AD-A254 601 {
———

VERIFICATION AND
VALIDATION OF Al SOFTWARE

Advanced Decision Systems

R.A. Riemenschneider, Theodore A. Linden, Karen Morgan.

William Vrotney D T l C

ELECTE
AUG3 11992

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

L{/Sf’lfgz__z 009
92 8 28 111 TR o 5 o

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

| 4

" This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-92-118 has been reviewed and is approved for publication.

APPROVED:

' %
< JENNIFER D. SKIDMORE, ILT
Project Engineer

FOR THE COMMANDER

yrr

JOHN A. GRANIERO
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please

notify RL(C3CA) Griffiss AFB NY 13441-5700. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | S it oeacores

Public reporng burden for this cajection of Ifomation i estirated to sverege 1 mwmmnqnmumm SewchYg SERtng ClitE SOLICES,
gRthenng end Murtaning the date Nescisd, 910 COTEIEEING S reviewing the colsction of iforrnetion. Send corTTmenes regardng this HUFCEN SNUTIES OF Y Cther asDec of this
colection of fornmion, Ncuxdng suggestions for reducing this busden, to Washingtan Hescdtrueners Servicas, Drectorate for information Operssors andReports, 1215 Jefferson
Davis Higrwey, Suls 1204, Aringon, VA 22202432, and to the Office of Manegermert and Bucigst, Psperwork Recduction Praject (0704-0108), Weshington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1992 Final Sep 89 -~ Sep 91
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
VERIFICATION AND VALIDATION OF AI SOFIWARE C - F30602-89-C-0201
PE - 65502F
6 AUTHOR(S) PR - 3005
R. A. Riemenschneider, Theodore A. Linden, Karen Morgan, TA - RB
William Vrotney Wl - 71
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
- REPORT NUMBER
Advanced Decision Systems
1500 Plymouth Street
Mountain View CA 94043-1230 N/A
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Rome Laboratory (C3CA)
Griffiss AFB NY 13441-5700 RL-TR-92-118

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: 1Lt Jennifer D. Skidmore/C3CA/(315) 330-4031

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maarnum 200 warcs)

This document provides practical advice on how to improve V&V on Al projects. The
question we attempt to answer is: How can 1 apply my knowledge of V&V practice to
Al development, which seems very different from the examples from textbooks, and
which cannot be easily mapped into the lifecycle models of the DOD standards?

Part I lays a firm foundation by defining terms such as verification, validation, and
artificial intelligence. Also, a new representation of system lifecycles is presented
which we believe you will find useful in analyzing your organization's Al development
efforts.

In Part 1I the focus shifts to providing advice, with section addressed to project
leaders, system specifiers's, designers, programmers, and documenters. Each role
contributes in a different way to the overall V&V process, so we present a set of
guidelines specific to each role.

Part III is a collection of three appendices: (1) A user's manual for a software tool,
ASP, developed under this contract which supports the V&V process by allowing pro-
grammers to better integrate formal testing with code development; (2) A glossary of
V&V terms; and (3) A guide to commercially available CASE tools.

14. SUBJECT TERMS 15 NUMBER OF PAGES
Artificial Intelligence, Software Verification, Validation, V&V ""iéga*

Testing, Debugging, Software Tools

17. SECURITY CLASSIFICATION 18 SECURITY CLASSFICATION [19. SECURITY CLASSKFICATION |20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED " UL

NSN 7540-01-280-5800 Stenaera F orn 2908 (Rev. 269)
Proscrtoed by ANSI St 23618

[

3.

CONTENTS

Introduction L
V&V AND Al 2
What V&V Is. 3
What AIIs 6
3.1 Al Programming Techniques 6
3.1.1 Data-driven Programming 6
3.1.2 Discrimination Nets 7
3.1.3 Meta-level Control Structures T
3.1.4 Deductive Information Retrieval N
3.1.5 Production Systems 3
3.1.6 Frame Databases 3
3.1.7 Backtrackingo b
3.2 Al Programming Tools T 9
32.1 Allanguages, i
3.2.2 Higher leveltools [2
3.3 A Categorization of Knowledge-Based System Architectures [2
3.4 Common Characteristics of Typical AI Problems 4
3.5 Common Characteristics of the AI Software Lifecycle 16
Development Models and Methods 17
.l Software Life Cycle Models L7
.2 The Four Dimensional Software Development Model)
4.3 Evolving Software through the Four Dimensions 21
I.t Rapid Prototyping and the Spiral Development Mcdel . . . 23
1.5 Formal Specifications as Software Development Waypoints 25
1.6 V&V as Mappings between Software Products 26
.7 Work Remaining on the Meta-level Development Model . . 29
.5 Conclusions about the'Meta-level Software Development Model 30

I HOW TO SUPPORT V&V
5. For Technical Leaders: Planning to Support V&V
3.1 What Level of V&V is Appropriate?
3.2 Project Categorization: An Example
6. For System Specifiers: What and How to Specify
6.1 The Role of Requirements Analysis in AI Development
6.2 The Role of System Specification in AI Development
For Designers: Designing Your Software to Support V&V . . .

7.1 Introduction

7.2 What is Simplicity?

7.3 Measuring Simplicity

-1

.t Formal vs Informal Designs

(v %)

For Programmers: Choosing Programming Techniques

.U,
—_

Data-Driven Programming

Discrimination Nets

o
t<

3.3 Meta-Level Control Structures
3.4 Deductive Information Retrieval
N.5 Production Systems
8.6 Frame Databases
3.7 Backtracking e
9. For Documenters: Documenting Your Efforts = . = . .
10. Noteson Testing
Bibliography oo

III APPENDICES
Ao ASP Manual

Al Introduction

A.1.2 ASP as a Software Tool

S
b

N

)

A.1.3 A Software Planning Methodology

A.1.4 Using ASP . .

A.1.3 Learning by Example

A.2 Find Word Example

A2, Writing the Find Word program
\.222 Find Word Code oL

A23 Find Word Trials
A.2.4 Find Word Verification
\.2.5 Find Word Software Plan

A.26 Using the ASP tool

A.} Complete Semantics of the Software Plan

A3l Software Plan Constants

3.2 Plan Scoped Identifiers

3.3 Software Plan Arguments

3.4 Software Plan

\
\
\
A.3.5 Software Plan
A.3.6 Software Plan
\.3.7 Software Plan
A.3.3 Software Plan
A.3.9 Software Plan
A.3.10 Software Plan

A.3.11 Software Plan

iglobals
:specifications
:implementations.
:executables
:verification~points
:verifications
:sub-validations.

:validations

A4 More Find Word Examples

A.+.l An Example Using the :report and :log Actions . . .

A.42 An Example Using the :engage Action

A.5 Using ASP with Specification Languages

A.5.1 The Buses Example

A.5.2 The Buses Implementation

A.5.3 Buses Executable Specifications

A.51 Buses Constraint Fault

1

A
N
Y

gy

ful
[0
o2
103
105
{05
106

oS

A.3.5 Buses Partial Executable Specifications. 109

A.5.6 Buses Software Plan. 109

A.6 Software Plan Complete Syntax 13

B. Definitions — Terms and Abbreviations 116
B.I General Acronyms LG
B.2 Definitionso 120
B.3 Document Definitions [28
(. A Guideto CASE Tools 131

1. Introduction

The goal of this document is to provide practical advice on how to improve V&V on Al
projects. While there is some discussion of the state of the art in V&V research—and
soine attempt to advance the state of the art—the emphasis is on guidelines and tools
that can provide immediate help in present day development cllovts. We assiume that
the reader is familiar with standard V&V practice. as reflected in texthooks (c.g.. [9.
45]) and DoD applicable standards. such as 2167A and 2168. The question we attempt
to answer is: How can [apply my knowledge of VEV practice to Al development.
which seems very different from the sorts of examples discussed n tertbooks and which
cannol be casily mapped into the lifecycle models of the DoD standards ?

lu Part [. the emphasis is on laying a frm foundation. Terms that play a cen-
tral role in subsequent discussion—including “verification.” "validation.” and ~Artifi-
cial Intelligence’ —are defined. to reduce the chances ol misunderstanding our advice.
Also. a new representation of svstem lifecvcles is presented. which we helieve von will
find useful in analyzing your organization’s Al development etforts.

[n Part I, the focus shifts to providing advice. The part consists ol five sections.
one addressed to project technical leaders. one to system specifiers. one 1o ~vstem
designers. one to programmers. and one to documenters. Each role contributes in a
unique way to the overall V&V process. and so we present a sct of guidelines <pecific
to each role.

Part 111 consists of a collection of three appendices. The first is the U'ser’s Manual
tor a software tool. ASP. we have developed to support the V'V process by atlowing
programmers to better integrate formal testing with code development. Our hope 13
that the tool increases the value of tormal testing so much that programmers wiil <ee
it as a help rather than a burden. The second appendix is a glossary of V&V terms.
The final appendix is a guide to commercially available ("'ASE tools.

A T T LTEDB I NTIS CRA
DTIC 1B .
Uaannoured J
Jusuhication

Accesion For J T]

By
Cistiibution !
Avedal ity O
e

. AV 1 n
Dist KV

NN !:Ii

Al 1

Part 1

V&V AND Al

2. What V&V Is

“VAVT s short tor “verification and validation.” The objective of this chapter is to
guarautee that we have a common understanding of just what the words “verilication”
and “validation.” mean as thev are used in the report. “Verification™ in particular is
used in a number ol different ways by software developers. (Some debates about the
utility of verification in Al soltware development could bhe settled simply by having
the participants explain what they meant by “verification™.)

Verification and validation are complementary software development activities. cach
contributes to zoftware quality. Verification is the process of assuring internal con-
sistency in software development. while ralidation is the process of assuvine that the
software being developed ~atisties its requirements. A popular wayv ol ~aving this is

Verification assures that the software ts budt right: ralidation assuves that
the right software s hudt,

One important form of verification is assuring that the various products sencrated
during software development process are consistent. Let us call this nfer-product
rerification. In virtnally every effort to develop software for use by someone other
than the author. there are multiple products of the development. At a minimum.
there is the software and some description of how to use it. In this case. inter-product
verification amounts to making sure that the description correctly fand completely)
describes the interface to the delivered software. But typically. especially in large
development efforts. there are many more products of software development. In
addition ro the soltware itself. these mayv include

o a statement of the requirements that the software must satisfy.

e a specification of properties of the software svstem—its functionality. real-time
behavior. and so forth.

o a design document. or even multiple design documents at varving levels of detaii
and emploving a variety of design tormalisms.

s source code for the software.

o a description of test procedures and test cases, at both the svstem and subsystem
level.

o additional software that supports testing.
e a user’s manual, and

e a maintainer s manual

Thus, inter-product verification often requires making sure that a system with the
specified properties will satistv the stated requirements. that the design corrvectly
elaborates the specification. that the source code correctly implements the design.
and so on.

A secoud form of verification is inlra-product rerification. assuring that each product
of software development is internally cousistent. A canonical example from Al is val-
idation of a knowledge base. Il a knowledge hase consists of logical fornwlas that are
intended to be true of the application domain. that knowledge base should be logi-
cally consistent. for a logically inconsistent set of formulas must countain at least one
formula that is false. Moreover, since any formula whatsoever can be derived from an
inconsistent set of formulas by correct reasoning, the usual justification for accept-
ing the conciusions derived from the knowledge base—that the inference mechanisin
reasons correctly—has been undermined. \ system with an inconsistent knowledge
base 1s generally useless. so knowledge base verification includes assuring cousistency.
[t may also include assuring that the knowledge base has other properties—sav. that
none of the formulas can be derived from others—judged to be desirable. The consis-
tency criterion can be applied to most lifecvcle products: a requirements statement
should be consistent in the sense that there is no property that it both requires and
forbids the svstem to have: a system specification should be consistent in rhe sense
that there is no property that it guarantees the system will both have and lack: and
so on. Just as in the case of the knowledge base. there are usually other acceptability
criteria for the products that must he assured as well. A typical example is assur-
ing that source code meets applicable coding standards. The dividing line between
intra-product verification and inter-product verification is somewhat arbitrary—if rhe
cesign is documented as a series of successive refinements. checking that a purporteri
refinement is in fact a refinement is intra-product verification if the entire series is
thought of as a single product. but is inter-product verification if each design in the
series is thought of as a product—but nsetul in practice. especially on larger projects
where different products are produced by different groups of developers.

