AD-A254 738
AR

NAVSWCTR 91-584

A METHODOLOGY FOR SYSTEMS REQUIREMENTS
SPECIFICATION AND TRACEABILITY FOR LARGE
REAL-TIME COMPLEX SYSTEMS

BY MICHAEL EDWARDS AND STEVEN L. HOWELL

UNDERWATER SYSTEMS DEPARTMENT

27 SEPTEMBER 1991 D T l C

ELECTE B%)
AUG191992 & §

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER

Dshigren, Virginia 22448-5000 ¢ Sitver Spring, Maryland 20003-5000

2-22926
92 8 17010 “WWWWMWM

ORSWNe L V6

NAVSWCTR 91-584

A METHODOLOGY FOR SYSTEMS REQUIREMENTS
SPECIFICATION AND TRACEABILITY FOR LARGE
REAL-TIME COMPLEX SYSTEMS

BY MICHAEL EDWARDS AND STEVEN L. HOWELL

UNDERWATER SYSTEMS DEPARTMENT o
DTIC QUALITY IXSrECTED B

" [Accesion For (

NTIS CRA& N

DTIC TAB O]

27 SEPTEMBER 1991 Unannounced £

Justification e

By .

Dist.ibution
Avaazhiiily Codes
) |AC" o JI'C-)-I_
Dist Spr.cial

A-Y

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER
Dahligren, Virginia 22448-5000 e Silver Spring, Maryland 20903-5000

NAVSWC TR 91-584

FOREWORD

This document describes the beginnings of a methodology for requirements
specification and traceability of real-time, large-scale, complex computer-
intensive systems. The method is aimed at better understanding the top-level
system requirements and how they relate to the system under design.

The ability to formally capture and understand the top-level
requirements, before beginning the analysis and design of the system, is
critical in creating systems which correctly reflect the user’s needs and the
avoidance of costly redesign. Being able to formally and efficiently relate
the requirements to the system design and implementation, through traceability
techniques, is essential to guarantee that the design completely meets the
requirements. Traceability also 1s needed to properly maintain a complex
systenm.

The authors would like to thank their sponsor, the Office of Naval
Technology, especially Cmdr. Jane Van Fossen, USN Ret., and Elizabeth Wald.
The authors would also like to thank Phil Hwang and all who provided technical
support to refine this report, and Adrien Meskin for her editorial support.

Approved by: '

<::1? ,/42? briZlosa

C. A. KALIVRETENOS, Deputy Head
Underwater Systems Department

1/11

NAVSWC TR 91-584

ABSTRACT

This document describes the beginnings of a methodology for requirements
specification and traceability of real-time, large-scale, complex computer-
intensive systems. The method is aimed at better understanding the top-level
system requirements and how they relate to the system under design.

The methodology will cover the requirements aspects of system development over
the entire system development life cycle, beginning with the specification of
the requirements and tracing those requirements to the design and final
implementation. ’

111/1v

NAVSWC TR 91-584

CONTENTS
Chapter Page
1 INTRODUCTION . . . v v v v v e v o vt b ettt e et e e e e e 1
1.1 BACKGROUND . . & v v v 4 4 e v v e e et sttt e e e e e v 12
1.2 ROADMAP . . & v v v vt e e e e e e e e e e e e e e e e e e 12
2 MOTIVATION . . . 2 §
2.1 SPECIFYING CORRECT AND CONSISTENT SYSTEM REQUIREMENTS e e .. 271
2.2 MAINTAINING CONSISTENCY BETWEEN REQUIREMENTS

AND DESIGN . . . O
2.3 SHORTFALLS IN CURRENT TECHNIQUES o

2.3.1 SHORTFALLS IN CURRENT REQUIREMENTS
SPECIFICATION TECHNIQUES . . . &+ v v v v ¢ ¢ o o o o . 2-3

2.3.2 SHORTFALLS IN CURRENT REQUIREMENTS
TRACEABILITY TECHNIQUES + + +v &« o & « « « . 2=3
3 APPROACH T =S
3.1 OVERVIEW OF METHODOLOGY . . . e e e e e 31
3.2 NATURAL EXTRACTION OF REQUIREMENTS INFORMATION 3-3
3.2.1 DIFFERENT DOMAIN PERSPECTIVES « « « « . . . 3-3
3.2.2 NATURAL INTERFACES &+ + v v ¢« 4 v v v v v v . 3=5
3.3 FORMAL REPRESENTATION e e e e e .. 3-8
3.3.1 USING SEVERAL SPECIFICATION LANGUAGES 3-6
3.3.2 CRITERIA OF REQUIREMENTS SPECIFICATION TECHNIQUES . . 3-6
3.4 CONSISTENCY BETWEEN FORMAL REQUIREMENTS AND THE DESIGN . . . 3-7
3.4.1 TRACEABILITY 37
3.4.2 AUTOMATED TRANSITION FROM REPRESENTATION TO DESIGN . . 3-11
3.4.3 MARKING SATISFIED REQUIREMENTS « . . . 3=12
4 FEASIBILITY . . . e
4.1 FEASIBILITY OF NATURAL INTERFACES €
4.2 TFEASIBILITY OF FORMAL REPRESENTATION 4-1
4.3 FEASIBILITY OF TRACEABILITY TECRNIQUES 4=2
S FUTURE PLANS & & v v vt e ettt s et s s e e e v s B
REFERENCES . . . & & v 4 v v v e e e e o et et e et e e v e 611
BIBLIOGRAPHY v v v v v v e bt bttt ettt e s 11
DISTRIBUTION & v & v s v e e ettt e e et e e e e (D

NAVSWC TR 91-584

CONTENTS (Cont.)

Appendix Page
A—EVALUATION CRITERIA FOR REAL~TIME SPECIFICATION
LANGUAGES . . + v & v « v v 4 e e v e e e e e e e e e e e e e . A
ILLUSTRATIONS

Figure Page
3-1 OVERALL VIEW OF THE METHOD + « v v &« v + « « o « . 3=2
2-2 PERSPECTIVES . . + & v v v v v e v e e e i e e e e e i e e e 34
3-3 TRACEABILITY DOMAINS v & v v v 4 v v v v v v . . 3-8
3-4 SIMPLE LINKING v & « 4 v v v v v e e e v v e v v 310
3-5 COMPLEX LINKING & v +v v & v t v v s v e v e v v .. 310
3-6 COMPLEX LINKING (EXAMPLE) v + + v v v v « v « . . 311

vi

NAVSWC TR 91-584

CHAPTER 1

INTRODUCTION

The purpose of this document is to provide a detailed explanation of a
Requirements Specification and Traceability (RESPECT) methodology which is
being developed under the Engineering of Complex Systems (ECS) Block program.
The methodology will cover the requirements aspects of system development over
the entire system development life cycle, beginning with the specification of
the requirements and tracing those requirements to the design and final
implementation.

1.1 BACKGROUND

The results presented in this paper are part of the Office of Naval
Technology (ONT) ECS effort. This program was developed to integrate systems
engineering capabilities for developing large-scale, real-time, complex,
computer intensive systems. The goal of the ECS effort is to improve the way
in which the Navy currently creates, maintains and improves its systems by
incorporating state-of-the—art technology and supplying new technology where
holes in present methods exist. The ECS block is divided into four projects:
Systems Design Synthesis Technology, Systems Evaluation and Assessment
Technology, Systems Reengineering Technology, and Engineering Application
Prototype. These projects work closely together to incorporate new technology
across the entire system development life cycle.

The Requirements Specification and Traceability Task is within the
Systems Design Synthesis Technology Project. The project looks at the forward
engineering aspects of the system life cycle. The task will work closely with
the Systems Design Capture and Analysis Task (within the same project) to
ensure that the requirements provide all the information for the systems
engineers to fully capture the design.

Typically, the requirements for real-time, complex Navy systems are
developed by technical and operational Navy experts. These experts need to
specify the requirements in a manner in which they are comfortable. Usually,
this means a combination of English text and diagrams. Formal specification
methods which are highly mathematical are less intuitive than English text;
therefore, it may be more difficult for the experts to validate that the
formal requirements represent their intentions.

The requirements for large-scale, real-time, complex, computer-intensive
systems may be defined in thousands of pages of documents, usually specified
in a rather informal manner by several different experts. These requirements
must completely, consistently, unambiguously and correctly achieve the goals

1-1

NAVSWC TR 91-584

that the requirements developers have in mind. A representation needs to be
created to specify these requirements in a manner that can be easily checked
to ensure the presence of these characteristics, even as it goes through
modifications and changes.

Currently, there are formal specification languages that allow for some
checking of requirements. These languages tend to specify only certain pieces
of a complex, mission critical system (i.e., hardware requirements, software
requirements, etc.). These languages also tend to be limited to specifying
only some aspects of a complex system (i.e., data requirements, behavior
requirements, functional requirements, etc.). Existing requirements
specification checking techniques are usually restricted to simple consistency
checks and do not fully support completeness and correctness checking.

In addition to checking the requirements, a method needs to be developed
to ensure that the design meets these specified requirements. As part of the
system development and maintenance process, many decisions and trade-offs must
be made in the design of the system. In large systems, even the requirements
themselves go through many changes during the development phase. It is
necessary that with all these changes, the design still meets the specified
(latest) requirements. To guarantee this, requirements traceability
throughout the systems engineering process is imperative; if the development
process cannot be traced back to the requirements, errors will occur.
Similarly, all system components throughout each level of the development
process must be able to be linked back to the requirements. These links must
be bidirectional to allow requirements tracing forward, from requirements to
system components, and backward, from system components to requirements.
Traceability must be maintained through all levels of the systems enginzering
process, from the problem as stated (or contracted) by the customer, through
analysis, design, coding and testing to the final product. The theoretical
background that allows the representation and linking of system requirements,
at the highest level, through progressive phases of system hardware, software
and humanware development needs to be formally developed. These techniques
will provide the basis for an automated system for requirements traceability.

1.2 ROADMAP

The remainder of this paper describes the RESPECT methodology along with
Justifications. Chapter 2 describes the motivation for the approach that the
research effort is taking. Chapter 3 describes the details of the RESPECT
methodology. Chapter 4 looks at the feasibility of the approach based on
existing technology. Finally, Chapter 5 looks at future plans for this
research effort.

1-2

NAVSWC TR 91-584

CHAPTER 2

MOTIVATION

The RESPECT methodology has evolved from a preliminary examination of
how the Navy currently specifies and traces requirements and the current
state-of-the—art technology. The motivation for this effort is broken into
three sections: specifying correct and consistent system requirements,
tracing the requirements through the design, and examining the shortfalls in
the state—of-the—art technology.

2.1 SPECIFYING CORRECT AND CONSISTENT SYSTEM REQUIREMENTS

Building correct and long lasting large-scale, real-time, complex,
computer—-intensive systems starts with specifying correct and consistent
system requirements. If the requirements do not correctly reflect the
intentions of the domain experts, then the system will not be built according
to their needs. Important decisions which eliminate inconsistencies and
clarify ambiguities in the requirements are often made by the system designers
when they should be made by the domain experts. For most Navy systems the
requirements are developed by the Navy and passed on to contractors for
analysis and system design. All the information concerning what the system
ghnauld do needs to be specified at this time. In order to ensure that the
system will function as required by the Navy, these requirements must be
specified completely, unambiguously and correctly, so that the contractors can
develop the system without having to interpret the requirements.

Currently, the Navy specifies their requirements to contractors in
documents. These documents are usually thousands of pages in length and are
developed by several different domain experts. They contain all the
information regarding what the system should do and any implementation
constraints that fit the Navy’s specific needs. The functionality of the
system is fully described. All critical behavior and timing of the system is
specified. Physical properties such as size and weight of the system are also
included. The Navy also specifies certain constraints that limit the freedom
that the contractor has on designing the system. These constraints include
the use of specific hardware, software languages, operating systems and
windowing environments. Sometimes it is necessary to constrain the analysis
or design of parts of the system. For example, some systems might require the
use of a specific functional breakdown for a part of the system.

The present method of specifying Navy requirements is very informal. It
consists mostly of English narrative with some diagrams and supporting charts.
There is no systematic method of checking for consistency of information, or
for identifying ambiguities, leaving their resolution to the contractors.

2-1

NAVSWC TR 91-584

These inconsistencies and ambiguities are inevitable since the requirements
are developed by more then one expert using an imprecise language (English).

A formal method would allow the requirements developers to resolve these
issues by checking the requirements for consistency and ambiguities before the
contractors performed any detalled requirements analysis or design.

2.2 MAINTAINING CONSISTENCY BETWEEN REQUIREMENTS AND DESIGN

Maintaining consistency between the requirements and the design is one
of the key issues in developing a correct and long lasting system. This
includes both determining if the design and implementation initially meets the
requirements, and maintaining requirements, design, and implementation
consistency throughout the system development life cycle. Since the Navy
typically relies on contractors to design and build large, complex real-time
computer intensive systems, having a systematic way of validating that every
requirement is met by the design is important, not only to ensure that the
system performs correctly, but also to determine whether contractual
obligations have been met.

Post deployment support is essential to the development life cycle of
Navy systems. Systems introduced into the Navy'’s fleet tend to remain for
long periods of time due to the amount of cost and time it takes to develop
new systems. This is especially true during the current environment of
declining defense dollars. Fixing problems and developing enhancements to
existing systems are critical in support of the fleet.

