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1. probabilistic inference and probabilistic reasoning.

Uncertainty enters into human reasoning and inference in at least two

distinct ways. One way concerns choices among alternative actions. For
0

good reasons, having to do with Dutch books (Ramsey 1950), this kind of

uncertainty is associated with the classical probability axioms. It is

this form of uncertainty that is used in computing the expectations that

are fed into decision rules. It has been argued that the most general and

useful form of representation for these uncertainties is that of a convex

set of classical probability functions, defined over an algebra of

propositions (Levi 1980, Kyburg 1987). Such a representation includes as

special cases belief functions and most interval representations of

uncertainty. Manipulating these probability representations, together

with utility functions, constitutes one form of probabilistic reasoning.

In addition to merely representing uncertainty and employing it in

decision theory, we are concerned with how uncertainties are modified or

updated in response to evidence. The classical way of doing this, for

classical probabilities, is by means of Bayes' theorem: if statement E

becomes known, is accepted as evidence, then the new or updated

probability P' of any statement H in our algebra becomes the likelihood of

E multiplied by the ratio of the old probability of H to the old

probability of E:

P'(H) -P(H/E) *(P(H)/P(E)) -' 9 - 4 8
*0 92-24685

92 , 03 081 1),:



This is called 'conditionalization'. Conditionalization can be extended to

the more general approach that represents uncertainty by convex sets of

classical probabilities: it can be shown that if each classical

probability function in a convex set of probability functions is updated

by conditionalizing on the evidence E, the result will be a new convex set

of classical probability functions, provided E does not have zero

probability on all the original probability functions (Kyburg, 1987).

There are other ways in which one might want to update probabilities

than by conditionalization -- certain forms of direct inference, in which

probabilities are derived from knowledge of statistics or chances, have

been shown to conflict with conditionalization, for example (Levi, 1980).

But while any of these procedures have a perfect right to be called

'probabilistic reasoning,' they are not what I mean by probabilistic

inference.

In inference in general, one begins with certain statements or

propositions (representations of states of affairs), premises, and goes

through a process that leads to another statement, the conclusion. In

ordinary deductive logic, the process is such as to preserve truth: if the

premises are true, so is the conclusion. Note that the probabilistic

reasoning mentioned above fits this deductive pattern. From "tosses of

this coin are independent and heads occurs half the time," we infer, not

probabilistically, but deductively, that triples of tosses consisting of

three heads occur an eighth of the time.

What is controversial is whether or not there is any form of

inference other than deductive inference. Is there any way of arguing

from premises to conclusion that is not truth preserving, and if there is,

why would one want to do it anyway? Of course there is a tradition that

considers "inductive inference," "ampliative inference," and the like
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(Kneale and Kneale, 1962). But this is a tradition in philosophy that

many regard as a bit musty, and so we will approach the question from the

other side, from the direction of artificial intelligence.

There, the answer is clear: this form of inference is what non-

monotonic logics (for example) are designed to capture. Since the

inferences do not preserve truth, we have to be able to back up: if we

enlarge the premises, we may have to shrink the conclusions. Non-

monotonic inference is not generally taken to be probabilistic, but work

on non-monotonic logic suggests that there is interest in inference rules

-- that is, rules that lead from premises to the acceptance of a

conclusion -- that need not be truth-preserving. Many people want to be

able to detach conclusions from their premises. (Not all approaches to

non-monotonic logic allow full detachment; de Kleer's ATMS (de Kleer,

1986), for example, requires that tags reflecting the assumptions used in

carrying out an inference be carried along with the conclusions.)

2. why accept?

Despite the fact that some people are interested in non-deductive

inference, we may still sensibly ask why they should be: why should we

accept any statements that are not (say) mathematical or logical truths?

It might be thought that we couldn't use conditionalization for updating

without acceptance: after all, when we up-date on evidence E, we take the

probability of E to be I. And once a statement has a probability of 1 (or

of 0) that probability can never be changed by conditionalization. But

there are other ways to handle up-dating: Jeffrey's rule (Jeffrey, 1965),

for example, or various net-propagation procedures, such as Pearl's

(Pearl, 1986).