A common error in discussions of V&V is to confuse verification against a statement
of requirements and validation against the true requirements. Generallyv, software is
written to solve some problem. and the people who create the software that is intended
to solve the problem are not the people who have the problem. To be successful. the
sottware developers must solve the problem. but they must also satisfyv the terms of
the contract. formal or informal. with their clients. If the clients have a good under-
standing of what they want in a solution. the contract might contain a statement of
requirements. This is the sort of case where it is particularly tempting to say that
validation consists of making sure the software satisfies the stated requirements. But
it is still important to distinguish between the stated requirements and the actual re-
quirements. because satisfying the stated requirements may not be enough guarantee
that the problem will be solved. ldeally. validation consists of using the svstem to
actually solve the problem. or at least representative instances of a general problem.
[f this is impossible. weaker forms of validation. such as running the svstem in some

sort of testbed environment on simulated data. may have to suffice. When the ve-
(quirements statement is an input to the development process rather than a product of
the development process. checking that the stated requirements are satisfied cannot
be considered to be verification. It can he considered validation. but--here is the
main point!—it is a very weak form of validation. A system cannot be well validared
simply on the basis of stated requirements. because discovering and correctly stating
(at a low enough level of detail that satisfaction can he effectively determined) all rhe
requirements for solving a problem is tremendously difficult. For the problems tyvpi-
cally addressed by Al producing a “completely adequate” statement of requirements
is impossible. from a practical point-of-view.

\alidation of a svstem can only be achieved by “trying it out.” Other development
products can be validated 1o a limited extent. by trving them out—for example. an
executable functional specilication can be validated by nsing it as a prototype. and
a user’s manual can be validated by having a prospective user attempt to run the
svstem by referring to the manual—or indirectly in conjunction with verification. [
fact. a common method of validating a requirements statement is to develop software
that has been verified to (at least partially) implement it. and then validating the
prototype through use. Thus. an attempt to validate the software system by reference
to those stated requiretnents has the matter reversed. Once the system is ~ufficiently
complete that direct validation though use is possible. the requirements statement
<hould play no further role in system validation. because any conflict between the
stated requirements and the svstem should be arbitrated by direct validation against
the true requirements. since. in most cases. the stated requirements are as likely ro
be wrong as the software. The bottom line is: If the system solves the problen.
it doesn’t matter that the requirements statement was wrong. (Of course rhis does
not mean that the requirements statement need not be corrected. The requirements
<tatement plavs an important role during system naintenance, since it provides gnid-
ance on what can and cannot be changed. [t should always represeut the best current
understanding of the true requirements.) So, while the system may derive signih-
cant indirect validation during development by virtue of its verified satistaction ot
the partially validated requirements statement. the fundamental system validation
activitv—direct validation of the svstem through use—provides further indirect vali-
dation of the stated requirements. That is. once the system is running. the system 1=
n~ed ro validate the requirements statement rather than the reverse.

3. What Al Is

~Al" is short for “Artificial Intelligence.” So far, so good. But. judging from the
litzrature. few people have ever agreed on a definition of “Artificial Intelligence.” l'or
our purposes. it is most convenient to adopt a version of the position that Alis what
Al people do. Since our cencern is with software systems. this amounts to identifving
Al with a tvpe of program. namnely, those which use the programming techniques
used in paradigmatic Al programs, embedded in an architecture cha acteristic of
paradigmatic Al programs.

This position proves convenient because the only features of a program that much
influence the choice of V&V methods is the collection of programining techniques
emploved and the architecture. Mary other factors are relevant to the choice—ranging
from rhe tvpe of problem addressed. through the lifecycle model used to guide rhe
development. to coutractuai obligations—but these are external 10 the program. [t
turns out that these other tactors are. effectively. less relevant 1o the choice if we
restrict our at'ention to Al software, since most Al svstems address problems that
are similar in the relevant respects, most Al development efforts nse lifecycle models
that are similar in relevant respects. and so on. So in this Chapter. we will enumerate
some of the programming techniques that make a system Al categorize some Al
architectures. and then look at the common factors in Al system development that
influence the choice of V&V methods. Finally, we comment on the potential for using
Al techniques to support V&V of Al systems.

3.1 AI Programming Techniques

The following list was largely extracted from a standard text on Al programming tech-
niques. Charniak. et al.’s Artificial Intelligence Programming [13]. a good overview
of the subject. (Another good source on the subject is Norvig's Paradigms of Al
Programming (33).)

3.1.1 Data-driven Programming

Attaching programs to data and deciding what to do by retrieving and running pro-
grams assoclated with data is data-driven programming. One common example is use
of message passing to invoke methods associated with the message. As this example
illustrates. data-driven programming is not restricted to Al. However, it tends to be
especially common in Al, because Al programs are often written in languages. such
as LIsP and PROLOG, that allow programs to be treated as data. This capability
facilitates storing code in comparatively complex data structures. such as a-lists and
hash tables. and so encourages use of data-driven techniques. (Another reason for
including this technique in our list is that use of data-driven programming stronglv
influences the choice of V&V methods.)

6

3.1.2 Discrimination Nets

A common programming problem in Al is the classification of information based on
tests of its properties. An iritial test is applied; based on the result. another test
may be chosen and applied: based on the result. another test may be chosen and
applied: and so on. Thus, the collection of tests can be thought of as defining a
network. with a link from one test to another whenever the resuit of applyving the
former can trigger the application of the latter. Such a network is a discrimination
net. A good example of applving this technique to an Al problem can be found in
Appendix A. which describes an Al-based V&V tool developed at ADS that emplovs
a special-purpose language for defining discrimination nets for software testing.

3.1.3 Meta-level Control Structures

A commen form of data-driven programming in Al is the use of a closure to represent
the state of a suspended process. A collection of loosely related techniques—augendu-
based control. queue-based control, streams. coroutines. possibilities lists. and so on—
have been based on this idea. The approach is generally useful when meta-level
reasoning about control is performed. Object-level operation (which may be search
of a game tree, adding information to a blackboard. refining a plan. or just about anyv
other typical object-level activity) is suspended, a *“next move” is determined. and
the suspended operation is then resumed. LISP includes a variety of coustructs that
support this technique, including COMMON LISP’s closures and SCHEME s first-class
continuations. and expert syvstem shells and other higher-level program development
tools frequently support some form of meta-level reasoning via this rechnique.

3.1.4 Deductive Information Retrieval

Many Al applications derive information from facts stored in some sort of knowledge
base. Such applications can be thought of as "smart” databases. capable of retrieving
not only information that has been stored in them explicitly. but also of retrieving
information implicit in the stored facts. Such systems are said to pertorm deductire
information retrieval. *“Deduction” is used rather broadlyv here. to include not only
strict logical deduction. or even non-monotounic inference procedures modeled on log-
ical deduction, but also the ad hoc heuristic procedures used in semantic networks.
Deduction, in this generic sense. is any inference procedure applied to the explicitly
represented information.

[t may seem that the V&V methods apnropriate to logical deduction and those appro-
priate to looser forms of inference would be quite different, making further subdivision
of this technique useful. However. in practice. even strictly deductive inference proce-
dures are incomplete—and sometimes even unsound—theorem provers. for the sake
of efficiency. To pick the most widely known example. standard PROLOG emplovs an

unsound algorithm for unification; the so-called “occurs check” is omitted in ovder 10
make unification of a term with a variable O(1) rather than O(n) in the length of the
term. just as assignment is. Without: this deviation from -logical purity.” PROLOG
could not compete in efficiency with conventional languages. A clever programmer
can easily arrange things so that no incorrect conclusions are derived. and. clearly.
this is exactly the sort of thing that V&V procedures should check. Therefore. rather
than attempting to subdivide the class of deductive information retrieval technicures,
we will focus on assigning V&V techniques to these systems based on properties that
the inference method is intended to possess.

3.1.5 Production Systems

A production system consists of a collection of condition-action rules. the production
memory. and a data store. the working memory. Its operation is controlled by a
recognize-act loop: a rule whose condition is true is found, and the corresponding
action is performed. The action generally includes changes to the working memory
that influence which conditions are satisfied on the next cvcle. Thus production
svstems use a natural generalization of forward-chaining inference. A number of
widelyv-used expert svstem tools. such as OPS3. support building production systems.

3.1.6 Frame Databases

A frame is a data structure used for knowledge representation that naturally gener-
alizes record structures and LISP’s property lists. According to Minsky {31].

[w]e can think of a frame as a network of nodes and relations. The ~top
levels™ of a frame are fixed. and represent things that are alwavs true
about the supposed situation. The lower levels have many terminals—
“slots” that must be filled with specific instances or data.

Frames have been specialized for particular purposes: Shank and Abelson’s scripts 378
nsed for natural language understanding. are a good example of specialized frames.

Just as in the case of production svstems. {raine databases provide a general purpose
knowledge representation that is the basis of several popular expert system building
tools. such as KRL and FRL. (Frames and production rules combine in a natural
fashion. and many expert svstem shells provide hoth techniques.)

3.1.7 Backtracking

Search. in one form or another. is central to Al. The most common search paradigm
is to proceed depth-first. that is, to attempt to find a path through the search tree

o

starting from the top and exploring a single branch at a time. For example, a planning
svstem might attempt to refine a plan by selecting among various refinement opera-
tors. choosing the operator according o some principle ranging from the simple and
inexpensive (such as choosing the first applicable operator from the list of operators)
to the complex and costly (such as calculating some measure of which operator is
“best” among all applicable operators based on detailed consideration of the current
state of the plan). Domain-specific knowledge—sometimes represented explicitly, and
sometimes implicitly as an operator ovdering or a numerical formula used in comput-
ing an operator quality metric—is used to guide the scarch. [f choosing the wrong
branch of the search tree (e.g., choosing the wrong refinement operator) can lead to
a dead-end. some form of backtracking is employed.

[n the simplest case, chronological backtracking, the most recent decision is changed:
state changes associated with actions performed as a result of that decision are un-
done. and a different decision is made. resulting in the exploration of au alternative
branch of the search tree. But if the system tracks the reasons for each decision and
_can analyze the cause of failure, a more intelligent form of backtracking, dependency-
directed backtracking, can be employed. Rather than backtracking to the most recent
decision. which may have been irrelevant to the failure. control passes hack to a de-
cision point that is certainly relevant. Moreover. the system may use sophisticated
reason maintenance faciities to avoid having to undo all state changes associated
with the failed branch; some of the decisions made after the decision being reconsid-
ered may be essentially independent of that decision. and so need not be reconsidered.
This might be thoughts of as a jump across the tree rather than “backtracking;” see
Fig. 3-1.

The impact of particular programming techniques on choice of V&V methods is dis-
cussed in Section 3.

3.2 Al Programming Tools

Al programming tools span the range from programming languages especially suited
to Al programming, through high-level programming environments. to knowledge-
based system shells. Choice of tools has some effect on appropriateness of V&V
methods. so we will briefly summarize some relevant features here to prepare for the
discussion of the impact of tool choice on V&V in Section 3.

3.2.1 Al languages

LisP is really a tamily of programming languages. hbased on a common core of ideas.
that has been the primary vehicle of Al research for over 30 vears. LISP was designed
for symbolic, rather than numerical. programming. and has grown over the vears
to include precisely those features most useful for Al programming. For example.
Lisp has a flexible type mechanism that makes it easy to alter and expand data

Point where erroneous o
decision was made

r000

Point where erroneous
decision was discovered

CINCNRC

Chronologicai: backtrack to d00, try r001

Oependency-directed: backtrack to d, try rt

Reason-maintenance: backirack 10 d, recognize r00sr2, r000=r20, iry <200

Figure 3-1: Varicties of Backtracking

representations. a feature of obvious utility in incremental development of prototyvpe
syvsterms. The fact that programs are represented as data structures makes it casy 1o
develop “meta-level” facilities. including program development tools. Lvery reader
of this manual is probablv familiar with the basics of LISP. The best source for a
detailed explanation of why LIsP is special. and especially suited to Al s \llen's

Anatomy ol LISP [2].