Any change to a complex system can have effects which may not be obvious
to the maintainer of the system. An example of this happened July 1991 when
the C & P telephone company had a large part of their switching network shut
down by a bug in their computer software. According to the Washington Post,
the bug was caused by a "minor" software change made by DSC Communications
Corporation. A Vice President of DSC stated that "The software was sent out
without major testing because DSC judged that the changes were too small to
require it."! These "small" changes shut down telephone services in three
states for over a six-hour period. Although the shutting down of the phone
company had a major effect across the country, it does not compare with the
disastrous consequence that unforeseen effects of a "small" change can have in
a sonar or weapons system especially during wartime.

These types of "bugs" might be avoided with proper traceability and
system maintenance techniques. These techniques show a relationship between
each element of the design and the requirements. Any change to the design can
be analyzed to determine if the system still meets every requirement. Since
every requirement that is affected by a part of the design is linked through
the traceability techniques, any effects on requirements that the system
maintainer may not have considered will be examined. This cuts down on the
possibility of requirements that were initially met by a part of the design
not being met due to a change in a piece of the design.

2-2

NAVSWC TR 91-584

2.3 SHORTFALLS IN CURRENT TECHNIQUES

In order to implemant a methodology such as RESPECT, the technology must
be mature enough to support it. The current state—of-the-art for both
requirements specification and traceability techniques are not robust enough
to fully meet all the Navy needs. This section describes some of the
shortfalls in today'’s technology, which is one of the reasons for continuing
to research this area.

2.3.1 Shortfalls in Currept Requirements Specification Techniques

Some of the current problems with requirements specification languages

were listed in the Requirements Engineering and Rapid Prototyping Workshop
Proceedings, which was sponsored by the US Army CECOM Center for Software

Engineering. According to the findings of this workshop, current requirements
specification languages lack the following:

* They do not capture requirements information effectively to support the
system evolution;

* They do not specify nonfunctional requirements;

* There is no automated way to reflect changes to the systems in the
requirements or vice versa;

* They do not represent diverse viewpoints;

* There are too many gaps in the formalisms that represent system
requirements;

* There are too many facts that have to be known before any requirements
specification languages can be used.?

Current requirements specification and traceability tools (i.e.,
Teamwork/RQT, R-trace, etc.) allow for a manual parsing and grouping of
functional requirements. There is no systematic method, either syntactic or
semantic, in which requirements can be grouped. There is also no automated
checking of the requirements for consistency or ambiguity. Requirements which
are grouped together can be manually labeled as ambiguous or inconsistent, but
these designations are based strictly on the individual’'s analysis of the
requirements and are not systematic or repeatable.

2.3.2 ghorctfalls in Current Requirements Traceability Techniques

The current commercial state-of-the-art requirements traceability
techniques (i.e., Teamwork/RQT, R-trace, RDD-100) simply link requirements to
pleces of the design and implementation. They relate parts of requirements
documents to a database which represents the pieces of system design and

2-3

NAVSWC TR 91-584

implementation. These techniques do not capture how the requirement is
satisfied by the design, just the fact that some relationship exists.

Another shortfall with today’s traceability tools is that they lack the
ability to trace back from the actual pieces of design and implementation to
the requirements. Although some tools such as Teamwork/RQT and R-trace allow
the user to trace from requirements analysis tools such as Teamwork and
Software Through Pictures, they do not have a method for tracing from a
particular piece of hardware or humanware back to the requirements. This
capability would be extremely useful in performing systems maintenance.

2+4

NAVSWC TR 91-584

CHAPTER 3

APPROACH

The RESPECT methodology approach is divided into three parts. The first
part looks at natural interfaces for requirements specification. The second
part develops a formal requirements representation. The last part looks at
techniques for maintaining consistency between requirements and design. This
chapter gives an overview of the RESPECT methodology and then gives a detailed
explanation of all three parts.

3.1 OVERVIEW OF METHODOLOGY

The RESPECT methodology examines the requirements specification and
traceability challenge In its entirety. It examines the problem in the
abstract and does not limit itself to today’s technology. The approach looks
towards the long-term and incorporates ideas which makes use of tomorrow’s
technology as well as today’s.

It is often said that one person’s design is another person’s
requirement and vice versa. It is therefore necessary to define these terms
in the context of the RESPECT method before further explaining the approach.
The term "requirements" refers to the top-level system requirements that are
specified by the operational personnel at the initial stage of a system’'s
development. The term "design" is used to represent every stage in the system
development life cycle after the specification of requirements. This includes
what is traditionally known as requirements analysis, design, detailed design,
testing and maintenance. The term "domain expert"” refers to a person who
originates requirements and is an expert in a particular application area; it
is used interchangeably with the term "requirements originator."

The methodology divides the requirements aspect of system development
into three parts. The first part is the conceptual view which represents the
intentions of the domain experts who did the initial development. The second
part is the formal representation which ensures that the requirements are
captured both completely and consistently. The final part is the design
elements to which the requirements are traced. The method uses the term
“design element” to denote any part of the system design or implementation

(i.e., data flow diagrams, code, pieces of hardware, humanware, structure
charts etc.).

It is important that the requirements and design remain consistent
throughout the entire system development process. The conceptual view of the
requirements must be completely and correctly presented to the designers
through the formal representation and interfaces. The designers must then be

3-1

NAVSWC TR 91-584

able to demonstrate that the final cesign meets the intentions of the
requirements originators through traceability and interfaces. This
methodology allows for a formal representation of the conceptual view of the
requirements in a manner which ensures the integrity of the requirements and
presents the requirements clearly to both the requirements originators and the
designers.

Figure 3-1 gives a pictorial view of the approach taken by this research
effort showing all three parts and how they are related. The cloud figure
represents the conceptual requirements which the requirements originators have
in their minds. These ideas are captured through interfaces, which might be
natural language or graphical, into a formal representation. The requirements
are then checked for consistency, ambiguity and completeness through the
formal representation. The requirements originators, through the use of the
interfaces, check the formal structure for correctness. Finally the
requirements are traced from the formal representation to the system design
elements.

REQUIREMENTS

SPECIFICATION|
LANGUAGES

TRACEABILITY

SYSTEM DESIGN

FIGURE 3-1. OVERALL VIEW OF THE METHOD

3-2

NAVSWC TR 91-584

The methodology will specify the requirements for building interfaces
which ensure that the formal requirements meet the original intentions of the
domain experts. This will be done by presenting the requirements to the
domain experts in a way which is complete, unambiguous and natural to them.
In this way, the requirements originators can check the correctness of the
requirements after they have been formally captured without having to
understand the mathematical formalisms which comprise the formal
representation.

Within RESPECT, the methodology will create a syntax for a formal
requirements representation. This representation will allow for an assurance
of the requirements integrity without being biased toward a particular view or
perspective of the system. The representation will be mathematical and
logical in nature and will require different interfaces to allow the
requirements originators and the designers to view them properly.

Also, systematic techniques for ensuring consistency between the
requirements representation and the design will be created. This will be done
through interfaces, traceability techniques, and by automating the process of
transforming the requirements representation to present design methods. These
techniques will confirm that the final design and implementation meet the
requirements as presented in the requirements representation.

3.2 NATURAL EXTRACTION OF REQUIREMENTS INFORMATION

One major step in the requirements process is presenting the formal
requirements to the domain experts using natural techniques, i.e., English and
graphical. This is important to prevent errors during the initial
specification of the requirements as well as for the process of reviewing the
requirements for correctness,

Typically, several different experts with widely varying backgrounds are
involved in developing requirements for large complex systems. These experts
are only responsible for specifying certain areas of the system and
consequently are only interested in viewing information which relates
directly, or indirectly, to those areas of the system. It is therefore
important that each domain expert be able to view the full set of requirements
through their specific perspective.

3.2.1 Different Domain Perspectives

Figure 3-2 shows how the different system domains fit into the RESPECT
methodology. The requirements are broken up to represent the different domain
experts who develop requirements. Each expert has his own perspective of the
system. The perspectives are integrated by the interface to form the formal
representation. The interfaces also display the requirements according to
each expert’s perspective.

3-3

NAVSWC TR 91-584

REQUIREM

| | =

PERSPECTIVE PERSPECTIVE PERSPECTIVE PERSPECTIVE PERSPECTIVE

4 4

NATURAL
GRAPHICAL
FORMAL SPECIFICATION
REQUIREMENTS LANGUAGES

SYSTEM DESIGN

FIGURE 3-2. PERSPECTIVES

Each domain perspective contains information that overlaps the different
domains. A domain expert will probably need to view all the requirements
information relating to his particular domain, but only some of the
information in the other domains. It is important that the domain experts can
limit the information viewed. For example, an expert creating the
requirements for a hydrophone or receiver of an active sonar system needs to
know all the information of the hydrophone including its frequency, weight and
environmental constraints. The hydrophone expert also probably needs to know
the frequency of the projector or transmitter, but might not need to know the
weight constraints or environmental conditions of the projector. He needs to
be able to view the projector's requirements which are pertinent to the
hydrophone without being distracted by all the other requirements of the
projector. This is extremely important in large systems, because the number
of requirements are numerous and their relationships are complex.

3-4

NAVSWC TR 91-584

3.2.2 Natural Interfaces

In order to allow the domain experts to specify and review the formally
represented requirements, natural interfaces need to be built. There are two
natural methods of specification: graphical interfaces and English
interfaces. A combination of the two approaches is likely to be the most
effective

3.2.2.1 Graphical Interfaces. Graphical Interfaces represent the
requirements in a form other than text. This is useful for presenting the
requirements in a manner which is natural to the eye. They are also useful
for displaying states, control, relationships and hierarchies.

One way to adapt to graphical interfaces is through the use of an expert
system shell to create an interactive environment. The expert system shell
acts as a guide, asking the requirements generators leading questions to help
set up their environment. This is extremely useful when an ambiguous textual
description of the requirements already exists and the transition needs to be
made to a more graphical form.

3.2.2.2 English Interfaces. The English language is extremely
imprecise. This makes creating an automatable process for converting English
text into a formal structure very difficult. Parsing text is the first step
in converting from English text to a more formal language. Parsing
is the partitioning of the requirements document into parts in order to better
understand the requirements. Parsing can be done manually or systematically
according to syntax or semantics.

3.2.2.2.1 MANUAL PARSING. Manual parsing requires the knowledge of
domain experts or system designers to partition the requirements. These
experts look through the requirements and extract the necessary information to
create the formal requirements. Manual parsing is neither systematic nor
repeatable; but given the imprecise nature of the English language, some
manual parsing will probably be necessary when converting from English to the
formal representation.

3.2.2.2.2 SYSTEMATIC PARSING (AUTOMATABLE). A systematic method of
parsing a requirements document is preferable to a manual one. A systematic
method divides the requirements according to rules. These rules can either be
generic to all requirements or domain specific to the system under design. A
systematic method for parsing requirements is both repeatable and automatable.
There are two types of systematic parsing: syntactic and semantic.

Syntactic parsing is breaking the requirements down according to
specific words and structures. This is a first step in organizing the
requirements in a formal manner. For example, a syntactic parser can extract
all the statements in a document following the word "shall." This would allow
for easy identification of statements of what the system must do. A parser
could also break the paragraphs into individual sentences. Then each sentence
could be identified as a different requirement. Syntactic parsing can also

NAVSWC TR 91-584

include grouping all the sentences which contain a specific keyword (i.e.,
threat, hydrophone, projector, etc.).

Semantic parsing is breaking the requirements down according to specific
meaning. This process is difficult to do with the informality of the English
language. Semantic parsing techniques may be developed for specific domains
because the same words and phrases are often used. Some examples of semantic
parsing are grouping phrases or sentences which contain related keywords
(i.e., targets, submarines and ships) and grouping paragraphs or sections that
are related either within or across documents.

3.3 FORMAL REPRESENTATION

The formal requirements representation will be used to fully capture the
requirements. It will act as a buffer between the people who generate the
requirements and the designers of the systems. The representation will allow
for the requirements to be verified before any partitioning of the
requirements or designing of the system takes place. The representation will
consist of formal specification languages which will be used to capture and
analyze the requirements. These languages check the requirements for
consistency and can prove certain assertions about the system. The
representation will also be open and flexible enough to allow for interfaces
and traceability techniques to be built around the representation.

3.3.1 Using Several Specification Languages

The Systems Design Capture and Analysis Task determined that to fully
capture the design of a system, several views of the system need to be
examined.3* The requirements for a system must contain all the information
necessary to capture all the views during system design. Also, the types of
requirements information is diverse. The requirements contain hardware,
humanware and software constraints, functional requirements, nonfunctional
requirements, behavior, and real-time attributes as well as testing and
documentation procedures. The formal representation must fully capture all the
requirements of the system. This may require the use of more than one
specification language in the requirements representation. Present day
specification techniques seem to capture part of a system very well. Some
languages, such as Modechart,3 capture behavior while other techniques, such
as entity relationship diagrams, capture the required objects of the system
and how they relate. Combining a number of these languages and developing a
method to check consistency across these languages will allow full capture of
all the requirements of a system.

