments from t, . . different views is cre- A very powerful floating-point multi-DSP board, con-
ated on the basis of geometrical criteria- then, the po- taining 4 DSP96002 from Motorola has been realized
sition of the corresponding segment on the third image on a double-Europe VME card. This unit is partic-

is predicted A global validation procedure is finally ularly effective in 3D reconstruction and high level
used, by including additional constraints of regularity floating point computation. A Token Tracker module
and smoothness in the reconstructed 3D scene, and is also available on a single DSP (ADSP2100) board
discarding ambiguous matches. and is able to perform segment feature tracking in a

A precise calibration of this arrangement is a key point temporal sequence at a maximum rate of 10 Hz.

for the success of stereo matching The third camera The software architecture of the machine can be de-
is primarily used for consistency check of match hy- scribed by the following levels:
potheses and the main advantages of this approach,
with respect to binocular solutions, are: . the core of the system can be represented as a

state machine where each state represents a single
* the implemertation of stereo matching is simpler DMA function (acquisition, FIR, edge detection,

and faster, etc ). The state machine works as a task alloca-
* the system is more robust against ambiguc.us sit- tor: it selects the different drivers of the DMA

uation. boards acco.ding to the DMA process sequence
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mod A ule- - SW impl. HW impl. A first step of processing consists in simplifying the

(Sun3) __ - bunch of the projected segments to avoid lo-al clusters

FIR filtering 39.1 s 40 ms and intersections, which badly affect the triangula-

+ (filter 1lXII) tion process. This Delaunay triangulation is also per-

Edge Detection formed a.i a support for further higher level processing.

Edge Linking 4.1 s 120 ms In fact in [121 the empty triangles, corresponding to

(6500 edges) (4 DSPs, free space, are easily identified, through visit ility con-

__"__ 10000 edges) straints. The corresponding graph, formed by such

Polig. Approx. 11.4 s 200 ms triangles, is used to generate colision free trajecto-

(6500 edges) (4 DSPs, r ties for the robot. Moreover, this representation is

500 segm.) particularly suitable for an updating process. In fact,
Stereo matching 30 s 200 ms when new sensory data are acquired from stereovision,

(140 segm.) (4 DSPs, the ground floor map is updated by including new seg-
- i 200 segin.)i ments into the Delaunay triangulation and the process

Token tracking 10 s. 100 ms is iterated. An example of the reconstructed map and

(250 segm) (1 DSP, planned path is shown in fig. 4 corresponding to a

.. 250 segm.)j recent on-line demonstration of the system at INRIA.
in Nice.

Fable 1: Computational performance of the different
processing modules compared to a software implemen- .... .. -- t..-
tation on a Sun3 workstati(,n

-equired by the application program, loads the .- - ... -

correct parameters, coordinates the pipeline acti- '
vation of the modules.- .......

9 A portion of the control system is dedicated to the"_ ..

MD56 multi-DSPs boards, that can be considered
as a MIMD machine since each I)SP can host dif- ,
ferent applicative programs, exploiting the F.vail-
able synchronization and c-oTmmunication prui- -f--' ac:eo ca'

'uves.NIreoer the 68020 CPU acts as the mas- - ,-.ce ... ,2;

ter processor of the %ID56 riultiprocessing sys-
tern, hosting the main of the applicative software " T"" , .. ,

(polygonal approximation and stere,, matching so
far).

* Finally there is the interface t, wards the host en
vironmrnent, composed by n. cornmunication pro-
t.,col between the DNIA rn--hine and the user Figure 4: Example of a path computed from the graph
interface running on the host w,,rkstation and a formed by the free Delaunay triangles.
-ommand interpreter, which dec,,des the instroc-
ti-ns received from the host Another approach, which has been investigated in 11

Fable I refers the roniputati-n time required by the consists in performing 3D interpolation of the recon-
individual processing modules, as c,,iipared to a soft- structed 3D segments in the scene, through a Con-
,are implementati,m on a SU7N3 workstatinn. Such strained Delaunay triangulation (CDT). The purpose
results refer t- the pr.,cessing ,f typical scenes in our here is to recover a planar surface approximation of
uabratory environment (mechanical pieces and indoor the objects close to the robot, using visibility con-
0-nesi straints, as a series of triangular patches whose sides

include the extracted 3D stereo segments. The nay-

5.3 Free space cornputatiin as the upper en- igation map is obtained by projecting onto the fleor

veope of the comrputed 3D segments all possible paths across those triangular patches and
merging them in a lower radial boundary (LRB), com-

\s already mentioned, the basic idea consists in pro- pited from the current position of the robot, which is

]ectng the reconstructed 3) segments onto the floor the origin of the polar map. This is d-finitely the most
,known by calibration) and then process them to oh- complete and robust approach for the free sp ice com-
tain the free-space navigation map. There are dif- putation, since it makes use of the full perceived stereo
ferent ways to do that. One apprach is referred in ii, formation, although at the price of a higl compu-
12 where a 2D Delaunay triangulation On tGe ground tational complexity. Actually an efficient algorithn

floor is used. to better organize the available data fr 31) interpolation has been implem' ited as a 2D



Delaunay triangulation on the image plane [14] and way, the obtained map is qrite sufficient to plan a safe
real time performance may be easil) foreseen on suit- trajectory and reach another position from which to
able processing architectures (it takes about 10 sec- explore again the environment.
onson a standard SUN3 workstation). To simplify The availability of the previously described hardware

for 3D stereovision at high speed permits an intense
experimentation of this tool in a teleguidance mode of
operation, as referred in section 7.

6 Global navigation: Landmark detection
and self-positioning

/A common approach to global navigation, that is the
capability to perform complex and long missions au-
tonomously, consists in programming the robot to fol-
low a predetermined path by dead reckoning, using
landmarks ,r beacons to correct errors in the position

p estimate. Dead reckoning is the estimate of the robot
position and orientation from measurements of wheel
motion (odometry). Odometry alone does not guaran-

0 tee to accomplish the navigation task since it suffers
z from several sources of inaccuracy such as wheel slip-

page, therefore, an external sensor, able to reset every

z V now and then odometric errors is necessary.

Industrial AGVs use generally active beacons in
Figure 5: Computation of the Lower Radial Boundary shopfloor applications, such as IR laser scanner and
(LRB), by polar scanning around the viewpoint V. bar-coded retroreflective targets [3]. On the contrary,

we claim that in non-industrial indoor environments
this situation, a suboptimal scheme has been adopted (offices, hospitals) a valid alternative approach is rep-
in our experiments, by computing directly the LRB resented by passive vision which does not need poten-
of the free space, without any surface interpolation tially dangerous laser emissions and high cost for the
of the scene. This is obtained by a polar scanning, installation of the devices.
around the reference viewpoint on the mobile robot, The passive vision approach relies upon landmarks,
of all projected segments as shown in fig. 5. The pro- that is known scene entities which allow to recover
cess is incremental and is based on a module which the robot position and orientation from their appear-
performs the fusion of two LRB's from the same view- the obot image ories).tion dmar apea siglesegentmay e cnsiere as ance onto the image (or images). Landmarks can be
point. Actually a single segment may be considered as natural entities or objects already present in the en-
a special case of a LRB with a small radial extension. vironment whose position and image appearance can
The implemented algorithm for the fusion is based on be recorded by the robot through a learning by show-
the sweepline technique applied to the intervals deter- ing procedure. This approach, followed by [5] and
mined by the endpoints of all segments and their in- is the mos g pra chlled by dtersections. The theoretical computational complex- [15], is the most general and challenging since does

tersctins.The heoetial cmpuatinal ompex- not require any intervention onto the environment. A
ity of the algorithm is estimated to be quadratic with not rein o nte onment. Amore conservative but reliable alternative consists in
the number of segments, although from experimental the installation of pre-designed landmarks ;7 order to
results a linear dependence has been found. simplify their recognition and pose computation.

Fig. 6 shows the reconstructed map for a scene of Another way to classify passive vision-based self loca-
our lab with a chair, a desk and an indudrial robot. tion techniques is on the basis of the technique for the
The line segments in the map have different meanings. estimation of the landmark position:
Solid lines correspond to real edge segments detected
by stereovision. Dashed lines are virtual boundaries e stereo-based 3D feature extraction and model
due to visibility constraints, since nothing is visible matching (2 or 3 cameras);
beyond them. As such no decision can be taken on * triangulation of features detected and matched
the free space available in such areas and a next stereo in multiple images through robot motion [15] (1
reconstruction from another viewpoint is necessary to camera);
improve both the density of the scene and the confi- * monocular model-based perspective backprojec-
dence in the reconstructed map. Actually some irreg- tion of the landmark (1 camera).
ulsrities are detectable in the map expecially for those
features which are far away from the robot position, Our approach relies on the 3D pose recovery of a pre-
where the stereovision process is less accurate. Any- selected landmark from the perspective inversion of
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Figure 6: a. TIhe original scene;, b. The scene map after projection of the 3D line segments onto the ground
floor-, c. The Lower Radial Boundary of the freespace.
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its projection on a single image. The main advantages
over the other self-location methods are:

o there is no need to match features among different
images;

* no complex generic object recognition is required,
since the landmark recognition is performed by a
dedicated procedure; 0

* the a priori map is very synthetic since there is
no need for a complete description of the environ-
ment in geometric terms; in fact a list of landmark X
positions suffices;

o processing of a single image for each self-
positioning operation;

o no triangulation is required and, therefore, a less
dense landmark distribution in the environment Tr _ _J
is necessary, since there is just one landmark for
each recalibration point.

6.1 Landmark design and the relative self- Figure 7: 3D circle and corresponding projected image
positioning algorithm ellipse.

Even if the fundamental property of a landmark is
;he pcst ily to s.-:essfully apply a perspective in-
version procedure to its image, other desirable char-
acteristics should be the following: The approach, outlined in fig. 8, is characterised by a

* detectability in the image by a fast and robust preliminary stage of geometric reasoning on the seg-

algorithm; ments coming from the polygonal approximation of

o robustness with respect to partial occlusions; the edge chains of the image. As such it is possible to
deal successfully with outliers and noise of real scenes

* easy and reliable discrimination among different [16]. Then, an ellipticity test is carried out on candi-
instantiations of the same landmark type; date chains of segments in order to select the contours

* the achievable accuracy must be good enough to which can be fitted by an ellipse equation.
allow the reset of odornetry errors;

In this way the 3D position of the robot is computed
As such a simple and promising landmark to inves- with respect to a frame of reference centered on the
tigate is a circle, producing in the sensor image an current landmark. Hence, it is necessary to fully iden-
elliptical edge. tify such landmark in order to provide a global po-

From a mathematical point of view, the problem of sitioning of the vehicle in the navigation map. Un-
the perspective inversion of an ellipse generated by a fortunately a landmark consisting of a single circle
circle in the space, is reduced to find out those planes cannot guarantee a unique identification, therefore a

t whose intersections with the cone over the ellipse and more complex configuration is proposed: the circular
with vertex in the origin are circles (see fig. 7). We annulus (see fig. 6.1).
can only determine the normal to the right planes, An invariant physical feature of the landmark is a
and not the distance from the origin, because parallel good candidate to be used in identification, the prob-

sections of a cone are all similar geometric entities. lem being how to measure it from images. By means
The a priori knowledge of the landmark radius value of the ellipse perspective inversion algorithm it is pos-
allows us to choose among the parallel planes which sible to compute the linear relation between the ra-
one corresponds to the actual case and, therefore, to dius of a circle and the distance of its centre from the
estimate the landmark-to-robot absolute distance. camera pinhole; therefore, if we observe two d-9cr- -

Avoiding special cases, there are two possible nor- concentric circles we are always able to compute the

mals for every ellipse, i.e. two possible sets of parallel ratio of their radii. If such concentric circle pairs with
planes: this intrinsic perspective ambiguity is solved different radius ratios are used as landmarks, the ratio
by making the assumption that landmarks lie on walls, between the inner and the outer circle can then be ex-

that is surfaces perpendicular to the navigation floor, tracted independently of the robot pose and used for
whose pose with respect to the camera can be call- identification. The two concentric circles forming the

brated. landmark have different purposes: the outer is used
to determine the pose of the camera with respect to

A key point is the existence of a a robust P ,,d reliable t; terine is use o f the la a rkb y th

Starfo igc os it; the inner is used to identify the landmark by the• ,,,h, ", -Attat elipic rcsfromimae cntors, radius ratio.



Pynputed and the resulting state vector of the robot is
passed to the pilot module in charge of planning the

route towards the next point of interest listed into the
mission file. If the odometric errors lead the robot out-

Pside the landmark visibility region, the landmark de-
tection module communicates its failure and the robot
rotates on its own axis in order to search for it. More-

i over, the system robustness is improved by the abilityElIi pticity

Test to recognise each single landmark so that even if the
robot get lost, he can recover his mission by searching
for the nearest landmark visible in the camera field of

Ellipse view.
hypotheses

(chains)

7 A comprehensive demonstration of visual
Least squares Hypothesis navigation

Fitting Completion

r Within the framework of the European research

Elli project ESPRIT P2502 (VOILA) an experimental

Eqton platform for robotic navigation has been set up. Thegeneral architecture is based on the following ele-
ments:

8: Flowchart of the ellipse detection algorithm 1. the TRC Labmate (  mobile platform, control-
Figure 8lable via an RS-232 serial port. The vehicle is

equipped with odometric sensors.

2. Three CCD cameras mounted on an appropriate
rig;

3. EMMA2, an ELSAG-made multiprocessor [?],
that provides parallel processing capabilities;

4. a PC 486 equipped with a frame grabber for
monocular scene analysis, directly connected to
EMMA2 which acts as the application supervi-
sor;

5. the already described DMA vision front-end,
again connected to EMMA2 through a dedicated
parallel interface.

Figure 9: The concentric circles which forms the land- 6. A host minicomputer (Q-bus and VMS operating
mark system) to be used as host for EMMA2.

6.2 The landmark based navigation strategy 7.1 Description of the demonstration

Mission plans describing possible robot paths are se- This demonstration is primarily intended to exploit a
quences of points of interest that the robot has to Teleguidance mode of operation supported by remote
reach. Each one has a local reference system attached visual perception. It is worthwhile to stress the prac-
to it and at least a recognizable landmark with known tical relevance of many short term applications where
position in this local frame. With respect to these the presence of the human operator in the loop cannot
landmarks the robot can estimate its values of posi- be removed.
tion and orientation in the environment.

Three visual navigation functionalities are demon-
During navigation, slf-positioning is performed strated showing different levels of integration between
whenever, according to odometry data, the iobot the Luman operator and the robot.
should have reached the supposed destination posi-
tion. In this case the robot stops and, using its knowl- According to the kind of operator interface and the
edge about the environment, turns on itself trying to competencies of the vehicle three vhdemonstrations
acquire tht lanasniaik in dhe fied ot view ot the cam- are experimented:
era. (i) Direct Teleguidance;

Through landmark identification and its perspective (ii) Landmark-based Teleguidance;
inversion, the mutual rough position estimate is com- (iii) Exploration and map building.
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7.2 Direct Teleguidance 7.3 Landmark-based Teleguidance

Landmarks are very useful also in a Teleguidance
This demonstration shows the possibility to inspect or scheme. The operator's job is simpUlied if the
control an indoor environment with a mobile platform. workspace is synthetically described in terms of pre-
It is not necessary to have a model of the e,vironment defined landmarks. The robot mission can be con-

trolled at the Task Level by issuing commands like

The two principal actors of the demonstration are the go from landmark z to landmark y.
autonomous mobile robot and a human operator. The

Moreover, the presence of the operator at a super-architecture of the demonstration must clearly distin- vision level can be exploited for recovering from un-
guish between the local site, where is the human op- foreseen situations without aborting the mission. In
erator and the remote site, where the mobile robot particular, the operator can correct the vehicle ori-
works. entation whenever the odometric drifts prevent the

One CCD camera provides the operator with a display camera from framing the expected landmark or solve
of the remote site. Pure teleoperation is limited to high level ambiguities in the recognition phase.
the interactive choice of the navigation goal through
a joystick, to select a target point on the dilplayed 7.4 Exploration and map building
scene, as shown in fig. ??. In this demonstration the robot utilizes the capability

to recover the free space in order to plan safe trajecto-
ries towards a given goal avoiding unknown obstacles.

Here the three cameras are set up in stereo configu-
ration and connected to the DMA machine real time
stereovision system which provides a wireframe 3D re-
construction of the scene.

The demonstration shows a mobile robot which
reaches a goal specified by the operator, finding out
autonomously a collision free trajectory without any a
priori knowledge about the environment. At the end
of the run, a freespace map is available proving the
ability not only to navigate but also to explore the
scene.

/ As the field of view of the stereo rig is relatively small,
it is necessary to get a panoramic view of the envi-
ronment by panning the stereo rig through a robot
rotation.

8 Conclusion

Figure 10: The direct teleguidance concept: the oper-
ator clicks onto the computer screen the position that The paper refers on the use of artificial vision tools tothe robot must reach autonomously, support autonomous navigation of mobile robots for

indoor applications. Even if we look at the challenging
scenario of service robotics, the considered examples
here are referred to a teleguidance mode of operation,

This point is backprojected onto the floor, using some which is typical of hostile environment applications
a priori knowledge about the set-up. Then, it becomes and surveillance tasks. In this case, the human op-
the goal of the mobile vehicle, which has to navigate erator acts as a mission supervisor at an appropriate
to it without any additional intervention of the human level, depending also from the degree of autonomy and
operator, unless some special events occur, safety of the robot action.

During the local navigation to the subgoal the vehi- In practical situations the mobile robot will be nec-
cle will be completely autonomous and will detect the essarily equipped with multiple sensors (lasers, IR,
presence of unexpected obstacles. The task of obsta- ultrasounds, tactile bumpers, etc.) beside vision, to
cle detection will be performed by the ground plane obtain the more appropriate solution for the specific
obstacle detector (GPOD) algorithm. When an obsta- problem a# hand
ce i& detected the robot avoids it and tries to recover
the original path using odometry. Finally, at the end This paper is not intended to promote any particu-
of the robot action, the human operator resumes the lar industrial or commercial product, nor to address a
system control and decides a new subgoal. precise application task. Besides, its aim is to investi-



gate potential advantages, and limitations, of passive on Robotics and Automation, Cincinnati (Oh),
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Machine Perception Exploiting High-Level
Spatio-Temporal Models
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ABSTRACT Systems architecture based on the integrated 4D ap-
proach

A paradigm for machine perception is presented which - temporal structuring
takes time and 3D space in an integrated manner as the - hierarchical structuring
underlying framework for internal representation of the - expectation based data fusion
sensorially observed outside world. This world is con- Experimental results
sidered to consist of material and mental processes evolv- - road vehicle guidance
ing over time. The concept of state and control variables - aircraft landing approach
developed in the natural sciences and engineering over Conclusions
the last three centuries is exploited to find a new, more Literature
natural access to dynamic real-time vision and intel-
ligence. A. Schopenhauer's conjecture of 'he world as
evolving process and internal representation' (1819) is INTRODUCTION
combined with modern recursive estimation techniques
[Kalman 60] and some components from geometry and Webster's Seventh New Collegiate Dictionary gives the
Al in order to arrive at a very efficient scheme for auton- following definitions of terms in connection with the word
omous robotic agents dealing with evolving processes in 'perception':
the real world in real time. Application to autonomous
mobile robots is discussed. Perceive: 1. to attain awareness or understanding of, 2. to

become aware of through senses. Percept: an impression
of an object obtained by use of senses.

CONTENT Perception: 1: consciousness; 2a: a result of perceiving;
observation; 2b: a mental image: concept; 3a: awareness

Introduction of the elements of environment through physical sensa-
The development of technical vision systems tion; 3b: physical sensation in the light of experience; 4a:
Lessons learned from the natural sciences, mathematics direct or intuitive cognition: insight; 4b: a capacity for
and engineering comprehension.

- three-dimensional (3D) space and time Perceptual relating to, or involving sensory stimulus as
- 3D shape and perspective mapping opposed to abstract concept.
- dynamical models of physical processes
- state and control variables, process parameters These definitions clearly indicate a wide range of mean-
- feedforward and feedback control loops ings, however, a close linkage to physical sensing in

(cybernetics) general and to vision in special (2b, 3b, 4a); 'objects' as
- dynamic systems design 'elements of environment' are referred to, as well as to
- Kalman's recursive state estimation technique the fact that perception is a mentally based activity (3a to

* Gauss's model based least squares measurement 4b). However, the bottom-up data processing aspects are
interpretation scheme emphasized more than abstract concepts. Definition 3b

" from generic solution curves to differential equa- may be the most appropriate one in the context of ma-
tion models chine perception; with regard to applications, 4b covers

* extended and sequential (numerically favorable) the task context (see also 'perceive' and 'percept').
recursion schemes

Stimuli from philosophical thoughts 'Understanding' or 'comprehending' includes knowledge
The integrated 4D approach to dynamic vision about semantical relationship in the context of action

- basic scheme sequences or goal functions to be optimized. So, percep-
- from features to physical objects in space and time tion gains its value in connection with control activities,
- reflex-like egomoticn behavior or at least with preparations for future ones. Without the
- objects, subjects and situations capability of control actuation, perception would be
- mental states and intelligence meaningless (and frustrating?).



Intelligent systems are capable of handling complex sets Building on I. Kant's basic result from two centuries ago,
of goal functions ever time and of taking advantage of which also formed the foundation for Schopenhauer's
processes happening in their environment for achieving conjecture, namely that space and time are not attributes
their goals. of objects but are carried into the world through our

perception and analysis system, it was decided to repre-
Because of its remote sensing capability, the sense of sent space and time directly in the interpretation scheme.
vision ist the major source of information in our natural In addition, the constraint was deliberately imposed on
environment. The state of development of microelec- the approach that it should work in real time, i.e. that the
tronics today allows to tackle machine vision as a very computational progress over time is directly linked to the
promising next step in the evolution of technology on progress of the physical process observed and controlled,
Earth. This section is devoted to dynamic vision as one and not limited by the present state of computer hard-
major component in machine perception for locomotion ware performance. Of course, this confined the problems
control. to be treated considerably in the early 80-ics. It had the

members of the team look at problems in a different way,
however, and both image processing and scene inter-

THE DEVELOPMENT OF TECHNICAL VISION pretation algorithms developed differently as compared
SYSTEMS to the results of other groups wh3 worked under the

paradigm that the increasing processing power of future
Computer vision has evolved from digital image pro- miroprocessor generations will solve all the performance
cessing over the last three Uecades. Therefore, it is usually problems with respect to real time.
embedded in a quasistatic framework of snapshot inter-
pretation. On the contrary, biological visionsystems seem After a decade of steadily increasing complexity of the
to have developed for motion detection and control in an problems solved and with experience in five different
ever changing physical environment. Are the best suited problem areas, it seems timely to present the approach
methods for both tasks the same or are there fundamental and the basic ideas behind it in a comprehensive way;, the
differences? seven dissertations in which most of the material has been

originally published are in German language and, there-
In the Artificial Intelligence (AI) community the vision fore, not readily accessible to the general public. The
problem has initially been tackled as a quasistatic prob- survey article [Dickmanns and Graefe 88] triggered much
lem. Much effort has been devoted to the inversion of the interest which was one of the driving factors for writing
perspective mapping process taking several (consecu- this document.
tive) frames into account; for a surveysee [Nagel83]. This
does not take advantage of the temporal continuity con- The present article is intended as a general introduction
ditions in the physical world to which all material to the '4D approach' for all those interested in machine
processes are usually subjected. vision applications in real world dynamical scenes. Em-

phasis is put on exploiting knowledge about the physical
In physics, especially in mechanics, powerful methods world and temporal processes; image sequences are
have been developed over the last three centuries in nothing but discrete and systematically impoverished in-
order to describe the observed behavior of material termediate carriers of information about the spatio-tem-
processes. In engineering, over the last three decades poral world. It is the main goal of the article to shift the
these methods have been supplemented by features well paradigm for dynamic machine vision from more aca-
adapted for recursive digital data processing. Recursive demic computer science to practical applications in phys-
in this context means that least squares data interpreta- ics and engineering and to the corresponding methods.
tion is achieved step by step as new data arrive. The Practitioners should find it particularly attractive to ex-
discipline of systems dynamics evolved out of these ac- perience the direct connections from this modem, very
tivities encompassing aspects of several fields: from sen- promising field of development to well proven methods
sor technology, signal processing, control theory and in conventional applied sciences.
design, actuator technology through dynamic behavior of
systems. Resorting to these tools, hopefully, will not have AI-re-

searchers turn away immediately. It is the blend of
In this article, the systems dynamics approach is applied methods which will lead to efficient machine intelligence
to the field of visual dynamic scene understanding, mo- systems.
tion control and intelligence. Off the beaten track of main
stream research into computer vision, this approach has
been developed over the last decade. Combining well LESSONS LEARNED FROM THE NATURAL
proven engineering methods with knowledge from SCIENCES, MATHEMATICS AND ENGINEERING
geometry (perspective mapping) and some new aspects
of Al, a surprisingly powerful and efficient scheme for The intention of this approach is not primarily to
the general task of dynamic machine vision using dis- generate some artificial counterpart of what is called
tributed processing resulted. The basic connecting link is intelligence, but to enable machines with complex
a very old idea which the German philosopher Arthur sensorysystemsandthecapabilityofself-controlledloco-
Schopenhauer conjectured more than 170 years ago ['Die motion to get around in the real world in a meaningful
Welt als Wille und Vorstellung', 1819, freely translated: way, by doing this, some kind of intelligence will emerge
The world as evolving process and internal repre- more as a side effect in a natural way.
sentation].



!n physics and the engineering sciences mankind has has been applied for many millennia in all cultures
learned over the last centuries how to analyse and repre- around the globe. Sensible theories about the vision
sent natural and artificial objects and processes in the process are less than one millenium old; a nice survey on
environment efficiently. The condensed results of this early vision theories is given in [Lindberg 76]. The diffi-
longterm endeavor of interest to the field of dynamic cult problem in vision is that even though the input into
vision are reviewed briefly in the following sections. data processing is a 2D matri, (spherically arranged in

the eye or planar in a camera) the conscious interpreta-
Thbee-dimensional (3D) space and time tion should be spatial accordLg to the relative physical
Early geometricians, already millennia ago, discovered positions of objects in the real world. For one single
that the space we happen to live in can be exhaustively photographic snapshot this problem cannot be solved;
analysed using three independent coordinates. After the much effort in computer vision has been devoted to the
more modern French scientist Descartes the orthogonal problem of how many different images are sufficient for
('Cartesian') coordinate systems in wide use today are uniquely reconstructing the spatial scene.
named.

The law of perspective projection, according to which
The relationship between space and time has been more each visible particle emanates or reflects straight-line
obscure for a long time. It was Newton who in the 17-th light rays from its spatial position to the receiver, is
century invented the differential calculus and applied it considered to be a sufficiently good model, discarding all
to motion analysis. This step in the natural sciences to- side effects of real lenses and mapping devices.
gether with the introduction of the inverse square field of
gravity brought about a revolution in motion under- The shape of real bodies has to be inferred from intensity
standing. After this step the geometrically known orbits distributions over its visible surfaces and their behavior
of planets (Kepler's ellipses) could be linked to a few over time during relative motion. Oftentimes, physical
dynamical motion parameters. The time derivative of the edges and region boundaries on the surface lead to inten-
moment of momentum (the second time derivative of sity edges in the image plane which, when observed under
position variables in cases of constant mass) was postu- steadily changing aspect conditions, may allow the
lated to be proportional to forces, which in a gravity field proper spatial interpretation (shape from X).
were in turn linked to position.

For the representation of 3D shapes the engineering
The general description of this famous motion law, which sciences have per.ected a 2D representation scheme
despite modem theory of relativity is well justified in showing parallel projection views from three (or all six)
conventional mnihanics still today, may be written in mutually orthogonal directions. If the object has a plane
vector notation as (0 d( )/dt) of symmetry, two (four) of these viewing directions

should preferably lie within this plane. One or two refer-
x_ = L. , U, p, (1) ence axes are usually chosen in such a way that the object

is oriented in a functionally proper way under normal
where x is the state vector with n components, u the Earth gravity conditions (e.g. a car with all four wheels
control vector of dimension r to be freely selected at each touching the ground plane). Nonunique interpretation
point in time, andp the parameter vector of dimension q possibilities (e.g. in concavities) may be disambiguated
characterizing the special problem. In each degree of by special 2D cuts through these regions. A skilled and
freedom, since acceleration as the second time derivative trained person can imagine the proper perspective view
is proportional to forces or moments, two state coin- of this object from any aspect condition. For practical
ponents (position and velocity) have to be taken into purposes, only approximately correct 3D views (to within
account. Therefore a particle moving freely in 3D space a few percent accuracy) are often sufficient for object
has to be described by 12 state variables, 6 for translation recognition; this can be achieved using relatively simple
and 6 for rotation, 3 each for position and velocity. For heuristics for fast and efficient computation of the per-
motion in a plane, 6 state variables are sufficient. spective image given the 2D normal views. 2D shapes with

smoothly curved contours and corners can be efficiently
It is the integral relationship from acceleration to velocity represented in a translation, rotation- and scale- invari-
and from velocity to position which constitutes essential ant form by Normalized Curvature Functions (NCF)
(implicit) knowledge about the temporal behavior of [Dickmanns 85] which in turn are easily measurable by
massive objects in the real world. We humans do not have tangency operations in the image plane.
to learn this knowledge consciously, since it is absorbed
subconsciously during the first years of our lives while we Dynamical models of physical processes
learn to crawl and walk and to react to other moving The term 'dynamical model' in mechanics, systems dy-
objects or subjects properly. Some individuals develop a namics and control theory means a generic differential
special skill in this respect; they are good sportsmen even equation description (like in eq. (1)) for -ome motion
though they may not be able to explicitly formulate how process. We confine the discussion here to motion of
they behave. A wealth of knowledge about the real world massive bodies, be it rigid or elastic. In the case of rigid
is acquired and coded in our neural nets this way even bodies, classical mechanics has shown that the overall
though it is not yet known how. motion can be decoupled into translation of the center of

gravity (cg) and rotation around the cg. In the case of
3D shape and perspective mapping elastic bodies some deformation may be superimposed
A similar situation may prevail with respect to our 3D which in the case of free motion usually is an oscillation
shape understanding through vision. Geometric mapping around a reference shape.



For massive rigid bodies, the forces and moments acting shape is in the spatial domain. Exploiting this knowl-
on a specific body are usually very limited in magnitude edge about moving objects in addition to shape con-
leading to a characteristic motion behavior over time like stancy results in much more efficient recognition and
a ball flying through the air in the gravity field; gravity and tracking schemes for moving objects. Note that the
its secondary effects like friction in sliding or rolling spatial velocity components of objects are state vari-
motion as well as fluid dynamic drag predominate many ables in this sense; again, this is a strong argument for
motion processes in the real world. Once these basic favoring an internal representation in 3D space and
influences are properly understood (internally repre- time via dynamical models.
sented by a model), a prediction of physical motion in 3D
space becomes easy. Combining this with the perspective 3. Variables which are fixed over periods of time and
mapping knowledge of the previous section allows to which may be selected at some discrete point in time,
predict motion appearing in the image piane. Note that including the system design phase: socalled system
for the motion in the image plane no similarly simple parameters St. 'Typical examples are shift gear posi-
direct models can be given due to the nonlinear perspec- tion in a car, landing flap position in an aircraft, switch
tive mapping involved. positions etc. and the constants in the system matrice-

A and B. This set of system variables can be con-
The use of dynamical models enforces the internal rep- sidered constant over tine for short term motion
resentation to be in space and time simultaneously (40). behavior even though there may occur a slow change
Since the image sequence is discretized over time (50 or due to wear and tear or environmental effects like
60 Hz corresponding to a video cycle time T' of 20 or 16 temperature or humidity.
2/3 ms), this basic cycle time T' or an integer multiple T
thereof is used to transform the differential equation (1) Knowledge about a dynamical system is firstly coded in
into a difference equation leading to a state transition the set of parametersp and the structure of the matrices
matrix A and a control input matrix B A and B as well as their numerical entries. Equally im-

portant in the temporal domain is, however secondly,
.K[(k+t)T]=A(,p,kT).1(kT)+B(xpuk).(k),(2) knowledge of how the system is going to behave with

respect to its state variables in response to some control
which yield a very compact knowledge representation for input over time. Especially, the question of how a desired
the temporal evolution of physical processes in the real set of state components can be achieved efficiently by
world. Note that in the second additive term on the right appropriate control input time histories is practically
hand side the effect of control action is contained; this relevant; the entire field of 'optimal control theory and
makes this type of representation especially attractive application' is devoted to this problem. Mathematicians
since it allows to include the intelligent motion control have de-eloped the calculus of variation for this purpose
part into the prediction scheme. For more long term [Euler 1-441 and the'Maximum principle' [Pontryagin et
prediction, p. obably for investigating the effect of some al. 621, which especially in aerospace engineering but also
future control time history of the own vehicle (maybe in many other fields has important and widespread appli-
even several alternatives thereof) this eq. has to be eval- cations since the time that digital computers allow to
uated as many times as requested into the future, thereby solve the corresponding difficult numerical problerms
allowing a simple means for temporal reasoning. Entire [Bryson, Ho 751.
action sequences may be investigated (simulated) this
way before decision taking. To intelligent agents the control variables are of special

importance since they constitute the only means through
State and control variables, process parameters which any influence can be exerted on an evolving
In an efficient description of real world processes there process in the real world. Discretely selectable parame-
are three types of variables involved: ters like a switch or flap position may be viewed as

'control parameters' and handled correspondingly. Con-
. Those which can be changed at any time at will: e.g. trols in this sense are the extremely important parts of a

steering wheel turn rate of a car, voltage applied to an system where 'a free will' working on information col-
electromotor, force applied to an aircraft control lected by sensors can exert an influence on the proces"
stick, throttle position of an engine. These variables under control. The provocative term 'free will' will be
are called control variables u(t). discussed later.
Note that this definition is somewhat arbitrary: If the
force applied to an aircraft control stick is such that Feedforward and feedback control loops (cybernetics)
the desired control stick position is reached before When an experienced person drives a car and wants to
the aircraft starts moving in its eigenmodes, the con- switch lane on a highway she or he implements an ap-
trol stick position could have been chosen as the proximately sinusoidal steering wheel maneuver over
control variable (as has been done with the engine time without thinking about it. The amplitude and the
throttle). The essential point is that the control mo- time rate are adjusted in such a way that the car finishes
tion has to have a dynamic behavior at least one order this maneuver approximately in the center of the new
of magnitude faster than the controlled process. lane. This can be done in one smooth overall maneuver.