Compared to Lisp. PROLOG is a newcomer on the Al scene. being only about 20
vears old. PROLOG was a lirst attempt at realizing the ideal of logic programminsg.
l.e.. treating computation as deduction. PROLOG can be thought of as an ctficient
constructive theorem prover for a subset of first-order logic. As a result. PROLOG has
a firm logical foundation to support the analysis of programs. in rather sharp contrast
to Lisp. But. more stimply. PROLOG can be thought of as the result of supplying the
program cliuse

Plorogy it Qe zy) and Qy(r.z3) and ... and Q.(r. z.).

with a proecdural reading:

For any r.y. 2.z, ...z, the goal of proving P(r.y) can be satisfied by
proving Q(r.). Qa(r.zy). ... and Qn(L. zn).

and using a depth-first search strategy based on the ordering of program clauses and
chronological backtracking to find a reduction of a given goal to formulas stored in a
knowledge base. Sterling and Shapiro’s The Art of Prolog [42] provides a nice mix of
the theory and pracrice of PROLOG.

The claim that PROLOG was a reasonably efficient general purpose progranuming

formalism was met with cousiderable scepticism in the United States. based ou ex-

perience with some special purpose Al languages in the early 1970's. NICROPLAN-

NER in particular. based on similar ideas. As a result. PROLOG was largelyv ignored

here until the Japanese announced that it would play a central role in their Fifth

Generation effort. (However. LISP was largely ignored in Europe during this pe-

riod. because it was judged too costly in machine resources consumed. and Proroa

was widely experimented with.) After the announcement. it was iscovered that

some significant breakthroughs—Warren's approach to compilation being particular

noteworthy—coinbined with PROLOG's willingness to sacrifice logical purity for effi-
ciency. had resulted in a programining language very well suited to some Al problems.

[n fact. it turns out that many of the programming techniques listed above can he
implemented in PROLOG in a perfectly straightforward fashion [7].

Both LisP and PROLOG have meta-level introspection facilities that support a deeper
level of computational introspection and reflection [39] than conventional languages.
such as (' and Ada. This fact has some impact on the scope and limits of certain
V&V approaches: see Section S.

3.2.2 Higher level tools

tigher level tools can be (roughly) divided into high-level programining environments
and expert svstem shells. A shell is typically the result of abstraction from an existing
knowledge-based system. [t consists of an inference engine, an empty knowlecdge hase
that is populated for the particular application, and some support tools. X hiyh-
level environment is a collection of tools—interence engines, knowledge representation
languages. and so on—that have been at least partially integrated. so that the user
can choose among the various options. EMYCIN is the classic example of a shell. but
more are constantly becoming available, often specialized to a particular domain <o
as to supply even greater leverage. A good example is Verity's TOPIC system for text
retrieval: the developer provides a definition of the concepts to be used in retrieval and
the text database. and TOPIC provides evervthing else. S.1, KEE. ART. ProOKNAPPA.
and so on. are all representative examples of high-level environments.

But for both shells and high-level environments. the impact of the tools on choice
of V&V methods depends only on those programming techniques made available by
the tool that are used by the developer. No direct matching of methods 1o tools is
necessary (or. in the case of environments. desirable). This is fortunate. ax the most
popular tools at the time vou are reading this manual are likely 10 be different from
the ones available when it was written.

3.3 A Categorization of Knowledge-Based System Architectures

(‘ategorization of Al architectures in general is a difficult task. which will not bhe at-
rempted in this manual. Even paradigmatic Al systems can employ ad hoe architee-
tures that seemingly cannot be described in any way that provides gunidance in detiniug
a verification and validation methodology. However. categorization ol a restricted - -
but important!—subclass of Al architectures, those emploved in knowledge-based
svstems. 1s feasible. For our purposes. a knowledge-based svstem is one that can he
divided into a knowledge base. an inference engine that derives conclusions ¢ perhaps
together with explanations) from the knowledge base. and support software (<uch as
the user interface). The knowledge hase might consist of logical assertions. vondinon-
action niles (perhaps with associated contidences). a Bavesian network. or any other
natural representation of domain knowledge. The inference engine can he arbitrar-
tly complicated. from a simple algorithmic scheme such as backward chaining tfrom
a goal or propagation of confidences in a Bayesian or quasi-Bayesian tashion. to a
knowledge-based system in which a “meta-level” inference engine determines how to
control use of the “object-level” domain knowledge based on the contents of a sepa-
rate "meta-level” knowledge hase that contains an explicit representation ot control
knowledge. Much of the second-generation knowledge-based expert svstem work in
the early-to-mid 1980's was driven by the recognition that it was useful to factor out
an explicit representation of the control knowledge. because doing so

{2

e increases modularitv, which makes the svstem easier to develop and modify [16.
4. 1],

o makes the domain knowledge more rensable [14],
e facilitates explanation generation [46], and

e places the focus on ~representational adequacy” rather than on efficiency in
representing domain knowledge [19].

Verification and validation of simple inference engines is straightforward. [t should
be proved that the inference algorithm produces the desired conclusions. That the
code correctly implements the algorithm should be verified using conventional verifi-
cation techniques. The system should he validated by exercising it on representative
and extremal knowledge sets. That is. a simple inference engine is verified and vali-
dated as if it were “just another algorithm.”™ There is no special "Al V&V problem
involved. Therefore, the taxonomy of knowledge-based systems is heavily slanted
towards more complex inference procedures, where special problems arise. The cat-
egorization, adapted from the one in [19]. is based on how much effort is put into
determining the next inference step or series of interence steps. and on when this
“meta-level” inference is performed. This categorization ignores tactors——such as.
whether the inference is performed at assertion-time or at inference-time—that are
essential to design of the svstem, but are largely irrelevant to how V&V should be
performed.

Meta-level inference architectures are distinguished by the fact that. at any given
time. the system can be active at either of two levels. [t can be determining what to
do. by drawing conclusions from the meta-level control knowledge. or it can be doing
it. by drawing conclusions from the object-level domain knowledge. Thus. there is
a spectrum of “how meta” a meta-level inference architecture is. depending on how
much time it spends working at the meta-level. from systems that perform very little
metia-level inference to systems that perform meta-level interence almost exclusively.
A system that spends very little time working at the meta-level will be called a object-
level-oriented inference architecture. A svstem that expends the bulk of its effort at
the meta-level will be called a meta-level-oriented inference architecture. A svstem
rhat puts substantial time and effort in at both levels will be called a mired-lerel
mference architecture.

Mixed-level architectures will be further subdivided according to the conditions under
which resources are devoted at the meta-level. Most common are reflect-and-act sys-
tems. which perform meta-level reasoning hefore (or. equivalently. atter) each object-
level step. Blackboard systems commonly use a reflect-and-act loop to apply control
knowledge in a particular situation. If meta-level reasoning is used only when some
crisis develops at the ohject-level—where a crisis can be anything from having too
many options available to recognizing an inconsistency in the object-level knowledge
base—we have a crisis management system. [Finally. if the primary function at the

13

meta-level is to divide inference tasks into subtasks. which are then handled at the
object-level, we have a subtask managemen! system. This completes our taxonomy.
which is graphically represented in Fig. 3-2: the influence of particular architecture
categories on choice of V&V techniques is discussed in Section 7.

3.4 Common Characteristics of Typical AI Problems

As was mentioned above, the nature of typical problems addressed by Al has some
impact on how to perform V&V of Al systems. There are two principal relevant
characteristics.

1. The svstem requirements are hard to «define. This is partly because of the <ize
of the problems addressed: Al is often applied to problems too large to deal
with by imore conventional algorithmic techniques guaranteed to produce an
optimal solution. [t is partly due to the intrinsic nature of the problems: \l
is often applied when the problem is too vague to he addressed by techniques
that operate on precise measurements. [n either case. it may be impossible to
define what counts as a solution ro the problem being addressed. eren after the
system has been completed. There just are no cut-and-dried criteria that can be
applied to determine whether the svstem “does the job.”

[SV

The solution process is knowledge intensive. Sometimes computers are used to
solve problems involving tedious and repetitive. but ultimately simple. calcula-
tions of some sort. No real understanding of the problem domain is needed: a
human could solve the problem without knowing where the numbers came from
or what they represent. Solving an Al problem inore often requires a detailed
tormal model of the domain that captures complex interdependencies among
various domain elements. This knowledge can be hard to break up into easily
digestible pieces. which makes many of the programmer’s tools for managing
complexity inapplicable. A complicated domain model can be harder to debug
than the same number of lines of “spaghetti code.”

Both these characteristics are illustrated by considering some tvpical Al problem
lomains:

e planning problems too large to handle with the methods of Operations Re-
search, involving many soft. evolving constraints and imperfect knowledge of
the conditions under which the plan will be executed.

e image and signal understanding problems that require discovery and analysis
of subtle patterns in reams of data.

e natural language understanding (no more need he said about this one!).

[t

Knowledge-based
systems

Object-level Meta-level
control inference control inference
E Object-level-oriented j M&Zﬁ;f::l [Meta-level-orientedj
inference architectures architectures inference architectures

Reflect-and-act Crisis management Subtask management
architectures architectures architectures

Figure 3-2: Knowledge-Based Systems Taxonowny

¢ medical diagnosis (ditto!),

and so on.

The npact of these characteristics on V&V will be considered in Section +.

3.5 Common Characteristics of the Al Software Lifecycle

The most important characteristic of the Al lifecycle is that systems typically evolve
through refinement of a prototype that is used to help determine svstem requirements.
Even in cases where some of the code can he developed in accordance with some sort
of waterfall model. other parts are constantly evolving. Thus. even more than in
conventional svstems. there must be an emphasis on reverification and revalidation
of modilied svstems. The impact of this emphasis on choice of V&V methods will be
discussed in greater detail in Section .

4. Development Models and Methods

[s defining a single. uniform standard Al development methodology desirable? .\l
development efforts vary too much to impose strong methodological restrictions. and
weak methodological restrictions are useless. However. that does not mean that no
guidance can be provided. That guidance will be in the form of advice on how 10
determine an appropriate methodology tor a project. rather than methodological rules
that should always be lollowed. Here is an example of such a "metamethodological
rule.” one that we urge vou to adopt.

One of the first tasks on rvery project should be to define the system de-
velopment methodology that will be employed.

Defining a methodology requires choosing a software development model. [rhe soft-
ware development process needs to be tailored to the needs of each Al application.
then providing a meta-level model that describes how to define a software (evelop-
ment process appropriate for particular Al project will prove more useful than “vet
another software development model.” The four dimensional model described below
represents an attempt to provide such a meta-level model.

4.1 Software Life Cycle Models

The traditional software life cycle model developed initially in [36] is a one dimen-
sional model that portrays all software development projects as passing through the
same linear progression of phases. Over the vears there have heen many different
elaborations of this linear model—each is usually proposed as universally applicable
to all software. More recently. a two dimensional spiral development methodology
has been proposed hy Boehm [6] and is gaining widespread acceptance hecause it ex-
plicitly recognizes that rapid prototyping is often useful before attempting to define
the requirements for the proposed system.

[n this report we propose a meta-level model of alternative software development
processes. This meta-level model is especially appropriate for Al software where there
are strong concerns about verification and validation. [n this generalized model. which
is then specialized to fit the needs of any specific software project. software products
{such as requirements specifications. performance prototypes. or a regression test) are
represented in a four dimensional space. The advantages of this model are:

l. Rather than providing a single model as a template for all software projects. our
meta-level model describes how to define a development process tailored to the
specific needs of an application—one that still meets V&V needs. Any software
development model needs to be adapted to fit the needs of a specific project.
but most give little or no information about what adaptations are valid.

2. It focuses on the products of software development more than on the develop-
ment process. Across different software applications there is more commonality
in the final products than thereisin the sequencing used during the development
process.

Our meta-level model encourages the definition of specific software development plans
that produce not only the products defined by existing software development stan-
dards such as DOD-STD-2167A hut also the additional products associated with rapid
prototyping and/or formal specifications. DOD-STD-2167A explicitly allows rapid pro-
totyping methods to be used during software development but does not provide guide-
lines or a framework for when and how to use rapid prototyping and what should result
from different forms of rapid prototyping efforts.

Both the conventional software development methodology and the spiral model are
commen special cases that can be constructed using osur meta-level model. Since
many Al systems are embedded in applications with conventional software. it is im-
portant that the model for developing and validating Al software be a generalization
of conventional development methods.

Our general model recognizes that it is often hest to prototype the hardest aspects of
the problem—the prototype may deal with functionality, with the user interface. or
with the execution time of key functions. In other applications, formal specifications
or other intermediate software products are useful as developmental waypoints while
working toward the final software products.