3.3.2 criteria of Requirements Specification Techniques

In order to determine the best notation for fully capturing the formal
requirements, an evaluation of state-of-the-art requirements specification
languages is being performed. As a first step to evaluating the requirements
specification languages, a number of criteria, against which the specification

3-6

NAVSWC TR 91-584

languages will be judged, has been created. These criteria include properties
for formally capturing a complete system (i.e., scope), formal methods for
checking a system (i.e., consistency, completeness, etc.), properties specific
to specifying large—scale, complex systems (i.e., real-time, scalability,
etc.), and properties concerning the implementation of the method (i.e., how
well the language can interface with other specification languages, ease of
use of interface, etc.). A detailed description is presented in Technical
Memorandum 553 0: Evaluation Criteria Real-Time Specifications
Languages, published by the Naval Research Laboratory (NRL) and included as
Appendix A to this document.

3.4 CONSISTENCY BETWEEN FORMAL REQUIREMENTS AND THE DESIGN

Creating and maintaining a correct and consistent set of requirements
does not guarantee a properly operational final system. The designed system
must also meet the specified requirements. Maintaining consistency between
requirements and design can be done in two ways: through traceability
techniques and by direct transformation from the requirements representation
to design.

3.4.1 TIraceabilijty

Traceability provides a relationship between the requirements, the
design, and the final implementation of the system. Showing these
relationships aids both the designers and testers in many areas. It allows
the designers to demonstrate that their design meets the requirements and also
allows for easy recognition of those requirements which have not yet been met
by the design. Some of the implications of a requirements change during or
after the development of the design can be determined before system redesign
takes place. One of the greatest advantages of traceability is evident in the
post deployment phase of the system life cycle. By effectively relating each
requirement to a specific design element, the testers and designers can
determine the effects of changing the design on the requirements.

Traceability can be implemented at two levels: on-line and through
reports. On—-line traceability allows a direct interactive means of
referencing a design element back to the original requirement(s) (i.e.,
clicking on a bubble of a data flow diagram and being able to see the
requirement(s) that the bubble satisfied, or tracing a particular sub-routine
of code back to its initial requirement(s) or functional representation).

This type of traceability is advantageous when trying to determine the effects
due to a change in the design or a change in the requirement after the system
is already developed.

Traceability through reports allows the designer to see which
requirements are satisfied through a matrix of tables. These reports can give
information based on a variety of keys; such as requirements, design elements,
unsatisfied requirements, etc. This type of traceability is especially useful

3-7

NAVSWC TR 91-584

in determining the completeness of the design. Both on-line and report
traceability are necessary to completely maintain a system.

3.4.1.1 Traceabiljty Domains. In order for a traceability technique to
be effective it must allow the designer to trace the requirements through each

stage of the design. It is important that traceability is consistent at every
level of the design and that there is direct traceability between the design
levels as well as between the requirements and the design. Tnis ensures that
changes made in later design stages get reflected back to earlier stages in
the system’s development (i.e., changes made during detail design need to be
reflected in the design and requirements analysis phases). Figure 3-3
demonstrates some of the different design stages and how the relationships
between requirements, design and implementation need to be documented.

INTERFACE GRAPHICAL

CONSISTENT FORMAL SPECIFCATION
CRABIaUOUS REQUIREMENTS LANGUAGES

DESIGN
CAPTURE ANALYSIS | MOOELING

DETAIL DESIGN ° O/gYD METHODOLOGIES

e MANUAL ANALYSIS

AUTOMATED SUPPORT

INTERGRATED
TESTING
vav
FINAL
PRODUCT WawARe MANUALS

FIGURE 3-3. TRACEABILITY DOMAINS

The stages in system development range from the original English
requirements through the internal representation, requirements analysis and
top level design, down to detailed design and implementation. Each stage has

3-8

NAVSWC TR 91-584

its own set of different notations and methodology. These notations require
different methods of relating their parts of the system back to the
requirements and to the other stages of design. It is imperative that every
design stage is linked to every other design stage so that the effects of a
change to a particular stage is reflected throughout the entire design.

One of the most difficult issues involved in traceability concerns
linking requirements to the implementation of the system. Since the
implementation of systems involves hardware, software and humanware, more
robust tracing methods may apply. Typically, tracing techniques lend
themselves to design objects which are stored in a computer database (i.e.,
data flow diagrams, pleces of code, requirements documents, etc.) since it is
relatively easy to attach comments and notes to any design element which is
stored in a computer. Tracing pieces of hardware and humanware back to the
requirements is more difficult because there is no technique for attaching the
information directly to the design element. A computer representation of the
design elements can be developed (i.e., Teamwork/RQT) but that does not allow
direct traceability from the design element back to the requirement.

Within each stage in the system development life cycle, the system may
be viewed in different ways. Traceability must be maintained within these
separate views which are defined by the Design Capture and Analysis Task of
the ECS block.? These views are Functional, Informational, Environmental,
Behavioral and Implementation. Each view contains different information but
some information overlaps from one view to another. Traceability is important
between these views so that consistency is maintained. Each view of the
system is captured using different methods so different linking techniques may
need to be developed to trace to each view.

3.4.1.2 Linking Technology. Linking is one method of relating the
requirements to the design elements. For large systems these links need to be
automated through a computer database or Hypertext system.

Present methods allow some traceability by using simple linking
techniques to relate requirements to design. These methods do not annotate
the types of relationships that exist between the requirements and design.
Complex linking techniques, which would show the specific relationships
between the requirements and the design, will allow the designer to better
understand the system and the effects that changes to the design will have
with respect to the requirements.

Figure 3-4 shows the manner in which most traceability tools link
requirements to design. The links are simple in that they do not reflect any
meaning behind the relationships between requirements and design. In this
case, the links show that requirement A is somehow satisfied by design
elements one, two and three. Figure 3-5 shows one complex method of linking
which uses combinatorial logic to display how the design elements satisfy the
requirements. An example of this is shown in Figure 3-6. In this example, the
requirement "target sub" is being satisfied by the design elements "passive
sonar," "active sonar" and "display.” The combinatorial logic method shows a
specific relationship between "target sub"™ and the three design elements.

3-9

NAVSWC TR 91-584

*Target sub” is being satisfied in the system by the "display" AND "“active
sonar” OR "display" AND "passive sonar." This representation describes the
relationship between the three components and the requirement,

REQUIREMENT | ¥ DESIGN

FIGURE 3-4. SIMPLE LINKING

FIGURE 3-5. COMPLEX LINKING

3-10

NAVSWC TR 91-584

TARGETY

FIGURE 3-6. COMPLEX LINKING (EXAMPLE)

Another method of complex linking captures the conditions under which a
design element satisfies a requirement. Using the above example, the "target
sub” requirement can be satisfied by "active sonar” under the condition that
the system is already detected by the targeted sub. If the system is not
already detected, then the requirement is satisfied by the design elements
"passive sonar" and "display."

Another method of specifying a relationship between requirements and
design elements is by capturing design decisions. By documenting the
assumptions, options and reasons why a system designer makes certain
decisions, the manner in which a design element meets a requirement(s) is also
captured. It is also important that these design decisions are captured

formally so that a change in an assumption can produce an automated change in
design.®

3.4.2 Automated Transitjon from Representation to Design

One method of ensuring consistency between requirements and design is by
using automated techniques to transfer the information from the requirements
representation to the parts of the design. If similar methods are used to
capture the requirements information and the design information, then
automated transitioning from one representation to another is possible. This
transitioning would guarantee consistency because there is no change in the
information. The problem with this method is that it needs to be back
annotated. If a change is made to the design, a method must also exist to
reflect those changes back to the requirements.

3-11

NAVSWC TR 91-584

3.4.3 Sat e u

One important consequence of traceability is the ability to determine if
the requirements are satisfied by the design. This feature is especially
essential for DOD work since the designing and constructing of the system is
typically performed by contractors. The major issues concerned with marking
requirements include showing that the requirements are completely satisfied by
the design, denoting when a requirement is partially satisfied by the design,
denoting under what conditions requirements are satisfied and determining if
nonfunctional requirements have been met by the design.

3.4.3.1 completely Satisfied Requirements. The RESPECT methodology
will create a technique for consistently marking when a requirement is
completely satisfied by the design. This marking system will be maintainable
so that checking is done whenever design changes are made to ensure that the
requirements are still met by the design. 1Initially, any requirement which is
traced to a design element, and then changed, will be flagged, and the
designer will be forced to check that all requirements relating to that
changed design element are still met. Eventually a systematic technique will
be developed, based on the formal capture of complex linking techniques, to
selectively flag the requirements that are affected by the design change.

3.4.3.2 Partially Satisfied Requirements. Requirements of large, real-

time, complex, computer-intensive systems tend to be met by several design
elements. At a particular stage in a system’s development, a requirement
might only be partially met by the design. A method for marking these
requirements as being partially satisfied will be developed. These markings
will not only indicate that the requirement is partially satisfied, but give
additional information as to how it is satisfied and what is needed to
completely satisfy the requirement.

3.4.3.3 Condjtions of Satisfied Requirements. In order to fully

understand if the requirements are satisfied by the design, it is important to
capture the conditions under which certain requirements are satisfied. Some
designs will fulfill certain requirements, based on the fulfillment of other
requirements, design decisions or external events. It is necessary to capture
and monitor these conditions to ensure that the requirements are satisfied
under all operating conditions.

3.4.3.4 Nonfunctional Requirements. Certain requirements are not

linked to any particular combination of design elements but are affected by
the system as a whole. These requirements tend to be nonfunctional
Tequirements. Some examples of these are dependability, security, and timing.
The methodology will create a method for determining if these requirements are
satisfied by the system and a manner for marking these requirements as
satisfied. Since these requirements are affected by any change to the design
or implementation, keeping track of how they are satisfied is important to
ensuring that these requirements are met.

3-12

NAVSWC TR 91-584

CHAPTER 4

FEASIBILITY

Some of the ideas presented in the RESPECT methodology are feasible
using today’s technology. Other ideas will require the advancement of new
technology before they can be successfully implemented. The methodology is
addressing the requirements problem as a whole and is attempting to provide a
complete solution. In building the methodology and associate prototypes the
project does not want to rule out the possibilities that can be created by
advancing technologies. The following describes the feasibility of each
section of the RESPECT methodology. The emphasis is on describing the areas
of research which are currently being explored, and the research efforts which
will be explored in the future as technology matures. Also some major issues
concerning the development and implementation of the RESPECT methodology are
discussed.

4.1 FEASIBILITY OF NATURAL INTERFACES

The ideas presented in this paper referring to natural interfaces will
require an advancement in the state-—of-the-art technology for natural
specification development. The research effort will work with the Natural
Specification and Generation Task (scheduled to start in FY93) to help make
advances in this area.

One area that is currently being researched is using an expert system
shell to aid users in parsing English requirements and converting them to a
graphical interface. This method is interactive with the user. The expert
shell asks questions of the user to guide the user in forming the graphical
representation. This method is being prototyped by Trident Systems, Inc.

&4.2 FEASIBILITY OF FORMAL REPRESENTATION

The research area of formal specification is fairly well developed.
There are several requirements specification languages and techniques
available (i.e., Modechart, Van Schouwen (Modified SCR), ASTRAL, Hierarchical
Multi-State (HMS) Machines, Statemate) and others which are still under
development. The main problem with the specification languages is their
limited scope. Most cannot handle all the information that needs to be
specified by a system. The difficulty in combining these languages is that
most of the languages are propriety and therefore their structure is not open.
This makes the implementation of this representation difficult to develop.

4-1

NAVSWC TR 91-584

4.3 FEASIBILITY OF TRACEABILITY TECHNIQUES

The traceability issue is one which is still being researched today.
Presently there is no standardized methodology for vendors who produce CASE
tools involving requirements traceability. There is some research going on in
the areas of traceability and the capturing of design decisions,.

The Naval Postgraduate School is currently looking at a conceptual model
and prototype for formally capturing design decisions. This model allows the
designer of the system to formally capture and analyze the arguments and
assumptions which lead to design decisions. This procedure may be tailorable
to capture requirements traceability across large, complex systems.

The area of requirements traceability has been researched by commercial
vendors (e.g., Cadre’'s Teamwork/RQT and Ascent Logic’s RDD-100) and there are
some CASE Tools on the market with requirements traceability capabilities.
These tools allow for a simple linking of requirements to other requirements
and design elements. These tools hold sume information about the links using
keywords and attributes. The linking techniques are very informal in nature
and do not allow for any automatic consistency or correctness checking of the
requirements to design links.

The idea of complex linking is one of the most challenging to implement.
One of the most complicated parts of this effort is determining exactly what
type of formal information needs to be captured concerning how requirements
link to the design elements. This involves capturing both the engineering
knowledge concerning the design and what specific types of relationships exist
between requirements and the design elements. Once this information is
discovered, creating a nomenclature for capturing this combination of
knowledge and relationships can be developed.

NAVSWC TR 91-584

CHAPTER 5

FUTURE PLANS

The Requirements Specification and Traceability Task’s plans include the
continuation of research in both the specification and traceability areas.
All the information compiled will be documented in two Technical Reports (A
etho System Specification and Traceability of large Complex Real—
Time Systems (updated) and Design View Traceability Techniques). The
following paragraphs describe in some detail the future plans of this research
effort.