A beginner, on the contrary, since unfamiliar with the
2. Those variables which can not be changed directly but behavior of the car, will tend to use small incremental

which only evolve over time: these are the socalled control inputs and observe the reaction of the car which
state variables x(t). Their evolution over time is as in turn will lead him to select the next control input step
characteristic for an object in the temporal domain as until the car will finally also end up in the new lane,



however, iuch later and without a smooth control time Measurements usually are noise corrupted. Therefore,
history. The experienced person since knowing the tern- good state estimation can only be achieved when pro-
poral response of the car to a 'feedforward control' time cessing many more data than are minimally required. A
history made use of this knovw i dge leading to better brief sketch of the historical development of this tech-
performance; the beginner observing the actual discre- nique is given in the following subsections.
pancy between desired and actual state used the differ-
ence in some way to feed the control input according to Gauss's model based least squares scheme for measure-
.;ome rule (e.g. a constant factor times the negative differ- ment Interpretation: When the structure of the motion
ence). trajectory is known in advance like fcr ellipses in

planetary motion around the ctntral star, this knowledge
By applying a 'feedback control law' the behavior over can be used efficiently in order to smooth noisy measure-
time of the controlled vehicle is fixed, but modified rela- ment data. The mathematician KF.Gauss has introduced
tive to the 'open loop'-behavior without any control input. the technique of fitting curves of known .tructure to neo;y
The dctualor need not be a person but may be some databyminimizingthesumofthesquaresofthl-residues.
suitable technical subsystem like an electro-riotor or an This has lead to much improved accuracies ia orbit de-
hvdra lic actuator leading to an automated system. termination and general curve utting.

Control engineering and mathematics have developed Note, that this improvement is achieved by using solution
theoretical and numerical methods which allow design- curves of motioL processes, and that a set of mcasure-
ing closed-loop systems with complex eigenbehavior. Lit- ment data has to be batc processed at a time.
crature abounds in this field; just one among many others
is I Kailath 801. From generic solution curves to differential equation

models: If the goal is to have good actual motion state
ly-namic sytems design estimates while motion is in progress one would like to
With the powerful digitai microprocessors available have a scheme which gives an incremental update at each
ta oy, cv-rinations of evnt-triggered parameterized point in time when new data become available, If the
Icclforward control time histories and robust feedback process observed can be influenced by control input, no
control laws for different s'ibtasks allow the development a priori structure for the solution curve can be given. In
of very flexible and high performance automatic systems. these cases, instead of exploiting solution curves the

underlying generic differential equations are more ap-
F-cn though the theories developed ,re mostly based on propriate. For the linear case with kno' noise statistics
Ihe assumption of a linear system description, avery large [Kalman 1960] has given a recursive least squares scheme
pcrcent age of the generally nonlinear 'plants' (the tech- which allows optimal state estimation from a reduced set
ical systems to which automation is applied) can be of output mes surements. Space does not allow to go into
handle(, this way since lincarisations around the actual details here; the interested reader is referred to [May-
reference point usually are sufficiently good approxima- beck 79]. The known syst:-m structure of eq (2) allows to
t ions to the system, especially since feedback controllers recover state eomponents which are not directly
keep the system actively in this domain by their f, mction- measured by substituting structural knowledge for
ing. By adding a system identification component, the missing measurements, observability given. Thc error
temporal change of system parameters can be detected covariance matrix plays an important role in this process
nd the control scheme may be adjusted accordingly and may bt exploited for the removal of outhers, thereby

without human intervention. btabilizing the interpretation process.

Modern trends go towards coupling automatic control The big advantage of this recursive state estimation
systems with expert systems in order to improve flexibility scheme is that always only the last measurements are used
and robustness of the overall system under a wide variety for updating th, best estimates without the need for
o: operating conditions. The system discussed in the storing previous data, which is especially rew-ding in
sequel for real time machine vision may be subsumed image sequence processing where each i,'-age comprises
tinder this category. enormous amounts of data (105 to 106 Bytes). The result

of all previous data is the present best estimate for the
Kalman's recursive state estimation technique state vector of objects acd the covariance matrix corre-
For interpreting measurements, modern control systems sponding to a storage requirement in the order of mag-
theory has deviced an elegant scheme, how optimal esti- nitude 102 per object tracked.
mates of the actual state of internally - epresented cbb, cts
from the real outside world may be arrived at in aP Extend",- and sequential (numerically favorable) recur-
efficient way exploitL-ig dynamical models about spatio- sion schemes: In the case of nonlinear components in the
temporal relationships of the processes involved. It al- system description, the socalled eacnded Kalman filter
lows recovering the full state vector even in cases where has been developed based on lineavisations around th-
only partial measurements of some output variables can actual reference poin'
be taken. These ouput variables have to be linked to the
state variables by some smooth functional relationship. In order to keep tli covariance matrix , mmetric, th,
This scheme is extremely well suited to vision processes upper triangle factorization UDUr has been introduced
where the depth compont.nt is systematically lost drring [Bierman 75; Maybeck 79]. It is numerically more effi-
imaging and where partial occlusions are more the rule cient and stable and is being widely used.
than an exception.



If the state update is computed e, -y time one single humans are concerned; however, this idea has been -
measurement component is acquired, the use of two-di- probably €or the first time - put to work in the context of
mensional arrays in the program maybe reduced, leading cognitive machines.
to faster execution. In addition, this scheme allows an
easy adjustment for image sequence processing in the Let us assume there is a material world to whi,!i an
case where - due to occlusion or some other cause - the autonomous agent, say based on a conventional wheeled
number of measurement components varies from frame road vehicle, itself berag part of this woid, has limited
to frame. In our software, this feature has been adopted access (with regard to physical state measurements). T!is
as a general standard [WuenscLz 88, Christians 39, Mys- may be achieved through a multi-sensor system encom-
liwetz 001. passing properly calibrated oo- and velocimeters, sen-

sors for control inputs, inertial bonsors for translation
Real-time vision, in our approach, is considered :o be a (accelerometers) and rotation (angular rate and position
measurement process with rc1iote access to the system- sensors), a microphone for audio-input and imaging sen-
atically transformed object state (by perspective projec- sors in some spectral bands. All these signals are fed into
th. i); identification of the object has to be achieved a computer system with properly suited data processing
simultaneously with the determination of the mot'cn programs.
state.

The autcnornou system is assumed to be endowed with
For image sequence processing, the recursive estimatiou all the relevant knowledge components discuzsed in the
schcme had to be further extended for the nonlinear previoussection.Provisionhasbeentakenthatthecugine
pcrspect:ve mapping of point and line features. In addi- is running, the sensory and motor cortrol systems are
lion, the rclation-' p between the dynamical model for operative and that there is enough computing power
cg-motion and the position and orientation of features on available for properly processing the sensory data; the
the surface of the body had to be incorporated. The computer system has Pccess to the control ,actuatio.
IesuLing overall scheme will be described next. subsystems (even including voice output, say).

Tae yet open question is Is it possible to generate an
S' INMHJLI "KOM PHILOSOPHICAL THtOUGH'iN overall system capable of demonstrating a behavior

which is qunlitatively similar to that of irtelligent
Humans with their capability of locomotion and complex humans?
inf,.,mation processing may be considered as very com-
plex dynamical systen- with a meital component by far
nor yet understood. Philosophers for millennia have tried THE INTEGRATED 4D APPROACH TO DYNAMIC
to unders'and human performance in different fields. VISION
The njtural scienices joined in this endeavor since more
than thrke centuries in a more systematic fashion, but still The main goal of this approach from its beginning in the
one is Nri fom having satisfactory answers, though con- early 80-ies has been to take advantage of the full 3patio-
1ddrabk- progress has been made recently with the help temporal framework for internal representpl,,n and to

of n .naftion processing technology, do as few reasoning as possible in the image plane aud in
between frames. Instead, temporal continuity in physical

Cn the basis of Newton's laws of motion and the new space according to some model for the motion of obj--cts
understanding of time, Kant in the 18-th century clarified is being exploited in -.onjunction w__h spatial shape rigid-
t' situation ia philosophy by his main works 'Critiques ity in this 'analysis-by-c vnthesis' approach.
..... [Kant 1780-ies] to a considerable extent. He sepa-
rated space and time f.om attributes of objects granting Basic scheme
the former ones a special basic quality. He also intro- Dynamical models link time to spatial motion, in general.
duced a clear distinction tween a material object (the The shape models exhibit the spatial distribution of visual
thing by itself' = "das Ding an Fich" (in German)) and a features on the surface which allow objects to be recog-
1 'man's notion about this object. The succeeding 'Ideal- nized and tracked. In order to exploit both types of
is. jihilosophers at the turn from the 18-th to the 19-th models at the same time, the prediction error feedback
c:nturv may have turned world interpretation 'upside- scheme for recursive state estimation developed by Kal-
down' by giving ideas priority over r- .tter and over the man and successors has been extended to image
outside world; at least, this was Schopenhauer's impres- sequence processing by our group [Kalmar 60;
<hn. In an attempt to put the world from this position Wuensche 88]. There are so many publications on this
back opr- the feet again', he speculated about the inter- approach that only a short summary will be given here
dcpendcncec between the material processes in the world (see e.g. the survey article [Dickmanns and Graefe 881).
and miT - The basic idea behind the second part of his
look title 'The world as will and Internal representation' Figure 1 shows the resulting coarse overall bloc.diagram
[Schopenhauer 1819] may be considered to be a major of the vi "'rn system based on these principles. To the left,
breakthrough in concepts about cognition. th- real world is shown by a block; control inputs ;o the

own vehicle may Ic -d to changes in the v:sual appearance
This basic idea has been adopted as the focal point in our of the world either by changing the viewing direction or
approach to machine vision irrespective of all previous through egomotion. The continuous changes of objects
philosophical and psychological controversy. It is not and their relative position in the world over time are
intended to get involved into this discussion as far as sensed by CCD-sensor arrays (shown as conmerging lines

I
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Figure 1. Basic scheme for 4D-image sequence understanding by prediction error minimization

to the lower right, symbolizing the 3D to 2D data reduc- be taken. By applying the forward perspective projection
tion). They record the incoming light intensity from a to those features which willbe well visible, using the same
certain field of view at a fixed sampling rate. By this mapping conditions as in the TV-sensor, a model image
imaging process the information flow is discretized in two can be generated which should duplicate the measured
ways: There is a limited spatial resolution in the image image if the situation has been understood properly. The
plane and a temporal discretization of 16 2/3 or 20 ms situation is thus 'imagined' (right and lower center right
(due to the different video standards), usually including in fig. 1). The big advantage of this approach is that due
some averaging over time. to the internal 4D-model not only the actual situation at

the present time but also the sensitivity matrix of the
Instead of trying to invert this image sequence for 3D- feature positions and orientations with respect to all state
scene understanding, a different approach by analysis component changes can be determined, the socalled
through synthesis has been selected, taking advantage of Jacobian matrix (upper block in center right, lower right
the available recursive estimation scheme after Kalman. corner). This need not necessarily be done by analytical
From previous human experience, generic models of meansbutmaybe achievedwith little programming effort
objects in the 3D-world are known in the interpretation by numerical differentiation exploiting the mapping sub-
process. This comprises both 3D si.pe, recognizable by routines already implemented for the nominal case.
certain feature aggregations given the aspect conditions,
and motion behavior over time. In an initialisation phase, This rich information is used for bypassing the perspec-
starting from a collection of features extracted by low tive inversion via recursive least squares filtering through
level picture element (pel) processing (lower center left feedback of the prediction errors of the features. Unfor-
in fig. 1), object hypotheses including the aspect condi- tunately, space does not allowto go into more details here
tions and the motion behavior (transition matrices) in (see [Dickmans and Graefe 88]).
space have to be generated (upper center left in fig.1).
They are installed in an internal 'mental' world repre- This approach has several very important practical
sentation intended to duplicate the outside real world, advantages:
After the philosopher K.Popper this is sometimes called
'world_2', as opposed to the real 'world-1'. no previous images need be stored and retrieved for

computing optical flow or velocity components in the
The initialisation is the most difficult part and has been image plane as an intermediate step in the interpreta-
solved for well defined simple problems only. A more tion process,
general capability is being developed presently. It con-
sists of both data driven bottom up and model driven top the transition from signals (pel data in the image) to
down components cooperating over time as discussed in symbols (spatio-temporal motion state of objects) is
the next section. done in a very direct way, well based on higher level

knowledge, the 4D world model integrating spatial
Once an aggregation of objects has been instantiated in and temporal aspects;
the world 2, exploiting the dynamical models for those
objects allows the prediction of object states for that - intelligent nonuniform image analysis becomes
point in time when the next measurements are going to possible, allowing to concentrate limited computing



resources to areas of interest known to carry mean- center in fig. 2). The temporal sequence of errors is also
ingful information; used for checking the validity of the hypotheses underly-

ing the actual recursive computation. If consistently poor
the position and orientation of well visible features predictions are obtained, the corresponding hypothesis
can be predicted and the feature extraction algo- has to be adjusted; this may concern shape components,
rithms can be provided with information for more parameters in the dynamical model or the complete
efficiently finding the desired ones; outliers can easily model. This part up to now has been implemented in a
be removed th-)'y atabilising the interpretation rather rudimentary form. For more complex dynas 'ical
process. scenes than the ones treated up to now, an object oriented

data base (in the computer science sense) for a va-'cty of
viewing direction control can be done directly in an physical objects (in the common sense) has to be imple-
object-oriented manner. mented; this work has just been started (upper right

corner in fig. 2).
Processing a variable number of features measured from
frame to frame is alleviated by using the sequential filter- A dynamical model has to be instantiated for each physi-
ing version. For improving numerical performance, the cal object capable of being moved. In road vehicle
UD-factorized version of the square-root-filter is used guidance this is not only the ego-vehicle and other ve-
[Bierman 75]. Details may be found in [Wuensche 88; hides but also the road, the appearance of which varies
Mysliwetz 90; Bierman 77; Maybeck 79]. By exploiting the while driving upon it, at least in the general case with
sparseness of the transition matrix in the dynamical horizontal and/or vertical curvature. This is indicated in
model a speedup may be achieved, fig. 2 by the perspectively shown multiple boxes in the

recursive center part.
Two interpretation phases have to be distinguished: First
the initial';ation phase when no previous knowledge The state of several objects in conjunction with en-
about the scene is available, and second the continuous vironmental parameters and the active goal function of
tracking phase, when objects have been recognized and the ego-vehicle constitute a situation, to be discussed
their future behavior is being observed, below. After recognizing the situation (center of upper

bar in fig. 2) control modes or actual control time histo-
From features to physical objects in space and time ries maybe selected and implemented in an efficient way.
In the first phase, usually not time critical, like initialisa-
tion while at rest, rebions in the image are systematically Reflex-like egomotlon behavior
searched for feature groupings indicative of some known Since in the internal representation scheme chosen both
object (lower center of fig. 2). From the collection of the spatio-temporal state variables and the controls at the
features found, object hypotheses have to be generated disposal of the system are explicitly represented, it is
as to which objects are being viewed under which aspect straightforward to apply the concept of state variable
conditions. feedback in order to obtain optimal behavior for well

defined tasks. Modern control theory provides the pro-
Depending on the task context the higher levels to which venbackground for this approach. For each class of tasks,
the results of feature extraction are reported have to like lane following, convoy driving etc. in visual road
come up with hypotheses for generic objects fitting these vehicle guidance, a special feedback control law tuned to
data by proper parameter adjustment. Several such hy- the actual dynamic parameters of the vehicle yields a
potheses will usually be generated. They allow to make characteristic behavioral mode.
specific predictions as to where which other features
should be found if the hypothesis is correct. Checking Since the computation required is but a matrix-vector-
these predictions over time, the best hypothesis will multiplication, this simple operation can be done addi-
hopefully be arrived at by eliminating the less likely ones. tionally at the lower level where the recursive state esti-

mation is performed, thereby alleviating the higher levels
With this information, suitable dynamical models to- from any involvement in high frequency control computa-
gether with body-shapes and aspect conditions have to be tion; in addition, this eliminates the incremental time lag
instantiated in the recursive estimation loop (shaded which would L[ave been introduced by the communica-
blocks in center of figure 2, started by the right column tion between the hierarchical levels required. With this
of the inverted U-shaped outer frame). The dynamical workload sharing the nigher levels may run at consider-
models are then used to predict the cg-motion and body ably lower cycle times (limited only by the requested
rotations around the cg. This information is combined lumped reaction time delay to some event requiring con-
with geometrical shape in order to determine the spatial trol mode switching). For systems with dynamical capa-
position and orientation of well visible features. Their bilities in the range of humans, several hundred millisec-
positions in the image plane are predicted and the feature onds reaction time delay may be acceptable, while the
extractors in the image processing system are directed to recursive state estimation with reflex-like feedback con-
these regions and orientations ('geometric reasoning'- trol may run at 40 to 120 ms cycle time (two to six video
block in lower center right of fig. 2). cycles) typically.

The differences between measured and predicted fea- In case a new event in the outside world requires special
ture data are used in conjunction with the filter gain action, like the detection of an obstacle in the lane at a
matrix in order to update the predicted state variables certain look-ahead distance, the upper decision level may
after removal of disturbances recognized (upper right trigger some predefined feedforward control time history
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Figure 2. Gross flow chart of the 4D approach to rea-thme vision b-

(left in pag.2) with a set of parameters knop to be able to system of goal functions together with a likely control
deal with this new situation (for example either braking strategy) and its way of atbevig at decisions in the sirma-
or lane changing). tion as perceived.

The concepts up to this point have been implemented and Since usually all control decisions are based on more or
proven to be very efficient computationally and robust less inexact estimates and since too many parameters of
enough for real world applications. The following sec- other systems are incompletely known, it seems wise to
tions deal with extensions under way and planned for the refrain from computing too detailed expectations of

near future. The integrated 4D internal representation other subjects' behavior but only prepare reactions to the
including time derivatives of state variables and the effect most likely ones; careful observation of the development
of control actuation over time yields a rich background of motion trajectories of the physical body of other sub-

for action planning and prediction of possible future jects will give indicatiots of its likely intentions. Th most
evolution of the situation. Thus, based on fast forward likely behaviors to be expected may be derived from
simulation, temporal reasoning becomes relatively decision and control strategies which oneself would
simple and complex situations may be handled in a adopt in h other subject's situation.
straight forward manner.

This way of defining a situation is in agreement with the
Objects, subjects and situations one proposed in [Nagel1881. Here however, the state of
Before dealing in more detail with the notion of situations the objects and subjects is assumed to be known as good
a brief review of the concept of subjects as introduced in as possible through the recursive estimation scheme, and
[Dickmarms 891 will be given: Mobile entities in the ob- one is looking for a suitable control decision, the effect
served outside world may be classified according to the of which on the future evolution of the situation can be
fact whether or not they have the capability of activating predicted by utilizing the dynamical models for all objects
somc l3comotion or perception system control at their and subjects involved (assuming likely control inputs).
disposal. There exists a large variety of systems with many
shades of sophistication. Those which perform internal Mental states and Intelligence
sensor data processing in such a way that control actua- For an independent outside observer the internal repre-
tion is not directly coupled to measured data will be sentation of objects and their states in another subject
called 'subjects'. They are separated from the rest called constitute an increase in state variables of the entire
objects (proper) because they require additional (inter- system since the other subject may base control decisions
nal or 'mental') state variables in order to completely on its actual 'view of the world'; these 'mental' states will
describe their state. (Deliberately, no attempt is made to then have their effect on the physical world when the
remove the grey zone implicit in this definition.) resulting control action starts changing the real physical

state of objects in the world. Therefore, these mental
For most real autonomous systems it will be impossible states are decisive factors in understanding situations; in
to determine their internal state completely. For most the German language the word 'Wirklichkeit', usually
practical applications it will be sufficient to grossly know translated as a synonym for 'reality', allows a different
that part of the internal state of an autonomous partner interpretation including these action-consequence ef-
which is relevant for the task at hand. This may be its fects: Ideas too may be part of 'reality' in the sense of
actual 'view' of the situation, its actual goal function (or 'Wirldichkeit' since they may effect changes in the evolu-
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tion of processes in the real world. (The word 'wirken', SYSTEM ARCHITECTURE BASED ON THE
from which Wirklichkeit is derived, means 'to effect INTEGRATED 4D APPROACH
changes or reactions'.)

In our vision system the main sensors are two passive
Fixing the way how internal representations are arrived monocular imaging arrays (CCD-cameras, black and
at, when sets of input data are given, therefore, is a white) mounted on a two-axis-platform fixed to each
decisive factor in the design and shaping of cognitive other with a given relative orientation. Their viewing
systems. [Maybe the hard core of human cultures, essen- direction can be controlled by the interpretation system
tially, is an equivalent to this process on a very sophisti- according to its needs in the actual context; the controller
cated level.] The richer an internal representation can be is integrated into the image processing system.
made by linking incoming data to predefined interpreta-
tion structures or to previously stored experience with Based on the concepts discussed above the system
different types of objects and subjects, the better will the developed also has a temporal structuring besides the
system be able to deal with a variety of situations in the usual structuring with respect to subtask hierarchies;
sense of achieving its goals despite perturbing factors. If both aspects will be discussed in the following subsec-
rich interpretational schemes are available, a cognitive tions.
system may recognize situations or courses of actions
from short subsequences, and it may be able to react early Temporal structuring
in an efficient, goal oriented way. Video signal processing of course is linked to the 50 Hz

video frame rate; this yield., the basic cycle time of 20 ms
This capability seems to be at the core of the ancient for image feature extraction of which all slower cycles are
definition of intelligence: The word 'intelligence'was integer multiples. The only faster cycle up to now is the
cliimed to have originated from the Latin verb 'inter- viewing direction control for active vision and stabiliza-
legere' meaning to be able to read in between of lines: tion; it may use inertial angular rate signals at a small
those facts or hints which are not explicitly written down fraction of the video cycle time (typically 5 ins).
but which can be concluded from the context. Translated
to the more modern usage of the word this would mean Recursive state estimation is done at the rate necessary
that a system could be called intelligent if it is able to for control computation: If the vision based automatic
recognize an action or a process sequence, especially a system is expected to have about the same dynamic range
future one, from partial observations only, given an early as the human operator, its corner frequency should be
correct interpretation, such a system would be able to around 2 Hz. Taking sampled control theory into account,
also act early and adequately and to have advantages over this results in a reasonable sampling frequency of 10 to
lower performance competitive systems. This interpreta- 25 Hz yielding basic control cycle times from 2 to 5 video
tion seems to be in agreement with the general usage of cycles (40 to 100 ins). The largest value means at a speed
the word intelligence in everyday life. Note that this of 30 m/s (108 km/h) a new image every 3 meters, the
interpretation is a quite natural outgrowth of the basic smallest every 1.2 m. This is considered to be sufficient
approach taking spatio-temporal representations and irrespective of the computing power available.
the definition of controls in this context into account.

At this rate the complete physical state of all interesting
Especially with the sense of vision it is possible to appre- objects is being recursively estimated. Using state feed-
hend situations 'at a glance' if typical arrangements of back control laws, behavioral competences of the auton-
objects and subjects and short but typical action frag- omous vehicle can be realized for different tasks and
ments can be observed. This, however, is only possible if situations by simple matrix vector multiplication. This
the temporal domain is adequately represented by provides the vehicle with fast reflexlike behavioral modes
proper models. without having to resort to the higher knowledge levels.
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Adding the capability of triggering proper control mode exchange with the real world at the point 'here and now'
sequences as shown in figure 3 depending on simple in space and time, moving monotonically on the time axis.
situation indicators (some feature dependent rules), this Contrary to the real world, the internal representation -
may lead to yet relatively complex overall behaviors like also the temporal one! - can be halted and considered
lane driving with transitions to convoy driving or stopping quasistatically. This is usually being done in logical con-
and other combinations. siderations, leading to special problems when dealing

with dynamical situations.
When such a pool of basic behavioral modes is available
by the fast reacting lower levels the knowledge based In figure 5 the internal representation density is shown in
higher levels may be allowed slower reaction times, per- a qualitative way over the time axis. The sliding point
haps down to the seconds-range. This figure would still 'here and now is marked by the vertical line. In a tern-
be in agreement with average human performance. poral region around this line the internal representation

of objects and the environment is kept and updated by
In order to gain additional degrees of freedom for the recursive estimation exploiting stored knowledge about
complex visual perception task it may also be advisible to the processes observed in a fully dynamic spatio-tem-
design overlapping specialised subtasks into the system poral framework. Time histories of interesting state and
which work at different time scales but at the same per- control variables may be stored over a sliding short term
ception problem. One such task which is being studied in interval in order to be able to recognize low frequency
our system is the recognition of another object while in process charateristics which may be of advantage for
motion: There is one subtask which estimates the relative longer term predictions into the future. Prediction den-
position and spatial speed components rather quickly (40 sity varies with the time range: For one prediction step,
ms) taking only a very rough (2D) shape representation all state variables will be predicted in the framework of
into account; a second subtask with a different group of the recursive estimation scheme for each single dynamic
processors tries to recognize the full 3D structure of the object supporting prediction error minimization. Longer
moving object at a much slower rate. Both may support term predictions may be of interest only for some objects,
each other by data or hypothesis exchanges. maybe even for only a restricted set of variables (e.g.

estimation of collision probability). In order to make
On the upper knowledge based levels there is now more reasonable predictions for other subjects it is necessary
time for inferencing using background knowledge in the to recognize their intentions, i.e. their likely control time
problem domain. At the same time, relevant environmen- history application in the framework of some goal they
tal parameters may be evaluated and taken into account. seem to be striving for; because there are so many uncer-
In the normal behavioral modes the higher levels just tainties when subjects are involved, predictions usually
have to monitor the performance of the overall system terminate in the near future.
and to be alert to respond to new situations which may
come up. Reaction times of several hundred milliseconds A somewhat different situation prevails with respect to
seem acceptable in comparison to human performance. the past. Here, process time histories when properly
Figure 4 shows the resulting hierarchical scheme, measured and stored will allow retrospective analysis

correlating control input data with observed state histo-
Besides the different cycle times there is need for another ries; this may be used to derive knowledge about the
temporal structuring in a (temporal) range sense. All specific system under scrutiny or for accumulating statis-
measurements are taken and all controls are output in an tical data about objects and processes.
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This temporal integration of perception is considered to control engineering, system analysis and systems identi-
be an essential component of learning temporal motion fication; the resulting parameters may be used in the
behavior like step responses and eigenfrequencies of decision and control processes thereby allowing adapta-
objects and subjects in the real world. tions to changing situations and environmental parame-

ters (for example roads on a winter afternoon turning
From the representational point of view, it corresponds from wet to icy).
to establishing the link between the differential repre-
sentation valid for the point 'here and now' and the In the long run, even more deeply structured temporal
integral representation of resulting maneuver elements activities may be considered: Given the availability of
based on some stereotypical control input time history. proper software, the system maywork on stored data time
The result of parameterized stereotypical control actions histories during periods where computing power is not
can thus be represented by a few symbolic parameters needed for actual locomotion control (in parking condi-
linking by a maneuver element two discrete states tem- tion). Several alternative control time histories and the
porally well apart; an agent capable of understanding resulting values of the goal function may be evaluated by
these symbols in connection with dynamical models and simulation with the dynamical model available, for the
the temporal integration procedure may manipulate a set situation considered. This 're-thinking' of situations with
of these elements in a quasistatic manner into a proper a reference outcome meanwhile known, may lead to
sequence in order to achieve some overall mission. This changes in decision parameters for future action, consti-
is the approach usually taken in AI motion planning, tuting one component of learning. Another form may be
however, very often without caring about the underlying the retrospective comparison of maneuvers performed in
dynamical control aspects. similar situations with different control options showing

the relative performance achieved; this would be the
For fast, efficient and smooth control of processes in the learning of appropriate behavioral decisions.
real world this underlying (in biological systems mostly
implicit) knowledge has to be exploited; the 4D-ap- 'Typically during this process, the amount of data to be
proach provides exactly this link (which our human stored is reduced considerably leading to condensed
neural net builds up during early phases of (nonintel- descriptions of system characteristics (class properties,
ligent) life in childhood). learning about facts and appropriate bhavioral parame-

ters). These characteristics, usually, are no more state
Up to now the designer has built these capabilities into variable time histories but system and control parameters
our technical systems. However, no principial difficulty or condensed average state descriptions (e.g. mean
can be seen in providing a more advanced system with the values, variances).
proper tools available in the engineering community for
developing this on their own. In this way, the 'present awareness subsystem' based on

differential representations in the 4D-approach working
These activities may run in parallel on additional proces- around the point 'here and now' (central blob in figure 5)
sors using software packages developed in the field of can be exploited in several directions by the knowledge
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based subsystem shown in the rectangular box to the IKuhnert 88; Mysliwetz 90] are designed in such a way as
lower left; the latter one represents integral effects to exhibit good noise reduction properties. Mainly, edge
derived from experience over time for specific situations element and corner features have been used up to know.
and tasks. There is no final decision made with respect to 'optimal'

features based on bottom up data only, accepted features
Expectation based data fusion for object interpretation are selected on the basis of an
When a complex perception system fed by different sen- overall 'Gestalt'-idea derived from perspective mapping
sors with different delay times in the data processing of an internal 3D shape representation (second line from
pipeline has to deal with the real world, control decisions bottom in table 1). At the single object level, time is
should be taken based on situation assessment for one introduced via the dynamical models for 4D repre-
single point in time. A control output to the real world sentation; up to now, no interframe differencing as in
can only be effected at the temporal point 'now'. optical flow has been applied. The future has to show

whether this type of image sequence processing will be
Knowing what the time delay in the control actuation necessary at all. (It is well known that nature in its bio-
sequence from decision taking to real world implemen- logical systems does make use of it; this has triggered
tation is, and having temporal (dynamical) models for the quite a bit of activities in this area also for technical vision
process to be controlled available, it seems to be wise to systems. Whether and under which circumstances this is
exploit these models for making predictions of object and advantageous has yet to be determined). In our approach
subject states exactly for the point of control implemen- a 'virtual optical flow' for features is computed on the
tation. If all measurement takings are geared to the same basis of the internal spatio-temporal representation and
point kT, an especially efficient system design results. perspective forward projection.

The different time delays in the data paths may now be The levels discussed up to now have been implemented
compensated by corresponding numbers of prediction in the image sequence processing system BVV_2 [Graefe
steps applying the object specific dynamical models. With 85; Mysliwetz 90] and more recently in a transputer net-
redundant data sets the Kalman filter approach allows work [Thomanek, Dickmanns 92; Behringer et al. 92].
recursive least-squares-error data interpretation exploit- The scene understanding (upper) part in table 1 has been
mg knowledge both about the real world process and implemented on a PC-AT in the past and has been ported
about the various measurement subprocesses. Removal onto a transputer system also. From several objects and
of outliers exploiting the covariance matrix helps stabiliz- environmental data the situation is recognized and
ing the interpretation, checked against the requirements for task achievement.

If no special action is needed the system continues in its
Hierarchical structuring present mode; if some change of the operational mode
With respect to behavior control, in fig. 4 the resulting becomes necessary a replanning is performed and the
hierarchical scheme has been given. Table 1 shows the re.. ing mode change is triggered.
hierarchical structuring with respect to measurement
and scene recognition aspects. No special low level image The control output is fed back to the internal repre-
preprocessing is performed; instead, the algorithms for sentation via the prediction step, updating all the lower
feature extraction on the basis of controlled correlation levels, thereby adjusting the measurement and inter-

pretation process to the actual state.
activity level processors operation resultI - This frequent and fast traversion both

control level MPS compute expectations bottom up and top down in the interpreta-
control viewing direction -action tion scheme assures efficient exploitation
apply vehicle control of both high level knowledge and most

recent measurement data.
t t

The gross flow chart corresponding to
task level MPS relative goal state - planning, table 1 has been discussed already as fig-

evaluation decisions ure 2 above. It has been arranged in such
t ta way that the procedural recursive state

a) estimation techniques using control en-
object revel MPS -. situation assessment - situation gineering methods form the core of the

parameter adaption figure while the more knowledge based
.. ..................................................... higher level activities are grouped around

t f t this center showing the interaction paths.
. feature level 4D-OP -. feature aggregation - objects in

space/ime A different viewpoint for subdivision
showing other facets of the same system

t t t has been given at the end of [Dickmanns~and Graefe 88]; the completely autono-
pal level PP -- feature extraction - features in and sa th copletly utn-

image plane this approach, and referred to already
above, may even work without any sensory

"hble 1. Modular processing structure for complex tasks input normally being the driving factor.

I
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Stored data may possibly be taken as starting points or as order to obtain more robust performance, computing
reference trajactories to study variations around; inter- power both for image processing and on the higher
esting questions with respect to 'mind' and 'dreams' may levels has to be expanded.
come up.