DOD-STD-2167A specifies that a software project should develop and use its own in-
dividualized Software Development Plan and a Software Test Plan. Our software
development model is intended to provide a framework and guidelines that Al soft-
ware developers can use to develop these plans in a way that is tailored to the needs of
the project and is compatible with Al development methods being used. The parts of
the test plan that deal with verifying the software can be tailored both to the specific
needs of the project and to the intermediate software products that are appropriate
for this project.

The problem with a software development model that is uniform for all software
projects is that either it constrains the development plan to fit into the constraints
of a single, pre-conceived developmental process or else it doesn’t model the software
rlevelopment process in very much detail. For example. it is widely recognized that
the waterfall model should be adapted to the needs of an individual project. But
the waterfall model does not go on to provide a framework for that adaptation. Our
meta-level model provides a framework for constructing more detailed development
models and V&V plans that are tailored to the specific needs of the application.

4.2 The Four Dimensional Software Development Model

Soltware development begins from a vague. partial. and ambiguous nnderstanding
of the problem to be solved. and it progresses toward a set of products that define
an unambiguous. executable, and efficient representation of a problem solution. The
evolution. verification, and validation of these soltware products can be represented
bv paths through a four dimensional space where the dimensions are labheled and
scaled as tollows:

Definition: Partial understanding — (‘omplete understanding
of problem of problem

Formalization: Ambiguous — ["nambiguous

Operationality: Abstract — Executable

Efficiency: [nefficient — [Lfficient

These tfour dimensions correspond closely with what Hoare characterizes as the {our
components of a complete theory of programming.

A complete theory of programming includes

l. A method for specification of programs which permits individual re-
quirements to be clearly stated and combined.

2. A method for reasoning about specifications. which aids in elucidation
and evaluation of alternative designs.

3. A method of developing programs together with a proof that they meet
their specification.

. A method of transforming programs to achieve high efficiency on the
machines available for their execution.

(From Hoare's “Foreword™ in [12]. p. iii.}

There are strong interactions between these four dimensions. so it is often difficult
to address them individually: however. software complexity can be reduced and ver-
ification and validation can be more effective when there are <oftware products that
address each of these four dimensions separately.

Logically, it may seem possible for software development to proceed sequentially
through each of these four dimensions. Unfortunately, there are strong backward
dependencies among these dimensions: that is. progress in one dimension often de-
pends on prior progress in a later dimension. For example. before defining all the
requirements for a software system, one mayv need a prototype implementation in
order to understand what is practical and feasible as requirements. Similarlv. with
current software techniques. 1t 1s seldom practical to defer performance considera-
tions until alter a formal specification and an initial operational program have heen
completed.

These backward dependencies among the four dimensions are the primary reasons
why each software project needs to have its own Software Development Plan. These
backward dependencies are different for different software applications and develop-
ment environments. A Software Development Plan should address these backward
dependencies by working out the relative order in which each component of the sys-
tem will make progress in each dimension. Our four dimensional. meta-level model
applies both to the software system as a whole. to each of its components. to their
comiponents. etc. The effort to divide a software system into relatively independent
components is one of the main tasks of software design. and it is not Jdealt with hy the
four dimensional inodel. This model focuses on the different kinds of information to
be recorded about either the whole software or about any component. 2uring devel-
opment, it should be expected that different components of the overall software will
have been developed to diiferent stages at any one time. A detailed developent plan
for a sottware project will identify the software components aud the relative order in
which each component will progress through the rour dimensions.

The four dimeunsions are discussed in the fcllowing paragraphs.

Definition. This dimension ic tue focuz of a requirements specification. \When a
~ software project is originally conceived, one has only a vague understanding ot
the problems to be .. .ved by automated processing and of the functions needed
to solve th-m. The definition dimensior ~easures the degree to which the
functional ond performance requirerr ~nts o the system have bheen understood

and Jefined in some form.

Formalization. This dimnsion measures the degree to which rhe software is de-
fined it .ome formal, precise, and unamnbiguous notation that supports deduc-
tive reasoning. Formalization removes the ambiguity that mayv be present in a
requirements specification. More important. formalization facilitates deduction
of properties about the system; thus enabling properties that are implied by a
specification to be made explicit.

Operationality. A svstem can be defined (informally or tormally) at an abstract
level without mapping this definition into constructs that are executable on
available computer hardware. This dimension me~.res the degree to which
the svstem functionality is not only defined but also executable. Progress in
this dimension can be thought of as mapping a system down to lower levels of
abstraction—from application-oriented concepts through computer abstractions
like queues. stacks, and processes and on down to bits and bytes.

Efficiency. This dimension deals with all of the characteristics of the svstem that
are separate from the input-output functionality: execution time. response time.
memory and other resource utilization, etc. Programmers usually deal with both
operationality and efficiency concerns together during the implementation pro-
ress: however. operationality and efficiency are sometimes separable concerns.

20

Definition

Figure 4-1: The Four Dimensional Space for Software Development

For example. tunctional prototypes can be distinguished from performance pro-
totvpes.

4.3 Evolving Software through the Four Dimensions

Unlike the waterfall models of software development. this four dimensional represen-
tation does not itself describe stages in a software development: rather the product
ot a development stage is represented by a point within this four dimensional space.
{ More precisely. a development stage usually results in several products that are rep-
resented by a set of points together with mappings between those points.)

Figure 4-1 shows a representation of the four dimensional space for software evel-
opment. The definition dimension is along the vertical axis. operationality along the
horizontal axis. and efficiency is represented on the axis coming forward. The other
axis going to the lower left in the fourth dimension represents the formalization di-
mension. Since it is difficult to visualize a four dimensional space. our figures usually
will not represent this dimension.

The need for docuinentation to justify that the program meets its goals and to sup-
port maintenance and tuture evolution can bhe satisfied by products represented by
points in the four dimensional space or by mappings between these diverse products.
A minimal set of. software products as specified by DOD~STD-2167A would be a Svs-

21

Definition

~ Opera-
Inefficient tionality

Efficlency

Figure 4-2: The Minimal Products of Software Development

tem Requirements Specification. a Soltware Design Document. the Source C'ode and
Listings of the completed program and the Software Test Reports.

These products are represented in the four dimensional space as shown in

Figure 4-2. The Software Test Reports are represented not by a point in the space but
by the mapping trom the completed programn to the requirements. {Other documents
required by 2167A are a Software Development Plan and a Software Test Plan. The
Software Development Plan defines a path that the project will follow through the
four dimensional space. The four dimensional representation is an aid for designing
the Sottware Test Plan. but the plan is not represented in the four dimensional space.
The Operator’s and User's Manual are also required products but are orthogonal to
the issues described by the four dimensional model.)

Our generalized model allows a wide varietv of other possible intermediate software
products to be defined as points in the four dimensional space. These additional
software products can be used as additional waypoints during software development:
thus the standard products requived by 2167A are particular cases of the software
products that can be represented using the four dimensional model.

Waterfall models specifv a fixed sequential process for generating these software proc-
ucts. In our four dimensional model, we represent the software products that result
from a waterfall model. bhut we do not define a fixed, sequential development process:
and we make it easier to include additional products as waypoints during software
development.

Efficlency

Figure 1-3: The Spiral Development Model Represented within the
Four Dimensional Space

4.4 Rapid Prototyping and the Spiral Development Model

Boelim [6] describes the software development process as a spiral. Each cyvcle of
the spiral 1s devoted to resolving the highest risk issues involved in this particular
application. Experience from the implementation and use of each prototype is nsed
to develop a more complete definition of the functionality and performance that is
desired in the final product. Figure -3 shows how the products of a tvpical «piral
development would be represented within the four dimensional model. One begins
by prototvping and defining the concept of operation for the application. Then one
prototvpes and defines the software requirements. and finally one builds a structural
prototype leading to the definition of the software design. The completed program tor
the system that is to become operational is then implemented based on this design.
An advantage of the four dimensional model is that it provides a framework tor
thinking about alternative development processes that use alternative wayvpoiuts in
order to arrive at and verify the final products of the software development process.
Requirements documents, design documents. and various forms of prototvpes can all
be understood as intermediate software products associated with particular points in
the four dimensional space.

Definition

Formaiization Efficiency

Figure 4-4: Different Kinds of Prototype linplementations

With respect to prototypes, it is important to specify what functionality or efficiency
characteristics one is trying to prototype. The implementatiou etfort involved in
building a prototype will be large if one does not carefully focus the prototyping
activity on critical issues. Figure 4-4 shows five different kinds of prototypes located
at different points in the four dimensional space.

Functional Prototype. This is an implementation of soine critical functionality to
test whether it can be implemented successfully. For example. if a large svstem
1s being built that includes automatic recognition of targets from certain kinds
of images or signals and if similar functionality has not been demonstrated in
previous svstems, then a functional prototype to Lest the feasibility of achieving
this functionality is indicated.

User Interface Prototype. If the interaction between the svstem and the user is to
be quite different from that of any previous svstem. then a prototvpe that does
not have much internal functionality but simulates the proposed user intertace
and evaluates it in actual tests with representative users is indicated.

Performance Prototype. If some of the functions required in a proposed system
| prop A
have never been implemented with adequate response times using the proposed
Y | i 8 proyg
processing resources, then a prototype to test these functions running on the
proposed hardware (or a simulation of it) is indicated.

Design Prototype. A design or structural prototype is used to evaluate the effec-
tiveness of a proposed software design. It typically addresses a combination of
critical functional and performance issues.

Operational Prototype. Sometimes it is useful to test the majority ot the function-
ality of the proposed system running in an environment similar to the ultimate
operational setting. As represented in the four dimensional space, an opera-
tional prototype may involve much of the expense of a completed product. and
it is usually useful to plan it so that the majority of it can he evolved for nse
in the final product.

One advantage of the four dimensional inodel is that the differences between different
kinds of prototvpes are explicitly represented in the model.

4.5 Formal Specifications as Software Development Waypoints

Different kinds of prototvpes are not the only additional software developiment way-
points that are represented with the four dimensional model. By considering the
dimension dealing with formalization. different forms of specification can also be as-
sociated with points in the four dimensional space. These various specification options
are important for V& V. Figure 1-3 shows some of these specification options as points
in the four dimensional space.

Definition

Efficiency

Figure 4-3: Additional Possible Specification Waypoints
1.6 V&V as Mappings between Software Products

[n our meta-level software development model, verification and validation are nor
represented as points in the four dimensional space: rather. they are representesd
as mappings between points. Both verification and validation are concerned with
showing that the implemented software satisfies the software requirements. Validation
does this directly by testing and other methods that directly evaluate the software
implernentation against requirements. In Figure 4-6. validation is shown as a direct
mapping between the implemented code and the software requirements docuinent.

Verification uses an indirect path through intermediate software products to show
that the final software meets the requirements. The indirect path that is used in
conventional software development is shown in Figure 4-7. \We propose that rthe
specific choice of the intermediate wavpoints for verification are less important than
the hasic process ot showing that the final executable software maps through some
series of intermediate waypoints back to the svstem requirements.

The reason for doing verification using intermediate waypoints is that the mapping
from one waypoint to the next can be much simpler than the mapping all the way from
the final software hack to the requirements: and additional techniques can he applied
to verity that the software prodict at one waypoint satisfies the requirements imposed
by the previous waypoint when the conceptual gap between the two waypoints is
relatively small.

26

Definition

Validation

inetioiont tionality

Efficiency

Figure 4-6: Validation as a Mapping between the Implementation
and Requirements

Sometimes software verification is viewed as showing that a correct software devel-
opment process has been followed. We prefer, however. to emphasize verification
as locused on showing that the content of the products of each stage of software
developient satisfy the requirements for those products.

Once one introduces prototype development as a legitimate part of the software (le-
velopment process. one does not want to require that the wayvpoints used to verify
software have to correspond completely with all of the developmental waypoints used
during the evolution of the software. A prototvpe may be used largely in order to
define an appropriate requirements specification. Thus various prototype software
proditcts may be part of the software development history but theyv need not be used
as intermediate waypoints in the verification plan.