A full evaluation of several requirements specification languages will
be performed. Based on this evaluation, one or more specification languages
will be chosen to be included in the formal structure for the RESPECT
methodology. The beginnings of the notation for combining these specification
languages and methods for consistency checking between these languages will
also be developed.

A detailed investigation into the types of information that need to be
captured by complex linking techniques (i.e., what information is important in
linking requirements to design) will be performed. This will include defining
the proper questions to ask the domain experts, who presently specify
requirements, and system designers, followed by a report of their answers.

The research effort will look at the Naval Postgraduate School'’'s
conceptual model of capturing design decisions.® The emphasis will be on
improving it to effectively capture large, real-time complex systems. This
will include capturing design decisions through all design phases and
consistency checking and validation.

The research effort will start to develop complex linking techniques
based on the needs of the domain experts. These techniques will capture the
information that the Naval Postgraduate School'’s work does not cover.

This research effort will look at how existing commercial traceability
tools can fit into the RESPECT methodology. The tools that will be examined
include, but are not limited to, Teamwork/Rqt, R~Trace and RDD-100.

A mock-up demonstration of an interactive entry environment for
requirements specification will be developed. This environment will be used
for demonstration purposes using entry into an Information Modelling (IM)
method. The IM method is one of the main views used in design capture, and
the method is also applicable to requirements capture.

5-1

NAVSWC TR 91-584

REFERENCES

1. Burgess, John, "Tiny ’‘Bug’ Caused Phone Blackouts," The Washington Post,
19 Jul 1991.

2. ments Enginee and
Army Communication-Electronics Command Center for Software Engineering,
Eatontown, NJ, Nov 1989, p. 53.

3. Hoang, Ngocdung T., "The Essential Views of System Development,"

Proceedings of the 199] Systems Design Synthesis Technology Workshop, Silver

Spring, MD, Sep 1991, pp 3-9.

4. Karangelen, Nicholas E., "Multi-Domain Real-Time System Design, Capture

and Analysis," Proceedings of the 1991 Systems Design Synthesis Technology
Workshop, Silver Spring, MD, Sep 1991, pp 11-22.

5. Jahanian, Farnam, Raymond Lee and Aloysisu K. Mok, "Semantics of Modechart
in Real Time Logic," ceedings of the 21st Annual Hawa a

Conference on System Sciences, Vol. II, IEEE Comput. Soc. Press, Washington,
DC, 1988, pp. 479-489.

6. Ramesh, Balasubramaniam, "Capturing and Reasoning with Process Knowledge

in Large-Scale Systems Design and Maintenance," Proceedings of the 1991
stems Des thes echno Workshop, Silver Spring, MD, Sep 1991,

PP 97-106.

6-1

NAVSWC TR 91-584

BIBLIOGRAPHY
Berzins, Valdis and Luqi, Software Engineering with Abstractions, Addison-

Wesley Publishing Company Inc., Reading Massachusetts, 1991.

Burgess, John, "Tiny ‘Bug’ Caused Phone Blackouts," The Washington Post,
19 Jul 1991,

Davis, Alan M., Software Requirements Analysi nd Spec ca , Prentice-
Hall Inc., Englewood Cliffs, NJ, 1990.

Gabrielian, A., "HMS Machines: A Unified Framework for Specificationm,
Verification, and Reasoning for Real-Time Systems," Procee o) d

Foun ons al- omputing, Washington, DC, Oct 1990,
pp. 359-372.

Hoang, Ngocdung T., "The Essential Views of System Development," Proceedings
9] Systems Desi Synthesis Technology Workshop, Silver Spring, MD,
Sep 1991, pp 3-9.

Jaffe, Matthew S. and Nancy G. Leveson, "Completeness, Robustness, and Safety
in Real-Time Software Requirements Specification," e

Proceedings, 1lth
International Conference on Software Engineering, Pittsburgh, PA, IEEE Comput.
Soc. Press, Washington, DC, May 1989, pp. 302-311.

Jahanian, Farnam, Raymond Lee and Aloysisu K. Mok, "Semantics of Modechart in
Real Time Logic," nnua W, nternatio

, Vol. II, IEEE Comput. Soc. Press, Washington,
DC, 1988, pp. 479-489.

Karangelen, Nicholas E., "Multi-Domain Real-Time System Design, Capture and
Analysis," F : : S s Desig g
Workshop, Silver Spring, MD, Sep 1991, pp 11-22.

lee, Insup, Susan Davidson and Richard Gerber, "Communicating Shared
Resources: A Paradigm for Integrating Real-Time Specification and
Implementation,” J pe g R : S

Iime Computing, Washington, DC Oct 1990, pp 359-372.

Levine, A., "An Investigation of Requirements Specification

Languages: Theory and Practice," Computer (USA) Vol. 15, No. 5,
PP. 50-59.

NAVSWC TR 91-584

BIBLIOGRAPHY (Cont.)

Ramamoorthy, C. V., A. Bhide, T. Yamaura and V. Garg, "Software Quality and

Requirement Specification," Proceedings IEFE Computer Society 1986
Internatjonal Conference on Computer Languages, Miami, FL, IEEE Comput. Soc.

Press, Washington, DC, 1986, pp. 75-83.

Ramesh, Balasubramaniam, "Capturing and Reasoning with Process Knowledge in
Large—-Scale Systems Design and Maintenance," Proceedings of the

Proceedings of the 199] Systems
Design Synthesis Technology Workshop, Silver Spring, MD, Sep 1991, pp 97-106.
Requirements Engineering and Rapid Prototyping Workshop Proceedings, U.S. Army

Communication-Electronics Command Center for Software Engineering, Eatontown,
NJ, Nov 1989, p. 53.

Roman, Gruia—-Catalin, "A Taxonomy of Current Issues in Requirements
Engineering," COMPUTER, IEEE Computer Society, Apr 1985, pp. 14-23.

Saeki, Motoshi, Hisayuki Horai and Hajime Enomoto, "Software Development
Process from Natural Language Specification," Proceedin 1 Internationa

Conference on Software Engineering, Pittsburgh, PA, IEEE Comput. Soc. Press,
Washington, DC, May 1989, pp 64-73,

NAVSWC TR 91-584

APPENDIX A

EVALUATION CRITERIA FOR REAL-TIME SPECIFICATIONS LANGUAGES

A-1/A-2

NAVSWC TR 91-584

Evaluation Criteria for Real-Time Specification Languages

PAUL C. CLEMENTS

Human-Computer Interaction Laboratory
Information Technology Division
and
Department of Computer Sciences
Universily of Tezas at Austin
Austing TX 78712

CAROLYN E. GASARCH

Human-Computer Interaction Laboratory
Information Technology Division

RALPH D. JEFFORDS -

Locus, Inc.
Alezandria, VA 22808

NAVSWC TR 91-584

CONTENTS

1. IIEETOAUCTION oeneeeeeeeeeeieeeeeeeeeeteee e et e ssmatess e sesseaaseeeesesaraaaesasnsasesensssnnsseasessanressassnsnsaenns

2. Product-Oriented Criteriacoovreerererrrrererienerieeeesienstisee e ve s sene s s es
2.1. Applicability to Real-Time Systemscc.cccovviiniiiiciiniiiceciecne
2.2. Representing the Conceptual Constructovveevivniiinninnncncnes
2.3, FOrMAality ..ooeiieriiieiiiectetieeeietctecrceesss s ste et b es e e see b e e e e sn e nenbeen

2.3.1. ComPlEetenesScccevveeierrirerenrnerrtrectiertestes e cetee e ae e s ser s e aeneane
2.3.2. CONSISLENCY .-cevieeveeneerieneireeeeaieeseestiesteeiae e st e s stcesbeeeetesetsentessnesnnsense
2.3.3. Lack of AMDIGUILY ..oveoereireeiieeieeieee ettt
2.3.4. Verifiabilibycooiiiiiiiiieieeiiieiiecereeeee ettt st aens
2.4. Constructibility, Expressiveness, and Concisenessccccocevceernereeseennrenas
2.5, Scalability oceoreeeiieiieii ettt
2.6. Modifiability ...c.oeoiirecieieeeiiei e res et seres et sttt e s et ne st e s ee
2.7. Readabilityccooiioiiriiriciccteceee et st sae et eesae s se s sa s re sebaesaenes

3. Process-Oriented Criteriacocceicciiircirieenieenierciene et en e e s et e ae s
3.1. Method for Specification Creation and Modificationccceovivveecerceiconenne
3.2. Verification and Testingccccoveeieveercmniiieriniecennrece et eeersneene s
3.3. Traceabilityccococeeviiomiiicicirerreeeecicene e e
3.4, Validationoocciiiiiiiiiiieeirieieneerrerecsireseceese s e eesr e sesr et sesn e rassane s e e basnnsasnne
3.5. Tools and Environmentc.ccocieoreirnerreerienerennnniecierseennreeesreesssseessessassnnas

4. Summary

5. ACKnOWIEdZEMENtSoouviiiiiictircersee et cree et s e e sae e snesrbe s ene e eaens

REFERENCES AND BIBLIOGRAPHYcoocciiiiniiniiiccnrssinevssssnsensnee

GLOSSARY

...

W N OO A WO

w O w oo

—
[~

[
—

11

12

A-4

NAVSWC TR 91-584

EVALUATION CRITERIA FOR REAL-TIME SPECIFICATION LANGUAGES

1. Introduction

This report proposes a set of evaluation criteria for languages designed to specifly the
requirements of real-time systems. It is intended for a reader who is beginning a real-time
development project and considering a method or language for capturing the system’s
requirements. We assume the reader is familiar with at least some real-time specification
languages and with the characteristics that distinguish real-time systems from others.
Specification languages, for the purpose of this study, include both highly formal languages
(having at least a formal syntax) as well as informal ones. We include technical criteria we
believe may be formally evaluated, such as the ability to verify timing properties; we also
include criteria of a more subjective nature, such as readability and ease of use. For each we
include a list of key questions that a developer may use to help evaluate a candidate
language.

Not surprisingly, the criteria are not unrelated, although how they aflfect each other
varies from case to case. For example, increasing the formality of a language may increase or
decrease the readability of the specification. A language with a strong conceptual construct
and high applicability to real-time systems probably produces a very concise specification,
which may be easier to modify, but an overly concise specification (or an overly verbose one)
may have very poor readability.

We do not provide value rankings for the criteria, because the value varies with pro-
jects. For example, ease of learning would be more important to a project stafled with
unskilled or inexperienced personnel than one with seasonéd veterans; sophisticated support
tools may be irrelevant to a project without the computing resources to exploit them.

We do not at this tim: provide objective measurement procedures for the criteria. For
some criteria, derivation of measurements represents an obvious continuation of this work
and is beyond the scope of the current effort. For others, it isn’t clear that finding an objec-
tive measure is feasible. In any case, we believe that the identification of the criteria is useful
in its own right. It should motivate the project manager to think about long-term issues and
provide a justification framework for choosing a particular language and rejecting others.

The evaluation criteria are presented in two sections. Section 2 suggests language
features that support desirable properties of the finished product—the requirements
specification. Section 3 proposes language features that facilitate the process by which the
specification is produced. A brief summary appears in Section 4. A bibliography and glos-
sary relevant to real-time system specification conclude this report.

2. Product-Oriented Criteria

The product under consideration is the requirements specification. The purpose of a
requirements specification language is to establish a syntactic and semantic context in which
to develop that product. The purpose of a requirements specification is to define all accept-
able implementations of a system and to specify any constraints on its implementation [Heit-
meyer and McLean 1983]. We take as axiomatic that a requirements specification should be

NAVSWC TR 91-584

unambiguous, complete, verifiable, consistent, easy to change, traceable, and usable during
development, operation, and maintenance [ANSI/IEEE Std 830-1984]. A specification
language must at least permit such properties in a requirements specification. It might
guarantee them (by making it impossible to produce a product without them); it might sim-
~ ply encourage them (by providing features designed to ease their rendering). Note that a
language that guarantees a good product need not be the best choice; it might, for instance,
be prohibitively hard to use.

In the following subsections, we suggest evaluation criteria related to the production of
high-quality requirements specifications in the context of real-time systems.

2.1. Applicability to Real-Time Systems

Since real-time systems, by definition, must respond to events under some timing con-
straints, it is imperative that the language for rendering real-time specifications be able to
express such timing requirements. The existence of a model for timing in the requirements
specification language, and the notation for expressing timing constraints is the primary issue
that sets real-time and non-real-time specification languages apart. The timing model may
be based upon either continuous or discrete time. Furthermore, soft real-time systems deal
with stochastic performance models; their requirements are written in terms of a some
minimum number of times that a real-time deadline must be met. By contrast, hard real-
time systems use deterministic models; their minimum required rate for satisflying a deadline
is 100%. Some systems, such as the Space Shuttle, combine aspects of both soft and hard
real-time: a set of primary or high-priority tasks must always meet their deadlines, whereas
it is permissible for less important tasks to fail to complete from time to time.

It is not sufficient that requirements for real-time systems express only an ordering of
events, system responses, etc.; they must also express absolute and relative time intervals
from a fixed starting point. Timing constraints should be stated only in terms of events that
are externally visible at the system level. To achieve this goal the model of the system
environment embraced by the language must be complete and well-defined.