- Recognition of well visible obstacles of more than 0,5
m2 cross-section (black trash can) in a look-ahead

EXPERIMENTAL RESULTS range of 30 to 50 m has been demonstrated at speeds
up to 50 km/h on unmarked two-lane roads. The

The general scheme of dynamic machine vision and ex- situation assessment level decides whether the vehicle
pectation based perception discussed above has been is autonomously stopped at a safe distance in front of
developed during parallel application to four different the obstacle or whether a lane change and passing
areas, after the idea had come up around 1980 in connec- maneuver is performed. Similar demonstrations have
tion with the problem of visually balancing an inverted been performed with the Daimler bus stopping in
pendulum on an electrocart [Meissner, Dickmanns 831. front of another bus. Passenger cars can be detected
The first application oriented problem was planar dock- at ranges up to 100 m with a 25 mm tele-lens. Mono-
ing of a reaction propelled air cushion vehicle with three cular distance estimation through motion stereo (an
fully independently controllable degrees of freedom inherent property of the 4D approach exploiting data
[Wuensche 86, 88] simulating autonomous spacecraft fusion from odometry) is achieved with sufficient ac-
docking. The second area was road vehicle guidance to curacy up to about 50 m; the introduction of inertial
be discussed in somewhat more detail below. The third gaze stabilization will allow larger focal lengths with
one was birdlike autonomous landing approaches for correpondingly improved viewing ranges.
conventional aircraft under visual flight conditions; this
may be of interest for unmanned vehicles or as basis for - Convoying behind another vehicle has been initially
an electronic copilot and will also be briefly discussed demonstrated in our hardware-in-the-loop simula-
below. tion facility, lateron with the test vehicles; 'stop-and-

go' experiments are a special case of this capability
Autonomously guided vehicles for transportation tasks shown in 1990.
on the factory floor are the fourth application area; in
this context, the capability of landmark navigation has - Lane changings to the left and right have been per-
been developed and demonstrated [Hock 91]. Autono- formed in daytime and at night, triggered by the
mous visual guidance of helicopters has been tackled in human operator who has to take care for other ve-
1992. hicles in neighboring lanes.

Road vehicle guidance - Driving on public German 'Autobahnen' has been
The application area of autonomous road vehicle started in 1992 with the transputer system as the latest
guidance is by far the most developed one: A 5 ton van achievement. Besides lane recognition two other ob-
'VaMoRs' of our University as well as a l0 t bus and a 7.5 jects may be detected, tracked and interpretcd in
t van 'VITA of the Daimler-Benz AG have been parallel.
equipped with our vision system. In experiments ranging
over six years by now, the following capabilities have been Aircraft landing approach
demonstrated: One of the most crucial maneuvers in autonomous flight

Lane following at high speed: 100 km/h have been is the final approach phase to the landing strip. Under
achieved limited only by engine performance of good visual conditions, human pilots are able to land an
VaMoRs. On well marked empty freeways much aircraft safely without any support from the ground by
higher speeds could be handled by the method; limi- using just visual cues from the airport environment and
tations may first come from camera resolution at large the runway. In 1982 we started studying this problem in
look-ahead ranges. Both horizontal and vertical cur- the simulation loop with the goal to develop methods
vatures can be estimated to sufficient accuracy [Mys- which would allow autonomous unmanned aircraft with
liwetz 90; Mysliwetz, Dickmanns 92] to allow velocity the capability of machine vision to do the same. G. Ebert
control in order not to exceed preset acceleration in his dissertation work [Ebert 87] laid the foundation for
limits. the solution available now. From 1987 onward, R. Schell

continued the development till the first flight experiments
Lane following on unmarked cross-country roads successfully performed in 1991.
with shadows from trees and buildings on the road.
Speeds up to 60 km/h on empty roads have been The initial 9 years of development have been performed
demonstrated; even driving under light rain fall with in the simulation loop exclusively. Results have been
wipers operating in front of the cameras has been published in [Dickmans 88; Dickmanns, Schell 891. Over
shown, the years, realism in simulation and the use of real image

processing hardware has been steadily increased. Space
Night driving on well marked dry roads with normal does not allow to describe the system developed in detail;
headlights at low speeds has been performed with the the interested reader is referred to [Schell 92; Schell,
Daimler-Benz bus and VITA on test tracks. Dickmanns 92].

Driving on unsealed country roads at speeds below 20 The achievements may be considered a breakthrough in
km/h has been achieved by VaMoRs; however, in machine vision application. It has been shown that full
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spatial motion in all rotatory and translatory degrees of exploiting dynamic vision could be tested. This, however,
freedom can be controlled by onboard autonomous dy- has been very successful; after only one week of installa-
namic machine vision with a relatively small set of today's ion work and interface testing, due to the careful pre-
microprocessors, using the 4D approach. In simulation, parations performed in the simulation loop with the
the control loop has been closed and landing approaches complete vision system, first trajectory and state estima-
have been performed from about 1.5 km distance till tion results could be achieved. Fig. 8 shows the visually
touchdown, including wind effects and gusts. Fig. 6 shows estimated altitude as compared to a radio-altimeter
a simulated approach situation with the hashed squares measurements and those from the Global Positioning
indicating the image areas evaluated for information ex- System (GPS). The landing approaches were abandoned
traction. In both the simulation loop and in the real flight at about 5 m altitude in order to make a fly-around for
experiments the camera was suspended on a two-axis the next trial. It can be seen that visually estimated and
pan-and-tilt platform for visual runway fixation, radio-altimeter measurements agree very well in the vi-

cinity of the runway (time > 13 see); aircraft speed was
about 55 m/s (200 km/h). Estimation quality of the longi-
tudinal position was considered sufficiently good
whereas lateral position estimation fluctuated with about
2 m amplitude relative to the GPS-results; this will have
to be studied further.

H [m]

0 60.0 ---- r,
I I I I I54.0 ---- ----- r -----

36.0 - -- -- _ ._ t L - ___-t --
4 .1,- I I I I I
42.0 -- ----- ---- - ....- r"

36 0I' I I I I

. . ..I . . .
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In the flight experiments, funded by the German Science 0 5

Foundation (DFG) and performed with the twin turbo- 5, 10. 15. 20. 25 30,

prop arcraft Dornier Do-128 of the University of Braun- zeit (8c]

schweig (see fig. 7), inertial angular rates and orienta- Figure 8. Estimated altitude time history
tions have been measured by gyros and were fed into the
interpretation system, with data fusion performed
through the two sixth order dynamical models separated
for the longitudinal and lateral degrees of freedom. CONCLUSIONS

Since the aircraft was not yet certified for active com- Machine perception and vision-based intelligent motion
puter control, only the real-time state estimation part control should take advantage of the recursive state esti-

mation techniques developed in
control engineering. The '4D ap-
proach' developed at UniBwM over
the last decade generalizes the ex-
tended Kalman filter to image
sequence processing. In its sequen-
tial formulation it is well suited for
solving major parts of the problem
of dynamic scene understanding
even under the condition of occlu-
sion. The dynamical models are well
suited for knowledge repre-
sentation in the spatio-temporal
domain.

The 4D approach has been
developed with the goal in mind to
achieve dynamic vision perform-
ance similar to the human one, at

Figure 7. Test aircraft Do-128 of TU-Braunschweig least in motion control. Introducing
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1. SUMMARY the raw data used by the operator - the video data - has
Imaging sensors are powerful tools enabling remote already been captured electronically.
control, by tele-operation, of numerous tasks where the
operator requires an appreciation of the three-dimensional The task of following or keeping station, or performing
structure of the viewed scene. Passive video sensors also some manoeuvre with respect to a known object, is a
lend themselves to tasks where covert operation or commonly hypothesised example. If the application is to
electromagnetic compatibility is required. A commonly keep in formation with a nearby aircraft, dock a satellite
mooted tele-operational task is that of driving a known module, or even to follow a cooperating vehicle over the
vehicle through an unknown terrain - or keeping station uncluttered desert sands, we are generally concerned with
on a known object moving through an unknown terrain, known objects which can be defined in some detail in
The computer vision aspects of automating this task are advance. More generally we may wish to manoeuvre a
divided into two separate vision functions, which are the vehicle in a cluttered scene. In such cases the possibility
subjects of this paper: of obstructions of an unknown shape will be a major

concern, and the system will need to estimate the sensor
" Analysis of image sequences of a general scene to platform's path relative to any obstacles.

extract its three dimensional (3D) structure without
any prior information, Work at Roke Manor Research Limited has been directed

" Analysis of images of a well defined object, to towards both of the vision tasks implied above. This
extract its 3D position and orientation relative to work has resulted in two systems, DROID and RAPiD,
the sensor. for estimating structure from image sequences and model-

based tracking respectively. These systems enable 3D
For both these functions, the paper provides a brief structure and relationships to be established. While some
introduction to possible techniques followed by further interpretation of 3D measurements is performed by

description of particular systems, DROID and RAPID, DROID, interpretation of the 3D structure is largely
developed by Roke Manor Research Limited. DROID is beyond its scope, as are the functions of path planning or
a general, feature-based 3D vision system using the control of the movement of the sensor platform.

structure-from-motion principle. That is, it uses the DROID and RAPiD have now reached some maturity, but

apparent image-plane movement of localised features the methods have not been integrated into a single
viewed by a moving sensor to extract the three- demonstration, so it must be admitted that the vision task
dimensional structure of the scene. RAPiD is a model- described above is a focus of attention and the two

based real-time tracker which extracts the position (X Y, systems will largely be described separately in what

Z) and orientation (roll, pitch, yaw) of a known object follows.
from image data. The system operates iteratively, using a
prediction of object pose (position and orientation) to cue This introduction continues with a non-mathematical
the search for selected edge features in subsequent imagery. overview of the algorithms developed by Roke Manor for

This approach results in minimal processing of image extracting scene structure from image sequences and for
pixels, so that the system can be implemented at full tracking the position and orientation of a modelled objecL
video rate using modest hardware. A more detailed mathematical description of the

algorithms then follows in sections 3 and 4; the reader
2. INTRODUCTION may wish to omit that description and skip to section 5,

A video image, as displayed on a TV monitor, is which illustrates the techniques in the context of a typical

intrinsically a two dimensional object, yet a human office corridor scene. The remaining sections of this

operator can remotely control a wide range of t,sks in the paper describe the development status of the work

three-dimensional world by use of a video link. In such (including real-time implementation), and provide a brief

cases it tempting to ask if such tasks can be automated as critical discussion and concluding remarks.

© Roke Manor Research Limited 1992. All rights reserved.
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2.1 Structure from Motion possibly hundreds - of 3D features be.ng processed at any
A human controller in a tele-operated system car employ time, however, qnd it is impracticalr'e to consider a
a wide range of depth cues Given a single static image treatment of all correlauons between ego-motion errors
he may use his general kn( ledge of the scene's domain and feathre-pow position errors (and between one feature-
to perform sc e understanding, and uiis may be very point and another), and consequently the update is
pre ,se in providing a 3D interpretation in certain performed in two passes:
domains. He may also use more general cues such as
perceived surface shading or shadows. There are many • calculation of sensor platform motion, i.e. ego-
such shape-from-X cues (where X stands for shading, motion,
shadows, reflectance, texture, perspective, etc.), though - optimal instantiation and update of feature 3D
for computer vision these approaches currently seem positions, assuming the ego-motion calculation is
applicable only to simple constrained scenes. In contrast, correct.
given a sequence of images, the assumption of scene
rigidity and the invariance of 3D geometry with changing This simplificd.ion leads to a viable system whose
viewpoint provides a powerful lever which c:aa be used to overall cycle of algorithm steps is shown in Figure 1.
automatically extract quantified stuctural infomnation by Steps of particular interest are:
triangulation. This, the structure from motion approach,
is of course only applicable if the correspondence between 2D-2D feature matching: This concerns the maching of
(image) features observed from differing view-poinL can uninstantiated features (i.e. those extracted from
be established, and if the movement of the sensor can be previous image frame but which are yet to be projected
estimated between images. into 3D) to newly extracted features. The process is based

on a combination of spatial constraints (in the image
Solutions wu the image correspondence problem could be plane) and f-ature attributes, which describe the
sought in a spatially continuous form as an optical flow characteristcs of a feature point. Spatial search regions
field, defining for every point in one image of a sequence, are bands centred on epi-polar lines. These lines are the
the image coordinates of the corresponding point in the projections onto a later image frame of rays passing from
subsequent image. images frequently contain large bland the pinhole of the camera through the feature positions
regions, however, and in such areas a flow field is ill- seen in an earlier frame. (This projection requires a prior
delined. Alternatively images could be analysed for estimate of ego-motion.)
discrete image tokens, or features, that are likely to
correspond to objective 3D scene elements. The Ego-motion calculation: Ego-motion is estimated by
attractuon of using features, as compared to a spatially minimising the discrepancy betwoen the observed and
continuous method (such as the gradient optical-flow predicted positions of matched features. In the boot case,
technique 1i1), is that appropriately cl'osen features a feature can only be phedicted to lie at some point on an
encapsulate the highest quality information, forming ep: polar line, so that the measured discrepancy 's based
seeds of perception" [2], and processing effort is not on the perpendicular distance to epi-polars as shown in

wasted on low quality regions of the image. This is of Figure 2. In run mode, i.e. from frame 3, the discrepancy
considerable interest in d real-time application, as an is based on projection of 3D points; see Figure 3. At
image contains a very large amount of data. boot some prior estimate of motion is required: there r

the system can be free running or use constraints based on
A further attraction of discrete features, is that they can be past motion to ensure a smooth track estimate.
developed directly into high-level 3D scene descriptors.
These provide a convenient mechanism for passing 2D-3D feature matching: Matching of already instantiated
informatio,. across a potentially unlimited number of 3D features to newly extracted 2D features is similar to
images, so the geometric accuracy of feature-point the 2D-2D ,. ocess, but, with an estimate of feature
measurements can be refined over increasingly long position now avadlable, spatial search .onstraints are
triaraglation base-lines. A number of algorithms have based on a projection of estimated positional error into
been proposed for the detection of point-features, the image plane.
sometimes referred to as 'interest' points or 'corners'.
DROID uses a proprietary method (described in section 3) Kalman filter instantiation/update: feature point positions
which proves to be robust both as a feature detector and in are estimated and updated in an optimal weighting of new
providing reliably matched features between image observations and previously estimated (3D) positions.
frames. The process can be visualised as i i Figure 4, where the

uncertainty in feature position is de licted by an elliptical
Following feature or corner extraction on the first two error surface. The new obseri ition constitutes a
frames of a sequence, DROID's function is to estimate cylindrical error surface centred on thc ray to the observed
sensor anu feature positions. The processing of these two feature position. Intersection of the. error surfaces
f-imes constitutes DROID's boot phase. Thereafter, in results in a new smaller error e'ipse, which is gradually
DROID's run mode, the system functions on an iterated refined by subsequent observations.
cycle ul dating sensor and feature positions (and
instantiatmg positions of newly detected features). It 2.2 Model Based Tracking
would be desirable if DROID could optimally update its Three-dimensional (3D) model -based Ovsion is concerned
state-vector of sensor pose (position and orientation) and with finding the occurrence of a known 3D object within
feature positions. There are typically many tens - an image, and obtaining a quantitative measure of t,.



object's locz.ion in three-dimensional space. The location associated with the model points, the update equations can
of the object can then be used for ta, ,,s such as robotic be safety lineansed. This linearisation, together with the
manipulation, process monitoring, vehicular control, etc. minimal image processing required to locate edges at
As only certain aspects of the object are utilised, these control points, enables RAPID to function at full video
aspects are said to form a model of the object: it is the rate using only modest processing hardware in many cases
occurrence of the model that is sought. A geometric of interest.
model is attractive to work with, because the 3D geometry
of an object is invariant to changes in view-point vid so If the target object is moving across the image, the above
can provide reliability and compatationaI simplicity. method of updating the object pose will produce a result
Additionally, the results from a geometric model will be that lags behind the true pose. Thus it is desirable to
quantitative. Non-geometric model-, utilising su,.h include a predictive element in the tracking loop. This
attributes as colour and texture, may serve to reveal the prediction is most simply achieved by using a position
existence of the object, but not a quantitaive measure of and velocity predictor/smoother, such as the so-called
its 3D location, alpha-beta tracker [6], but, with more sophistication, a

Kalman filter [7] can be used to greater effect. The
Model-based tracking is model-based vision applied to a Kalman filter enables the relative uncertainties in the
sequence of video images. Model-based tracking appears estimated pose to be weighted appropriately and the
initially to be a much more aifficult problem than model- expected dynamics of the object and the sensor platform
based vision, due to the high data-rate in an image can be included iii the smoothing/prediction process.
sequence (up to 10 Mbytes/second at video-rate). The Thus RAPiD can be used for tracking a moving object
continuity between successive images can, however, lead with a fixed camera, or alternatively if a stationary scene
to it being a much easier problem, because the motion o, is tracked as the camera moves, the pose of the camera is
the object can be predicted with some precision. It can determined.
thus be advantigeous to process at the maximum rate,
which i at field rate (50Hz) for standard video cameras. A number of RAPiD's features make it very robust in
The geometric model features used for tracking must be operation. The use of a model defined by selected control
cheap to extract, computationally, if processing is to Rina on object edges makes it unnecessary to extract the
proceed at near video-rate. Computationally expensive and whole of a edge, thus obviating a step which (for simple
unreliable model features, such as closed regions techniques at least) is generally prone to error in the form
representig surfaces, cannot be afforded. This indicates of fragmentation and incomplete termination. As will be
the use of simple local features such as points (or apparent from the mathematical description, failure to
corners') and edges. detect an edge at a control point is not catastrophic,

though failure 'o detect features degrades the accuracy of
The tracking of rigiti and jointed objects has been pose estimates; the measurement error model used in the
performed by Lowe [3] using straight edge segments Kalman filter enables the changed uncertainties in
extracted over the entirf, image area. This approach is measurements to be taken into account in the
computationally expensive and slow, and has been smoothing/prediction process.
demonstrated at about 1 Hz using Datacube image-
processing hardware. The strength of the approach is that The required model is a small data structure of typically
a prior estimate of object pose is not necessary. Another 20-40 control points. These should be placed on st-aight
fulh-image method is that of Bray [4], who uses the edges (edges of low curvature are also acceptable) or
discrepancies of the locations of extracted Canny edgels certain kinds of profile edge, such as conic sections or,
from the projected model to update the pose, and thus surfaces of revolution. Additional robustness can be
need, a good pose estimate. The approach of Stephens [51 provided by specifying the expected image polarity of an
is closest to Roke Manor's RAPiD, his model consisting edge, which can prevent RAPID being seduced by
of control points on high-contrast edges, but background edges in a cluttered scene.
determination of the pose change, from frame to frame, is
perfotbaed using many iterations of a Hough transform. 3. THE DROID ALGORITHMS
Stephens' system has been demonstrated in real-time
(about 10 Hz) using a small Transputer array. 3.1 Feature Extraction

The primitive features extracted by DROID are feature-
The approach ta;en in RAPiD is to use a 3D model points or corners, which abound in natural and man-made
consisting of selected control points situ-ted on high- scenes. Feature-points are likely to correspond to real 3D
contrast object edges, such as surface markings, fold edges structure, such as comers of objects and surface markints,
(such as edges of a cube), and profile edges (such as the and also to texture of an appropriate scale. The spatial
outline of a sphere). The processing cycle is illustrated in localisation of feature-points can give good repeatability,
Figure 5. Given a prior estimate of object pose, these even for natural scenes where an image decomposition
model points are simple to project onto the image, and the into straight-line fragments is highly erratic. The
corresponding image edges simple to locate by scarching extraction of feature-points is a spatially and temporally
the image pixels perpendicularly to the expected edge local operation, and is both repeatable and
direction. The set of measured displacements of these computationally (comparatively) cheap.
edges is used to refine, or update, the estimate of model
pose. Since the estimated model pose must be close to On each image processed by DROID, discrete feature-
the true model pose for the correct image edges to be points are first extracted, with feature extraction performed
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independently on each image. Feature-points are detected location of the features is performed. In particular, it is
by use of a local auto-correlation operator [8]. Letting necessary to know the direction in space towards which
the image intensity (grey-level) be I(x,y), at each point in each of the pixels in the image is looking; this is called
the image construct the 2x2 matrix the geometric calibration of the camera. By modelling

( <(al/ ax)2> <(aI/ax).(a /ay)> ) the camera as a pin-hole camera with specific distortions
<(a/3)(I/y)> <(aI/ay)2 > (eg. radial lens distortions), and using only CCD cameras

whose sensing elements form a stable rectangular array, a
parametric form for the geometric camera calibration can

where angle braces indicate local Gaussian smoothing of be devised. This model has been found to be good for
the arguments (a smootlling size of I to 2 pixels is many CCD cameras and lenses. Camera calibration is
commonly used), and the first gradients, al/ax and allay, performed using two images of an accurately known
are obtained by use of a 5x5 mask. The eigenvalus of M planar calibration tile [12], resulting in accurate
encode the shape (the principal curvatures) of the local measurements of the focal length, aspect ratio, location of
auto-correlation function: if both are large, the local grey- the optical centre, and up to two terms of radial
level patch cannot be moved in any direction on the distortion.
image-plane without significant grey-level changes
occurring, while an edge or line will have one large and The calibration enables the extracted feature-point
one small eigenvalue. A corner response function, R, is locations to be transformed to an 'ideal' distortion-free
formulated to respond to both eigenvalues being large, pin-hole camera of unit focal-length (UFL), whose image-
while not requiring explicit evaluation of the eigenvalues: plane is positioned in front of the camera pin-hole to

R = det(M) - [ trace(M) 12 . k / (k+1)2 avoid tiresome minus signs. A Cartesian camera
coordinate system is defined to have its origin at the pin-

The subtracted term makes the above formulation to some hole of the camera and Z axis aligned along the optical
extent 'edge-phobic', to ensure it does not fire off axis. The X and Y axes are parallel to the image plane.
pixellation on strong edges, a common failing of some The image x axis is horizontal and pointing to the right,
comer detectors. The value of the parameter k is the while the image y axis is vertical and pointing
maximum ratio of eigenvalues of M to which the downwards. This gives a right-handed coordinate system,
response function is positive. Typically a value of 25 is as illustrated in Figure 6. A point positioned at R =
used. The local (3x3) maxima in the response function (X,YZ) in local camera coordinates will be imaged in
form candidate corners, and we select either the n UFL camera coordinates at
strongest, or else all those exceeding a pre-defined r = (x,y)= (X/Z , Y/Z)
threshold. The former selection procedure is better suited
to image sequences with a widely varying content, frame- This is the perspective projection, and henceforth all
to-frame. The convolutions used in obtaining the image positions will be expressed in UFL coordinates.
response function may cause a feature-point to be slightly
mis-positioned, but the mis-positioning will usually be It will often be necessary to represent the same 3D point
consistent over time and so be of little importance. By in two different coordinate systems, for example in
performing a local quadratic fit to the response function, camera coordinates and global coordinates. Consider a
the feature-points can be located to sub-pixel accuracy. point located at R I in a first coordinate system, and at

R 2 in a second coordinate system. These point locationsThe most important property [9] of feature-point will be related by

extraction is high repeatability; with this algorithm often

over 80% of the extracted points are matchable between
frames. To each feature-point is associated descriptive R2 = A(0)T ( R1 - t)
grey-level attributes, explicitly the local grey-level (as
defined by a Gaussian smoothing mask), and the RI = A(O) R 2 + t
smoothed first spatial gradients. These attributes are
assembled into an attribute vector, a, which will be used where the rotation matrix, A(O), and the translation
to disambiguate matches. vector, t, describe respectively the attitude and the

location of the second coordinate system with respect to
Feature-points are attractive to work with as they are the first. (The superscript T denotes matrix transpose.)
simple to track over time, and are easy to handle in 3D.
Straight edge features are similarly attractive and can be Rotations are represented by a 3-vector 0, whose direction
handled by DROID, but they are more suited to man-made is the axis of rotation, and whose magnitude is the (right-
environments than natural environments, in which they handed) angle of rotation in radians. The elements of the
are scarce [ 10, II]. Although curving and squiggly edges orthonormal 3x3 rotation matrix, A(O), are:
are abundant in natural scenes, they can be temporally
unstable, and present formidable problems in finding a A A A
suitable rFpresentation to handle the geometric Aij = cos 6 8ij + (1- cos 0) Oi 6 - sin 0 , Eijk Ok
information they contain. k

A
1.2 Camera Calibration where 0 = 101 and 0 = 0/0, and Eijk is the Levi-Civita
Since DROID is based on the geometry of image features, symbol. The representation is singular at 0 = 2n, but
it is essential that an accurate interpretation of the this is avoided by working always with 0 5 i. Note that



rotation vectors are neither commutative nor associative scheme, minimising the image-plane distances between
(unless they are parallel), and that successive applications the location of feature-points and the trnncated epi-polar
of rotations are best handled using quaternions. lines of their matching features [14]. To cope with mis-

matches, a robust minimisation is performed. The
The location and attitude of the camera is generally starting point of the iterative scheme is the prior estimate
referred to as its ego-motion, expressed as the '6-vector', q of camera motion, and good convergence is usually
= (0,t). The ego-motion may be measured from the achieved in 4 to 6 cycles. Prior knowledge about the
global origin (as illustrated in Figure 6), or may be in camera motion may be imposed by a set of soft
some convenient local coordinates. The location and constraints quadratically linking the 6 ego-motion
attitude of a rigid body with respect to a reference parameters, q. By varying the constraint coefficients,
coordinate system is called its pose. The pose of a body planar, linear, or curved motion may be imposed. It is
is the rotation, 0, and the translation, t. that must be essential that a translational constraint is imposed at boot
applied to the body coordinate system so as to correctly to resolve the speed-scale ambiguity, which is otherwise
position the body. left entirely unresolved by the visual data. The

minimisation scheme and the form of the constraints is
3.3 Boot-Strap Processing described below in section 3.4.2.
The task of boot-strap processing is to initiate the 3D
representation of the viewed scene from feature-points Once ego-motion has been determined, the 3D locations
found in the first images, without assuming any of matched points can be estimated by triangulation. The
knowledge of the scene content. The 3D representation uncertainty in the image-plane position of a feature-point
will be in terms of Kalman filtered points. For a leads to uncertainty in its 3D location. This uncertainty
monocular system, the first 2 images of the sequence are is used to start-up a Kalman filter (KF) for each point,
used for boot. DROID can be operated in a stereo mode whose variables represent the spatial probability
f13], in which case boot consists of a conventional stereo distribution function of the point, and consist explicitly
process performed on the 2 or more simultaneously of a 3D mean position and covariance. Strictly, it is
captured images comprising the first frame. extended Kalman filters that are being used, as the time

evolution of the filter is only being approximated as
3.3.1 Boot Matching linear. The KF enables subsequent observations of the
The processing of a monocular image sequence is initiated point to be optimally and cheaply combined, and high
with the first two images. Using a prior estimate of the spatial accuracy achieved. The update and initiation of the
camera motion, each extracted feature-point from one KFs is described below in section 3.4.3.
image generates on the other image an epi-polar search
line near which candidate matches are sought. If the prior 3.4 Run Mode
ego-motion estimate from frame I to frame 2 is q = (0,t), After the 3D representation has been initiated in the boot-
and the observed point on frame 2 is at r2 = (x2 ,y2), then mode, successive frames are processed in the run-mode.The run-mode provides an evolving 3D representation,
the epi-polar line on frame I will pass through the image which increases in accuracy and completeness as more
points (tx'ty)/tz and (PxPy)/Pz, where p = A(O) frames are processed. Accuracy is achieved by using
(x2 ,y2 ,1)T. The epi-polar line is broadened out into a Kalman filtering to optimally combine observations of an
band in which match candidates are sought, and this individual feature-point seen over an extended period of
broadening is chosen to reflect both the uncertainty in the time. The representation evolves by the inclusion of
prior estimate of the camera motion and errors in feature- newly seen feature-points, and the exclusion of points
point positioning. The length of the epi-polar line may that are no longer visible. In this way, an unlimited
be truncated at minimum and maximum depths, to reduce sequence of images can be processed.
the number of spurious match candidates. Matching
ambiguities are resolved by use of the grey-level Much of the work of DROID is performed in so-called
attributes. If the attribute vectors for two points are a, disparity space, for reasons of speed and numerical

stability. A point at R = (X,YZ) in Cartesian cameraand a2 , then the attribute mismatch between the points is coordinates has coordinates S a (xyz) a (X/Z,Y/Z,1/Z)
m 1,2 = a1 - a2 / a 1 1 . a2 1) in the corresponding disparity space. Thus the frst two

components of S are the image coordinates of the
For a successful match, the mismatch value must be perspective projection of R, and the third component is
lower than a set threshold, and if there are several the reciprocal depth. Note that straight lines in Cartesian
candidates, the one with the lowest mismatch is chosen. space are straight in disparity space, and similr
Typically over 80% of the feature-points are found to be relationships hold for both planes and conics. The KF of
correctly matchable, and the few incorrect matches are each feature-point contains in disparity space a mean
discounted by outlier removal procedures (see below), position (or centroid), SKF, and an estimated error
I Jnmatched feature-points are kept for possible future covariance EF (a 3x3 matrix). These can be thought of
matching; they are said to be placed in libo, as defining a normal probability distribution function in

3.3.2 Boot Ego-Motion disparity space.

Using the feature-point matches, the camera ego-motion, 3.4.1 Run Matching
q = (0,t). is next determined. The boot-strap ego-motion In the run mode, matches are sought between extracted
is calculated by an iterative multi-dimensional Newton image feature-points and existing KFs by projecting the

I
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KFs down onto the image-plane. First of all, the KFs appropriate combination of the observation and projected
must be transformed from the previously used disparity KF covariances. The contribution of the i'th matched
space to the disparity space of the current estimate of point to an objective function to be minimised is thus
camera ego-moton. This is straightforward for the Ei(q) = (r(q) - robs)T ilh (q)- robs )
centroid (by transforming to and from Cartesian space),
but for the covariance, using Cartesian space is
inadvisable for distant points because of poor numerical The ego-motion determination is performed byconditioning. To overcome this problem, a direct minimising a single objective function, Etotal(q), which

disparity-to-disparity transform has been devised, which is composed of a weighted sum of contributions from
uses a well-conditioned similarity transform. By these each matched point, together with a prior-constraint term
means the KFs are brought into the currently used producing soft constraints:
disparity space. Etotal(q) qT £Ir q + y wi Ei(q)

points i

The projection of the KF covariance, 
1 KF, onto the

image-plane is obtained by pre- and post-multiplying For there to be no bias from the prior-constraint term, the
/ 10 \ ego-motion q is taken to be relative to the expected or

with the projection matrix, P = 0 1 , and its anticipated camera pose. Global ego-motion is not used

transpose, which simply serves to extract the upper 2x2 because rotation vectors can only be approximated as

block of EKF. By linearly combining the projected KF commutative near q = 0.

covariance with the observation covariance, 1 obs, a The objective function is minimised by using a multi-
matching covariance matrix is obtained dimensional Newton minimisation, for which the first

Zmatch = kobs.yob s + kproj .P 1KF pT and second differentials of the objective function must be
calculated. These are constructed analytically by using

where the two coefficients k govern chosen levels of expressions for the first differentials of the projected KF
statistical significance. The observation covariance, centroids, ar(q)/aq, and by assuming that there is
Fobs , is usually taken to be diagonal and equivalent to, negligible dependence of the matching covariances on q.
say, one pixel. The observation covariance coefficient is Each cycle of the Newton scheme produces a new (and, it

chosen to be sufficiently large for it to account for is to be hoped, better) estimate of the ego-motion, q',
unccrtainty (error) in the prior estimate of camera motion. from a previous estimate, q:
If rKF is the perspective projection of the KF centroid, q' = q - [ 2E' 1to/aq2 F [aEtota/iq]

rKrF = P SKF The starting guess of the minimisation is with the camera

(trivially, the first two coordinates of SKF), and robs is at its expected position (ie. q = 0), and usually 4-6

the location of an extracted feature-point, then the feature- iterations give a good convergence.

point is a match candidate if The main cause of error in the ego-motion calculation is
T I(rKF - robs) 1atch (rKF - robs) < I incorrect matches, which, if uncorrected, significantly

bias the result. This problem is overcome both by using
that is, it lies in an ellipse centred on the projected KF robust minimisation techniques to de-weight the effect of
centroid. The searching for candidates is accelerated by the mismatches, and by performing the complete
using a coarse binning scheme for the feature-points, and matching/ego-motion cycle twice, with tighter search
only examining the bins which the ellipse overlays, regions on the second pass. The robust minimisation
Candidate matches are assessed using their grey-level technique ascribes a weight to each point on each cycle of
attributes, and irresolvable contentions are discarded to the Newton minimisation. The weight, wi , of the i'th
ensure that no multiply-defined KFs are generated. point on the current cycle depends exponentially on its

contribution, Ei(q), to the objective function of the point3.4.2 Run Ego-Motion o the previous cycle:
Once feature-point matches have been obtained, the ego-

motion, q, is determined by finding the camera attitude wi = eyp - (c.Ei(q) / Ei(q))
and location that brings projected KF centroids, r(q), into
best alignment with their matching observed feature- The denominator is the (weighted) average objective
points, robs. If R 0 is a KF centroid location in function contribution of all the points, and is used to
Cartesian camera coordinates, then a relative ego-motion estimate the distribution of the Ei's, and this results in
q = (0,t) of the camera will make the centroid project outliers being continuously and strongly de-weighted.
onto the image at

r(q) = (X(q),Y(q)) / Z(q) Ego-motion determination is generally very accurate in
where the short to medium term. An example is quoted by

R(q) m (X(q),Y(q),Z(q)) = A(0) R0 + t Harris [15] of a short sequence of 10 images taken from a
helicopter with a generally forward translation of about 10

The measure of 'best alignment' used above is given by a feet per frame. The accuracy of the attitude component of
matching covariance, Ematch , which is, as before, an the ego-motion, the difference between the DROID

analysis and the ground truth data, is better than 0.25,
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though the helicopter undergoes a yaw of 15'. The DROID in fact works with the inverse covariance matrix,
accuracy of the translational components is less than 0.7 the former equation reduces to a matrix addition, and the
feet, which is less than 0.8% of the total flight distance, latter to solving a set of 3 simultaneous linear equations.

