
AD-A254 601
RL-TR-92-1 18.l, WIEl Ill)
Final Technical Report
May 1992

VERIFICATION AND
VALIDATION OF Al SOFTWARE

Advanced Decision Systems

R.A. Riemenschneider, Theodore A. Unden, Karen Morgan,
William Vrotney

DTIC
ELECTE

S AUG31 1992 DA

APPROVED FOR PUBLIC RELEASE, DISThIW&rUNLtaV /D.

Si,5 %r'1 9 2 -2 4 0 0 9

92 8 2 8 1 1 1 \\IIlI\\l\111U\\11\1hIU\1 ,, p
Rome Laboratory

Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-92-118 has been reviewed and is approved for publication.

APPROVED:

JENNIFER D. SKIDMORE, ILT
Project Engineer

FOR THE COMMANDER

JOHN A. GRANIERO
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(C3CA) Griffiss AFB NY 13441-5700. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE o.7dPAGE OMB No. 0704-01 88

Pa.C ~WON = 00,f t o kfmytm ab .va 206wa I has PC mmm" noo~ VuW v. tm .wi, Imr J
iwrg u • n V tU - - WVnc4 W Id t11 -nk d= M".f = 0 wIgrun bmimn w uw Vw WPm d
-nd i m tmo .tuch S fftft o Vft bad% m Wok o Mmamus S hm• fwefý k Mbnwh, Op uat t F-21S.000 a ¶S

00ft HavoW. SLe.* 12CK A*Vo% VA 2==wdt Vum O~a d MauguqW vdOb.OKP8wwuý Rua-oki P M70.0U0. W***imw DC UA

1. AGENCY USE ONLY &.vM Bnwk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1992 Final Sep 89 - Sep 91
4. TITLE AND SUBTITLE 5 FUNDING NUMBERS

VERIFICATION AND VALIDATION OF AI SOFTWARE C - F30602-89-C-0201
PE - 65502F

AUTHOR() PR - 3005

R. A. Riemenschneider, Theodore A. Linden, Karen Morgan, TA - RB

William Vrotney WJ - 71

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION

Advanced Decision Systems REPORTNUMBER

1500 Plymouth Street
Mountain View CA 94043-1230 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Rome Laboratory (C3CA)
Griffiss AFB NY 13441-5700 RL-TR-92-118

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: iLt Jennifer D. Skidmore/C3CA/(315) 330-4031

12a. DISTRIBUTIONJAVALABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT •CMW,. moam

This document provides practical advice on how to improve V&V on Al projects. The
question we attempt to answer is: How can I apply my knowledge of V&V practice to
Al development, which seems very different from the examples from textbooks, and
which cannot be easily mapped into the lifecycle models of the DOD standards?

Part I lays a firm foundation by defining terms such as verification, validation, and
artificial intelligence. Also, a new representation of system lifecycles is presented
which we believe you will find useful in analyzing your organization's Al development
efforts.

In Part II the focus shifts to providing advice, with section addressed to project
leaders, system specifiers's, designers, programmers, and documenters. Each role
contributes in a different way to the overall V&V process, so we present a set of
guidelines specific to each role.

Part III is a collection of three appendices: (1) A user's manual for a software tool,
ASP, developed under this contract which supports the V&V process by allowing pro-
grammers to better integrate formal testing with code development; (2) A glossary of
V&V terms; and (3) A guide to commercially available CASE tools.

14. SUBJECT TERMS II NUMBER OF PAGS

Artificial Intelligence, Software Verification, Validation, V&V 1/.6

Testing, Debugging, Software Tools It PRIC CODE

17. SECURITY CLASSIFICATION 18 SECURITY CLASSFICATIoN 1. aSECLUrY CLAsSF1CATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 754001-2§D.•M Steam Form2 ,w

2W1 02

CONTENTS

Introduction

V&V AND AI 2

"2. W hat V & V Is :3

3. W hat A I Is . 6

3. L AI Programming Techniques 6

3. 1. 1 Data-driven Programming 6

3.1.2 Discrimination Nets

3.1.3 Meta-level Control Structures

3.1.4 Deductive Information Retrieval 7

:1.1.5 Production System s

:3.1.6 Frame Databases

3.1.7 Backtracking

:1.2 Al Programming Tools)

3.2.1 AI languages)

:3.2.2 Higher level tools 12

3.3 A Categorization of Knowledge-Based System Architectures 12

:3.4 Common Characteristics of Typical Al Problems .1.4....

.).5 Common Characteristics of the AI Software Lifecycle .1.. 6

1. Development Models and Methods 17

1.1 Software Life Cycle Models L7

1.2 The Four Dimensional Software Development Model

4.3 Evolving Software through the Four Dimensions21

1. 1 Rapid Prototyping and the Spiral Development Mcdel . . . 2:

4.5 Formal Specifications as Software Development Waypoints 25

1.6 V&V as Mappings between Software Products 26

1.7 Work Remaining on the Meta-level Development Model . . 29)

[.,S Conclusions about the Meta-level Software Development Model 3;0

II HOW TO SUPPORT V&V 31

I. For Technical Leaders: Planning to Support V&V 32

5.1 What Level of V&V is Appropriate? 32

5.2 Project Categorization: An Example :12

6. For System Specifiers: What and How to Specify 36

6.1 The Role of Requirements Analysis in Al Development . :16

6.2 The Role of System Specification in Al Development 38:

T. For Designers: Designing Your Software to Support V&V . . . I I

7.1 Introduction 11

7.2 W hat is Sim plicity? . 14

7.1 Measuring Simplicity I(-6

7. 1 Formal vs Informal Designs 4S

S. For Programmers: Choosing Programming Techniques 41)

1.1 Data-Driven Programming 11)

S.2 Discrim ination N ets

S.3 Meta-Level Control Structures)2

8.4 Deductive Information Retrieval

. Production System s 1

8.6 Frame Databases 7

S.7 Backtracking)

9). For Documenters: Documenting Your Efforts 7

10. Notes on Testing I)

B ib liography . (,2

III APPENDICES 65

A. ASP Manual h

.k.i Introduction ii

.\.I . Motivation

.\.k.2 ASP as a Software Tool

A.1.3 A Software Planning Methodology 6..(

.\.1.4 U sing A SP 7oi

.\.1.. Learning by Example 7I

.\.2 Find W ord Exam ple -

.\.2.1 Writing the Find Word program -2

.\.2.2 Find W ord Code I

.\.2.3 Find W ord Trials -,

.\.2.4 Find W ord Verification T

.\.2.5 Find Word Software Plan

.\.2.(j U sing the ASP tool

A.3 Complete Semantics of the Software Plan

.\.3.1 Software Plan Constants ',

.\.3.2 Plan Scoped Identifiers

.\.3.3 Software Plan Arguments

.\.3.4 Software Plan :globals qI

.-k.3.3 Software Plan :specifications '1

A.3.6 Software Plan :implementations 2

.\.3.7 Software Plan :executables-

A.3.8 Software Plan :verification-point.s

.k.3.9 Software Plan :verifications H

A.N .10 Software Plan :sub-validations ')

.\.3.II Software Plan :validations 'j

.4 More Find Word Examples 10I

.V4.I An Example Using the :report and :log Actions . 10

A.4.2 An Example Using the :engage Action t.. I

.-\.3 Using ASP with Specification Languages ,I

A..5.1 The Buses Example 10

.\.,5.2 The Buses Implementation1015

.\.5.3 Buses Executable Specifications 1 l0

.\..5.4 Buses Constraint Fault I. 101

iiM

A.5.5 Buses Partial Executable Specifications 109

A.5.6 Buses Software Plan L09

A.6 Software Plan Complete Syntax I H

B. Definitions - Terms and Abbreviations 116

B.I General Acronyms 116i

B.2 Definitions 120

B.3 Document Definitions 128

(. A Guide to CASE Tools:3I

1. Introduction

ThI e goalI of this document is to prov Ide practical advice on I ow% to imiproe V,-\ on. Al
p)roject~s. Wh~ile there is some discussion of the slate of the art (it V&V research-and
some attempt to advance the state of the art-the empha~sis Is on guidelines and' tools
thiat. can provide imimediate help in present day development elrorts. \We asslinlie Ihlat
the readler is familiar with standard V&V practice, as reflected in textbooks (~. 9

45)) and DoD applicable standards, such ats 2167A arid 2168. Thle quiestion we at tempt

t~o answer is: How can I apply my know'ledge of VF V p~ractice to .4 / de u Ioptite iii

which -,ttin.5 very different fromn the sorts of exatrples t'Ii.citssed tit tfrtbonk.' and awhich
calnnot be ra..illy mapped into the lifecycle inodels of thr DoD stanzdards' ?,

lit Part 1. the emphasis is on layving a hirm foundation. 1'-Tnrs that p~lay a con-
raif I-rOle IIn -;ubsequent (liscussion-inchluding -verificat ion. -validatio. anld .\ I ifi-

Cial lIntelligence'-are defined. to reduce the chances of mismiiderstandiiig our idvice
Also. a new representation of system lifecvcles is presented, which we bl~eieve You will
find useful in analyzing your organ izat ion's Al development efforts.

[in Part 11. the focus shifts to providing advice. The part consists of five -;f('1I Ios.
one addressed to project technical leaders. one to system speci fiers. one to ~vsteni
designers, one to programmers. and one to documenters. Each role rontrihiires tin a
uinique way to the overall V&V process. and so we present a set of guidlelines specific
to e'ach role.

Part IlI consists of a collection of three appendices. The first is the 1',er*. Nlaniial
tar a .,oftware tool. ASP. we have developed to support the \X V process by hoi2
programmuers to better integrate formal testing with code development. Ouiz hope is
that the tool increases the value of formal testing so nitich that Lprograinimers, \vil -ýee

it as a help rather than a burden. The second appendix is a. --lossa~ry of \.Y\ terms~.
The final appendix is a guide to commercially available CA-SE tools.

Accesion For
S NTIS CRA.&I

DTIC T'^10
UWxwuoo :,ed -

By

G11-.

Part I

V&V AND Al

2. What V&V Is

\.c'Is short for 'verifivation and validation.*' The ob~jectilve of tHis chapt~er is lo

gild ran tee that we have a como)I m~~li idersta~nding ofjill what the woudI i ctii
alnid -validation.- mean as theY are used in the report. "Verihicarioni ill pail icitlar is

used Iin a niumber of (lifferc't.t \vavs bY software dIevelop)ers. (Some deb a tes ab)out tIle

ut ility of verificationi Iin AI software development could he scuei 1eI im plvI v Ik-liavill-g
the participants explain what they, ieaut by "verificarion".)

Verification and vahidatioii are complementary software developmteni. activit les. ai
co'tilutes to softtware quiality. Vi'rification is the process Of assuring- linternial conl-

sis Inc in ftwa~re developm)nent. while ral dation is ithe process of assilill tin hat the
so I wa re beling dleveloped ~ ýttisfies Its reqjiliemeilts. A popuilar way ol' tavi his

1 e rfit'0tion fis l eb /t the ~oftiv'are i's built right: rrzlidation mliv if Iiti t
the rlyht ..;a-t trare /-.ý built,

One important form of verification is assuring that the VariouIs prohilcts geinerated
during soitwvare development p~rocess are consistent. Let uIS call this m/(r-product
rr itfication. In \'ir ilalIV ever.,, effort to develop software for itse by someone ot her
than the atitt hor. there are multiple products of the development.. At a mininimi.11l.

there Is tite software and some description of how to use 'ft. In this cas~e. latter-product
verificationl amounts to making suire that the description correctI lvand comipletelyý
(lescrilbes the interface to the delivered software. But typically. especially Inl lartze
development. efforts. there are many more products of software developmenit. hin
add~itionl to the ~oft vare itself, these may include

* a. '-tatement of the requirements that the software must satisfy.

* a sýpecification of properties of the software svstem-its functionality. real-ritiue
behavior. and so forth.

* a dJesign document. or even mulltiple design documents at varyi ng levels of (let a il
and employinog a variety of design formallsiss.

* source code for the software.

* a description of test procedures and test cases, at bo0th the system and siilbýsvtenl
level.

* add~itionlal -iottware t hat Supports testing.

* a itser* S iflailial. and~

9 a niaiiitaiier's manimal

Thus, inter-product verification often requires making sure that a system with tlie
specified properties will satisfy the statedl requirements, that the design correctly
elaborates the specification. that the source code correctly implements the design.
and so OIn.

A second form of verification is In/ra-product ri.rification, assuring that each prodluct
of software development is internally cojisisteii.. A canonical example from A I is val-
idation of a knowledge base. If a knowledge baise consists of logical fornmulas that are
intended to be true of the application domtain. that knowledge base should be logi-
cally consistent. for a logically inconsistent set of formulas must contain at least one
formula, that is false. Moreover, since any" ftormula whatsoever can be derived from all
inconsistent set of formulas by correct reasoning, the usual justification for accept-
ing the conclusions derived frotm the knowledge l)ase-that the inference mnechanilttn
reasons correctlv--ha.s been uindlermined. .\ system with an inconsistent knowledge
base is generally useless. so knowledge Iase verification includes assuring (:colsi4tenicv.

It may also include assuring that the knowledge base has other properties-say., that
none of the formulas can be derived from others-judged to be desirable. The ,o(isis-
tencv criterion can be applied to most lifecvcle products: a requirements statement.
should be consistent in the sense that there is tno property that it both requires and
forbids the system to have: a systetn specification should be consistent in the sense
that there is no property" that it guarantees the system will both have and lack: and
so on. .Just as in the case of the knowledge base. there are usually other acceptability
criteria for the products that must be assured as well. A typical example is assur-
ing that source code meets applicable coding standards. The dividing line between
intra-product verification an t inter-product verification is somewhat arbitrary--if the
design is documented as a series of successive refinements, checking that a purported
refinement is in fact a refinement is intra-product verification if the entire series is
thought of as a single product. but is inter-product verification if each design in the
series is thought of as a product-but useful in practice. especially on larger projects
where different products are produced by different groups of developers.

A common error in discussions of VkV is to confuse verification against a statement
of reqcurements and validation against the true requirements. Generally, software is
written to solve some problem. and the people who create the software that is intendled
to solve the problem are not the people who have the problem. To be successful. the
-ýoftware developers must solve the problemti. lbit they must also satisfy the terms of
the contract, formal or informal, with their clients. If the clients have a good tinder-
standing of what they want in a solution, the contract might contain a statement of
requirements. This is the sort of case where it is particularly tempting to say that
validation consists of making sure the ,software satisfies the stated requirements. But
it is still important to ldistinguish between the stated requirements and the actual re-
quirements. because satisfying the stated r'eqUirements may not be enough guarantee
that the problem will be solved. Ideally. validation consists of using the system I,)
actually solve the problem. or at least representative instances of a general problem.
If this is impossible. weaker forms of validation, such as running the system in sone

sort of testbed environment on simulated data. may have to suffice. When tlit re-

quirementsS tatement is a~n I nput to the development process rather than a product ,t'

thle development process. checking that the statedl requirements are satisfied cainioi

Ike considered to be verificat iofl. It call he considered validation, hut--here IS t 1w

inain poInt!-it is a ver-Y weak form of validation. A svsteni cannot~ be a',0I validated

sIimpky onl the basis of ,/at((/ requirements. beca.use discovering and correctlyv statilnu

ýat a. low enouigh level of (ete all that satisfaction call be effectivelY determinied) all thle

I-edlUIremients for Solving a pr'oblemn is tremendously dlifficu~lt. For the problems t\y[)i-

Call1v add~ressedl bY Al. fprodiicing a. -'completely adequate- statement oh re(1iiretilefiit

is impossihble. from a. practical point-of-view.

Validation of a systemn can only he achieved by *'trving it. out.*' Other dlevelopment

products c-an be validated to a limited extent. by trying them out -for exaripicl m

e'.\ecut able fin ict~ional speci ncation, canl be validated by itsing it as a p)rol(t or vp. il' i

a u ser's ma nual caii be valIid a ted bv liavi ng a pro0spective User attempl~t I o 1.11t Iwh

ss e 1w Iee in to he t a ua-or IndIrectly in conjunction with verification. lit

fact. a common method of v-alidating a. reqluirements Statement is to develop -;oftware

that ha~s been verified to (at least partially') implement it. and then validating dthe

prot~otvype through uise. Uhiis. an attemipt to validate the software syste m by reference

to thlose- stated r*e(qUIPleniets has the matter reversed. Once the sy-stem is sufficient Iv

complete that direct validation though use is possible. the requirements statemneit

should play no further role *in system validation, because any' conflict between h le

-.tated tequtireinents and the systemn should be arbitrated by direct validation agaiui-r

lie trute requirements. since, in most cases. the stated requirements are as likely to

be wronig as the software. The bottom line is: If the system solves the problemi'.

;t doesn~t mnatter that the requirements statement was wrong. (Of course this d~oe-

niot mevan tha~t the requiremients statement need not be corrected. The req(UirenlIteuI I S

-dtatemnent plays anl important role during system tnaimrtenauce. since tt provides tiild-

artire OH What can and cannot b~e changed. It should always represent the best cm-rieui

Iiinlerstandhing of the true requirements.) So, while the systemr mlay derive 'gih

ranlt indirect validlation duringý development by virtue of its ver.ified satisfactilonl of

the pailtially validated requirements statement. the fundamental sys;temi validar iOu

aict iVirv-direct validation of the system through use-prov ides futrt her Iniri~lect va Ii-

flation of the stated requirements. That is. once the systemn is riinning, rite ~vstfeil
Ii'e(I to validate the requirements statement rather tharu the revers;e.

3. What AI Is

-AI" is short for -'Artificial Intelligence." So far, so good. Bul, judging from tlie
lit.•rature. few people have ever agreed on a. definition of 'Artificial Intelligence." For
our purposes. it is most convenient to adopt a version of the position that Al is what
Al people do. Since our ccncern is with software systems, this amounts to identivyiung
Al with a type of program, namely, those which use the programming technique.s
used in paradigmatic Al programs, embedded in an architecth,-, chw, acterlstic of
paradigmatic Al programs.

This position proves convenient because the only features of a progranm that much
influtence the choice of V&V methods is the collection of programming techniques
,r•fploved and the architecture. Iarnv other factors are relevant to t lie choice-ranging
from the type of problem addressed. through the lifecycle model used Io guide the
developmnent, to contractuai obligations-but these ate external io the program. It
turns out that these other factors are. effecLuvely. less relevant to the choice if we
restrict our atwention to Al software, since most Al systems address problems that
are similar in the relevant respects, most AI development efforts use lifecycle models
that are similar in relevant respects, and so on. So in this Chapter. we will enumerate
some of the programming techniques that make a system AL. categorize some Al
architectures. and then look at the common factors in Al svsteit development that
influence the choice of V&V methods. Finally, we comment on the potential for using
Al techniques to support V&V of Al systems.

3.1 AI Programming Techniques

'hle following list was largely extracted from a standard text on .-%\ prograitmming tech-
tniqcues. Charniak. et al.'s Artificial Intelligence Programming [13]. a good overview
of the subject. (Another good source on the subject is Norvig's Paradigms of k\I
Programming [331.)

3.1.1 Data-driven Programming

.\ttaching programs to data and deciding what to do by ret rievikig and rlinnilig [)I(-
grains associated with data is data-driven programming. One conintont example is utSe
of message passing to invoke methods associated with the message. As this example
illustrates. data-driven programming is not restricted to Al. However, it tends to be
especially common in Al, because Al programs are often written in languages. such
as LisP and PROLOG, that allow programs to be treated as data. This capability
facilitates storing code in comparatively complex dat~a structures, such as a-lists aud
hash tables, and so encourages use of data-driven techniques. (Another reason for
including this technique in our list is that use of data-driven programmiing stronigly

inifl•iences the choice of V&AV methods.)

6

3.1.2 Discrimination Nets

A common programming problem in Al is the classification of information based ol
tests of its properties. An iritial test is applied; based on the result, aniother test
may be chosen and applied: based on the result, another test may be chosen and
applied: and so on. Thus, the collection of tests can be thought of as ,lefining a
network, with a link from one test to another whenever the result of app)lying the
former can trigger the application of the latter. Such a network is a discri,,iatio,,
net. A good example of applying this technique to an Al problem can be foind iII
Appendix A. which describes an Al-based V&V tool developed at ADS that ernpioyo
a special-purpose language for defining discrimination nets for software testing.

3.1.3 Meta-level Control Structures

A common form of data-driven programming in Al is the use of a closure to represenit
the state of a suspended process. A collection of loosely related techniques-,geaI i-
based control, queue-based control. streamns. coroutines. possibilities lists, and so on-
have been based on this idea. The approach is generally useful when neta-level
reasoulng about control is performed. Object-level operation (which may be search
of a game tree, adding information to a blackboard, refining a plan. or just aboit anv
other typical object-level activity) is suspended, a "next move" is determined. and
the suspended operation is then resumed. LIsP includes a variety of constructs that
support this technique, including COMMON Lisp's closures and SCHEME's first-clas,
continuations, and expert system shells and Other higher-level program developmenl
tools frequently support some form of meta-level reasoning via this technique.

3.1.4 Deductive Information Retrieval

.MIanv Al applications derive information from facts stored in some sort of knowledu,-e
base. Such applications can be thought of as "'smart" databases. capable of retrievinug
not only information that has been stored in them explicitly, but also of retrievirug
information implicit in the stored facts. Such systems are said to perform d,,itct,'r
i.tformation retrzeval. "Deduction" is used rather broadly here. to include not only
strict logical deduction, or even non-,noutot'nic inference procedures modeled on 1og-
ical deduction, but also the ad hoc heuristic procedures used in semantic network..
Deduction, in this generic sense, is any inference procedure applied to the explicitly
represented information.

It may seem that the V&V methods appropriate to logical deduction and those appro-
priate to looser forms of inference would be quite different, making further sul)divisiout
of this technique useful. However. in practice. even strictly deductive inference pro)'e-
dures are incomplete-and sometimes even unsound-theorem provers, for the sake
of efficiency. To pick the most widely known example. standard PROLOG employs an

unsound algorithm for unification; the so-called "occurs check" is omitted in order io
make unification of a term with a variable 0(1) rather than O(n) in the length of -he
term. just as assignment is. Without. this deviation from "logical purity." PROLoc;
could not compete in efficiency with convetional languages. A clever p)rogrammler
can easily arrange things so that no incorrect conclusions are derived, and. clearly.
this is exactly the sort of thing that V&V procedures should check. Therefore, rather
than attempting to subdivide the class of deductive information retrieval techniqes,.
we will focus on assigning V&V techniques to these systems based onl properties that

the inference method is intended to possess.

3.1.5 Production Systems

A prod(uction system consists of a collection of condition-action rules, the produ•O'1n
inemoryJ. and a data store. the working mrn~ory. Its operation is controlled b-y' a
recognize-act loop: a rule wvhose condition is true is found, and the corresponding
action is performed. The action generally includes changes to the working memory
that influence which conditions are satisfied on the next cycle. Thus prodltctiorl
systems Ise a natural generalization of forward-chaining inference. A number of
widely-tused expert system tools, such as OPS5. support building production svstemns.

3.1.6 Frame Databases

A framne is a data structure used for knowledge representation that naturally gener-
alizes record structures and Lisp's property lists. According to Minsky :31].

[wje can think of a frame as a network of nodes and relations. The "-top
levels" of a frame are fixed, and represent things that are always true
about the supposed situation. The lower levels have many terminals-
".slots" that must be filled with specific instances or data.

Frames have been specialized for particular purposes: Shank and Abelson's scripts '37'.
used for natural language understanding, are a. good example of specialized franes.

Just as in the case of production systems. framne databases provide a general putrpose
knowledge representation that is the basis of several popular expert system building
tools, such as KRL and FRL. (Frames and production rules combine in a natural
fashion. and many expert system shells provide both techniques.)

3.1.7 Backtracking

Search. in one form or another, is central to Al. The most common search paradigm
is to proceed depth-first, that is, to attempt to find a path through the search tree

starting from the top and exploring a siugle branch at a time. For example, a planning
system might attempt to refine a plan by selecting among various refinement opera-
tors, choosing the operator according to some p)rinciple ranging from the silmple and
inexpensive (such as choosing the first applicable operalor from the list of operators)
to Ihe complex and costly (such as calculating some ineasure of which operator is
"best" among all applicable operators based on detailedl consideration of the current
state of the plan). Domain-specific knowledge-sometines represented explicit ly, and
sometimes implicitly as an operator ordering or a numerical formula used in comnput-
ing an operator quality metric-is used to guide the search. If choosing the wrong
branch of the search tree (e.g., choosing the wrong refinement operator) cal lead to
a. dead-end, some form of backtracking is employed.

In the simplest case, chronological backtracking, the most recent decision is changed:
state changes associated with actions performed as a result of that decision ,'ce in-

done. and a. different decision is made. resulting in the exploration of an alterilative
branch of the search tree. But if the system tracks the reasons for each decision and
can analvze the cause of failure, a more intelligent form of backtracking, depf ,,dency-
(irEcted backtracking, can b-. employed. Rather than backtracking to the most recent
decision, which may have been irrelevant to the failure, control passes hack to a de-
cisiou point that is certainly relevant. Moreover. the system may use sophisticated
reason maintenance facilities to avoid having to undo all state changes associated
with the failed branch; some of the decisions made after the decision being reconsid-
ered may be essentially independent of that decision. and so need not be reconsidered.
This might be thoughts of as a jump across the tree rather than "'backtracking;" see
Fig. :3-1.

The impact of particular programming techniques on choice of V,&cV methods is dis-
cussed in Section S.

3.2 AI Programming Tools

AI programming tools span the range from programming languages especially suited
to AI programming, through high-level programming environments, to knowledge-
based system shells. Choice of tools has some effect on appropriateness of \&'V
inethods. so we will briefly summarize some relevant features here to prepare for the
discussion of the impact of tool choice on V&cV in Section 5.

3.2.1 AI languages

LIsP is really a family of programming languages. based on a common core of ideas.
that ha.s been the primary vehicle of Al research for over :30 years. LISP was designed
for symbolic, rather than numerical, programming, and has grown over the vears
to include precisely those features most useful for .\A programming. For example.
LISP has a flexible type mechanism that makes it easv to alter and expand dlata

Point where erroneous d
decision was made

r• r

Point where erroneous
decision was discovered

Figure 3-1: Varieties of Backtracking

I0

representations. a feature of obvious utility in Incremental development of proloitypfe
systems. The fact that. programis are represented as data structuires makes it vasyv to
develop -nieta- level" facilities. including program development, tools. Every reader
Of this InaliUa.1Iis probably* familiar with the basics of LISP. [he best soilIU4' for it

detailed e~fal- olO h s sspecial. and especially stilted to Al. is .\lleii's-
AnatomlY o1 LSP [21.

Compared to Lisil. PRoL~oG is a newcomner on the Al scene. being onl[\ dlbolw 20
y'ears old. N01.0o. wvas a first attempt at re,.lizing the Idea~l of logic prograriiniing.

ie.. treating, Lonfuton as dedulctionl. PROLOG can be thouight ot ats anl u tcenl(
construIctive theorerIl prover For a. Subset of first-order logic. As a result. PROLi)oi hirm
a firm logical foundlation t~o support the analysis of programs, in rather sharp (-(II rasi
to Lisp. Biitt more sinilflY. PROL.OG can be thought of as the result of sIIf)l)\ III,- t 1w
prograll) c/qulst

!I.Y If Q, I x. _I) and Q'2(.r. Z2) and .. and Q,(x. z.1

with a proc(d(IaltI Ifadifly:

For a ny.. v .x -. :2.. he goal of proving P(x.r.) call be satisfied Im
provingg Q1 (.r*. :I) Q2Ax.z,). and Q,(.r.z,).

and uising a 'lepthi-first search strategy based on the ordering of program clati.4', anl
chronolog-ical lbacktracking to find a reduction of a given goal to formulas storcd lit a
knowledge base. Sterling and Shapiro's The Art of Prolog [42,1 provides a nice mix)f
thle theory and p~ractice of PoR~OLG.

The clalim that PROLOG was it reasonably efficient general putrpose prograniiiiiiIg1
formalism was met with considerable scepticism in the United States. b~asedl on ex
perience with some special purp~lose Al languages in the early 1970's. MICRO PLAN-
_NER in part icuilar. b~ased onl similar ideas. As a result, PROLOG was largrely i1,nored
hiere utntil the Japanese annou~nced that it would play a central role in their Fift Ii
G~eneration effort. (However. Lisp was largely ignored In Europe (lutring thispe
riodl. because it was Judged too costly in machine resources consumed. and Pli~oiw;
wxas widely experimented with.) After the announcement. it was iiiscovered 11hal

somesigificant breakthronghs-W~arren's approach to compilation being lparlic(ular

noteworthy-combined with PROLOC.'s willingness to sacrifice logical purity for effi-

ciency. had resulted in a programming language very well suited to some AlI probleims.
In fact. it turns ouit that many of the programming techniques listed above (.all be
Implemented In PROLOG In a p~erfectly straightforward fashion [~1-1

Both Lisp andl PRioLoG have meta-level introspection facilities that support it leeper
level ot cofll/)It(tion~id introsipection and reflection [39] than conventional lamti,_Iaý,vs.
suich as C and Ada. fThis fact has some impact on the scope and(limits of (ertaili

Vk'V approaches: see Section 8.

3.2.2 Higher level tools

Higher level tools can be (roughly) divided into high-level programnming environmnents
and expert system shells. A shell is typically the result of abstraction Ironi an exist-ing
knowledge-based sYstem,. It consists of an inference engine, an empty knowledge base
that is)opuilated for the particular application, and some support tools. A huh-
letve en utroynmtnl is a collection of tools-inference engines, knowledge rep resentlatiot0
languages. and so on-that have been at least partially integrated, so that the utser
can choose among li e various options. EMYCIN is the classic example of a shell. bait
more are constantly becoming available, often specialized to a particular (lomainl ',)

as to SUil)ly even greater leverage. A good example is Verity's ToPic syvslivui for text

retrieval: the developer provides a definition of the concepts to be u.sed inI retrieval a~id
the text database. and Topic provides everything else. S.1, [NEE. ARTr. Pl"OA. P'..
anld so on. are all representative examples of high-level environments.

l3ut for both shells and high-level environments, the impact. of t lie tools ,,t) ,hon(e
of V&V methods depends only on those programming techniques made availalle 1,v
the tool that are used by the developer. No direct matching of methods to tools is
necessary (or. in the case of environments. desirable). This is fortwi-,te. ats the nmost.
popular tools at the time von are reading this manual are likely to be differetit froi'l
the ones available when it was written.