Some specification languages suitable for real-time systems may have semantics for
parallelism, which some real-time applications may need. The semantics of parallelism in the
specification language may use either a maximal parallelism model or an interleaving model.
Maximal parallelism allows any number of events to occur simultaneously, as in the real
world. The interleaving model, on the other hand, forces simultaneous events to be sequen-
tialized artificially. Interleaving is considered inadequate by some for handling certain situa-
tions involving simultaneity in a meaningful manner [Mok 1991]. Others find that it is possi-
ble to incorporate time into an interleaving model to represent real-time adequately [Ostroff
1989].

Key questions about the applicability of the language to real-time systems, then,
include:

(1) Can the language express absolute and relative timing constraints?
(2) Is the language’s model of time discrete or continuous?

(3) Can timing constraints be expressed only in terms of events observable to the system in
its operating environment?

A-6

NAVSWC TR 91-584

(4) Can the language express stochastic requirements for deadline satisfaction?
(5) Can the language express what is required to occur if a timing constraint is missed?

(6) Can the language express parallelism? Does it use the true or interleaved model of
parallelism?

2.2. Representing the Conceptual Construct

A major concern in representing a set of requirements is capturing the essential proper-
ties or conceptual construct [Brooks 1987] of a system while leaving unspecified those details
that do not affect validity. The specification should serve as an abstraction representing
exactly the set of all valid implementations, and neither overspecily (provide details that are
not requirements) nor underspecifly (omit details that are requirements). A specification
should say what is required of the system and not how that system is implemented, i.e., it
should represent a “black box” with only the externally observable behavior specified [Parnas
1979].

A difficulty in representing the conceptual construct is that inessential artifacts of a
specification may be misconstrued as part of the conceptual construct. Such is often the case
with specifications that use operational definitions whose details may be misinterpreted as
design or implementation constraints. For example, a specification may include parallelism
as a conceptual construct, but it would be a premature design-level decision to interpret this
as requiring either a parallel system or a distributed system architecture (unless mandated as
a constraint). Also undesirable are specification languages that use design-level concepts such
as data flow models, because the specifications resulting from such techniques usually imply
that a particular component architecture is required. Even though the ideal conceptual con-
struct for a system can at best be subjectively evaluated, it is desirable that a specification
language support models and notations that minimize confusion about which constructs are
required properties (i.e., external behavior) and which are artifacts of the specification.

Legitimate design and implementation constraints, which tend to decrease the number
of potentially valid implementations by limiting choices for designers and implementors, must
be handled with care. Diflerent notations may be appropriate for such constraints, since it is
important that true constraints not be confused with similar appearing constructs that are
only artifacts of the specification.

Families of systems arise anytime when a requirements specification leaves a choice
open to the designer or implementor. While implicit choices left to the designer or imple-
mentor give rise to families of different implementations, we emphasize explicit requirements
constructs that provide additional family concepts:

. Nondeterminism allows for different choices based upon alternate behaviors that are
equally suitable.

e Abstract input or output devices define families of systems with common functionality
but choice of hardware devices.

® Generic system parameters (analogous to those of the Ada programming language) give
rise to families of systems that differ in the values of those system parameters.

Such concepts in a specification tend to increase the number of potentially valid implementa-
tions and may make a specification reusable or more easily modified. Language support for
families of systems should be flexible enough to include the full range from narrowly defined

NAVSWC TR 91-384

single systems with many constraints to general families of systems.

Part of a system’s conceptual construct is its operating environment. Developing a
real-time system may require extensive modeling of the external environment (such as a tim-
ing model for it) in order to describe or analyze the requirements properly. For further dis-
cussion of this concern see (Heitmeyer and McLean 1983].

Key questions about capturing a system’s conceptual construct, then, include:

(1) Does the language lend itsell to specifying only what is required, or is it burdened by
the need to include irrelevant details or other artifacts of using that language in the
specification?

(2) Does the language facilitate the representation of program families by allowing abstrac-
tion of parameter values, hardware devices, and nondeterminism?

(3) Does the language provide for modeling the system’s operating environment?

2.3. Formality

As with many of these criteria, formality is a spectrum quality rather than an absolute.
A formal specification language has at least a precise, rigorously defined syntax. That means
that it is possible to test unambiguously whether a specification is a member of the language
or not. In addition, some formal languages have precisely defined semantics. A specification
written in such a language has mathematical properties that can be analyzed. More to the
point, it can be shown that any system that meets that specification will have certain proper-
ties. For example, desired invariants can be derived for most real-time systems; an example
invariant is “the valve will always be closed within two seconds of detection of sensor tem-
perature exceeding 212 degrees.” Proving that desired invariants are implied by the
specification is an indispensable exercise in making sure that the specification is valid.

Formal specifications also have the potential to be processed mechanically; for example,
a correctness proof can be checked automatically, even if the proof could not be automati-
cally derived [Liskov and Berzins 1979]. Completeness and consistency checks can be
automated because there is a formal definition of both. By contrast, natural language
specifications can be processed mechanically only at the most superficial levels, such as sim-
ply manipulating various blocks of text. However, the role of natural language commentary
should not be overlooked for clarifying the major points of a formal specification or providing
background and motivation for the decisions embodied by the formalisms.

Formal specification languages can be judged by the ease with which their specifications
can be checked for a range of properties. These properties include completeness, consistency,
lack of ambiguity, and verifiability, each of which is discussed below.

2.3.1. Completeness

A requirements specification is complete if it has all the information needed to define at
least one system that is acceptable to the customer. This also includes support for any attri-
butes that contribute to completeness, such as robustness—the ability to handle any possible
input conditions including errors.

The specification language must tolerate incompleteness in a given requirements
specification during development, although the language must also aid in detecting

A-8

NAVSWC TR 91-584

incompleteness so that it can eventually be eliminated. Certain constructs are needed, such
as TBD'’s, that allow for reasonable analysis of an incomplete specification.

Key questions:

(1) Does the language include rules that define what a complete requirements specification
is?

(2) Does the language tolerate incompleteness during development?

(3) Does the language facilitate rapid identification of areas of incompleteness in the
specification?

2.3.2. Consistency

Consistency means that no contradiction can be derived from a set of facts. Incon-
sistent requirements specifications have no systems that satisfly all the requirements. A
requirements specification must be internally consistent; that is, no contradiction can be
deduced from within the specification. Specification languages should provide some form of
internal consistency checking. A requirements specification must also be externally con-
sistent with other products of development, such as the design, implementation, etc. Tracea-
bility (see Section 3.3.) can provide some support for external consistency checking.

If formal reasoning is associated with a specification language, then it is desirable that
the underlying formal logic system have been shown to be sound. That is, any theorem
derived from the specification must be true in the specification model. Although first order
predicate logic is sound, special-purpose logics need to be shown to be sound also [Berg et al.
1982]. Formal reasoning is necessary to precisely define and to automate consistency check-
ing.

Key questions:

(1) Does the language contains rules from which mechanical self-consistency checks can be
derived?

(2) Does the language provide a means to perform external consistency checks with other
products of the development?

2.3.3. Lack of Ambiguity

Ambiguity in a specification leads to more than one meaning, when only one is
intended. A specification language should not have ambiguity at either the syntactic or
semantic levels. Formal syntax and formal semantics are solutions, since formal constructs
usually have unambiguous definitions. However, even the lack of ambiguity found in formal
specifications may not prevent misunderstandings, if the reader does not have the appropri-
ate background and experience in the language [Parnas 1979).

Key questions:

(1) Does the language have a formal syntax by which syntactic correctness of a
specification can be unambiguously judged?

(2) Is the language semantically ambiguous?

NAVSWC TR 91-584

2.3.4. Verifiability

The quality of verifiability refers to the ability to prove that some set of properties
holds for a given specification. The ability to verify propertics of a specification is one of the
most important reasons for using formal specification languages.

Specification languages that can be verified are usually built upon some type of logic.
To make verification feasible, it must be automated. Complete automation of verification
requires a decidable language, i.e., one whose underlying logic is decidable. Decidable
languages, however, may not be able to express all desired requirements concepts that could
be expressed via an undecidable language. A compromise using some restricted subset of an
undecidable language is generally sought in order to provide the requisite expressiveness.
The ultimate goal is to provide an efficient automation of proofs, so that specifiers and
verifiers need not be experts in proof techniques.

Key questions:

(1) Does the language have a formal semantics that will allow proofs of invariant correct-
ness?

(2) Is the language based on a logic that has been shown to be decidable?

(3) What is the computational complexity of the automatic proof techniques, if any are
provided?

2.4. Constructibility, Expressiveness, and Conciseness

A language is said to be constructible if it is able to express application domain con-
cepts. A special case of constructibility for real-time systems was discussed in Section 2.1.
Other concepts may include special language constructs for vehicle position and attitude,
chemical reactions, fluid dynamics quantities, etc. The language is said to have high construc-
tibility if (1) the way the specifiers think about the problem domain is reflected in the avail-
able constructs and in the way these constructs are combined; or (2) the specification
language is expressive. Expressiveness refers to the ability to make statements about many
types of properties, and the ability to describe varied functionality. So, for example, even if
a particular language is not constructible with respect to both avionics and chemical process-
ing domains because it does not have built-in concepts specific to each one, it may still be
expressive enough so that specifiers can easily build suitable specifications for both domains
by using more general (domain-independent) built-in features of the language.

Assuming that the language is able to express a construct at all, as discussed above,
conciseness refers to its ability to express the construct with a minimum of redundant or
irrelevant information. Important features common to many real-time systems, e.g., timing
properties, should be expressible directly via a small number of primitives, rather than
indirectly in terms of many primitives.

Alternately viewed, conciseness measures the lack of repetition (either actual or concep-
tual) necessary in a document. The expressive primitives are power{ul because they take the
bulk of common information from the specification and move it into the semantics of the
language. Support for some form of abbreviations (such as macros) can also aid in concise
specifications by factoring out repetitive parts of a specification. Avoiding such repetition
also promotes consistency within the specification by maintaining a single definition of a con-
cept.

A-10

NAVSWC TR 91-584

Key questions:

(1) What features of the language are specifically relevant to the problem domain under
consideration?

(2) What features of the language are relevant across application domains?

(3) To what degree must information (whether detailed requirements, conceptual back-
ground, or semantic constructs) be repeated in a specification written in the language
under consideration?

(4) How compact is the expression of information in the language under consideration,
compared to that of other languages?

2.5. Scalability

It is important that the specification language can handle scalirg up from small, toy
problems to prcduction real-time systems. A major difficulty in scaiability is that the com-
plexity of large systems increases nonlinearly with the size of the system [Brooks 1987). The
best evidence of language scalability is the existence of previous application of the language
to large production-quality real-time systems, along with documented evaluation of the
langaage’s tool and methodology support. Lacking such a posteriori evidence, the following a
priori criteria can be used:

e The language should support vertical decomposition of a specification from the top level
(most abstract) through refinement to additional more detailed levels. Consistency must
be maintained among multiple vertical levels that comprise a specification.

e At each level of the vertical decomposition, there should be constructs for partitioning
the specification into more manageable work assignments (horizontal decomposition).

Key questions:
(1) Is there testimonial evidence of application of the language and its methodology to pro-
duction systems?

2) Does the language support vertical or horizontal decomposition of the system?

2.6. Modifiability

Modifiability is the quality that makes a specification easy to change. Requirements for
real-time systems will likely change many times during the evolution of a project due to such
factors as changing environment and changing customer needs under complex technological,
legal, political, and social pressures [Brooks 1987]. The language must support ease of
change throughout the system’s evolution.

In general, readability factors, such as indices and cross-referencing or their automated
equivalents, contribute to ease of change. Additionally, structuring to facilitate anticipated
changes may be beneficial. However, structuring criteria for modifiability may conflict with
those for readability and scalability, and require a compromise.

Key questions:

(1) Does the language support browsing facilities (hardcopy or online) that facilitate locat-
ing related sections during modification?

A-11

NAVSWC TR 91-584

NAVSWC TR 91-584

(2) Does the language support the documentation of anticipated changes?

2.7. Readability

Readability is a quality that enables individuals in different roles (specifiers, customers,
users, verifiers, and implementors) to understand a specification without undue difficulty.
Each role has its own perspectives and assumptions, and requires diflerent educational back-
grounds, knowledge, and experience. Those portions of the specification relevant to each role
should be clearly understandable to each person serving in that role.

The structure of the specification also aflects readability. It is preferable that the
specification language aid in separating normal processing from error processing. Including
indices and cross-references (or online retrieval equivalents) also promotes understanding, as
well as modifiability.

Key questions:
(1) Does the language provide for the needs of readers in different roles?
(2) Can specifications be structured for readability (e.g., normal vs. error processing)?
{3) Does the language support browsing (hardcopy or online)?

3. Process-Oriented Criteria

Development of a good specification requires the basic processes of creation,
modification, and analysis. The process of creation should be supported by a method that
provides guidance to the specifier. Analysis of a specification takes two basic forms.
Verification (definition 1 in Glossary) and testing apply to properties such as consistency,
timing, security, and reliability that are sufficiently formal to permit objective evaluation.
Properties such as readability, maintainability, and suitability of the system to customer
needs require a subjective evaluation or validation. Modification and analysis must normally
be iterated until there is agreement with the customer that the specification is satisfactory.