If, after update, the disparity coordinate of the centroid is
In a long image sequence, long-term drifts can occur, in negative, it is reset to a small positive value to prevent
which both the ego-motion and perceived structure are the point subsequently flipping behind the camera.
self-consistently in error. For example, both the camera
position and the perceived structure might come to be The KF update process is illustrated in Figure 4, in which
displaced 1 metre to the right of their true values, and yet surfaces of constant probability density are shown in
the visual observations will be entirely self-consistent. disparity space. The vertical tube represents the observed
Although there is no feedback mechanism to correct such feature-point and its covariance, while the larger and
an error from the imagery alone, external ego-motion smaller ellipsoids represent the KF before and after update
measurements (eg. odometry) may be of use in resolving respectively.
these ambiguities. Drifting can occur in both attitude and
translation, and also in the speed-scale factor. Speed-scale 3.4.4 Kalman Filter Creation and Destruction
drift is where both the speed of the camera and the The feature-points on the current frame that fail to match
perceived scale of the structure are in error by the same to existing KFs, may be epi-polar matched (i.e. 2D to 2D
factor. The speed-scale ambiguity is resolved by using matched) to those that remained unmatched from earlier
stereo, as the stereo base-line provides a yard-stick for the frames and were retained in limbo. This enables KFs for
structure. The problem of drift is exacerbated by the new points to be initiated. The epi-polar matching is the
camera turning by an angle greater than the width of its same as in boot (section 3.3.1). The KF initiation,
field-of-view, so that previously established structure is which is also the same as boot, simply makes use of the
lost from sight and no longer acts as a stable reference. KF update equations applied to the pair of initial

observations.
3.4.3 Kalman Filter Update
Each time a point is observed arid matched, a more precise KFs which repeatedly fail to match are discarded or
estimate of its 3D posit;o;. may be obtained. This is purged, whilst those leaving the field of view are retired
because the new observation provides further information (matches are no longer sought), but kept on for a while
relating to the 3D position of the point. Kalman filtering for use in the structural representation. Points that are
is a nethod of combining a number of noisy incorrectly matched at boot will cause KFs to be initiated
r.,casurements which is, in certain circumstances, at locations that in general will not be supported by
statistically optimum. In DROID, each tracked point has matches on subsequent frames, and so these erroneous
its own filter whose job is to estimate both the point's KFs will be purged from the system.
most likely 3D location, and its positional uncertainty.
An alternative approach, that of using a single high 3.5 Surface Interpretation
dimensionality filter containing the coupled coordinates of A 3D geometrical representation should ideally describe
all the points, permits the imposition of geometric all the visible surfaces, seen in the current image or in the
constraints [161, but at a high computational cost, and a past, and should perhaps even infer the existence of
danger of irrecoverably coupling unassociated features, unseen surfaces (eg. the continuity of a wall behind a

lamp-post). An ideal surface representation would use
To explain the use of the KF, consider just a single high-level components, such as planes and conics, to
point, as all are treated independently and in a similar describe the scene, but in unconstrained environments,
fashion. Let the feature-point be observed in the current especially natural scenes, such components may be rare,
image at image-plane position, robs; this is the KF ill-fitting or ill-conditioned. A more adaptable
measurement. Its estimated positional accuracy is representation is needed, one which can cope with the
specified by the observation covariance matrix, Lobs. inaccurate and spatially non-uniform data that is obtained
The state space for the KF is the 3D location of the point from real vision systems. Since surfaces cannot be
in disparity space. Let the L:rrent estimate for the point's directly measured, and must be inferred from surface
location be S K F (called the centroid), and the markings, bounding edges, etc., a flexible interpolationscheme based on the measured geometric features would
accompanying estimate of its positional accuracy be be b .
given by the covariance YKF. The covariance and

centroid after updating the KF with the current The maintenance of a low-level geometric representation
observations are given by for parts of the scene that have left the field of view for a

lKF = [ I + pT yo.s P 1-1 period of time does not seem worthwhile: it is expensive
S I-s i + PTEL_ I rto maintain (in computer time and space), and even if

SKF = -KF I lIF KF obs robs] low-level features are seen again, they are not likely to be
recognised as the same ones because of changes of

where, as before, P is the projection matrix. (The process appearance (scale, aspect, reflectance, etc.). Such a
noise term, often used in Kalman Filtering, has been 'forgetful' system operates both in people, as the
omitted from the filter because past observations of a 'persistence of vision', and in DROID. Using the
point are considered to be as valid as current observations, currently visible features to construct surfaces leads to an
and there is no time-evolution because the points are ego-centric representation, such as a depth-map or the
assumed to be stationary in Global coordinates.) As 2.5D sketch [17].
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aligned along the horizontal (rightward) and vertical
3.5.1 Planar Facet Representation (downward) image axes respectively. Imaging of points in
The 3D points from DROID form a sparse depth map, 3D will be handled by the introduction of a conceptual
bland regions of the image containing no points. To image-plane situated at unit distance in front of the camera
obtain a surface representation, an interpolation scheme pin-hole. The conversion to these coordinates from pixels
based on the current image is used to construct a full is facilitated by the use of the geometric calibration of the
depth map. As only currently visible points on the camera, and henceforth all image locations will be
image are maintained in 3D, a single-valued surface (in expressed in these conceptual image-plane units, and not
range) passing through them should approximate to the in pixels. A point at position R = (X,YZ)T in camera
depth map. The use of an ego-centric (camera-based) T
representation avoids the need for multiply-valued surfa coordinates will project to image position r = (x,y) =
with the associated danger of incorrect point assignment, (X/Z,Y/Z)T.
which could occur, for example, with overhanging
structure in a plan-view projection. Working with points Define a model coordinate system, with origin located at
that are sufficiently mature to be reliable, the depth map T in camera coordinates, and with axes aligned with the
is filled-out ty a p ,;ce-wise linear interpolation between camera coordinate system. (A different orientation of
the image-plane locations of the 3D points. This is model axes may be more suitable for the original
performed by using the Delaunay triangulation in the specification of the control points of the model; in which
image-plane: each resulting triangle is interpreted as a 3D case assume that the model is pre-rotated from a reference
triangular planar facet passing through three 3D points, attitude used for specification.) Consider a control point
The Delaunay triangulation is chosen as it forms compact on the model located at P in model coordinates, and
triangles (long thin triangles are physically implausible), situated on a prominent 3D edge. This control point will
and is cheap to compute (nearly linear in the number of project onto the image at r = (Tx+Px, Ty+Py) / (Tz+Pz).
points). The resulting surface is continuous and single- Let the tangent to the 3D edge on which the control point
valued in range, but will not fill the entire image-plane is located be called the control edge. The orientation of
unless supported by previously seen points now outside the edge at the control point is defined by specifying a
the image. The surface may be relatively coarse as it can companion control point to P, oken also located on the
be no finer than the separation of the features, and so same physical edge, and which projects onto the image at
cover over fine structure in the manner of a draped-sheet. s. By considering the image displacement between r and
Depth discontinuities in the surface are not currently s, the expected orientation of the control edge on the
permitted. As the surface is constructed anew at each new image can be determined. Let this be an angle a from the
image, it will quickly respond to changes in the structure, image x-axis, so that
but it does suffer from an amount of temporal instability.

coscx= , sinc = , r

3.5.2 Using Surfaces
The explicit 3D structural information made available by
DROID is intended for open-ended use in a range of high- As a step towards refining an initial pose estimate, we
level tasks, such as obstacle detection, recognition, wish to find the perpendicular distance of projected model
navigation and path-planning. Such tasks are currently control point r from the corresponding imaged object
being investigated in relation to performing automatic edge. Assuming that the orientations of the imaged edge
visual guidance of wheele- ir tracked robot vehicles in and the projected model edge are nearly the same, a one-
both indoor and outdoor environments. The most dimensional search for the image edge can be conducted by
immediate task is to provide safe operation (don't crash!), looking perpendicularly to the expected control edge from
and this is performed by locating upstanding structural r. To search for the edge along an exact perpendicular
elements in the planar facet surface representation. would, however, require finding the image intensity at

non-pixel positions. To avoid this inconvenience and
For movement in the vicinity of man-made structures, the computational cost, the edge search is performed in one of
location of prominent structural elements such as vertical four directions: horizontally, vertically, or diagonally (that
walls and corridors, is of value. Detection of such is, by simultaneous unit pixel displacements in both the
structures can lead to map registration and on to more horizontal and vertical directions). If the pixels ae square,
sophisticated navigational abilities. The detection of the diagonal direction will be at 45, but with different
vertical walls around a ground vehicle is being undertaken image aspect ratios, other angles will be traversed. The
by considering the plan-view coordinates of DROID direction which is closest to perpendicular to the control
points with heights above the floor level. A vertical wall edge is chosen, and a line of pixel values centred on r, the
should appear as a straight line in plan-view, and this projection of the control point, is read from the image.
may be extractable using a Hough traii form. Write the orientation of the line of pixels from the x-axis
4. THE RAPID ALGORITHMS on the image-plane as the angle 03, as shown in Figure 8.

On the image-plane, let the dimensions of a pixel be kx

4.1 Single Frame Pose Estimation and ky in the x and y directions respectively (thus kx is
The coordinate systems used in RAPID are shown in the reciprocal of the focal length in pixels). Hence the
Figure 7. Define the Cartesian camera coordinate system, orientation of the diagonal directions of the row of pixels
which has its origin at the camera pin-hole, Z-axis aligned will be [ = ± *, where tan =ky
along the optical axis of the camera, and X and Y axes
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The position of the actual edge brightness step within the Thus r'(q) can be written
extracted line is located by a simple threshold crossing. (q.a\
Suppose the imaged edge is encountered at a displacement r'(q) = r + q.b)
from the projected control point r of nx pixels in the x- where
direction and ny pixels in the y-direction. (For diagonal a = (-xPy, xP x+ Pz, -Py, 1, 0, -x) T / (Tz+Pz )
directions, nx = + ny, otherwise either nx or ny will be b = (-yPy - Pz, YPx, Px, 0, 1, -y)T / (Tz+Pz)
zero.) Then the image-plane distance of r from the image
edge along the row of pixels will be Hence the perpendicular distance of the image edge from

the control point is
d= nx 2 kx2 +n y2 k y2 1(q) = + q.a sin (x - q.b cos (x

I-+ q.c
and the perpendicular distance to the edge will be where

c = a sin a - b cos a
I = d sin (0-a) and I is the measured distance to the edge.

Let n be the number of pixel steps (horizontal, vertical or Consider now not just one control point, but N control
diagonal) traversed along the row of pixels before the edge points, labelled i = 1..N. The perpendicular distance of
is encountered. For the four permissible orientations of the i'th control point to its image edge is
the row of pixels, the above equation for I is explicitly: l'i(q) = li + q.ci

Horizontal (3 =0) 1 = -n kx sin (x We would like to find the small change of pose, q, that
1n kaligns the model edges precisely with the observed image

Vertical (3 = )I = n ycos edges, that is to make all l'i(q) zero. If the number of

Up diag (8 = J3*) 1= n(kycos a - kxsin a) control points, N, is greater than 6, then this is not in
general mathematically possible as the system is over-

Down diag ( I =I]*) 1 = n(kycos a + kxsin a) determined. Instead, we choose to minimise an objective
function, E, the sum of squares of the perpendicular

Each control point will result in a measured perpendicular distances
distance, I, as illustrated in Figure 9. The set of these N
perpendicular distances will be used to find the small E(q)=1 [l i + q-ci] 2 .

change in the object pose that should minimise the i=l
perpendicular distances on the next frame processed.

Consider rotating the model about the model origin by a By setting to zero the differentials of E with respect to q,
the following equations are obtained

small angle e, and translating it by a snall distance A. n

Write these two small displacements as the 'six-vector', q. (N N
This will move the model point P, located in model ci CiT  q = ii ci
coordinates at R = P + T, to R' in camera coordinates __ i=l

R'(q) = (XY',Z)T This is a set of 6 simultaneous linear equations, and so
-T + A + P + OxP can be solved using standard .near algebra.

(Tx+Ax+Px+0yPz-zP The pose change, q = (0,A), in the model pose specified
Ty+Ay+Py+Pz]OPy by the above algorithm must now be applied to the

-Tz+Az+Pz+0xOxPy model. Applying the change in model position is

straightforward
T := T +

This will project onto the image at

r'(q) = (x',y) = (X'/Z', YIZ) The change in object attitude, however, causes some
practical difficulties. Conceptually, the positions of theExpanding in small A and e, and retaining terms up to control points on the model should be updated thus

first order, gives Pi := Pi + exPi

x' = x + Ax + 0yP z - 0 zPy - x (Az + OxPy - After thousands of cycles of the algorithm, finite
0 yPx) I / [Tz + Pz] numerical precision and the approximation to rotation

represented by the above equation, results in the control
y' y + lAy + 0zPx - xPz - y (Az + xPy - points no longer being correctly positioned with respect to

0 yPx) ] / [Tz + PzI each other, and thus the model distorts. To overcome this
problem, the attitude of the model is represented by the
rotation vector 0 (a 3-vector whose direction is the axis of
rotation and whose magnitude is the angle of rotation
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about this axis), which rotates the model from its zero mean and covariance Pt, then the optimal choice of K
reference attitude, in which the model has its axes aligned (that which minimises the trace of Ft, the covariance of
with the camera coordinate axes. From the rotation vector 't) is
0 can be constructed the orthonormal rotation matrix K = PtHTIHPtHT + Rt]1- , and
A(O), which appropriately rotates any vector to which it is P't = - KHPt.
applied. Conceptually, the rotation matrix, A(O), should
be updated by the model attitude change, G, thus In the time to the next observation, however, confidence

A(O) := A(e) A(O) in the state vector estimate worsens because of the
uncertainty in evolution, thus

but by doing this, the orthonormality of the rotation Pt+l = APytA T + Qt.
matrix may be lost in time due to rounding errors, since,
even allowing for the symmetry of the rotation matrix, it 4.2.2 The Object Motion Model
is still redundantly specified. Instead, the rotation vector, In this application of Kalman filtering, the RAPiD pose
0, is updated directly by use of quaternions. If A(O) is the estimate, yt, is the 6-vector change in pose found by the
rotation matrix after the rotation vector has been updated, minimisation of E(q). In the simplest moving object case
and the i'th model point is located in some reference we assume uniform motion, so the state vector contains
coordinates at Pi(ref), then the position of this point in both position and velocity terms. In particular we write,
model coordinates at the beginning of the next cycle will x = (r, 0, t, 0 )T.
be where r is the object's position 3-vector (relative to the

P1 = A() Pi(ref. camera), and 0 is a rotation 3-vector defining its
orientation;

4.2 Kalman Filter = 16 16]
When applying the RAPID technique to a practical case of A = 06 16
a moving object, it is possible, in principle, to use the
pose estimate, calculated by processing one video frame, H [16 06],
as the initial estimate of the object's pose in the next where 16 and 06 are the 6-by-6 identity and zero matrices.
video frame. This approach to tracking a moving object We assume that the above motion model is accurate apart
has the disadvantage that the object's motion would be from a random fluctuation in velocities due to forces
limited to small movements between frames since RAPID acting on the model making it accelerate, so that the state
searches for model edges in a limited region about the covariance is of the form
predicted position. This problem can be overcome by
using a simple predictor, such as an a, P3 tracker which Q =[06 061
also has the advantage of performing a temporal 0606
smoothing of pose estimates. In practice however, it has The form of Q6 will depend on the the dynamics of both
been found difficult to set the tracker parameters as the the camera and the tracked object and their relative
measurement noise depends on the number and position of position [7].
edges found, and also on the current pose of the object. In
some extreme cases, the edges detected in a particular 4.2.3 The Measurement Model
frame may not define all the object's degrees of freedom; If the object pose is in error by q, then the probability of
clearly a more sophisticated pre" 'or/filter is required getting the set of measurements {li) is

4.2.1 Kalman Filter Outline P({l I q)o - n exp - I [ li + q.ci ]2
This section repeats the formulation of a standard Kalman i 2c7 2

filter [191. A good description of the Kalman filter and where the measurement accuracies in determining an
associated techniques is given by Bar Shalom [20]. individual edge position are assumed to be uncorrelated and

of size a. Using Bayes theorem, the probability of the
Let it be a vector that represents the estimated state of a pose being in error by an amount q is
system at time L Given a new measurement, yt, made at P(ql exp - +

that same instant, the state vector estimate is updated to (li2 e
i + q ci 2

i' t , given by
i't = it + K(yt - H1-0, We can re-write this equation in the usual form of a

multivariate normal distribution as follows

where K is the Kalman gain matrix and H is a matrix P(q I Ili)) - exp -[q-q 0]TRI [q -q 0 ]
which maps the estimated state to the corresponding

expected observation. Between observations it is assumed where q0 is the best estimate for the pose error, and the
that the true state of the system evolves according to

xt+ I = Axt + et, observation error covariance, R, is given by

where the process noise, et, is a random variable of zero R = o2 [cicil

mean and covariance defined by the matrix Qt. Thus
given I't, It+l = A V't. If the error in the observation yt Unfortunately, when fewer than 6 control points are
has zero mean and covariance Rt, and the error in It has detected, the matrix inverse cannot be calculated because of
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rank deficiency. This is also true in certain situations stationary camera. The particular target here is a planar
when the detected control points do not fully define the object, which is convenient for laboratory trials, but
pose of the object. The formula defining the Kalman RAPiD is not limited to this class of target. The
filter gain can be re-arranged, however, to avoid the need definition of the corresponding target model is given in
to compute the inverse, thus Figure 15. Figure 16 shows two views of the target as

K = pHTR'I[ HPHTR "I + 11-I seen by the tracking camera, with graphics generated by
RAPID superimposed. These mark selected parts of the

With this formulation for K, the filter gain can be target outline and show estimates of the target's position
calculated robustly for each filter cycle, weighting each and attitude relative to the camera. Note the outline
measurement according to its expected accuracy. segments shown are not generatd by 2D edge extraction,

but are the result of projecting the model, in its estimated
5. ILLUSTRATIVE EXAMPLES pose, onto the image plane. The close alignment, of the
The operation of DROID is illustrated in Figures 10 to 13 modelled target edges with the real ones, indicates the
for the application of DROID to an image sequence accuracy of the estimated track. (The superimposed
recorded iii a typical corridor of an office building. Figure outline is difficult to see in monochrome imagery.) The
10 shows two consecutive frames of the sequence, which white spots around the bat mark the control points at
is processed at an image resolution of 256 by 256 pixels which RAPiD is searching for edge information.
over a field of view of about 50 degrees. The distance
moved between processed frames in this sequence is about Figure 17 shows a plot of track parameters for the portion
3-5cm, depending on the speed of the sensor platform. of movement between the above images. Using a planar

target and a single image, RAPiD is unable to determine
Superimposed on the grey levels of Figure 10 are the very accurately the direction of the perpendicular to the
positions of extracted point features; these are the points model surface (pitch and yaw) when the orientation is very
which are tracked from frame to frame. While a few of near fronto-parallel, but with Kalman filtering, the
these features are not detected in every frame the majority orientation of the target and its position in camera
are sufficiently stable to be tracked over several frames, coordinates are generally stable. RAPiD can be applied to
Such persistent features are shown in Figure 11; these are a range of objects, with non-planar models. In such cases
the points at which 3D information is available, the relative accuracy of the different pose components is

improved.
Though range estimates are only generated for the tracked
feature points, ranges to other points can be obtained by In addition to the example illustrated here, DROID has
assuming some model of an interpolating surface. been demonstrated in other domains:
DROID assumes the surface can be described by planar
triangular facets, the triangles themselves being drawn by . a hypothetical robot work-cell 118]
a Delauney triangulation process with results shown in a country lane and DRA laboratory grounds [21]
Figure 12. This triangulation method tries to avoid long . pot plant foliage! [221
thin triangles and it is seen to be successful near the centre laboratory and office scenes [13]
of the image. Near the boundaries of the described * a circular vehicle test track [231
structure, triangles tend to be less good natured and an * an airfield laid out with parked vehicles, viewed from
erroneous depth estimate for a particular feature can have a low flying helicopter [15]
an unwanted effect over a large part of the scene. Similarly RAPiD has a wide range of applicability. See
Once the triangulation is determined, contours can be for example Figure 18. Other reported applications
drawn on the interpolated surface as in Figure 13. include:
'Contours' here are drawn 20cm apart down-range and
cross-range. (Imagine a net of 20cm squares projected , laboratory demonstrations with, a floppy disc box,
onto the scene from above.) We see that the general painted cone, and an egg! [6]
structure of the scene has been captured - a flat floor with • an airfield runway viewed from a descending aircraft
vertical walls to the left, right and in front. The system [7]
does not quite have sufficient resolution, however, to . airborne object release monitoring, and following a
clearly distinguish the presence of the pile of rubbish Land Rover along a test tack [24].
stacked in the right-hand corner. An interesting feature of
thes results is the cluster of erroneous feature depths on 6. DEVELOPMENT STATUS
the door to the left of the framed certificate on the wall. DROID has been developed as an off-line process using
These arise from structure seen in reflections on the shiny general purpose hardware. In this form DROID has been
door surface! 3D edge processing in a scene such as this applied to a range of domains. The initial development
would have considerable advantages, with the crisp man- was in the context of a laboratory robot work-cell, but
made skirting boards and wall panels. DROID has performed well in other indoor and outdoor

contexts, including scenes dominated by natural
The operation of RAPiD is illustrated in Figures 14 to vegetation, and others structured with human artefacts.
18. These show RAPiD tracking a 'bat' symbol. The
scenario is shown in Figure 14, with the camera on a In a software implementation, feature detection is the
remotely controllable platform, though in this slowest component in DROID, taking 2 seconds on a
demonstration the target is to be moved relative to a Sparc 2 workstation for a 256x256 pixel image, while the
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subsequent geometric processing takes 0.2 - 0.3 seconds A second weakness expected in the DROID philosophy
per frame. lies in DROID's use of structure to derive ego-motion and

vice versa. This is particularly important in the
Dedicated video-rate hardware (25Hz) will shortly be transition from boot to run-mode processing as errors in
available from Roke Manor to perform feature extraction structure made at boot may be frozen into the system at
for either 512x512 pixel imagery, or up to 4 camera an early stage, leading to future errors in ego-motion and
stereo imagery at 256x256 pixels. (Note that use of subsequent structure errors in future structure. In practical
512x512 pixel imagery would indicate the use of a frame- cases, however, this does not appear to be a problem,
capture camera, since the two fields produced by with initial errors decaying over the first few processed
conventional cameras are captured at 1/50'th second frames of a sequence. The resulting structure may well be
intervals and would be torn apart even by moderate camera erroneous with respect to an initial global coordinate
motion.) DROID systems, based on this front-end frame, but it seems to be generally accurate with respect
hardware, are currently in development; these are expected to local coordinates.
to perform overall at near video rate.

An observed weakness in DROID has been a long term
Given the modest hardware requirements of RAPiD, drift in the estimated ego motion, though short term
development has been based on real-time assessment from performance is believed to be generally good. This drift
the beginning. Near real-time performance was originally is important if it is required to relate currently viewed
achieved with a multi-user VAX 3400! Current structure to features which have long ago left the camera's
development and applications work is generally for the field of view. (This effect is more pronounced with
analysis of video recorded trials, such as the analysis of cameras of a narrow field of view, and when the features
released-store trajectories and the landing path of of the viewed scene are concentrated in a small range of
unmanned aircraft. For convenience of software depths.) A particularly common drift has been observed
development, and ancillary facilities, RAPiD has been in the estimated speed of estimated sensor motion, which
implemented on workstations supplemented by a video results in a corresponding drift in the estimated scale of
capture/display card. In a dedicated application, a two-card the viewed scene. This speed-scale drift does not apply to
solution is readily feasible. the use of DROID in a stereo mode [13, 23], which has a

generally stabilising effect, particularly at boot. Drifts in
7. A CRITICAL DISCUSSION the ego-motion estimates may also be stabilised by use of
DROID and RAPiD might be considered to lie at external odometry; other motion constraints, such as
opposite ends of the range of computer vision tasks, with constant forward speed may be appropriate in particular

DROID extracting the 3D structure of unknown scenes circumstances.
and RAPiD plotting the position of a known object. The
two systems have developed in this fashion, but it is Turning to the use of RAPiD to follow known objects, a
possible to imagine a unified DROID-RAPiD system. major weakness here is the reliance on a specific
Instead of fully known models we may imagine partially geometric model. This may not be a problem with
known models in which either (a) newly observed features cooperating targets, especially as the complexity of the
- specified by DROID-like processing - are added to an required model is not onerous, though the readiness of
existing model, or (b) known yet approximately specified new models may limit the system's flexibility. With
features of a model are refined. Similarly RAPiD non-cooperating targets, there is a system requirement to
processing of a modelled component in a scene may identify the object to be tracked so that the appropriate
generate ego-motion estimates for use in instantiating model can be applied. It is feasible that RAPiD can be
previously unknown features. extended to include estimation of a small number of

model parameters, and perhaps a model might be defined
Returning to the original focus of attention for this paper, to minimise reliance on variable components, but it
(i.e. the following of a known object through unknown remains that RAPiD, as currently formulated, is not
terrain), it would be appropriate to consider some apparent applicable to the problem of tracking a freely moving
deficiencies with the DROID-RAPiD approach. The generic object.
greatest limitation would seem to lie at the outset with
the feature-based approach. While DROID can be 8. CONCLUDING SUMMARY
demonstrated to provide measurements with at times It has been demonstrated that DROID can extract sensor
surprising accuracy, the concentration on high quality ego motion and scene structure to some accuracy, and
features leads to a sparse representation of the viewed RAPiD with suitable models can track known objects to
structure; the sparseness can be catastrophic in very bland high precision. DROID has been applied successfully in
scenes. This underlines the power of the human brain in a range of indoor and outdoor scenes, and RAPID too has
using a wide range of depth cues, general scene been used in a range of applications. Together these
understanding, shape from shading and the other shape- systems make a considerable contribution to the task of
from-X methods. Work is in progress to enrich DROID's obstacle avoidance and object following.
structural representation by the use of edge features which
should be beneficial in man-made environments This paper has described the basic structure-from-motion
particularly. It seems apparent however, that DROID algorithms used by DROID to generate a description of
should be regarded as a measurement system and some scene structure and sensor motion from a mono image
applications may require a further tier of image sequence. The resulting scene structure is represented by
interpretation to achieve a complex objective, the estimated 3D positions of localised point features.
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This paper has also described the basic algorithms of the 6. Harris, C. G. & Stennett, C. 3D Object Tracking at
RAPiD tracker. RAPID is eminently suited to real-time Video Rate - RAPiD Proceedings of the first British
processing with modest hardware, and real-time processor Machine Vision Conference, BMVC90, Oxford
implementations of DROID are now in development. 1990.

In addition to the techniques detailed here, DROID has 7. R J Evans Filtering of Pose Estimates Generated by
been extended to stereo operation and use of edge features the RAPiD Tracker in Applications Proceedings of
is being researched. Stereo generally enhances the the first British Machine Vision Conference
stability of the system and edges are expected to enrich BMVC90, Oxford, 1990.
the available 3D structural representation, though this
will be of most utility in man-made environt, nts. 8. C G Harris & M J Stephens, A Combined Corner

and Edge Detector, Proceedings of 4th Alvey Vision
This paper has also mentioned possible weakness in the Conference, Manchester, August 1988.
DROID/RAPiD approach, in particular the sparseness of
output in bland scenery and the need for target-specific 9. L Kitchen & A Rosenfeld, Grey Level Corner
models. To perform complex tasks, we may need to use Detection, Pattern Recognition Letters, 1, pp. 95-
these methods as measurement subsystems within a larger 102, 1982.
processing and interpretation framework. It is clear
however that DROID and RAPiD are powerful tools in 10. M J Stephens, Matching Features from Edge-
their own right, as shown by the range of environments processed Image Sequences, Proceedings of 3rd
in which they have been demonstrated. Alvey Vision Conference, Cambridge, September

1987.
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Figure 10. Two consecutive frames from corridor sequence with
DROID extracted feature-points marked by white spots

Figure 11. Reliably tracked DROID feature-points.



Figure 12. Delauney triangulation of Image plane using tracked features.

Figure 13. Contour map of scene derived by Interpolation between
feature-points using triangulated surface.
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p.

Figure 14. General view of RAPID demonstration scenario.

X Model control point
with edge orientation

Figure 15. 'Bat' target model used by RAPID.
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I

Figure 16. Two Images of target as seen by the RAPID camera with
target outlines and pose data superimposed.
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Figure 18. RAPID applied to a model aircraft.
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applications on a low-cost parallel SIMD (single instruction multiple
data) architecture, objects can be trained by an unskilled user in less
than 1 min, and after training, parts can be located in about 100 ms. This
method has been found to work very well on integrated circuit patterns.
I.E.

TYPE 1/4/2
Quest Accession Number : 91A44332

91A44332# NASA IAA Preprint Issue 18
Computer vision of the Martian rover - Hardware/software technique
(AA)SHAMIS, V.; (AB)AVANESOV, G.; (AC)KOGAN, A.; (AD)LANGE, M.;

(AE)SHAMANOV, I.
(AE) (AN SSSR, Institut Kosmicheskikh Issledovanii, Moscow, USSR)
AIAA PAPER 88-5012 AIAA and NASA, International Symposium on Space

Automation and Robotics, 1st, Arlington, VA, Nov. 29, 30, 1988. 8 pz
881100 p. 8 In: EN (English) p.3073

The present study examines principles of computer vision design for
autonomous planetary rovers. Some optional computer vision system (CVS)
techniques used to measure environment parameters of the Martian rover are
compared, with due account for its diminished payload. Expert estimates of
the main design parameters for every feasible option of the rover's CVS
are adduced. Attention is given to the CVS optical range finder, stereo
system with linear source, stereo system with matrix source (active
systems), and stereo system with edge detection, multistereo syste-., and
stereo system with mapped search (passive systems). Consideration is given
to CVS detection of obstacles within a viewing angle. The algorithm used
to aetect local obstacles is described.
P.D.
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TYPE 1/4/3
Quest Accession Number : 91A35147

91A35147 NASA IAA Conference Paper Issue 14
Environment learning using a distributed representation
(AA)MATARIC, MAJA J.
(AA)(MIT, Cambridge, MA)
N00014-86-K-0685 IN: 1990 IEEE International Conference on Robotics and

Automation, Cincinnati, OH, May 13-18, 1990, Proceedings. Vol. 1
(A91-35126 14-63). Los Alamitos, CA, IEEE Computer Society Press, 1990, p.
402-406. Hughes Aircraft Co.-supported research. 900000 p. 5 refs 15
In: EN (English) p.2354

A method for robust mobile robot navigation and environmental learning
is presented. It was implemented and tested on a physical robot. The
method consists of a collection of simple, incrementally designed robot
behaviors. The behaviors receive sonar and compass data which they use to
dynamically detect landmarks and construct a distributed map of the
environment. The map is represented as a graph in which each node is a
collection of augmented finite state machines functioning a parallel. The
distributed nature of the map allows for localization in constant time.
The method utilizes a modified spreading of activation scheme to
accomplish robust linear-time path planning. It is capable of generating
both topologically and physically shortest paths to the goal. The method
uses local information to achieve the global task without having to replan
if the robot becomes lost or strays off the desired path.
I.E.

TYPE 1/4/4
Quest Accession Number : 9A35146

91A35146 NASA IAA Conference Paper Issue 14
Robot navigation using an anthropomorphic visual sensor
(AA)TISTARELLI, MASSIMO; (AB)SANDINI, GIULIO
(AB) (Genova, Universita, Genoa, Italy)
IN: 1990 IEEE International Conference on Robotics and Automation,

Cincinnati, OH, May 13-18, 1990, Proceedings. Vol. 1 (A91-35126 14-63).
Los Alamitos, CA, IEEE Computer Society Press, 1990, p. 374-381. Research
supported by CNR and NATO. 900000 p. 8 refs 24 In: EN (English) p.
2354

The use of an anthropomorphic, retinalike visual sensor for navigation
tasks is investigated. The main advantage, besides the topological scaling
and rotation invariance, stems from the considerable data reduction
obtained with nonuniform sampling, in conjunction with high resolution in
the part of the field of view corresponding to the focus of attention.
Active movements are also considered to be a beneficial feature, solving
the depth-from-motion problem and maintaining a three-dimensional
representation of the viewed scene. For short-range navigation, a tracking
egomotion strategy is adopted which greatly simplifies the motion
equations and complements the characteristics of the retinal sensor (the
displacement is smaller wherever the image resolution is higher). An
algorithm for the computation of depth from motion is developed for image
sequences acquired with the retinal sensor, and an error analysis is
carried out to determine the uncertainty of range measurements. An
experiment is presented in which depth maps are computed from a sequence
of images sampled with the retinalike sensor, building a volumetric
representation of the scene.
I.E.



TYPE 1/4/5
Quest Accession Number : 91A30851

91A30851 NASA IAA Meeting Paper Issue 12
NAECON 90; Proceedings of the IEEE National Aerospace and Electronics

Conference, Dayton, OH, May 21-25, 1990. Vols. 1-3
(AA)PALAZZO, FRANK L.
(AA)ED.
(AA)(Questech, Inc., Dayton, OH)
Conference sponsored by IEEE. New York, Institute of Electrical and

Electronics Engineers, Inc., 1990, p. Vol. 1, 466 p.; vol. 2, 456 p.; vol.
3, 424 p. For individual items see A91-30852 to A91-31031. 900000 p.
1346 In: EN (English) Price of three vols., members, $70.; nonmembers,
$140 p.1899

The present conference discusses advancements in VLSI
components/packaging, signal processing, airborne computers, data
transmission, advanced avionics architectures. optical applications, data
control and display, airborne image processing, target acquisition and
recognition, airborne radar and fire control, navigation, weapons guidance
and interfaces, Kalman filtering, power generation and control, and
command control and communications. Also discussed are flight control
reconfiguration, multivariable control theory, flight management, Ada
language applications, object-oriented Ada simulations, software
management and quality assurance, visual system software,
voice-interaction applications, human/machine interfaces, pilot
acceleration protection, electronic combat analysis, modular avionics,
epert systems, machine vision/optical image processing, adaptive
networks, logistics readiness, automated testing, and total quality
management.
O.C.