The reason why software verification is needed in addition to software validation is
that Al software implementations are so complex that testing the software directiy
against requirerments cannot he complete. Software complexity also makes verification
difficult: however, there are techniques for reducing the complexity of the mappings
rom niplemented software through intermediate wayvpoints to a requirements speci-
fication. As discussed in (27, 29]. examples of these techniques include:

gs hetween the

equence of Mappitt

and Requirements

Figure 35 Verification & & S
lmp\ememat'\on

e Automate parts of the evolution from the requirements specification to the

4.7

implementation. Compilers for high level programming languages automate
part ol the work in the direction of operationality, and automatic progranuning
techniques that are capable of executing and optimizing specifications written in
very high level languages can contribute further automation. It is still necessary
to verily that the automatic compilation preserves correctness but automation
means that this verification effort need not be done repeatediy.

U'se soltware engineering techniques to constrain the design and the imple-
mentation so that the mapping back to the requirements specification is more
nnderstandable and less complex.

Focus on veritving the most critical functionality in the requirement specifica-
tion.

Make the satistaction ol critical requirements depend on only small parts ot the
miplementation.

Separate control and cficiency issues from the functionality of the implementa-
tion.

Make rhe inplementation be partially self-checking.

Work Remaining on the Meta-level Development Model

More work remains to elaborate this four-dimensional software development mo«lel
before it will be useful as a guideline for developing and verifving Al software. [n
particular. we need to develop and test:

Metrics for measuring progress in each of the four dimensions.

Definitious for additional waypoints that are useful during software development
and verification.

Examples of how different sets of waypoints can be used successfully in different
kinds ot I sottware development projects.

Additional methods for doing verification by mapping between these waypoints.

Once these waypoints and metrics are defined, a software development and verification
plan can be formulated as a set of wavpoints or stepping stones that are located
within this four dimensional space. Planning a software development process is then
analogous to identifving stepping stones for crossing a river. One tries to lud a
series of stepping stones that are close enough so that software development can
proceed 1n a series of relativelv small conceptual steps with each step heing reliable

29

and verifiable. One does not always have to use the same stepping stones. oue just
has to find stepping stones that are close enough together so the complexity of the
conceptual gap between them allows verification techniques to be applied successtully.
[f we think of the complexity of the complete software system as analogous to the
width of the river, then this analogy indicates that the number of wavpoints that are
needed in a software development plan is not the same for all soltware projects but
is proportionate to the complexity ot the software.

4.8 Conclusions about the Meta-level Software Development Model

Each software project needs to define the specific software products that are to he
produced by the project and the order in which they should be gencrated. Qur tonr
dimensional meta-level model provides a way to represent hoth the final producrs.
the intermediate products that are used as way-points in working toward the final
products. and the validation and verification mappings between them.

The four dimensional mode! is useful in laying out a Software Development Plan that
is tailored to the needs of the specific project. Certain software products will appear
in the plan for every project—for example. requirements specificaiions and design
specifications. The level of detail that is achievable in these products may. however.
differ with different .- ects. Prototypes and formal specifications. however. need 1o
be planned to me »r . ecific needs of each project. The verification and validation plan
may also vary wi.h specific project needs. Prototypes that are developed primarily
to understaud the application requirements will probably not play a major role in
the V&V plan: however, an executable specification may serve as a prototvpe and
also be used as an intermediate waypoint in verification by showing that the final
optimized code is equivalent in functionality to the executable specification which
itself satisfies the requirements. We believe that this four dimensional model for
software development will provide the flexibility and adaptability needed to tailor Al
software development to the needs of the application while also providing a framework
with enough structure so that verification. validation. and maintenance oi the sottware
can be effective.

30

Part 11

HOW TO SUPPORT V&V

31

5. For Technical Leaders: Planning to Support V&V

This section is devoted to providing technical leaders on Al projecis with some guid-
ance on how to support V&V during software project planning. It tonches on a
number of issues that are addressed more lully in subsequent sections. as well as on
issues specific to planning.

5.1 What Level of V&V is Appropriate?

Perhaps the most fundameutal example of a planning-specific V&V issue is how to
determine the level of V&V that is appropriate for the project. Better verification aud
more comprehensive validation can always be obtained hy devoting more resources
to the V&V process. But resources are limited. and some of those resources must be
devoted to other tasks. Before the detailed tradeoffs among potential VKV procedires
are determined. the total level of effort that will be devoted to V&V should be settled.
While both the level of V&V and the particular procedures to he applied are often
subject to external constraints—organizational policies or contractual requirements.
for example—that somewhat simplily the problem. a careful analysis of the “natural”
V&V requirements on the project is still essential to making the best use of scarce
levelopment resources.

Guideline 5.1 Determine the iotal level of effort to be devoted to VE V. hased on the
characteristics of the project. at the beginning.

5.2 Project Categorization: An Example

One generally useful technique for determining the level of V&V for a project is to
use a categorization, based on salient characteristics of the project. to determine
what sorts of V&V activities are necessarv and appropriate. The details of such a
categorization should he determined by the sorts of projects that vour organization
performs. Below vou will find an example. based on a categorization found useful
at the organization where the authors are emploved. that should provide a nsetul
haseline for your category definition efforts.

First. here are the criteria used in cdetermining the category of a project. Each
criterion is rated as being satisfied at a Low level. a Medium level. or a High level on
the given project. Table 3-1 explains what the three ratings mean for each criterion.
(Note that somne of the criteria are marked with an asterisk. *=. The significance of
this will be explained in the definition of the categories.)

Our three categories of projects are simply called A. B, and (. Which categorv a
project helongs to is determined {rom its ratings. as follows.

32

| Criterion Rating=Low | Rating=Medium | Rating=High !
* User of svstem Developer only Tratned Computer Averase folks
Scientists
Conteact Type CPFF. T&EM FPLOE, CPAF, PP (Completion)
CPIF
* Flexibility in No requirement Negotiable Fixed and
Deadline for on-negotiahle
Detivery
f Delivery Exotic (e.g.. Unix workstation PO neroprocessor
% Environment (H{/\V (‘onnection hoard
| and O/S) Machine)
Couphng to Standalone Loosely coupled Embedded
Existing Svstems workstation 7
= Execution Speed Easily met Difficult to achieve Havd real trime
Requirements speed perceived as requirements must
satisfactorv he met
Design Formalism Developer’s choice, Designs subject to Custoner-Jdefined
: designs not subject review. fanuliar anfamuliar design
; 10 customer review design formalism formalism
! Database/ Know- DBMS/KBMS of Developer’s choice. Must interface to
ledue Base developer’s choice, but substanuial data | COTS -oftware of
Jata already acquisition/ { custourer’s choice.
recorded, knowledge | knowledge Psubstantial =lfort
already formalized engineering etfort devored 1o
required popularmeg DB/KB
Ducnmentation Simple User’s User's Manual. Fall 2167\
Manual only Maintenance
M:..nual
= [esting Demo only Testing at system (it resting imust
Requirements level must he be docnmented
documented
C'honfiguration None Manual CM Antomated CM rool
Management emploved
Requirements
Support Software to | None On-line help system ©On-line help.

he Developed

tutorial. svstem
status monitoring.
eLc

Table 5-1: Criteria Used in Catego.izing Projects

33

o [f a project rates a High on any of the asterisk-marked criteria. its category is

Al

o If a project rates a maximum of Medinm on the asterisk-marked criteria. then

o]

if it rates a High on the majority of the nnmarked criteria, its category is A.

o else its category is 13

o If a project rates a Low on all asterisk-marked categories, then

0

o)

if it rates at least Medium on the majority of the unmarked criteria. its
category is B.

else its category is (.

Fach category has an associated baseline {evel of documentation that must be pro-

duced and procedures that must be followed to support V&V on the project. (See

Appendix B for definitions ot acronyms.)

A. Categorv A projects must

produce a Software Development Plan prior to development.

produce an SRS. [RS. SDD. [DD, STP. STD. and STR during development.
define and follow formal configuration management procedures.

appoint a cualified Svstem Engineer as Program Technical Director.
institute a tormal Quality Assurance program.

perform formal testing,

emplov a formal design method,

publish a detailed schedule.

institute a process for collecting and handling SER's.

conduct formal Engineering Reviews (design reviews. code walkthroughs.
etc.), and

participate in the company’s TQM program by conducting quarterly Program
Reviews.

B. Category B projects must

produce a Software Development Plan prior to development,
produce an SRS. SDD. and STP during development.

define and follow configuration management procedures,
appoint a Program Technical Director.

publish a scherlule.

3

o conduct (possibly intormal) Engineering Reviews. and
o participate in the company’s TQM program by conducting quarterly Program
Reviews.

(". Category (' projects must

o define high-level goals and plans for the project.
o publish a schedule of major milestones. and

o participz e in the company’s TQM program by conducting quarterly Program
Reviews.

This sort of categorization provides the level of V&V appropriate to the project. and
allows at least a rough prediction of the percentage of project resources that must he
devoted to VL V. while leaving the procedural details open.

35

6. For System Specifiers: What and How to Specify

6.1 The Role of Requirements Analysis in AI Development

Requirements are properties a system must have in order to solve the problem. The
bulk of a requirements definition document will often be a statement ol the prob-
lem. [ndeed. the most difficult part of requirements analvsis is typically achieviug a
sulficiently detailed understanding of the problem. However. leaving the actual state-
ment of requirements at the level of “the only requirement is to solve the problem™ is
usually unsatistactory because of vagueness in the problem statemnent. Requirements
should be defined sufficiently precisely that a given syvstem either satisfies them or
does not satisfy them. Moreover. it must be possible to determine—with a degree of
certainty that is itself a requirement on the system—whether a svstem satisfies the
requirements or not. (Certification of requirement satistaction is accomplished via a
combination of verification—formal. informal. or some combination ot the two—and
validation testing.)

Guideline 6.1 System requirements should be spelled oul in enough detail that a
system either satisfies them or fails to satisfy them: do not learve the requiremen. s
statement “fuzzy.”

As was pointed out in Section 2, it is important to remember that the product of
requirements analysis is not necessarily the true requirements. Use of the term “re-
quirements definition™ is appropriate from the contractual point of view—where a
system will be accepted if and only if it satisfies the requirements as defined in the
contract—but somewhat misleading. [t is quite possible that a svstem satisfies the
requirements as stated yet fails to solve the problem. due to an error in the require-
tments analysis or a loophole in the requirements definition. Svstems validation should
be pertormed against the true requirements; satisfaction of the stated requirements
is evidence that the requirements are satisfied. but it is not conclusive evidence. The
important point to keep in mind is that comprehensive testing against the stated
recrirements cannot, in general. provide comprehensive validation. .\ requirements
definition document is just another lifecvele product. and no amount of verification
that the system satisfies the stated recuirements can eliminate the need tor validation
testing.

Guideline 8.2 Never confuse the real requirements with the stated requirements. be-
cause there is no guarantee that the requirements hare been stated correctly.

A common characteristic of Al system development efforts. as noted in Section 4. is
that the requirements are vague and hard to define. This is partly due to the nature of
the problems addressed by Al Just as it is hard to define a performance measure that

36

captures how well an expert does his job, it is hard to define a performance measure
that captures how well an expert system performs the same job. [t is also partly
e to the fact that Al techniques were developed to address large. comparatively
ill-defined problems. A good example is search. Conventional techmques perform
well when the search space is comparatively small. allowing effectively exhaustive
exploration of all alternatives. and there are well defined criteria for what connts as
a good =olution. When Al is applied to search. it is typically because the search
space is too large or too ill-behaved for conventional techniques. or because therve are
no effective criteria that distinguish good solutious from others. Often. the best vou
can do in such cases is to build a systemn that emulates a person who is believed to
perform his job effectively. This is just the sort of case where there seems to he little
hope of accurately defining the requirements. '

So. does this mean that Al development projects should not waste effort on attempt-
ing to deline system requirements? The tvpical Al lifecycle. based on iterative refine-
ment of a prototvpe. might seem to support an affirmative answer. The developer
asks the user whether the system is satisfactorily in some given respect: if the user
is not satistied. he is asked how the system must be changed so that he will be. The
end product of this refinement process is the prototyvpe that embodies rhe require-
ments, rather than a document that attempts to state the requirements. \Vhat. if
anything. is wrong with this? Doesn’t the prototype provide even better guidance in
the subsequent evolution of that system than written requirements would?