At later stages of the life cycle, verification (definition 2) and testing of designs and
implementations with respect to the requirements specification will occur. Traceability, as a
complement to analysis, provides limited assurance that all requirements have been covered
both during specification development and at later stages.

For building large real-time systems, automation of these processes in terms of tools
and environment is an overriding concern, as the complexity of such systems is generally
unmanageable without tool support.

3.1. Method for Specification Creation and Modification

A requirements specification language either implies or explicitly provides a method by
which the language is used to create and modify a specification. The method may consist of
a sequence of steps (i.e., suggestions of what to do next), procedures or heuristics for execut-
ing each step, rules for evaluating the results, etc. Guidance should be in terms of when to
apply various constructs of the language, as well as how to apply these constructs effectively,
especially when there may be a choice of applicable constructs. Finally, the guidance should
not be so rigid as to encumber the creativity or productivity of the specifier [STARTS 1987].

A-12

NAVSWC TR 91-584

Ease of use of the method should be evaluated and considered. Ideally, the method
should require little formal training and mastery of few unfamiliar or complicated concepts.
Of course, the benefits of the method must be weighed against its start-up cost; one might be
willing to invest in a long training course if the method seemed likeiy to deliver significant
long-term benefits. A valuable characteristic of a method is to allow decomposition of the
specification task into small work assignments so that a team of specifiers can cooperate and
at the same time work relatively independently.

The maturity of the method, whether potential, rudimentary, or fully mature, should
be an important factor in evaluating the method associated with a specification language
[Zave 1991]. Similarly, the level of method support, ranging from no support for a “bare”
specification language to a specification language embedded in a methodology that addresses
the entire system life cycle, should also be considered. The specification method should also
be compatible with other methods used during the system life cycle.

Key questions:

(1) Is guidance or heuristics provided for creating and modifying specifications?

(2) How difficult or expensive is training in the method?

(3) Can the method support division of the specification process into independent work
assignments?

(4) How mature is the method?

(5) How does the method integrate with others in the system life cycle?

3.2. Verification and Testing

A verification technique guarantees that a specification satisfies some property for all
states of the system, in contrast to testing, which can only show the satisfaction of that pro-
perty for some states. In evaluating a specification language, one should consider which
verification and test procedures have been established, and the level of support via methods
and tools to aid in such analyses.

The primary concern is verification and testing techniques that apply directly to the
requirements specification; for example, a formal specification may lead to inexpensive
automatic test case generation. Verification or testing of designs and implementations versus
a specification will occur at later stages of system development, e.g., correctness (definition 1)
of an implementation with respect to its specification. Verification and testing techniques at
the design and implementation levels should also be factors in evaluating a specification
language.

Key questions:
(1) Which verification and test procedures are available at requirements level?

(2) Which verification and test techniques are available during later design and implemen-
tation?

3.3. Traceability

Traceability provides for relating objects at one stage of development to objects at the
next stage. Tracing between two development steps provides two major forms of compliancy

A-13

NAVSWC TR 91-584

checks: (1) coverage of the former system by the latter (each former object corresponds to
one or more latter objects) , and (2) necessity of the latter objects (each latter object
corresponds to one or more former objects).

For requirements specification there are two important forms of traceability that
should be compatible with a specification language, with traceability links both forward (link-
ing the requirements specification to another work product) and backward (linking that work
product back to the requirements specification) [Davis 1990):

e The requirements specification language should provide a means of tracing each require-
ment to its manifestation in the design and implementation as a rudimentary form of
verification or testing. This should be supplemented by verification and testing for
more complete analysis.

e The requirements specification language should provide a means of tracing each require-
ment to its informal expression by the customer as an aid in validation.

Key questions:

(1) Is traceability from informal customer requirements to the requirements specification
supported?

(2) Is tracing from the requirements specification to design or implementation supported?

3.4. Validation

Validation that a specification satisfies the customer’s needs is at present an informal
process involving the specifier, the customer, and the requirements specification. Language
support for specification properties, such as readability and traceability, can help in this pro-
cess, as well as support for techniques such as prototyping, scenarios, and specification execu-
tion (e.g., step by step execution of a STATEMATE specification that provides visual
highlighting of the currently active state [Harel et al. 1990]). Verification or testing of pro-
perties, such as timing and safety, provide additional input to the validation process.

Key questions:
(1) Which properties (e.g., readability) related to the language aid in validation?

(2) Which techniques (e.g., prototyping, specification execution) related to the language aid
in validation?

3.5. Tools and Environment

Manual introduction of methods, analyses, and traceability can only provide limited
support. To scale up to production systems ultimately requires well-integrated tool support,
as could be provided by a CASE environment, simply to cope with the amount of data and
its different uses by the people involved in the requirements specification process.

Various quality factors will aflect the acceptance of automation in place of manual tech-
niques. Tools and a supporting environment must be cost-eflective. Tools should be robust,
easy to learn, and easy to use. Furthermore, simple tools (such as syntax-checking editors)
may suffice when the major concern is with recording the specification rather than extensive
analyses [Place et al. 1990}.

10

A-14

NAVSWC TR 91-584

Some basic features of tools and environments that should be integrated with a
specification language and its related method and analyses include the following:

o The environment should provide a common repository for all requirements and various
useful relationships among different types of information. Special-purpose editors (e.g.,
structured, syntax-directed, graphical) should provide for the efficient and correct entry
of requirements data in multi-user mode.

e Open, non-proprietary data formats and interfaces should be standardized to promote
interoperability among tools.

e The environment should provide configuration management and version control for the
various work products of the requirements process.

° The organization of the environment and the requirements data should support various
analysis tools.

Key questions:

(1) Are the available tools supporting the language cost-effective, robust, easy to learn, and
easy to use?

(2) Are these tools interoperable with the development environment?

4. Summary

We have developed a set of general evaluation criteria for real-time requirements
specification languages. Thesc criteria cover important properties of a specification (applica-
bility to real-time systems, capturing the conceptual construct, etc.) that should be supported
by a specification language, as well as techniques for analyzing those properties (verification,
traceability, ete.). These general criteria are intended as a guide to the development of more
detailed criteria during actual evaluations of specification languages.

We close by reminding the reader that choice of language plays only a limited role in
the success of a development effort. Although a language may facilitate sound engineering
practices, it is still incumbent on the engineering stafl and project management to enforce
those practices.

5. Acknowledgements

We would like to thank Connie Heitmeyer, Bruce Labaw, and Preston Mullen of the
Naval Research Laboratory for their many useful suggestions for improving earlier versions
of this document. We also gratefully acknowledge the support of and comments from Steven
Howell and Michael Edwards of the Naval Surface Warfare Center.

11

A-15

NAVSWC TR 91-584

REFERENCES AND BIBLIOGRAPHY

ANSI/IEEE Std 830-1984.
Software Engineering Tech. Committee of the IEEE Computer Soc., “IEEE guide to
software requirements specification,” ANSI/IEEE Std 830-1984, The Institute of Electr-
ical and Electronics Engineers, New York, NY, 1984.

STARTS 1987.
UK. Dept. of Trade and Industry, The STARTS Guide, Vol. 1 (2nd ed.), National
Computing Centre, Manchester, UNITED KINGDOM, 1987. (Excerpt reprinted in
Dorfman and Thayer, Standards, Guidelines, and Examples on System and Software
Requirements Engineering, pp. 320-367.)

British Standards Institute 1989.
“VDM Specification Language (Draft),” (BSI IST/5/50), British Standards Institute,
April 1989.

ISO 1989.
“LOTOS—a formal description technique based on the temporal ordering of observa-
tional behavior,” (ISO 8807), International Organization for Standardization, 1989.
i-Logix 1989.
“STATEMATE: system documentation,” version 3.0, i-Logix, Inc., Burlington, MA,
1989.

ACM/IEEE-CS 1991.
ACM/IEEE-CS Joint Curriculum Task Force, “Computing curricula 1991,” Comm.
ACM 34(6), pp. 68-84, June 1991.

Alford 1977,
M. W. Alford, “A requirements engineering methodology for real-time processing
requirements,” IEEE Trans. Softw. Eng. SE-3(1), pp. 60-68, Jan. 1977.

Alspaugh et al.
T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, D. L. Parnas, and J. E.
Shore, “Software requirements for the A-7E aircraft (Release 3),” NRL Report 9194,
Naval Research Laboratory, Washington, DC, (to appear).

Auernheimer and I{emmerer 1985.
B. Auernheimer and R. A. Kemmerer, “ASLAN user’s manual,” TRCS84-10, Dept. of
Computer Science, Univ. of Cal. Santa Barbara, Santa Barbara, CA, Mar. 1985.

Auernheimer and Kemmerer 1986.
B. Auernheimer and R. A. Kemmerer, “RT-ASLAN: a specification language for real-
time systems,” IEEE Trans. Softw. Eng. SE-12(9), pp. 879-889, Sep. 1986.

Balzer and Goldman 1979.
R. Balzer and N. Goldman, “Principles of good software specification and their implica-
tions for specification languages,” in Proc. IEEE Conf. on Specifications of Reliable
Software, IEEE Press, pp. 58-67, 1979. (Reprinted in Gehani and McGettrick,
Software Specification Techniques, pp. 25-39.)

Berg et al. 1982,
H. K. Berg, W. E. Boebert, W. R. Franta, and T. G. Moher, Formal Methods of Pro-
gram Verification and Specification, Prentice Hall, Englewood Cliffs, NJ, 1982.

12

A-16

NAVSWC TR 91-584

Berry et al. 1983.
G. Berry, S. Moisan, and J. P. Rigault, “ESTEREL: towards a synchronous and
semantically sound high level language for real-time applications,” in IEEE Real-Time
Systems Symp., IEEE Computer Society Press, 1983.

Bjorner and Jones 1982.
D. Bjorner and C. Jones, Formal Specification and Software Development, Prentice
Hall Intl., Englewood Cliffs, NJ, 1982.

Boehm 1984.
B. W. Boehm, “Verifying and validating software requirements and design
specifications,” IEEE Software 1(1), pp. 75-88, Jan. 1984. (Reprinted in Thayer and
Dorfman, System and Software Req. Engineering, pp. 471-484.)

Brooks 1987.
F. P. Brooks, Jr., “No silver bullet: essence and accidents of software engineering,”
IEEE Computer 20(4), pp. 10-19, Apr. 1987.

Bruns et al. 1986.
G. R. Bruns et al.,, “Design technology assessment: the Statecharts approach,” Tech.
Report MCC STP-107-86, Microelectronics and Computer Technology Corp., Austin,
TX, Mar. 1986.

Clarke et al. 1985.
E. M. Clarke, M. C. Browne, E. A. Emerson, and A. P. Sistla, “Using temporal logic
for automatic verification of finite state systems,” in Logics and Models of Concurrent
Systems, K. R. Apt, ed., Springer-Verlag, New York, NY, pp. 3-26, 1985.

Clarke and Grumberg 1987. .

E. M. Clarke and O. Grumberg, “Research on automatic verification of finite state con-
current systems,” in Annual Review of Computer Science, 1987.

Coleman et al. 1990.
G. L. Coleman et al.,, “Experience in modeling a concurrent software system using
STATEMATE,” in Proc. Intl. Conf. Comput. Syst. Softw. Eng. (COMPEURO °’90),
IEEE Computer Society Press, Los Alamitos, CA, pp. 104-108, 1990.

Davis 1988.
A. M. Davis, “A comparison of techniques for the specification of external system
behavior,” Comm. ACM 81(9), pp. 1098-1115, Sept. 1988.

Davis 1990.
A. M. Davis, “The analysis and specification of systems and software requirements,” in
System and Software Requirements Engineering, R. H. Thayer and M. Dorfman, ed.,
IEEE Computer Society Press, Washington, DC, pp. 119-144, 1990.

Dijkstra 1977.
E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ,
1977.

Dorfman and Thayer 1990a.
M. Dorfman and R. H. Thayer, System and Software Requirements Engineering, IEEE
Computer Society Press, Washington, DC, 1990.

Dorfman and Thayer 1990b.
M. Dorfman and R. H. Thayer, Standards, Guidelines, and Ezamples on System and

13

A-17

NAVSWC TR 91-384

Software Requirements Engineering, IEEE Computer Socicty Press, Washington, DC,
1990.

Faulk and Parnas 1938,
S. R. Faulk and D. L. Parnas, “On synchronization in hard real-time systems,” Conum.
ACM 31(3), pp. 274-287, March 1988.

Firth et al. 1987.
R. Firth, W. G. Wood, R. Pethia, L. Roberts, V. Mosley, and T. Dolce, “A
classification scheme for software development methods,” CMU/SEI-87-TR-41, Softw.
Eng. Inst., Pittsburgh, PA, Nov. 1987.

Franklin and Gabrielian 1989.
M. K. Franklin and A. Gabrielian, “A transformation method for verifying safety pro-
perties in real-time systems,” in Proc. 10th JEEE Real-Time Systems Symp., IEEE
Computer Society Press, Santa Monica, CA, pp. 112-123, Dec. 5-7, 1989.