TYPE 1/4/6
Quest Accession Number 91N30843

91N30843# NASA STAR Thesis Issue 22
Application of Gestalt theory concepts for image interpretation for

robot movement navigation / M.S. Thesis - 14 Feb. 1990
UMA APLICACAO DE CONCEITOS DA TEORIA DE GESTALT NA INTERPRETACAO DE

IMAGENS PARA A NAVEGACAO DE ROBOS MOVEIS
(AA)ODASHIMA, EUNICE KINUYO
Instituto de Pesquisas Espaciais, Sao Jose dos Campos (Brazil).

10601891)
INPE-5225-TDL/438 910300 p. 144 In PORTUGUESE; ENGLISH summary In:

AA (Mixed) Avail: NTIS HC/MF A07 p.3741

Research involved the development of machine vision for a vehicle
capable of moving from one place to another while employing collision
avoidance capabilities. The specific objective of the study was the use of
image segmentation of the interior space and the obstacles therein to
construct a cognitive map of the robot's movements. The paradigm is based
on Gestalt psychology and geometry.
Author



TYPE 1/4/7
Quest Accession Number : 91N29801

91N29801# NASA STAR Conference Proceedings Issue 21
Workshop on Automation and Robotics: Proceedings
Lawrence Livermore National Lab., CA. (LH075075)
DE91-015175; CONF-910274 W-7405-ENG-48 910200 p. 243 Workshop held

in Livermore, CA, 6 Feb. 1991 In: EN (English) Avail: NTIS HC/MF All
p.3562

This workshop provided a forum in which Lawrence Livermore National
Laboratory scientists and engineers exchanged ideas and information on the
latest internal developments in the field of robotic and automation
technologies. The material presented constitutes most of the presentations
given during the workshop. Presentations were given on the following
session topics: robotics and automation in hazardous environments;
laboratory and machine tool automation; neural networks, machine vision,
and sensors; applied real time control; future technologies and
applications; intelligent man-machine interaction issues. Individual
papers have been cataloged separately.
DOE

TYPE 1/4/8
Quest Accession Number : 91A29762

91A29762# NASA IAA Journal Article Issue 11
Star pattern identification aboard an inertially stabilized aircraft
(AA)KOSIK, JEAN CLAUDE
(AA) (CNES, Toulouse, France)
Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14,

Mar.-Apr. 1991, p. 230-235. 910400 p. 6 refs 6 In: EN (English) p.
1713

Comparative statistical analyses are conducted for several
star-identification algorithms applicable to inertially stabilized
spacecraft: polygon-matching, the pole technique, polygon
angular-matching, and orientation-angle-magnitude. While the pole
technique was both the most complex and least efficient, so that the
polygon-match algorithm was superior even without any a priori information
on attitude, the possession of crude attitude data allowed the polygon
angular-matching algorithm to yield the best results; its code was nearly
as simple as that for the polygon-match, and its efficiency was shown by
the present probabilistic approach to be greatly improved over the
alternatives.
O.C.



TYPE 1/4/9
Quest Accession Number : 91A28855

91A28855 NASA IAA Journal Article Issue 11
Background characterization techniques for target detection using scene

metrics and pattern recognition
(AA)NOAH, PAUL V.; (AB)NOAH, MEG A.; (AC)SCHROEDER, JOHN; (AD)CHErNICK,

JULIAN
(AC)(Ontar Corp., Brookline, MA); (AD)(U.S. Army, Mat-rial Systems

Analysis Activity, Aberdeen Proving Ground, MD)
DAAAl5-88-C-0021 Optical Engineering (ISSN 0091-3286), vol. 30, Jan.

1991, p. 254-258. 910100 p. 5 refs 11 In: EN (English) p.1827

Autonomous homing munitions (AHM) using infrared, visible, millimeter
wave and other sensors have been investigated in order to develop ground
target detection and identificaton systems in a clutter enviroment.
Pattern recognition and artificial intelligence techniques combined with
multisensor data fusion have been used to evaluate a set of image metrics
applied to infrared terrain clutter scenes. The application of
discriminant function analysis to target detection and identification is
demonstrated.
O.G.

TYPE 1/4/10
Quest Accession Number 91N27411

91N27411# NASA STAR Technical Report Issue 19
The effects of user's training on the performance of an automatic speech

recognizer for a self-paced task / Final Report
(AA)SMYTH, CHRISTOPHER C.
Human Engineering Labs., Aberdeen Proving Ground, MD. (H6521544)
AD-A235844; HEL-TM-10-91 DA PROJ. 1LI-62716-AH-70 910400 p. 84 In:

EN (English) Avail: NTIS HC/MF A05 p.3150

The results of a recent experiment concerning the effects of training on
the performance of subjects using the automatic speech recognizer are
reported. Over a 5-day period, 20 military enlisted grade male subjects
were trained and tested in using a connected speech (speaker-dependent)
machine automatic speech recognizer in a self-paced task controlling a
generic tactical display by voice command. Experimental results show that
a majority of the subjects had little difficulty with the automatic speech
recognizer and that for these subjects training produced only a slight
irprovement in recognizer performance. These subjects performed at a high
machine recognition rate. However, during the first session, a large
minority (35 percent) of the subjects had difficulty training their speech
to be machine recognizable. These subjects required at least two training
sessions to perform the task at their best ability, and even after they
were trained, their performance never reached the pertormance level of
other subjects.
GRA

.........
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TYPE 1/4/11
Quest Accession Number : 91N26815

91N26815# NASA STAR Technical Report Issue 18
Northeast Artificial Intelligence Consortium (NAIC). Volume 1: Executive

summary / Final Report, Sep. 1984 - Dec. 1989
(AA)WEISS, VOLKER; (AB)BRULE, JAMES F.
Northeast Artificial Intelligence Consortium, Syracuse, NY. (N4144152)
AD-A234880; RADC-TR-90-404-VOL-I F30602-85-C-0008 901200 p. 71 In:

EN (English) Avail: NTIS HC/MF A04 p.3045

The Northeast Artificial Intelligence Consortium (NAIC) was created by
the Air Force Systems Command, Rome Air Development Center, and the office
of Scientific Research. Its purpose was to conduct pertinent research in
artificial intelligence and to perform activities ancillary to this
research. This report describes progress during the existence of the NAIC
on the technical research tasks undertaken at the member universities. The
topics covered in general are: (1) versatile expert system for equipment
maintenance; (2) distributed AI for communications systems control; (3)
automatic photointerpretation; (4) time-oriented problem solving; (5)
speech understanding systems; (6) knowledge-base. reasoning and planning;
and (7) a knowledge acquisition, assistance, and explanation system. This
volume provides the executive summary of the NAIC.
GRA

TYPE 1/4/12
Quest Accession Number : 91N26792

91N26792# NASA STAR Technical Report Issue 18
Using genetic algorithms to select and create features for pattern

classification
(AA)CHANG, E. I.; (AB)LIPPMANN, RICHARD P.
Massachusetts Inst. of Tech., Lexington. (MJ728827) Lincoln Lab.
AD-A235165; TR-892; ESD-TR-90-144 F19628-90-C-0002 910311 p. 90 In:

EN (English) Avail: NTIS HC/MF A05 p.3042

Genetic algorithms were used to select and create features and to
select reference exemplar patterns for machine -vsion and speech pattern
classification tasks. On a 15-feature machine-vision inspection task, it
was found that genetic algorithms performed no better than conventional
upproaches to feature selection but required much more computation. For a
speech recognition task, genetic algorithms required no more computation
time than traritional approaches but reduced the number of features
required by a factor of five (from 153 to 33 features). On a difficult
artificial machine-vision task, genetic algorithms were able to create new
features (polynomial functions of the original features) that reduced
classification error rates from 10 to almost 0 percent. Neural net and
nearest-neighbor classifiers were unable to provide Fuch low error rates
using only the original features. Genetic algorithms were also used to
reduce the number of reference exemplar patterns and to select the value
of k for a k-nearest-neighbor classifier. On a 338 training pattern vowel
recognition problem with 10 classes, genetic algorithms simultaneously
reduced the number of stored exemplars from 338 to 63 and selected k
without significantly decreasing classification accuracy. In all
applications, genetic algorithms were easy to apply and found good
solutions in many fewer trials than would be required by an exhaustive
search. Run times were long but not unreasonable. These results suggest
that genetic algorithms may soon be practical for pattern classification
problems as faster serial and parallel con-.puters are developed.
GRA



TYPE 1/4/13
Quest Accession Number : 91A26612

91A26612* NASA IAA Conference Paper Issue 10
Kalman filter based range estimation for autonomous navigation using

imaging sensors
(AA)SRIDHAR, B.; (AB)CHENG, V. H. L.; (AC)PHATAK, A. V.
(AB) (NASA, Ames Research Center, Moffett Field, CA); (AC) (Analytical

Mechanics Associates, Mountain View, CA)
National Aeronautics and Space Administration. Ames Research Center,

Moffett Field, CA. (NC473657)
IN: Automatic control in aerospace; IFAC Symposium, Tsukuba, Japan, July

17-21, 1989, Selected Papers (A91-26606 10-12). Oxford, England and New
York, Perganon Press, 1990, p. 45-50. 900000 p. 6 refs 12 In: EN
(English) p.1553

The ability to detect and locate obstacles using on-board sensors and
modify the nominal trajectory is necessary for safe landing of an
autonomous lander on Mars. This paper examines some of the issues in the
location of objects using a sequence of images from a passive sensor, and
describes a Kalman filter approach to improve the range estimation to
obstacles. The filter is also used to track features in the images leading
to a significant reduction of search effort in the feature extraction step
of the algorithm. The lack of suitable flight imagery data presents a
problem in the verification of concepts for obstacle detection. An
experiment is designed to acquire a sequence of images along with sensor
motion parameters and the range estimation results using this imagery are
presented.
Author

TYPE 1/4/14
Quest Accession Number : 91A26349

91A26349 NASA IAA Book/Monograph Issue 09
Intelligent robotics (Book)
(AA)LEE, MARK H.
(AA) (University College of Wales, Aberystwyth)
Research supported by University of Auckland and SERC. New York/Milton

Keynes, England, John Wiley & Sons/Open University Press, 1989, 224 p.
890000 p. 224 refs 55 In: EN (English) $61.95 p.1454

The fundamental principles of intelligent-robot design and application
are discussed in a general introduction for engineering students and
practicing engineers. Chapters are devoted to the current status of
robotics technology, sensor technology, artificial sight, the problem of
perception, building a knowledge base, and machinery for thinking about
actions. Also considered are the emulation of an expert; errors, failures
and disasters; a robotic assembly system; and proposals for a science of
physical manipulation. Extensive diagrams, drawings, and graphs are
provided.
T.K.



TYPE 1/4/15
Quest Accession Number : 91N24046

91N24046*# NASA STAR Conference Paper Issue 15
Intelligent vision system for autonomous vehicle operations
(AA)SCHOLL, MARIJA S.
Jet Propulsion Lab., California Inst. of Tech., Pasadena. (JJ574450)
In NASA, Washington, Technology 2000, Volume 2 p 34-43 (SEE N91-24041

15-99) 910000 p. 10 In: EN (English) Avail: NTIS HC/MF A16 p.2536

A complex optical system consisting of a 4f optical correlator with
programmatic filters u ider the control of a digital on-board computer that
operates at video rates for filter generation, storage, and management is
described.
Author

TYPE 1/4/16
Quest Accession Number : 91N23766

91N23766# NASA STAR Technical Report Issue 15
Synergetic multisensor fusion / Final Report, 1 Jul. 1987 - 30 Sep.

1990
(AA)AGGARWAL, J. K.
Texas Univ., Austin. (TT636128) Computer and Vision Research Center.
AD-A232089; ARO-25021.5-PH DAAL03-87-K-0089 901130 p. 60 In: EN

(English) Avail: NTIS HC/MF A04 p.2486

Synergetic multisensor fusion is the process of integrating information
obtained from different sensing modalities in order to extract additional
information that cannot be obtained by separately processing the signals
from the different sensors. The development of a computer vision system
using synergetic multisensor fusion is a complex task which encompasses:
sensor modeling; environment modeling; determining the analytic models
used to interrelate the different sensing mechanisms; determining the
models used to interrelate the sensed parameters of imaged objects (such
as thermal emissivity, visual reflectance, and radar reflectance); and
devising algorithms to exploit the derived models. We have developed
powerful and robust algorithms for computer vision tasks based upon
synergetic multisensor fusion. Our approach is suitable for applications
such as object recognition, tracking, surveillance, and autonomous
guidance.
GRA
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TYPE 1/4/17
Quest Accession Number : 91A23123

91A23123 NASA IAA Journal Article Issue 08
The DARPA Image Understanding Benchmark for parallel computers
(AA)WEEMS, CHARLES; (AB)RISEMAN, EDWARD; (AC)HANSON, ALLEN;

(AD)ROSENFELD, AZRIEL
(AC) (Massachusetts, University, Amherst); (AD)(Maryland, University,

College Park)
DACA76-86-C-0015 Journal of Parallel and Distributed Computing (ISSN

0743-7315), vol. 11, Jan. 1991, p. 1-24. Research supported by DARPA.
910100 p. 24 refs 15 In: EN (English) p.1258

DARPA has undertaken an evaluation of parallel architectures applicable
to knowledge-based machine vision, with a view to the formulation of a
benchmark capable of addressing the issue of system performance on an
integrated set of tasks. This Integrated Image Understanding Benchmark
encompasses a model-based object-recognition problem, two sources of
sensor-input and intensity and range data, and a data base of candidate
models consisting of rectangular surface configurations in orthographic
projection in the presence of both noise and spurious nonmodel surfaces.
The benchmark can be used to gain insight into processor strengths and
weaknesses, thereby guiding the development of next-generation °
parallel-vision architectures.
O.C.

TYPE 1/4/18
Quest Accession Number : 91N22769

91N22769*# NASA STAR Conference Proceedings Issue 14
The 1991 Goddard Conference on Space Applications of Artificial

Intelligence
(AA)RASH, JAMES L.
(AA)ed.
National Aeronautics and Space Administration. Goddard Space Flight

Center, Greenbelt, MD. (NC999967)
NASA-CP-3110; REPT-91BO0064; NAS 1.55:3110 Washington 910500 p. 361

Conference held in Greenbelt, MD, 13-15 May 1991 In: EN (English) Avail:
NTIS HC/MF A16 p.2312

The purpose of this annual conference is to provide a forum in which
current research and development directed at space applications of
artificial intelligence can be presented and discussed. The papers in this
proceeding fall into the following areas: Planning and scheduling, fault
monitoring/diagnosis/recovery, machine vision, robotics, system
development, information management, knowledge acquisition and
representation, distributed systems, tools, neural networks, and
miscellaneous applications. For individual titles, see N91-22770 through
N91-22797.
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TYPE 1/4/19
Quest Accession Number : 91A20480

91A20480 NASA IAA Meeting Paper Issue 06
Intelligent robots and computer vision VIII: Systems and applications;

Proceedings of the Meeting, Philadelphia, PA, Nov. 9, 10, 1989
(AA)BATCHELOR, BRUCE G.
(AA) ED.
(AA)(Cardiff, University College, Wales)
SPIE-1193 Meeting sponsored by SPIE. Bellingham, WA, Society of

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1193),
1990, 356 p. For individual items see A91-20481 to A91-20484. 900000 p.
356 In: EN (English) Members, $51.; nonmembers, $64 p.918

Recent advances in robot optical sensors and their applications are
discussed in reviews and reports. Sections are devoted to planning
schemes, intelligent robots, industrial robots, and sensors and
processing. Pdrticular attention is given to planning based on multisensor
input, an object-oriented approach to simulation of perception and
navigation for mobile robots, fast visual foothold finding for an
autonomous bipedal robot, hierarchical modeling of mobile seeing robots, a
robot tactile sensor for peghole assembling, incorporating ultrasound into
robot vision, the use of projection to extract a range map, the tracking
of partially occluded two-dimensional shapes, and corner detection from
thinned-edge images using a Kalman filter.
T.K.

TYPE 1/4/20
Quest Accession Number : 91A20226

91A20226 NASA IAA Meeting Paper Issue 06
Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6,

7, 1989
(AA)WOLFE, WILLIAM J.; (AB)CHUN, WENDELL H.
(AA)ED. ; (AB)ED.
(AA) (Colorado, University, Denver); (AB) (Martin Marietta Space Systems

Co., Denver, CO)
SPIE-1195 Meeting sponsored by SPIE. Bellingham, WA, Society of

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1195),
1990, 420 p. For individual items see A91-20227 to A91-20231. 900000 p.
420 In: EN (English) Members, $45.; nonmembers, $56 p.918

The present conference on mobile robot systems discusses high-speed
machine perception based on passive sensing, wide-angle optical ranging,
three-dimensional path planning for flying/crawling robots, navigation of
autonomous mobile intelligence in an unstructured natural environment,
mechanical models for the locomotion of a four-articulated-track robot, a
rule-based command language for a semiautonomous Mars rover, and a
computer model of the structured light vision system for a Mars rover.
Also discussed are optical flow and three-dimensional information for
navigation, feature-based reasoning trail detection, a symbolic neural-net
production system for obstacle avoidance and navigation, intelligent path
planning for robot navigation in an unknown environment, behaviors from a
hierarchical control system, stereoscopic TV systems, the REACT language
for autonomous robots, and a man-amplifying exoskeleton.
O.C.
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TYPE 1/4/21
Quest Accession Number 91A19827

91A19827 NASA IAA Journal Article Issue 06
Estimating 3-D egomotion from perspective image sequences
(AA)BURGER, WILHELM; (AB)BHANU, BIR
(AA) (Linz, Universitaet, Austria); (AB) (Honeywell Systems and Research

Center, Minneapolis, MN)
DACA76-86-C-0017 IEEE Transactions on Pattern Analysis and Machine

Intelligence (ISSN 0162-b828), vol. 12, Nov. 1990, p. 1040-1058. Research
supported by DARPA. 901100 p. 19 refs 33 In: EN (English) p.916

Computing sensor motion from sets of displacement vectors obtained from
consecutive pairs of images is discussed. The problem is investigated with
emphasis on its application to autonomous robots and land vehicles. The
effects of 3-D camera rotation and translation upon the observed image are
discussed, particularly the concept of the focus of expansion (FOE). It is
shown that locating the FOE precisely is difficult when displacement
vectors are corrupted by noise and errors. A more robust performance can
be achieved by computing a 2-D region of possible FOE locations (termed
the fuzzy FOE) instead of looking for a single-point FOE. The shape of
this FOE region is an explicit indicator of the accuracy of the result. It
has been shown elsewhere that given the fuzzy FOE, a number of powerful
inferences about the 3-D sense structure and motion become possible. The
aspects of computing the fuzzy FOE are presently emphasized, and the
performance of a particular algorithm on real motion sequences taken from
a moving autonomous land vehicle is shown.
I.E.

TYPE 1/4/22
Quest Accession Number : 91A19501

91A19501 NASA IAA Meeting Paper Issue 06
Intelligent robots and computer vision VIII: Algorithms and techniques;

Proceedings of the Meeting, Philadelphia, PA, Nov. 6-10, 1989. Parts 1 & 2
(AA)CASASENT, DAVID P.
(AA) ED.
(AA) (Carnegie-Mellon University, Pittsburgh, PA)
SPIE-1192 Meeting sponsored by SPIE. Bellingham, WA, Society of

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1192),
1990, p. Pt. 1, 512 p.; pt. 2, 382 p. For individual items see A91-19502
to A91-19509. 900000 p. 894 In: EN (English) Price of two parts,
members, $73.; nonmembers, $91 p.928

Theoretical and practical aspects of computer-vision systems for
robotics applications are discussed in reviews and reports. Sections are
devoted to pattern recognition for intelligent robots and computer vision;
segmentation, image processing, and feature extraction; three-dimensional
shape determination and representation; color and range image processing;
and neural networks and associative processors for advanced vision
processing. Also considered are the biological basis for machine vision,
fuzzy logic in intelligent systems and computer vision, image
understanding and analysis, time-sequential image processing, and polar
exponential grid processing for synthetic vision systems. Extensive
diagrams, graphs, and sample images are provided.
T.K.
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TYPE 1/4/23
Quest Accession Number : 91A16419

91A16419 NASA IAA Meeting Paper Issue 04
Optics, illumination, and image sensing for machine vision IV;

Proceedings of the Meeting, Philadelphia, PA, Nov. 8-10, 1989
(AA)SVETKOFF, DONALD J.
(AA)ED.
(AA) (Synthetic Vision Systems, Inc., Ann Arbor, MI)
SPIE-1194 Meeting sponsored by SPIE. Bellingham, WA, Society of

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1194),
1990, 317 p. No individual items are abstracted in this volume. 900000
p. 317 In: EN (English) Members, $45.; nonmembers, $56 p.514

Various papers on optics, illumination, and image sensing for machine
vision are presented. Individual topics addressed include: extraction of
the 'time to contact' from real visual data, position-decoupled optical
inspection relay system, TDI imaging in industrial inspection, time delay
and integration camera for machine vision, special scanning modes in CCD
cameras, scale-invariant processing multiple wavelengths, incoherent
optical correlators, light-source models for machine vision, design and
testing of a microscopic reflectometer, prediction scheme for a
verification vision system, accurate calibration technique for 3-D laser
strip sensors, triangulation-based camera calibration for machine-vision
system. Also discussed are: 3-D gradient and curvature measurement using
local image information, depth from defocus of structured light, range
sensing by projecting multiple slits with random cuts, use of linear
arrays in electronic speckle pattern interferometry, new 3-D vision sensor
for shape-measurement applications, 3-D imager with wide area and high
dynamic range, integration of stereo camera geometries, surface
orientation from two-camera stereo with polarizers, application-oriented
overview of stereoscopic vision.
C.D.

I
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TYPE 1/4/24
Quest Accession Number : 91N13941

91N13941*# NASA STAR Technical Report Issue 05
A discrepancy within primate spatial vision and its bearing on the

definition of edge detection processes in machine vision
(AA)JOBSON, DANIEL J.
National Aeronautics and Space Administration. Langley Research Center,

Hampton, VA. (ND210491)
NASA-TM-102739; NAS 1.15:102739 307-51-10 900900 p. 31 In: EN

(English) Avail: NTIS HC/MF A03 p.707

The visual perception of form information is considered to be based on
the functioning of simple and ccmplex neurons in the primate striate
cortex. However, a review of the physiological data on these brain cells
cannot be harmonized with either the perceptual spatial frequency
performance of primates or the performance which is necessary for form
perception in humans. This discrepancy together with recent interest in
cortical-like and perceptual-like processing in image coding and machine
vision prompted a series of image processing experiments intended to
provide some definition of the selection of image operators. The
experiments were aimed at determining operators which could be used to
detect edges in a computational manner consistent with the visual
perception of structure in images. Fundamental issueE, were the selection
of size (peak spatial frequency) and circular versus oriented operators
(or some combination). In a previous study, circular
difference-of-Gaussian (DOG) operators, with peak spatial frequency
responses at about 11 and 33 cyc/deg were found to capture the primary
structural information in images. Here larger scale circular DOG operators
were explored and led to severe loss of image structure and introduced
spatial dislocations (due to blur) in structure which is not consistent
with visual perception. Orientation sensitive operators (akin to one class
of simple cortical neurons) introduced ambiguities of edge extent
regardless of the scale of the operator. For machine vision schemes which
are functionally similar to natural vision form perception, two circularly
symmetric very high spatial frequency channels appear to be necessary and
sufficient for a wide range of natural images. Such a machine vision
scheme is most similar to the physiological performance of the primate
lateral geniculate nucleus rather than the striate cortex.
Author
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TYPE 1/4/25
Quest Accession Number 90A37407

90A37407 NASA IAA Conference Paper Issue 16
Background characterization techniques for pattern recognition

applications
(AA)NOAH, MEG A.; (AB)NOAH, PAUL V.; (AC)SCHROEDER, JOHN; (AD)KESSLER,

B. V.; (AE)CHERNICK, JULIAN
(AC)(Ontar Corp., Brookline, MA); (AD)(U.S. Navy, Naval Surface Warfare

Center, White Oak, MD); (AE)(U.S. Army, Army Material Systems Analysis
Activity, Aberdeen Proving Ground, MD)

N60921-87-C-0044; DAAAI5-88-C-0021 IN: Aerospace pattern recognition;
Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989 (A90-37401
16-63). Bellingham, WA, Society of Photo-Optical Instrumentation
Engineers, 1989, p. 55-70. 890000 p. 16 refs 14 In: EN (English) p.
2594

The development of such sensor hardware as that of large IR and mm-wave
detector arrays for air and ground vehicle detection in a cluttered
battlefield environment has outpaced the development of signal processing
techniques. Attention is presently given to a novel methodology for
background clutter characterization, target detection, and target
identification, employing multivariate statistical analysis to evaluate a
set of image metrics applied to IR cloud imagery and terrain clutter
scenes. This methodology is here applied to (1) the characterization of
atmospheric water vapor cloud scenes for the U.S. Navy's IR Search and
Track system, and (2) the detectio- of ground vehicles for the U.S. Army's
Autonomous Homing Munition.. problem.
O.C.

TYPE 1/4/26
Quest Accession Number : 90A32156

90A32156 NASA IAA Conference Paper Issue 13
An update on strategic computing computer vision - Taking image

understanding to the next plateau
(AA)SIMPSON, ROBERT L., JR.
('A' A:. :nforria ' &n 'e and Technology Office, Arlington, VA)
IN: Image understanding and the man-machine interface II; Proceedings of

the Meeting, Los Angeles, CA, Jan. 17, 18, 1989 (A90-32151 13-6-,.
Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1989,
p. 52-58. 890000 p. 7 In: EN (English) p.2064

Development of knowledge-based technology enabling the construction of
complete robust high-performance image understanding systems is addressed.
A new-generation system, visual modeling and recognition, dynamic scene
and motion analysis, obstacle detection and avoidance, parallel computing
environment for vision, and technology transfer are covered among
important accomplishments achieved in the first phase of the research, and
the project summaries of the above developments are outlined. Integration
of the component technologies into a new-generation system and
demonstration of the utility of emerging vision software for autonomous
navigation tasks are emphasized. The integration task represents a major
research itself, since it addresses the architectural problems of sensor
fusion and communication between the sensing and reasoning modules.
V.T.
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Quest Accession Number : 90A32152

90A32152 NASA IAA Conference Paper Issue 13
Neural networks for computer vision - A framework for specifications of

a general purpose vision system
(AA)SKRZYPEK, JOSEF; (AB)MESROBIAN, EDMOND; (AC)GUNGNER, DAVID
(AC) (California, University, Los Angeles)
N00014-86-K-0395 IN: Image understanding and the man-machine interface

II; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989
(A90-32151 13-63). Bellingham, WA, Society of Photo-Optical
Instrumentation Engineers, 1989, p. 16-29. Research supported by IBM
Corp., Hewlett Packard Co., and University of California. 890000 p. 14
refs 42 In: EN (English) p.2063

A general-purpose machine vision system capable of perceiving and
understanding images in an unconstrained environment is considered.
Fifteen systems built during the last ten years are analyzed along five
dimensions - image attributes, perceptual primitives, knowledge base,
object representation, and control strategy. The human visual system is
analyzed as an underlying mechanism necessary for the development of
general purpose vision. An interdisciplinary approach to vision research
based on the combination of computational neuroscience with computer
science and electrical engineering is proposed. A methodology for
synthesizing a framework for a general-purpose machine vision system is
addressed, and visual tasks such as edge detection and texture
discrimination are covered, along with complex pattern analysis and the
formation of visual categories.
V.T.

TYPE 1/4/28
Quest Accession Number : 90N27406

90N27406# NASA STAR Preprint Issue 21
Dynamic monocular machine vision and applications of dynamic monocular

machine vision
(AA)DICKMANNS, ERNST DIETER; (AB)GRAEFE, VOLKER
Universitaet der Bundeswehr Muenchen, Neubiberg (Germany, F.R.).

U1005765) Inst. fuer Systemdynamic und Flugmechanik.
LRT-WE-13-FB-88-3; ETN-90-97334 Sponsored in part by BMFT; DFG; Daimler

Benz A.G.; and MBB 880700 p. 99 In: EN (English) Avail: NTIS HC A05/MF
A01 p.3061

A new approach to realtime machine vision in dynamic scenes is
presented. It is based on special hardware and methods for feature
extraction and information processing. Using integral spatio-temporal
models, it bypasses the nonunique inversion of the perspective projection
by applying recursive least squares filtering. By prediction error
feedback methods, all spatial states variables including the velocity
components are estimated. Only the last image of the sequence needs to be
evaluated. Two applications in the field of robotics are given.
ESA

I
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TYPE 1/4/29
Quest Accession Number : 90N27394

90N27394# NASA STAR Technical Report Issue 21
Parallel algorithms for computer vision / Final Report, 31 Aug. 1988 -

31 Jan. 1990
(AA)POGGIO, TOMASO
Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial

Intelligence Lab.
AD-A221871; ETL-0564 DACA76-85-C-0010 900400 p. 64 In: EN (English)

Avail: NTIS HC A04/MF A01 p.3059

An integrated vision system, (the Vision Machine) based on a parallel
supercomputer, is examined. The core of the Vision Machine is in fact a
set of parallel algorithms for visual recognition and navigation in an
unstructured environment. The present version of the Vision Machine was
demonstrated to process images in close to real time by: (1) computing
first several low level cues, such as edges, stereo disparity, optical
flow, color and texture, (2) integrating them to extract a cartoon-like
description of the scene in terms of the physical discontinuities of
surfaces, and (3) using this cartoon in a recognition stage, based on
parallel model matching. In addition to the development of the parallel
algorithms, their implementation and testing, work was performed in
several areas that are very closely related. These include: (1) design and
fabrication of VLSI circuits to transfer to potentially cheap and fast
hardware some of the software algorithms; (2) initial development of
techniques to synthesize by learning vision algorithms; and (3) several
projects involving autonomous navigation of small robots.
GRA

TYPE 1/4/30
Quest Accession Number : 90N22242

90N22242*# NASA STAR Conference Paper Issue 15
Ames vision group research overview / Abstract Only
(AA)WATSON, ANDREW B.
National Aeronautics and Space Administration. Ames Research Center,

Moffett Field, CA. (NC473657)
In its Vision Science and Technology at NASA: Results of a Workshop p 52

(SEE N90-22216 15-54) 900200 p. 1 In: EN (English) Avail: NTIS HC
A04/MF A01 p.2143

A major goal of the reseach group is to develop mathematical and
computational models of early human vision. These models are valuable in

the prediction of human performance, in the design of visual coding
schemes and displays, and in robotic vision. To date researchers have
models of retinal sampling, spatial processing in visual cortex, contrast
sensitivity, and motion processing. Based on their models of early human
vision, researchers developed several schemes for efficient coding and
compression of monochrome and color images. These are pyramid schemes that
decompose the image into features that vary in location, size,
orientation, and phase. To determine the perceptual fidelity of these
codes, researchers developed novel human testing methods that have
received considerable attention in the research community. Researchers
constructed models of human visual motion processing based on
physiological and psychophysical data, and have tested these models
through simulation and human experiments. They also explored the
application of these biological algorithms to applications in automated
guidance of rotorcraft and autonomous landing of spacecraft. Researchers
developed networks for inhomogeneous image sampling, for pyramid coding of
images, for automatic geometrical correction of disordered samples, and
for removal of motion artifacts from unstable cameras.
Author
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90N22237*# NASA STAR Conference Paper Issue 15
Computer vision techniques for rotorcraft low altitude flight
(AA) SRIDHAR, BANAVAR
National Aeronautics and Space Administration. Ames Research Center,

Moffett Field, CA. (NC473657)
In its Vision Science and Technology at NASA: Results of a Workshop p

45-46 (SEE N90-22216 15-54) 900200 p. 2 In: EN (English) Avail: NTIS
HC A04/MF A01 p.2142

Rotorcraft operating in high-threat environments fly close to the
earth's surface to utilize surrounding terrain, vegetation, or manmade
objects to minimize the risk of being detected by an enemy. Increasing
levels of concealment are achieved by adopting different tactics during
low-altitude flight. Rotorcraft employ three tactics during low-altitude
flight: low-level, contour, and nap-of-the-earth (NOE). The key feature
distinguishing the NOE mode from the other two modes is that the whole
rotorcraft, including the main rotor, is below tree-top whenever possible.
This leads to the use of lateral maneuvers for avoiding obstacles, which
in fact constitutes the means for concealment. The piloting of the
rotorcraft is at best a very demanding task and the pilot will need help
from onboard automation tools in order to devote more time to
mission-related activities. The development of an automation tool which
has the potential to detect obstacles in the rotorcraft flight path, warn
the crew, and interact with the guidance system to avoid detected
obstacles, presents challenging problems. Research is described which
applies techniques from computer vision to automation of rotorcraft
navigtion. The effort emphasizes the development of a methodology for
detecting the ranges to obstacles in the region of interest based on the
maximum utilization of passive sensors. The range map derived from the
obstacle-detection approach can be used as obstacle data for the obstacle
avoidance in an automatic guidance system and as advisory display to the
pilot. The lack of suitable flight imagery data presents a problem in the
verification of concepts for obstacle detection. This problem is being
addressed by the development of an adequate flight database and by
preprocessing of currently available flight imagery. The presentation
concludes with some comments on future work and how research in this area
relates to the guidance of other autonomous vehicles.
Author

TYPE 1/4/32
Quest Accession Number : 90N18188

90N18188# NASA STAR Conference Proceedings Issue 10
High-Level Vision and Planning Workshop Proceedings / Final Report
(AA)BLOOM, MICHAEL I.
(AA)ed.
Institute for Defense Analyses, Alexandria, VA. (IJ564258)
AD-A215982; AD-E501178; IDA-D-649; IDA/HQ-89-034738 MDA903-89-C-0003

890800 p. 256 Workshop held in Rehovot, Israel, 25 Apr. 1988; sponsored
by DARPA, US-Israel Binational Science Foundation and Institute for
Defense Analyses In: EN (English) Avail: NTIS HC A12/MF A01 p.1420

The slides, papers, and graphic illustrations presented at the joint
U.S.-Israeli workshop on artificial intelligence are provided in this
Institute for Defense Analyses document. This document is based on a broad
exchange of ideas about current approaches and research issues in the
areas of design automation and autonomous robotic systems. A list of
participants is provided along with applicable references for individual
papers.
GRA
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90N16734# NASA STAR Conference Paper Issue 09
Autonomous automatic landing through computer vision
(AA)SCHELL, R.; (AB)DICKMANNS, E. D.
Hochschule der Bundeswehr, Munich (Germany, F.R.). (HV212637) Dept. of

Aerospace Technology.
In AGARD, Advances in Techniques and Technologies for Air Vehicle

Navigation and Guidance 9 p (SEE N90-16731 09-04) 891200 p. 9 In: EN
(English) Avail: NTIS HC A09/MF A02; Non-NATO Nationals requests
available only from AGARD/Scientific Publications Executive p.1163

The automatic autonomous landing approach through computer vision was
investigated in a simulation loop with real image sequence processing
hardware and software. The use of integral spatio-temporal world models is
the presupposition to achieve real time performance with the
microprocessors currently available. Results achieved for a business-jet
aircraft demonstrate that this set up is powerful enough to solve the
problem of autonomous unmanned landing approach.
Author

TYPE 1/4/34
Quest Accession Number : 90N15453

90N15453# NASA STAR Technical Report Issue 07
Research in knowledge-based vision techniques for the Autonomous Land

Vehicle Program / Final Annual Report, 1 Jun. 1988 - 31 May 1989
(AA)NEVATIA, R.; (AB)PRICE, K.; (AC)FRANZEN, W.; (AD)GAZIT, S.;

(AE)MEDIONI, G.; (AF)PENG, S.; (AG)SAINT-MARC, P.
(AA)ed.; (AB) ed.
University of Southern California, Los Angeles. (U6203125) Inst. for

Robotics and Intelligent Systems.
AD-A213440; IRIS-255; ETL-0545 DACA76-85-C-0009 890800 p. 59 In: EN

(English) Avail: NTIS HC A04/MF A01 p.942

The authors' basic approach to detecting and tracking motion is to
extract and match features, such as lines and regions, from a sequence and
to generate motion estimates from these. They present one report on
spatio-temporal analysis for tracking edges through very closely spaced
sequences. They also present a report on matching edge-based contours
using edges from multiple scales with low resolution guiding high
resolution matches. They also present an analysis of estimating 3-D motion
and structure of moving object with uniform acceleration.
GRA

TYPE 1/4/35
Quest Accession Number : 90A14975

90A14975 NASA IAA Conference Paper Issue 04
Image understanding techniques in geophysical data interpretation
(AA)ROBERTO, V.; (AB)PERON, A.; (AC)FUMIS, P. L.
(AC) (Udine, Universita, Italy)
IN: Issues on Machine Vision, Course, Udine, Italy, July 1988,

Proceedings (A90-14971 04-63). Vienna and New York, Springer-Verlag, 1989,
p. 263-274. 890000 p. 12 refs 9 In: EN (English) p.0

This paper covers some topics in geophysical signal interpretation, by
means of Artificial Intelligence (Machine Vision) techniques. In
particular, the low-level processing modules of a Knowledge-Based System
for seismic reflection image understanding are presented, as well as an
explanation of their structural and functional characteristics.
Preliminary results are also given and discussed.
Author
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Quest Accession Number : 90A14974

90A14974 NASA IAA Conference Paper Issue 04
Neural networks, supercomputers and computer vision
(AA)JOHNSON, 0.; (AB)PIERONI, G.; (AC)RAKOTOMALALA, M.
(AA) (Houston, University, TX); (AB) (Udine, Universita, Italy; Houston,

"niversity, TX); (AC) (HARC, Woodlands, TX)
IN: Issues on Machine Vision, Course, Udine, Italy, July 1988,

Proceedings (A90-14971 04-63). Vienna and New York, Springer-Verlag, 1989,
p. 163-175. 890000 p. 13 refs 16 In: EN (English) p.0

A PDP program for simulating neural networks ia applied to problems in
machine vision. The PDP program avoids explicit pattern matching with
reference model segments as well as the creation of hypotheses in order to
utilize the neural networks' ability to perform pattern matching with
distorted and incomplete data. The problem of recognizing simple
four-sided polygons in a two-dimensional scene of straight lines is
considered. Supercomputers which use neural network software are
discussed.
C.D.