The answer to that last question is a resounding *No!™ To see why. we must take
a closer look at the role of requirements statements in the svstem lifecvcle. Re-
quirements play a quite different role in the lifecycle than specifications and designs.
Requirements are determined by the problem itself. and cannot be changed by rhe
implementors. If a svstem does not satisfy the requirements. it Jdoes not solve the
problem falthough it may solve some closely related problem). Thus the requirements
explicitly present the constraints on the design process. .\nd this is the kev to seeing
why an explicit requirements definition is essential.

(‘onsider. for concreteness, a mock-up of a system’s user interface. \ user-approved
mock-1p of the user interface cannot usually be considered an adequate requirements
definition for the interface, for several reasons. First. some features of the mock-up
that were considered artifacts' by its creators may have been essential in securing
the user’s approval. Perhaps color of some green icon was selected at random by the
developer. vet the user would not have approved the interface it the icon had been
any other color. Unless the essential features of the user interface are distinguished
from the accidental features. people who suhsequently want to change the interface.
for one reason or another. have no guidance on what can be changed and what must

-Artifact,” as it is being used here. is a technical term. [t means that the feature is the
result of an arbitracy choice made by the developer and that it is not intended to he a
feature that the actual user iterface must share in order to be considered essentially the
same as the mock-up.

37

remain the same. Second. “tolerances” are left iniplicit, so questions such as “ls it
acceptable to make this window 10% narrower?” cannot be answered.

Thus. while prototyping is a useful—sometimes virtually essential—technique for de-
termining svstemn requirements, the prototype alone is not an adequate requircments
definition. [deally, the prototype would be supplemented with a list of all its relevaut
features. classified as esseutial or accidental, together with a range of acceptable vari-
ation in each essential feature. This ideal may not be achievable. [t may not cven
be an appropriate goal on a given project. The point is, a requirements delinition
15 suppose to say what features the system must have, and this information cannot
be extracted from the prototype alone. Thus a prototype does not provide the sime
guidance to designers. implementors, and maintainers that a requiremecuts delinition
does. Far trom reducing the value of writing a requirements definition. prototvping
mcreases it by helping to ensure that the requirements are correct and sufficient|v
detailed that thev will provide practical guidance!

And the problem becomes even more acute when modifications are made 1o a ~i~tem
that has already heen validated. As a simple example. consider the addition of a new
window. which will displav a new sort of information that has hecome available to
the user. To what extent can other windows he moved or resized to accommodare
this change? The original requirements on their size and position provide an excel-
lent starting point for answering the question: if one window was already as <mall
as requirements allowed, while another was far larger than required. then shrinking
the latter rather than the former will almost always make the user happier than the
opposite. Without some record of requirements and design decisions that determined
window sizing. there is no basis for preferring either alternative over the other. \Vhile
this example is admittedly trivial—the modifier can ask the user which wincdow <hould
be shrunk. or can even get a mock-up of the new interface approved—in more com-
plicated examples. the guidance provided by the requirements would he even more
welcome.

Guideline 6.3 Prototyping helps to define the requirements. but do not attempt to
se a prototype as a requirements definition.

6.2 The Role of System Specification in AI Development

A specification is a description of the system to he built at a “black hox™ level of
abstraction. This description should be declarative, not procedural. in that it <hould
say what the system does without prescribing how the system does it.

Thus. requirements and specification are quite distinct. Requirements deal with prop-
erties of systews in general: specifications are descriptions of particular systems (albeit
at a very abstract level). Every system that solves the problem inust satisfv the re-
guirements. but many incompatible system specifications are possible. The problem
completely determines the requirements. but merely constrains the specification. .\

33

requirements document says what the system must do: a specification says what the
system shall do. In fact. QA personnel on large aerospace development efforts check
that the right word gets used: statements of requirements must contain the word
“must.” never the word “shall;” specifications must contain “shall™ and never “must.”
A design is a refinement of a specification: conversely. a specification is a top-level
design. The “black box™ of the specification is broken up into simaller boxes (more tor-
mally, abstraction units), those hoxes are broken up into smaller boxes still, and so on.
Eventually. very simple boxes—i.e., ones that are straightforward to implement —are
arrived at. The result of this decomposition is the detailed design. The exact natnre
of the hoxes depends on the design methodology heing employed. but. in many cases.
they correspond to abstraction mechanisms in the implementation language 1o be
emploved. [n other words. design is simply identification and specification of parts of
the syvstem. Thus a general purpose specification language can be emploved through-
out the design process. making the design stages appear to be successive refinement
steps. Alternatively. different design formalisms can be emploved at different levels
of abstraction. Unfortunately, the latter scems to he standard aerospace practice— at
least to the extent of using natural language or simple diagrams for specification and
high level design and some sort of pseudocode for detailed design.

This account is at odds with the view that the dividing line between requirements and
specification is not sharp. that requirements sitnply tend to be more domain-specific
and specifications more detailed and complete. There is a grain of truth in this view.
in that satisfaction of the specification should imply satisfaction of the requirements.
Hence. there is a sense in which all the information in the requirements is captured in
the specification. However. the view that a specification is obtained by adding detail
to the requirements definition is fundamentally mistaken. [t is important to avoid the
error of conflating the two because requirements and specifications play very different
roles during the maintenance phase of the lifecvcle.

Guideline 6.4 Do not confuse specified properties and requirements. There is noth-
ing wrong with a system that satisfies the requirements but not its specification (though
the specification should be eventually modified to fit).

As was pointed out in the previous section. the role ot the requirements definition
is to provide constraints on the rest of the development process. This document
changes only if an error is discovered in the requirements analysis. A specification is.
on the other hand, entirely under the control of the developers. Any change can he
made at any point in the lifecycle, provided that the requirements are still satisfied
and that the change is propagated through the design for consistency. The purpose
of specification and design is to arrive at a program that demonstrably satisfies the
stated requirements. In other words, from a V&V perspective, the syvstem specifi-
cation and design serve primarily to replace a large verification problem—directly
verifving that a systemn that executes the program will satisfy the requirements—by a
series of smaller verification problems—verifying that the svstem specified will satisfy

39

the requirements. verifving that each refinement of the design preserves satisfaction of
the specification. and finally verifving that the code correctly implements the detailed
design. Note that this is quite consistent with the more standard system develop-
ment view that successive refinement of the specification makes it easier to produce
code that satisfies the requircments. Stepwise refinement makes developinent easier
precisely because attention can be tocussed on the limited number of factors that are
relevant to verification of each small step.

As the system changes over time. and the specification and design evolve. having
replaced the large verification gap bv many small verification gaps greatly simplifies
reverification of the system. Typically, a small change to the code requires onlyv that
a few of the design refinement steps be modified and reverified. If, on the other hand.
the code was directly verified against the requirements. a small change to the code
can have a large impact on the proof. making reverification nearly as expensive as
the initial verification.

However. as has been noted several times above. stating the requirements for the
typical Al system is hard. As a result. requirements definitions tend to be incomplete
and somewhat vague. which makes a convincing verification of a system specification
impossible. [n cases where there is such a gap, it may be tempting to ignore system
verification. and to concentrate on validation. [t might be argued that in any case
where testing can provide sufficient evidence that requirements are satisfied, there is
no need for a specification or design hevond the source code plus comments. How
often have vou heen told “"The code is self explanatory?” The main arguments against
this view are purely practical.

First. writing code involves making design decisions, whether those decisions are
recorded or not. The code savs how things are done. but not why they are done
that way. As a result, when it comes time to modify the code. it is far from clear
whether a particular design decision—say, the choice of a particular data structure or
algorithm—uwas dictated by the necessity of satisfving some requirement. or whether
it was more or less arbitrarily chosen from among a number of alternatives. Suppose
that a stringent performance requirement could be satisfied by replacing one sorting
routine by another. Further suppose that the original sort was stable. but that the
proposed replacement is not. Can the latter be [reelv substituted for the former. or is
stability a necessary property of the algorithm? [f the sorting unit was specified. the
(uestion can he answered by a quick examination of the design document: if not. the
best vou can do is make the substitution. run a few tests, and hope. Thus. virtually
any change to the system requires extensive revalidation.

Second. unless there is a system design process that guides development, the system is
likely to be ill-structured. consisting of patches on patches. a result of a series of what
were percetved to be the minimal changes necessary to eradicate bugs. Without a
design breakdown, any subsequent change to the system requires complete retesting.
There is no way to guarantee that significant effects of the change are confined to a
particular program unit. But a validated design gives the developer the capability to

t0

swap oune unit for another, provided that it satisfies the same specification. Thus. a
solid svetem specification and design sitnplify the revalidation process. Al systems
tend 1o .. especially complex. especially liable to modihfication. and especially dif-
licult to verify and validate. Since specification and design docnments are essential
to vecducing the cost of reverification aud revalidation. it is especially important to
develop and maintain specifications and designs ol Al systems .

Guideline 6.5 In specification and design. focus on reducing the cost of revalidation
and rerverificalion.

ft must be pointed out that only in exceptional cases can validation testing replace
verification. anyway. As Dijkstra. among others. has repeatedly cmphasized. testing
can only show that bugs are present. not that they are absent. [iven if confidence in
the correctness of the specification is lacking. validation can still increase conlidence
that the system is robust. reliable. and comparatively free of the tvpical “imechanical”
errors-—siich as being off-by-one in some indexing—made by programnmers who do not
have a cetailed design to work trom.

Assuming that the desirability of specifving the system and its parts has been estab-
lished. the next questions that must be addressed are: What specification method
should be used? How much formality is desirable? What 1s the added value provided
by so-called “executable specifications?”

The advantages of formal specifications of system functionality over informal specifi-
cations are substantial. Recall that, from the V&V perspective. specifications are in-
troduced to support validation. Informal specifications. whether presented in natural
language or using suggestive diagrams that cannot be assigned anyv precise meaning.
can be very useful in attempting to understand the svstem. But informal specifica-
tions only support informal verification arguments. which arve typically lengthier and
less convincing. The objective is to guarantee that any system that meets the refined
<pecilication will meet the original specification. and imprecision in the original or
refined specification makes this exceedingly difficult. Moreover. validation of retine-
ments of tormal specifications can be at least partly automated. Most tools based on
popular diagrammatic methods. such as Structured Analysis [31]. perform at least
-ome consistency checking across levels. Tools that support textual specification lan-
gnages provide even greater support. based on theorem proving capabilities.

Diagrammatic methods are definitely more popular than textual methods. principally
because the average system designer finds them easier to use and the average system
implementor finds them easier to understand. However. full specifications of the
behavior of complicated systems in diagrams are completely incomprehensible and
unmaintainable. often amounting to an attempt to represent every state of the system
by a box and every state transition by an arrow. As a result. specification diagrams
tend to require ahstraction that suppresses detail. This suppression of detail linnts
the scope of verification. Since developers of Al systems are comfortable with formal

H

textual representations of svmbolic information and techniques for manipulating such
representations—that i1s what Al programs do!—text-based specilications (or hybrid
methods that combine diagrams with formal annotations) would seem superior for
Al development.

Guideline 6.6 For A/ tert-based specifications are superior to diagram-bused speci-
fications.

l'extual formal specification languages can be divided into two types. First. there are
ulgebraic specification languages, such as OBJ (18] and ACT [L7]. [n these languages.
one specifies a collection of modules, each of which consists of objects. uperations on
those objects. and equations those operations satisfy. Secoud. there ave model-based
languages. such as VDM [3] and Z [40]. [n these languages. oune specifies modules that
are built up from mathematical components—sets. sequences. relations, lunetions.
aud 5o on—using a logic-based language. The essential difference hetween the two is
that the former provides a partial description of the unit while the latter provides a
mathematical model of the nnit.

Although there are theoretical reasons for preferring one type of formalization over
the other. in practice there seem to be few grounds for choosing hetween them. Some
specifications have been written up both algebraically and set theoreticallv—e.g.. a
partial specification of the Unix file system [4, 22]—and it seems that translating
between the two approaches is straightforward. The set theoretic approach is move
widely used in industry, and the support tools available for the set rheoretic ap-
proach are definitely more mature. On the other hand. the algebraic approach tends
to restrict itself to logical languages for which efficient mechanical theorem proving
15 possible. and thus offers greater long term potential for antomated veritication
support. If vou are unfamiliar with the details of the two approaches. cxamine a
good introductory survey [13. 43] and make your own decision. But he aware that
the state-of-the-art is evolving rapidly. so the particular svstems described in these
surveys may no longer be the hest candidates by the time vou read this report.