Gabrielian and Franklin 1988.
A. Gabrielian and M. K. Franklin, “State-based specification of complex real-time sys-
tems,” in Proc. 9th IEEE Real-Time Systems Symp., IEEE Computer Society Press,
Huntsville, AL, pp. 2-11, 1988.

Gabrielian and Franklin 1991. »
A. Gabrielian and M. K. Franklin, “Multilevel specification of real-time systems,”
Comm. ACM 84(5), pp. 51-60, May 1991.

Gabrielian 1991,
A. Gabrielian, “HMS Machines: a unified framework for specification, verification and
reasoning for real-time systems,” in Foundations of Real-Time Computing: Formal
Specifications and Methods, A. M. van Tilborg and Gary M. Koob, ed., Kluwer, Bos-
ton, MA, pp. 139-166, 1991.

Gehani and McGettrick 1986.
N. Gehani and A. McGettrick, Software Specification Techniques, Addison-Wesley,
Reading, MA, 1986.

Ghezzi et al. 1987.
C. Ghezzi et al, “A general way to put time in Petri nets,” in Proc. 4th Inll. Workshop
on Softw. Design and Spec., Monterey, CA, Apr. 3-4, 1987.

Ghezzi and Kemmerer 1990.
C. Ghezzi and R. A. Kemmerer, “ASTRAL: an assertion language for specifying real-
time systems,” Tech. Report TRCS 90-25, Dept. of Computer Science, Univ. of Cal.
Santa Barbara, Santa Barbara, CA, Nov. 19, 1990. (to appear Proc. Third European
Softw. Eng. Conf., Milan, Italy, Oct. 1991).

Ghezzi and Mandrioli 1990.
C. Ghezzi, D. Mandrioli, and A. Morzenti, “TRIO: a logic language for executable
specifications of real-time systems,” J. of Systems and Softw., June 1990.

Gudmundsson et al. 1989.
O. Gudmundsson, D. Mosse, A. K. Agrawala, and S. Tripathi, “MARUTI: an environ-
ment for hard real-time applications,” UMIACS-TR-89-98, Univ. MD Inst. for
Advanced Computer Studies, College Park, MD, 1989.

14

A-18

NAVSWC TR 91-584

Gunter 1991.
C. Gunter, Formal Models of Concurrency, University of Pennsylvania, Presentation
given at the Naval Research Laboratory, May 31, 1991.

Harel 1987.
D. Harel, “Statecharts: a visual formalism for complex systems,” Science of Computer
Programming 8(3), pp. 231-274, June 1987.

Harel 1988.
D. Harel, “On Visual Formalisms,” Comm. ACM 31(5), pp. 514-530, May 1988.

Harel et al. 1990.
D. Harel et al,, “STATEMATE: a working environment for the development of com-
plex reactive systems,” IEEE Trans. Softw. Eng. 16(4), pp. 403-413, Apr. 1990.

Harel 1991.
D. Harel, “Biting the silver bullet: towards a brighter future for system development,”
Tech. Report CS90-08, Dept. of Applied Math. and Computer Science, Weizmann Inst.
of Science, Rehovot, Israel, Jan. 17, 1991. (to appear IEEE Computer).

Heitmeyer and Labaw 1991.
C. Heitmeyer and B. Labaw, “Requirements specification of hard real-time systems:
experience with a language and a verifier,” in Foundations of Real-Time Computing:
Formal Specifications and Methods, A. M. van Tilborg and G. M. Koob, ed., Kluwer,
Boston, MA, pp. 291-314, 1991.

Heitmeyer and McLean 1983.
C. L. Heitmeyer and J. D. McLean, “Abstract requirements specification: a new
approach and its application,” IEEE Trans. Softw. Eng. SE-9(5), pp. 580-589, Sep.
1983.

Heninger et al. 1978.

K. L. Heninger et al,, “Software requirements for the A-7E aircraft (Release 1),” NRL
Report 3876, Naval Research Laboratory, Washington, DC, Nov. 1978.

Heninger 1980.
K. L. Heninger, “Specifying software requirements for complex systems new techniques
and their application,” IEEE Trans. Softw. Eng. SE-6(1), pp. 2-13, Jan. 1980.

Hoare 1985.
C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs,
NJ, 1985.

Jaffe et al. 1991.
M. S. Jafle, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart, “Software require-
ments analysis for real-time process-control systems,” IEEE Trans. Softw. Eng. 17(3),
pp- 241-258, Mar. 1991.

Jahanian and Mok.
F. Jahanian and A. K. Mok, “Modechart: a specification language for real-time sys-
tems,” IEEE Trans. Softw. Eng., (to appear).

Jahanian and Mok 1986.
F. Jahanian and A. K. Mok, “Safety analysis of timing properties in real-time systems,”
IEEE Trans. Softw. Eng. SE-1£(9), pp. 890-904, Sep. 1986.

15

A-19

NAVSWC TR 91-584

Jahanian and Mok 1987.
F. Jahanian and A. K. Mok, “A graph-theoretic approach for timing analysis and its
implementation,” IEEE Trans. Computers C-86(8), Aug. 1987.

Jahanian and Stuart 1988.
F. Jahanian and D. A. Stuart, “A method for verilying properties of Modechart
specifications,” in Proc. 9th Real-Time Systems Symp., IEEE Computer Society Press,
Huntsville, AL, pp. 12-21, Dec. 6-8, 1988.

Jahanian et al. 1988.
F. Jahanian, R. S. Lee, and A. K. Mok, “Semantics of Modechart in Real-Time Logic,”
in Proc. 21st Hawaii Intl. Conf. on System Sciences, Jan. 1988.

Jahanian 1989.
F. Jahanian, “Verifying properties of systems with variable timing constraints,” in
Proc. 10th Real-Time Systems Symp., IEEE Computer Society Press, Santa Monica,
CA, pp. 319-328, Dec. 5-7, 1989.

Koymans et al. 1987.
R. Koymans, R. Kuiper, and E. Zijlstra, “Specifying message passing and real-time sys-
tems with real-time temporal logic,” in ESPRIT 87 Impact and Achtevement, North
Holland, Amsterdam, NETHERLANDS, 1987.

Lee and Nyberg 1988.
J. A. N. Lee and K. A. Nyberg, “Strategies for introducing formal methods into the
Ada life cycle,” SPC-TR-838-002, Software Productivity Consortium, Herndon, VA,
Jan. 1988.

Leite 1987.
J. Leite, ““A survey on requirements analysis,” Tech. Report RTP 071, Univ. of Cal.
Irvine, Irvine, CA, June 1987.

Leite 1988.
J. Leite, “Viewpoint resolution in requirements elicitation,” Ph.D. Dissertation, Univ.
of Cal. Irvine, Irvine, CA, 1988.

Levene and Mullery 1982.
A. A. Levene and G. P. Mullery, “An investigation of requirements specification
languages: theory and practice,” JEEE Computer 15(5), pp. 50-59, May 1982,

Liskov and Berzins 1979.
B. H. Liskov and V. Berzins, “An Appraisal of Program Specifications,” in Research
Directions in Software Technology, Peter Wegner, ed., MIT Press, Cambridge, MA,
pp. 276-301, 1979. (Reprinted in Gehani and McGettrick, Software Specification
Techniques, pp. 3-23)

Matelski and McKim 1989.
J. P. Matelski and J. C. McKim, “A continuous time, categorical approach to software
system definition,” Tech. Report, The Hartford Graduate Center, Hartford, Conn.,
Oct. 23, 1989.

Melhart et al. 1988.
B. E. Melhart, N. G. Leveson, and M. S. Jafle, “Analysis capabilities for requirements
in Statecharts,” Technical Report, Department of Information and Computer Science,
University of California Irvine, Irvine, CA, Sep. 1988.

16

A-20

NAVSWC TR 91-584

Milner 1989.
R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ,

1989.

Mok 1991.
A. K. Mok, “Towards mechanization of real-time system design,” in Foundations of
Real-Time Computing: Formal Spectfications and Methods, A. M. van Tilborg and G.
M. Koob, ed., Kluwer, Boston, MA, pp. 1-38, 1991.

Ostrofl 1989.
J. 3. Ostroff, Temporal Logic for Real-Time Systems, Research Studies Press Ltd. (dis-
tributed by John Wiley and Sons), England, 1989.

Ostrofl 1991.
J. S. Ostrofl, Survey of formal methods for the specification and design of real-time
systems, Dept. of Computer Science, York Umversity, North York, Ontario, Sept. 1991.
(To appear in IEEE Press book Tutorial on Spectfication of Time.)

Parnas 1979.
D. L. Parnas, “The role of program specifications,” in Research Directions in Software
Technology, Peter Wegner, ed., MIT Press, Cambridge, MA, pp. 364-370, 1979.

Parnas et al. 1988.
D. L. Parnas, A. J. van Schouwen, and S. P. Kwan, “Evaluation standards for safety
critical software,” Tech. Report TR88-220, Department of Computer Science, Queen’s
University, Kingston, Ontario, May 1988.

Parnas and Wang 1989.
D. L. Parnas and Y. Wang, “The trace assertion method of module interface
specification,” Tech. Report 89-261, Dept. of Comput. and Inform. Science, Queen’s
University, Kingston, Ontario, Oct. 1989.

Pedersen and Klein 1988.
J. Pedersen and M. Klein, *“Using the Vienna Development Method (VDM) to formalize
a communication protocol,” CMU/SEI-88-TR-26, Softw. Eng. Inst., Pittsburgh, PA,
Nov. 1988.

Place et al. 1990.
P. Place, W. Wood, and M. Tudball, “Survey of formal specification techniques for
reactive systems,” Tech. Report CMU/SEI-90-TR-5, Software Engineering Institute,
Pittsburgh, PA, May 1990.

Pnueli 1985.
A. Pnueli, “Applications of temporal logic to the specification and verification of reac-
tive systems: a survey of current trends,” in Current Trends in Concurrency,
Springer-Verlag, New York, NY, pp. 510-584, 1985.

Pnueli and Harel 1988.
A. Pnueli and D. Harel, “Applications of temporal logic to the specification of real-time
systems,” in Formal Techniques in Real-Time and Fault Tolerant Systems, M. Joseph,
ed., Springer-Verlag, New York, NY, 1988.

Ramamoorthy and So 1978.
C. V. Ramamoorthy and H. H. So, “Software requirements and specifications: status

and perspectives,” in Tulorial: Software Methodology, C. V. Ramamoorthy and R. T.
Yeh, ed., IEEE Computer Society Press, Washington, DC, pp. 43-164, 1978.

3

17

A-21

NAVSWC TR 91-584

Reisig 1985.
W. Reisig, Petri Nets, An Introduction, Springer-Verlag, New Y. ork, NY, 1985.

Roman 1985.
G. Roman, “A Taxonomy of Current Issues in Requirements Engineering,” IEEE Com-
puter 18(4), pp. 14-22, Apr. 1985.

Rose et al. 1991.
A. Rose, C. Heitmeyer, and B. Labaw, “Languages for requirements specification:
experience with a tabular approach,” in Proc. 1991 Systems Design Synthesis Technol-
ogy Workshop, Naval Surface Warfare Center, Silver Spring, MD, pp. 107-113, Sep.
10-13, 1991.

Sannella 1958.
D. Sannella, “A survey of formal software development methods,” ECS-LIFCS-88-56,
Edinburgh Univ., Edinburgh, SCOTLAND, July 1988.

Shooman 1983.
M. L. Shooman, Software Engineering: Design, Reliability, and Management,
McGraw-Hill, New York, NY, 1983.

Smith and Gerhart 1988.
S. L. Smith and S. L. Gerhart, “STATEMATE and cruise control: a case study,” in
Proc. COMPAC 88, 12th Intl. IEEE Comput. Softw. and Application Conf., IEEE
Press, New York, NY, pp. 49-56, 1988.

Stankovic and Ramamritham 1988.
J. A. Stankovic and I{. Ramamritham, “Chapter 1: Introduction,” in Tuforial: Hard
Real-Time Systems, J. A. Stankovic and K. Ramamritham, ed., IEEE Computer
Society Press, Washington, DC, pp. 1-11, 1988.

Stuart 1990.
D. A. Stuart, “Implementing a verifier for real-time systems,” 'n Proc. 11th Real-Time
Systems Symp., IEEE Computer Society Press, Lake Buena Vista, FL, pp. 62-71, Dec.
5-7, 1990.

Thayer and Thayer 1990.
R. H. Thayer and M. C. Thayer, “Glossary,” in System and Software Requirements
Engineering, R. H. Thayer and M. Dorfman, ed., IEEE Computer Society Press, Wash-
ington, DC, pp. 605-676, 1990.

Turski and Maibaum 1987.
W. M. Turski and T. S. E. Maibaum, The Specification of Computer Programs,
Addison-Wesley, Reading, MA, 1987.

van Schouwen 1990.
A. J. van Schouwen, “The A-7 requirements model: re-examination for real-time sys-
tems and an application to monitoring systems,” Tech. Report 90-276, Queen’s Univ.,
Kingston, Ontario, May 1990.

White 1987.
S. White, “A pragmatic formal method for computer system definition,” Ph.D. Disser-
tation, Polytechnic Inst. of New York, New York, NY, June 1987.

18

A-22

NAVSWC TR 91-584

Wing 1990.
J. M. Wing, “A specifier’s introduction to formal methods,” IEEE Computer 23(9), pp.