3.3 A Categorization of Knowledge-Based System Architectures

Categorization of AI architectures in general is a difficult task. which will [iot he at -
tempted in this manual. Even paradigmatic AI systems can eniply ad h,,(archlitec-
tures that seemingly cannot be described in any way that provides gvildance iii (lehiliiii
a verification and validation methodology. However. categorization of a rest ricted - -

but important! -subclass of Al architectures, those employed in knowledge-based
systems, is feasible. For our purposes. a knowledge-based system is one that can ,.
divided into a knowledge base. an inference engine that derives conclusions, perhips
together with explanations) from the knowledge base. and sutpport software ý-,llch as
the itser interface). The knowledge base might consist of logical assertions. , onditiotl-
action riles (perhaps with associated confidences), a Bayesian network. o)r any other
natural representation of domain knowledge. The inference engine can he arlbitrar-
ily complicated, from a simple algorithmic scheme such as backward chaining Iroin
a goal or propagation of confidences in a Bayesian or quasi-Bayesian fashion. to a
knowledge-based system in which a "meta-level" inference engine determines how to
control use of the "object-level" domain knowledge based oil the contents of a sepa-
rate "meta-level" knowledge base that contains an explicit representation of control
knowledge. Much of the second-generation knowledge-based expert system work inl
the earlv-to-mid 1980's was driven by the recognition that it was uisefutl to factor out
an explicit representation of the control knowledge. because doing so

12

"* increases modularity, which makes the system easier to develop and modify [16.
L4, I],

"* makes the domain knowledge more reuisable [14],

* facilitates explanation gerneration [46], atid

* places the focus on -representational adequacy" rather than on efficiency iII
representing dcomain knowledge [1.9].

Verification and validation of simple inference engines is straightforward. It should
be proved that the inference algorithm produces the desired conclusions. rhat tle
code correctly implements the algorithmi should be verified using conventional verifi-
cation techniques. The system should he validated by exercising it on represenitatiwe
and extremal knowledge sets. That is. a simple inference engine is verified and vali-
dated as if it were "just another algoritlhm." ['here is no special "AlL \"'" problem
involved. Therefore, the taxonomy of knowledge-based systems is heavily slanted
towards more complex inference procedures. where special problems arise. The cat-
egorization, adapted from the one in [19]. is based on how much effort is put into
determining the next inference step or series of inference steps. and on when this
"meta-level" inference is performed. This categorization ignores factors--such as.
whether the inference is performed at assertion-time or at, inference-time-that are
essential to design of the system, but are largely irrelevant to how V&V should be
performed.

.ieta-level inference architectures are distinguished by the fact that. at any given
time. the system can be active at either of two levels. It can be determining what to
,do. by drawing conclusions from the meta-level control knowledge. or it can be doing
it. by drawing conclusions from the object-level domain knowledge. Thus. there is
a spectrum of --how meta" a meta-level inference architecture is. depending on how
much time it spends working at the meta-level. from systems that perform very little
rneta-ievel inference to systems that perform meta-level inference almost exclusivelv.
A system that spends very little time working at the meta-level will be called a object-
level-oriented inference architecture. A system that. expends the bulk of its effort at
the meta-level will be called a ineta-let-fl-or-Itttd Inference architectaur. A system
that puts substantial time and effort in at both levels will be called a miired-level

,fre re ice architecture.

Mixed-level architectures will be further subdivided according to the conditions under
which resources are devoted at the meta-level. Most common are reflect-and-act sys-
tems. which perform meta-level reasoning before (or. equivalently, after) each object-
level step. Blackboard systems commonly use a reflect-and-act loop to apply control
knowledge in a particular situation. If meta-level reasoning is used only when some
crisis develops at the object-level-where a crisis can be anything from having too
ma.ny options available to recognizing an inconsistency in the object-level knowledge
base-we have a crisi.s ,aanugenn-ti system. Finally. if the ijrimnary function at the

I 3

rueta-level is to divide inference tasks into ,ubtasks. which are then handled at the
object-level, we have a .subtask managemeni system. ['his completes our taxonoomy.
which is graphically represented it Fig. 3-2: the influence of particular architecti le
categories on choice of V&\' techniques is discussed in Section 7.

3.4 Common Characteristics of Typical Al Problems

As was mentioned above, the nature of typical problems addressed by Al has soini
impact on how to perform V&AV of AI systems. There are two principal relevant
characteristics.

. T'he s'vst em re(uiremenlts are hard to lefine. This is partly becau.Ve of the ,]/e

of the problems addressed: Al is oftetn applied to problems too largt rto dal
with bv more conventional algorithtmic techniques guaranteed to produce an
optimal solution. It is partly due to the intrinsic nlature of the probleivis: AI
is often applied when the problem is too vague to be addressed by techui(tUes
that operate on precise measurements. In either case. it may be impossible to
define what counts as a solution to the problem being addressed, 'rtn uftfr Ihw
system has been completed. There just are no cut-and-dried criteria that can be
applied to determine whether the system -'does the job."

"2. The solution process is knowledge intensive. Sometimes computers are used to
solve problems involving tedious and repetitive, but ultimately simple. calcila-
tions of some sort. No real understanding of the problem domain is needed: a
human could solve the problem without, knowing where the numbers came from
or what they represent. Solving an Al problem more often requires a letailed
formal model of the domain that captures complex interdeppendencies among
various domain elements. This knowledge can be hard to break Ut into easily
digestible pieces. which makes many of the programmer's tools for managing
complexity inapplicable. A complicated domain model can be harder to debug
than the same number of lines of "spaghetti code."

Both these characteristics are illustrated bv considering some typical AL problem

domains:

planning problems too large to handle with the methods of Operations Re-
search, involving many soft. evolving constraints and imperfect knowledge of
the conditions Linder which the plan will he executed.

" image and signal understanding problems that require discovery and analysis
of subtle patterns in reams of data.

" natural language understanding (no itmore need be said about this one!).

Knowledge-based
systems

Object-level L Meta-level
control inference control inference

Object-evel-orien~ted MxdlvlMeta-level-oriented
Finference architectures architectures inference architectures

SReflect-and-act Crisis management fubtask management

architectures architectures architectures ,

Figure 3-2: Knowledge-Based Systems Taxonomy

15

. medical diagnosis (ditto!),

an(l so Oil.

Tie impact of these characteristics on V&V will be considered ini Section I.

3.5 Common Characteristics of the Al Software Lifecycle

The most imporLi ant characteristic of the Al lifecycle is that systems typically evolve
through refinement of a. prototype that is used to help determine system requiteirenl ts.
Even in cases where some of the code can be developed in accordance with some sort
of watertfall model. oilher parts are constantly evolving. Thus. even more I lan in
conve-ntional systetms, there mumst be an emphasis on reverification and revalidlation
of 1ilodihled svstitnms. The impact of this emphasis on choice of VY V net hmods will he
discu'sed in greater etr.all in Section L

16

4. Development Models and Methods

Is defininig a single. uniform sta.ndard A[development methodology desirable? .\I
development efforts varyv too tuich to impose strong methodological restrict iotis. arid
weak methodological restrictions are useless. However. that does not mean that, 11o

guidance can be provided. [hat guidance will be in the form of advice oil how to
determine an appropriate mtiethodology for a project, rather than methodological ruh's
that should always be followed. Here is an example of such a "metarnethodologic;d
rule.'" one that we urge you to adopt.

One of the fir.st taks on ruery project should be to define the s.qstfm (I(-
relopuienl mw/oh/oloqy M/it will be employed.

Defining a methodology requires choosing a software development model. If tie -ott-
ware development process ineeds to be tailored to the needs of each A[application.
then providing a meta-leve[model that describes how to define a software develop-
ment process appropriate for particular AI project will prove more useful than "'vt.
another software development ilmodel." The four dimensional model describ'ed below
represents an attempt to provide such a meta-level model.

4.1 Software Life Cycle Models

The traditional software life cycle model developed initially in [136] is a one dlimen-
sional model that portrays all software development projects as passing through the
same linear progression of phases. Over the years there have been many different
elaborations of this linear model-each is usually proposed as universally applicable
to all software. More recently, a two dimensional spiral development methodology
has been proposed by Boehm [6] and is gaining widespread acceptance because it ex-
plicitly recognizes that rapid prototyping is often useful before attempting to ,lehine
the requirements for the proposed system.

In this report we propose a meta-level model of alternative software development
processes. This meta-level model is especially appropriate for AI software where t het're
are strong concerns about verification and validation. In this generalized model. which

is then specialized to fit the needs of any specific software project. software products
(such as requirements specifications. performance prototypes, or a regression test) are
represented in a four dimensional space. The advantages of this model are:

1. Rather than providing a single model as a template for all software projects. oulr
meta-level model describes how to define a development process tailored to the
specific needs of an application-one that still meets V&V needs. Any software
development model needs to he adapted to fit the needs of a specific project.
but most give little or no information about what adaptations are valid.

V7

2. It focuses on the products of software development more than on the develop-
ment process. Across different software applications there is more commona lit '
in the final products than there is in the sequencing used during the development
process.

Our meta-tevel model encourages the definition of specific software development, plans
that produce not only the products defined by existing software ,levelopInent stan-
(lards such as DOD-STD-2167A but also the additional products associated with rapidl
prototyping and/or formal specifications. DOD-STD-2167A explicitly allows rapid pro-
totyping methods to be used during software development but does not provide guide-
lines or a framework for when and how to use rapid prototyping and what should result
from different forms of rapid prototYping efforts.

Both the conventional software development methodology and the spiral model are
-ommon special cases that can be constructed using our meta-level model. Since
many Al systems are embedded in applications with conventional software, it is tin-

portant that the model for developing and validating A[software be a generalization
of conventional development methods.

Our general model recognizes that it is often best to prototype the hardest aspects of
the problem-the prototype may deal with functionality, with the user interface, or
with the execution time of kev functions. In other applications, formal specifications
or other intermediate software products are useful as developmental waypoints while
working toward the final software products.

DOD-STD-2167A specifies that a software project should develop and use its own in-
dividualized Software Development Plan and a Software Test Plan. Our software
development model is intended to provide a framework and guidelines that AI soft-
ware developers can use to develop these plans in a way that is tailored to the needs of
the project and is compatible with Al development methods being used. The parts of
the test plan that deal with verifying the software can be tailored both to the specific
nieeds of the project and to the intermediate software products that are appropriate
for this project.

The problem with a software development model that is uniform for all software
projects is that either it constrains the dlevelopment plan to fit into the constraints
of a single, pre-conceived developmental process or else it doesn't imodel the software
development process in very much detail. For example, it is widely recognized that
the waterfall model should be adapted to the needs of an individual project. But
the waterfall model does not go on to provide a frainework for that adaptation. Our
meta-level model provides a framework for constructing more detailed development
models and V&V plans that are tailored to the specific needs of the application.

4.2 The Four Dimensional Software Development Model

Software development begins from a. vague, partial, and ambiguous tnderstandillg

of the problem t.o be solved. and it progresses toward a. set of products that defije
an unatlbiguous. executable. and efficient representation of a problem solution. The
evolution. verification, an(d validation of these software products can be represent.ed
by paths through a four diniensional space where the dimensions are labeled and,'
scaled as follows:

Definition: Partial understanding - Complete understandinig
of problem of problern

Formalization: Ambiguous l Unambiguous

Operationality: A.bstract, Executable

Efficiency: Inefficient -- Efficient

These four dimensions correspond closely with what Hoare characterizes as lhe four
components of a complete theory of programming.

.\ complete theory of programming includes

L. A method for specification of programs which permits individual re-
quirements to be clearly stated and combined.

"2. A method for reasoning about specifications. which aids in elucidation
and evaluation of alternative designs.

3. A method of developing programs together with a proof that they meet
their specification.

4. A method of transforming programs to achieve high efficiency on the
machines available for their execution.

(From Hoare's -Foreword" in [12!1. p. iii.)

There are strong interactions between these four dimensions. so it is often difficult
to address them individually: however, software complexity can be reduced and ver-
ification and validation can be more effective when there are •oftware prodlu(cts that
;iddress each of these four dimensions separately.

Logically. it may seem possible for software development to proceed sequentially
through each of these four dimensions. Unforturateiy, there are strong backward
dependencies among these dimensions; that is. progress in one dimension often de-
pends on prior progress in a later dimension. For example. before defining all the
requirements for a software system, one may need a prototype implementation in
()rder to understand what is practical and feasible as requirements. Similarly, with
current software techniques. it is seldom practical to defer performance considera-
tions until after a formal specification and an initial operational program have been

completed.

These backward dependencies among the four dimensions are the primary reasons
why each software project needs to have its own Software Development Plan. These
backward dependencies are different for different software applicationis and develop-
merit environments. A Software Development Plan should address these backward
dependencies by working out the relative order in, which each componient of the sy'i-
teni vill make progress in each dimension. Our four dimensional. imet-a-level model
applies b)oth to tie software system as a whole, to each of its coI)poiit.es. to their
comp)onents. etc. The effort to divide a software system into relativev independent
components is one of the main tasks of software design. and it is no, dealt with hy the
four dimensional model. This model focuses on the different kinds of iiorn.tion 1o
be recorded about either the whole software or about any component. l)Iiring devel-
opment, it should be expected that different components of the overall software will
have been developed to differrnt stages at any one time. A detailed developmrient plain
for a software project will identify the software components and the relative order II
which each component will progress through the tolr dimensions.

The four dimensions are discussed in the fcllowing Daragraphs.

Definition, This dimvi-sion ': tile focu- of a requirements specification. \When a
software project is originally conceived, one has only a vague imiderst aildirig of
the problmins to be v. ved by automated processing and of the futnctions needed
to solve thin. The definition dimensio" -'easures the degree to which the
fnctional ,,nd performance requirer ant3 of uhe system have been miderstoodi
and defined in some fotrn.

Formalization. This (lim-nsion measures the degree to which the ,oftware is de-
tined it oine formal, precise, and uiiarbiguous notation that 'uIpports dedlc-
live reacsoning. Formalization removes the ambiguity that may be present in a
requirements specification. More important, formalization facilitates ded uctionl
of properties about the system; thus enabling properties that are implied by a
,pecihcation to be made explicit.

Operationality. A system can be defined (informally or formally) at anl abstract
level without mapping this definition into constructs that are executable on
available computer hardware. This dimension me'w'res the degree to which
the system functionality is not only defined but also executable. Progress iII
this dimension can be thought of as mapping a system dlown to lower levels of
abstraction-from application-oriented concepts through computer a bstractions
like queues. stacks, and processes and on down to bits and bytes.

Efficiency. This dimension deals with all of the characteristics of the system that
are separate from the input-output functionality: execution time. response time.
memory and other resource utilization, etc. Programmers usually deal with both
operationality and efficiency concerns together during the implementation pro-
ý'ess: however. operationality and efficiency are sometimes separable concerns.

"20

Definition

Formalization Efficiency

Figure 4-1: The Four Dimensional Space for Software Developmenlt

For example, functional prototypes can he distinguished from performuance pro-
ety Opes.

4.3 Evolving Software through the Four Dimensions

Unlike the waterfall models of software development, this four dimensional represen-
tation does not itself describe stages in a software development: rather t hie product
of a development stage is represented by a point within this four dimensional space.
(More precisely, a development stage usually results in several products that are rep-
resented by a set of points together with mappings between those points.)

Figure 4-1 shows a representation of the four dimensional space for ;oftware ,level-
opment. The definition dimension is along the vertical axis. operationalilt along the
horizontal axis. and efficiency is represented on the axis coming forward. The other
axis going to the lower left in the fourth dimension represents the formalization di-
mension. Since it is difficult to visualize a four dimensional space, our figures usually
will not represent this dimension.

The need for documentation to justify that the program meets its goals and to sup-
port maintenance and tuture evolution can be satisfied by products represented by
points in the four dimensional space or by mappings between these (diverse products.
.-\ minimal set of. software prodtucts as specified by DOD-STD-2167A would be a Svs-

21

Definition

S.. •Opera-
'-.,\ tlonality

Efficiency

Figure 4-2: The Minimal Products of Software Development

tern Requirements Specification. a Soft ware Design Document. the Source Code and
Listings of the completed program and the Software Test Reports.

These products are represented in the foutr dimensional space as shown in
Figure 4-2. The Software Test Reports are represented not by a point in the space bit
by the Mapping frorn the completed program to the requirements. (Other documents
required by 2167A are a Software Development Plan and a Software Test Plan. The
Software Development Plan defines a path that the project will follow through t lie
four dimensional space. The f[our dimensional representation is an aid for designing
the Software Test Plan, bitt the plan is ftot represented in the four dimensional space.
The Operator's and User's Manual are also required products but are orthogonal to
the issues described by the four (dimensional model.)

Outr generalized model allows a wide variety of other possible intermediate software
products to be defined as points in the f[ouL dimensional space. These additional
software products can be used as additional waypoints during software development:
thus the standard products required by 2167A are particular cases of the software
products that can be represented using the four dimensional model.

Waterfall models specify a fixed sequential process for generating these software plrodl-
ucts. In our four dimensional niodel. we represent the software products that resullt
from a waterfall model, but we do tiot define a fixed, sequential development proe~s:
and we make it easier to include additional products as waypoints during software
development.

-22

Definiton (

S"\ Opera-

Efficiency

Figure 4-:3: The Spiral Development Model Represented within the
Four Dimensional Space

4.4 Rapid Prototyping and the Spiral Development Model

[oehin [6] describes the software development process as a spiral. Each cycle of
the spiral is devoted to resolving the highest risk issues involved in this particular
application. Experience from the implementation and use of each prototype is used
to develop a more complete definition of the functionality and performance that is
,iesired in the final product. Figure 4-:3 shows how the products of a typical 1pira;
,development would be represented within the four dimensional model. One beginis
by prototyping and defining the concept of operation for the application. Then onite
Iprotorypes and defines the software requirements. and finally one builds a -s tructurial
prototype leading to the definition of the software design. The completed program tfo
the system that is to become operational is then implemented based on this design.
.\An advantage of the four dimensional model is that it provides a framework for
thinking about alternative development processes that use alternative waypoints in
order to arrive at and verify the final products of the software development process.
Requirements documents, design documents, and various forms of prototypes can all
be understood as intermediate software products associated with particular poinlts ill
tie four dimensional space.

2:3

DefinfPion

i.,~~ am

Eftkhawf-m

Figure 4-4: Different Kinds of Prototype hinpienientat ions

\Vith respect to prototypes, it is important to specify what functionalitv or efficiency
characteristics one is trving to prototype. The implementation ,4fort involved in
biuilding a prototype will be large if one does not carefully focus the prototyping
act ivitv on critical issues. Figure 4-4 shows five different kinds of prototypes locatedl
at different points in the four dimensional space.

Functional Prototype. This is an implementation of some critical functionality to
test whether it can be implemented successfully. For example. if a large system
is being built that includes automatic recognition of targets from certain kinds
of images or signals and if similar functionality has not been denionstrated in
previous systems, then a functional prototype to test the feasihilitv of aChieving
this functionality is indicated.

User Interface Prototype. If the interaction between the svstein and thue user is to
be quite different from that of any previous system, then a prototype that does
not have much internal functionality but simulates the proposed user interface
and evaluates it in actual tests with representative users is indicated.

Performance Prototype. If some of the functions required in a proposed systemi
have never been implemented with adequate response tiries tusing the proposed
processing resources, then a prototype to test these f'unctions nuinning on the
proposed hardware (or a simulation of it) is indicated.

2.4

Design Prototype. A design or structural prototype is used to evaluate the effec-
tiveness of a proposed Isoftware design. It typically addresses a combination of
critical functional and performance issules.

Operational Prototype. Sometimes it is useful to test the majority of the functio0n-
ality of the prol)osed systeem running in an environment similar to the iultimnate
operational setting. As represented in the four dimensional space, an opera-
tional prototype may involve much of the expense of a completed produCt. alnd
it is usually useful to plait it so that the majority of it can be evolved for 11m.
in the final product.

One advantage of the four dimensional model is that the differences betwevn ,il['rviii
kinds of prototypes are explicitly represented in the model.

4.5 Formal Specifications as Software Development Waypoints

Different kinds of prototypes are not the only additional software dcevelopinemit way-
points that are represented with the four dimensional model. By considering hic

dimension dealing with formalization, different forms of specification can ,lso be I.,-
sociated with points in the four dimensional space. These various specification optionS
are important for V&V. Figure 4-5 shows some of these specification options as points
in the fouir dimensional space.

25

WIlnithml

FotiiW n Efficien-y

Figure 4-5: Additional Possible Specification Waypoints

4.6 V&V as Mappings between Software Products

In our mneta-level software development model, verification and validation are nor
represented as points in the four dimensional space: rather. they are represented
as mappings between points. Both verification and validation are concerned with
showing that the iniplemenited software satisfies the software requirements. Validation
does this directly by testing and other methods that directly evaluate the software
implententation against requirements. In Figure 4-6. validation is shown as a direct
mapping between the implemented code and the software requirements document.

Verification uses an indirect path through intermediate software products to show
that the final software meets the requirements. The indirect path that is used in
conventional software development is shown in Figure 4-7. We propose that the
specific choice of the intermediate waypoints for verification are less important than
the basic process of showing that the final executable software maps through some
series of intermediate waypoints back to the system requirements.

The reason for doing verification using intermediate waypoints is that the mapping
from one waypoint to the next can be niuch simpler than the mapping all the way from
the final software back to the requirements: and additional techniques can be applied
to verify that the software produhct at one waypoint satisfies the requirements imposed
by the previotis waypoint when the conceptual gap between the two waypoints is
relatively small.

26

Definition

"" ~Validation

Opera-
tionality

Efficiency

Figure 4-6: Validation as a Mapping between the Implementation
and Requirements

Sometimes software verification is viewed as showing that a correct software (level-
opu)lent process has been followed. We prefer, however, to emphasize verification
as focused on showing that the content of the products of each stage of software
development satisfy the requirements for those products.

Once one introduces prototype development as a legitimate part of the software de-
veloj)m(vi1 process. one does not want to require that the waypoints used to verify
software have to correspond completely with all of the developmental waypoints ulsed
during the evolution of the software. A prototype may be used largely in order ro
,dfine in appropriate requirements specification. Thus various prototype software
pt-oEhicts may be part of the software dlevelopment history but they need not be uIsed[
a. intermediate waypoints in the verification plan.

The reason why software verification is needed in addition to software validation is
that Al software implementations are so complex that testing the software directly
against redlitirements cannot be complete. Software complexity also makes verification
difficult: however, there are techniques for reducing the complexity of the mappings
h'orn iuupletlmented software through intermediate waypoints to a. requirements speci-
1ication. As dliscussed in [27. 291, examples of these techniques include:

27

the

%etdXic ation
,s ,tSei en -leno tp i~S

implement ation and ~q eet

"* Auttomtate parts of the evolution from the requirements specification to the
inlipletliteitatioti. Compilers for high level programming languages atitoinate
p~art of the work Iin the dhirect Ion of operationality, and automatic progranuning
lechniques that. are capable of executing and optlimizing specifications wrillenl in

\eyhi-gh level laniguages can contribute further automation. It Is still unectssarv
toverilyvta h atna compilation preserves correctness hult atitonlat.ion

Imealms tlha~t this verification effort need not be done repeatedly.%

"* I 'e softwvare engineering techniques to constrain the dlesign amid the impIle-
muentat ion. so that the muapIping back to the requirements specification is more1
uumd(lerstanutdablle andl less comtplex.

"[Foctis out v-erifvi ug t he most critical fucinlt lin the requ iremen t. p cFc
tion.

"* \lake Ilie sat is tact ion of cri t i al requirements depend on omilv ;niall part, (At lie
1 1 plel ie I mt at 011.

"* Separate control and efficiency issues from the functionality of the- inipleriieiira-
tion.

"* \la~ke the linplenentation be partially self-checking.

41.7 Work Remaining on the Meta-level Development Model

\lore work remains to elab~orate this four-dimensional software development n1odlel
before it will b~e useful a~s a. guideline for developing and verifying Al Softwvare. III
particular. we need to dlevelolp andl test:

"* Metrics for measuring progress in each of the four dimensions.

"* Definitions for additional waypoints that are useful during software (levelopuvienit
and verification.

"* Examples of how different sets of %vaypoints can be used stuccessfumlly lin dliIfrentm
kinds of AIJ software dlevelopmenet projects.

"* Additional methods for doing v-erification by mapping between these way polints.

Once these waypoints and inetrics are defined, a software development and v-eriticat ion1
plan can be formu171.lated as a set of waypoints or stepping stones that are located
within this four dimensional space. Planning a software development process Is t hen
analogous to Identifying stepping stones for crossing a river. One tries to flind a
series of stepping stones that are close enough so that software developinent calm
proceed litt a series of' relatively smnall contcep~tual steps with each step beinga reliable

2!)

and verifiable. One does not always have to use the same stepping stones. onle jilst
hias to finid stepping- stones that are close enough together so the comiplexity of the
coniceptual gap between them allows verification techniques to be applied siicceIssfillvy.
If we think of' the complexity of the complete software system as ainalolgous to I lie
widthI of the river. then this analogy indicates that the number of wavYpoints that. are
itef~ede lin a.sofitware development plan is not the same for all software p~rojects ~Imt
is proportilonate I o t he complexity of the software.

4.8 Conclusions about the Meta-level Software Development Model

Each software project. needs to define the specific software products that are to be'
prVoduced by the project, and the order in which they should lbe _;encrawd'. Ouir tour
uliniensional ineta-level inodel providles a way to represent hothI the final pro' Iiicr s.

the interivie(Iiat~e prodlitcts that are used a~s way-points in workintg toward the lita
[product,, and the validation and verification mappings between t hem.

The four dimensional mode! Is useful in laying out a Software Developmnwt. Plan that.
is tailored to the iieeds of the specific project. Certain softwvare products, will appear
in the plan for every' project-for example, requirements specifica; Ioii and~ (ele!ign

speifiatins.The level o" detail that is achievable in these products inay. however.
differ with different -'ects. Prototypes and formal specifications. however, need to
he planned to mr' - ecific needs of each project. The verification and validation plait
may also vary ;tflspecific project needs. Prototypes that are dleveloped primiarilY
to 'incersta:id the application requirements wil probably not lplay a miajor rol III
the V&\ plan: howvever, an executable specification may serve as a prototype a 11(1

as used as an intermediate waypoint in verification by showing that the hilal
optimized code is equivalent in functionality to the executable specification which
itself satisfies the requirements. We believe that this four dittiensional model for
software dfevelopment will provide the flexibility and adaptability needed to tailor A\l
Software dlevelopment to the needs of the application while also providing a trarilewoik
with enough struicture so that verification, validation. a~nd maintenance of the software,
can he effective.

Part II

HOW TO SUPPORT V&V

5. For Technical Leaders: Planning to Support V&V

This section is devoted to providing technical leaders on Al projects wit h some gul-
ance on how to support \',V during software project planning. It tonches un a
number of issues that are addressed more hilly in sitbsequent sections. as well as on
issues specific to planning.

5.1 What Level of V&V is Appropriate?

Perhaps the most fundamental example of a planniig-specific VkV issue is how to
determine the level of V:\V tha-t is appropriat.e for the project. Better verificationi atnd
more comprehensive validation can always be obtained by devoting wiore resources
to the V'V process. But resources are limited. and some of those resources IuLI.'t 1)0
devoted to other tasks. Before the detailed tradeoffs among potent ial V&\V proce(Idlres
are determined, the total level of effort that will be devoted to V\&V should be settled.
While both the level of V&V and the particular procedures to he applied are often
subject to external constrai nts-organizationa[policies or contractual requirements.
for example--that somewhat simplify the problem. a careful ana!ysis of the "'natural"
V&V requirements on the project is still essential to making the best use of scarce
development resources.

Guideline 5.1 Determine the total level of effort to be devoted to 6&I'. based on thý
(haracterustics of the project. at the beginning.

5.2 Project Categorization: An Example

One generally useful technique for determining the level of V&A" for a project is to
use a categorization, based on salient characteristics of the project. to determine
what sorts of V&V activities are necessary and appropriate. The details of such a
categorization should be determined by the sorts of projects that your organization
performs. Below you will find an example. based on a categorization found useful
at the organization where the authors are employed, that should provide a u1seful
b~aseline for your category definition efforts.

First., here are the criteria used in determining the category of a project. Each
criterion is rated as being satisfied at a Low level, a Medium level, or a High level on
the given project. Table .5-1 explains what the three ratings mean for each criterion.
(Note that some of the criteria are marked with an asterisk, '*'. The significance of
this will be explained in the definition of the categories.)

Our three categories of proeects are simply called A. B, and C. Which category a
project belongs to is determined from its ratings, as follows.

3•2

Criterion Rating=Low IRating=Medium Rating=High
Uvr of svst.ei Developer only Traied CoiulpniUer .Avvr:u.,. folks

("oltract Aype CP F F, T&NM FPLO. C PA F, FIT'! (oiple'l iol I
CIPIF

* Flxihiliy in No requirement Negotiable .ixv, ;iud

Dadlie for i o, -.r ol;LllI
D,.livrv

Del iv,'r Exotic (e.g.. Unix workstation P(icropres,,<s.or

Eim.ironilent i {/\\ (' onnection boa ri
aiid ()iS) Machine)

Ct'upliiig to Standalone Loosely coupled l:,,l,e, Iel
Existing Systems workstation

* Executioi Speed Easily met Difficult to achieve 1 Hard rl I•1,e

Require•nents speed perceived as rei'ir llllllt, iMlUst

satisfact-orv he,, t

Design Formalism Developer's choice, De'signs subject to (istomer-,hfiiied

designs not subject review. familiar unfainiliar design

to customer review design formalism formalism

Databas,/Know- DBMS/KBMS of Developer's choice. lu., iiterface to
lel.e Base leveloper's choice, but substantial data ('OIS -oftware of

data already acquisition/ custoiier's choice.

recorded, knowledge knowledge suhaiait ial lfort
already formalized engineering etfort [levolI to

required po,)ilaritn DB 3KB

Dcii inentat ion Simple User's User's Manual. F,,I 21 67A\
Manual only Maintenance

[','-r~iug Demo only Testing at system lilt fItlig ,liust

R ,',l ire Ients level must he he docinicnttd
_______________________ ___________________ Iclcitnienrted __________

(",afigturation None Manual CM A.ionilated (NI ' ool
\linagement eiiplov,.l
Requirements ___

Suipport Software to None On-line help syst,,ni On,-line hllp.
be. Developed Iltorlal..vst,'i

statTbs -ioCntorinsP

Table .5-1: Criteria Used in Catego, izing Projects

I If a project rates a High on anv of the asterisk-marked criteria, its category is

A.