Guideline 8.7 The state of the art in algebraic and model-based speeificution is ¢ rolr-
ing rapidly. Make sure you have considered the hest current candidate tools be fors
choosing between the two approaches.

Some programming languages claii to be erecutable specification lanquages. The
idea is that they provide the capability to interpret or compile a formal specification
language. thus combining the advantages of a specification and a prototvpe. It seetns
clear enough that writing a specification/prototype is likely to be less work than writ-
ing a specification, writing a prototype. and verifving that the prototvpe matches the
relevant part of the specification. REFINE [28]. for example. provides much of the
functionality of Z. but transforms its specifications into LISP. [n this case. the cost ol
executability is a weakened set theory —all of REFINE's sets are finite. but Z supports

2

description of infinite sets—and some deviation from logical purity for the sake of
etficiency. Also. use of an executable specification language tends to encourage over-
specification. as a less abstract specification will execute move efficiently. providing a
more useful prototype. Thus design decisions can creep into the specification. result-
ing in a commitment to design features that are appropriate tor the prototyvpe but
inappropriate for the deliverable svstem. Again, the best approach is to explore the
capabilities of the svstems available at the time you read this. and decide for vourself
whether any is well-sutted to vour needs.

Guideline 6.8 ('sing an erecutable specification language entails the risk of orer-
spectfication. but offers substantial benefits. Whether the benefits balance the risks
depends on the project and the choice of erecutable specification language.

E3

7. For Designers: Designing Your Software to Support V&V

7.1 Introduction
The principal advice we have for svstem designers is
Guideline 7.1 7o facilitate VEV, keep the design as simple as possible.

[n this section. the mecaning ol “simplicity” is spelled out in great detail. and 1he
possibility of defining quantitative measures of design simplicity is explored. \lso.
the relative advantages of formal and informal design techniques are considered.

Note that. since design involves specification of parts. the material on specification
in Section 6.2 is equally relevant to design.

7.2 What is Simplicity?

The notion of design simplicity seems. at first glance. to depend on the design method
that is being emploved. Consider. to hbegin with, classical design techniques based on
tfunctional decomposition. A good heuristic in using these function-oriented methocs
is: Minumuze the number of interconnections of subfunctions. In other words. the
cdesign represented by the hoxes and arrows—bhoxes are subfunctions and arrows rep-
resent data low—in Fig. 7-1 should he preferred. all else being equal. to the dexign
in

Fig. 7-2.

The criteria for judging the guality of an object-oriented software design seem to he
cquite different. The principal heuristic in object-oriented design is: Let the messaqgex
fo objects say “what™ is to be done: assoctate “how™ to do it with the most general
rlasses possible. Judged by the criterion for classical design, good object-oriented
designs will fare rather poorly. as they tend to be highly interconnected.

Observe. however. that reducing the number of connections among subtunctions reuds
ro minimize information How among subtunctions. Indeed. reduction of information
flow seems more fundamental than reducing the number of information channels. since
reducing the number of channels simply by passing more complex data structures does
not improve the design. And also note that the object-oriented design heuristic tends
to reduce information flow across abstraction boundaries: many messages flow around
the system. but each contains little information. Based on these considerations. the
following seems to he a generally appropriate design heuristic.

Guideline 7.2 Vo matter what design method you may be using, minimize informa-
tion flow across module abstracton houndaries.

b

Figure 7-1: A Possible Functional Decomposition

Figure 7-2: An Alternative Functional Decomposition

After all. one of the signs that vou have identified! a natural boundary is that the
whole can be cleft relatively cleanly into parts at that boundary.

The cousequences of using information flow as a measure of simplicity will now be
considered,

7.3 Measuring Simplicity

[nitiallv. cousider the case of a knowledge-based system that calculates probabilities
of hypotheses from evidence using a network of inference mmechanisms that update
probability distributions over their outputs based on changes to the probability dis-
tribution over their inputs. .\ tvpical svstem of this sort is shown in

Fig. T-1.

Shortly after Shannon inaugurated the study ol Information Theory. Carnap and
Bar-Hillel [11] showed that a formal analogue of Shannon’s intormation ineasure

Ig) ==Y qlog,ly,)

J

provides a natural explication of amount of semantic informalion when the probabil-
ities ¢, are interpreted as justified degrees of belief. Thus the amount of information
associated with an inference mechanism that transtorms prior proi.ability distribution
¢ on its output into posterior probability distribution ¢’ is simply I(¢') — I{¢). And
<0. given a design-level probabilistic model of the systems inferential behavior. the
expected intermodule intormation flow can be computed.

The details of how to calculate this measure depend on the particular inference mmech-
anism used. One might hope that in cases where the update algorithm is reasonably
eificient {e.g.. the recently developed network-based algorithms for Bavesian infer-
ence [32]. or even more general algorithms for cross entropy minimization [38]) a
reasonablv efficient analytic determination of expected information iow would be pos-
sible. Note. however. that this calculation requires information not usually available
prior to implementation: having all the knowledge required to actnally perform infer-
ence when the design is completed is the exception rather than the rule in knowledge-
hased svstem development. Fortunately. expected information flow can always be
ostimated by simulation in a completely straightforward fashion at design-time ns-
ing the high-level probabilistic model hased on estimates of the average information
added by each inference mechanism.

The next question that must be addressed is: fHow can this be generalized to other

sorts of systems? If quasi-probabilistic mechanisms are used. the generalization is
easy. But the generalization to systems that perform. say. deductive inference is
not so easv. T[he problem is that, according to the standara definition of semantic
information. deduction does not vield new information: if vou assign A a probability
of 1 and A implies B. then B must also be assigned a probability of | to maintain

t6

evidencs ¢0 has probabidty p 0
evidence o1 has probabuity p1
andence #2 has probabiity p2

evdence oN has probabiity pN

Inference
Mechanism

Figure 7-3: An Inference Mechanism

_.L

hypothesm A0 has protateity g0
hypothess N1 has probabiity q :
hypothess N2 has prodabity g 2

hypothesis hAf has probabiiny qMd

Figure 7-4: A Network of [nference Mechanisms

b

cousistency. So what is needed is a sense of information such that if vou initially
know that 4 but not that B and you later succeed in deducing B from 4. vou have
sained information.

Thus. defining a quantitative measure of simplicity that can provide design-time guid-
ance in the quest to support V&V is only a partially solved problem. But mory Al
svstems are of the probabilistic sort where a useful measure has heen already heen
dehued.

Guideline 7.3 If a simplicity measure 1s available. use it to evaluate the velative
simplicity of radically different designs.

7.4 Formal vs Informal Designs

[the sole purpose of documenting designs were to provide guidance to the imple-
mentors, then the defects of using an informal or semi-formal design method---natural
language. Structured Analyvsis. Structured Design. and Commercial Products such as
SADT. IDEF. etc.—may be halanced by the main advantage: any programmer can
understand designs presented in these formalisms with little or no training. But when
strong verification of the code against the design is required. the advantages ot a more
formal design dominate. In fact. since design is decomposing the system into parts.
~pecitving those parts. decomposing those parts into subparts. and so on. the advan-
tages of formal design are exactly the same as those of formal specification. already
described in Section 6.2.

"\We explored three different approaches to explicating this more generally applicable concepr
of information.

e Taking a semantic approach. we emploved a broader class of models (inclinding, ~ay.
urn models) that distinguish between non-trivially logically equivalent sentences. and
left. the definition of information remains the same.

e Taking a syntactic approach, we measured the complexity of the simplest lerivation
of B from 4 and used that as the measure of information gained in inferring 8 from
4.

o Taking an epistemic approach. we used a “fine grained” epistemic logic and defined
a new concept of information in terms of the old

I'(4) = I(Knows(system, 1))

We then showed that the semnntic and syntactic approaches are special cases of the epistemic
approach, so our subsequent research focussed on the epistemic definition of information.
i This one of a number of cases where mainstream Al techniques may have enorimous impact
on the VLV problems raised by AL) At the time of the writing of this manual, the research
is not sufficiently mature to provide anv immediate guidance on how to measure information
How in non-probabilistic systems. hut 1t does show considerable potential.

IN

8. For Programmers: Choosing Programming Techniques

[n this section, we discuss the impact of the choice of the Al programming techniques
of Section 3 on the appropriateness and elfectiveness of various V&V techniques.
Guidelines tor choosing programming techniques that simplify V&V are presented.
Also. for each technique, we comment on the difficulty of providing a given level of
verification. which verification techniques might usefully be employed. and how and
what to test to provide couvincing validation of the system.

Although this list of techniques is far from exhaustive, the main objective is to provide
vou with some exaniples of how the conventional wisdom of V&V can be applied to
Al development, even thongh many Al programnming techniques are never considered
in V&V textbooks. If a programming technique of interest is not listed. vou shonld
be able to add it by using the following technigues as models.

8.1 Data-Driven Programming

Recall that the essence of data-driven prograimming is that data triggers the retrieval
and running of associated programs. Typically, these techniques will be used in a
situation where a specification specifically calls for a certain function to be performed
for a certain independently-specified program to he executed when the data satis-
fles a certain condition. Thus. the “incremental™ verification problem introduced by
the use of data-driven programming is showing that the data-program association is
correct according to the specification. and that the condition on the data is alwayvs
tested when appropriate. (This observation explains why data-driven programiming
is such a useful technique. Saying something like = IWhenever the data satisfy condi-
tion C. then do A" is a very natural way ol specifving desired behavior. Verification
of the code that tests the condition on the data is generally easy. as that code is
simply an optimization of a naive implementation of the condition. and the verifica-
tion of the associated programs must be performed anyway. So use of uata-driven
programming—as opposed to more traditional techniques that do not treat the condi-
tions and programs as “first-class objects”™ —is straightforward. because the structure
of the code more closely matches the structure of the specification.)

So our first guideline on choice of programming techniques to support the VLV
process is:

Guideline 8.1 [’se data-driven programming when. but only when. the form of the
specification naturally calls for it.

if this guideline is adhered to. the incremental validation problem can usually be made
tractable. even if very strong formal validation is required. Validation of the data-
program association should be trivial. whether the association is explicitly represented

19

in a data structure, implicitly represented by inclusion of a method definition within
the lexical scope of a class declaration, or whatever. No matter what programiing
language mechanism is used to create the association. exactly what data is associated
with what program should be clear enough. The potentially difficult part of the
validation is assuring that the tests are always applied when appropriate. Probably
the most straightforward solution is to use some sort of active data structures with
a well-defined interface, so that the code for testing the condition on the data can
be integrated with the code for changing the data. Most modern languages (Lise.
C++. \da. and so on) provide support for encapsulating data structures. so this
straightforward solution can bhe easily implemented.

Guideline 8.2 Lncapsulate data structures that contain data with associated proce-
dures. wsing the appropriate lingquistic mechanism ((f there s one).

One prominent case when these techniques cannot be applied is when etther (1) Pro-
LOG is used and the data associated with programs is simply a subset of the PROLOG
database, or (2) a shell for building rule-based systeins is used. the data associared
with programs is part of the database the rules operate on. and the database does
not support attachment of daemons to the data. (For prescut purposes. a daemon
is simply a procedure that can be associated with data that will execute when the
data is changed. That is, it is a basic data management mechanism for supporting
data-driven programming.) In this case. the best solution is to rewrite the program
so that the data is not stored in the PROLOG database. [f this is infeasible—because.
for example. the data is being used in computational reflection—the next simplest
solution is to distribute the data-program association among the individual PROLOG
programn clauses or production rules. For example. if the clause

P('l'-.’/) -T QX(I-:l)r Q'Z(-rvz'l)r--" Qn(-l'~:n)-l

might change the Prolog database so as to make condition (' true. and if - is to be
performed whenever C' becomes true. the clause should be rewritten

Preoy) = Qve,), Qalr.z2),..., Qalr.z), (O => 1)

The incremental verification problem then becomes assuring that the conditionals
have been added evervwhere they are required—which can require an arbitrarily com-
plex analysis of which clauses might make conditions on the data true when theyv are
called. This may not be difficult in a particular case. but the tollowing guideline
provides sound general advice.

“The use of :~ for ¢f and , for and is standard Edinburgh PROLOG notation. We will also
use => for the more-ur-less standard conditional operator.

50

Guideline 8.3 Advoid using dala-driven programming when the dala 1s stored 0 a
globally accessible database that does not ~upport attachment of daemons to the duta.