8-24, Sep. 1990.
Wood and Wood 1989.

D. P. Wood and W. G. Wood, “Comparative evaluations of four specification methods
for real-time systems,” Tech. Report CMU/SEI-89-TR-36, Software Engineering Insti-
tute, Pittsburgh, PA, Dec. 1989.

Yeh et al. 1984.
R. T. Yeh, P. Zave, A. P. Conn, and G. E. Cole, Jr., “Software Requirements: New
Directions and Perspectives,” in Handbook of Software Engineering, C. R. Vick and C.
V. Ramamoorthy, ed., Van Nostrand Reinhold, New York, NY, pp. 519-543, 1984.

Zave and Yeh 1981.
P. Zave and R. T. Yeh, “Executable requirements for embedded systems,” Proc. Fifth

Intl. Conf. Softw. Eng., pp. 295-304, March 1981.

Zave 1990.
P. Zave, “A comparison of the major approaches to software specification and design,”
in System and Software Requirements Engineering, R. H. Thayer and M. Dorfman, ed.,
IEEE Computer Society Press, Washington, DC, pp. 197-199, 1990.

Zave 1991.
P. Zave, “An insider’s evaluation of PAISley,” IEEE Trans. Softw. Engin. 17(3), pp.
212-225, Mar. 1991.

19

A-23

NAVSWC TR 91-584

acceptable

abstraction

ambiguity

analysis

completeness

conceptual construct

conciseness

consistency

constraint

GLOSSARY

Satisfying the customer’s “real” requirements for a system. The
customer’s requirements may not be the same as those actually
in the requirements specification, since the requirements
specification may not correctly capture the “real” requircments.
Synonym for valid.

The process and product of choosing only certain attributes
from many that exist of an object or concept. The chosen attri-
butes are important with respect to some goal.

Lack of precision (fuzziness), which allows multiple interpreta-
tions of a given aspect of a spccification, at least one of which
would lead to an unacceptable implementation.

1. Process of testing or verilying that a system has certain pro-
perties, for example, those described in its requirements
specification. 2. Process of determining if the requirements in
the specification are consistent with the ‘‘real’” customer require-
ments (i.e., validation).

Quality that all relevant information for developing an accept-
able implementation has been included in the specifications.
With incomplete specifications it is possible to develop at least
one unacceptable implementation.

The essential properties of a specified system. This represents
what is needed to specily the valid implementations of the
system—no more (overspecification) and no less
(underspecification).

Compact expression of a concept.

1. (Internal consistency) Quality of a requirements specification
such that there are no contradictions or conflicts among any of
its parts. 2. (External consistency) Quality of a requirements
specification that there are no contradictions or conflicts
between the specification and another product of the develop-
ment process.

Any decision that limits the set of valid implementations of a
system. These may be hardware constraints {e.g., computer X
must be used), software constraints (e.g., database package D
must be used), or non-functional properties such as performance

20

A-24

NAVSWC TR 91-584

correctness

customer

distributed system

environment

formal specification

formal verification

hard real-time system

informal specification

and reliability.

1. Quality of having consistency between the requirements
specification and any of the other development products (for
example, design specification or the iinplementation). 2. Quality
of having consistency between the customer’s “real” require-
ments for a system and the final system.

The person(s) who contracts and pays for the development of a
system. The customer usually {but not necessarily) defines the
system requirements [ANSI/IEEE Std 830-1984).

A system operating with multiple processors, and one or more of
those processors shares no common memory with the others.
This makes message passing for communication a requirement.

1. (External) environment: The external conditions and inter-
faces under which a system operates. 2. (Software engineering)
environment (SEE). The collection of computers, support
software, procedures and facilities that make the tools and
methodologies used by software developers easily available
{Thayer and Thayer 1990].

A formal specification is one that has an eflective procedure to
tell whether a specification has a particular property of interest
|Gunter 1991]. This type of specification tends to be mathemat-
ically oriented, and it requires more knowledge and experience
than the informal type to understand. Informal explanatory
comments may elucidate formal specifications.

Verification in which the proof could be recognized mechanically
to be a proof, regardless of whether the proof was developed by
hand or (partially) automatically generated. (Also see
verification.)

System in which deadlines for critical tasks (e.g., start or com-
pletion times) must be met to prevent some catastrophe, or to
reduce the probability that a catastrophe would result.

A specification that is written largely using natural language
rather than formal mathematical notations. The syntax and
notation may be largely ad hoc, rather than consistent in the
manner of formal specifications. An informal specification may
contain free-form commentary as part of the specification itself
(as contrasted to informal explanatory comments used with for-
mal specifications). An informal specification is amenable to

21

A-25

NAVSWC TR 91-584

informal verification

maintenance

model

nondeterminisim

notation

overspecify

parallel system

precise

real-time system

very limited machine manipulation.

Verification in which the proof cannot be recognized mechani-
cally to be a proof. This type of verification tends to be ad hoc
and to be expressed in natural language, or informal notations
(e.g., ones invented ad hoc, or mixtures of various notations).
(Also see verification.)

The process of fixing errors encountered in a system once it is in
operational use, or changing it lo satis{ly new requirements.

An abstraction that includes all essential properties of the pro-
cess or object being modeled, but does not include any irrelevant
properties. Relevance is determined by how the model will be
used. A specification is a model of the system to be developed.

Property that an observer cannot tell which of several behaviors
should be chosen, since more than one is acceptable. It can be a
desirable characteristic in a specification. In addition, however,
repeatability may also be desired in some subset of these cases,
so that once a particular behavior is chosen later in the develop-
ment process, it may be a requirement to use that one alone
wherever this nondeterministic requirement appears [Parnas and
Wang 1989).

The means of expressing the structure (i.e., syntax) of a given
language unit (e.g., sentences in English, or propositions in logic)
via the composition of symbols. The notation for expressing
syntax is not the same as the syntax.

1. To put extra information into the specification of a software sys-
tem to the extent that it excludes at least one acceptable implemen-
tation (due to the extra information being inconsistent, being design
information not appropriate to describing the externally visible
behavior, ete.). 2. To put undesirably redundant information into the
specification of a software system [Place et al. 1990)].

A system with multiple processors that communicate via shared
memory.

Well-defined. Precision is a major requirement for automated pro-
cessing.

Any system that must operate under some form of timing con-
straints. (See soft and hard real-time systems).

22

A-26

NAVSWC TR 91-584

requirements specification

semantics

simulation

soft real-time system

specification

specification language

syntax

testing

traceability

underspecify

Product that defines the acceptable implementations for a software
system subject to constraints (which may include performance,
operating, interface, and ecconomic constraints) [Heitmeyer and
McLean 1983, Roman 1985). These constraints should be minimal so
that no useful implementations are precluded {Zave and Yeh 1981].

The meaning of a construct as opposed to its syntax.

Process of testing important system properties by executing a model
of the proposed system. The model may have artificial (simulated)
components for any of the computer hardware, environment, or
software functionality {Shooman 1983].

A real-time system that has stochastic (rather than deterministic)
timing constraints.

Description of the essential properties of an object (system, software,
program, etc.). Specifications may be informal or formal.

Any method providing the basic concepts and relations for expressing
specifications. Specification languages include formal languages as
well as less formal constructs.

The structure of a construct as implied by the rules for composing it
from subcomponents (as opposed to its semantics). The syntax rules
may manifest themselves through different notations.

Any process (c.g., regression testing) for establishing confidence in
the truth of some property of a specification, design, implementation,
ete. by checking or executing some subset of the total possible out-
comes. In contrast to verification, testing can never absolutely verify
(definition 1) some property (except exhaustive testing of all possibili-
ties).

Identification and recording of the links between requirements and
the manifestation of those requirements in other products of the
software development process (informal customer requirements,
design, implementation, test plans, etc.)

To specify without enough detail (i.e., incompletely, ambiguously,
etc.) such that the specification admits at least one unacceptable
implementation [Place et al. 1990).

23

A-27

NAVSWC TR 91~584

user

valid

validation

verification

Person(s) who interacts directly with a system. Users and customers
are not necessarily the same people [ANSI/IEEE Std 830-1984).

Synonym for acceptable.

Process of determining that a software system satisfies the
customer’s needs. “Am I building the right product [Boehm 1984]?”

1. Process of proving that a specification satislies some property (for
all situations). 2. Process of determining if products of one phase of
software development satisfy requirements of previous phase. “Am]
building the product right {Boehm 1984)?”

A-28

Defense Technical
Information Center

Cameron Station

Alexandria, VA 22304-6145

Library of Congress

NAVSWC TR 91-584

DISTRIBUTION

Copies

Advanced Technology &

Research Corp.
Attn:

12

Adrien J. Meskin
George Stathopoulos
14900 Sweitzer Lane

Laurel, MD 20707

Attn: Gift and Exchange Division &

Washington, DC 20540

Naval Air Development Center
Attn: Code 7033
(Dr. C. Schmiedekamp)
(P. Zombori)
Warminster, PA 18974-5000

Office of Naval Technology
Attn: Code 227

(Elizabeth Wald)
800 N. Quincy Street
Arlington, VA 22217-5000

General Electric—Aerospace

Attn:
Mail Stop 127-333

199 Borton Landing Road
1 Moorestown, NJ 08057-3075
1

Steven Sietz

Bell Laboratories
Attn:
Room 3B-326

101 Crawfords Corner Road

Suzanne Edwards

1 Holmdel, NJ 07733

Internal Distribution:

Center for Naval Analyses D4
4401 Fort Avenue E231
P.O. Box 16268 E232
Alexandria, VA 22302-0268 2 . E342 (GIDEP)
FO1
Naval Research Laboratory F31 (W. Laposata)
Attn: Code 5534 GO07 (F. Moore)
(Connie Helitmeyer) 1 G42 (T. Dumoulin)
(Bruce Labaw) 1 G42 (A. Farsaie)
Washington, DC 20375 G42 (J. Moscar)
G42 (E. Ogata)
Naval Postgraduate School G42 (J. Youngblood)
Attn: Code AS/RA G70 (D. Dorsey)
(Balasubramaniam Ramesh) 1 G72 {H. Parks)
Administrative Sciences Department H32 (J. Miller)
Monterey, CA 93943 K02
K10 (J. Sloop)
United States Army K12 (J. O0'Toole)
CECOM, C2NVEO K13 (D. Parks)
Attn: AMSEL/RD/VNT/TST K14 (D. Clark)
(H. Nguyen) 1 K4l (L. Gross)
Fort Belvoir, VA 22060 K51 (J. Smith)
K52 (G. Brooks)
K52 (W. Farr)

(1)

b b b ek pb b b b b b et e e et e e e e O N

NAVSWC TR 91-584

DISTRIBUTION (Cont.)

E

K52 (H. Huber)
N15 (M. Wilson)
N33 (J. Sizemore)
N35 (M. Masters)
N35 (F. Riedl)
N35 (M. Zarin)
R&44 (E. Cohen)
R44 (H. Szu)

R44 (J. Zien)

U

U02

V042

Ul0

020

U23 (W. Dence)
U23 (R. Fitzgerald)
U23 (J. Hormer)
V23 (M. Richards)
U23 (P. Winters)
U25

U25 (D. Bergstein)
U25 (E. Hein)

U30

U33

U302 (P. Hwang) 2
U33 (D. Choi)

U33 (M. Edwards)
U33 (K. Murphy)
V33 (N. Hoang)
U33 (S. Howell)
U33 (M. Jenkins)
U33 (T. Moore)
U33 (C. Nguyen)
U33 (T. Park)
U33 (H. Roth)
U33 (M. Trinh)
U33 (P. Wallenberger)
U40

g

o
HEERE R RO OMO N e e b e ped e b o pd 4 e b b b b b b

(2)

-

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Washington, DC 20503.

Public reporting burden 101 this collection ot i ion is esti dto ge 1 hour per response, induding the time for reviewing instrumom searching existing data
sources, ga g and g the data needed, and leting and reviewing the collection of ir sSend g g this burd i or any other
aspect of this coliection of mlom\a(ion including suggesti for redudi g this b den, to hi d ters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Ofice of Mamgemen(and Budget, Paperwork Reduction Project (0704-0188),

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
27 September 1991

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

A Methodology for Systems Requirements Specification and
Traceability for Large Real-time Complex Systems

6. AUTHOR(S)

Michael Edwards and Steven L. Howell

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Surface Warfare Center (Code U33)
10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAVSWC TR 91-584

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document describes the beginnings of a methodology for requirements specification and
traceability of real-time, large-scale, complex computer-intensive systems. The method is aimed at better
understanding the top-level system requirements and how they relate to the system under design. The
methodology will cover the requirements aspects of system development over the entire system
development life cycle, beginning with the specification of the requirements and tracing those
requirements to the design and final implementation.

14. SUBJECT TERMS

Requirements Specification; Traceability; Natural Interfaces;
Formal Requirements; Formal Methods; Complex Linking;
Large, Complex Systems; Requirements Engineering

15. NUMBER OF PAGES
62

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION

OF THIS PAGE
UNCLASSIFIED

19. SECURITV CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

SAR

UNCLASSIFIED

Standard Form 298 (Hev. 2-80)
Prescribed by ANSI Std. 23918
298102