"* If a project rates a maximumN of Mhediinm on the asterisk-imarked criteria, then

o if it rates a li-ugh on the majority of the unmarked criteria, its category is A.

o else its category is 13

"• If a project rates a Low on all asterisk-marked categories, then

o if it. rates at least. Medium on the majority of the uinmarked criteria, its

category is B.

o else its ca-tegorv is C.

Each category has an associated baseline level of documentation that lutiSt be pro-

duced and procedures that riust be followed to support \&V on the project. i See

Appendix B for definitions of acronyvzus.)

A. Category A projects lutist

o produce a Software Development Plan prior to development.

o produce an SRS. IRS. SDD. IDD, STP. STD. and STR during development.

o define and follow formal configuration management procedures.

o appoint a qualified System Engineer as Program Technical Director,

o institute a formal Quality Assurance program.

o perform formal testing,

o employ a formal design method.

0 publish a detailed -;chedule.

o institute a process for collecting and handling SER's.

o conduct formal Engineering Reviews (design reviews, code walkthroughs.
etc.), and

o participate in the coinpanv's TQ.M program by conducting quarterly Program

Reviews.

B. Category B projects must

o produce a Software Development Plan prior to development.

o produce an SRS. SDD. and STP during development.

o define and follow configuration management procedures.

o appoint a Program Technical Director.

o publish a •chediile.

o conduct (possibly intformnal) Enginieering Reviews, and

o parl icipate in the collt)aiYv'q TQM program by conducting quarterly P~rogranm

Reviews.

C. (Category (projects iiiust

o dehine high-level goals and plans for the project.

o publish a schedule of major milestones, and

o participj te iII the ,onpan.y's TQN14 program by conducting quarterly Prograni
Reviews.

This sort ot categorizat~ion provides the level of V&V appropriate to the project. and
allows at, least a rough prediction of the percentage of project resomrces that. must be
devoted to VkzV. while leaving i lhe procedural details open.

315

6. For System Specifiers: What and How to Specify

6.1 The Role of' Requirements Analysis iii Al Development

Requirements are properties a system must have in order to solve the problemr. The
bulk of a requirements dehmtition document will ofteni be a. statement, of the prob-
lemi. indeed. the most difficuilt Part of requirement~s analysis is typically achwevurg a
sul ricient~ly detailed undlerstaniding of t.he problem. However. leaving the actutal state-
iiene of requirements at thle level of "tle only requirement is to solve tile p~roblemfl Is
usuially unsatisfactory because of vagueness in the problem statement. Reqjuirerienrs
shOu~ld be defined sufficiently precisely that a. griven svstemn either sat isfies t hemi or
does not satisfy them. Moreover. it, must be possib~le to determine-with a dlegree of
rel inirt~v that is Itself a requirement on the systemn-whether a. systeii sa~tisfies dire

re(JUirements or not. (Certification of reqJuirement satisfaction is accomplished via it
combination of verification- formial, informal. or some comb~inat~ion of the two--and
va~lidation testing.)

Guideline 6.1 System requirements i~hoald be ipelled owt In Pnoilgi detail Ihat a
.systein either satisfies them or fails to satisfy them: (10 not leare thf. rrqiusr-men..;
.4atement "fuzzy."

Aks wvas p)ointed out in Section 2, it is Important to remember that the p)Iodllct of
iE9]uiIements, analysis i's not necessarily the true requirements. U'se of the term --re-

(Lulirements definition" is appropriate from the contractual point of v-iew--whIere a
,;vstem will be accepted if and only if it satisfies the requirements (I.- defined in the
cotitract-but somewhat mnisleading. It Is quite possible that a system satisfies the
r-equLirements as stated yet fails to solve the problem. due to anl error in thle require-
mnents analysis or a loophole in the requirements definition. Systems validation should
be p~erformed against the true requirements: satisfaction of the stated reqIuirements
is evidlence that the requirements are satisfied. bult it is not conclusive evidence. The
important point to keep in mind is that comprehensive testing against the stated
r'eqm'irements cannot, in general. p~rovidle comprehensive validation. .\Arequi rement s
definition document is just another' lifec-,cle prodluct. arid no arinoimnt of verification
h lat thle system satisfies the statedl requil'emenuts c'ai elimlinate thle [i-edI for validation1

testing.

Guideline 6.2 Never confuse the r'eal requireineints ivith thp .stattd requr~iements. be-
('aiL.s(- there is no guarantee that the requiremrents. harc been stated correctly.

.- common characteristic of A[system dlevelopment efforts. as rnoted in -Section 4. Is
that the recillrrements are vague and hard to dlefine. Thlis is p~artly dune to thle nature of
lie problems addressed by AL . Just as it Is h)ard to define a performance measure 11hat

captures how well an expert does his job, it is hard to define a performance mea-sure
that captures how well an expert system performs the same job. It is also partly
(1"e to the fact that Al techniques were developed to address large. comparatively"
ill-defined problems. A good example is search. Conventional techniques perform
well when the search space is comparatively sniall. allowing effectively exha ustive
exploration of all alternatives, and there are well defined criteria for what coulnts as
a. good solittion. When AM is a.pplied to search, it is typically becaulse the search
space is too large or too ill-behaved for conventional techniques, or because there are
no effective criteria that distinguish good solutions from others. Often. the best you
can do it) such cases is to build a system that emulates a person who is believed to
perform his job effectively. This is just the sort of case where there seems to be little
hope of accurately defining the requirements.

So. does this mean that AM development projects should uiot waste effort on at t e•lpt-
lig to deline system requirements ? The typical .-\I lifecycle. based on iterative refine-
ment of a, prototYpe. might seem to support an affirmative answer. [le de\eloper
asks the itser whether the system is satisfactorily in some given respect: if I lie utser
is not satisfied, he is asked how the system must be changed so that he will he. -The
end product of this refinement process is the prototype that embodies the require-
ments, rather than a document that attempts to state the requirements. \Vhat. if
anything. is wrong with this? Doesn't the prototype provide even better guidance in
the subsequent evolution of that system than written requirements would'

The answer to that last question is a resounding "'No!" To see why. we must take
a closer look at the role of requirements statements in the system lifecvcle. Re-
quirements play a quite different role in the lifecycle than specifications and designs.
Requirements are determined by the problem itself. and cannot be changed by the
implementors. If a system does not satisfy the requirements. it does not solve the
problem falthough it may solve some closely related problem). Thus the requirements
explicitly present the constraints on the design process. And this is the key to seeing
why an explicit requirements definition is essential.

Consider. for concreteness, a mock-up of a system's user interface. A uiser-approved
mock-itp of the user interface cannot usually be considered an adequate requirements
(,efinition for the interface, for several reasons. First. some features of the mock-up
that were considered artifacts' by its creators may have been essential in securing
the user's approval. Perhaps color of some green icon was selected at ranldoin by tihe
developer. yet the user would not have approved the interface if the icon had been
anv other color. Unless the essential features of the user interface are distinguished
from the accidental features, people who subsequently want to change the interface.
for one reason or another, have no guidance on what can be changed and what must

"Artifact," as it is being used here, is a technical terni. It means that the feature is the

result of an arbitrary choice made by the developer and that it is not intended to he a
featurp that the actual user interface must share in order to be considered essentially the
same as the mock-ip.

remain the samie. Second. "tolerances" are left implicit, so questions such as "is it
acceptable to make this window 10% narrower'?" cannot be answered.

Thuls. while Iprototy pinig is a miseful-sometinmes virtually essential-tech iiique fOr de-
terminiimlltg System requiremient~s, the prototvpe alone is not all ad equate irequiirelmimits

defiiition. Ideally, time lpriotoVpe would be SUpplemented with a list of all Its relevanti
feat tres. classified as esseuirial or accidental, together with a range of acceptable vari-
ation in each essential feat ure. This ideal may niot be achievab~le. It maYnovlt' even
be ani ap~prop~riate goal1 onl a given project. The point is, a requiiremnenis defijiit ion
is suppose to say what. features the system mnust have, and this iniforniati oll cilnnlot
be extra.cted from the prototype alone. Thus a prototype dtoes not provide tihe sanmi
guid1cance to designers. implenientors, and maintainers that a requirementst (lelhi it i(Mi
(toes. Fa~r from redutcing the value of writing a reqIuirements definition. promolm vIngA

In ~HL~5It by helpingy to ensure that the requirements are correct and~ sufh'i''rm 1%
detailed that they will p~rov'ide practica~l guidance!

A-nd the p~roblemU becomes even mnore acute when modifications are inadt-~ I tO -, t(7.111
that has already been validated. As a simple example. consider the addit ion of d itew%
window. which wil dlisp~lay a new sort of information that has become available to
the User. To whla~t extent can other windows be moved or resized to accommodate
this change" T[he original requirements on their size and position provide anl excel-
lent starting point for answering the question: if one window was already as small
as requiremenits allowed, while another was far larger than required, theni shirinkingif
the latter rather thanm the formier will almost always make the user happier than lie
opposite. Wit-Vdout, siome record of requirements and design decisions that (letermiined
witndow sizing-. there is no basis for preferring either alternative over the other. While
this example is admittedly trivial-the modifier can ask the user which wvindow -hou Id
b~e shrtunk. or can even ,et a mock-up of the new interface approved-inI More CoiIli-
plicated exampllles1. the gudneprovided by the requirements would be even more
welcome.

Guideline 6.3 P:'ototyping helps~ to define the r-equzirements. 150 do no iII ta(ipi lo
1?-Sf iI pr'ototype~ as a requirements definition.

6.2 The Role of System Specification in Al Development

A sp~ecification is a dlescription of the system to be built at a -black box*' level of
abstraction. This description should be declarative, not procedural. in that it liotild
say what the system dtoes without prescribing how the system dtoes it.

Thus. requiremients and specification are quite distinct. Requirements deal withI prop-
erties of systemis in general: specifications are descriptions of particular systemls (albeit
at, a very abstract level). Every system that solves the problem must satisfy tilte re-
(puirernents. but many Incompatible systemn specifications are possible. The problem
compjletely determines the requirements, bmut merely constrains the specification. .\

requirements document says what the system retist do: a specification says what thc,
system shall (to. In fact, QA personnel on large aerospace development, efforts check
that the right, word gets used: statements of requirements itnust contain the wor'l
"'naust," never the word "shall;" specifications nmust contain "shall" and never "-nitisi .'
A design is a refinement of a specification: conversely, a specification is a top-levwl
design. The "black box- of the specification is broken tip into sinaller boxes (itiore [(tu-
really, abstraction unit.s), those boxes are broken up into smaller boxes still, atild so •,i.
Eventually, very simple boxes-i.e., ones that are straightforward to implement -ari
arrived at. The result of this decomposition is the detailed design. The exact niatoire
of the boxes depends on the design methodology being employed. but. in nIativ Ca.CS.
they correspond to abstraction mechanisms in the implementation language to •e
employed. In other words. design is simply identification and specification of parts of
the system. Thus a general purpose specification language can be employed hrotlirlh-
out the design process, making the design stages appear to be siccessive rehinerneit
steps. Alternatively. different design formalisms can be employed at different levels
of abstraction. lU nfortIinately, the latter seenis to be standard aerospace practice- at
lea-st to the extent of using natural language or simple diagrams for specificat ion and
high level design and some sort of psetidocode for detailed design.

This account is at odds with the view that the dividing line between requirements and
specification is not sharp. that requirements simply tend to be more domain-specific
and specifications more detailed and complete. There is a grain of truth in this view.
in that satisfaction of the specification should imply satisfaction of the requirements.
Hence, there is a sense in which all the information in the requirements is captured in
the specification. However. the view that a specification is obtained by adding detail
to the requirements definition is fundamentally mistaken. It is important to avoid the
error of conflating the two because requirements and specifications play very different
roles during the maintenance phase of the lifecvcle.

Guideline 6.4 Do not confuse specified properties and requirements. There i.s noth-
ing twrong wvith a *system that satisfies the requirements but not its specification (though
the .!pecificatlon should be eventually mnodified to fit).

As was pointed out in the previous section. the role of the requirements definition
is to provide constraints on the rest of the developtment process. This document
changes only if an error is discovered in the requirements analysis. A specification is.
on the other hand, entirely under the control of the developers. Any change can be
made at any point in the lifecycle, provided that the requirements are still satisfied
and that the change is propagated through the design for consistency. The purpose
of specification and design is to arrive at a program that demonstrably satisfies the
stated requirements. In other words, from a V&V perspective, the system specifi-
cation and design serve primarily to replace a large verification problem-directlv
verifying that a system that executes the program will satisfy the requirements--by a
series of smaller verification problems-verifying that the system specified will satisfy

39

the requirements. verifying that each refinenient of the design preserves satisfaction of
the specification. and Finally verifying that tlih code correctly implements the detailed
design. Note that this is quite consistent with the more standard system develop-
nient view that successive reliieienett of the specification makes it easier to prodlice
co(de that satisfies the re'qVuiretments. Stepwise refinement makes development easier
precisely because attetition can ibe focussed on the limited number of factors that are
relevant to verification of each small step.

As the system changes over time, and the specification and design evolve. having,
replaced the large verification gap by naimv smnall verification gaps great ly simplifies
rF?'ei'fication of the system. Trypically, a small change to the code requires only t hat
a few of the design refinement steps be modified and reverified. If, on the other hand.
the code was directly verified against the requiirements, a small change to the code
can have a large impact oil the proof. making reverification nearly aLs exp)ensive asl,
the initial verification.

However. as has been nioted several titties aTove. stating the requirements for the
typical Al system is hard. As a result. requirements definitions tend to be incomplete
andi somewhat vague, which makes a convincing verification of a system specification
impossible. In cases where there is such a gap, it may be tempting to ignore system
verification, and to concentrate on validation. It might be argued that in any case
where testing can provide sufficient evidence that requirements are satisfied, there is
no need for a specification or design beyond the source code plus comments. H-low
often have vou been told "'The code is self explanatory?" The main arguments against
this view are purely practical.

First. writing code involves making design decisions, whether those decisions are
recorded or not. The code says how things are (lone. but not why they are done
that way. As a result, when it comes time to modify the code, it is far from clear
whether a particular design decision-say, the choice of a particular data structure or
algorithm-was dictated by the necessity of satisfying some requirement. or whether
it was more or less arbitrarily chosen from among a number of alternatives. Suppose
that a stringent performance requirement could be satisfied by replacing one sorting
routine by another. Further suppose that the original sort was stable. but that the
proposed replacement is not. Can the latter be freelv substituted for the former, or is
,tabilitv a necessary property of the algorithm? If the sorting unit was specified. the
question can be answered by a quick examination of the design document: if not. the
best you can do is make the substitution, run a few tests, and hope. Thus, virtually
an' change to the system requires extensive revalidation.

Second. unless there is a system design process that guides development, the system is
likely to be ill-structured, consisting of patches on patches. a result of a series of what
were perceived to be the mninitrial changes necessary to eradicate bugs. Without a
design breakdown, any subsequent change to the system requires complete retesting.
There is no way to guarantee that significant effects of the change are confined to a
particular program unit. But. a validated design gives the developer the capability to

to

Swap onle unit for another, provided that it s.tisfies the samle specification. TlItS. a
--idsvteni specification and design simplify the revalidlat ionpoe Al systems

lend io' especially complex. especially liable to modification. and especially dif-
licuilt to verify, and validate. Since specification and design documimients are essenitial
to red uIcinig time cost of reverification amid revalidationm. It is especially I mport~ant to
(levelOj) andI mlainltain specifications and designs of Al syst~ems.

Guideline 6.5 In !ipcc-tfication. and design. fricus on rfdunclitq th(. cost of re ralidat o0n
iIII~d1 I- fL-rIfiCali.IWa

It. Mutst be pointed out that only Iin exceptional cases can validatilon testing replace
verificatrion. aniyway. As Dijkstra. aniiong others. lias repeatedly ('imlliasiv/e(l. testll'

(all only showv that bugs are present. not that. thev are absent. I~ven if confidenceI iin
the correctness of the specificatlion is lacking. validation call sitill Increase ronmihileice
that rme system Is robust. reliable. and comparatively free of the typical *'mnechanical

errors---.iuch as being off-by-one in somne indexing-made by programiniers wvho (10 not
have a detailed design to work from.

Assuming thia.t the desirability of specifying the system and its parts has beein estab-
lishiec. the next questions that miust be addressed are: What specificatiol nilethiod
,liould be utsed? H-ow Much formality is desirable? What is thle added valuie provided
by so-ca lied **exectitahle specifications?"

Time advantages of formal specifications of system functionality- over Informal specifi-
cationis are substantial. Recall that, from the U&V perspective, specifications are Iin-
trodluced to support validation. Informal specifications. whether p)resented In nat ural

lamgugeor using suggestive dliagrams that cannot be assigned any p~recise meanmnne.
Call be very7 Useful in attempting to understand the systemn. But Informal specih-ca-
tions onmly support informal verification arguments. which are typically lengthier and
less convincing. The objective is to guarantee that any system that mneets the refined

-l~eiicat*ion will meet the original specification. and imprecision in the original or
refined specification makes this exceedingly diffictilt. Moreover. validation of refinle-
Iunenis of formal specifications can be at least partly auitomated. M\ost, tools based on
popuilar dhiagrammatic methods, Such &S Structured Analysis [3-11. p~erformn at least
.omie consistency checking across levels. Tools that Support textunal specification lan-
Ollages p)rovide even greater support. based on theorem proving capab~ilities.

Diagrammatic methods are definitely more popular than textual metihocs. p~rincipally
because the average system designer finds them easier to use and the average system
irnplemientor finds them easier to understand. However. full specifications of the
behavior of complicated systems in diagrams are completely Incomprehensible andl
111numaintainable. often amounting to an attempt to represent every state of the systemn
bv a box and every state transition by an arrow. As a result. speCification diagramis
tend to require abstraction that suppresses detail. This sutppression of ulet~ail limits
tlie scope of verification. Since dlevelopers of .-\ systems are comfortable \%It h formal

text ual re presen tat ions of symbolic information and(techniques [or inani ILilati ng Such
representations-that is whtat A[programis do!-t~ext-hased specilicat~ioius (or hybrid
inet hods that combine diagrams with formial annmotations) wouild seeini Stperior for
AI development.

Guideline 6.6 For, .4!. texrt-based specifications are stipfrior to dligaqrin-btvsd .perl-

1'ext iia formal specification languages can be dlivided into two types. First. there are
11191 biic specification languages, such as OB.J [181 and ACT [171. 111 these lnugs
Onle -I)ecifies a. collection of modules, each of which consist~s of ob'Jects. ()Peratiolls oil

those objects. and equations those operations sa-tisfy. Second. thevre are-mof-b-f
lan~guages. such as \DM% [51] and Z [401. In these languages. one specifies ino'lnles I hiat
are bI lt utip fromt inathieia tucal components-sets. seune.relat. liois. knin(t u
an1d so on--using a logic-based language. The essential dhifference betweeni the tw(wu
that. the tornier provides a partial de~scription Of the unlit whitle the latter providles a
inathpinatical model of the init.

A\lthoumgh there are theoretical reasons for preferring one type of torinalizatuOii oVer*
the other, tin practice there seem to be few grounds for choosing betweein tlwivi. Some
specifications have been written up both algebraically and set thporetically-e .g.. it
[Partial specification of the U~nix file system [4, 221-and it seenis that t ranlslating
betwoen the two approaches is straightforward. The set theoretic approach is m1ore,
wvidely used inI Industry, and the support tools available for the set theoreric a;)-
)roach are definitely more mature. On the other hand. the algebraic approach tenid'
to r-estrict itself to logical languages for which efficient m~echanical theoremjiovt prig0
iý possible. acid t~hus offers greater long term potential for aw~oniatedl \erihicati10im
ý.11l)pOrt. If youI are unfamiliar with the details of the two approaches. exatnuimme a
"good lintroucIItorv survey [15. 431 and make your own decision. Biit he aware that
the -;tate-uf-the-art is evolving rapidly. so the particular systemns described tin t ue'~e

'iUrveys niay no longer be the best candidates by the time you read this report,

Guideline 6.7 The state of the art in algebraic and inodf l-ba.. .'d *ript intfuloi I., roir-
1' a pidly. MVaake sui-e you have considetred the be-it ciirreti't ran didat tool, bjm

(/?oo.~iy between the two approaches.

Some programming languages claim to be executable speciflc(Li/on l.'lnquag(s. -rihe
ilea is that they provide the capability to interpret or compile a formal specificatio0n
language. thus combining the advantages of a specification and a protot 'ype. It seetins
clear enough that wvriting a specification/ prototype is likely to be less work t hanl writ -
ing a specification. writing a prototype, and verifying that the p~rototype matches theit
relevant part of the specification. REFINE [28]. for example. p~rovides mnitch of the
functionality of Z. biit transforms its specifications Into LIsP. In this case, the cost of
exectta-bihityv is a. weakened set theory-all of REFINE's sets are uimite. but Z siipp!ort,

12

description of infinite sets-and some deviation from logical purity for the sak, of
efficiency. Also. use of an executable specification language tends to encourage over-
specification. as a less abstract specification will execute more efficiently. providing ya
more useful prototype. Tithus design decisions can creep into the specification. resuilt-
ing in a commitmetnt to design feanires that are a-ppropriale for the prototylpe but

inappropriate for the deliverable system. Again, the best approach is to e'xplorre thei
capabilities of the svsterns available at the time you read Lhis. aid decide for yon rself
whether ayiv is well-suited to yomr needs.

Guideline 6.8 U(rsiig an f.reculable specification language entails the r-.4k of J,' r-

specification. but o-fer.s siub.,tantial bcnefits. Whether the benefits balaic th, ,-isk.
depends 0, thre projet and t/e choi ice of e.recutable specification la.ngitagf.

13•

7. For Designers: Designing Your Software to Support V&V

7.1 Introduction

The principal advice we hiave for sys4ein designers is

Guideline 7.1 To]hct/ituite A-r V ep the d(-sign as .. iiriplf as pomsble.

InI this section. thle mevaning of siniiplici ty' i spelled out ingreat. detailI. an in i u
possi I IitY of defirting quantitative mneasuires of design simplicity isexplored. .\ o.
lie relative advanlt ages of torn ial an 111Informal design techniques are' Considim Id.

Note that. since lesig in vo ts e Ifaio of parts. the mnaterialI onl -qperhi irt ion

in Sect ion 6.2 is eqpi all v releva iii to leslivn.

7.2 What is Simplicity?

[he notion of design slinipliciltv seenis. at first. glance. to depend on the desi-nii met hod
that is being employed. Consider. to begin withi, classical design technique,, based on
tunctional dlecomposition. A good heuristic in using these function-oriented met hod,
is: .Hini~nIsE thf- iiamlber of mt/crron nectionS of s~ubfunctions. In other words. lie
dlesign represented bv the boxes and arrows-boxes are snbfunctions and arrows rep-
resent data flow-in Fig. 71-1 shiould he preferred, all else being eqJUal. to tie desioii
in

F'ig,. 7-2.

The criteria for juidging the quality of a~n obj*ect-oriented software design seemi to be

(JItite different. The princip~al hiettristic in object-oriented design is: Let the Me.,Sayf.,
to object~s sqay --what" t.s to be donie: azssociate --how" to do it wiuth the mnost Yf I)(-/
rlasses pos-sible. .Judlged b~y rtle criterion for classical design. good object-oriented
designs %viii fare rather poorly. as they- tend to be highly interconnected.

Observe. however, that reducing the tiumber of connections among subfunctilolis tetid.k
to minimize Information How amnotig sibtuitct ions. Indeed. reduction of informiation1
How seems more fundamental thlan reducing the number of information channels. s;incet
reducing the number of channels sIimply by p~assing more complex data structures does
not improve the design. A\nd also note that the object-oriented design heuristic tends
to reduce Information flow across abstraction boundaries: many messages flow around
Ithe svstem. but each contains little Inforniation. Based on these considerations. the
following seems to be a yg eriiahll applrop~riate design heutristic.

Guideline 7.2 N~o matte. ichnt de.~ifn mnethod yon miay be utsing. tnininiuze informa-
tion lhow acroQ.,;t module ab4 lrathoi bou iidaru1e.s

Figure 7-1: A Possible Functional Decomposition

Figure 7-2: An Alternative Functional Decomposition

15

A\fter all. one of the signs tha~t you have ilenlt~ilied a tiatura.i boundary is that the
whole can be cleft relatively cleanly Into pa~rts at I hat boundary.

'I hie consequences of itsi ng inflormiat~ion flow as aý meastire of simuplicity wIll now be
co nsid ered.

74.3 Measurinig Sim-plicity

Sintia~ll~v. conisidler the case of a. knowledge-based svysteii that. c'alcu~lat~es probablilities
of hypotheses from evidence using a network of' inferenlce itiechanismns that update
probability distributions over their outpu~ts based onl changes to thle probabilitY (its-
Iriititiofl over their inputs. A typicalI systein of t his sort is hown in

Fla. 7-4.

Short lv after S)hannot! Inaugurated t~he st-udv of Informat ion Theory. Carnap atid

Bar-H[illel [t I] showed that a formial anialoguie of Shannon 's In formation mneasure

1(q) =- q, log2(qj,)

provides a nlatLiral explication of amount of sýemantic informalion when the probabil-
ities (I. are interpreted as justified degrees of lbeliet. Thus the amount of information
a.,sociatecl with an inference mechanism that transforms prior prol,.ability distributionl
qon its output into posterior probability distribution (1' Is -simply 1(I') - 1(q).. And

,o. given a desigln-level probabilistic model of the systems inferential behavior. the
exp~ected intermodule ýinformation flow can be computed.

Plie dletailIs of how to calculate this mneasure depend onl the p~articu~lar iniference inech-
atilsml used. One might hope that in cases where thle update algorithm is reasonably
cl-ficient (e.g.. the recently developed network-based algorithmi-s for Bayesian infer-
enace 1:321. or even more general algorithms for cross entropy minimization [381) a
reasoniablyv efficient analytic determination of expected Information flowv would he [)05-

ibe.N ote. however, that this calculation requires information not usually available
prior to irlplemnentation: having all the knowledge rectuiredI to actiually perform infer-
enIce when the design is completed is the exception rather than the rule in knowledge-
k asedl system development. Fortunately. expected Information How can always be
e-ýt iratedl by simulation in a completely straightforward fashion at design-timie 'is-

imig the high-level probabilistic model based on estimiates of the average Information
added by each inference mechanism.

'rthe next question that must be addressed is: Hlow can ti/s be generalized to othewr
.o,rts of .sqstems:V If quasi-probabilistic mechanisms are utsed, the generalization is
easy. But t.he generalization to systems tha~t perform. say, deductive inference is
naot so easy. The problem is that, according to the st~andardt definition of semantic
informiation. deduction does not yield new information: if v-oi assign .A a lprohalbiity
Of I anrd .1 Imiiiplies R. then B mutst also be assignedl a p)rob~ability of I to In aint aima

16

evidence 0 has probabity o hO h 0
evidence * I has pirooawy p i /Wods hi has proOaobity q I
evide m *2 has probsity p2 h,11e.. W h has probability q2

evien eN hal pobabd~ty ON hypohess hAM has probablity qA

Figure 7-3: An Inference Mechanism

Figure 7-4: A Network of Inference Mechanisms

17

consistency. So what is needed is a sense of information such that if .%oil initiallyv
kniow that .A but not that 8 and you later succeed in deducingc B from .4. youl have
OMal nd Informatiion.

-1hills. liefining a. (I1 uaititative !measure of siruphicitv that, call provide Iesigii-ti nu -;u id-
ciincc III thle qu1eit to support. V&V is only a partially Solved problem~. [lut 111,:' 'v Al

M\Sti~iSare(of the probabilistic sort where a useful mneasuire ha~s been a i readv keen-'

delltie(l.

Guideline 7.3 If a .l'iinphily i9 easure i . available. a~r It to eva'ln"h Ili(vi-lwit i(
i /lyof rodaff'lli dilfr rtn t desligns.

7.4 Forn-al vs Infornial Designs

If the sole putrp~ose of documienting designs were to provide` guiA1datice to thle tripie-
mentors, dien the defects of utsing an informal or semi-formal design nietliod-n-attiral
language. Structured Analysis. Structured Design. and Commercial Products suIchi as
.S.DT. IDEF. etc.-inav be b~alancedl by the main advantage: any progratilliler Can
tinderstand designs presented in these formalisms with little or no training. But, when

strong verification of the code against the design is required. the advantages of a more
formal design dominate. In fact, since design is decomposing the, systemi into Part,,.
-'1pecItv-ing those parts. decomposing those parts into subparts, a~nd so on. thle adlvaui-
tages of formal design are exactly the same as those of formal specificat ion. already
dlescrib~ed in Section 6.2.

\VWeexplored three different approaches t~o explicating this mnore generally applicable Conucept
of Information.

" Taking a iemantic approach, we employed a broader class of models (Iinchil;;ln,'t. a
urn mnodels) that distinguish between non-trivially logically equivalement. enuice. an
left., the definition of information remains the same.

"* Taking a syntactic approach, we measured the complexity of thle simplest derivationl
of B from .4 and used that as the measure of Information gained in inferringBroi

" Taking anepistemzc approach, weused a-fine grained" psrmclgcad'tle
a new concept of information in terms of the old

1'(.A) = I(Knows(system, A4))

W~e then showed that t~he sem'Lntic and syntactic approaches are special cases of thle episteinic
approach, so our subsequent research focus~sed oni the epistemic definition of I nformnation1.
(This one of a number of cases where mainstream AM techniques may have etiormnotis im1pact.
onl the V&N problems raised by Al.) At the timie of the writing of this manual, the research
is niot sufficiently mature to provide any immiediate guidance on how to measure iiiforiiat ion
flow in non-probabilistic systeims. bitt it. does 'diow ronsiderable potential.

8. For Programmers: Choosing Programming Techniques

In this section, we discuss the imlpact of the choice of the Al programming techniques
of Section 3 on the appropriateness and effectiveness of various V&A' techniques.
Guidelines for choosing programming techniques that simplify V&V are presented.
A.so. for each technique, we comment oln the difficulty of providing a given level of
verificatioit. which verification techniques might usefully be employed, and how and
what to test to provide convincing validation of the svsteni.

Although this list of techniques is far from exhaustive, the main objective is to provide
you with some examples of how the convwntiona-l wisdom of VkV can be applied to
Al development, even thouigh many AI programming techniques are never considered
in V&V textbooks. If a programming technique of interest is not listed, you hioidld
J)e able to add it by using the following techniques as models.