In principle, there is no reason that human or machine knowledge in a
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certain domain should not be represented by a complete algebra of

statements and a probability distribution (or a set of probability

distributions) over them, in which no empirical statement ever receives a

probability of 0 or 1. Such a system would have no need for a

probabilistic rule of inference.

As a matter of practicality, except for the most trivial domains, the

idea does not seem feasible at all. Our empirical scientific knowledge is

expressed, not in probabilities (for the most part) but in categorical

statements. There is a sense in which we may want to say that our science

is uncertain; but there is no probability we associate with the principle

that the vector sum of the forces acting on a static body must be zero.

We do not take measurement to result in statements such as "with

probability .9, the reading 4.30 was obtained," nor do we report the

result -f the measurement as an unbounded normal probability distribution.

No one, I suspect, has ever tried to represent a significant piece of

knowledge or expertise in this way. It would be perverse. When we

measure a rod by a method M whose distribution of error is normal with a

mean of zero and a standard deviation of .01, we don't worry about the

finite probability that the reading is off by more than .05. As for the

distribution of error itself, we don't even keep the data: the hypothesis

was confirmed well enough. Maybe the mean is really 10-6 rather than 0.

Maybe the variance isn't exactly .01. But the probability of a

significant deviation is too small to bother about. This is probabilistic

inference in action.

In testing a statistical hypothesis, the standard goal is to devise a

rule that will erroneously reject that hypothesis no more than - of the

time. Such a test will lead you to a false rejection no more frequently
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than "w (Lehman, 1959). Of course o is a free parameter; but we choose -c

to be small enough that the possibility of making this sort of error does

not worry us. The size we choose reflects how seriously we take the

mistake in question. If it is very serious, we want to be very sure (but

we can't ask for a guarantee) that it won'" happen. It is very bad form

in a particular case in which a hypothesis has been tested and rejected to

say that the probability is at most alpha that it was falsely rejected.

(But as Birnbaum has pointed out (1969), while we can learn not to say this,

it is hard to know what else to think.) For present purposes we leave

aside whatever other desiderata we might want to take account of in

designing tests for statistical hypotheses.

Or consider the simplest and most elegant of all forms of statistical

inference: you have a normally distributed quantity X, but you don't know

the parameters of its distribution. Nevertheless, since it is normally

distributed, you know the distribution of the quantity t (-I1 12(1 _,

(W'), where x and s are the sample mean and standard deviation, and is

the unknown population mean. Knowing the distribution of t, you can

therefore compute the probability, for example, that

i - ts/Nl/ 2 4A i - t/N 1/2

If you pick some probability level that makes you comfortable under the

circumstances, and you are indifferent between over and under-estimating

/4, then you will have an exact interval estimate of the unknown mean/,

indexed by fp, a level of fiducial probability or practical certainty.

Or consider the most common form of confidence interval inference:

you have a binomial population with an unknown parameter r; you draw a

sample from the population, and observe a relative frequency f; you

construct a class of intervals (2l,u) such that whatever the true value
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of r may be, the probability is at least £ that the sample frequency will

fall in the corresponding interval. We infer, after observing the sample,

that the sample fell in its representative interval. But it will have

done this if and onlyv if r lies between a certain maximum and a certain

minimum value. These values determine what is called a confidence

interval, and in particular, a 100.% confidence interval, since its limits

require the specification of an acceptable p.

Outside of statistics, consider Levi (1967). Levi is concerned with

the circumstances under which one ought to add a hypothesis to one's

corpus of knowledge. The famous Rule A for doing so involves, in addition

to the probability of the hypothesis, and a measure of the epistemic

content of the hypothesis, and a further parameter _, which varies from 0

to 1 and functions as an index of caution.

In artificial intelligence Matthew Ginsberg (1985) applies a

technique much like that of binomial confidence interval inference (the main

difference being that he uses a rougher approximation) to the problem of

inferring an interval characterizing the reliability of a default rule in

non-monotonic logic. In order to do this, he finds it necessary to

introduce a parameter &, which he calls "gullibility".