F,

TYPE 1/4/37
Quest Accession Number : 90A14971

90A14971 NASA IAA Meeting Paper Issue 04
Issues on Machine Vision, Course, Udine, Italy, July 1988, Proceedings
(AA)PIERONI, G. G.
(AA)ED.
(AA) (Udine, Universita, Italy)
Course organized by the International Centre for Mechanical Sciences;

Supported by CNR, UNESCO, Centro Ricerche FIAT, et al. Vienna and New
York, Springer-Verlag, 1989, 344 p. For individual items see A90-14972 to
A90-14975. 890000 p. 344 In: EN (English) $57.20 p.0

Various papers on machine vision are presented. Individual topics
addressed include: data processing via associative memory; picture
labeling and shape descriptors for machine vision; morphological approach
to industrial image inspection of honeycomb composite materials;
two-dimensional digital filter design by the adaptive differential
correction algorithm; comparison of hierarchical topologies for
megamicrocomputers; constrained Delaunay triangulation algorithms for
surface representation; medium-level language for pyramid architectures;
vision problems in sparse images; machine vision for inspection; neural
networks, supercomputers, and computer vision; software issues for machine
vision; multiresolution approach for segmenting surfaces; signed Euclidean
distance transform applied to shape analysis; image understanding
techiques in geophysical data interpretation; knowledge integration for
machine vision; motion parameter estimation for robot application; and
industrial applica+ions of machine vision.
C.D.
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90N13235# NASA STAR Technical Report Issue 04
Research in computer vision for autonomous systems / Progress Report,

Jun. - Sep. 1988
(AA)KAK, AVI; (AB)YODER, MARK; (AC)ANDRESS, KEITH; (AD)BLASK, STEVE;

(AE) UNDERWOOD, TOM
Purdue Univ., West Lafayette, IN. (P9391092) School of Electrical

Engineering.
AD-A212420 DAALOl-85-C-0456 880915 p. 532 In: EN (English) Avail:

NTIS HC A23/MF A03 p.555

This report addresses FLIR processing, LADAR processing and electronic
terrain board modeling. In our discussion on FLIR processing, issues were
analyzed for classifiability of FLIR features, computationally efficient
algorithms for target segmentation, metrics, etc. The discussion on LADAR
includes a comparison of a number of different approaches to the
segmentation of target surfaces from range images, extraction of
silhouettes at different ranges, and reasoning strategies for the
recognition of targets and estimation of their aspects. Regarding 7'

electronic terrain board modeling, it was shown how the readily available
wi'e-frame data for strategic targets can be converted into volumetric
models utilizing the concepts of constructive solid geometry; then is was
shown how from the rosulting volumetric models it is possible to generate
synthetic range images ihat are very similar to real LADAR images. Also
shown is how sensor noise can be added to these synthetic images to make
them even more realistic.
GRA

TYPE 1/4/39
Quest Accession Number : 90A11742

90A11742 NASA IAA Conference Paper Issue 02
Real time imaging rangefinder for autonomous land vehicles
(AA)KERR, J. RICHARD
(AA) (FLIR Systems, Inc., Portland, OR)
IN: Mobile robots III; Proceedings of the Meeting, Cambridge, MA, Nov.

10, 11, 1988 (A90-11726 02-14). Bellingham, WA, Society of Photo-Optical
Instrumentation Engineers, 1989, p. 349-3t6. 890000 p. 8 In: EN
(English) p.190

A three-dimensional sensor +hat achieves 50 microsteradian resolution
over a 90 x 40 degree field ot view (FOV) at full video frame rates has
been designed for robotic vehicles. A combination of coarse and fine range
regolution provides sensing from one to approximately 100 meters with
short-range accuracies of less than 10 cm. The system utilizes an eyesafe
diode laser confi-juration along with proprietary mechanical scanning
elements, wide-field relay optics, and avalanche photodiode detectors.
Range determination is accomplished with dual subcarrier modulation which
results in the output of an unambiguous, binary word on a pixel-by-pixel
basis. The approach also provides for electronic pitch stailization.
Author
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90A11730 NASA IAA Conference Paper Issue 02
Terrain classification using texture for the ALV
(AA)MARRA, MARTY; (AB)DUNLAY, R. TERRY; (AC)MATHIS, DON
(AC) (Martin Marietta Information and Communications Systems, Denver, CO)
DACA76-84-C-0005 IN: Mobile robots III; Proceedings of the Meeting,

Cambridge, MA, Nov. 10, 11, 1988 (A90-11726 02-14). Bellingham, WA,
Society of Photo-Ootical Instrumentation Engineers, 1989, p. 64-70.
Research supported by DARPA. 890000 p. 7 refs 13 In: EN (English) p.
237

Off-road navigation is a very demanding visual task in which texture can
play an important role. Travel on a smooth road or path can be done with
greater speed and safety in general than on rough natural terrain. In
addition, recognition of off-road terrain types can aid in finding the
fastest and safest route through a given area. Implementations of two
texture methods for identifying certain terrain features in video imagery
are briefly discussed. The first method uses edge and morphological
filters to identify roadways from off-road. The second method uses a
neural net to identify several terrain types based on color, directional
texture, global variance and location in the image. Plans to integrate the
terrain labeled image produced by the latter method into the ALV's
perception system are also discussed.
Author

TYPE 1/4/41
Quest Accession Number : 90A11696

90AI1696 NASA IAA Conference Paper Issue 02
An intelligent system for autonomous navigation of airborne vehicles
(AA)CAMERON, WILLIAM L.; (AB)FAIN, HOWARD; (AC)BEZDEK, JAMES C.
(AB) (Boeing Aerospace, Seattle, WA); (AC) (Boeing Electronics, Seattle,

WA)
IN: Sensor fusion: Spatial reasoning and scene interpretation;

Proceedings of the Meeting, Cambridge, MA, Nov. 7-9, 1988 (A90-11676
02-63). Bellingham, WA, Society of Photo-Optical Instrumentation
Engineers, 1989, p. 451-469. 890000 p. 19 refs 8 In: EN (English) p.
143

Autonomous navigation of airborne platforms requires the integration of
diverse sources of sensor data and contextual information. This paper
describes a system that utilizes polarimetric radar cross-section and
range data to generate position estimates based on four kinds of
information: area segmentation, ground contours, landmarks, and road
networks. Ground truth in the form of terrain feature maps is correlated
with each type of data stream. Finally, an arbitrator integrates these
inputs with contextual knowledge about the preplanned flight path to
resolve conflicts and arrive at a final estimate of current position.
Author

. .........
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90A11683 NASA IAA Conference Paper Issue 02

Neural network model for fusion of visible and infrared 
sensor outputs

(AA)AJJIMARANGSEE, PONGSAK; (AB)HUNTSBERGER, TERRANCE L.

(AB) (South Carolina, University, Columbia)

IN: Sensor fusion: Spatial reasoning and scene interpretation;

proceedings of the Meeting, Cambridge, MA, Nov. 7-9, 1988 (A90-11676

02-63). Bellingham, WA, Society of Photo-Optical Instrumentation

Engineers, 1989, p. 153-160. 890000 p. 8 refs 16 In: EN (English) p.

235

Integration of outputs from multiple sensors has been the subject of

much of the recent research in the machine vision field. This paper

presents a neural-network model for the fusion of visible and thermal-IR

sensor outputs. A model is developed based on six types 
of bimodal neurons

found in the optic tectum of the rattlesnake. These neurons integrate

visible and thermal-IR sensory inputs. The neural network model has a

series of layers which include a layer for unsupervised clustering 
in the

form of self-organizing feature maps, followed by a layer which has

multiple filters that are generated by training a neural net with

experimental rattlesnake response data. The final layer performs another

unsupervised clustering for integration of the output from the filter

layer. The results of a number of experiments are also 
presented.

Author

TYPE 1/4/43

Quest Accession Number : 90AII032

90A11032 NASA IAA Meeting Paper Issue 01

Optics, illumination, and image sensing for machine vision III;

Proceedings of the Meeting, Cambridge, MA, Nov. 8, 9, 1988
(AA)SVETKOFF, DONALD J.

(AA) ED.
(AA)(Synthetic Vision Systems, Inc., Ann Arbor, MI)
SPIE-1005 Meeting sponsored by SPIE. Bellingham, WA, Society of

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1005),
1989, 271 p. For individual items see A90-11033 to A90-11035. 890000 p.
271 In: EN (English) Members, $41.; nonmembers, $51 p.90

Various papers on optics, illumination, and image sensing for machine
vision are presented. Some of the optics discussed include: illumination
and imaging of moving objects, strobe illumination systems for machine
vision, optical collision timer, new electrooptical coordinate measurement
system, flexible and piezoresistive touch sensing array, selection of
cameras for machine vision, custom fixed-focal length versus zoom lenses,
performance of optimal phase-only filters, minimum variance SDF design
using adaptive algorithms, Ho-Kashyap associative processors, component
spaces for invariant pattern recognition, grid labeling using a marked

grid, illumination-based model of stochastic textures, color-encoded moire
contouring, noise measurement and suppression in active 3-D laser-based
imaging systems, structural stereo matching of Laplacian-of-Gaussian
contour segments for 3D perception, earth surface recovery from remotely
sensed images, and shape from Lambertian photometric flow fields.
C.D.
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89A41730 NASA IAA Journal Article Issue 17
Schemas and neural networks for sixth generation computing
(AA)ARBIB, MICHAEL A.
(AA)(Southern California, University, Los Angeles, CA)
NIH-7-R01-NS-24926 Journal of Parallel and Distributed Computing (ISSN

0743-7315), vol. 6, April 1989, p. 185-216. 890400 p. 32 refs 102 In:
EN (English) p.2680

Sixth-generation computer architectures are presently conjectured to
profitably involve networks of one or more specialized devices structured
as highly-parallel arrays of neuronlike interacting (and perhaps also
adaptive) components. Schemas are suggested to be a germane basis for the
programming languages that will typify sixth-generation computers; the
characteristics of schemas are illustrated for the case of their use in
high-level machine vision. An integrated system of investigations, the
'Rana computatrix', demonstrates the fusion of neural-network and schema
models of the visuomotor-coordination mechanism in frogs and toads. The
'domain-specific' structure of neural networks is emphasized.
O.C.

TYPE 1/4/45
Quest Accession Number : 89A40426

89A40426 NASA IAA Meeting Paper Issue 17
Applications of digital image processing XI; Proceedings of the Meeting,

San Diego, CA, Aug. 15-17, 1988
(AA)TESCHER, ANDREW G.
(AA) ED.
(AA) (Lockheed Research Laboratories, Palo Alto, CA)
SPIE-974 Meeting sponsored by SPIE. Bellingham, WA, Society of

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 974),
1988, 421 p. For individual items see A89-40427 to A89-40452. 880000 p.
421 In: EN (English) Members, $44.; nonmembers, $57 p.2673

Theoretical and applications aspects of digital image processing are
discussed in reviews and reports of recent investigations. Topics
addressed include enhancement and restoration, transmission and vision,
PC-based and graphics applications, architectures and systems, and hybrid
and unconventional image-processing methods. Consideration is given to
morphology in wrap-around image algebra, maximum-likelihood image
restoration with subpixel accuracy, high-resolution digitization of color
images, a lighting and optics expert system for machine vision, image-data
compression in a PC environment, rule-based processing for string-code
identification, digital-image velocimetry, aircraft navigation using IR
image analysis, aircraft recognition using a parts-analysis technique, and
an image-quality measure based on the human visual system.
T.K.



B-25

TYPE 1/4/46
Quest Accession Number 89N27136

89N27136# NASA STAR Technical Report Issue 21
JTECH (Japanese Technology Evaluation Program) panel report on advanced

sensors in Japan
(AA)MILLER, G. L.; (AB)GUCKEL, H.; (AC)HALLER, E.; (AD)KANADE, T.;

(AE)KO, W.; (AF)RADEKA, V.
Science Applications International Corp., McLean, VA. (SD708880)
PB89-158760 Sponsored by NSF, Washington, DC; DARPA, Arlington, VA and

Department of Commerce, Washington, DC 890100 p. 293 In: EN (English)
Avail: NTIS HC A13/MF A01 p.3012

The document provides the results of a detailed evaluation of the
current state of Japanese sensor development. The analysis was performed
by a panel of technical experts drawn from U.S industry and academia. It
covers not only specific technical work, but also covers issues of
organization, trends, funding, and methods of organizing work and setting
priorities. The topics covered include: Tutorial introduction to sensors,
machine vision (charge coupled device (CCD) sensors, vision processing
systems, active 3-D range sensors, Research Institution on Machine
Vision); sensors tor electromagnetic radiation (far infrared, near
infrared, visible light, X-rays, gamma-rays); sensors for factory
automation and robotics; micromechanical and superconducting sensors; gas
sensors; ion sensors; ion selective field effect transistors (ISFET); and
biosensors. Also included is an extensive listing of Japanese sensor
manufacturers.
GRA

TYPE 1/4/47
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89N23152# NASA STAR Conference Paper Issue 16
Combining information in low-level vision
(AA)ALOIMONOS, JOHN; (AB)BASU, ANUP
Maryland Univ., College Park. (M1915766) Computer Vision Lab.
DAAB07-86-K-F073 In Science Applications International Corp.,

Proceedings: Image Understanding Workshop, Volume 2 p 862-906 (SEE
N89-23115 16-61) 880400 p. 45 In: EN (English) Avail: NTTS HC A99/MF
E03 p.2320

Low level modern computer vision is not domain dependent, but
concentrates on problems that correspond to identifiable modules in the
human visual system. Several theories have been proposed in the literature
for the computation of shape from shading, shape from texture, retinal
motion from spatiotemporal derivatives of the image intensity function and
the like. The basic problems with some of the existing approaches if
several available cues are combined, disappear in most cases; the
resulting algorithms compute robustly and uniquely the intrinsic
parameters (shape, depth, motion, etc.). The problem of machine vision is
explored here from its basics. A low level mathematical theory is
presented for the unique and robust computation of intrinsic parameters.
The computational aspect of the theory envisages a cooperative highly
parallel implementation, bringing in information from five different
sources (shading, texture, motion, contour and stereo), to resolve
ambiguities and ensure uniqueness of the intrinsic parameters.
Author



TYPE 1/4/48
Quest Accession Number : 89N23124

89N23124# NASA STAR Conference Paper Issue 16
Three-dimensional vision for outdoor navigation by an autonomous vehicle
(AA)HEBERT, MARTIAL; (AB)KANADE, TAKEO
Carnegie-Mellon Univ., Pittsburgh, PA. (CH188052) Robotics Inst.
DACA76-85-C-0003; F33615-87-C-1499; NSF DCR-86-04199 In Science

Applications International Corp., Proceedings: Image Understanding
Workshop, Volume 2 p 593-601 (SEE N89-23115 16-61) 880400 p. 9 In: EN
(English) Avail: NTIS HC A99/MF E03 p.2315

Progress in range image analysis for autonomous navigation in outdoor
environments is reported. The goal of the work is to use range data from
an ERIM laser range finder to build a three-dimensional description of the
environment. Techniques are described for building both low-level
description, such as obstacle maps or terrain maps, as well as higher
level description using model-based object recognition. These techniques
have been integrated in the NAVLAB system.
Author

1r'

TYPE 1/4/49
Quest Accession Number : 89N23121

89N23121# NASA STAR Conference Paper Issue 16
An operational perception system for cross-country navigation
(AA)DAILY, MICHAEL J.; (AB)HARRIS, JOHN G.; (AC)REISER, KURT
Hughes Research Labs., Calabasas, CA. (H5849026) Artificial

Intelligence Center.
DACA87-85-C-0007 In Science Applications International Corp.,

Proceedings: Image Understanding Workshop, Volume 2 p 568-575 (SEE
N89-23115 16-61) 880400 p. 8 In: EN (English) Avail: NTIS HC A99/MF
E03 p.2314

An operational perception system for cross-country navigation which has
been verified in both simulated and real world environments is presented.
Range data from a laser range scanner is transformed into an alternate
representation called the Cartesian Elevation Map (CEM). A detailed
vehicle model operates on the CEM to produce traversability information
along selected trajectories. This information supports a real-time
reflexiv planning system. The successful demonstration of obstacle
detection and avoidance algorithms on board an Autonomous Land Vehicle is
discussed.
Author
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TYPE 1/4/50
Quest Accession Number : 89N23120

89N23120# NASA STAR Conference Paper Issue 16
Using flow field divergence for obstacle avoidance in visual navigation
(AA)NELSON, RANDAL C.; (AB)ALOIMONOS, JOHN
Maryland Univ., College Park. (MI915766) Computer Vision Lab.
In Science Applications International Corp., Proceedings: Image

Understanding Workshop, Volume 2 p 548-567 (SEE N89-23115 16-61)
Sponsored in part by DARPA, Washington, DC 880400 p. 20 In: EN
(English) Avail: NTIS HC A99/MF E03 p.2314

The practical recovery of quantitative structural information about the
world from visual data has proven to be a very difficult task. In
particular, the recovery of motion information which is sufficiently
accurate to allow practical application of theoretical shape from motion
results has so far been infeasible. Yet a large body of evidence suggests
that use of motion is an extremely important process in biological vision
systems. It has been suggested that qualitative visual measurements can
provide powerful perceptual cues, and that practical operations can be
performed on the basis of such clues without the need for a quantitative ,
reconstruction of the world. The use of such information is termed inexact
vision. The investigation of one such approach to the analysis of visual
motion is described. Specifically, the use of certain measures of flow
field divergence was investigated as a qualitative cue for obstacle
avoidance during visual navigation. It is shown that a quantity termed the
directional divergence of the 2-D motion field can be used as a reliable
irldiator of the presence of obstacles in the visual field of an observer
undergoing generalized rotational and translational motion. Moreover, the
necessary measurements can be robustly obtained from real image sequences.
A simple differential procedure for robustly extracting divergence
information from image sequences which can be performed using a highly
parallel, connectionist architecture is described. The procedure is based
on the twin principles of directional separation of optical flow
components and temporal accumulation of information. Experimental results
are presented showing that the system responds as expected to divergence
in real world image sequences, and the use of the system to navigate
between obstacles is demonstrated.
Author

TYPE 1/4/51
Quest Accession Number : 89N23118

89N23118# NASA STAR Conference Paper Issue 16
Dynamic model matching for target recognition from a mobile platform
(AA)NASR, HATEM; (AB)BHANU, BIR
Honeywell Systems and Research Center, Minneapolis, MN. (HY989092)
DACA76-86-C-0017 In Science Applications International Corp.,

Proceedings: Image Understanding Workshop, Volume 2 p 527-536 (SEE
N89-23115 16-61) 880400 p. 10 In: EN (English) Avail: NTIS HC A99/MF
E03 p.2314

A novel technique called dynamic model matching (DMM) is presented for
target recognition from a moving platform such as an autonomous combat
vehicle. The DMM technique overcomes major limitations in present
model-based target recognition techniques that use a single, static target
model, and therefore cannot account for continuous changes in the target's
appearance caused by varying range and perspective, DMM addresses this
problem by combining a moving camera model, 3-D object models, spatial
models, and expected range and perspective to generate multiple 2-D image
models for matching. DMM also generates recognition strategies that can
emphasize different object features at varying ranges. DMM operates within
a larger system for landmark recognition based on the perception,
reasoning, action, and expectation paradigm called PREACTE. Results are
presented on a number of test sites using color video data obtained from
the autonomous land vehicle.
Author



TYPE 1/4/52
Quest Accession Number : 89N23115

89N23115# NASA STAR Meeting Paper Issue 16
Proceedings: Image Understanding Workshop, volume 2 / Annual Technical

Report, Feb. 1987 - Apr. 1988
(AA)BAUMANN, LEE S.

(AA) ed.
Science Applications International Corp., McLean, VA. (SD708880)
AD-A197559 N00014-86-C-0700; ARPA ORDER 5605 880400 p. 678 Workshop

held in Cambridge, MA, 6-8 Apr. 1988; sponsored by DARPA In: EN (English)
Avail: NTIS HC A99/MF E03 p. 2 3 13

Annual progress reports and technical papers presented by the
participants at the Image Understanding Workshop sponsored by the
Information Science and Technology office, Defense Advanced Research
Projects Agency are presented. Also included are copies of invited papers
presented at the workshop and additional technical papers which were not
presented (volume 2). Topics addressed included: intelligent image
understanding, machine vision and robotics, knowledge-based systems,
motion detection and tracking, object and target recognition, parallel
computation, stereo vision, and image processing. For individual titles,
see N89-23116 through N89-23180.

IE 1/4/53

.uest Accession Number : 89N23108
89N23108# NASA STAR Conference Paper Issue 16
Integration effort in knowledge-based vision techniques for the

autonomous land vehicle program
(AA)PRICE, KEITH; (AB)PAVLIN, IGOR
University of Southern California, Los Angeles. (U6203125) Inst. for

Robotics and Intelligent Systems.
DACA76-85-C-0009 In Science Applications International Corp.,

Proceedings: Image Understanding Workshop, Volume 1 p 417-422 (SEE
N89-23074 16-61) 880400 p. 6 In: EN (English) Avail: NTIS HC A22/MF
A01 p. 2 3 12

A methodology is presented and some early results are demonstrated in
the integration of knowledge-based image analysis programs. The domain of
complete three-dimensional motion analysis in the context of the

Autonomous Land Vehicle is specifically addressed. The integrated system
exploits the strengths and minimizes the weaknesses of the individual
techniques, resulting in performance which is considerably improved over
the performance of any of the independently developed programs.
Author
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Quest Accession Number : 89N23107

89N23107# NASA STAR Conference Paper Issue 16
Autonomous navigation in cross-country terrain
(AA)KEIRSEY, DAVID M.; (AB)PAYTON, DAVID W.; (AC)ROSENBLATT, J. KENNETH
Hughes Research Labs., Calabasas, CA. (H5849026) Artificial

Intelligence Center.
DACA76-85-C-0017 In science Applications International Corp.,

Proceedings: Image Understanding Workshop, Volume 1 p 411-416 (SEE
N89-23074 16-61) 880400 p. 6 In: EN (English) Avail: NTIS HC A22/MF
A01 p.2312

Progress and experimentation with an autonomous robotic vehicle in
cross-country terrain is described. Experiments were performed on the
Autonomous Land Vehicle in natural terrain. An overview of the software
architecture used for this achievement is discussed; descriptions of
experiments and details of planning techniques are presented. Experiments
describe the vehicle's avoidance of both known and unknown obstacles in
its path.
Author

TYPE 1/4/55
Quest Accession Number : 89N23094

89N23094# NASA STAR Conference Paper Issue 16
Kalman filter-based algorithms for estimating depth from image sequences
(AA)MATTHIES, LARRY; (AB)SZELISKI, RICHARD; (AC)KANADE, TAKEO
Carnegie-Mellon Univ., Pittsburgh, PA. (CH188052) Dept. of Computer

Science.
F33615-87-C-1499 In Science Applications International Corp.,

Proceedings: Image Understanding Workshop, Volume 1 p 199-213 (SEE
N89-23074 16-61) 880400 p. 15 In: EN (English) Avail: NTIS HC A22/MF
A01 p.2309

Using known camera motion to estimate depth from image sequences is an
important problem in robot vision. Many applications of depth from motion,
including navigation and manipulation, require algorithms that can
estimate depth in an on-line, incremental fashion. This requires a
representation that records the uncertainty in depth estimates and a
mechanism that integrates new measurements with existing depth estimates
to reduce the uncertainty over time. Kalman filtering provides this
mechanism. Previous applications of Kalman filtering to depth from motion
have been limited to estimating depth at the location of a sparse set of
features. A pixel-based (iconic) algorithm is introduced which estimates
depth and depth uncertainty at each pixel and incrementally refines these
estimates over time. The algorithm for translations parallel to the image
plane is described and its formulation and performance contrasted to that
of a feature-based Kalman filtering algorithm. The performance of the two
approaches is compared by analyzing their theoretical convergence rates,
by conducting quantitative experiments with images of a flat poster, and
by conducting qualitative experiments with images of a realistic Gutdoor
scene model. The results show that the method is an effective way to
extract depth from lateral camera translations ana suggest that it will
play an important role in low-level vision.
Author
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Quest Accession Number : 89N23093

89N23093# NASA STAR Conference Paper Issue 16
The MIT vision machine
(AA)POGGIO, T.; (AB)LITTLE, J.; (AC)GAMBLE, E.; (AD)GILLETT, W.;

(AE)GEIGER, D.; (AF)WEINSHALL, DAPHNA; (AG)VILLALBA, M.; (AH)LARSON, N.;
(AI)CASS, TODD ANTHONY; (AJ)BUELTHOFF, H.
Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial

Intelligence Lab.
In Science Applications International Corp., Proceedings: Image

Understanding Workshop, Volume 1 p 177-198 (SEE N89-23074 16-61) 880400
p. 22 In: EN (English) Avail: NTIS HC A22/MF A01 p.2309

The vision Machine, its goals, and achievements to date are described.
The Vision Machine is a computer system that attempts to integrate several
vision cues to achieve high performance in unstructured environments for
the tasks of recognition and navigation. It is also a test-bed for
theoretical progress in early vision algorithms, their parallel
implementation and their integration. The Vision Machine consists of a
movable two-camera Eye-Head system (the input device) and a 16K Connection
Machine (the main computational engine). Several parallel early vision
algorithms which compute edge detection, stereo, motion, texture and
surface color in close to real-time were developed and implemented. The
integration stage is based on the technique of coupled Markov Random Field
models, and leads to a cartoon-like map of the discontinuities in the
scene, with a partial labeling of the brightness edges in terms of their
physical origin. Available recognition algorithms will interface with the
output of the integration stage and the analog and hybrid Very Large Scale
Integration (VLSI) implementations of the Vision Machine main components
has begun.
Author

TYPE 1/4/57
Quest Accession Number : 89N23091

89N23091# NASA STAR Conference Paper Issue 16
The Maryland approach to image understanding
(AA)ALOIMONOS, JOHN; (AB)DAVIS, LARRY S.; (AC)ROSENFELD, AZRIEL
Maryland Univ., College Park. (M1915766) Computer Vision Lab.
DAABO7-86-K-F073 In Science Applications International Corp.,

Proceedings: Image Understanding Workshop, Volume 1 p 154-165 (SEE
N89-23074 16-61) 880400 p. 12 In: EN (English) Avail: NTIS HC A22/MF
A01 p.2309

In an effort to understand images, while still working on initial
processes of low and middle level vision, emphasis is being placed on the
integration of multiple sources of information for visual reconstruction,
on navigation and on object recognition. A methodological paradigm for
research in vision is introduced, namely: while research is continuing
top-down in the Marr paradigm, work also progresses in a bottom-up fashion
in that paradigm. It is suggested that the Marr paradigm (computational
theory, algorithms, data structures, and implementation) should be
augmented with one more level, that of robustness, that Marr left implicit
in his writings.
Author



TYPE 1/4/58
Quest Accession Number : 89N23083

89N23083# NASA STAR Conference Paper Issue 16
Image understanding and robotics research at Columbia University
(AA)KENDER, JOHN R.; (AB)ALLEN, PETER K.; (AC)BOULT, TERRANCE E.;

(AD)IBRAHIM, HUSSEIN A. H.
Columbia Univ., New York, NY. (CV146013) Dept. of Computer Science.
DACA76-86-C-0024 In Science Applications International Corp.,

Proceedings: Image Understanding Workshop, Volume 1 p 78-87 (SEE N89-23074
16-61) 880400 p. 10 In: EN (English) Avail: NTIS HC A22/MF A01 p.
2307

Diverse research investigations in vision and robotics are identified
and summarized. Since it is difficult to separate those aspects of robotic
research that are purely visual from those that are vision-like (for
example, tactile sensing) or vision-related (for example, integrated
vision-robotic systems), all robotic research that is not purely
manipulative is listed. Areas of research that are identified are
low-level vision: theories involving stereo, data representations, and
applications to graphics; middle-level vision: regularized surface
reconstruction and stereo, sensory fusion, shape from dynamic shadowing,
and application to range data; spatial relations: representations of
objects and space, and theory and practice of navigation; parallel
algorithms: low- and middle-level vision theory, research and applications
on tree machines, and research and applications on pipelined machines;
and, finally, robotics and tactile sensing: system development, and
multi-fingered object recognition.
Author

TYPE 1/4/59
Quest Accession Number : 89N23081

89N23081# NASA STAR Conference Paper Issue 16
Summary of image understanding research at the University of

Massachusetts
(AA)RISEMAN, EDWARD M.; (AB)HANSON, ALLEN R.
Massachusetts Univ., Amherst. (MK149394) Dept. of Computer and

Information Science.
DACA76-85-C-0008; DACA76-86-C-0015; F30602-87-C-0140; N00014-82-K-0464;

DMA800-85-C-0012; AF-AFOSR-0021-86; NSF DCR-85-00332 In Science
Applications International Corp., Proceedings: Image Understanding
Workshop, Volume 1 p 62-72 (SEE N89-23074 16-61) 880400 p. 11 In: EN
(English) Avail: NTIS HC A22/MF AOl p.2307