8.1 Data-Driven Programming

Recall that the essence of data-driven programming is that data triggers the retrieval
and running of associated programs. Typically, these techniques will be used in a
situation where a specification specifically calls for a certain function to be performed
for a certain independently-specified program to be executed when the data satis-
ties a certain condition. Thus. the "Incremental" verification problem introduced Lv
the use of data-driven programming is showing that the data-program association is
correct according to the specification. and that the condition on the data is always
tested when appropriate. (This observation explains why data-driven progranimincg
is such a useful technique. Saying something like - ,t'henet.,er the data satisfy comdi-
fion C. then do A" is a very natural way of specifYing desired behavior. Verification
of the code that tests the condition on the data is 'generally easy. as that code is
simply an optimization of a naive implementation of the condition, and the verifica-
tion of the associated programs must be performed anyway. So use of data-driven
programming-as opposed to more traditional techniques that do not treat the condi-
tions and programs as "first-class objects" -is straightforward. because the structiure
Of the code more closely matches the structure of the specification.)

So our first guideline on choice of programming techniques to support the V~kV
process is:

Guideline 8.1 Use data-driven progral)milg when. but only when. the form of the
'.pecification naturally calls for it.

If this guideline is adhered to. the increriiental validation problem can usually be made
tractable, even if very strong fownial validation is required. Validation of the data-
program association should be trivial whetiher the association is explicit ly represented

19

in a data structure, implicitly represented by inclusion of a miethod definition wit hin
the lexical scope of a class declaration, or whatever. No matter what p)rogram~fiIIgI.
language mechanism is used to create the association. exactlY wha.I data is associated
wvith wha~t progra~m should he clear enouigh. The p)otentially difficul t part of tile
validation is assuring thlat the tests a-re alwvaYs appled when appropriate. Probably
the most straightforward solution is to use somle sort of active dlata striwtiires with1
a well-defined Interface, so that. the code for testing thle condition on dhe data. ca~n
be integrated with the code for changing thle data. Most mi'oderni languages (Lisp.
C'++. A\da. and so on) provide support for encapsulating (laI.a structures. so this
straighttorward solution can be easily implemented.

Guideline 8.2 Encapsulate data .4lructiires that coittain data willh as~soc,,itil prtme -

(I-fi'tS. it.sing tlie (Zjpprofpr(Liate1jiutstic inf chanistfin (if fther-e i., (lit).

One prominent case when these techniques cannot be applied Is when either (I) Pilo-
LOG IS used and the data associated with programs is simply a. subset of t Ie PROLOG
database, or (2) a shell for buildling rule-based systems is Ltse(l. thle data. associated
with programi-s is part of the database thle rules operate on. arnd the dlatab~ase dhoes
riot supp~lort attachment of daemonos to the dlata. (For present. purposes. a. 'd~if

is simiply a lprocedlure that can be associated with data. that will execute when the
data is changed. That is, it is a basic data management mechanism for su~pporting,
data.-driven. programming.) In this case. the best solution Is to rewrite the program
s-o that the data is not stored in the PROLOG database. If this is infeasible-becaus~e.
for example. the data 1E being used in Computational reflection-the next simplest
,solutioni is to distribute the data-program association amiong lie 'individual PRoLOG;
program clauses or production rules. For example. if the clause

P(I. Y) Ql(X-Zt) , Q 2(x, Z2). Qn(x. Z').'

m11~igt change the Prolog database so as to make condition C true, and if A Is to be
ptertormnled whenever C' becomes true. the clause Should be rewritten

P(-'. Y) Qi (,r, Zi, Q 2 0', Z2), .- , QZ(.I. Z,") , ((C -> .I)

Thie incremental verification problem then becomes assuring that. the conditionals
have been added everywhere they are required-which can require an arb~itrarily cotil-
lplex anialysis of which clauses might make conditions on the dlata true when thev are
called. Thiis may not be difficult in a particular case, but the following guideline
p rov i des sou.1nd general advice.

rile USe of :- for if and , for and is standard Edinbuirgh PP.OLOG notat ion. We will also
Ilse -> for the niore-or-Iess standard conditional operator.

50

Guideline 8.3 Avoid using dala-driven proqrammsi9g when the data is .4orrd II a
globally accessible database that does not .aupport attach ment of daeinot.% to fli , I,,Lh.

An alternative, in the case of PROLOG, is to I)mild data-driv'n programniul ng support
into a. mneta-interpreter. This is an elegant solution. but typically tar ha(rder to verify
than the rewritten rules.

Use of data-driven programming does niot. much affect systetn validation. \Vheun a
data-program association is dictated by the requirements. the cotr-citnif..S ol the('lat a-
prograir association will be adequately demonstrated in extended use. ThIe l)rificipal
added burden in validation is making sure that. there are io cases when. given tihe dla ia.
some program should have been called, bitt was not.. If the data can he miomitoed
in lependently--by rt lining under a debugger. for example--sainpliiig vallies iav
raise the level of confidence in the cornpleten -,. of the implenientation ol I hle aia
p rograin assoc l I, tol.

8.2 Discrimination Nets

Discrimination nets are, in effect, an optimization of a specifie(d more-or-less 'ltat'"
categorization. That is. the specification of the categories will probal)ly look some-
thing like

[f P1 (.c). then ." is a CI. If P2(x). then x is a C2. If P3 (x). thn x .s1 ,a
C i I Q3(30-). .Clse X is a C1-2 ...

. rather formal verification that the categorization implicitly definied by the ie',ts
in the net correctly correspond to the specified categories is usually feasible. The
optimization used to build the tree amounts to observing that there are logical de-
pendencies anmong the properties, so the results of previous tests can be ise(d to
,,implify subsequent tests. What must be verified is that. if category C is associate'd
with leaf node N\. then the series To(.r) = r0 , TI(x) = r1 . T2(.') = 2,. . . of test reiilts
associated with any path leading to V implies that r is indeed C. Since the te;rs
were chosen so as to have this property, it should be easy enough to show that t hey
(1O0

Guideline 8.4 1,7zen optimizing the trsts in the net. consider not only run-t1,ie
etficiency. but the difficulty of demonstrating correctness.

One of the advantages of this programming technique is that a relatively limited set
of test data can provide a great (teal of confidence that the classification is correct.
Generally. the level of confidence rises more quickly if the intermediate categories
dlefined by)artial test results are natural, rather than invented. More important.

51

revalidation is simplified after making the most common change to the net . addin" niew
categories (Including refining existing categories). This can b~e a~chievedl by associating

eaIch category C' with a. collection f r,. Fl. F2...)} of Independent primitive feal.iires
that. jointly guaranttee nuenibersirip in C . and then treating the optimization problem
-is being one of ordering the rests foi- the F,. In the ideal1 case. each initial segmuent
of the Ord~eredI list of featuires wvill determine a natural category. i.e., each test will
(letermiltie which niat itral subcategory of a natural category the given informal ionl
belongs to. (This approach w~ill prodkice discrimination trees, rather than sorilet in~es
more efficiertt general nets.) In other wvords. the dhiscrimni nation is lba.Med on a mtat in ral
classification hierarchy.

Guideline 8.5 Wh/en po'il.ba.st the di~scrim'nination on a natarial cla.-,;Ificn~ioir
/I IC f1(.1 rch Y.

8.3 Meta-Level Control Structures

The principa~l verification buriden imposed by mieta-level control mechanismis is that
COMMON, Lisp programis containing undisciplined uses of function can be dtilhcinlt
to reason a bout iisi ng conventional specification formalisms. Typically, ;peci hca.t]Cions
will either include a very procedural representation of the algorithm to be used. or will
be formalized more abstractly in a higher-order or set-theoretic specification language.
Therefore. the problem can be minimized by using only closures that need not close
over any variable bindings, in which case the closures can be treated as mathematical
functions that contain nio information about the environment. The same can be -aidl.
mutatis rnutanclis. about the itse of SCHENIE's procedures.

Guideline 8.6 11"hen 'in~pit minc tiing inetcz-level control .striictu;'es. amoid itsiny c/o.ý/fly

or'cr flint lions that contain flice variables, to simplify verification,

A major advantage of rising mneta-level control structures. from the standpoint of
VkV. is that sorne requirements on the functioning of the system might only- be
verifiable via proving-either formally or i nforniallv--that its control s~tructutre has
certain desirable properties. For example. we might require that a. sytemn which
contains several routines that might be applied in problemi solving to ýeiect annionra
them falirly. Proving such properties is often much easier when control strlcttures aret'
explicitly represented at the meta-level.

Guideline 8.7 If ver'ification reqitires proving that the programn s control .strit'rL t lv

ha~s certain pi'opf-rites. considcr represienting control explicitly rising nieta-lerri' control
Structitres to .-imiplifyrj erificationi.

Validation of systems t hat ninake use Of meta-level control can become mnore coml-
plex becautse there is no longer a mieaningful distinction between data, and cont nol

.52

A formal requiuremenit for, say, exhaustive lbranlch testing cannot be satisfied. be(-
Cause newv branches are created at runi-timie based on the data. From an uzisvin-
pat hetic viewpoint, standard implementations of meta-level control structures might.
be comp~aredl to self- iuoclilyi ng code-- which is l~iought to be difficult-to-limpossible
to stronigly vahida~e--in this respect.. Rather than relying on the utsual criteria for
clet~erinining the extent of validation. ad hoc arguments that. the desired level of v-ali-
(lation has been achieved will lbe iiece-ssarv. More effort Must. be put Into definimng ande
dletending validation proceduires wvhen meta-level control myechanismis are employed.
(Those p~rocedutres maay not. be especially difficult or expensive to perform. however.)

Guideline 8.8 Although standlard criteria for comprehen~siv~e validation tmug be Imi~id
to s~atisfyj. ImnP411 uiii 'ions Iv wi/imruta-/c rf-l control -drtrictures are riot necfeýsariq i//'l-
ficuilt to calidat((i.e. It jir quenitlij Is iiot tijificadi to exerci.SLt sutch structures it? W(..
that p)'riilu('iidf ronidrble' toti/idlfiwcd Majt theyj pei~forin ais they Sihould).

8.4 Deductive Information Retrieval

Deductive information retrieval. being based on formial logical deditction, can be an-
other good candidate for formial verification. But, as was noted in the description of
the technique. such systems typlically deviate from. -logical purity" in some way. and
the extent and nature of the deviation can Influence the efficacy of formal verification
techniques. First. there may or miay not be a mathematical semantics that determinets
whether derivations are correct or not. Second. if there is a formal semantics. the
dleductive tehiu nvo ay niot be complete with respect to that semantics. i.e..

the dleductive technicque might niot he strong enough to derive all conclusions that fol-
low% from the facts stored ini the kniowledge base. Third. the deductive technique miay
or may riot be sound with respect its formia-l semantics. i.e.. the deductive techniqume
mighlýt allow incorrect conclusions to he drawn from the knowledge base.

Guideline 8.9 If the exrtenit of the consequence relation I's under youri control, both
vemeifi catzon and validation will be greatly simplified if you choose a relation based on (I
inathern atical semantics. rather- than onf that can only be dIffiuied in p)rocedura~l tf i'mi,.

Guideline 8.10 Make the deduction 1rchnIquc(as close to COMnplete as, perforwnn1411Cf
constraints allow. And make sure that all obt'zoms coniclmLsions will be drawn fromn
the knowledge base, because missing obvious con-clusi1ons will rimake the user doubt the
utility of the system.

Guideline 8.11 Be exrtremnely hesitant to give up on soundness. Even if you cart
arytue that no incorrect conclusions will be drawen lin practice. utse of ant unsound hf -
dtction techniqu~e wvill tend to undermine the user's confidence in the system, makinge
validation an rd e validation maucl itore exrpen.,e e'e and di tficuilt.

Whether a "nice" deductive technique exists Is often det-ermined by the specificationl.
If the specification determines exactly what. concIluIoS01.- should follow from the facts
in the knowledge base. the programmier munst. jimplentent. that particuilar tiOtion of
coiise(Itteitce. no matter how niessY it minav l)e. f Specifi(ations soimetinies. Iiiterdeter-
nian1t., the conseqjuence relation. b~ecause a, good specifier knows that most standard
nontios of logical consequence are too expensive to Ittllleml efficiently and chooses
to leave idie details to the programimer~s dtiscretion.) 'omnpi muIg logical puLriry for
(4!iciencv sake is a practical necessity, and the desired effect ,of a compromise are
uisually impossible to express except in form of an algorithm. So most specifications.
will p~rovidle a p)rocedluralI rep~resentation of the desired consequence relation, amid lie
programmner's task is sim-ply to Impllement that algorithm. In this-, the most coiniznoi.

cethere is tio special verification or validation problem associated with the (ledtic-
t[iol engine: It is simiply a matter of showing tha~t an algorithin has been Imnplemnieted
correctly. Mioreover. somne languages and shells-most aotably PRO LO(;- -IroiOVI Icmi
(leduictiomi engine which need not be verified and is already well validated.

Guideline 8.12 W~hether deductive information retile va trwill be used-' 4ioald be de--
iet-mined byJ the for-m of the .specification of' the .system, *s retrieval capabditIf~

There can be a second set of \'SV problems associated with (dedluctive informiation
retrieval: the general knowledge in the knowledge base must. be validated[. (Verifi-
cation is uisually trivial. The general knowledge is given in the specification. ii, A
formn that ('an lbe directly coded in the knowledge representation formalism.) If. when
rthe sy-stem is used, the knowledge base consists mainly of da~ta, validation may be
,ýtraighittorward. with just a few carefully defined retrievals being sufficient to showv
that the general knowledge is correct. But typically. the general knowledge is exteli-
-ýtve. consisting of hundreds or thousands of general f*acts. Wiethere are classical
techniques for verification and validation of such coliections. suich as showing that the
knowledge base is consistent by showing that it hias a mnodel. andl somle progress has
been made on defining analytical techniques to showv that a knowledge base hias ot her
desirable properties [41]. there is no substitute for extensive validation testinGa Ini
most cases. this is not a problem for the programmer. because the specification gaives
the (possibly buggy) general knowledge. but it is still worth noting at this point.

Guideline 8.13 The power of deductive inform(Ltion i'-tirlei'l /s tlhnt the kinow/u/ge
can be combined in iinexpected ways to draw '.Lurpl-iseng coUClU-Sions. It Is hard to
gutarantee all these conclusion~s will be correct, even ichent yJou can guatrantee that thty
areT (Ill consequences of the general knowledge and the particular data. [in othu' ivord,.
it 1.s hard to validate knowledge bases.

8.15 Production Systems

Production systemrs represent a miore radlical departure from conventional ptogramin
wning than the techniques dliscuissed above, so muILch so that. our notion of' the "III-

54

cremental" verification and validation problems associated with a programmning tech-
nique is not really meaningful *in this case. There is aillumntn analogy that
can1 I)e drawn with deductive information retrieval, however. The recognize-act loopi
call generally be verifiedi using conventiona~l techniques. but Ihis code is iisially qluite
sinuple compared to highly optlimized constructive theoretm prover. (This is not in-

varialblv true, however: some riile-based systemn shells provide very comp~licat~ed rtile
selectioni tiled liaiisms.) In addition, the recognize-act loop is usutally "give(ii*' by the
p)rogrammuing laniguage or shiell being used. At any rate. verification and validation of
the recognize-act. loop Is not the difficult p~roblemn; verification andl va~lidla~tion of thle
ruIles 'IS.

The difficultyv of verifying and validating a collection of assertions. (liscui-ssedl II inth

p~reviouis section. is even greater for rules. While a general assertion. If di f. tri-i ihelt
4. then it Is truei that B. mIay used as if it were a special ca-se Of a. produIct joltr'll IP. i.e..

as I] it I., trut(that .4. add B to the knowtledyf base, time verificationu te(IIIII(ILICeS 1iSee
for riles (10 not generalize In a straightforward fashion t~o arbitrary produict]io rules.
A- rulle's action-part, can make an arbitrary change to some data structu1re. [If that
data. structure 'in some sense represents external reality, then the change naltUrally
corresponds to a~n assertion. and the verification techniques, uised for (ledlictive infor-
mation retrieval can b~e employed. But. as experience with PROLOC. 1rog1rtnrningil
has demionstrated. it is not always possible to find a nice "declarative initerpretation"
of transformation rules.

Production rules can be used to perform steps in arbitrary algorithmns, and It Is
generallv the algorithmi or the function computed by the algorithmn that is found InI
the specification. not production rules. It may be easy to verify that a collectionl
of rules considered in. Isolation is an Implementation of somie algorithmi t hat. can be
verified against tile specification. b)ut the verification that. when combined with or let,
rules. no problems will arise max' be completely infeasible. After all. thle polint of
tile production sy-stemn architecture is to encourage surprising interactions amlong. thle
rutles.

Guideline 8.14 [f you have a functional specification aInd stron~g V V V iee-qtuirf 111iill.'
Production systems are riot a good candidate for 10leeuat 1.

Valdation of knowledge bases is at least somewhat simplified in virtutie of useful p~rop-
erties of deduction. For example, deductive Inference p~reserves truthi-if h le prenlii.VS
are trite, the conclusion must also be true-and hience is inotiolottic. i.e.. niew data
added to the knowledge base cannot undermine previouis conclusions. W,,ithlout somie
sutch properties associated with the application of the p~roduiction ruiles. verificati101
and validation of a rutle base are practically impossible.

Guideline 8.15 .Attenmpt to define invariants that capture till re/c r-ant icFqtu .ir III(it/s

on the function Implemented by the production system. If you cani deffinef .,ai in car-

ants, the -.aine .4ort of techniques usedl in 1 & of deducttt'e information etie e'ial~l (-(In

be appie1:)

8.6 Frame Databases

In contrast to the other piogrammnitig techniques we have consi]dered. t lie nse of I'ra •e
databases has no direct im:pact. on the efficacy of V&,V procedures. In fact. wil Ii tlhv
advent of (CLOS-especially the CLOS Metaobject Protocol-Com mO LiNsi- iinple-
nientations of advanced features of frame databases tend to be simple and .i raidho-
forward [4 1].

8.7 Backtracking

Whether backtracking presents anv special verification difficulties (hepeul(k ,,n I•,
type of backtracking and the specilication. If the backtracking algorithm to Ib, ,s,
is specified. there is no particular difficulty in verifying that it has been imple.•leicdtu.,
correctly. lit. problenm; can arise when the algorithm is imprecisely specified -- as %%c
have alreadv notedl. itany specilication languages are not good at specifying ,ompli-
cated control regimens-or the algorithm used in the implementation is a 'qualita-
tive" optimization of the specified algorithm. An example of the latter is r,'placing
naive dependencv-(virected backtracking by more sophisticated reason mnailliteiace.
In this case. verification of the algorithm can involve very complicated reasoning
about state. The difficulty of verifying the correctness of such an algorithm might be
comparable to verifying the correctness of a clever garbage collection algorithm,. thait
is. it stresses the present state-of-the-art.

Guideline 8.16 .lore solph•/.sticateti backtracking technzques art. miuch hard, r to ,t.-
i]y than .;imple r tech n iquis: ,.e th in only if efficiency demands it or com(irit nti /t/
iveak informal ifiification is siui.ficcnt.

Even complicated backtracking algorithms can be validated in a straightforward fash-
ion. however. But. just as in the case of meta-level control structures. coMvemliionali
validation r'equirements are somewhat inappropriate to cases where substantial meta-
level reasoning about control is performed.

Guideline 8.17 Although inplinc loations of advanced backtr'acking tr'h,,l n at, it
"0o (.specially diffictll to validate (i.-. it .s ?tot especially difficult to c.rtrci,,e the, ini
wags that provide considerable conJidence that they perform as they should). standard
validation criteria mayi be hard to .!atisfy. If such criteria are Pzternally in po.std
on the det'clopinent effort. use the more primitive techniques. such as chronological
backtracking.

56

9. For Documenters: Documenting Your Efforts

It has often been asserted that DOD-STD-2167A is not really appropriate for .\Al hle-

velopment because, Ito matter what Ihe standard may say, it is hindauemntallyv ,a.med
on a waterfall development model, while Al development is usually based'l on all it-
erative protoI.yping muodel. One of tlie prinmcipal theses of this nmanual is that 2167A
is perfectly appropriate to Al developiment-in fact. that it provides excellent gIiiih.-
lines to help ensure that developmneiit will produce a well-engineered svsteuli it
is understood as requiring the development of certain lifecycle products. rather t han
dictating a particular lifecycle process. (See Section 5 for the arguments that relqirel-
ments. specification, and design documents are as valuable when prototyping as when
waterfall development mriodels are emlployed.) The adaptation reqired to fit 2167A I o
AI development is essentially the samte as that to fit it to Boehm's Spiral Model 6(il-
the requirements definition, system specification, system design. (ic.. must be I r•e•altd
as living documents that are revised and expanded throughout the lifecvcle.

The reasons tor documenting can be seen most easily by focusing on the maintrealice
phase of the lifecycle (although a change in personnel during development provides
nearly as good an illustration). The software was written to solve some problem I)v
performing its task. When the problem changes. as problems have a temldeticv 1o
do. the software must be changed as well. If no formal record of requirements was
generated. there is no documentary guidance available when attempting to decide

whether making a change will interfere with the system's functioning. Will the chane
affect essential features of the implementation, or only accidents? If essential feat tires
are affected. are they affected in a significant way? The requirements statement
should answer these questions by saying what the svstem must do in order to solve
the problem. What the system actually does. how it does it. how we determine that it
does what its supposed to do. and so on. are irrelevant to answering these (iuestions:
this document says what counts as a solution. 'not which solution was implemented.
Therefore. the system specification. the system design documents. verification traces
and validation suites, and so on. are irrelevant to the requirements statement.

Guideline 9.1 The requirements statement can and should rtad (is if it were writftei
prior to the other documents, aq It i.t iM the Waterf'all model. ecen if it is thf hr,.I
do,•u nenI actutally coinpleted.

Moreover. all other project activities-specifying the system, designing it. and so on-
are influenced by the staff's current best understanding of the system requirements.
For example. the system specifier must have some guiding idea of what the require-
mnents are. tor decisions on what the system will do are determined by the specifier',
ml1derstanding of what it mnust do: the specifier's job is to choose and describe the

specification that will be (or has been) implemented from among those that satisfy
the requirements. Even if the requirenments are not well understood at the time spec-
ification conmmences--the most common case in Al system development-it i, well

57

worth writing the best current mnderstanding of the requiirements down, so that there
will be a record of the basis of the specification. AIICL. unless the dievelopment staff
consists of a single person. etficlency.' demands that. the specification be written down,
to ensuLre a common understanding aimong the staff. And since the first project ac-
tivitv is a.n attemnpt. to understand tile probl)lelm ad possible approaches to solving
it., it. makes sense that the first. document l)roducl'd should be a record the results of

that activity.

Guideline 9.2 Thi first dinaft of thl requireiie. ids .tateime nt should be written at the
beginninga of the project, as at basis jfor all oiiber iq.ec+!]ych activities.

But these same a rgunients can be applied. ,nntt.a.tis nntitandis. t.o the system specifica-
tion: tile purpose of the specification is to dlescribe the system as a --black box" -it
(lescribes the functionality of' the sy.stem, its extet'ral interfaces, and so on-so itone
of the information in documents that are prodLuCel later in waterfall developments is
relevant: all other activities-design, acceptantce test. definition, and so on, excepting
only requirements lefinition-'depend on the specification: it is well worth document-
ing the best current approximation to the fidli final specification. both as a record
of presuppositions of other activities aind to Itelp ensuire a (oniniot tunderstanding
among the project staff.

Guideline 9.3 The ..ystem specification can and .hould read as if it were written
after the requirements statement, and before most code development and the .y.stem
.Tpecification should be updated throutghout the de,.,elopment life-cycle. A first draft of
the .specification .should be written (it that time. as a hbasis for all subsequent lifecycle
acti'cities.

The general conclusion should be clear at this point. Each document is intended to
serve a certain purpose in subsequent development and maintenance. The ordering
of these documents imposed by 2167A is really determined by the purpose of the
documents, even though the ordering is that actually employed in waterfall devel-
opments. (This is no accident, of course. The waterfall model was suggested by an
examination of the "natural" ordering of the processes-you can't specify a system
11nless you know the requirements. you can't design the system without knowing the
specification, and so on-without regard to the fact that even the final stages of sys-
tern validation can reveal additional requirements on the system which entail revision
of every lifecycle product.) Guideline 9.:3 can be generalized to:

Guideline 9.4 Each document should be produced in initial draft form. in the order
called Jor in DOD-STD-2167A. and .hould be updated throughout the development life-
cycle. Every document should, in final form. read as if it had been the product of a
(L'(tprfall de velopmnent effort.

58

•.Jointlv. the (documents serve as a sort o" rational reconstruction of the development
t'ffort. a description of the order in which activities would have occurred if only we

had known then what we know now.

59

10. Notes on Testing

l'estinig A.I sof'tware is iiot radically different from testing any other type)" sol' wi re.

[ihe satne 0enera.l rules apply: test on typical inputs, tvt-s4 around (rirteial fl(hft.l. /SI.,t
f.rhau.sti•,•lI (e.g.. e.rercising all statements. exercising all branche.s) iff'ra.'ible. ,uiid
0 on . Sect ion S contains comments about the leasilfilitv of si.ronIg validation as a
tiction of programuminlg techniques. This section covers the few differences bIetwe*en

testing AI software & testing other software.

First'. it should be noted that extensive testing-from the subunit to the svstelii
level--usually plays a central role in Al development efforts. Debugging consist.s of
testing in the context of an error, followed by changes to the code in preparal ion br,
retestinug. Al programmers. especially LISP programmers. become very ophlhist icaltol
at del)igging dluring development, and good Al programming environntiets ,provide
sophisticated debugging tools. The principal difference, from the viewpoint of \", \
between testing during debugging and validation testing is that the fornmer is tlv1ih less
formal. Debugging typically uses ad hoc tests rather than a test suite derived from a
specification. and eschews any recording of the results. (However. a number of studies
have been made of heuristics for debugging Al programs.) Thus. one strategy for
enco,,raging Al programmers to employ more comprehensive and systematic testiling
strategies is to create tools that make validation look more like debugging. Fhe ASP
tool described in Appendix A is one example of such a tool.

Second. there is a very important practical question that has not, been addressed vet
While developing statements of requirements and specifications may be desirable from
the standpoint of V&V. many AI development efforts proceed to develop code b)ased
on an inf'ormnal understanding of the problem, together with feedback from uUser'- on
a ;eries of prototype systems. At the conclusion of the development effort. the wilv
(locunmentation of the system is the source code and some sort of user's mnanual. How
can validation proceed under these conditions? The most promising techniiqles for
improving testing in the absence of a good specification are automatic generation ,,t
test suites and so-called -program mutation" techniques.

Classicallv. automatic test suite generation has been based upon strutctural anal.\ Is
of the program, since the program is the only sufficiently formalized repre.entat loll of
the intended behavior. If other lifecycle products axre sulficientlv forumalized. rets ,ai
be generated from them as well. What the tests reveal about the software depend;
on the lifecycle product from which they were derived.

"* Tests derived from requirements contribute directly to validation (provided
there is good reason to believe the requirements have been stated accuratei.0.

"* Tests derived from the specification contribute directly to demonstrating mor-
rectness of the implementation, and hence indirectly to validation.

60

* Tests derived from the system design contribute directly to verification of th'
implement ation.

* Tests derived from the code itself can demon strate that the imiplemuentation is
robust. that it is free of minor "typographical" errors, and so on.

All tliese sorts of Iosting ia'e desirable. and are mutually complementary.

A\ good example of deriving tests from code is path analysis testing. a. method whose
scope and limits are well undlerstood [2:11. But only in special cases can all auto-
matically generated test suite guarantee that errors are detectable: restrictions Oil
the sort of error sought [8] or on the sort of program being tested [24] are required.
The consensus of the conniunitv--as reflected in. e.g.. the OSI Conformance Testin,_
Methodology and l"ramnework test case selection guidelines-is that expert .ii(lgnienti
and experience are reqired to sutpplenment informal heuristics.

In cases where an appropriate formal specification is available. fully automatic test
suite generation may well be teasible. For example. communication protocols are
often specified using finite state aultomat.a or Petri nets. For simple protocols. ,otch as
TCP's "three way handshake" for connection establishment, path testing tectniqueý.
supplemented by a formalization of the OS heuristics can be ,tsed to mechanically
generate a reasonable conformance test suite.

Program mutation techniques [1.0]. on the other hand, can be usefully applied in
most projects. Given only relatively weak restrictions on the program L20]. multation
testing can reveal all "typographical" errors in the program. Such errors are usually
among the most frequentlv made and difficult to detect: good programmers getter-
ally understand the algorithms well and design correct implementations. butt are not
immune to simple coding errors, suich as being off-by-one on a 10oop exit condlit loll.
Developing automated support for mutation testing is clearly feasible, based on the
analogy to genetic algorithms, although no attempts to do so have been documented
in the literature.

6i1

Bibliography

[1] L. Aiello and G. Levi. "'The itses of ineta~knowledge in Al systemns.' Proccdfngs
EC...-S4. M984. pp. 707-717.

[2] .I A.llen. Anatoinv of LISP, . [c(,raw-Hiull. 1978.

[3] Y. Bar- Hillel, Latiivage and Infoirmation. :\ddison-Wesley, 19(i4.

[41] M. Bidoit. NI. Uaudel. and A. MalbO1issin. How to make specificationls 11orWe iln-
derstandable? An experiment with the PISS specification lanlguage. Rapport
de Recherche 3 [3. (entre l'Orsav. U i'versitL de Paris-Stid, 1987.

[5] D. Bjorner and (C. Jones, Forinal Specification ,." Software Developtnent.
Prentice-Hall. [982.

[61 B. Boehm. -'.\ Spiral Model of Software Developnment and Erldia:icernent.'" IEEE

C'ompteier 21(5), Mlav 1988, pp. 61. -72.

[7] 1. Brat ko. Prolog progralninm g for Ar\tificial fntelligence. Addison-\Veslev. 1Yt.

[8] M. Brooks, Determining correctness 1)v testinlg, Report STAN-CS-80-S04. De-
partment of Computer Science, Stanford I iniversity, May 1980.

W] V. L. Bryan and S. G. Siegel. Soflivare Product Assmrance: Techniques for
Reducing Software Risk. Elsevier. 1988.

(1.01 T. Budd. R. DeMilio. R. Lipton. and F. Savward. "Theoretical and Enipiri-
Cal Studies on I'sing Program NMutation to 'Fest the Functional (Correctness of
Programs." Proceedings of the Seventh ACN1 S.vinposium on Principles of Pro-
gramnhing Languages, 1,980)

IIt IR. (Carnap and Y. Bar-Hillei. .1n outline of a tiheorv of ,semantic informna-
ion. Technical Report 247. Research Laboratory in Electronics. M.I.T.. 1952.

i Reprinted in [3].)