Finally, in my own work (1961, 1974) I have adopted a "purely

probabilistic" rule of acceptance. That is, a body of knowledge is

indexed by a "level of acceptance"; statements whose probabilities

(relative to a body of knowledge of even higher rank) are greater than

this level of acceptance may be accepted.

3. probabilistic acceptance

The simplest idea is just to accept those statements whose

probability exceeds a certain critical number. This number may have to be
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changed to reflect different circumstances -- it will be context dependent

-- but so, we may suppose, area, , 9q, 2, and fp context dependent.

In what way is acceptance level context dependent? One natural

answer is that acceptance level depends on what is, or might be expected

to be, at stake. If the range of stakes that we are contemplating is

limited -- for example, it can't be more than 10 to 1 -- then

probabilities greater than .9 are indistinguishable (behaviorally) from

probabilities of 1, and probabilities less than .1 are indistinguishable

from probabilities of 0.

It also follows from these considerations that probabilities larger

than the level of acceptance, or smaller than 1 - the level of acceptance,

are just not significant as probabilities. That is, it makes no sense to

bet at odds of 1000:1 on a statement that gets its probability from a

statistical statement whose acceptance level is only .99. The constraint

cuts both ways.

Most of the acceptance rules mentioned above run afoul of the lottery

paradox (Kyburg, 1961). That is, each of a set of statements Si (e.g., "ticket

i will not win the lottery") may be probable enough to be accepted, and at

the same time may jointly contradict other accepted statements (e.g., "there

will be a winner."). The only exception is the acceptance principle

advocated by Levi, which links acceptance to expected epistemic utility;

only statements demonstrably consistent with what you have already accepted

are candidates for future acceptance.

How serious the lottery paradox is depends on what other machinery

you have. It is not deadly if you limit yourself to a probabilistic rule

of acceptance. It will follow that any logical consequence of a single

statement in your corpus of knowledge should also be in it; but it will
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not follow that every consequence of the set of sentences in your corpus

of knowledge will also be in it. The latter would indeed lead to a

hopeless sort of inconsistency. The former would not. If the size of the

lottery is adjusted to my level of acceptance, I will answer your question

about whether ticket i will win with a categorical "no." But I will

answer your question of whether its true that neither ticket i nor ticket

i + 1 will win by saying, "I don't know."

This seems not unreasonable. Or look at the matter in another way:

given a (deductive) argument from premisses l ... p2 to a conclusion C,

consider when the argument obligates you to accept C. It seems natural to

say that more is required than merely that each of the premises be

accepted; I must also be willing to accept the conjunction of the

premises.

Even this feature might be advantageous in AL. There is surely an

epistemic difference between a conclusion reached in one step from a

single premise, and a conclusion that requires a number of premises. This

difference disappears if the acceptability of the single premise of the

first argument is no greater than that of the conjunction of all the

premises in the second argument. A purely probabilistic rule of

acceptance automatically reflects this fact.

4. conclusion

It is important to distinguish probabilistic reasoning from

probabilistic inference. Probabilistic reasoning may concern the

manipulation of knowledge of probabilities in the context of decision

theory, or it may involve the updating of probabilities in the light of

new evidence via Bayes' theorem or some other procedure. Both of these

operations are essentially deductive in character.
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Contrasted with these procedures of manipulating or computing with

probabilities, is the use of probabilistic rules of inference: rules that

lead from one sentence (or a set of sentences) to another sentence, but do

so in a way that need not be truth preserving. One could attempt to get

along without probabilistic inference in AI, but it would be very

difficult and unnatural.

Instances of such rules are several classes of inference rules

associated with statistics, and some rules discussed by philosophers. In

artificial intelligence the rules that fall into this category are

(mainly) default rules; these are not generally construed

probabilstically, but obviously default rules that more often led you

astray than to the truth would be poor ones.

The simplest probabilitic rules of inference -- a high probability

rules -- has some curious consequences, but it does not seem that these

consequences need interfere with the useful application of the rule.
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