Several areas of research in the Image Understanding Program are
summarized, including: (1) knowledge-based vision; (2) database support
for symbolic vision processing; (3) motion processing; (4) perceptual
organization (grouping); (5) image understanding architecture; (6)
integrated vision benchmark for parallel architectures; and (7) mobile
vehicle navigation. A fundamental goal of the computer vision research
environment is the integration of a diverse set of research efforts into a
system that is ultimately intended to achieve real-time image
interpretation. Two major system integration efforts are the VISIONS
static interpretation system, which is a knowledge-based computer vision
system utilizing parallel modular processes that communicate via a
blackboard, and an autonomous mobile vehicle for navigation through a
partially known environment.
Author
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Quest Accession Number : 89N23080

89N23080# NASA STAR Conference Paper Issue 16
Image understanding research at SRI International
(AA)FISCHLER, MARTIN A.; (AB)BOLLES, ROBERT C.
SRI International Corp., Menlo Park, CA. (SY423852) Artificial

Intelligence Center.
MDA903-86-C-0084; DACA76-85-C-0004 In Science Applications

International Corp., Proceedings: Image Understanding Workshop, Volume 1 p
53-61 (SEE N89-23074 16-61) 880400 p. 9 In: EN (English) Avail: NTIS
HC A22/MF A01 p.2307

The Image Understanding research program is a broad effort spanning the
entire range of machine vision research. The progress in two programs is
described: the first is concerned with modeling the earth's surface from
aerial photographs; the second is concerned with visual interpretation for
land navigation. In particular, the following are described: progress in
the design of a core knowledge structure; representing, recognizing, and
rendering complex natural and man-made objects; recognizing and modeling
terrain features and man-made objects in image sequences; interactive
techniques for scene modeling and scene generation; automated detection
and delineation of cultural objects in aerial imagery; and automated
terrain modeling from aerial imagery.
Author

TYPE 1/4/61
Quest Accession Number : 89N23076

89N23076# NASA STAR Conference Paper Issue 16
USC image understanding research: 1987-1988
(AA)NEVATIA, RAMAKANT
University of Southern California, Los Angeles. (U6203125) Inst. for

Robotics and Intelligent Systems.
DACA76-85-C-0009; F33615-87-C-1436 In Science Applications

International Corp., Proceedings: Image Understanding Workshop, Volume 1 p
13-16 (SEE N89-23074 16-61) 880400 p. 4 In: EN (English) Avail: NTIS
HC A22/MF A01 p.2306

University of Southern California Image Understanding research projects
are summarized and references to more detailed projects and papers are
provided. The work has focussed on the topics of: mapping from aerial
images, robotics vision, mction analysis for autonomous land vehicles
(ALV), some general techniques, and parallel processing.
Author
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89N23075# NASA STAR Conference Paper Issue 16
MIT progress in understanding images
(AA)POGGIO, T.
Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial

Intelligence Lab.
In Science Applications International Corp., Proceedings: Image

Understanding Workshop, Volume 1 p 1-12 (SEE N89-23074 16-61) 880403 p.
12 In: EN (English) Avail: NTIS HC A22/MF A01 p.2306

Work in the past year has concentrated on three main projects, each one
representing a complementary aspect of a complete vision system. The first
project - a parallel Vision Machine - has the goal of developing a system
for integrating early vision modules and computing a robust description of
the discontinuities of the surfaces and of their physical properties.
Additional goals of the project are the refinement of early vision
algorithms and their implementation on a massively parallel architecture
such as the Connection Machine System. The second project concerns visual
recognition; several schemes for model based recognition were developed
and implemented. Finally, work has continued on autonomous navigation.
Around these main themes, additional work, at the theoretical and
implementation level, has been done in motion analysis, navigation,
photogrammetry, visual routines, and learning.
Author

TYPE 1/4/63
Quest Accession Number : 89N23074

89N23074# NASA STAR Meeting Paper Issue 16
Proceedings: Image Understanding Workshop, volume 1 / Annual Technical

Report, Feb. 1987 - Apr. 1988

(AA)BAUMANN, LEE S.
(AA)ed.
Science Applications International Corp., McLean, VA. (SD708880)
AD-A197558 N00014-86-C-0700; ARPA ORDER 5605 880400 p. 525 Workshop

held in Cambridge, MA, 6-8 Apr. 1988; sponsored by DARPA In: EN (English)
Avail: NTIS HC A22/MF A01 p.2306

This document contains the annual progress reports and technical papers
presented on the research activities in image understanding at a workshop
conducted on 6 to 8 April 1988, in Cambridge, Massachusetts. Also included
are copies of invited papers presented at the workshop and additional
technical papers from the research activities which were not presented due
to lack of time but are germane to this research field. Topics discussed
include: intelligent systems, robotics, knowledge-based vision,
algorithms, pattern matching, feedback, tracking, autonomous navigation,
parallel processing, target recognition, data integration, motion
recognition, and image analysis. For individual titles, see N89-23075
through N89-23114.
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89N22597# NASA STAR Technical Report Issue 16
Dynamic image interpretation for autonomous vehicle navigaticn

Annual Report, 26 Feb. 1987 - 25 Feb. 1988
(AA)RISEMAN, EDWARD M.; (AB)HANSON, ALLEN R.
Massachusetts Univ., Amherst. (MK149394) Dept. of Computer and

Information Science.
AD-A204167; ETL-0516 DACA76-85-C-0008 880900 p. 33 In: EN (English)

Avail: NTIS HC A03/MF A01 p.2222

The results of the project on Dynamic Image Interpretation for
Autonomous Land Vehicle (ALV) Navigation is presented for the time period
2/26/87 to 2/25/88. The purpose of the ALV project is to develop
algorithms and tools to enable a vehicle to navigate autonomously through
realistic landscapes. Contents: Visual Motion Analysis- Computation of the
Optical Flow Field; The Recovery of Environmental Motion and Structure
from a Mobile Vehicle; Alternatives to General Motion Analysis;
Stereoscopic Motion Analysis; Analysis of Constant General Motion;
Token-Based Approaches to Motion and Perceptual Organization; Mobile
Vehicle Navigation; Perceptual Organization (Grouping)- The Perceptual r
Organization of Image Curves; Extracting Geometric Structure; Database
Support for Symbolic Vision Processing- ISRl, ISR2, Generic Views and
Indexing.
GRA

TYPE 1/4/65
Quest Accession Number : 89A21185

89A21185* NASA IAA Journal Article Issue 07
Model-based orientation-independent 3-D machine vision techniques
(AA)DE FIGUEIREDO, R. J. P.; (AB)KEHTARNAVAZ, N.
(AA) (Rice University, Houston, TX); (AB) (Texas A & M University, College

Station)
Rice Univ., Houston, TX. (RV347060)
NAG9-192; NAG9-208 (California Institute of Technology, Workshop on

Space lelerobotics, Pasadena, Jan. 1987) IEEE Transactions on Aerospace
and Electronic Systems (ISSN 0018-9251), vol. 24, Sept. 1988, p. 597-607.
Research supported by Texas Instruments, Inc. 880900 p. 11 refs 17 In:
EN (English) p.1037

Orientation-dependent techniques for the identification of a
three-dimensional object by a machine vision system are represented in
parts. In the first part, the data consist of intensity images of
polyhedral objects obtained by a single camera, while in the second part,
the data consist of range images of curved objects obtained by a laser
scanner. In both cases, the attributed graphic representation of the
object surface is used to drive the respective algorithm. In this
representation, a graph node represents a surface patch and a link
represents the adjacency between two patches. The attributes assigned to
nodes are moment invariants of the corresponding face for polyhedral
objects. For range images, the Gaussian curvature is used as a
segmentation criterion for providing symbolic shape attributes.
Identification is acl ieved by an efficient graph-matching algorithm used
to match the graph obtained from the data to a subgraph of one of the
model graphs stored in the commputer memory.
I.E.
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Quest Accession Number : 89N19165

89N19165 NASA STAR Conference Paper Issue 11
Automatic shape parametrisation in machine vision
(AA)LEAVERS, V. F.; (AB)BOYCE, J. F.
Kings Coll., London (England). (KV801251) Dept. of Physics.
In Optical Society of America, Topical Meeting on Machine Vision p 93-96

(SEE N89-19145 li-74) 800000 p. 4 In: EN (English) Avail: Issuing
Activity p.1591

A fully automatic, computational method is proposed which will allow
the extraction of parameters characterising various shape primitives in
the image space from their shape indicative distributions in a two
dimensional parametric transform space. It is known that the parametric
transformation of image data allows space characterising parameters to be
determined. The usefulness of such meth ds is always qualified by the
erroneous assumption that its drawbacks are an exponential growth of
memory space requiremtrt and computational cost as a function of the
number of parameters. A general method is presented which use: the
definitin of a Radon transform as a ...eans of defining a two dimens onal
transform space in which information about shape primitives may be
simultaneously encoded. Examples are given illustrating how the shape
indicative distributions within the transform space may be deduced. The
results show that each set of coded information is transparent to any
other and that each shape indicative distribution may be located using a
convoluticn mask peculiar to that distribution.
Author

TYPE 1/4/67
Quest Accession Number : 89N17426

89N17426# NASA STAR Technic - Report Issue 09
Temporal pattern recognition
(AA)PRIEBE, CAREY E.; (AB)SUNG, CHEN-HAN
(AB) (San Diego State Univ., CA.)
Naval Ocean Systems Center, San Diego, CA. (NR473487) Architecture and

Applied Research Branch.
AD-A200090; NOSC/TD-1332 Prepared in cooperation with California Univ.,

San Diego, La Jolla 880900 p. 7 In: EN (English) Avail: NTIS HC A02/MF
A01 p.1285

A self-organizing network rchitecture for the learning of recognition
codes corresponding to temporal patterns is described. The problem
presents itself in many real-world situations. In any non-trivial
environment in which a proposed system will function the spectre of
temporal information (information coming into the system over a period of
time) is ejident. In many cases it is not sufficient to process the
information independeont of its relateve time-order. Disciplines an diverse
as speech recognitio. , robotics and data fusion/situation analysis require
*hat temporal aspect of the data b. considered. In temporal environments
such as these the information lost when using a non-temporal 3pproach can
_e prohibitive. This approach is formulated to make use of this important
temooral information. The network described tikes as its input individual
incoming events. Sequences of these events (letters, phonemes, or, more
abstractly, object sightinqs in a vision system), received by the system
over time are categorized as specifi- sequences by the temporal system.
The Temporal system produces Gaussian -as3ifications that represent thp
qtatistics of the temporal data, and the F,.".tem uses a noisy environment,
giving as output a Gau:;sian distance from the storc.d sequence, thus
providing an analog mea -r of closeness of fit to currently known
patterns.
GRA
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Quest Accession Number : 89N17236

89N17236# NASA STAR Technical Report Issue 09
3-D vision techniques for autonomous vehicles
(AA)HEBERT, MARTIAL; (AB)KANADE, TAKEO; (AC)KWEON, INSO
Carnegie-Mellon Univ., Pittsburgh, PA. (CH188052) Robotics Inst.
AD-A199643; CMU-RI-TR-88-12 DACA76-85-C-0003; NSF DCR-86-04199; ARPA

ORDER 5351 880800 p. 68 In: EN (English) Avail: NTIS HC A04/MF A01
p.1252

A mobile robot needs an internal representation of its environment in
order to accomplish its mission. Building such a representation involves
transforming raw data from sensors into a meaningful geometric
representation. In this paper, we introduce techniques for building
terrain representations from range data for an outdoor mobile robot. We
introduce three levels of representations that correspond to levels of
planning: obstacle maps, terrain patches, and high resolution elevation
maps. Since terrain representations from individual locations are not
sufficient for many navigation tasks, we also introduce techniques for
combining multiple maps. Combining maps may be achieved either by using
features or the raw elevation data. Finally, we introduce algorithms for
combining 3-D descriptions with descriptions from other sensors, such as

color cameras. We examine the need for this type of sensor fusion when
some semantic information has to be extracted from an observed scene and
provide an example application of outdoor scene analysis. Many of the
techniques presented in this paper have been tested in the field on three
mobile robot systems developed at CMU.
GRA

TYPE 1/4/69
Quest Accession Number : 89A14255

89A14255 NASA IAA Journal Article Issue 03
Parallel architectures for vision
(AA)MARESCA, MASSIMO; (AB)LAVIN, MARK A.; (AC)LI, HUNGWEN
(AA) (Genova, Universita, Genoa, Italy); (AB) (IBM Thomas J. Watson

Research Center, Yorktown Heights, NY); (AC) (IBM Almaden Research Center,
San Jose, CA)

IEEE, Proceedings (ISSN 0018-9219), vol. 76, Aug. 1988, p. 970-981.
IBM-supported research. 880800 p. 12 refs 103 In: EN (English) p.383

Options are examined that drive the design of a vision-oriented
computer, beginning with the analysis of the basic vision computation and
communication requirements. The classical taxonomy is briefly reviewed for
parallel computers, based on the multiplicity of the instruction and data
stream. A recently proposed criterion, the degree of autonomy of each
processor, is applied to further classify fine-grain SIMD
(single-instruction, multiple-data-stream) massively parallel computers.
Three types of processor autonomy, namely, operation autonomy, addressing
autonomy, and connection autonomy, are identified. For each type, the
basic definition is given and some examples shown. The concept of
r7onnection autonomy, which iz believed to be the key point in the
development of massively parallel architectures for vision, is presented.
Two examples are snowrn of parallel ciimputerz featuring different t~pes of
connection autonomy-the Connection Machine and the Polymorphic-Torus-and
their cost and beriefits are compared.
I.E.



TYPE 1/4/70
Quest Accession Number : 89N13222

89N13222# NASA STAR Technical Report Issue 04
Adaptive machine vision / Annual Report
(AA)STONER, WILLIAM W.; (AB)BRILL, MICHAEL H.; (AC)BERGERON, DOREEN W.
Science Applications International Corp., Billerica, Mass. (SD705905)
AD-A197039 N00014-86-C-0601 880308 p. 91 In: EN (English) Avail:

NTIS HC A05/MF A01 p.552

The mission of the Strategic Defense Initiative is to develop defenses
against threatening ballistic missiles. There are four distinct phases to
the SDI defense; boost, post boost, midcourse and terminal. In each of
these phases, one or more machine vision functions are required, such as
pattern recognition, stereo image fusion, clutter rejection and
discrimination. In this document the SDI missions of coarse track, stereo
track and discrimination are examined from the point of view of a machine
vision system.
GRA

TYPE 1/4/71
Quest Accession Number : 88A42656

88A42656 NASA IAA Conference Paper Issue 17
Video road-following for the autonomous land vehicle
(AA)TURK, MATTHEW A.; (AB)MORGENTHALER, DAVID G.; (AC)GREMBAN, KEITH D.;

(AD)MARRA, MARTIN
(AD) (Martin Marietta Corp., Denver, CO)
DACA76-84-C-0005 IN: 1987 IEEE International Conference on Robotics and

Automation, Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1
(A88-42626 17-63). Washington, DC, IEEE Computer Society Press, 1987, p.
273-280. 870000 p. 8 refs 15 In: EN (English) p.2922

A description is given of the vision system for Alvin, the Autonomous
Land Vehicle, addressing in particular the task of road-following. The
system builds symbolic descriptions of the road and obstacle boundaries
using both video and range sensors. Road segmentation methods are
described for video-based road-following, along with approaches to
boundary extraction and the transformation of boundaries in the image
plane into a vehicle-centered three-dimensional scene model. Alvin has
performed public road-following demonstrations, traveling distances up to
4.5 km at speeds up to 20 km/hr along a paved road, equipped with an RGB
video camera with pan/tilt control and a laser range scanner.
I.E.



TYPE 1/4/72
Quest Accession Number : 88A42649

88A42649 NASA IAA Conference Paper Issue 17
Structure and motion from two noisy perspective views (for mobile robot

navigation)
(AA)TOSCANI, G.; (AB)FAUGERAS, 0. D.
(AB) (Institut National de Recherche en Informatique et en Automatique,

Le Chesnay, France)
IN: 1987 IEEE International Conference on Robotics and Automation,

Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1 (A88-42626
17-63). Washington, DC, IEEE Computer Society Press, 1987, p. 221-227.
870000 p. 7 refs 26 In: EN (English) p.2922

An acute problem of determining the motion from two perspective views
has to be solved in order to make mobile robot navigation work. Structure
from motion is needed in many applications including monitoring dynamic
industrial processes and image processing. It is known that existing
techniques for motion estimation perform poorly on real images, when the
image-point feature are noisy. The authors describe robust techniques to
recover structure and movement from noisy images. Closed-form solutions
are derived for the case of general three-dimensional motion. These
solutions are used as initial estimates for another technique, called
reconstruction and reprojection. The authors also present a solution for
the case of planar motion, which is the case of a mobile robot moving over
a flat surface. These techniques have been tested on synthetic as well as
real images and the test results are described and compared with an
improved version of the Longuet-Higgins technique.
I.E.

TYPE 1/4/73
Quest Accession Number : 88A36311

88A36311* NASA IAA Conference Paper Issue 14
Real-time model-based vision system for object acquisition and tracking
(AA)WILCOX, BRIAN; (AB)GENNERY, DONALD B.; (AC)BON, BRUCE; (AD)LITWIN,

TODD
(AD) (California Institute of Technology, Jet Propulsion Laboratory,

Pasadena)
Jet Propulsion Lab., California Inst. of Tech., Pasadena. (JJ574450)
IN: Optical and digital pattern recognition; Proceedings of the Meeting,

Los Angeles, CA, Jan. 13-15, 1987 (A88-36301 14-63). Bellingham, WA,
Society of Photo-Optical Instrumentation Engineers, 1987, p. 276-281.
870000 p. 6 refs 9 In: EN (English) p.2278

A machine vision system is described which is designed to acquire and
track polyhedral objects moving and rotating in space by means of two or
more cameras, programmable image-processing hardware, and a
general-purpose computer for high-level functions. The image-processing
hardware is capable of performing a large variety of operations on images
and on image-like arrays of data. Acquisition utilizes image locations and
velocities of the features extracted by the image-processing hardware to
determine the three-dimensional position, orientation, velocity, and
angular velocity of the object. Tracking correlates edges detected in the
current image with edge locations predicted from an internal model of the
object and its motion, continually updating velocity information to
predict where edges should appear in future frames. With some 10 frames
processed per second, real-time tracking is possible.
V.L.



TYPE 1/4/74
Quest Accession Number : 88A35988

88A35988 NASA IAA Meeting Paper Issue 14
Image understanding and the man-machine interface; Proceedings of the

Meeting, Los Angeles, CA, Jan. 15, 16, 1987
(AA)PEARSON, JAMES J.; (AB)BARRETT, EAMON
(AA)ED.; (AB)ED.
(AB) (Lockheed Missiles and Space Co., Inc., Sunnyvale, CA)
SPIE-758 Meeting sponsored by SPIE. Bellingham, WA, Society of

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 758),
1987, 191 p. For individual items see A88-35989 to A88-35993. 870000 p.
191 In: EN (English) Members, $33.; nonmembers, $43 p.2329

Various papers concerning image understanding concepts and models, image
understanding systems and applications, advanced digital processors and
software tools, and advanced man-machine interfaces are presented.
Individual topics addressed include: prospects for artificial neural
systems in vision computations, optical bidirectional associative
memories, model-based approaches for some image understanding problems,
strategic computing computer vision, organizing the landscape for image
understanding purposes, issues in image registration, and smoothing
splines with discontinuities for image analysis. Also considered are:
connection machine vision applications, parallel processor for dynamic
image processing, LISP-based PC vision workstation, separation of form
perception and stereopsis, automating knowledge acquisition for aerial
image interpretation, toward an ideal three-dimensional CAD system, and
object-oriented image analysis.
C.D.

TYPE 1/4/75
Quest Accession Number : 88A34852

88A34852 NASA IAA Conference Paper Issue 13
Vision-based road following in the autonomous land vehicle
(AA)SEIDA, STEVEN; (AB)MORGENTHALER, DAVID G.; (AC)PODLASECK, MARK;

(AD)DOUGLAS, BOB; (AE)MCSWAIN, JON
(AE) (Martin Marietta Corp., Denver, CO)
DACA76-84-C-0005 IN: IEEE Conference on Decision and Control, 26th, Los

Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 3 (A88-34702 13-63). New
York, Institute of Electrical and Electronics Engineers, Inc., 1987, p.
1814-1819. 870000 p. 6 In: EN (English) p.2164

The navigation system for Martin Marietta Denver Aerospace's autonomous
land vehicle project receives information from the vision system about
road boundaries and obstacle locations. This information is used in an
optimization equation to create trajectory points on the road. The
operation and the algorithms of the vision subsystem are described
briefly. The operation and algorithms of the navigation, or reasoning,
subsystem is then considered. An obstacle-avoidance navigator is
presented.
I.E.



TYPE 1/4/76
Quest Accession Number : 88A29425

88A29425 NASA IAA Book/Monograph Issue 11
Pattern recognition and natural language understanding by a computer

Russian book)
Paspoznavanie obrazov i mashinnoe ponimanie estestvennogo iazyka
(AA)FAIN, VITALII SAMOILOVICH
Moscow, Izdatel'stvo Nauka, 1987, 176 p. In Russian. 870000 p. 176

refs 68 In: RU (Russian) P.O

An approach to the problem of the interaction in the system
user-computer-production (or control) environment is presented for the
case of a stationary envirrnment. It is shown that problems in a number of
areas of computer science, such as artificial intelligence, natural
language understanding, and half-tone computer vision, are reduced in the
case of stationary environments to pattern recognition problems, which in
many cases provides for more efficient solutions. Data on the practical
applications of the methods described here are presented.
V.L.

TYPE 1/4/77
Quest Accession Number : 88A22798

88A22798* NASA IAA Conference Paper Issue 07
Applications of artificial intelligence to rotorcraft
(AA)ABBOTT, KATHY H.
(AA) (NASA, Langley Research Center, Hampton, VA)
National Aeronautics and Space Administration. Langley Research Center,

Hampton, Va. (ND210491)
IN: AHS, Annual Forum, 43rd, Saint Louis, MO, May 18-o20, 1987,

Proceedings. Volume 2 (A88-22726 07-01). Alexandria, VA, American
Helicopter Society, 1987, p. 1011-1019. 870000 p. 9 refs 17 In: EN
(English) p.1084

The application of AI technology may have significant potential payoff
for rotorcraft. In the near term, the status of the technology will limit
its applicability to decision aids rather than total automation. The
specific application areas are categorized into onboard and nonflight
aids. The onboard applications include: fault monitoring, diagnosis, and
reconfiguration; mission and tactics planning; situation assessment;
navigation aids, especially in nap-of-the-earth flight; and adaptive
man-machine interfaces. The nonflight applications include training and
maintenance diagnostics.
Author
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TYPE 1/4/78
Quest Accession Number : 88A20288

88A20288* NASA IAA Journal Article Issue 06
The cortex transform - Rapid computation of simulated neural images
(AA)WATSON, ANDREW B.
(AA) (NASA, Ames Research Center, Moffett Field, CA)
National Aeronautics and Space Administration. Ames Research Center,

Moffett Field, Calif. (NC473657)
Computer Vision, Graphics, and Image Processing (ISSN 0734-189X), vol.

39, Sept. 1987, p. 311-327. 870900 p. 17 refs 31 In: EN (English) p.
852

With a goal of providing means for accelerating the image processing,
machine vision, and testing of human vision models, an image transform was
designed, which makes it possible to map an image into a set of images
that vary in resolution and orientation. Each pixel in the output may be
regarded as the simulated response of a neuron in human visual cortex. The
transform is amenable to a number of shortcuts that greatly reduce the
amount of computation.
I.S.

TYPE 1/4/79
Quest Accession Number : 88N1546!

88N15464# NASA STAR Technical Report Issue 07
Proceedings of Image Understanding Workshop, volume 2 / Annual Report,

Dec. 1985 - Feb. 1987
(AA)BAUMANN, LEE S.
Science Applications International Corp., McLean, Va. (SD708880)
AD-A186104 N00014-86-C-0700; ARPA ORDER 5605 870200 p. 613 Workshop

held in Los Angeles, Calif., 23-25 Feb. 1987 In: EN (English) Avail:
NTIS HC A99/MF A01 p.902

The partial contents of the Proceedings of the Image Understanding
Workshop are as follows: Guiding an Autonomous Land Vehicle Using
Knowledge-Based Landmark Recognition; The Image Understanding
Architecture; Initial Hypothesis Formation in Image Understanding Using an
Automatically Generated Knowledge Base; What Is a Degenerate View;
Recognizing Unexpected Objects: A Proposed Approach; Minimization of the
Quantization Error in Camera Calibration; Tracing Finite Motions Without
Correspondence; The Formation of Partial 3D Models from 2D Projections -
An Application of Algebraic Reasoning; Qualitative Information in the
Optical Flow; Detecting Blobs as Textons in Natural Images; and Parallel
Optical Flow Computation.
GRA
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TYPE 1/4/80
Quest Accession Number : 88A13400

88A13400 NASA IAA Conference Paper Issue 03
An emergency command recognizer for voiced system control
(AA)WETTERLIND, P.; (AB)JOHNSTON, WAYMON L.
(AA) (California State University, Bakersfield); (AB) (Texas A & M

University, College Station)
IN: SAFE Association, Annual Symposium, 24th, San Antonio, TX, Dec.

11-13, 1986, Proceedings (A88-13376 03-54). Newhall, CA, SAFE Association,
1987, p. 181-184. 870000 p. 4 refs 16 In: EN (English) p. 3 13

An algorithm for accepting speaker-independent voiced input, aimed
especially at accommodating emergency acoustic commands, is described. The
algorithm is directed toward correctly identifying commands from
speaker-independent acoustic input using machine recognition of common,
standarized phonemic input, using these recognized sounds to reconstruct
entire words and phras . Speaker-dependent phonemes are not used during
the command reconstruction process, so that speaker idiosyncracies are
accommodated. Machine recognition extends to voice pitch and emotional
tension characteristics.
C.D.

TYPE 1/4/81
Quest Accession Number : 87A42734

87A42734 NASA IAA Journal Article Issue 19
Associative network applications to low-level machine vision
(AA)OYSTER, J. MICHAEL; (AB)VICUNA, FERNANDO; (AC)BROADWELL, WALTER
(AA) (Hughes Image and Signal Processing Laboratory, El Segundo, CA);

(AC) (IBM Los Angeles Scientific Center, CA)
Applied Optics (ISSN 0003-6935), vol. 26, May 15, 1987, p. 1919-1926.

870515 p. 8 refs 15 In: EN (English) p.3064

This paper e::plores the application of a parallel computational model,
the associative network, to problems in low-level machine vision. A formal
description of the associative network model is presented. Then
associative networks are designed for performing Boolean functions, edge
detection, and the Hough transform. Associative networks feature very
flexible processor interconnections. The flexible processor
interconnections allow for parallelism in the algorithm design beyond what
is feasible in other parallel computational models. This work demonstrates
that imaqe processing transformations, often too slow to be practical on a
s;equential machine, can be executed rapidly with associative networks.
Au th~o r



TYPE 1/4/83
Quest Accession Number : 87A31115

87A31115# NASA IAA Preprint Issue 12
Computational themes in applications of visual perception
(AA)JAIN, RAMESH; (AB)SCHUNCK, BRIAN G.; (AC)WEYMOUTH, TERRY
(AC)(Michigan, University, Ann Arbor)
AIAA PAPER 87-1674 AIAA, NASA, and USAF, Symposium on Automition,

Robotics and Advanced Computing for the National Space Program, 2nd,
Arlington, VA, Mar. 9-11, 1987. 10 p. 870300 p. 10 refs 47 In: EN
(English) p.1842

The paper summarizes the current research in the Computer Vision
Research Laboratory at the University of Michigan. The laboratory
concentrates on developing generic vision algorithms for industrial
applications. Generic vision algorithms can be applied to a wide variety
of inspection problems. The paper includes a discussion of the current
state of the machine vision industry and provides recommendations for
improving the transfer of vision technology from research to practice.
Author

TYPE 1/4/84
Quest Accession Number : 87N24891

87N24891# NASA STAR Technical Report Issue 18
Representation and control in the interpretation of complex scenes /

Final Scientific Report, 1 Oct. 1984 - 30 Sep. 1985
(AA)HANSON, ALLEN R.; (AB)RISEMAN, EDWARD M.
Massachusetts Univ., Amherst. (MK149394) Dept. of Computer and

Information Science.
AD-A179116; AFOSR-87-0301TR F49620-83-C-0099; AF-AFOSR-Cr05-85 870000

p. 61 In: EN (English) Avail: NTIS HC A04/MF A01 P.0

The system being developed, called VISIONS, is an investigati-n into
issues of general computer vision. The goal is to provide an analysis of
color images of outdoor scenes, from segmentation through symbolic
interpretation. The output of the system is intended to be a symbolic
representation of the three-dimensional world depicted in the
two-dimensional image, including the naming of objects, their placement in
three-dimensional space, and the ability to predict from this
representation the rough appearance of the scene from other points of
view. The emphasis of the research over the past year has been on three
issues critical to furthering our understanding of machine vision. The
first area addresses the issue of image segmentation and the failure of
recent research to provide robust procedures applicable to complex
imagery. The second area focusses on the use of domain knowledge in the
interpretation task. The third area focusses on techniques for controlling
the use of system resources during interpretation and on ways of resolving
conflicting partial interpretations.
GRA
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TYPE 1/4/85
Quest Accession Number : 87N23017

87N23017# NASA STAR Technical Report Issue 16
Computer vision research and its applications to automated cartography

/ Final Report, 11 Jun. 1984 - 31 May 1986
(AA)FISCHLER, MARTIN A.
SRI International Corp., Menlo Park, Calif. (SY423852)
AD-A178815 MDA903-83-C-0027; ARPA ORDER 5355 870300 p. 19 In: EN

(English) Avail: NTIS HC A02/MF AOl p.0

The SRI Image Understanding program is a broad effort spanning the
entire range of machine vision research. Three major concerns are: (1) to
develop a computational description of the physics and mathematics of the
vision process; (2) to develop a knowledge-based framework for
interpreting sensed (imaged) data; and (3) to develop a machine-based
environment for effective experimentation, demonstration, and evaluation
of our theoretical results, as well as providing a vehicle for technology
transfer. This final report summarizes progress in these and related
areas.
Author (GRA)

TYPE 1/4/86
Quest Accession Number : 87N20138

87N20138# NASA STAR Technical Report Issue 12
Domain-dependent reasoning for visual navigation of roadways
(AA) LEMOIGNE, JACQUELINE
Maryland Univ., College Park. (M1915766) Center for Automation

Research.
AD-A174786; CAR-TR-230; CS-TR-1721; ETL-0445 DACA76-84-C-0004 861000

p. 36 In: EN (English) Avail: NTIS HC A03/MF A01 p.1701

A Visual Navigation System for Autonomous Land Vehicles includes several
modules, among them a Knowledge-based Reasoning Module that is described
in this report. This module utilizes domain-dependent knowledge (in this
case, road knowledge) in order to analyze and label the visual features
extracted from the imagery by the Image Processing Module. Knowledge and
general hypotheses are given in Section 2. The Reasoning Module itself is
described in Section 3 and results are presented in Section 4. Finally,
some conclusions are proposed in Section 5.
GRA

TYPE 1/4/87
Quest Accession Number : 86N32751

86N32751# NASA STAR Technical Report Issue 24
Biological visual systems structures for machine vision applied to

robotics / Final Report, 15 Sep. 1984 -- 31 Jan. 1986
(AA)INIGO, R. M.; (AB)HSIN, C. H.; (AC)NARATHONG, C.; (AD)MCVEY, E. S.;

(AE)MINNIX, J. I.
Virginia Univ., Charlottesville. (V3127208) Dept. of Electrical

Engineering.
AD-A168521; UVA/525647/EE86/101; AFOSR-86-0282TR AF-AFOSR-0349-84

860200 p. 333 In: EN (English) Avail: NTIS HC A15/MF A01 p.3737

This report describes the research on a biological visual system (BVS)
based sensor with possible applications to robotics and automation. The
report covers the following subjects: sensor configuration; edge detection
modeling for the human visual system and edge detection using the BVS
sensor. qualitative motion detection using the BVS; target tracking
algorithms for the BVS; and microsaccadic eye movement in the human visual
system (HV'S).
GRA
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TYPE 1/4/88
Quest Accession Number : 86N30333

86N30333# NASA STAR Technical Report Issue 21
Novel architectures for image processing based on computer simulation

and psychophysical studies of human visual cortex / Final Report, 15
Apr. 1983 - 15 Apr. 1985

(AA)SCHWARTZ, E. L.
New York Univ. Medical Center. (N0098273)
AD-A166222; AFOSR-86-0059TR F49620-83-C-0108 860102 p. 96 In: EN

(English) Avail: NTIS HC A05/MF A01 p.3353

This final report consists of two parts. The first part is a computer
simulation of the functional architecture of the visual cortex, and an
examination of the possible significance that this architecture may have
for understanding both human visual computation and machine vision. The
second part of this report is a psychophysical investigation of human
shape perception in terms of boundary descriptors of curvature.
GRA

TYPE 1/4/89
Quest Accession Number : 86N29120

86N29120# NASA STAR Technical Report Issue 20
Exploiting sequential phonetic constraints in recognizing spoken words
(AA)HUTTENLOCHER, D. P.
Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial

Intelligence Lab.
AD-A165913; AI-M-867 N00014-80-C-0505 851000 p. 28 In: EN (English)

Avail: NTIS HC A03/MF AOl p. 3 15 8

Machine recognition of spoken language requires developing more robust
recognition algorithms. A recent study by Shipman and Zue suggest using
partial descriptions of speech sounds to eliminate all but a handful of
word candidates from a large lexicon. The current paper extends their work
by investigating the power of partial phonetic descriptions for developing

recognition algorithms. First, we demonstrate that sequences of manner of
articulation classes are more reliable and provide more constraint than
certain other classes. Alone these results are of limited utility, due to
the high degree of variability in natural speech. This variability is not
uniform however, as most modifications and deletions occur in unstressed
syllables. Comparing the relative constraint provided by sounds in
suressed versus unstressed syllables, we discover that the stressed
syllables provide substantially more constraint. This indicates that
recognition algorithms can be made more robust by exploiting the manner of
articulation information in stressed syllables.
GRA



TYPE 1/4/90
Quest Accession Number : 86N24536
86N24536*# NASA STAR Conference Paper Issue 14
Machine vision and the OMV
(AA)MCANULTY, M. A.
Alabama Univ., Birmingham. (AM538929) Dept. of Computer and

Information Science.
In NASA. Marshall Space Flight Center Research Reports: 1985

NASA/ASEE Summer Faculty Fellowship Program 24 p (SEE N86-24507 14-80)
860100 p. 24 refs 0 In: EN (English) Avail.: NTIS HC A99/MF E04 p.
2388

The orbital Maneuvering Vehicle (OMV) is intended to close with orbiting
targets for relocation or servicing. It will be controlled via video
signals and thruster activation based upon Earth or space station
directives. A human operator is squarely in the middle of the control loop
for close work. Without directly addressing future, more autonomous
versions of a remote servicer, several techniques that will doubtless be
important in a future increase of autonomy also have some direct
application to the current situation, particularly in the area of image r
enhancement and predictive analysis. Several techniques are presentet, and
some few have been implemented, which support a machine vision capability
proposed to be adequate for detection, recognition, and tracking. Once
feasibly implemented, they must then be further modified to operate
together in real time. This may be achieved by two courses, the use of an
array processor and some initial steps toward data reduction. The
methodology or adapting to a vector architecture is discussed in
preliminary form, and a highly tentative rationale for data reduction at
the front end is also discussed. As a by-product, a working implementation
of the most advanced graphic display technique, ray-casting, is described.
Author

TYPE 1/4/91
Quest Accession Number : 86N20008

86N20008# NASA STAR Technical Report Issue 10
Hierarchical multisensor image understanding / Final Report, Oct. 1983

- Aug. 1985
(AA)AGGARWAL, R. K.; (AB)BAZAKOS, M.; (AC)BUDENSKE, J.; (AD)KIM, Y.;

(AE)MADER, S.
Honeywell Systems and Research Center, Minneapolis, Minn. (HY989092)
AD-A160324; AFOSR-85-O801TR F49620-83-C-0134 850800 p. 129 In: EN

(English) Avail.: NTIS HC A07/MF A01 p.1651

This report describes the research results on Honeywell's Hierarchical
Multisensor Image Understanding program. Honeywell is developing a unified
framework for the different hierarchical levels of image processing such
,s segmentation, detection, classification, and identification of outdoor
scenes and across different sensor modalities such as millimeter wave,
infrared, and visible. Current activities on the project are reviewed
under the following headings: (1) A Survey of Multisource Information
Fusion Systems; (2) The Role of Structure in Human and Machine Perception;
(3) A Knowledge Based Image Segmentation S'/stem; (4) The Use of Optical
Flow as a Depth Cue in Scene Analysis; and (5) Belief Maintenance for A
Fuzzy Reasoning System.
GRA
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TYPE 1/4/92
Quest Accession Number : 86N19085

86N19085# NASA STAR Technical Report lssue 09
Computing visible-surface representations
(AA)TERZOPOULOS, D.
Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial

Intelligence Lab.
AD-A160602; AI-M-800 N00014-75-C-0643 850300 p. 64 In: EN (English)

Avail.: NTIS HC A04/MF A01 p.1494

The computational framework offered in this paper addresses, in a
unified way, certain visual information processing tasks involved in the
representation of visible surfaces. Particular emphasis is placed on
utilizing highly parallel, cooperative processing to integrate surface
shape information over multiple visual sources, to fuse it across a
multiplicity of spatial resolutions, and to maintain the global
consistency of the resulting distributed shape representations. The issues
are first investigated in terms of a surface reconstruction model rooted
in mathematical physics. This formal analysis is augmented by an empirical
study of the resulting algorithms, which feature multiresolution iterative
processing within hierarchical surface shape representations. The approach
is guided by current knowledge of how humans perceive visible surfaces,
while applications in machine vision provide a testbed for the algorithms.
GRA

TYPE 1/4/93
Quest Accession Number : 86A18651

86A18651 NASA IAA Journal Article Issue 06
Machine perception of visual motion
(AA)BUXTON, B. F.; (AB)MURRAY, D. W.; (AC)BUXTON, H.; (AD)WILLIAMS, N.