12] 1K. M. Chandy and .J. Misra. Parallel Plogramn Design. .\ Foundation. .\ddison-
Wesley. 1988.

[13] E. Charniak, C. Riesbeck. D..NlcDerniott. and .1. Meehan, Irtificial Intellihence
Programming, 2nd edn, Lawrence [Erlbaiuri. 1987.

[14] W. (lancey, -The advantages of abstract, control knowledge in expert system
design.- Proceedings of AAA,[-8:: 19t83. pp. 74--7S.

[151 B. Cohen, W. T. [Harwood. aIl NI. 1..Jackson, The Specification of Complex
Sy.stems. .\ddison-Weslev, 19•6.

[16] R. Davis, `VMet a-rules: reasoning about coutrol." Artificial Intelligence. 15
(1980). pp. 179-222.

[I7] H. Ehrig and B. Mahr. Fundamentals of.-\gehraSic .5pecification. Spiinger-\'erlag,
: 1985 11: [9S9.

[IS] J. Coguen, "Parameterized programming," IEEE Transaction.s ()i Software En-
Ai neering SE-IO, 198-. pp. 528-543.

[91 F. van F-larmelen, "'A classification of nieta-level architectrs. in [25].

[20] .J. Gourlay. 'A. mathematical framework for the investigation of rtesting." IEEE
Tr,,nsaction on Software Engineering SE9(6). November 1983.

2 i (C. C. Green. el (l.. Report on a. knowledge-based software asisistat.. R\AI)(' Fl
83-195. Rome Laboratories. t983.

[22] 1. Haves (ed.), Specification Case Studies, Prenmlice-Hall. 1987.

[231 \V. E. Howden, "'Reliabilitv of the path analysis testing itrategy.'" IEEE Tram,-
act Otis on Software Engineering SE2 (3), September 1976.

[24] \,V. E. Hlowden, -'Algebraic program testing," .Acta !nformatica 10(1). 1971S.

1251 P. JJackson. H. Reichgelt. and F. van Harmelen (eds.). Logic-Based Knowledge
Representation. MIT Press, 1989.

E2 5] L. N. I'anal and .J. F. Leminer (eds.). Uncertaint y in Artificial Intelligence.

Nort h-Holland, 1986.
[27] A..\. Linden. ".\lternative Approaches to V&V for AM Systenis. .\.AA.I I'rk-

.hop aon ,alidation and Testing of Knowledge-Based Svstenms. Autgust 1988.

'28] T. .\. Linden and L. Z. Markosian. 'Transformational Synthesis rUsinig REFINE."

?29! T. .\. Linden and S. Owre. Verification and Validation of.Al Software. Fechlnical
Report. TR-3209-02. Advanced Decision Systems. 1988.

.i:0] T-heodore A. Linden. -'A .ieta-level Software Development Model that Stupport-,
V&V for Al Software." Expert Systems with Applications: An Internatiorial
.Journal. Pergamon Press, LA4. Nov. 1990

[311 M.. Minsky, --A framework for representing knowledge," it [47].

r32] R. E. Neapolitan, Probabilistic Resaoning in Expert Systems: Theory and Al-
gori thns. Wiley. 1990.

[33] P. Norvig. Paradigms of A. Programming: A Common Lisp Approach. Morgan
I<a ifruaminr. fort'hcommrintg (!)991).

63

[3414 M. Page-.Jones, The Pr-actical GUlide to Structured St-stemrs Design .Second Edi-
tion. Yourclon Press, 198S8.

[:i M. Richer (ed.), Al Tools and Techniques. .\ Ilex Press. 1989.

[316] W. \W. Royce. "M anaginig the development of' large software systenis.- Procced-
jn"'s of 1VESCOV-70O August L970.

[371] R. Shank anid R. Abelson, Scripts. Goals. Plans. and V.~udersrtanding, Lawrence
ErubI)R.U1.[977.

[:N8] IJ I-. Shore. -Relative entropy, prolbabi list ic inference. and Al.- in [26].

[319] B. Smith. Reflection and Semantics in ai Procedural Language. Laboratory t*r1
Computer Science Technical Report 727. MIT. (Cambridge. MA. 1982.

10] .J. MI. Spivey, The Z NVotation: A Reference W\'atital. Preit ice-Hail. 1989.

[41] R_. A. Sta~chowitz and .1. B. Combs. 'Validatiomi of' Expert Systems.� Proc. Twen-
tiethI Hawaii !nternational Conference on System Sciences. 1987.

[42] L. Sterling and E. Shapiro. The Art of Prolog. MITr Pres. 1986.

[4:3] 1. Van 1-orebeek and J. Lewi. Alagebraic Specifications in Software Enijn(ezi. ering:

.An fntroduct ion, Springer- Verlag, 1989.

L441 1J Veitch. -Frames in (ILOS." M Expert. -Jumne [991.. pp. 41-471.

L'451 *J. Vincent. A\. WVaters. and I1 Sinclair. Softwvare Quality As~surance. '*olrsme [

Practice and Imuplementation. Prentice- Hall. 1988.

[-61] D. Warner Ha~sling, "Abstract explanations of strategy in a dliagnostic consulta-
tion svst~em.- Proceedingas of.AAA!-8.3. [98:3, pp. 1.57-1.61.

171 P. Winston (ed.). The Psychology of Computer Vision. MicGraw-Hill. 19715.

Part III

APPENDICES

A. ASP Manual

A.1 Introduction

ASP is an acronmy fot ".-\ Software Planner." It, is a software tool to be used by
p)rogra.Luers anid software test plrsorinel for planning, organizing, a d executing t he
debugging. testing, verification. aud validation of software systems.

A.1.1 Motivation

ASP is designed to reduhce the problems involved in validating software that clhari•",.
.\Ianv inodern software systems ha-ve very complex requirements that carniot be fftilv
defined in advance. These svstems are frequently developed with a rapid prototypin'
niet.hodology. and they require extensive software maintenance arid enhancements
even after they become operational. Traditional testing, verification. and validation
methods assume that changes to the software are infrequent and carefully controlled
becaLlse changes require costly retesting, reverification, and revalidation each timie
the software does change.

Much Al software must adapt to evolving requirements. and this adaptability makes
AI software difficult to validate. ASP is a software tool that reduces the cost and imu-
proves the effectiveness of retesting, reverification. and revalidation for Al software--
or foi- any other frequently changing software.

A.1.2 ASP as a Software Tool

ASP allows programmers and software testers to specify and selectively control the
execution of software test routines. The test routines are written as executable
specifications-as predicates expressed either in the programming language in which

the software is written or in a compatible executable specification language. These
executable specifications are stored separately from the code. and ASP associates
them with appropriate test points in the software inmplementation.

These tests or executable specifications are called verifications. aud ASP makes it easy
for a programmer to define these verifications early in the software developmentt life
cycle. These verifications are often more stable than the object software. By defining
the verification early, the programmer can use them for debugging the software and
also make them available to the personnel involved in the testing, documentation.

verification, and validation phases of software development.

ASP gives the programmer full control over when the verifications are executed. Sintce
e-.,xecution of the verifications is frequently time consuming. ASP includes a declara-
tive language for specifying which verifications are to lie executted under what circmnmn-

(66

stances. These declarative specifications of what verifications are to be executed are
called validations. A validation is a plan for controlling the execttion of the object
software while conditionally executing verificatiots that monitor, test. and verify the
software as it is executing.

Executions of these validations or softwa-re plans are useful ini all of the following
rlies:

External Debugger - ASP can help find bugs without perturbing the code beting!
tested.

Procedural Debugger - Complex debitgging scenarios can be easily devised iII the
Software Plan by specifying the conditions under which additional verificat olls
are to he executed.

Validation - Validation suites are organized in the Software Plan,.

Verification - Traditional correctness assertions in the code are replaced by rests in
the Software Plan outside of the code.

Code Instrumentation - The programmer can specify in the Software Plan ways
of visualizing how the code is performing and what it is doing in various cir-
cumstances.

ASP is an integrated tool that supports debugging, testing. verification. and valida-
tion. Part of the idea being supported bv ASP is that it is uiseful for programmers to
write verifications during the early stages of software dtevelopment because these ver-
ilications can then be reused throughout the software life cycle. hliese verifications
should not involve modifying the code that directly implements required software
functionality: and. for performance reasons, these verifications should be executed se-
lectivelv to meet the different goals of debugging, testing. validation, and operational
execution.

The ASP software plans give the programmer control over the executtion of software
verifications without changing the software being tested or instrimented. ASP loes
not require recompilation before executing a different validation or software plati.
aiid ASP tries to shorten rather than lengthen the programiniier's 4'V('le of execlt ilig.
debugging, modifying, and re-executitng the software.

ASP is ,.lesigned so dependencies on the programming lanaguage in which the object
software is written are isolated. The current ASP tool works for programs written in
Common Lisp and handles executable specifications written in either Common Lisp
or REFINE. It will be relatively easy to extend ASP to work with software written
in other languages that allow function calls to be intercepted and redirected without
recompilation. More effort will be required to make ASP work elficiently for languages
like (' and .-\da where function calls do not involve a level of indirection.

7it

A.1.3 A Software Planning Methodology

ASP can be used with any software development methodology. It is intended to re-
duce the validation problems associated with evolving software, and this subsection
describes a general software methodology that is appropriate for the kinds of evolv-
ing software systems which ASP was designed to support. This software planning
methodology is depicted in Figure A-I.

(D Partial Specification U Evolving text or code

I S~oftware Requirements 3

PS PS PS

OS PS PS P

Software Plan

Software Code

Figure A-1. Developing Evolving Software

68

In the early stages of software development, an initial version of the software require-
ments should be defined. Then these requirements, the software specification, and the
software code are evolved concurrently-with the software plan used to interrelated
the evolving specification and the evolving code.

Rarely is a software implemented in one phase from the software requirements. This
is especially true of large or AI software systems. It is natural to develop it in
bits and pieces over time combining smaller pieces into larger ones or stubbing out
smaller pieces and adding them in progressive steps. With the software planning
methodology supported by ASP, one tries to tighten the focus on this process by
having the development of these bits and pieces driven by partial specifications. In
Figure A-I a partial specification is depicted by a PS in an oval.

A partial specification is a statement of truth about the results of some partial compu-
tation of a software implementation. The collection of all partial specificationR in this
methodology represents the current software requirement. When all of the partial
specifications in this collection are true we say that the current software requirement
has been satisfied and we are ready to go on to the next phase of development. For
example, suppose the current software requirement is that we construct a program
that builds a table of the first n prime numbers. We could create three partial speci-
fications:

1. A table exists with n entrys.

2. Every entry in the table is a prime number.

3. The n entries are the first n prime numbers.

When all three of these partial specifications are true then we have achieved the
current software requirement. Partial specifications 2 and 3 could have been stated
as one partial specification but it may have been easier to test for them as two weaker
statements. In Figure A-1 this is depicted as a PS splitting off into two PSs. For the
same reasons that it is easier to break programs into smaller pieces to debug them.
it is easier to break program specifications into smaller pieces to test them.

The Software Plan in Figure A-1 ties these partial specifications to the Software
Code and a decision can be made by the Software Plan that the current software
requirement has been met. With ASP, using the prime number example, you have
semi-automated this decision by displaying the table and visually inspecting the table
to make sure that every number is a prime number. But you could also have written
a predicate function that computes that every number in the table is in fact a prime
number. We call such a predicate function an executable specification. In many cases
it is actually easier to write an executable specification than it is to visually verify.
In very complex software it is perhaps the only way to verify. The art of using this
software planning methodology rests in being able to write a minimum number of
executable specifications such that to a large extent the software verifies itself.

69

A.1.4 Using ASP

To use ASP one must supply the shaded boxes in Figure A-2, that is, the boxes
labeled ASP Software Plan and Verifications.

Host Software

Software Symbolic References

Implementation

i• nterprets

Loads
6Eecutes ASP

Tool

Figure A-2: ASP Components

The box labeled Software Implementation represents the software implementa-
tion before ASP is introduced. To use ASP nothing in the software implementation
needs to change. All code in the box labeled Host Software is written in the host
language. For example, if your software implementation is coded in Common Lisp
then the verifications would be coded in Common Lisp. Verifications are usually just
simple predicate functions. In the last section we described an executable specifica-
tion which could be represented as such a predicate. In general an ASP verification
is any function that supports verifying the results of computations in the software
implementation.

The box labeled ASP Software Plan represents a text file that you configure. How
to write a Software Plan will become clear in the f,3llowing Find Word Example.
Within the software plan you specify how you expect the software to perform. You
do this by building condition-action trees in the Software Plan. At the top level these
condition-action trees are called validations. Within the Software Plan are symbolic
references to program objects in the software implementation and verifications. Since
all of the references are symbolic, new implementations and verifications can be loaded
dynamically, and ASP can do the right thing without recompiling the Software Plan.

We are now ready to talk about the box labeled ASP tool. To use ASP the first
thing that you do is write a Software Plan which attempts to demonstrate the results
of the current phase of software development. You then load the Software Plani and
run the ASP Tool. The ASP Tool recognizes the loaded plan as the current Software
Plan. Most of what the Tool does is based on interpreting the Software Plan. You

70

then select various validation scenarios depending on the desired effect. During the
interpretation of any validation. ASP may load implementations and verifications and
control execution of the host software depending on conditions in the validation.

A.1.5 Learning by Example

W\e use the method of teaching 1y exaimple. \-e will first give a simple soicciiutc
example of using ASP. then we will explain how to use ASP in general. Since this
example is delivered with ASP it inight he hellful 1o actually load its Software Plan
and interactively follow the example. A following chapter will describe the complete
semantics of the Software Plan. Section .\.6 has the complete syntax of the Software
Plan. Examples of using some of .\SP'¾ more esoteric features are given later.

71

A.2 Find Word Example

Hie examiple [lost. Software we Ilse is called Find WVord. It limplements a. search
a htori thin in Common Lisp. ... Ing this aoIt huI F lvorwIllff(h l 1l

of Occurrenlces of a. given word in some given1 text. IFor examp1Ile the word .ent~ nc(
occurs 3 t itte in the text -This sf,?te-nef is anf (..riiiilelI .seti,.1(fz r findliig tht! word

\V\%-II wihrst describe the a~lgorithiiii and write the in plemumentation. Thien we will write
a sort ware Planl to show that time Implemuentat~ionm performs thle wva.y that we expec-t.
Aki huolmgh this is not a very com plex example. it. will illuistrate the idea of writihug alli
A\SP Verification, testing the software with mukltiple imiplemient at ions. t hen debuggoingi
the ~oftware given tha~t it fails the test. This example also ilhuist rates the Import ance

(,f execuitab~le specifica~tions because in this ca-se, one A-S P VerifPica tion that we writc
W\Ill represenit ail executable specificationl.

A.2.1 Writing the Find Word program

The Intuitive approach to find a word in somne text is to search for the first Iett et of
lie word and if found then compare the second letter In the wor(l with the nex-t letter

In the text and so on. This is called a linear search. It turns out t hat we canl search
ILa.ter than that by Using a sublinear search algorithm.

WClat (10d in a sublinear search is

I First look at the character at the words length unto the text.

2. If this character is the last character in the word search backwards In the text
to see if we are on the word.

3. If this character is another character in the word we s~kip ahead in the text by
the same number of characters from where the character is in the word 1closest
to the end of the word) to the end of the word. And continue the search.

t. Otherwise we skip ahead the length of the word. Anmd coittinlte the search.

For example if we are looking for the word --sentence" III the text above

"This sentence is an example sentence for finding the word sentence"

skip points: 1 2 3

,2-

First we go into the text to skip point 1. the length of the word "sentence". Since
there is an "'n" there we skip ahead to point 2 where the end of the word "'sentence"
would be if its character "n" was in that position. Since there is aun -'e" we search
backwards and discover that we are not sitting on the last character of "'sentence."

so we skip to point :3 for the same reasou that we skipped to point 2. Now we search
backwards and ficd a match.

This skipping effect produces a faster search. We use sublinear search here nlot, for
its efficiency per se but because sublinear search needs a skip table set uip lot a given
word prior to doing the search. We can specify what the skip table is to look like
given any word. And in fact we write a predicate function that tests for what we
specify. And we will refer to it in the ASP software plan. In ASP terminology we call

this test predicate a Verification.

T31

A.2.2 Find Word Code

First.. we write the code called WORD-SEARCH to implement Find \Word itsinog ,IbihI;IU
search. This code was adapted from the book H[ow to Sol't /I bto Coiip/uttr Iv
R. G. Dromey. We also write a top level function cafledl COUNT-WORD tliat c;lls
WORD-SEARCH just so tha.t we can print out the results. For Ohils ,xa.nlplc it i, 1,,,1
importanlt to iuidlerstand t, he code: just notice that we call SETSKIPS to ý,.I ,i, Iti,

skip table.

(defun COUNT-WORD (word text)
(let ((n (word-search word text)))

(format t "%The word -s occurs -a times in the text /.\"-a-a" word n
(if (< (length text) 101) text (subseq text 0 99))
(if (< (length text) 101) "\. "

(values)))

Given a word and text find the occurrences of word in text using
a sublinear search algorithm.

(defun WORD-SEARCH (word text)
(let ((wlength (length word)) (tlength (length text))

;;; Set up skip table.
(skip (SETSKIPS word (make-array 128)))
(nmatches 0))
The i index skips through the text to the character nxt.

(do ((1 (1- wlength))) ((> i tlength) nmatches)
(let ((nxt (char-code (aref text i))))

;;; Use skip table to drive search for pattern.
(if (> (aref skip nxt) 0) (setq i (+ i (aref skip nxt)))

:;; Skip table indicates maybe at end of word so match backwards.
(let ((j (1- i))

(k (- wlength 2))
(match t))

(do () ((or (< k 0) (not match)))
(cond ((eql (aref text j) (aref word k))

(decf j) (decf k))
(t (setq match nil))))

(when match (incf nmatches))
Skip in the text to where the end of the word would be
based on the character nxt.

(setq i (- i (aref skip nxt)))))))))

7 t

; Set up the skip table of all ascii characters for the given word.
(defun SETSKIPS (word skip)

(let ((wlength (length word)))
;;; The default skip for all characters not in the word is the word length
(dotimes (i (length skip)) (setf (aref skip i) wlength))
; Otherwise the skip is determined by the character's

position in the word.
(do ((J 1 (I+ j))) ((> j (- wlength 2)))

(setf (aref skip (char-code (aref word j))) (- wlength j 1)))
assign negative skip to last character to differentiate from others

(let ((p (char-code (aref word (1- wlength)))))
(setf (aref skip p) (- (aref skip p))))

skip))

A.2.3 Find Word Trials

To check our code we create two trials called TRIAL1 and TRIAL2. .\ciuallav these

trials are well engineered for this example so that the first one will produce the

correct answer and the second one will produce an incorrect answer (for our first

implementation of WORD-SEARCH) because of two extra spaces between ""Fhiss" ard

"-sentence

(defun TRIAL1 ()
(count-word
"sentence"

"This sentence is an example sentence for finding the word sentence"))

(defun TRIAL2 ()
(count-word
"sentence"

"This sentence is an example sentence for finding the word sentence"))

A.2.4 Find Word Verification

To verify that the skip table is set uip as we specified we crueate the test predicate. (,r
verification, that we tnentioned earlier. lOLt tnight notice that SKIPTABLE-CORRECT is
about the same size as the fun<'tion SETSKIPS. l)on'i let this discourage you againt.
using ASP to do program veriflication. mhis is appa.rutit because the example is so
simpnle. As the complexity of an i nplehientation goes lip. tHie sizP of the verificatiOlls
goes down in proportion to the length of the imijeletwllaftioiis code: contsequeitllv rhe

Leturn in i llvestmeit. becomnes great.er.

(defun SKIPTABLE-CCRRECT (word tabie)

"For every character in Word there is a corresponding entry in the
skiptable that skips relative to the word's end character position. The
entry that corresponds to the last character position is a minus skip. All
other entries contain a skip equal to the length of the word."

(let ((predicate t)

(word-max (I- (length word))))
(dotimes (i (length table))

(let ((word-char-position 'isition (code-char i)
word from-end t)))

(unless

(if word-char-position
(if (= word-char-position word-max)

k. inusp (aref table 0))
((aref table 1) (- word-max word-char-position)))

((aref table i) (length word)))
(setq predicate nil))))

predicate))

76

A.2.5 Find Word Software Plan

[i na~llY we write a Softwvare Plan for Find k-ord.

(asp: specify-plan
:name 'find-word
:specifications
'((skip-table-specification

"/systems/asp/examples/find-word/verify"))
:implementations

'((find-word-sublinear-implementation
"/systems/a~5D/examples/find-word/sublinear"
"/systems/asp/examples/find-word/trials")

(new-set skips-implementat ion
"/systems/asp/examples/find-word/new-setskips"))

:verification-points '((setskips word :output skiptable))
:verifications '((skiptable-correct) (list))
:validations

'((LOAD-FIND-WORD
((:load find-word-sublinear-impleinentation skip-table-specification)
(:on-entry :report) (:on-exit :report)))

(TRIAL1
((:execute triall)))

(TRIALl1-VERIFY
((:execute triali) (:on-entry :report) (:on-exit :report)
&(after setskips)
((:test (skiptable-coi-rect word skiptable))
(:on-pass :rep~rt) (:on-fail :report)))))

(TRIALl-DEBUG
((:execute triall) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-fail :report

((:record (list word skiptable) skiptable-snapshot)))M))
(TRIAL2
((:execute trial2))
(LOAD-NEW-SETSKIPS
((:load neu-setskips-implementation) (:on-exit :report)M))

Reading the plan from top to bottom: Its name is f ind-word. It has one spec-
ification calledl skip-table-specification which refers to the file erfclwhich
contains the SKIPTABLE-CORREOT function. It has two imnplementatilonls. One called
f ind-word-subi inear- implementat ion which contains the code we defined earlier11
for the implementation of sublinear search and its trials. A-\not her called new-set skips
-ilmplementat ion we wvill use later to fix a problem In thle ori~gin~al code. It sptci-

fies that there are two possible execution p~oint functions called triall in(l trial2.

There will be one verification point called setskips whose input, arguments will
get bouuid to the Plan scoped variable word and whose Oltl)It argument will get,
Iomm id to the 1•ian scoped variable skiptable. There is one verification specified called
skiptable-correct that we mentioned earlier alnd anlother verilicatioi list which
is iusi tlie common lisp function LIST. A\ test (or executable specification) must be
ai ver(Iifcatl io. but a verification does not need to be a. test. for exanple in this case
lhe nt eitha tionl list is just used to record a list. of outputs as omi object. Finally

For this xvample we choose to have six validations called: LOAD-FI.TD-WORD, TRAIL1,
TRIALl-VERIFY, TRIALl-DEBUG, TRIAL2, LOAD-NEW-SETSKIPS.

A.2.6 Using the ASP tool

. ... l. "i har we have defined a Software Plan for the Find Word software we are readv
0o 1,11 11be AS P tool and run our software through the trails. First \,l woulld loadI

the .\SP sv';tem tsee site specific README file for how to do lis). and tlell load
the FiMin \Vord Software Plan.

In tie lisp listener we evaluate the following

(asp: tool)

After doing this we will see

Select ASP activity for FIND-WORD plan:
0 = Exit ASP tool.

1 = Select a plan validation for execution.
2 = View PO attributes.
3 = Change plan defaults.

Enter a number from 0 to 3 -> 1

At this point we enter a 1 to Select a plan validation for execution. We woii1d
t lien see

Select and execute one of the plan validations:

0 = Execute no validation
I = LOAD-FIND-WORD
2 = TRIAL1
3 = TRIAL1-VERIFY
4 = TRIAL1-DEBUG

S = TRIAL2
6 = LOAD-NEW-SETSKIPS

Enter a number from 0 to 6 -> 1

Notice that the names of the 6 validations that we specified in the Software Plan
now appear as selectable validations. We will first choose 1 to load the Find \\ord
software. It is not necessary to have such a Load Software validation in your software
plan. you may load your software independently of ASP. But it is included here to
illustrate two things:

t. Loading software in itself can be considered to be a validation

2. When you get involved with mnore complex Software Plans that load many
implementations over the course of different tests, you frequently want to have
a Validation that simply reloads tle base implementation.

7'!

After entering 1 we would see the following app~ear:

I ASP controlling FIND-WORD plan.
ILoading: FIND-WORD-SUB-LINEAR-IMPLEMENTATION

I ASP controlling FIND-WORD plan.

I Loaded; FIND-WORD-SUB-LINEAR-IMPLEMENTATION

I ASP controlling FIND-WORD plan.

I Loadedg: SKIP-TABLE-SPECIFICATION

Looking back at tile Software Plan notice that in the LOAD-FIND-WORD Validation w
roll 'it to report the results on entering arid exiting the load process for f ind-word-
sublinear- implementation and skip-table-specif ication and tile- above ou1tpuIt
Shiows that It did Just that.

(LOAD-FIND-WORD

((: load find- word- subl inear -implement at ion skip-table-specification)
(:on-entry :report) (:on-exit :report)))

At this point we will see the top level menu again. For the rest of what follows we
will not repeat this. but assume that you will know that you start from the top level
Imieniul.

Select ASP activity for FIND-WORD plan:
0 Exit ASP tool.
1 Select a plan validation for execution.
2 = View PO attributes.
3 = Change plan defaults.

Enter a number from 0 to 3 -> 1

Select and execute one of the plan validations:
0 = Execute no validation
1 = LOAD-FIND-WORD

2 = TRIALl
3 = TRIAL1-VERIFY
4 = TRIAL1-DEBUG

5 = TRIAL2
6 = LOAD-NEW-SETSKIPS

Enter a number from 0 to 6 -> 2

This time we select 2 for the TRIALl validation. Looking at the Software Plan we •ee
that this Validation does nothing more than just execute the function called trial1
with no other conditions. It is as if we ran the program without ASP being arolnid
and i.t !)ro~dLuces the output of the Find Word program that it would if trial'. were

rnn bY" itself:

The word "sentence" occurs 3 times in the text
"This sentence is an example sentence for finding the word sentence"

[his output looks correct and in fact if the programmer saw this he might assiume
that his program is working fine. But now we will try TRIALl-VERIFY Validation:

Select and execute one of the plan validations:
0o Execute no validation
1 = LOAD-FIND-WORD
2 =TRIAL1
3 = TRIAL1-VERIFY
4 = TRIALI-DEBUG
5 = TRIAL2
6 = LOAD-NEW-SETSKIPS
Enter a number from 0 to 6 -> 3

I ASP controlling FIND-WORD plan.
IEntering: TRIAL1

I ASP controlling FI 'ND-WORD plan.
I Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS.
I Result = ***FAILED2***

The word "sentence" occurs 3 times in the text
"This sentence is an example sentence for finding the word sentence"

I ASP controlling FIND-WORD plan.
I Exiting: TRIALl

This time Histead of just the program output we gee that. A-SP is now enga-ge~d.

S2

Looking at this Validation in tHie Software Plan

(TRIALl-VERIFY
((:execute triall) (:on-entry :report) (:on-exit :report)
((:after setskips)

((:test (skiptable-correct word skiptable))
(:on-pass :report) (:on-fail :report)))))

We see that we told it to report on the result of the test skiptable-correct in kot h
cases of a pass or a failure of the test.. In the case of our implementation (A Finidl
Word it reports a. failure. This looks i),c(iliar in light of the correct outp•it. I t) I ,
intentionally used in this exa ii]e to i ll|istrate that ivorking software is not aiwav-
,'alid OR correct!

Furthermore we now go on to show thai. by executing TRIAL2 the output can be made
wrong. TRIAL2 is exactly the samne as TRIAL1 except for two extra spaces between
"-This" and --sentence- in the text:

Select and execute one of the plan validations:

0 = Execute no validation

1 = LOAD-FIND-WORD
2 = TRIALI
3 = TRIALl-VERIFY

4 = TRIALl-DEBUG

5 = TRIAL2
6 = LOAD-NEW-SETSKIPS

Enter a number from 0 to 6 -> 5

The word "sentence" occurs 2 times in the text
"This sentence is an example sentence for finding the word sentence"

A serendipitous discovery here was that verification and debugging of progranm a.,"
not only closely related but are part of a continuum, such that where verification oni,,
blends into debugging and vice versa. If debugging is made sophisticated oonli.
at some point in the continuum debugging and verification are one and the sauie.
Furthermore verification can support debugging and vice versa. We give a taste of
this idea in this Find Word example. The validation TRIALl-DEBUG is pretty mu'ch
like TRIALl-VERIFY

(TRIALl-DEBUG
((:execute triall) (:on-entry :report) (:on-exit :report)

((:after setskips)
.((:test (skiptable-correct word skiptable))

(:on-fail :report
((:record (list word skiptable) skiptable-snapshot)))))))

\Wha.t is diitferent is that we take advantage of when the verification fails to (1o soheo

debu-ggiig. So given :ou-fail we itol. ouly rej)ort, the results of tihe tt.t b)1lit We !'Coi(I
a snap)hot. of the skiptable.

['he actu ,al iiteraction with the ASPl! tool when selecting this Validation goes as follow'-

Select and execute one of the plan validations:
0 = Execute no validation
1 = LOAD-FIND-WORD
2 = TRIAL1

3 = TRIAL1-VERIFY
4 = TRIAL1-DEBUG
5 = TRIAL2
6 = LOAD-MEW-SETSKIPS

Enter a number from 0 to 6 -> 4

I ASP controlling FIND-WORD plan.

ý Entering: TRIAL.I

I ASP controlling FIND-WORD plan.
I Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS.
I Result = ***FAILED***

The word "sentence" occurs 3 times in the text
"This sentence is an example sentence for finding the word sentence"

i ASP controlling FIND-WORD plan.
I Exiting: TRIAL1

At this point the results look the same as the TRIALl-VERIFY because we patterned
TRIALl-DEBUG after it. But since we included the :record given an :on-fail con-
dition we can expect to see an attribute value for SETSKIPS. namely a snapshot of it
when the test failed.

Select ASP activity for FIND-WORD plan:

"'4•

0 = Exit ASP tool.
1 = Select a plan validation for execution.
2 = View PO attributes.
3 = Change plan defaults.

Enter a number from 0 to 3 -> 2

Select a Program Object to view its attributes:

0 = Select nothing
1 = SETSKIPS

Enter a number from 0 to I -> 1

Program object SETSKIPS has the following attributes

SKIPTABLE-SNAPSHOT is a SINGLE value
("sentence"
#(8 8

88888888888888888888888888888888888888
8 1 8 -3 8 8 8 8 8 8 8 8 2 8 8 8

88488888888888))

In the top level meniu we choose View PO attributes (PO stands for Program Ob-
ject). which shows that the program object SETSKIPS now has recorded attributes.
When we look at the attributes we see an attribute called SKIPTABLE-SNAPSHOT which
has the value of the word given to SETSKIPS and the actual contents of the table when
the test failed. The table looks pretty good for the word **sentence" except for one
thing. Since this is an ascii value indexed table we see a correct skip of 4 for the 't'"
position in the table. but just before it in the "'s- position we see an S and expect
t o see a 7 since -s- in -sentence" is seven characters away from the end of the word
">entence". Aha! Could it be that we have a problem with the indexing of the word
fnd especially of the first character? Yes indeed. When we translated the algorithm
from Pascal in our text book to actual code we forgot that Pascal defaults to I origin
arrays and in this case we want 0 origin arrays.

We correct this problem with a new implementation of SETSKIPS and now have ASP
bring in this implementation with a Validation called LOAD-NEW-SETSKIPS.

Select and execute one of the plan validations:

0 = Execute no validation

1 = LOAD-FIND-WORD

2 = TRIAL1
3 = TRIAL1-VERIFY

4 = TRIAL1-DEBUG

5 = TRIAL2

6 = LOAD-NEW-SETSKIPS
Enter a number from 0 to 6 -> 6

N)

I ASP controlling FIND-WORD plan.
I Loaded: NEW-SETSKIPS-IMPLEMENTATIOI

An[d nott' we ietry TRIAL2 and andcl it works:

Select and execute one of the plan validations:
0 = Execute no validation
1 = LOAD-FIND-WORD

2 = TRIAL1
3 = TRIALl-VERIFY

4 = TRIAL1-DEBUG
5 = TRIAL2
6 = LOAD-NEW-SETSKIPS

Enter a number from 0 to 6 -> 5

The word "sentence" occurs 3 times in the text
"This sentence is an example sentence for finding the word sentence"

S6

Finally. just as a. detail, we ca.n retry TRIALl-VERIFY and see t hat. it n1ow pa~sse I lie
test:

Select and execute one of the plan validations:
0 = Execute no validation
1 = LOAD-FIND-WORD
2 = TRIAL1

3 = TRIALI-VERIFY
4 = TRIAL1-DEBUG

5 = TRIAL2

6 = LOAD-NEW-SETSKIPS
Enter a number from 0 to 6 -> 3

I ASP controlling FIND-WORD plan.

I Entering: TRIAL1

I ASP controlling FIND-WORD plan.
I Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS.
I Result = PASSED!

The word "sentence" occurs 3 times in the text
"This sentence is an example sentence for finding the word sentence"

I ASP controlling FIND-WORD plan.
I Exiting: TRIAL1

S 7

A.3 Complete Semantics of the Software Plan

III thilus ectior, thle coluplet e seifla~iii~ics, of' lie Software Planr are~ eX)lailiied b% list*n
the keyword argumnenlt r ut lhe lurici iou specify-plan an th~leir umeanings.. Sect ion

A.6 contains tire complete syntax tul I lie Software Plani. Since keyword argumnclts, are
C'ofilinon Lisp keylvolrds. they' can l)e specified in any order InI relation to each other
that the user lincis most readable. Requ rinitg qurot~ing of these keyword arginuents.

SuIch as a quoi~edl list.. was dhone lilit-eit~ioiiailv, so that onle coulid Ilse variables or
expressions for keywordI a~rgumient~s valuies If they needed tha~t flexibility and also to
inake it easier to prograuninatimcallv generate Software Plans. The termi 1)/Iwn *coptil
id.(t nifiet-s refers to all of th le symnbols mentioned ini the Software Plan that onlyv havye
valutes within the scope of thle Software Plan. "'hen the software plan is rinterpret ed
by AS.~P ('ofditions. inl lhe sot~tware)laui cal use AS P to arra~nge for the sp~ecilal hatidili ri
Of p~rogra mu ohbject~s InI thle ilru lleumerit atmloi code oich t.hat when t hose object~s are
Invokedl randoinly wi thmin rihe Mipl1eiiient at on, AS P will get control. We refer to r hj
arrangemenent as condi/ioioitil code andI the I uvocatroii Of Su~ch objects as f.'iygeri/g.

For most of the keywords a brief (lescril)t~ion suflfices. WVe first list and give brief'
[escript ions of' all the keywvords. Thle keywvords tha~t need more detailed (lescrilmtoris

will be expounded later. W,,e now list. thle specify-plan keYwords:

:name - The name oft the I)lan (Isu~ch as f ind-word). This needs to be a symibol.
T1his is used to dlist Ininguish one(Softwvare Plan from another and inl report iden-
tification.

:log-flle - A string veprIeseniting thle lile spetcification of the file that the results of a
:log Validation will get appIended to. If not specified the lop, file detalilts- to
/ASP-log .

:verbose- loading - Set. to t If von want thle actual files being loaded displayed during
a : load action.

:undefined-.attribute-value - WhV~en referencing the values of :record attribmntes.
if the attribute Is u-ndefined this Vailue IS retUrned. It defaults to the ;vmbol

:undefined.

:colIlect ion-coercion- type - Whlen referencing the Valuie Of :collect attriblites.
which are recorded as sequetnces, they will lbe coerced to this data type. The
default value Is list.

:globals - A list of the grlob~al clauses that assouiates p~lan scoped identifiers %%Itli
global Identifiers of the host langutage.

:specifications -A list of specif'ication clauises that associates file specification strlings
wvith plan scoped identifiers. These files will contain uiser defined code repre-
.ýenting verilicat ion(s.

:implementations .- list. of Iimplementation clauses that associates file specification
strings with plan. scoped identifiers. t'hese files will essentially be the code of
tle user's software implenierita.,oii. inclitdiing multiple implementations.

:executables - A list. of execut io clauses hiat deflines how ASP will pass control to
the host language code.

:verification-points - A list 4f claiuses Ilial. defines where in the users code verifica-

lions can take place.

:verifications - A list of clauses that defines how ASP will invoke user defined Ver-
ilications.

:sub-validations - A list of ,iser defined validations. These are exactlV the -ame as
: validations but dto not, appear iII t he ASP tool selection nienu.

:validations - A list of miser deliried validations.

A.3.1 Software Plan Constants

('outstaitts. referred to as plan con.s.ints, may appear in the Software Plan. in certain
positions. They may be either an integer or a string. For example

12345
-1
"Beginning of test"

are permissible plan constants.

A.3.2 Plan Scoped Identifiers

Several constructs in a Software Plan take argauments mitch like a function call. Nit
one construct, the :verifications-points clauses gie rather than take arguments.
This means that when a plan scoped identifier is included in the clause. its value is
not passed to the function named ;n the clause but instead the plan scoped identifier
is bound to the value of the actual parameter when the function gets triggered. [II
the Find Word example the :verif ications-points clause

(setskips word :output skiptable)

causes the plan scoped identifier word to get bound to the set skips function's first
argutneiet value whenever setskips happens to he t~riggeredl I1 the Irnpltnientat 101
Code. Sitinhlarly the plan scoped identifier skipt able gets bo~iind to the returned valuie
ot' setskips. .Note that. such bindings are only ready to be imade ill the scope of a
:before or :after condition. Once such it binding actually occur-s by a triggerinig.

its s~cope In thle Solt ware Plan is indefinite. Or, Ini other words. I t 1 sroped iden-tifier
til h-e that, value in the local scope of the plan indeffinitely mntil the next tinie 'l aI III it

is ca 1150(t~o be chanigedl as specilied in the plan. So in thle Vir'l W-ord examp~le once
word -nets boun11d t~o setskip's first argument valuie that. will be Its visible va~lue InI

h le 'Software Plan until the next triggering of setskips.

.\llot her occurrencesot l)lIan scoped identi1fiers pass thekvalue 1)0111(to the identiher to
at spcl tIe fu Io In t.leeco g const ruct. In the F'ind Word exanipie () misidletj n

(skiptable-correct word skiptable)

the Verifica-tionl (function) skipt able- correct 'gets passed the current planl bound
Values for thle p~lan scoped identifiers word and skiptable.

Plan scoped identifiers are also used to specify attributes and the attrbihite~s value
b~indinig has the same scope rules as a plan scoped identifier's regullar value biniding.
In the Find WVord example considering the construct

(:record (list word skiptable) skiptable-snapshot)

Sihe plan .scope(I identifier ski pt abl e- snapshot becomes the attribute that 'gets at
valuie as a result of the :record action. A plan scopedl identifier canl be both a
revulai v-alue and an attribute value at the same time.

A.3.3 Software Plan Arguments

.\s iiientioned in the previous section various constructs can take ar~gnmenis. Follow-
iii- ~ect ions will describe the meaning of the arguments for thle)articila~r coist riict.
l'iiess otherwise stated an argument specified in the Software Plan. with the ecp
tion of arguments for verification points, can lbe one of the tollowiuga:

..\plan constant (as defined above)

2. .\plan scoped identifier (as defined above)

3- . .ecordctd attributte value reference

1. verification formn (as defined below)

:implementations - A list, of imipleinetitation clauises that associates file specification
strings with plan scopeci identifiers. These files will essentially be thle code of
the user's software implenieit~at.oioi. iiiclidiilg multtiple implemlentationis.

:exectitables - A list of executitoit clauisos tilia-t (l(fiies how ASP will pass control to
thle host langutage code.

:verification- points - A list of clauises thlat. definecs where in the uisers code verifica.-
lions can take place.

:verifications - A list. of clauses I hat (defines how ASP will invoke User defined \>r-
hlications.

:su b- validations - A list of uiser deihnedI validations. These, are eaCt lV tile ~anle as
:validations but, (10 not appear In thle ASP tool selection mienui.

:validations - A- list of' user defined -a-l Idat lolls.

A.3.1 Software Plan Constants

Cotistants. referred to as plan con-stants, maY appear Ini thle Software Plan. in certain
p~ositions. They may be either a~n Integer or- a string. For example

12345

-1
"Beginning of test"

are permissible p~lan constants.

A.3-2 Plan Scoped Identifiers

Several constructs in a Software Plan take argulnienrts much like a function call. But
one construct, thle : verif icat ions-points clauIses gIi rahrtantk rUniemt's.

This means that when a plan scopecl identifier 'is included iii the clause. its valute is
niot passed to the function named in the clause but instead the plan scoped identifier
is bound to the value of the actual parameter when the function gets triggered. InI
t~he Fill(Word example the :verif ications-points clause

(setskips word :output skiptable)

In the case of a Software Plan constant the constant's value is USed as the actual
argument. Iii the case of the plait scopeci identifier its Soft.�vare Plan currently bound
\aI ie is used as the act ral argument.

.\ recorded attribute value has he form:

where objecl-uanu- is th, name of the 01) ject that gets the attribute. all,, buh -/de nli/j# i

is he plan scoped identifier that names the attribute. ['lie value of he at t ribint
athThele-iduililh r o� oi)ject nameU object-name is used as the act nal arginninent

Verification forms are defined �n the section Software Plan :verifications. Flu'
value returned as a result of ASP invoking the verification is used � lie d(t lid
argument.

A.3.4 Software Plan :globals

The :globals value is a list of clauses of the form:

(plan-avg global-cal)

the global-rat can be either a plan constant or a symbol in which case it is interpreted
as an Idlentifier of the host language that names a global variable. ;)lan-�iiv] is a

l)lani scoped identifier that is associated with the global-rat in the 'cope ot the whole

Software Plan. For example. in

:globals '((pdb *person-data�base*)
(alert 'We are changing implementations at this point'))

pdb is a plan scoped identifier that is associated with the global variable *person-data-base*
awl alert is a plan scoped identifier that is associated with the ronstanur *�rrinug 'We
are changing implementations at this point".

A.3.5 Software Plan :specifications

The specifications value is a list of clauses of the form

(.�pectfieation-name string s/ring

.�p�ctJicalion-,ua,,�e is a plan scoI)ed identifier that names an inuplenueutationn. lie
iniplementat ion is associated with siring string ... that are tile specifications oh tiles
iii the host oI)erat. i rig system eruvi ronnuetit. For example.

II

:specifications
'((SKIP-TABLE-SPECIFICATION

"/systems/asp/examples/find-vord/verify"))

namnes one spectifatio called SKIP -TABLE- SPECIFICATION that gel .s associat et v I \i li
one file in the host operating svsteiu.

A.3.6 Software Plan : implementations

The :implementations valtie is a list of clauses of the formn

i .mpletnentation-nanie is a plan scoped idlentifier that names an implemnertationi. The
implemnentation is associated wit-h -tiniig stri'ng .. that are file specification-, of files
in the host operating svýentvi envirounient. For example

:implementations

'((FIND-WORD-SUBLINEAR-IMPLEMENTATION
"/systems/a..p/exa~mples/find-word/sublinear"
"/syst ems/asp/examples/find-word/trials"))

names one implementat ion called F IND -WORD- SUBLINEAR- IMPLEMENTATION that gct
associated wvithI two files in the host operating svstemn.

A.3.7 Software Plan :executables

The :executables valute is a list of clauses of tHie form

(executable-name arg ctrq ...)

where f.reduttable.-natrie Is, t he natie of a function in the software implementation and
arg arg .. are plan scoped idlettihers. The cxecutable-narne is usually namned ini thle
:execute action which results tin a call to the implementation's function. In this call
the actual values of arq arq a. re passedl as parameters.

A.3.8 Software Plan :verification-points

The :verif ication-points valuie Is a list of clauses of the form

(vf rification-point a'ry airg ... : output oatpt)L-(I 1 ontpat-arq .

where t'f IijiCatiofl-p')i2I is the namie of a tUnction lit the softwa~re impIletnent at iou1
and~ -arg ttig ... a~re pl)an scopeci Identifiers that get, l)OfLnd to the fuinction's act tal
p~aramneters when the funiction gets triggered. If : output is specified then the plan
sc01)ed idlentifiers oiipat-ary out pat-firg ... will get bound to the fEunct ion's oittp~itt

para meters.

The t'erificalion-poiuu also serves as an identifier for the :before. :after coiidi t ion."
Thle above bindin~gs will only occutr during the scope of a :before or :after condlitlull
Mnid durn ii that condi t.ion when the verifica tion poli t gets triggered.

A.3.9 Software Plan :verifications

The : verifications value Is a. list. of clauses of the form

(L'erification-nanin ary9 arg ...)

Wher~ie rerification-iutine is the namie of a verification that the uiser writes. The
verification miust be a predicate function. The atrg arg ... are plan ~coped identifiers
whiose values get passed to the verification whenever the verification is invoked inl a

Soft ware Plan valida~tion.

Yiou may specify (LPJ arg ... in the verification c~lause mentioned above or in a ver-
ification fr,,'m that occurs as an arguiment in a validation or both. The arguments
in the verification form will alwavs override the argruments in the verification clauise.
Some mnodifications to t lie Find Word example will mia~ke this clear. In thme Find Word
example we specified:

:verifications '((skipta~ble-correct) ...

(TRIALI-VERIFY ...

... (:test (skiptable-correct word skiptable)))

But we could have gotten exactly the same effect wimth

:verifications '((skiptable-correct word skiptable) ..

(TRIALl-VERIFY ...

..(:test skiptable-correct))

Furthermore if we had specified

:verifications '((skiptable-correct word skiptable)

(TRIALl-VERIFY ...
S.. (:test (skiptable-correct new-word new-skiptable)))

Then the skiptable-correct verilication would have received pairaz•eters i hat were
the values of 1he plan scoeped identifiers new-word and new-skiptable iince the
identifiets in the verification form override the ident.ifhers ini the verification's clauise.

iii general a verification form looks like

fI rnl ficat iU1-, a?))

(r•'rification-narit ' aig ...

where ,'_rr'fication-naame is defined in a verification clause in the :verifications list.
In the first form ASP looks at the verification clause to compute the verification s
actual arguments. In the second form ary arg ... is utsed.

A.3.10 Software Plan :sub-validations

The semantics of : sub-validations are exactly the same as the semantics of :validations.
The only ldifference is that they do not show up in the validations selection menu in
the ASP tool This is handy for validations that von want to invoke from other
validations, like subroutines. but not. be selectable.

A.3.11 Software Plan :validations

The :validations value is a list of clauses of the form

Sralidatzon-name action action ...)

where ralidation-name appears in the ASP too[validations selection menu. ralidation-
namn,- may also occur any place that all action can occur in any other validation. The
effect of selecting validation-narne in the ASP tool menu or invoking it from another
validation is simply to have the ASP tool interpret the actions action action ... The
following sections will explain these actions in more detail.

,) l

A.3. 11.1 Action Condition Semantics

Thle g-eneral schemna of allv ASP Software Plant validation is based ott actions and
conditions which have the followling fornis:

(ticnnioii (c/ndiof UConiion ...

-hia-t rthis mieans is that given action AS P will perforiii that action Ont thle i nipletneti-
tatioli code SUbject to that. codle being conditioned by cotdition cond~ilon.And
goiven tile one Instance of conditioned codle condijtion. ASP will fperfOrin the actijons
acopaction (~il ... onl the inllplement~ation code.

Furt heritiore any action iln action ticlion ... has p~recisely the form of' lie top 1*orin ;md
a iiv (cond(itioni in condition ra odiljo, ... has precisely thle formTi of t he b ot to uliortiil

t[his recursivye (definit ion i inplies that actions, can have conditions whitch cani have
actions which canl have cond~itionls ... tc(. This gives the Plan writer t he capa hilitv
to have nested actions basedl onl verification conditions carried ou~t to Finer atid finer
levels of detail. This is a natural paradigin for verifying Software.

One should not assumie that. ASP performs this chain of actions and conditions in at
sequentia~l control thread as in a conventional programmiing language. C'onsider the
following construct.:

(action-a ((:before verification-point-i) action-i)
((:before verification-point-2) action-2)
((:before verification-point-3) action-3 action-4))

action-2 conld occur anyi numiber of timies before action-i depending on whenl
verif icat ion-point-2 and verif ication-point-i trigger in the inmplenientat O0fl

code. In fact.. act ion- 1i ight never occur if verif ication-point-i1 never triggaers.
However, if verif ication-point-3 triggers. action-3 and action-4 are guaranteed
to occiur Inl succession.

Within any validation the only kinds of top level entities that can occur are:

Predefined actions - actions that are p)redlefined byv ASP

Predefined conditions -conditions that are predefined by ASP

Predefined validations -ASP canned validations Which Canl occur ativwhere that
ain act-ion call occur

User defined validations - 1,ser defined validations whose namles can occur an,-,.
where that anl action can occuir

Trhe predefined actions conditions and validations are explained and itemilzed III tie
following sect ions.

A.3.11.2 Predefined Actions

,rite predefined actions have the following meanings:

:load -Specified specifications or imiplementati ons are load.ed inito the .\.SP condi-
jionttd host I mplemnentation.

:execute -\specifted executable is control executed by A\SP. 1alvit will have
(011(1it.torts ilhat, affect, yen flcationts.

:engage - Intend~ed to be the same semantics as :execute b)11. pro'VIdeýs 111 esiCaI
Mechanism for utser Intervention or manual code executtion.

:test - Specified verificationis that act as predicates are control executed 1) \l.
The resuilts of these, Verifications will each resp~ondl to subsequetit :on-pass
and : on-f ail condRitionsM.

:record - The value of the specified verification is recordled as the value of i lhe p-
lfied object%, attribute.

:collect - The same meaning as : record except that the value is recorded in a
sequLence which becomes the attribute's value. The sequence is ordered by most
recentlY recorded first.

:report - Thre is a predehned ireport validation that does a ,pecific canne thi.
diepending on its enclosing condition. The :report action grives the user coilti-ul
over Wha~t is reported andi when it is reported.

:log - U'liere Is a predefined :log validation that does a specific (atnied t hing i,,-
pendling ont Its enclosing condition. The :log action 'gives the user control vovr
what is loggaed and when it is logged.

Tbe torni of t he :load action is

i load naine niame ...)

where namne nante ... (ire the names of Implementations or specifications defined hy
thle :implementations or :specifications keywords. If the existing host iii'iple-
nientation. is conditioned, ASP maintains the conditions. Mutpe.peieta~oi
cant be Introduced this way by loading and overlaying same named functionls.

The form of thbe :execute action is

:execute twine)

%%here izatn(is an executable defined by the :executables keyword. When in1ter-
preted. ASP will first condition thle iniplementation based onl tile conditions of III(
:execute then call the host flltuIct1 io amled bY the executa~ble.

lime rt-III of tie :engage actioni is

(:engage :listener)

where :listener Is time ty pe of engagemient. Others types of engagemienit miay, be
inltrodluced in futture ASP releases. \Vhen Interpreted A-SP will first, c'ond~itioni thle

imuplemnent~ationm based oil thle conditions of thle :engage then give control to the AS P
Lisp Listener. While lin hieAS P Lisp Listener by evaluating a :c I he u1ser nmav iv

Coimtrol back to t lie A\SP tool. Thme basic Idlea oft engage is to have the sarnme sernait Ii cs
as : execute butt without thle executionl of aniv utser codle. This has t~wo uses. Fit
as a. way otor thle user to)I nsp~ect. his environment at sonte poinlt InI lie Soft ware Planl.
.\iid -,ecoimd a~s a way for, the user to mlanIually execute code at Some f)cnt III thle
.Software Plan while his code is conditioned byV thle Software Plan. Since t his is a
cliffcmmlt concept to convey, an example of doing this bY extending the Find WVord
example is given in a following scio.

The form of thle :test action is

:test rri-ificIh'~on-foi,,. u'f'rificnt'o n-foryn..

wvhere t'eification-foi-m is a verification form as defined above. If the :test act ionl
hias amiv% : on-pass or : on-f ail conditions. ASP will invoke the verificaltion predlicate
fuLImCr ions based on rerification-foirrni' rtfr1rcat1ion*iz-]rm..perform t hie : on-pass ac -
tions for every p~redicate tha~t is true. and perform the :on-fail actions for- every
predicate that is false. The user should note that given the following:

((:test vi v2 v3) (:on-pass actioni))

act joni will1 be performed for- every predicate of vi through v3 that is t rue. If rhjl-
is not (lesired then something like

((:test vi) (:on-pass actioni))
((:test v2) (:on-pass action2))

((:test v3) (:on-pass action3))

should be written.

Thie : record action records a plan scoped attribute value. It has one of two fornis:

(record i'al-arg objf ct attributf)
(record twl-arq attri-bitte)

ral-ar9 is a Software Plan argument as, defined ab~ove. object andl (ttribut(are pla ii

scopecl identifiers. As a resuilt of t lie. :record action tile object niame(] bY obJFrt will
acquire ant attribute niamed by at tributle with a value determined by the actiual value

of ral-ary. This at.tnbumte can then be later viewed via an ASP mnenu Or ulsed III WIhIr

places in the validation or other validationls.

The otidv differenice in the secotid foriti is that ob.ject dtoes not ap~pear. InI this Calle
:\PUses thle niame of t he verification po111int' th le las t enclosing : bef o re or :af ter

clauise as the objfrct.

['Fle :collect action has exactly thle Sil1V jorIMintad seiiantics as the :record act tOli

except that the attribute ValueC is a sequence and the computted :record value 'is
mnade the first element Of tile 'Se(1uen(:e. When such a collect(d attribute Is used 'Is
a Software Plan argoument I hie act ual valute is compuited by coercing t lie sequenice to

tlile data type specified by t le Software Plan keyword : collect ion-c oerc ion- type.
If niot specified this keyword defaul~ts to h le list data type.

The : report and : log actions a re -,I Iti lar i-In wha t thle : report a nd : log predlefiried
validations do. The predefined validations dto a specific canned thing depending onl

their enclosing condition. where as tile actions do a User specified thing where ever

they are specificed in the Software Plan. T heir form is

:report fotrnat-stniig cal-a:rqi t'a!-ary2 ...)

:log forniat,;-. rng ral-ary I ral-at-2...)

where fior'mnat-.4tung is a Coummon Lisp type format control string an d ral-a~ryi t'(i/-

(irg92 ... are 0 or more Software Plan arguments as defined above. The resulting valuies
of these arguments are consumned exactly as the arguminents would be consumed b

tile Ciommon Lisp format control stringa i -\aj peo sn rpr ihteFn
WVordl example is given in a following sect ion.

-A.3.11.3 Predefined Conditions

Tlhe predefined conditions have lie fol lowin rignea nuigls:

:on-entry :on-exit - given an action, before thc action is performed the actions ot
the : on-entry condition are performled. : on-exit Is similar but applies after
thle action is performed.

:on-pass :on-fail - The results of the last previous :test verification trigger these
condhit ions. If the result of the verification p~redlicate is true the :on-pass con-
dition's actions are perforniecl. If the result of the verification predicate is false
tlie :on-f all condition's actilons a re perforulledl

:before :after - If a previously specified :execution causes the triggering of the
:bef ore or :after condition's specified verification point, the cotiditIon's ac-
tions are performed ,)efore the verification point in the case of a. :before coil-
dit liou and after t ie verilication point, in the caise of an :after coiidition.

A.3.11.4 Permissible Conditions

All conditions can have any actions or validations. B,.it not all co,,ditioi, i hat act lolls
can havc. have inea uung. Oniy those that have ineaning will be Iperforiuied. Tie onieý
Ihat have zieaniing are as follows:

.\ction M eaniiigful C(onditions
:execute before :after :on-entry :on-exit
:engage before :after :on-3ntry :on-exit

:test on-pass :on-fail
:_'--ad :on-entry :on-exit

:record flone
:collect none

:report nione
:log iione

A.3.11.5 Predefined Validations

The pre lefined validhations are as follows:

:report - [he results of the last action of the enclcsing condition are displayed to

the itser in some way.

:log - The resutlts of the last action of the enclosing condition are logged to the log
ile' specified in the Software Plan.

:abort - Aborts all nested validations up to the current top level validation.

A.3.11.6 Using Validations

Tihe forin of any validation is simply

where ralidalto, is the nuame of a predefined or a tuser defined validatioti. This vali-
,hation form ,'alidat,o,, can appear anywhere that an action can appear. For example
VA VCO illl write

99

(:on-fail :report Do-MY-VALIDATION :abart)

too

A.4 More Find Word Examples

In this section we use modifications of the Find Word example to illustrate sonic ol
ASP's capabilities that were not illustrated by the Find Word program example itself.

A.4.1 An Example Using the :report and :log Actions

In the Find Word example we had a validation called TRIALl-DEBUG

(TRIALl-DEBUG
((:execute triall) (:on-entry :report) (:on-exit :report)

((:after setskips)

((:test (skiptable-correct word skiptable))
(:on-fail :report

((:record (list word skiptable) skiptable-snapshot)))))))

After selecting this validation with the ASP tool we then later manually looked at
the skiptable-snapshot attribute value to visualize what was going on. By using
the :report action we could have specified that we want to see the attribute value
during the validation.

(TRIAL1-DEBUG
((:execute triall) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-fail :report

((:record (list word skiptable) skiptable-snapshot))
((:report "7.Word and Skiptable =%-a-/%"

(setskips skiptable-snapshot))))))))

I 0I

We could get the same effect without having the plan execute triall but instead
put us into the ASP Lisp Listener from where we could execute triall and trial2
or any number of manual executions or inspections. When we are though with these

manual activities we enter :c and the ASP Lisp Listener puts us back in the ASP
tool where we started. We could add a. validation called simply TRIAL-VERIFY to
accomplish this.

(TRIAL-VERIFY
((:engage :listener) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-pass :report) (:on-fail :report)))))

Then upon selecting the TRIAL-VERIFY validation in the ASP tool we could "et the
following dialog:

I ASP controlling FIND-WORD plan.
I Entering: ASP Listerer

ASP Listener with validation TRIAL-VERIFY engaged.
Enter :c to continue with ASP tool.

ASP> (triall)

I ASP controlling FIND-WORD plan.
I Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS.
I Result = ***FAILED***.

The word "sentence" occurs 3 times in the text
"This sentence is an example sentence for finding the word sentence"
NIL
ASP> (trial2)

I ASP controlling FIND-WORD plan.
I Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS.
I Result = ***FAILED***

The word "sentence" occurs 2 times in the text
"This sentence is an example sentence for finding the word sentence"

103

NIL
ASP> : c

I ASP controlling FIND-WORD plan.
I Exiting: ASP Listener
--

Select ASP activity for FIND-WORD plan:
0 = Exit ASP tool.
1 = Select a plan validation for execution.
2 = View PC attributes.
3 = Change plan defaults.

Enter a number from 0 to 3 -> 0

ASP: :DONE

\Vhile in the ASP Lisp Listener we evaluated the expression (triall). Notice that

when we did this the effect was the same as selecting TRIALl-VERIFY except t hat we
returned back to the ASP Lisp Listener at which point we evaluated the exj)re,,sion
(trial2).

The ASP Lisp Listener is the same as an ordinary Lisp Listener except that the
prompt is ASP> and when we evaluate :c. which stands for continue, we are retiurned
to the ASP tool.

knother use for the :engage action would be to include it without anyv conditions
withii a nested set of actions and conditions so that the user could hianidailv 1Yiulpvrt

hi.s evironnietit in that state. For example given

(actioni (conditionl action2 action3
(action4 (condition2 actionS

((:engage :listener))))))

[In the case of condition2. action5 would take place followed Iw the .\AP lis•p
L.ihterier getting control.

}04

A.5 Using ASP with Specification Languages

[-sing ASP with a specification laitgitage 'ii'ther brings into focus its capal)ilitieS.
Formal specifications play the part of executable specifications, testable verifications
are short logic expressions, decomposition of specifications maps into the idea of

partial specifications. tile before and after effect of complex transformations is aligled
with the idea of centralizing multi-point tests in validations. and one has more cent tol
over generating multiple in plemeutaltions.

We demonstrate some of these capabilities by giving an example of using A\S P with the
Refine specification language as the host language. At the same time we denionstrate
more features of the Sotttware Plan. We use an example called Buses which is ai

toy example of resource scheduling and planning. We will show an early ksoftwarc
evolution phase Software Plan that discovers a constraint fauLt in the knowledge-tbase
by using decomposition_ of specifications. We will not emphasize the interaction with
the ASP tool as much as we did with the Find Word example. The complete sources of
the Buses example are delivered with the ASP software. To follow this example more
thoroughly we hope that the user will load the Buses software implementation and
the Buses Software Plan and apply the ASP tool by stepping through the validations
in the Software Plan.

A.5.1 The Buses Example

The Buses example is one of scheduling r,,sotirces for a bus system. These resources
are buses. drivers, routes and trips which are modeled in a knowledge base using the
Refine language. Constraints such as what types of buses can be used on each route.
what routes a driver is qualified to drive, and limits on the amount of time a driver
can drive during a day can be expressed as assertions using logic and set-theoretic
constructs.