S.
(AB) (General Electric Co., PLC, Research Laboratories, Wembley, England)
(AD) (Queen Mary College, London, England)
GEC Journal of Research (ISSN 0264-9187), vol. 3, no. 3, 1985, p.

145-161. Research supported by the Ministry of Defence (Procurement
Executive). 850000 p. 17 refs 66 In: EN (English) p.0

An attempt at devising a system for using visual motion to obtain
three-dimensional information at th level of Marr's (1982)
two-and-one-half-dimensional sketch is described. The algorithm proposed
can be implemented efficiently on an SIMD processor array and in the ideal
case of a direct 1:1 mapping of the image pixels onto the processor array
run at speeds approaching real-time video frame rates. The processing
scheme has a potential for performing a multiple regression by introducing
new surface and motion parameters to explain variations in the visual
motion data and thus can be adapted for a segmentation procedure based on
the description of the visible surfaces.
T.S.



TYPE 1/4/94
Quest Accession Number : 86A17019

86A17019 NASA IAA Meeting Paper Issue 05
Pattern recognition and artificial intelligence; French Congress, 4th,

Paris, France, January 25-27, 1984, Lectures. Volumes 1 & 2
Reconnaissance des formes et intelligence artificielle; Congres

Francais, 4th, Paris, France, January 25-27, 1984, Conferences. Volumes 1
& 2

Congress sponsored by the Ministere de l'Industrie et de la Recherche,
Association Nationale du Logiciel, and International Association for
Pattern Recognition. Le Chesnay, France, Institut National de Recherche en
Informatique et en Automatique, 1984. Vol. 1, 579 p.; vol. 2, 524 p. In
French. For individual items see A86-17020 to A86-17024. 840000 p. 1103
In: FR (French) p.0

Two broad topics are addressed: (1) the processing, analysis, and
understanding of images; and (2) the analysis and understanding of words.
Particular consideration is given to image segmentation; scene analysis;
the representation and analysis of two- and three-dimensional forms;
industrial vision; and special architectures. Attention is also given to
the understanding of natural languages, programming languages, learning
theory, and expert systems.
B.C.

TYPE 1/4/95
Quest Accession Number : 85N35634

85N35634# NASA STAR Issue 24
Selected publications in image understanding and computer vision from

1974 to 1983
kAA)VERLY, J. G.
Lincoln Lab., Mass. Inst. of Tech., Lexington. (LQ054005)
AD-A156196; TR-716; ESD-TR-85-180 F19628-85-C-0002; ARPA ORDER 4881

350418 p. 100 In: EN (English) Avail.: NTIS HC A05/MF AOl p.4136

A list of selected publications in image understanding and computer
vision is presented. The list was compiled as part of work for the
DARPA-sponsored Autonomous IR Sensor Technology program, and the choice of
references was directly influenced by the needs of that program.
Therefore, emphasis was placed on theories, techniques, and systems for
interpreting complex imagery; the more classical fields of image
processing, e.g., filtering, enhancement, restoration, coding, and
reconstruction, were not included. The topics of edge detection and region
segmentation as well as the well-known scene analysis problems of shape
recognition from stereo, shading, texture, and motion were also excluded.
The bibliography covers the last decade (1974-1983) and is based on the
yearly surveys published by A. Rosenfeld in the Journal initially called
Computer Graphics and Image Processing (CGIP) and now Computer Vision,
Graphics, and Image Processing (CVGIP).
CPA



TYPE 1/4/96
Quest .ccession Number : 85A24997

85A24997 NASA IAA Coaference Paper Tssue 10
Optics for machine vision

(AA)STRAND, T. C.
(AA) (IBM Research Labozatory, San Jose, CA)
IN: Optical computing; Proceedings of tLe Meeting, Los Angeles, CA,

Januar- 24, 25, 1984 (A85-24990 10-60). Bellingham, WA, SPIE - The
International Society for Optical Engineering, 1984, p. 86-93. 840000 p.
8 refs 23 In: EN (English) p.0

Current developments in manufacturing technologies have caused a dewand
for automated inspection and assembly tools. A key requirement regarding
such tools is related to machine vision. The term 'machine vision', as
used in this discussion, includes any automated acquisition of information
via optical sensors. The primary information to be sought with Nision
systems is spatial information. The normal detection scheme provides all
but one of the generally desired variables. The variable not provided is
the longitudinal position variable. Information regarding this variable is
called 'range information'. The present investigation is mainly concerned
with the means of acquiring the range variable. Attention s given to
geometric range measurement techniques, time-of-flight range measurement
techniques, interferometric techniques, and diffraction range measurement
'echniques.
G.R.

TYPE 1/4/97
Quest Accession Number : 84A44308

84A44308 NASA IAA Journal Article Issue 21
Parallel processing in machine vision
(AA)STERNBERG, S. R.
(AA) (Machine Vision International, Ajn Arbor, MI)
Robotica (ISSN 0263-5747), vol. 2, Jan. 1984, p. 33-40. 840100 p. 8

refs 21 In: EN (English) p.3102

Machine vision systems incorporating highly parallel processor
architectures are reviewed. A new processor architecture, the image flow
computer, is presented in detail. An interactive image processing
programming language based on mathematical morphology is then presented. A
detailed example of the use of the system for th inspection of a
particular industrial part concludes the presentation.
Author



TYPE 1/4/98
Quest Accession Number : 84N23123

84N23123# NASA STAR Technical Report Issue 13
Machine vision: Three generations of commercial systems / Interim

Report
(AA)CROWLEY, J. L.
Carnegie-Mellon Univ., Pittsburgh, Pa. (CH188052) Robotics Inst.
AD-A139037; CMU-RI-TR-84-1 840125 p. 40 In: EN (English) Avail.:

NTIS HC A03/MF AOl p.2024

Since 1980, machine vision systems for industrial application have
enjoyed a rapidly expanding market. The first generation machines are
two-dimensional binary vision systems, patterned after the SRI Vision
Module. These systems will soon be joined by a second generation, based on
edges description techniques. Both the first and second generation systems
are pattern recognition machines. Research in machine vision is leading
towards vision systems that will be able to dynamically model the
three-dimensional (3-D) surfaces in a scene. This research will lead to a
third generation of vision systems which will provide a dramatic increase
in capabilities over the first two generations. This article describes
these three generations of vision systems. The algorithms, data
structures, and hardware architecture are presented for binary vision
systems and edge-based systems. A framework is presented for the research
problems which must be solved before a commercial vision system can be
produced based on dynamic 3-D Scene analysis techniques.
Author (GRA)

TYPE 1/4/99
Quest Accession Number : 83A44078

83A44078 NASA IAA Journal Article Issue 21
Machine vision for robotics
(AA)CORBY, N. R., JR.
(AA) (GE Corporate Research and Development Center, Schenectady, NY)
IEEE Transactions on Industrial Electronics (ISSN 0278-0046), vol.

IE-30, Aug. 1983, p. 282-291. 830800 p. 10 refs 14 In: EN (English)
p.3135

When applied to robotic tasks, computer or machine vision involves time
and space interactions among manipulators, tools, and objects in the work
space. Such vision must ultimately be three-dimensional. Attention is
given to fundamental characteristics of machine vision processing for
binary, grey, and fully three-dimensional cases, and the architectures and
control structures for several different vision processing approaches are
explored.
0. C.



TYPE 1/4/100
Quest Accession Number : 83A13450

83A13450 NASA IAA Meeting Paper Issue 03
Perceptual capabilities, ambiguities, and artifacts in man and machine
(AA)GINSBURG, A. P.
(AA) (USAF, Aviation Vision Laboratory, Wright-Patterson AFB, OH)
AD-A109864; AFAMRL-TR-81-142 In: 3-D machine perception; Proceedings of

the Conference, Washington, DC, April 23, 24, 1981. (A83-13444 03-35)
Bellingham, WA, SPIE - The International Society for Optical Engineering,
1981, p. 78-82. 810000 p. 5 refs 11 In: EN (English) p.383

Certain advances in visual science suggesting that perception may be
structured from a hierarchy of filtered images are summarized. It is shown
that a small numbered set of images created from filters based on
biological data can provide a rich array of information about any object:
contrast, general form, identification, textures and edges. It is
contended that machine perception will require similar parallel processing
of an array of filtered images if human-like visual performance is
required. Such visual problems as certain visual illusion, multistable
objects, and masking are analyzed in terms of the limitations of
biological filtering. Machine solutions to these problems are then
discussed.
C.R.

TYPE 1/4/101
Quest Accession Number : 83A13444

83A13444 NASA IAA Meeting Paper Issue 03
3-D machine perception; Proceedings of the Conference, Washington, DC,

April 23, 24, 1981
(AA)ALTSCHULER, B. R.
(AA) (ED.)
(AA) (USAF, School of Aerospace Medicine, Brooks AFB, TX)
Conference sponsored by SPIE - The International Society for Optical

Engineering. Bellingham, WA, SPIE - The International Society for Optical
Engineering (SPIE Proceedings. Volume 283), 1981. 145 p. (For individual
items see A83-13445 to A83-13450) 810000 p. 145 In: EN (English)
MEMBERS, $31.; NONMEMBERS, $37 p.324

Topics discussed include three-dimensional surface mapping and analysis,
applications and interfacing, and the three-dimensional display of
internal structures. Papers are presented on coherent optical methods for
applications in robot visual sensing; real-time three-dimensional vision
for parts acquisition; perceptual capabilities, ambiguities, and artifacts
in man and machine; and a computerized anatomy atlas of the human brain.
Attention is also given to noncontact visual three-dimensional ranging
devices, to the application of digital image acquisition in anthropometry,
to an overview of data acquisition and processing for three-dimensional
displays of internal structures, and to a three-dimensional viewing device
for examining internal structure.
C.R.



TYPE 1/4/102
Quest Accession Number : 83A13353

83A13353* NASA IAA Journal Article Issue 03
Feature Identification and Location Experiment
(AA)SIVERTSON, W. E., JR.; (AB)WILSON, R. G.; (AC)BULLOCK, G. F.;

(AD)SCHAPPELL, R. T.
(AC) (NASA, Langley Research Center, Hampton, VA); (AD) (Martin Marietta

Aerospace, Denver, CO)
National Aeronautics and Space Administration. Langley Research Center,

Hampton, Va. (ND210491)
Science, vol. 218, Dec. 3, 1982, p. 1031-1033. NASA-supported research.
821203 p. 3 refs 5 In: EN (English) p.357

The Feature Identification and Location Experiment (FILE), which was
t1own on the second Space Shuttle flight to test a technique for
real-time, autonomous classification ot water, vegetation and bare land as
well as clouds, snow and ice, senses earth radiation in spectral bands
centered at 0.65 and 0.85 microns. The radiance ratio ciassirication
algorithm has successfully made automatic data selection decisions. A
classification image obtained on the mission is providing data needed to
evaluate the FILE algorithm and overall system performance.
O.C.

TYPE 1/4/103
Quest Accession Number : 83A12880

83A12880 NASA IAA Meeting Paper Issue 02
Fast adaptive algorithms for low-level scene analysis - Applications of

polar exponential grid /PEG/ representation to high-speed,
scale-and-rotation invariant target segmentation

(AA)SCHENKER, P. S.; (AB)WONG, K. M.; (AC)CANDE, E. G.
(AC) (Brown University, Providence, RI)
In: Techniques and applications of image understanding; Proceedings of

the Meeting, Washington, DC, April 21-23, 1981. (A83-12875 02-35)
Bellingham, WA, SPIE - The International Society for Optical Engineering,
1981, p. 47-57. 810000 p. 11 refs 18 In: EN (English) p.181

This paper presents results of experimental studies in image
understanding. Two experiments are discussed, one on image correlation and
another on target boundary estimation. The experiments are demonstrative
of polar exponential grid (PEG) representation, an approach to sensory
data coding which the authors believe will facilitate problems in
three-dimensional machine perception. The discussion of the image
correlation experiment is largely an exposition of the PEG-representation
concept and approaches to its computer implementation. The presentation of
the boundary finding experiment introduces a new robust stochastic,
parallel computation segmentation algorithm, the PEG-Parallel Hierarchical
Ripple Filter (PEG-PHRF).
(Author)



TYPE 1/4/104
Quest Accession Number : 83AI2878

83A12878 NASA IAA Meeting Paper Issue 02
Application of image understanding to automatic tactical target

acquisition
(AA)HELLAND, A. R.; (AB)WILLETT, T. J.; (AC)TISDALE, G. E.
(AC) (Westinghouse Electric Corp., Systems Development Div., Baltimore,

MD)
In: Techniques and applications of image understanding; Proceedings of

the Meeting, Washington, DC, April 21-23, 1981. (A83-12875 02-35)
Bellingham, WA, SPIE - The International Society for Optical Engineering,
1981, p. 26-31. 810000 p. 6 refs 15 In: EN (English) p.133

Real-time equipment has been developed and is now being tested for
automatic recognition of targets on an individual basis. The recent use of
frame-to-frame integration techniques has significantly improved the
classification performance with thic :quiprment to thc pint where the
human interpreter can sometimes be surpassed. For some imagery, however,
initial target segmentation remains unsatisfactory, causing targets to be
missed, and the level of false alarms may be too high. As a result, more
sophisticated image processing techniques are now being addressed which
could provide a comprehensive understanding of overall image content.
These include the use of such scene analysis operations as the derivation
of motion vectors for passive ranging, false alarm discrimination, and
detection of target motion. Additional areas of interest lie in the
'intelligent' tracking of multiple targets, and the autonomous handott of
targets between sensors. The paper discusses the evolution ot these areas,
and their probable impact on the target acquisition process. It also
addresses their impact on hardware implementation.
(Author)

TYPE 1/4/105
Quest Accession Number : 83A11460

83A11460 NASA IAA Meeting Paper Issue 01
Symbolic pattern matching for target acquisition
(AA)NARENDRA, P. M.; (AB)GRABAU, J. J.; (AC)WESTOVER, B. L.
(AC) (Honeywell Systems and Research Center, Minneapolis, MN)
DAAK70-79-C-0114 In: Conference on Pattern Recognition and Image

Processing, Dallas, TX, August 3-5, 1981, Proceedings. (A83-11409 01-63)
New York, Institute of Electrical and Electronics Engineers, Inc., 1981,
p. 481-486. 810000 p. 6 refs 16 In: EN (English) p.8

This paper describes a symbolic pattern matching system for autonomous
target acquisition, which requires matching widely disparate views of a
scene. The pattern matching system exploits both the object-to-object
similarities in the two images and the consistency of configurations of
candidate matches. The consistency is evaluated under a general
transformation which accounts for a large difference in the sensor
positions between the two views. The matching of the symbolic features
between the two images is cast in a combinatorial framework. An efficient
branch and bound algorithm is developed to find the best match optimizing
the criterion function, which measures the goodness of a candidate match.
The result of applying the pattern matching system simulation to several
pairs of real infrared images are presented both to illustrate the
approach and to quantify its performance.
(Author)



TYPE 1/4/106
Quest Accession Number : 82N31312

82N31312# NASA STAR Technical Report Issue 22
Flight plan filing by speech recognition / Final Report
(AA)SHOCHET, E.; (AB)QUICK, P.; (AC)DELEMARRE, L.
Federal Aviation Administration, Atlantic City, N.J. (FI751336)

Technical Center.
DOT/FAA/RD-82/39; DOT/FAA/CT-81/64 FAA PROJ. 131-402-540 820700 p. 67
In: EN (English) Avail.: NTIS HC A04/MF A01 p.3080

Automatic flight plan filing by machine recognition is discusssed. The
utterance recognition device (URD) was upgraded in preparation for testing
the capabilities of voice input for automatic flight plan filing. The URD
was modified to include more reliable components, where advisable, and a
larger memory to handle the expanded vocabulary. In addition, a dialect
study was conducted to determine the locations for collecting a nationally
representative voice sample in order to create reference patterns capable
of performing well on all American dialects. Subsequently, over 5,000
voices from 24 cities throughout the United States were collected and
processed. Initial tests were conducted in which subjects filed simulated
flight plans directly into the URD over the telephone. The results
indicated that the prototype system, as demonstrated using the adaptation
&trategy for flight plan filing, has definite potential for application in
Model two of the flight service automation program. Moreover, a comparison
between the old and new recognition algorithms indicates that the
improvement in accuracy with the new data base raises the performance of
the mass weather dissemination proqram to a level quite satisfactory for
tne general pilot population.
S.L.

TYPE 1/4/107
Quest Accession Number : 81A44700

81A44700 NASA IAA Meeting Paper Issue 21
Image processing design for autonomous acquisition of targets
(AA)BOYD, W. W.; (AB)MACPHERSON, C. A.; (AC)TAYLOR, J. L.; (AD)TASKETT,

J. M.; (AE)LINEBERRY, M. C.
(AE) (Texas Instruments, Inc., Dallas, TX)
In: SOUTHEASTCON '81; Proceedings of the Region 3 Conference and

Exhibit, Huntsville, AL, April 5-8, 1981. (A81-44676 21-31) Piscataway,
NJ, Institute of Electrical and Electronics Engineers, Inc., 1981, p.
285-290. 810000 p. 6 In: EN (English) p.3617

Primary considerations in designing an image-processing system that can
autonomcusly acquire high-value tactical targets are discussed. Attention
is given to establishing requirements, and the implications of these
requirements on the image-processing algorithms are analyzed. It is
pointed out that through these steps, detection and acquisition times can
be estimated and, hence, algorithm processing times established. The
results of certain candidate algorithms that show promise of meeting
mission goals are presented. The design process described takes account of
the geographical and climatological features of the area of intended use.
Aircraft maneuverability and human factor limits are also considered in
establishing system requirements. Analysis shows the feasibility and
desirability of employing the seeker and terrain features to cue the
aircraft to the target.
C.R.



TYPE 1/4/108
Quest Accession Number : 81A39349

81A39349 NASA IAA Meeting Paper Issue 18
Model-based scene matching
(AA)TSENG, D. Y.; (AB)CONTI, D. K.; (AC)ECKHARDT, W. 0.; (AD)OLIN, K. E.
(AE)MCCULLOH, T. A.; (AF)NEVATIA, R.
(AD) (Hughes Research Laboratories, Malibu, CA); (AE) (Hughes Aircraft

Co., Culver City, CA)
F33615-77-C-1227 In: Image processing for missile guidance; Proceedings

of the Seminar, San Diego, CA, July 29-August 1, 1980. (A81-39326 18-04)
Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1980,
p. 225-231. 80000 p. 7 refs 5 In: EN (English) p.3068

Advanced pattern matching techniques were developed that are capable of
matching complex terrain scenes for use in midcourse navigational updating
of aircraft and missiles. This method utilizes key features in an image to
represent scene content. The key features are converted into a line-based
model, which is then used in the actual matching process. The
pattern-matching approach is more tolerant _f scene diversities than are
correlation technicues, and it can match scenes c..aining severe contrast
reversal, small prominent features, or scale and orientac-1'- differences.
Both high- and low-altitude flight profiles are considered, with matches
performed for each case. Comparisons with conventional correlatio. are
made for a variety of scenes.
(Author)

TYPE 1/4/109
Quest Accession Number : 81A39342

81A39342 NASA IAA Meeting Paper Issue 18
Application of exact area registration to scene matching
(AA)MERCHANT, J.
(AA) (Honeywell Electro-Optics Center, Lexington, MA)
DAAK40-78-C-0144 In: Image processing for missile guidance; Proceedings

of the Seminar, San Diego, CA, July 29-August 1, 1980. (A81-39326 18-04)
Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1980,
p. 166-177. 800000 p. 12 In: EN (English) p. 3 128

A description is given of the Exact Area Registration process, which can
be used to remove all geometric distortions in autonomous scene-matching
systems. It is shown that match noise statistics can be approximated by a
set of functions, each one corresponding to an a priori designated region
of the reference image. These functions define the confidence level of the
scene model as depicted in the reference image within the corresponding
image. It is suggested that, for autonomous scene matching under a wide
range of conditions, an autonomous smart sensor needs a 'knowledgeable'
reference which will not only predict the expected conditions of the
sensed image but also define the confidence levels of the prediction. In
this way, the autonomous device can make match judgements in a way
analogous to that of a human scene matcher.
O.C.



TYPE 1/4/110
Quest Accession Number : 80N17755

80N17755# NASA STAR Thesis Iscue 08
qtudies in image segmentation algorithms based on histogram clustering

and relaxation / Ph.D. Thesis
(AA)NAGIN, P. A.
MassachusetLs Univ., Amherst. (MK149394) Dept. of Computer and

Information Science.
AD-A076576; COINS-TR-79-15 N00014-75-C-0459 790900 p. 183 refs 0

In: EN (English) Avail.: NTIS HC A09/MF AOl p.1052

The research in this thesis has fuussed upon the algorithms and
structures that are sufficient to generate an accurate description of the
information contained in a relatively complex class of digitized images.
This aspect of machine vision is often referred to as 'low-level' vision
or segmentation, and usually includes those processes which function close
to the sensory data. The bulk of this thesis devotes itself to the
exploration of some of the problems typically encountered in segmentation.
In addition, a new and robust algorithm is presented that avoids most of
these problems. The analysis is carried out through the use of a series of
computer-generated tests images with known characteristics. Segmentation
algorithms of varying degrees of complexity are applied to each image and
their performance is carefully e;aluated. It will be shown that even the
most sophisticated algorithms that are currently in use often perform
poorly when confronted with certain apparently simple images. In
particular, it is shown that techniques which rely on histogram clustering
otte[ generate gross segmentation errors due to overlap in the
distributions of the individual objects in a scene. Moreover, the
relaxation processes used to correct these errors are themselves prone to
errors, but of a different kind. Both techniques, clustering and
relaxation, fail because they are based on information which is too global
to be effective in complex scenes.
CRA

TYPE 1/4/11)
Quest Accession Number : 80N14303

80N14303# NASA STAR Technical Report Issue 05
vocabulary specification for automatic speech recognition in aircraft

cockpits / Final Report, Sep. 1978 - Jun. 1979
(AA)PETERSEN, R. J.; (AB)LEE, N.; (AC)MEYN, C.; (AD)REGELSON, E.;

(AE)SATZER, W.
Logicon, Inc., San Diego, Calif. (L3152614) Tactical and Training

Systems Div.
AD-A073703 N00014-78-C-0692 790831 p. 92 refs 0 In: EN (English)

Avail.: NTIS HC A05/MF AO p.592

The general focus of this research was to design a communication media
(a vocabulary) that is advantageous to both machine recognition and human
production of speech events. The problem was analyzed from a human factors
perspective that centered upon the man-computer dialogue (interaction)
required for cockpit application of ASR. The results indicated that phrase
tamiliarity and stimulus familiarity had major impact on the learning and
utilization of the phrases in the paired-associate task. Phrase length and
meaningfulness did not appear to differentially affect either the learning
or utilization of the paired associate. In addition, pretraining of
stimulus familiarity did not seem to result in improved performance.
Acoustic lexical confusability also was discussed in general
methodological terms. The results of the study were interpreted in terms
of a contextualist viewpoint with the necessity cf a broader contextual
manipulation being pointed out as a requirement for further research.
GRA



TYPE 1/4/112
Quest Accession Number : 75N20033

75N2G0C3 NASA STAR Issue 11
An environment and system for machine understanding of connected -peech

/ Ph.D. Thesis
(AA)ERMAN, L. D.
Stanford Univ., Calif. (S0380476)
740000 p. 172 In: EN (English) Avail: Univ. Microfilms Order No.

74-27012 p.1301

A description is given of part of the research which led to the
develornent of the first demonstrable live system for machine
understanding of connected speech: the HEARSAY system. This system uses
syntactic, semantic, and contextual information, as well as the more
traditional domains of acoustic-phonetic, phonological, and lexical
knowledge, in order to recognize and understand utterances. The efforts
involved fall into two classes: (1) the design and implementation of the
HEARSAY system itself and (2) the careful construction of an environment
within which research in machine perception of speech may be pursued by a
number of researchers over a period of years. This consideration for an
-,ol-ing experimental environment is a prime motivation and direction of

the work. Thus, the system itself is viewed as a tool for on-going
,2xperimentation.
[ ssert..Abstr.

TYPE 1/4/114
Quest Accession Number : 73N26187

73,26187# NASA STAR Technical Report Issue 17
Eyes and ears for computers (Machine perception of speech and vision)
(AAREDDY, D. R.
Carnegie-Mellon Univ., Pittsburgh, Pa. (CH188052) Dept. of Computer

science.
AD-760153; AFOSR-73-0742TR F44620-70-C-0107; NSF GJ-32784; AF PROJ.

+7f9 730300 p. 34 refs 0 In: EN (English) Avail.: NTIS p.2002

The paper presents a unified view of the research in machine perception
of speech and vision in the hope that a clear appreciation of similarities
and differences may lead to better information-processing models of
perception. Various factors that affect the feasibility and performance
of perzeption systems are discussed. To illustrate the current state of
the art in machine perception, examples are chosen from the HEARSAY speech
understanding system and the image processing portion of the SYNAPS neural
modelling system. Some unsolved problems in a few key areas are
presented.
Aothor (GRA)



TYPE 1/4/115
Quest Accession Number : 73N23147

73N23147 NASA STAR Conference Paper Issue 14
A procedure for the machine recognition of speech (Computer program for

machine recognition of distinctive features in words and sentences)
(AA)MEDRESS, M.
Sp-rry Rand Corn., St. Paul, Minn. (SX655732)
In IEEE The 1972 Conf. on Speech Commun. and Process. p 113-116 (SEE

N73-23119 14-07) 720222 p. 4 refs 0 In: EN (English) p.1 6 23

A hierarchical and fundamental procedure for the machine recognition of
words and sentences is proposed, and a preliminary implementatiun of that
procedure is described. The computer program attempts to estimate
distinctive features information about some stops, fricatives, and vowels
in multi-syllabic words and short sentences without reference to a
lexicon, and independent of a speaker. Average correct recognition scores
of 92% to 95% were obtained for five adult male speakers and three
Jifterent vocabularies ranging from 60 short sentences to 100
rwlti-syllabic words. Only one of the five speakers was used to develop
-hp recognition program; the other four were completely new to the system.
AXthor

7'F 1/4/116
.iest Accession Nuiber : 73N22127

5 N22127 NASA STAR Issue 13
Apeech generation and recognition under hybrid computer control

h.?'. Thesis (Synthetic speech ;eneration and recognition under hybrid
.'>:puter control, using one set of linguistic rules)

IAA)DOUBLIER, R. M.
.i ~ts t (o! ,uutuli:r CaiLfurnia, Los Anyeles. (U6203125)
2-0G0j p. 239 In: EN (Eng1ish) Avail: Univ. Milciofilms Order No.
.- 009 p. 1496

'his research was concerned with the design, development and testing of
hardware/software systems necessary to produce synthetic speech, using
ct of linouistic rules as its only input data. Evaluation of the

Jrniity of the artifically-produced speech is made not oniy from a
jp-,'(tral analysis standpoint, but also through carefully constructed and
iministered intelligibility tests. The set of linguistic rules developed
A,_; 1basis for the generation of artificial speech can be adapted to the
'nltiaI phases of research into machine recognition of human speech, and

w;'cvral fundamental considerations towards the eventual solution of this
vrc blem are presented.

i,;- rt. Abstr.



TYPE 1/4/117
Quest Accession Number : 70N23733

70N23733# NASA STAR Technical Report Issue 10
Study of acoustic properties of speech 2, and some remarks on the use ot

acoustic data in schemes for machine recognition of speech (Acoustic
properties of different speech sounds and use ot acoustic data in schemes
for machine recognition of speech)

(AA)STEVENS, K. N.
Bolt, Beranek, and Newman, Inc., Cambridge, Mass. (BS628995) AH710313
AD-698352; AFCRL-69-0339; SR-12; REPT-1871 ARPA ORDER 627;

f19628-68-C-0125 690815 p. 53 refs 0 In: EN (English) Avail.: NTIS
p.1812

iYPE 1/4/118
Quest Accession Number : 5,9A34119

69A34119 NASA TAA Issue 17
Continuous speech recognition and synthesis. (Machine recognition ot

c'ontinuous speech at acoustic level, noting ]ow bit rate speech
:ommunication system)

(AA)FALTER, J. W.
(AA)/USAF, AVIONICS LAB., WRIGHT- PATTERSON AFB, OHIO/.
INST. OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC., NEW YORK, USAF-

SUPPORTED RESEARCH. 690000 p. 6 refs 11 IN- '69 NAECON, INST. OF
EIECTRICAL AND FLECTRONICS ENGINEERS, NATIONAL AEROSPACE ELECTRONICS
CONFERENCE, 21ST, DAYTON, OHIO, MAY 19-21, 1969, PROCEEDINGS. P. 435-440.
'Aoq- 34056 17-09< In: EN (Fnglish) p.2932

Quest Accession Number : 68N16343
68N16343*# NASA STAR Technical Report Issue 07
A program of research directed toward the efficient and

accurate machine
recognition of human speech. A theory of speech perception
Final report
(Efficient and accurate machine recognition of human speech
- theory of
speech perception)

(AA)YILMAZ, H.
Little (Arthur D.), Inc., Cambridge, Mass. (LW086419)
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I.i iiIcx (Ax"itppoirt ot humian otperaitors.

I hli, I koi.t Scrics, ci mx rs, the toiloxxing subjects:

I';ittcn recoignitiotn techniques
Rcail imei \isual machine perceptiotn. principle.% and applications in G&C
Real time spcech recoignition and understanding in the G&C domain.

I his leccture Series. sponsored hy the Gjuidance and Control Panel of AGiARD. has been
implemented hN the Consultant and Exchange Programme.
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