We build a Buses implementation that will create a schedule and refine the schedule
into a sequence of events. We build executable specifications by writing verifications
that are logic expressions in Refine. These verifications when taken as a whole validate
the constraints mentioned above. In the example we invalidate the constraints bY
introducing a fault in them. A Software Plan validation detects this by failing one of
the composite tests. We then try a validation that decomposes that particular test

into partial specifications and discover the fault.

A.5.2 The Buses Implementation

We only show the top level functions for the buses implementation here. The BUSES
example is an extension of a Bus Scheduling example given by Reasoning Systems in

their Refine tutorial. If the user is interested, all of the code for the Buses example

105

is delivered with the ASP software. The function GENERATE-SCHEDULES generates all
possible schedules. It does most of its work by calling RECURSIVE-CREATE-SCHEDULE.

"Top-level function that generates all possible schedules and returns
the number found."

function GENERATE-SCHEDULES (b-w: bus-world) : integer
= initialize-bus-world (b-w);

initialize-globalso;
recursive-create-schedule (b-w);
report-scheduling-done (b-w);
schedule-count

"Recursive scheduling function for the bus world. Incorporates
backtracking and finds all schedules."

function RECURSIVE-CREATE-SCHEDULE (b-w) : bus-world
- let C rts the-routes (b-w))

let (r Route-with-Earliest-Uncovered-Time (rts))
let (return-time = Last-bus-trip-return-time (r))

Report-new-recursion-level-and-route-data (r, return-time);
(if return-time >= end-time-requirement(b-w)

then report-schedule-found (rts)
else
f Generate all legal combinations of
' bus & driver for next bus-trip.

let (legal-bus-driver-pairs =
generate-legal-bus-driver-pairs (b-w, r, return-time))

(if empty (legal-bus-driver-pairs)
then report-schedule-failure (r)
else
(enumerate

b-d:tuple(bus, driver) over legal-bus-driver-pairs
do
let (new-bus-trip = make-structure

('the-bus-trip 0(newsymbol('TR))
with-bus-trip-driver @(b-d.2)
with-bus-trip-bus 0(b-d.1)
on-route Or
starting-at Greturn-time'))

report-new-bus-trip (new-bus-trip);
Recursive-Create-schedule (b-w);
Retract-bus-trip (new-bus-trip))));

Report-backtracking();
b-w

A.5.3 Buses Executable Specifications

The following verifications serve as executable specifications for the Buses example.
'Uhe natnral language spe iFicatioii that tihe execittable specification verifies precdc'h,

106

each test verification. Each verification is based on r-esource constraints in the Buses
ohject wvorld. Notice that all of the veri-fications ar-e expressed in Refine as logic
forul-la~s. Also tiotice that they ar-e all quiantified conjunctions. This hielps us "lien
we wvant to decompose specificationis into pat-tial specificationls.

"TEST-P-I: A partially completed schedule has a schedule for every route."
function TEST-P-i (world: bus-world):boolean

fa(r) (r in the-routes(world) => ox(s)
(s = route-schedule(r)
% the times in s make s a continuous schedule starting at 0.

& ((defined?(last~s)) & defined?(bus-trip-start(last(s))))
=> bus-trip-start(last(s)) =0.0)

& fa(ti)
(ti in s =>

((defined?(bus-trip-end(tl)) and defined? (bus-trip- start (ti)1
=> (bus-trip-end(ti) - bus-trip-start(tl)

= trip-time(bus-trip-bus(ti) ,r))))
& fa(ti, t2)

((ti in s & t2 in s) =>

(s = C.. .t2,tl,..2 => bus-trip-start(t2) = bus-trip-end(ti)))))

"TEST-C-i: A completed schedule has a schedule for every route."
function TEST-C-i (world: bus-world):boolean

fa(r) (r in the-routes(world) => ox(s)
(s route-scheduli(r)

the times in s make s a continuous schedule covering the
whole time period.

& bus-trip-start(last(s)) =0.0
& bus-trip-end(first(s)) >= end-time-requirement(world)
& fa(ti)

(ti in s =>
bus-trip-end(tl) - bus-trip-start(ti) =trip-time(bus-trip-bus(ti) ,r)

& fa(ti, t2)
((ti in s & t2 in s) =>

(s =. C.,t2,ti,..2 => bus-trip-start(t2) =bus-trip-end(ti)'))))

"TEST-2: No two buses are in use at the same time,
and there is at least 15 minutes for refueling between uses."
function TEST-2 (world: bus-world):boolean-

fa(r) (r in the-routes(world) => ox(s)
(s = route-schedule(r) &
fa(ti,t2) ((ti in s & t2 in s) =>

((defined?(bus-trip-start(ti)) & delined?(bus-trip-end(ti)) &
defined?(bus-trip-start(t2)) & defined?(bUs-trip-end(t2))) =>

(ti -= t2 =>

(Cbus-trip-start(ti) < bus-trip-start(t2)
& bus-trip-end(ti) <= bus-trip-start(t2)) or
(bus-trip-start(t2) < bus-trip-start(tl)
& bus-trip-end(t2) <= bus-trip-start(ti))))))

107

let (~schedules ={route-schedule(r) I (r) r in the-routes(uorld)})
fa(31,s2) ((:1 in schedules & s2 in schedules) =>

(si - s2 =>
fa(tl,t2) ((ti in s1 & t2 in s2) =>

(l ti t2 =>
(Cdefined?(bus-trip-start(tl) & defined?'(bus-trip-ond(tl)) &
defined? (bus-trip-start(t2)) & defined?(bus-trip-end(t2)) &
delined?(bus-trip-bus(tl)) & defined?(bus-trip-bus(t2))) =>

(bus-trip-bus(tl) = bus-trip-bus(t2) =>
(bus-trip-end(tl) + 0.25 < bus-trip-start(t2) or
bus-trip-end(t2) + 0.25 < bus-trip-start(tl)))M))

"TEST-3: No two drivers are on different trips at the same tine,
and they are not driving more that 8 hours a day."

function TEST-3 (world: bus-world):boolean
fa(d) (d in the-drivers(world) =>

total-driving-time(d) <= 8.0)
k
fa(r) (r in the-routes~worid) => ex(s)
(s =route-schedule(r) &
fa(tl,t2) ((ti in s & t2 in s) =>

Cti - t2 =>

CCbus-trip-driver(tl) =bus-trip-driver(t2) = >
((bus-trip-start(tl) > bu3-trip-end(t2) or
bus-trip-end~tl) <= bus-trip-start(t2)))M))

"TEST-A: All the other problem-specific constraints."
function TEST-4 (world: bus-world):boolean=

fa(b) (b in the-buses(world) =>
fa(bt) (bt in bus-bus-trips(b) =>

bus-trip-d.river(bt) in drivers-trained-for(bus-trip-route(bt))
& bus-s2.ze(b) in qualified-f or(bus-trip-dzriver(bt))
& yard-of-driver(bus-trip-driver(bt)) = bus-y'ard(bus-trip-bus(bt))
& mountain-view-restriction?(b, bus-trip-route(b))
A fremont-restriction?(b, bus-trip-route(b))))

A.5.4 Buses Constraint Fault

lIn the Software Plan the validlation that introduces the constraint faull loadts aui limple-
inentation with the fault. This fault is in the constraint called BUS-DRIVER-CONSISTENCY
which is a conjunction of three sub-constraints given a particuilar driver. btis and route:

ILThe yard of the dIriver should be the samie as the yard of the bits.

2. The driver shouild he qualified for the size of the Ius.

3. The total hour limit is correct for the comhaio o1 drvr h1 ~ ddrut~

function BUS-DRIVER-COISISTUNCY
(d:d~river, b:bus, r:route) : boolean

%%% bus-yard (b) =yard-of-driver (d) k
bus-size (b) in qualified-for (d)&
total-hour-limit-ok! (d, b, r)

For demonstration purposes we artificially comment ou~t sub-constraint fimiInler 1.

This is equivalent to leakving it otit at, some phase of the software evoltition.

A.5.5 Buses Partial Executable Specifications

Because of the fauilt. TEST-4 will fail. -;o we decompose TEST-4 iflt~o partial -ýpecihca-

tions and create verifications TEST-4-1 through TEST-4-5:

function TEST-4-1 (world: bus-vorld):boolean-
fa(b) (b in the-buses(world) =>
fa(bt) (bt in bus-bus-trips(b) =>
bus-trip-driver(bt) in drivers-trained-for(bus-trip-route(bt))))

function TEST-4-2 (world: bus-world):boolean-
fa(b) (b in the-buses(world) =>
fa(bt) (bt in bus-bUs-trips(b) =>

bus-size(b) in quali.fied-for(bus-trip-driver(bt))))

function TEST-4-3 (world: bus-world):boolean-
fa(b) (b in the-buses(world) =>
fa(bt) (bt in bus-bus-trips(b) =>

yard-of-driver(bus-trip-driver(bt)) =bus-yard(bus-trip-bus(bt))))

function TEST-4-4 (world: bus-world):boolean-
fa(b) (b in the-buses(world) =>
fa(bt) (bt in bus-bus-trips(b) =>
mountain-view-restriction?(b, bus-trip-route(b))))

function TEST-4-5 (world: bus-world):boolean-
fa(b) (b in the-buses(world) =>
fa(bt) (bt in bus-bU3-trips(b) =>
freiuont-restriction?(b, bus-trip-route(b))))

A.5.6 Buses Software Plan

WVe now show the Buses Software Ntall that refers to the i mplementatilolls and speci-
fications that we disciussedI jabuve.

109~

(asp: specify-plan
:name 'buses
:specifications
'((buses-specification "/systems/asp/examples/buses/vnv-spec")
(buses-f iner-specificat ion "/systems/asp/examples/buses/vnv-spec-sub"))

:implementations
'((buses-base-implementation '/systems/asp/exanples/buses/load-base"

"/systems/asp/examples/buses/impl")
(buses-faulty-implementation "/systems/asp/examples/buses/plant-bug"))

:globals '((w2 *world2*))
:executables '((generate-schedules w2))
:verification-points '((report-nov-bus-trip) (report-schedule-found))
:verificationh '((test-p-i w2) (test-c-i w2)

(test-2 w2) (test-3 w2) (test-4 w2)
(test-4-i w2) (test-4-2 w2) (test-4-3 w2) (test-4-4 w2)
(test-4-5 w2) (1+) ()

:sub-validations
'((SHOW-NO-REPORT-SCHEDULE-FOUND

((:record 0 report-schedule-found count)))
(LIMIT-REPORT-SCHEDULE-FOUND
((:record (i+ (report-schedule-found count)) report-schedule-found count))
((:test (> (report-schedule-found count) 4)) (:on-pass :abort))))

:validations

'((OAD-BUSES
((:load buses-base-implementation buses-specification)
(:on-entry :report) (:on-exit :report)))

(ORDINARY-RUN
((:execute generate-schedules)))

(ORDINARY-TEST-RUN
SHOW-NO-REPORT-SCHEDULE-FOUND
((:execute generate-schedules) (:on-entry :report) (:on-exit :report)
((:before report-nov-bus-trip)
((test test-p-i test-2 test-3 test-4)
(:on-pass :report) (:on-fail :report :abort)))

((:before report-schedule-found)
LIMIT-REPORT-SCHEDULE-FOUND
((:test test-c-i test-2 test-3 test-4)
(:on-pass :report) (:on-fail :report :abort)))))

(ORDIIARY-TEST-RUN-WITH-SUSPECT
((:load buses-faulty-implementation)
(:on-entry :report, (:on-exit :report))

ORDINARY-TEST-RUN)
(FIND-SUSPECT-TEST-RUN
((: load buses-faulty-implementation buses-finer-specification))
((:execute generate-schedules)
((:before report-new-bus-trip)
((test test-p-i test-2 test-3) (:on-fail :report))
((:test test-4)
(:on-pass : report)
(:on-fail :report)
(:on-fail ((test test-4-i test-4-2 test-4-3 test-4-4)

110

(:on-pass :report) (:on-fail :report :abort))))))
((:before report-schedule-found)
((:test test-c-i test-2 tast-3) (:on-fail :report))
((:test test-4)

(:on-pass :report)
(:on-fail :report

((:test test-4-1 test-4-2 test-4-3 test-4-4)
(:on-pass :report) (:on-fail :report :abort))))))))

.\t this phase of the software evolution we have five validations:

L. LOAD-BUSES

2. ORDINARY-RUN

:1. ORDINARY-TEST-RUN

4. ORDINARY-TEST-RUN-WITH-SUSPECT

5. F IND-SUSPECT-TEST-RUN

LOAD-BUSES simply loads the base implementation.

ORDINARY-RUN simply executes GENERATE-SCHEDULES. ASP will pass it the value of
thie plan scoped identifier w2 which is associated in the Software Plan with the refine
variable *world2* which points to the Buses world knowledge-base. By selecting
i itis validation with the ASP tool you will see the Outlput that GENERATE-SCHEDULES

proIduces without any conditioning and output by ASP.

ORDINARY-TEST-RUN does the same thing as ORDINARY-RUN except that it condi-
tions the implementation code before the verification point report-new-bus-trip
LIv resting the verifications test-p-i, test-2. test-3, and test-4. If any one
4,1 these tests pass it will simply report that it passed, if any one fails it will re-
port that it fails and abort the validation ORDINARY-TEST-RUN. Simultaneously it
'onditions the code before report-schedule-found. Since it was discovered that
report-schedule-found triggers a huge number of times. ORDINARY-TEST-RUN in-
vokes the validation LIMIT-REPORT-SCHEDULE-FOUND which limits the number of trig-

.ters to .5 then aborts.

Wlhen vou select ORDINARY-TEST-RUN you will see that all tests pass. So we select
ORDINARY-TEST-RUN-WITH-SUSPECT. Notice that this validation simply loads the con-
straint fault implementation that we discussed above and performs the ORDINARY-TEST
-RUN validation. This is common: we want to test the code the same way we did before.
but tith a different implementation of the same function. Now with ORDINARY-TEST-RUN-
WITH-SUSPECT we will see failures being reported and in particular test-4 which will
, a se .-\SP to olitpuit:

Ill

I ASP controlling BUSES plan.
I Verification TEST-4 : BEFORE point REPORT-NEW-BUS-TRIP.
I Result = ***FAILED***

Finally we select FIND-SUSPECT-TEST-RUN which will make use o[our partial specifi-
cations we discussed above by loading the specification buses-finer-specification.
II this validation we see a bit more complex nested testing going on. Given that
test-4 fails. ASP is directed to test the partial executable specifications of test-4
namel- test-4-1 through test-4-4. This eventually results in a triggering that
produces the ASP output:

I ASP controlling BUSES plan.
I Verification TEST-4-3 : BEFORE point REPORT-NEW-BUS-TRIP.
I Restult = ***FAILED*s*

I ASP controlling BUSES plan.
I Controlled aborting of validation
I FIND-SUSPECT-TEST-RUN

These resuilts pin down the constraint fault and end this phase of software evolution.
The current validations and verifications will be used over and over again for fulture
phases.

112

A.6 Software Plan Complete Syntax

The syntax for an ASP Software Plan is expressed here in BNF. The tusual BNF
notations are used: The production symbol is ::, angle brackets <> describe it,'un-

terminals, a bar I indicates alternatives, curly brackets followed by an asterisk
indicates 0 or more occurrences of the construct inside of the curly bracket,. and
anything else is a terminal symbol.

The Production tree starts at that described under TOP LEVEL and continues wil i t hat
described under BNF sections SPECIFICATIONS. IMPLEMENTATIONS, EXECUTABLES.
VERIFICATION POINTS. VERIFICATIONS, and VALIDATIONS. At the lowest level of the
VALIDATIONS part of the tree are ACTIONS and CONDITIONS. All sections will refer to
non-terminals described irnder the PARAMETERS and ATTRIBUTES sections.

Some terminal syinbols include the quote ' symbol. They are used for top levoA

quoted lists. This was done intentionally to make it easy for more advanced wr,,k

involved with programmaticallv generating Software Plans as lists and applying rlie

function SPECIFY-PLAN to those lists.

TOP LEVEL

<plan-specification> ::= (specify-plan {<plan-attribute>}*)
<plan-attribute>

<plan-name-spec> I <log-f.ile-spec> I <verbose-loading-spec> I

<undefined-attribute-value-spec> I <collection-coercion-type-spec> I

<globals-spec> I <specifications-spec> I <implementations-spec> I

<executables-spec> I <verification-points-spec> I

<verifications-spec> I <sub-validations-spec> I <validations-spec>

<plan-name-spec> :: :name '<symbol>

<log-file-spec> :: :log-file <string>
<verbose-loading-spec> ::= :verbose-loading <choice-symbol>

<undefined-attribute-value-spec> = :undefined-attribute-value <host-val>
<collection-coercion-type-spec> := :collection-coercion-type '<symbol>
<globals-spec> ::= :globals '({<plan-arg> <global-val>}*)

PARAMETERS

<global-val> ::= <host-var> I <plan-constant>
<plan-par> ::= <plan-arg> I <recorded-val> I <plan-constant>
<plan-constant> ::= <string> I <integer>
<plan-arg> : : <symbol>
<host-var> : : <symbol>
<host-val> := <symbol> I <string> I <integer>
<choice-symbol> := t I nil

ATTRIBUTES

<recorded-val> :: (<object-name> <attribute-name>)
<record-syntax> :: <record-syntax-i> I <record-syntax-2>

I t3

<record-syutax-i> :2<recording-val> <attribute-name>
<record-syntax-2> : ~<recording-val> <object-name> <attribute-name>
<recording-va].) :: <verification-form> I<plan-par>
<object-name> ::= <symbol> I <verification-point-spec)
<attribute-name) ::= <symbol.>

SPECIFICATIONS

<specifications-spec> :2:specifications '({<specification-form>}e)
<specification-form> ::(<specification-name> {<string>}s)
<specification-name> ::<symbol>

IMPLEMENTATIONS

<implementations-spec> : :implementations '({<implementation-form>}s)
(implementatiozz-form> : ~(<implementation-name> f<strixig>}*)
<implementation-name> : ~<symbol>

EXECUTABLES

<executables-spec> : 2:executables '({executable-form}*)
<executable-form> ::(<executable-name> {<plan-par>}*)
<executable-name> : ~<symbol>

VERIFICATION POINTS

<verification-points-spec>
:: verification-points '({<verification-point-form>}*)

<verification-point-form>
:='(<verification-point-name> <verification-point-arg-spec>)

<verif icat ion-point-arg-spec>
::= (<point-arg>}* I {<point-arg>}* :output {<point-arg>}*

<verificatibm-point-name> ::= <symbol>
<point-a~rg> : := <symbol>

VERIFICATIONS

<verifications-spec> :2:verifications 1({<verification-form>}*)
<verification-form> ::'(<verification-name> {<plan-par>}*)
<verification-name> : ~<symbol>

VALIDATIONS

<sub-validations-spec> ::= :sub-validations '({<validation-form>1*)
<validations-spec> :2:validations '({<validation-form>l*)
<validation-form> : =(<validation-name> {<action>1*)
<validation-name> : 2<symbol>
<predefined-validation> : ~:report I :log I :abort

ACTIONS

<action> :: valitdation-reference> i(<action-form> {<condition}ý*)
<validation-reference> : <validation-name> I <predefined-validation>
(action-form)

<load-action> I <execute-action> I <engage-action> I <test-action) I
<record-action> I <collect-actiont> I<report-action> I <log-action>

<load-action> :=(:load <load-form))
<load-torm> :=<specification-name> I <implementation-name>
<execute-act ion> =(:execute <executable-name>)
<engage-action> (:engage :listener)
<test-action) ::2 (:test {cverification-name>1*)
<test-spec> ::= <verification-najue> I (<verification-name> {<plan-par}.*)
<record-action> :2(:record <record-syntax>)
<collect-action> :2(:collect <record-syntax))
<report-action> :2(:report <string> {ýcplan-par>}s)
(log-action> : (:log <string> {<plan-par>})*

CONDITIONS

<conaition> (<condition-form> {<action>}.)
<condition-form> ::= <predefined-condition> I <verification-point-spec>
<predefined-condition> :: :on-pass I :on-fail I :on-entry I :on-exit
<verification-point-spec>

:= (<condition-namQ- <verificationL-point-name>)
<condition-name> ::= :before I :after

B. Definitions 7- Terms and Abbreviations

B.1 General Acronyms

A DP .Xutomlatic Data Processing
A D)S Advanced Decision Systems
A.-\B Air Force Base
AUTD Acceptance Test Description
AT P Acceptance/ Accreditation Test Plan
.VTR Acceptance Test Report
C(Command and Control Division
('CB ConfiguIration Control Board
(I)R Critical Design Review
('DR L Contract Data Requirements List
CEO Chief- Executive Officer
('C "E Ctustomer Furnished Equipment
CF(Customer Furnished Informatio)
CF G C'omputer Facilities Group
(CF S C(ustomer Furnished Softwar-
(I Configuration Item
('C NI ('onfiguration Man-gement
('.MP Configuration Management Plan
('01 CommnLxutN of Interest
(,00 (0'hief Operating Officer
('[P oost Performaz,.e Review
('R ISD ('omn,)uter Resources Integrated Support Document
('OTS ('ommerciallv available. Off-the-Shelf
('Q.-. E Chief Quality Assurance Evaluator
c (.' (Cyclic Redundancv Check
('S(C Computer Software Components
('sCI Computer Software Configuration Item
(SONY I Computer System Operator's %,Manual
('SP Communications Support Processor

("SSR Cost Schedule Status Report
('S (" Compitter Software Unit
D('.A Defense Contracting Audit Agency
D(S Defense Communications System
DDC.IP Digital Data Communications Message Protocol
DES Data Encryption Standard
D .R Defense Federal Acquisition Regulation
1)I.A Defense Intelligence Agency

I (6

DID Data Item Description
DIS Daily Intelligence Summary
DLR Direct Labor Rates
DoD Department of Defense
DSCIS Daily (7.S. Space (Command Intelligence Summary Mlessage
DTG Date Time Group
E(CP Fngineering Change Proposal
EPROM Erasable-Progranunable Read-Only Meniorv
FAR Federal Acquisition Regulation
FCA Functional Configuration Audit
FCCM Facilities Capital Cost of Money
FDIP Full Duplex Message Protocol
FOC Final Operational Capability
FQT Formal Qualification Test
FS.I Firmnware Support Manual
GFE Governmzuentt Furnished Equipment
G FI Governmeent Furnished Information
GFS Government Furnished Software
G&.A General & Administrative
HN II Human Machine Interface
HOL Higher order Language
HQ Headquarters
H I WCI Hardware Configuration Item
IC('D Interface Control Document

C\V(; Interface Control Working Group
IDD Interface Design Document
IO(Initial Operational Capability
1 /O Input and/or Otutput
[P Internet Protocol
IRS Interface Requirements Specification
[ss Intelligence Support Systems
I1 Imagery Division
IVIOV Independent Verification and Validation
12 Intelligence Data Handling Systems Communications. Version2
J SR Job Status Report
LA\N Local Area Network
LLC('SC Lower-level computer software component
LOE Level-of-Effort

Mapping, Charting and Geodesy
N I ('S Mission-Critical Computer System
MIIL liitarv

1[7

MLDT Meani Logistics Delay Time
MMI Mani-MIachine Interface
MTBF Mean Time Between IFa*lures
MTBSF Mea~n Time IBetweeti Software Faults
MTBSH Mea-it Tiiie Between Software Halts
,VTT R Mean Time t~o Repair,
N DS Nowi-Dlevelopment. Software
NFS Network lile Svstern
NeWS Network extensible Window System
NLP NatUral1 Language Processing
OA Operational :\vailabi litv
OCD Operational Concept. Document
OCR Optical ('liaracter Reader
0OL%1 Operators Manuial
OS Operating SYstemi
PCA Phvsica-l (uidi igra tioi :\IIlit.

PDR Preliminary Desigýn Review
PID Process ID
PM Program Manager
P QM, Program Quality Manager
P RC Program Review Coordlinator
P ROM,, P rogramnmable Read- 0nly Memor~y
PRT Program Review Team
QA Quality Assurance
QAC Quality .\ssurance (Cormmittee

QANIl Quality .-Vssurance Manager
RCS Revision Conitrol SYstern
RFP Request for Proposal
RC;B Red. Grieen. Blue
ROM Read-OnlY Memory
RPC Remote Procedure Call
RT.%I S Real Time Message S 'ystem
R&,D Research and Development
SAý Systenm Administrator
SAC Strategic Air Command
SA D Situation Assessment Divisionl
S(1' Sensitive C'ompartmentedl hIformiationl
SC IF Special Com part menited Intelligence Facility
SC.N Specification Ch'lange Notice
SD D Software Design Document
S D F Soft ware Developmient Folder
SDL Software Developmnent Library

118

SDP Software Development Plan
SDR Software Design Review or Software Deficiency Report
SDRL Subcontract Deliverables Requirements List
SER Software Engineering Report
SI System Integrators
so Security Officer
SOW Statement of Work
SPM Software Programmer's Manual
SQEP Software Quality Evaluation Plan
SQPP Software Quality Program Plan
SPS Software Product Specification
SRR System Requirements Review
SRS System Requirements Specification
SSDD System/Segment. Design Document
SSS Syst.em/Segment Specification
ST D Standard
STP System Test Plan
STR System Test Report
S U Superuser
SUNI Software User's Manual
SW Software
SWCI Software Configuration Item
TBD To Be Determined
T('P Transmission Control Protocol
TCP/IP Internet protocol suite
TELNET Telecommunications Network Protocol
TIEt Technical Interchange Meeting
TOMP Task Order Management Plan
[QN\ Total Quality Management
TRR Test Readiness Review
VDF Unit Development Folder
1_ I User Interface
UNI User's Manual
IPS Uninterruptible Power Supply
VDD Version Description Document
V&V Verification and Validation
WVBS Work Break-Down Structure
\VYSIWYG What You See Is What You Get (pronounced: Whiz-E-Wig)

If!)

B.2 Definitions

"* ASCII. Standard alphanunmeric character set for comnputers.

"* Authentication. Determination by Ohe Governmnent that specification con-
tent is acceptable.

"• Background. A non-realtime message hardcopY document entered through
the optical character readers, magnetic tape. or by hand.

"* Baseline. A configuration identification document or a set, of such docu-
itients formally designated and fixed at a specific time during a C(-_s life cycle.
Baselines. plus approved changes from those baselines, constitute the current
configuration identification. For 2167A configuration management techniques
there are three baselines, as follows:

1. Functional baseline. The initial approved functional configuration iden-

tification.

"2. Allocated baseline. The initial approved allocated configuration identi-
fication.

:3. Product baseline. The initial approved or conditionally approved prod-
uct configuration identification.

However. for iterative prototyping programs dhe functional and allocated re-
quirements are not identified until late in the de,elopment process. The use of
a test or development baseline in place of the functional and allocated baselines.
allows for the system evolution. The two standard baselines ihat .\DS utilizes
are:

t. Test baseline. The test baseline will be established as segments are
released from each task group.

2. Product baseline. The product baseline will be establiahed at the suc-
cessful completion of contract requirements/deliveries.

"* Baseline Management. Xpplicatioti of technical and administrative direc-
tion to designate the documents which formally ident ifv and cstablisli the initial
configuration identification at specific times during its life cycle.

"* Certification. A process which may be incremental. by which a contractor
provides objective evidence to the contracting agency that an item satisfies its
sppecified requirements.

"* Computer data definition. .\ statement of the characteristics of the basic
elements of information operated uipon by hardware in responding to computer
instructions. These characteristics may include, but are riot limited to. type.
rainge. ,trictutre. atnd value.

120

"* Computer hardware. Devices capable of accepting and storing computer
data, executing a systematic sequence of operations on computer data or pro-
ducing control outputs. Such devices can perform substantial interpretation.
computation, communication, control, or other logical functions.

"* Computer resources. The totality of computer hardware, software. personl-
niel. documentation, supplies, and services applied to a given effort.

" Computer software. A combination of associated computer instructions and•
coml)uter data. definitions required to enable the computer hardware to pert'orn
computational or control functions.

" Computer Software Component (CSC). A distinct part of a coinpliet"

software configuration item ((SCI). CSCs may be further decornposed i (to

other CSC's and C(omputer Software I'nits (CSI~s).

"* Computer Software Configuration Item (CSCI). A configuration itelli
for computer software.

" Computer Software documentation. Technical data or information, in-
eluding computer listings and printouts, which docrments the requiiremenrts.
design. or details of computer software, explains the capabilities and liniita-
tions of the software, or provides operating instructions for using or supporting
computer software during the software's operational life.

"* Computer Software Unit (CSU). An element specified in the design of a
(,omputer Software Component (CSC) that is separately testable.

"* Configuration. The functional and/or physical characteristics of har I-
ware/software as set forth in technical documentation and achieved in a product.

" Configuration control. The systematic evaluation, coordination. approval.
disapproval, and implementation of all approved changes in the configuration
of a C1 after formal establishment of its configuration identification.

"* Configuration Identification. The current approved or conditionally up)-
proved technical documentation for a configuration item as set forth in lpeilh-
cations, drawings and associated lists, and documents.

" Configuration Item Number (CIN). A (IN is a permanent. niumbter a.-
signed by the configuration manager to identify a configuration item. The C'IN
is composed of alpha-numeric characters.

" Configuration Item (CI). An aggregation of hardware/software, or any of
its discrete portions. which satisfies an end use function and is designated for
configuration mamiagenient.

121

e Configuration Mangement. A discipline applying technical and adtiliils-
trative direction to (1) identify and document the functional and physical char-
acteristics of a. configuration items. (2) control changes to those characteristics.

and (3) record and report change processing and implenmentat-ion status.

* Configuration status accounting. The recording and reporting of I he in-
format iont that is needed to manage configuration effectively. including a liNtiltg
of the approved configuration identification, the status of proposed chalg,'s to
(onlfigu ration. and the implementation status of approved changes.

"• Cost. '[he term "cost" means cost.

I. Non-recurring costs. One-time costs which will be incurred it' an en-
girrering ('hange is ordered and which are independent of the quanlityv of
items changed. such as. cost of redesign. special tooling or (Jualificationl.

2. Recurring costs. (osts which are incurred for each item chagned or for
each service or document ordered.

"* Critical Design Review (CDR). This review shall be conducted for each
configuration item when detail design is essentially complete. The i)urpose of
this review will be to (1) determine that the detail design of the configuration
item uinder review satisfies the performance and engineering speciality require-
ments of the HWCI development specification(s), (2) establish the detail design
compatil)ilitv among the configuration item and other items of equipment. facil-
ities. computer software personnel. (3) assess configuration item risk areas ion
a technical. cost. and schedule basis). (4) assess the resulted of the producihil-
itv analyses conducted on system hardware, and (5) review the [)relini'narv
hardware prodhct specifications. For CSCIs. this review will focus on the d•e-
termination of the acceptability of the detailed design, performance. and test
characteristics of the design solution, and on the adequacy of the operation anld
support ,icurents.

"* Critical item. An item within a CI which, because of special engineering or
logistic considerations, requires an approved specification to establish technical
or inventory control at the component level.

"* Deficiencies. Deficiencies consist of two type: (I) conditions or characteris-
tics in any hardware/software which are not in compliance with specified coi-
figuration. or (2) inadequate (or erroneous) configuration identification which
has resulted, or may result, in configuration items that do not fulfill approved
operational requirements.

"* Developmental Configuration. The contractor's software and associated
technical documentation that defines the evolving configuration of a CSCI dur-
ing development. It is under the development contractor's configuration con-
trol a id de-scribes the oft wa re design and implementation. The Developmental

1 "22

Configuration for a CSCI consists of a Software Design Document and source
code listings. Any item of the Developmental Configuration may be stored on
electronic media.

"* Domain. The area of interest of a part icular program.

"* Engineering change. Akn alteration in the configuration of a. conlfiguration
item or item, delivered, to be delivered. Or under development, after fornial
establishment of its configuration identification.

"* Engineering Change Proposal (ECP). A term which includes both a pro-
posed engineering change and the documentation by which the change is kle-
scrihed and suggested.

"* Evaluation. The process of dletermining whether an item or activity meet.
,pecified criteria.

"* Firmware. The combination of a hardware device and computer instru ctions
or computer data that reside as read-only software on the hardware device. The
software cannot be readily modified under program control.

"* Formal Qualification Review (FQR). The test, inspection, or analytical
process by which a group of configuration items comprising the system are
verified to have met specific contracting agency contractual requirements (spec-
ifications or equivalent). This review(does not apply to hardware or software
requirements verified at FCA for the individual configuration item.

"* Formal Qualification Testing (FQT). A process that allows the contracting
agency to determine whether a configuration item complies with the allocated
"•:I.uirements for that item.

"* Functional area. A distinct group of system performance requirements
which, together with all other such groupings, forms the next lower level break-
(down of the system on the basis of function.

"* Functional characteristics. Quantitative performance, operating, and lo-
gistic parameters and their respective tolerances. Functional characteristics
include all performance parameters. such as range. speed. lethality. reliability.
maintainability, and safety.

"* Functional Configuration Audit (FCA). The formal examination of func-
tional characteristics' test data for a configuration item, prior to acceptance. to
verify that the item has achieved the performance specified in its functional or
allocated configuration identification.

"* Hardware Configuration Item (HWCI). k configitrationi item for hard-
ware.

12:1

"* Independent Verification and Validation (IV&V). Verification and val-
idation performed by a contractor or independent group that is not responsible
for developing the product or performing rg w activity being evaluated. IV',V
is an activity that is conducted separately fronm the software development ac-
tvi ties.

"* Interface Control. Interface control comprises the delineation of the proce-
(lures and documentation. both administrative and technical, contractually nec-
essary for identification of functional and physical characteristics between two or
tilore configuration itenis which are provided by different contractors/Government
agencies, and the resolutiotl of the problem t hereto.

"• Interface Control Working Group (ICWG). For programs which encout-
pass a system/configuration item design cycle, an ICWG normally is established
to control interface activity between contractors or agencies. including resolh-
Lion of interface problems and documentation of interface agreements.

"* MMI. Term used to describe lhe interface between the user. the computer, and
the program. Terms include: nian-machine interface, human-machine interface.
User- interface.

"* Non-development software (NDS). Software that is not required to be
delivered by the contract.

"* Operator. In text' management. a term that dlescribes the connection between
a subtopic and a topic (e.g. and. or not. vote. phrase). For computers. one who
maintains the computer.

"* Physical characteristics. Quantitative and qualitative expressions of ma-
terial features. such as composition. dimensions. finishes. form. fit. and their
respective tolerances.

"* Physical Configuration Audit (PCA). A technical examination of a des-
ignated configuration item to verify that the configuration item "'As Built'
conforms to the technical documentation which defines the configuration item.

"* Preliminary Design Review (PDR). This review shall he conducted for
each configuration item or aggregate of configuration items to (t) ovaluate the
progress. technical adequacy, and risk resolution (on a technical. cost. and sched-
file basis)m of the selected design approach. (2) determine its compatibility with
performance and engineering speciality requirements of the IIWCI development
specification, (3) evaluate the degree of definition and assess the technical risk
associated with the selected manufacturing methods/processes. and (4) estab-
lish the existence and compatibility of the physical and functional interfaces
among the computer software and personnel. For CSCIs, this review will focus
on: (1) the evaluation of the progress. consistency. and technical adequacy of

121

the selected top-level design and test approach. (2) compatibility between soft-
ware requirements and preliminary design. and (3) on the preliminarY version
Of the operation and support documents.

* Qualification.

* Reusable software. Software developed in response to the requirerneats for
one application I ha.t can be used. in whole or in part. to satisfy the requiremenls
of another application.

e Software development file/folder (SDF). A repository for a collection of
material pertinent to the development or support of software. Contents typically
inClude (either directly or by reference) design considerations and constraints.
design doctnuientat ion and data. schedule and status information, test require-
inents. test cases, test procedures. and test results.

* Software development library (SDL). A controlled collection of software.
(locumentation. and associated tools and procedures used to facilitate the or-
derlv development and subsequent support of software. The SDL includes the
Developmental Configuration as part of its contents. A software development
library provides storage of and coutrolled access to software arid docunilntatiuin
in human-readable form, machine-readable form, or both. The library mav also
contain management adat pertinent to the software development project.

* Software engineering environment. The set of automated tools, firmware
devices. and hardware necessary to perform the software engineering effort.
The atomated tools may include but are not limited to compilers. assemlnler•.
linkers. loaders. operating systems, debuggers, simulators. emulators. test took.
I ocuCIientai ion tools, and data base management system(s).

o Software quality. The ability of a software product to satisfy its specified
requirenments.

o Software Specification Review (SSR). A review of the finalized Comptiter
Soft ware Configuration Item (CSCI) requirements and operational concept. [he
SSR is conducted when CSCI requirements have been sufficiently defined lo
evaluate the contractor's responsiveness to and interpretation of the svr•em.
,egment. or prime item level requirements. A successful SSR is pre, licat,'d
upon the contracting agency's determination that the Software RI'equirement.,
Specification. Interface Requirements Specification(s). and Operational Concept
Document form a satisfactory basis for proceeding into preliminary software
dlesign.

o Specification. A document intended primarily for use in procurement. which
clearly describes the essential technical requirements for items, materials. ,tr
•ervices including the procedures by which it will be determined that the e-
(•1lirenwnts have been met.

125

I. General specification. A document which covers the requirements com-
mon to different types, classes, grades and/or styles of items or services.

"2. Detail specification. .-\ document which covers (either within itself
or by referencing and supplementing a general specification) the complete
reqiiirements for only one type of item, or for a linited titnmber of types.-

classes, etc. of similar characteristics.

3. System specification. A document which states the technical and mission
requirements for a system as an entity. allocates requirements to functional
areas (or configuration items). and defines the interfaces between or amnorig
the functional areas.

4. Development specification. A document applicable to an item below
the system level which states performances. interface and other teclitical
requirements in suLfficient detail to permit design. engineering for service.
use. and evaluation.

5. Product specification. A document applicable to a production item
below the system level which states item characteristics in a niantiner s•itable
Cor procurement. production. and acceptance.

"* Specification Change Notice (SCN). A\ document used to propose. trans-
tnit. and record changes to a specification.

"* Synonym. An operator that allows a topic to be a synonym of (the same a1)
another topic.

"* System. A composite of subsystems. assemblies (or sets). skills, and tech-
niques capable or performing and/or supporting an operational or rion-operatiolial I
role. A complete system includes related facilities, items. material, services, andl
personnel required for its operation to the degree that it can be coisidered a self-
sufficient item in its intended operational (or non-operational) and/or support
environment.

"* System Design Review (SDR). This review shall be conducted to evaluate
the optimization, correlation. completeness. and risks associated with the allo-
cated. technical requirements. Also included is a summary review of t lie sYtem
engineering process which produced the allocated technical requirements and ot
the manufacturing planning for the next phase of effort.

"* Subcontractor. A subcontractor is an indeividual. partnership. corporation.
or association, who (which) contracts with a contractor to design. dlevelop. (IV-
sign and manufacture, manufacture items, which are or were. designed specifi-
callv for use in a military application.

"* System Requirements Review (SRR). The objective of this review is to
ascertain the adequacy of the contractor's efforts in defining svstem require-
ments. It will be conducted when a significant portion of the system functional
reqfiiiremnerits ha.s been estab lislivd.

126

"* Software support. The sum of all activities that take place to ensure that
implemented and fielded software continues to fully support the operational
mission of the software.

"* Software test environment. A\ set of automated tools, firmware device. aiid
hardware necessary to test software. The automated tools may irnclude nbut are
not limited to test tools such a.s simulation software. code analvzers. etc. aiid
ia.v also include those tools used in the software engineering environmetnt.

"* System Specification. A system level requirements specification.

"• Technical Report. A technical report encompasses the evaluated relevant
facts on a study or phase of a study of a particular art, science. professionl. M,
trade. and stands as a permanent official record in a formal document. Tlhe
prime purpose of a technical report is to flisseminate the results of activity alld
to foster the exchange of information.

"* Test Readiness Review (TRR). A review conducted for each (C'.-I to
determine whether the software test procedures are complete and to assure that
the contractor is prepared for formal CSCI testing. Software test procedures
are evaluated for cotmpliance with software test plans and descriptiols,. atnd
for adequacy in accomplishing test requirements. At TRR. the contracting
agency also reviews the results of informal software testing and any updates
to the operation and support documents. A successful TRR is predicated on
the contracting agency's determination that the software test procedures and
informal test results form a satisfactory basis for proceeding into forinal C5(l
testing.

"* Unit. One complete configuration item.

"* Validation. The process of evaluating software to determine compliance wit h
specified requirements.

"* Vendor. A vendor is a manufacturer or supplier of a commercial item.

* Verification. The process of evaluating the products of a given software
development activity to determine correctness and consistency with respect to)
the products and standards provided as inplt to that activitv.

"* Version. An identified and docitmented body of software. .Modification to a
version of software (resulting iII a new version) require configuration manage-
ment actions bv either the contractor, the contracting agency. or both.

"* Waiver. A written autthorization to accept a configuration item or other
designated items. which during pro(hdction or after having been submitted for
inspection. are found to depart from spe(iifled requirements, buit nevertheless
are considered suitable for itse "as is" or after rework by an approved method.

127

* Work Breakdown Structure (WBS). A product-oriented f'amilY tree. coni-
posed of hardware, software. services and other work tasks, which results from
project engineering effort during the deveiopnient. and production of a deff.nse
material item. and which comrletelk defines the pro ject/program ..- \ WBS dis-
plays and defines the product(s) to be developed or p)roduce'd and relates the
elements of work to be accomplisheld to each other and to the end produlct..

B.3 Document Definitions

" Configuration Management Plan (CMP). The Configuration Manage-
ment Plan (('NIP) describes the procedures and methods to be used for conf11-
uration managemetnt during the life of t lie program. T'his incl ude developlwiit.
testing, and installation.

" Computer Resources Integrated Support Document (CRISD). ihe
Computer Resources Integrated Support Document (CRISD) provides the inI-
formation needed to plan for life cycle support of deliverable software. The
CR ISD documents the contractor's plans for transitioning sutppcrt of deliver-
able software to the support agency.

" Computer System Operators Manual (CSOM). The (C'omputer .Svstem
Operator's .Manual (CSONI) provides information and detailed procedures for
initiating, operating. monitoring, and shutting down the computer system and
for identifying/isolating computer malfunctions.

" Firmware Support Manual (FSM). The Firmware Support Manual .FAN[L
provides the information necessary to load software or data into firmware comn-
ponents of a system. It is e(Iually applicable to read only memory (RON~s). Pro-
7ramrmable ROMs (PROMs). Erasable PROMs (EPROMs). and other firnmware
devices.

"* Interface Control Document (JCD). The Interface Control Document
(IC'D) specifies all of the external (other systems) and internal (between sutb-
systems) interfaces necessary to ensure proper development of software 'or the
,vstem. It serves to document and control interface decisions.

"* Interface Design Document (IDD). The Interface Design Document (IDD)
specifies the detailed design for the interface between the (.'SCIs.

" Interface Requirements Specification (IRS). The Interface lRequirements

Specification (IRS) specifies the re(luirenients for one or more interfaces between
one or more ('SCIs and other configuration items.

"* Software Data Dictionary Document. The Software Data Dictionary
Document is a technical dlocument prepared for the programmers and data
I)ase adm in [list rators. It provides 1'(l r tire central collection of intformation abIout

128

all data used by the software system: all files. all recori types, all items within
records, all relationships between records. and all pertinent information about
the itse of the data. The Software Data Dictioiia.rv Documnent is designed to
provide a standatd . consistent. simple framework for information about, , he data
used by the system being developed.

" Software Design Document (SDD). The Software Design Doctiment (SDD)
,lescribes the complete design of the each CSCI. It (lescribes the (S('I as coln-
posed of Computer Software Components (C('Cs) and C(omnputer Solft ware Tnits
(CSl's).

"* Software Development Plan (SDP). The Soft,,are Development Plan
(SDP) describes a contractor's plans for conducting software (levelopruent. The
•DP 1,3 used to provide the Government insight into the organizatic i(s) resIon-
,ihle for performing software development and the methods and procedures to
be followed by these organization(s). The SDP is used by the Government to
mnonitor the procedures. management, and contract work effort ofl he organiza-
tion performing software development.

"• ,oftware Product Specification (SPS). The Software Product Specihca-
tion (SPS) consists of the SDD and source code listings for a CSC(.

" Software Programmer's Manual (SPM). The Softwai. Programmer's
Mianual (SPM) provides information needed by a programmer to understand the-
instruiction set a-chitecture of the specific host or target computers. The SPM
Ipro.i'es information that ma, be used to interpret, check out. troubleshoot. or
nodify existing software on the host or target computers.

" Software Quali.y Program Plan (SQPP). The Soft-ware Quality Progiain
Plan iSQPP) identifies the organizations and procedures to be used by the con-
trnctor to perform activities related to the Software Quality Program specified
6,v DoD-STD-2168. The SQPP is used to evaluate the contractor's plans fo,
implementing the Software Quality Program.

"* Software Test Plan (STP). The Software Test Plan (STP) describes the
formal qualification test plans for acceptance testing of the system. The STP
identifies the software te it environment resources required for accreditat ion !est--
irig. The STP identifies the individual tests that will be pertormedl during ac-
creditation testing.

"* Software Test Description (STD). The Software Test Descripuic- describes
each of the procedures identified in the the STP.

"* Software Test Report (STR). The Software Test Report (STR) is a record
of the formal qualification testing performed on the system. The STR provides
tlie Government with a permanent record of FQT performed on the system.

129

"* Software Users Manual (SUM or UM). Trhe Software U-ser's Nianical
(.SU.M) provides the user personnel wit~h instructions sufficient to run the system.

"* System Operational Concept Document (SOC). Tihe Sysiecn Opera-
tional ('oncept D~ocument. describes the mission of the sys-temi and its operatioalu

aild sup~port, environiments. Also described are the tunctiowis and characteristics
ot the comInpter sYstemi within the overall system.

"* System Requiremnents Specification (SRS). The Software Requi reneleits
Sýpecification (SRS) specifies the engineering a~nd qualification requirements For
thle swstonm.

"* Systemn/Segment Design Document (SSDD). The Systeni/Segmielit De-
s~ign Docuimentr (YSDD) describes the design of the systemn anid its operatioiial
adsupl511port environmnents. It dlescribes the organization of the svs vrmi as coin-
posed of Hardware ('oiiflg1uraLioui Items (H'vV-Is). Computer Soft ware ('outig-
U rat ion Itt-ins (SI).and mianual operations.

"* System/Segment Specification (SSS). The Systemn/Segment Specificationl
555S) specifies the requirements for a system or a segment of a system. The SSS.

iiponfl ormial approv'al. b~ecomles part of the Functional (or T"st/ Devtelopniieiit
Baseline.

"* Version Description Document (VDD). The Version Description Docim-
iiient (*Dl)) identifies and describes a version of a Computer Software (oiih,-
uiratiorm Item W(SC!) beting released.

130(

C. A Guide to CASE Tools

.\lthoitgh this list will quickly tocome outdated, the impact of Coniputer-Aided Soft.-
wale Fllgineering (C(.\SL) of VY\V activities is too imnportant to ignore. Thi i, naua
has argued for Hie inmportance of system specification and design. .\A

ad[dit.lolld Ional ,nic t or Ot-l na.liltv is t.hat formal representations can be ruanipu lated cl
coll)uters, resuttit in I)etter q(Iiality than would likely be obtained ia.ntialliv.. \t a
1liniinfIlli ,11. certaini obvioius ",cleni. al-" errors can be found automatically, sui-ci as i l(Col1-
sistejicies iI interface ,lefinit ions. Pr'esent generation CASE tools are far fromui id'eal.
but voun may find sonmething in the list. below-based on a list compiled by the ('.\SI
Research iGroup of Florida Atlantic l' iversitv-that will prove very useful oi %our
project.

Adpac Corp. .\dpac CASE lools: :3,10 Brannan St.. San Francisco. (107. I [I-
9)7 t- 66 99

Advanced Logical Software A.natool: 9903 Santa Monica Blvd.. suite 10,8. Bevr-ly
Hills. (-'A 90212. 213-653-5786

Advanced Technology International, Inc. SuperCase

AGS Management Systems, Inc. Multi/CAMl; category: front end: 880 First
Ave.. King of Prussia. PA 1.9406. 215-26.5-1550

American Management Systems, Inc. Life Cycle Productivity System: cateolo'v:
front end. back end: 1777 North Kent St.. Arlington. VA 22209. 703-S-11-6,06•

Applied Business Technology Corp. Project Workbench: 361 Broadway. Now
York. NY 1001:3. 212-219-8945

Applied Data Research, Inc. DEPICTOR: category: front end: Route 206 and
Orchard Rd.. (N-8. Princeton. NJ 08.54:3

Arthur Andersen & Co. Design/I (part of Foundation Series): category: frolt
end. back end, RE/M: :33 West Monroe St.. Chicago. IL 60603: 69\ West W\ash-
ington. Chicago. IL 60602. 312-580-0069. 312-580-0033. 312-507-5161

Atherton Technology Software BackPlane; 13:33 Bordeaux Drive. iunnyvale. (.\.

94089. Tele: 408 734-9822. Fax: 408 744-1607

ASYST Technologies, Inc. The Developer; One Naperville Plaza, Naperville. II.
60540. 800-361-3673

Bachman Information Systems BAMHMAN Product Set

Cadre Technologies, Inc Teamwork OS/2 :3.0: category: front end: 222 R ichmold
St.. Providence. RI 02903. 401-:351-5950. -01-3.51-CASE

131

The CADWARE Group, Ltd SYLVA Series; category: Front end

CASET IPSYS ['ool Building Kit: 7t4-496-86f70

CaseWare, Inc .\MPLIFY: 3530 Hyland .\venue, Suite 115. ('osta Mesa. (A 9)2626.
-t11-7-54-0:308

The Catalyst Group PAT1IVU Series: category: RE/NI: Peat MNarwick .lairn,
('o.. :103 East Wacker l)r., Chicago, IL 60601, 800-32:3-3059., 112-9:38-5352

CGI Systems, Inc. PACBase, PA('Beuch. PACDesign: category: front end. I)ack
end. RE/M: 8200 Greensboro Dr. Suite M00. McLean, V:\ 22102. 703-448-81SI:
I Blue Hill Plaza, Pearl River, NY 10965. 914-735-5030

Chen& Associates ER-Designer (ERD); 1884 Constitution Ave. Ste IF. lat,,,
Rouge. LA 70808. 504-W28-5765

Cincom Systems, Inc. Supra. Mantis. Easy PC' Contact.. CASE Interchange: 2300
Montana Ave.. Cincinnati, OH 45211. 800-888-01.15

Coding Factory CoFac

Cognos Powercase: 67 S. Bedford St., Burlington, Mass. 01803. 617-229-,600

Computer Associates International, Inc. CA-Datacom. CA-Ideal. CA- Dataquerv.
CA-Dataquerv PC: C(omputer Associates World Headquarters. 711 Stewart
Ave., Garden City, NY 11530. 516-227-3:300

Computer Data Systems Scan/COBOL. SuperStructure: I Curie ('ourt. Rockviile.
MD 20850, 202-921-7000

Computer Sciences Corp Design Generator: category': front end: :3610 Fairview
Park Dr, Falls Church, VA 22042. 703-876-1000

Computer Systems Advisers, Inc POSE 4.0: 50 Tice Blvd.. Woodcliff Lake. N.1
07675. 800--537-4262, 201-391-6500

Compuware Corporation CATI tools: Abend-AID. C(ICS Abend-AID. (ICS R.\ DA R.
File-AID familv, TransRELATE. PLAYBACK. File PLAYBA(1K. SINIIL('.\ST,
(IBUG-AID. XPEDITER. NAVI(;.\VOR: :311 10 Northwestern Highway, Farm-
ington Hills. Michigan 48018-5550

Cortex Corp. CorVision, Application Factory; category: front end. back end. R E, .I:
t:38 Technology Dr., Waltham. NI.A 02154; 100 Filth Avenue, Walthanm. NMA
02154-986:3, 617-894-7000

Cullinet Software, Inc. IDNIS/Architect

D. Appleton Company IDEF/Leverage: 1334 Park View Ave.. Suite 220. Mlan-
hattan Reach. CA 90266. 213-5-16-75•15

132

Deft Inc. Deft; 567 Dixon Rd., suite 110. Rexdale. ON M9W 1H7, Canada, 416-
249-2246

Deloitte, Haskins& Sells 4Front; 200 East Randolph Dr.. Chicago. IL 60601. 312-
856-8168

Digital Equipment Corp. DECASE: DE(I'direct, ("oitinental Blvd.. Nlerrimack.
NH 0:3054, 800-344-4825

ECS Associates SQL-Link-Plus; :3812 Sep)ulveda Blvd., Torrance. C.A 90505. 21:3-
378-9260

ICONIX Software Engineering Inc. PowerTools Series: category: front end, back
end, RE/NI: 2800 Twenty Eighth St. Suite 320, Santa Clara, C(A 90405. 213-
458-0092

Forschungszentrum Informatik (FZI) STONE: Haid-und-Neu-Str. 10-14.. D-
7300 IKarisruhe. Germany, +49-721-6906-731

i-Logix StateMate: 22 Third Ave., Burlington. MA Ot803. 617-272-8090

Index Technology Corp. Excelerator 1.S4: category: front end, One \lain St..
Cambridge, MA 02142, 800-777-8858. 617-494-8200

Institute for Information Industry KangaTool Series; category: front-end: Sth
Floor, 106 Ho-Ping E. Rd.. Taipei. Taiwan. R.O.C.

Integrated Systems, Inc. AutoCode: 2500 Mission College Blvd.. Santa Clara. C(A
9-5054. 408-980-1500

Interactive Development Environments Software Through Pictures: category:
front end: 595 Market St., 12th Floor. San Francisco. CA 94105. 115-543-0900

KnowledgeWare, Inc. IEW/WS: category: front end: 3340 Peachtree Rd.. At-
lanta. GA :30026, 404-231-8575. 800-338-4130

Language Technology RECODER. INSPECTOR: category: RE!/N: 27 Congress
St. Salem. MA 01970, 800-732-63:37. 508-741-1507

Learmonth& Burchett Management Systems, Inc. (LBMS) System Engineer
(nee Auto-Mate Plus); 1800 West Loop South. Suite 1800, Houston, TX 77027.
713-682-8530. 800-231-7515

Manager Software Products, Inc. Manager Series; category: Front end. back
end; 1:31 Hartwell Ave, Lexington. MA 02173-3126. 617-863-5800

Matterhorn, Inc. HIBOL: category: back end

133

McDonnell-Douglas ProKit"Workbench STRA[DIS. PRO-IV: category: front end:
P.O. Box .516. Dept. L515. XIS 2812301, St. I,ouis. XIO 63166. 800-325-1087.
800-822-73:37. 3t11-232-5715

Mentor Graphics Corp. Ana.lyst/RT. Desiguer. A\uditor: caiegorv: front ,end: 8510
Southwest Creekside Place, Beaverton, OR 97005, 503-626-7000

Meta Systems QuickSpec. Structured .\rchitect (S.A). Stritci iwreAl .\ reliitect -In tegral o[r

(SA-I). PSL/PSA. Report Specification Interface (RSI). View Integration S'vs-
tern (VIS): category: front end. RE/!X: :315 F. Eisenhower ParkwaY. Sulite 200.
Ann Arbor. Ml 48108. 313-66:3-6027

Micro Focus, Inc. COBOL/2 Workbench: 2-465 East Bavshore Rd.. Palo Alto. ('\

94303. 115-856-4 [61.

Netron. Inc. NETRON/C'AP: 99 St. Regis ('rescent N. Downsview. O)ntario. (ana,,
XN3.[I. Y9.4 t6-636-83:33

On-Line Software International ('asePac; 2 Executive Dr.. Vt. Lee Executive
Park. Ft. Lee. N.J 07024. 201-592-0009

Optima, Inc. DesignVision L.7. DesignNlachine 2.0: category: front end. I)ack end

Oracle Systems Corp. CASE•Designer. CASE'Dictionary. ('ASE•(;enerator. SQL) Forms.
SQL 'Report. SQL"QMX. Oracle. SQL"Louder: Oracle World Headquarter,".
500 Oracle Pkwv. Redwood Shores. CA 94065. 415-506-7000: ORA('LE ('orpo-
ration. 20 Davis Drive. Belmont. CA 94002. S00-34-5-DBIIS

Pansophic Systems Inc. Telon: 2400 Cabot Drive. Lisle. 1I. 60532. 312-505-6'000.
",00-323- 7335

Phoenix Technologies, Ltd. P-Source. P-Tools: 846 'niversitY Ave.. Norwood.
MIA 02062. 617-551-4000

Popkin Software& Systems Systernt Architect: 11 Prospect St .. Suite 505. Stain-
tord. (i'F 06901, 20:3-:323-:3434

ProMod, Inc. ProMod Series: category: front end. back end. RE/N : 236S75 lFtirtcher
Dr.. El Toro. (".\ 926:30. - [4-855-3046. 800-255-2689

Rational Rational Design Facility; category: front end: 3320 Scott Blvd. Santa
(lara. C(A 9-5054

Ready Systems Corp. CardTools: 470 Potrero Ave.. P.O. Box 60217. Sunnvvale.
(UA 94,-086

Sage Software Inc. Polytron Version ('ontrol System (PVC'S). APS Development
(enter: category: back end. RE/NI: 1700 N.W. t67th Place. Beaverton. OR

17006. 800-547- 1000

S3 1

Sapiens International Perfect. Object-Modeller. Sapiens. Quix: Sapiens [*' .\. 295
7th Ave., New York. NY 1000t. 212-366-9394

Schemacode International Inc Schemacode. Datrix: 89 (Gieenrooke. suite M00.
I)ollard des Ormeaux. Quebec H9A 2L7,.51 S1-683-8693, fax 5) 1-68:3-67192. la-
i rix-d-rg1.polymtl.ca

Six Sigma Case Canonizer; 13456 SE 27th Place. Bellevte. WA 98005. 2106'-6 3-
6911

Softlab, Inc. Maestro; category: front end, back end, RE/M; 188 The ELinbarcadero.
Bavside Plaza., Suite 750, San Francisco. CA 94105. 115-957-9175

Software AG of North America, Inc. Adabas, Natural. Construct. Predict. Pre-
dict Case. Super Natural: t 1190 Sunrise Valley Drive. Reston. V.\ 220) 1. 7011-
S60-5050

Software Architecture and Engineering Strategic Networked .\pplicatioli •at-
form: t600 Wilson Blvd.. Arlington, VA 22209, 703-276-7910

StarSys, Inc. MacBubbles: category: front end: 1 1113 Norlec Dr.. Silver Sriri,_.
MD 20902

Syscorp International, Inc. MicroStep 1.3:-9420 Research Blvd.. Suite 200. .\ustiu.
TX 78759, 512-:3:38-0591

Telelogic Europe SDT: :33 Boulevard de la C'ambre, B-1050 Brussels. Belgiu•i. 011-
:12-2-647-3670

Texas Instruments Inc. Information Engineering Facility (IEF) 4.0: 6,550 (ha.e
Oaks Blvd.., Piano. TX 75023, 800-527-33500

Tom Software Application Xcellence: 127 SW 15r'h Street, Seattle. WA O•S 16.
206-246-7022

Tranform Logic Inc. (Previosly Nastec Corp.) DesignAid 4.3: category: fro0nt
end: 24681 Northwestern Hwy., Southfield. MI 48075. 800-872-8296 7799 ,Lees-
burg, Suite 1110, North Tower. Falls Church, VA 22043. 703-536-9401

Transform Logic Corporation Transform: S502 East Via de Veiintura. Scottsdale.
AZ 85258, 602-948-2600

Unisys Corp. Linc Design Assistant, Linc, Mapper, DMS II: P.O. Box 500. Bluebell.
PA 19424, 2t5-986-4011

ViaSoft, Inc. Via/Insight. Via/SmarTest; 30:33 North 44th St., Suite 2S0. Phoenix.
AZ 85018. 602-952-0050

Visible Systems Corp. Visible Analyst Workbench; category: front end: 950 Win-
ter St.. Waltham. MA 02154. 617-969-4100

135

Visual Software, Inc. vsDesigtier, vMSQL. vsObject Maker: category: front etnd:
394.5 Freedom Circle. Suite 540. Santa Clara. CA 9.50054. 408-988-757"

Westrnount Technology B.V. ISEE. TSEE. RTEE: 5020 148th Ave, N.E.. P.O.
Box 97002. Rledmond. WA 98073-.)702

Yourdan, Inc..\ nialyst/!)csigiier Toolkit, (Cradle category: fhoit eind: 1501 Broad-
way, New York. NY 10036. 212-391-2828

136

MZS3N

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 31) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C3I systems. In addition,
Rome Laboratory's technology suipports other AF.SC Produict Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas

including, but not limited to, comnmunications,, commanid and control, battle
management, intelligence information processing, computational sciences

and software produciblllty, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
condctictvity, and electronic reliabillty/maintalnabillty and testability.