An alternative, in the case of PROLOG, 1s to build data-driven programming support
into a meta-interpreter. This is an elegant solution. but typically far harder to verify
than the rewritten rules.

Use of data-driven programuming does not much affect system validation. \When a
data-program association is dictated by the requirements. the correctness ol the data-
program association will be adequately demonstrated in extended use. The principal
added burden in validation is making sure that there are no cases when. given the data.
some program should have been called. but was not. If the data can be monitored
independently--by running under a debugger. for example—sampling values may
raise the level of confidence in the completeness of the implementation of the data
prograni association,

8.2 Discrimination Nets

Discrimination nets are, in effect. an optimization of a specified more-or-less ~l{at”
categorization. That is. the specification of the categories will probably look some-
thing like

If Bi(r). then @ is a Cy. If Py(x). then r is a Cy. [f Psy(r). then o s a
Cyy tf Qalr). else w is aCyy. ...

A rather formal verification that the categorization implicitly defined by the tests
in the net correctly correspond to the specified categories is usually feasible. T[he
optimization used to build the tree amounts to observing that there are logical de-
pendencies among the properties, so the results of previous tests can he nsed to
simplify subsequent tests. What must be verified is that. if category (' is associated
with leal node .V. then the series Ty(r) = ro, Ty () = ri. Tp(x) = ry, ... of test results
associated with any path leading to .V implies that r is indeed . Since the rests
were chosen so as to have this property, it should be easy enough to show that thev
do.

Guideline 8.4 When optimizing the tests in the net. consider not only run-time
efficiency. but the difficulty of demonstrating correctness.

One of the advantages of this programming technique is that a relatively limited set
of test data can provide a great deal of confidence that the classification is corvect.
Generally. the level of confidence rises more quickly if the intermediate categories
defined by partial test vesults are natural, rather than invented. More tmportant.

51

revalidation is simplified after making the most common change to the net. adding new
categories (including refining existing categories). 'T'his can be achieved by associating
each category (' with a collection {F,. Fy. F,....} of independent primitive features
that jointly guarantee menbership in (7. and then treating the optimization problem
as being one of ordering the rests for the F,. In the ideal case. each initial segment
of the ordered list of features will determine a natural category. i.e., each test will
determine which natural subcategory of a natural category the given information
belongs to. (This approach will produce discrimination trees, rather than sometimes
more eflicient general nets.) In other words. the discrimination is based on a natural
classification hierarchy.

Guideline 8.5 When possible. base the discrimination on a natwral classificalion
hierarchy.

8.3 Meta-Level Control Structures

The principal verification burden imposed by meta-level control mechanisms is that
CoMMON Lisp programs containing undisciplined uses of function can be difficult
to reason about using conventional specification tormalisms. Typically. specitications
will either include a very procedural representation of the algorithm to be used. or will
be formalized more abstractly in a higher-order or set-theoretic specification language.
Therefore. the problem can be minimized by using only closures that need not close
over any variable bindings. in which case the closures can be treated as mathematical
functions that contain no information about the environment. The same can be said.
mutatis mutandis. about the use of SCHEME's procedures.

Guideline 8.6 hen implementing meta-level control structures. avoid using closing
orer functions that contain free variables, to simplify verification.

A major advantage of using meta-level control structures. from the standpoint of
V&V, is that some requirements on the functioning of the system might only be
verifiable via proving—either formally or informally—that its control structure has
certain desirable properties. [or example, we might require that a system which
contains several routines that might be applied in problem solving to <elect among
them fairly. Proving such properties is often much easier when coutrol structures are
explicitly represented at the meta-level.

Guideline 8.7 [f verification requires proving that the program's control structure
has certain properties. considcr representing control explicitly using meta-level control

structures to simplify verification.

Validation of systems that make use of meta-level control can become more com-
plex because there is no longer a meaningful distinction between data and control.

32

A formal requirement for, say. exhaustive branch testing cannot be satisfied. be-
cause new branches are created at run-time based on the data. From an unsyin-
pathetic viewpoint. standard implementations of meta-level control structures might
be compared to self-modilving code-- which is thought to be difficult-to-impossible
to strongly validate—in this respect. Rather than relying on the usual criteria tor
determining the extent of validation. ad hoc arguments that the desired level of vali-
dation has heen achieved will he necessary. More effort must be put into defining and
defending validation procedures when meta-level control mechanisnis are employed.
(Those procedures may not he especially difficult or expensive to perform. however.)

Guideline 8.8 Although standard criteria for comprehensive validation muy be hard
to satisfy. implementations with meta-level control structures are not necessariy df-
ficult to vcalidate (i.e. it frequently is not difficull to erercise such structures (n ways
that provide considerable confidence that they perform as they should). .

8.4 Deductive Information Retrieval

Deductive information retrieval. being based on formal logical deduction, can be an-
other good candidate for formal verification. But, as was noted in the description of
the technique. such systems typically deviate fromn “logical purity™ in some way. and
the extent and nature of the deviation can influence the efficacy of formal verification
techniques. First. there may or may not be a mathematical semantics that determines
whether derivations are correct or not. Second. if there is a formal semantics. the
deductive technique mayv or may not be complete with respect to that semantics. i.e..
the deductive technique might not be strong enough to derive all conclusions that tol-
low from the facts stored in the knowledge base. Third. the deductive technique may
or may not bhe sound with respect its formal semantics. i.e.. the deductive technique
might allow incorrect conclusions to be drawn from the knowledge base.

Guideline 8.9 [f the ertent of the consequence relation is under your control. hoth
rertfication and validation will be greatly simplified if you choose a relation based on «
mathematical semantics. rather than one that can only be defined in procedural terms.

Guideline 8.10 Vake the deduction technique as close to complete as performance
constraints allow. And make sure that ull obrious conclusions will be drawn from
the knowledge base, because missing obrious conclusions will make the user doubt the
utdity of the system.

Guideline 8.11 Be ertremely hesitant to give up on soundness. Even if you can
arque that no incorrect conclusions will be drawn in practice. use of an unsound de-
duction technique will tend to undermine the user’s confidence in the system. makiny
ralidation and revalidation much more erpensive and difficult.

33

Whether a “nice” deductive technique exists is often determined by the specification.
[f the specification determines exactly what conclusions should follow from the facts
in the knowledge hase. the programmer must tmplement that particular notion of
consequence, no matter how messyv it may be. {Specifications sometimes nnderdeter-
mine the consequence relation. because a good specilier knows that most standard
notions of logical consequence are too expensive to itnplemn- - efficiently and chooses
to leave the details to the programmer’s discretion.) Compr . ing logical purity for
efficiency’s sake is a practical necessity. and the desired effect, of a compromise are
usually impossible to express except in form of an algorithm. So most specifications
will provide a procedural representation of the desired consequence relation. aund the
programmer's task is simply to implement that algorithm. In this, the most common.
case. there is no special verification or validation problem associated with the deduc-
tion engine: it 1s simply a matter of showing that an algorithm has been implemented
correctly. Moreover. some languages and shells—most notably PROLOG —-provide an
deduction engine which need not be verified and is already well validated.

Guideline 8.12 Whether deductive information retrieval will be used should be de-
termined by the form of the specification of the system’s retrieval capabilities.

There can be a second set of \V'&V problems associated with deductive information
retrieval: the general knowledge in the knowledge base must be validated. (Verifi-
cation is usually trivial. The general knowledge is given in the specification. iu a
form that can be directly coded in the knowledge representation formalism.) If. when
the svstem is used, the knowledge base consists mainly of data. validation may be
straighttorward. with just a few carefully defined retrievals being sufficient to show
that the general knowledge is correct. But typically. the general knowledge is exten-
sive. consisting of hundreds or thousands of general {acts. While there are classical
techniques for verification and validation of such coliections. such as showing that the
knowledge base is consistent by showing that it has a model. and some progress has
been made on defining analytical techniques to show that a knowledge base has other
desirable properties [41], there is no substitute for extensive validation testing. In
most cases. this is not a problem for the programmer. because the specification gives
the (possibly buggy) general knowledge. but it is still worth noting at this point.

Guideline 8.13 The power of deductive information retrieval i~ that the knowledqe
can be combined in unerpected ways to draw surprising conclusions. It s hard to
guarantee all these conclusions will be correct, even when you can guarantee that they
are all consequences of the general knowledge and the particular data. In othcr words.
it is hard to validate knowledge bases.

8.5 Production Systems

Production systems represent a more radical departure from conventional program-
ming than the techuniques discussed above, so much so that our notion of the “in-

3t

cremental” verification and validation problems associated with a programming tech-
nique is not really meaningful in this case. There is an illuniinating analogy thar
can he drawn with deductive information retrieval. however. The recognize-act loop
can generally be verified using conventional techniques. but this code is usually quite
simple compared to highly optimnized constructive theorem prover. (This is not in-
variably true, however: some rule-based system shells provide very complicated rule
selection mechanisms.) In addition, the recognize-act loop is usnally “given™ by the
programming language or shell being used. At any rate. verification and validation of
the recognize-act loop is not the difficult problem; verification and validation of the
rules is.

The difficulty of verifying and validating a collection of assertions. discnssed in the
previous section. is even greater for rules. While a general assertion. [f i/ i~ true that
d. then it 1s brue that B. may used as if it were a special case of a production rule. i.e..
as K it 1s truc that A, add B to the knowledge base. the verification techniques nsed
for rules do not generalize in a straightforward fashion to arbitrary production rules.
A rule’s action-part can make an arbitrary change to some data structure. [f that
data structure in some sence represents external reality. then the change naturally
corresponds to an assertion. and the verification techniques used for deductive infor-
mation retrieval can be emploved. But. as experience with PROLOG programming
has demonstrated. it is not always possible to find a nice “declarative interpretation”
of transformation rules.

Production rules can be used to perform steps in arbitracy algocithms. and it is
generally the algorithm or the function computed by the algorithm that is found in
the specification. not production rules. [t may bhe easv to verify that a collection
of rules considered in 1solation is an implementation of some algorithm rhat can be
verified against the specification. but the verification that. when combined with other
rules. no problems will arise may be completely infeasible. After all. the point ot
the production system architecture is to encourage surprising interactions among the
rules.

Guideline 8.14 [f you have a functional specification and strong VEV requirements,
production systems are not a good candidate for :mplementation.

Validation of knowledge bases is at least somewhat simplified in virtue of useful prop-
erties of deduction. For example, deductive inference preserves truth—if the prenises
are true, the conclusion must also be true—aund hence is monotonc. i.e.. new data
added to the knowledge base cannot undermine previous conclusions. Without some
siuch properties associated with the application of the production rules. verification
and validation of a rule base are practically impossible.

Guideline 8.15 Attempt to define invariants that capture all relevant requirements
on the function implemented by the production system. [f you can define such mvear:-
ants. the same sort of techniques used in V&LV of deductive information retrieval can
he applied.

8.6 Frame Databases

In contrast to the other programming techniques we have considered. the use of frame
databases has no direct impact on the efficacy of V&V procedures. In fact. with the
advent of ('LOS—especially the C1.LOS Metaobject Protocol—CoMMON Lise imple-
mentations of advanced teatures of frame databases tend to be simiple and straighi-
forward [+ 1].

8.7 Backtracking

Whether backtracking presents anyv special verification difficulties depends on the
type of backtracking and rhe specilication. [f the backtracking algorithm to he nused
is specified. there is no pacticular difficulty in verifying that it has been implemented
correctly. But problems can arise when the algorithm is impreciscly specified — as we
have already noted. iany specilication languages are not good at specifving compli-
cated control regitnens—or the algorithm used in the implementation is a “qnalita-
tive” optimization of the specified algorithm. An example of the latter is replacing
naive dependency-directed backtracking by more sophisticated reason maintenance.
In this case. verification of the algorithm can involve very complicated reasoning
about state. The difficulty of verifying the correctness of such an algorithm might be
comparable to verifving the correctness of a clever garbage collection algorithm. that
ts. 1t stresses the present state-of-the-art.

Guideline 8.16 ore sophisticated backtracking techniques are much harder to re-
fy than simpler techniques: nse them only of efficiency demands «f or comparatirely
weak informal verification s sufficient.

Even complicated backtracking algorithms can be validated in a straightforward fash-
ton. however. But. just as in the case of meta-level control structures. conventional
validation requirements are somewhat inappropriate to cases where substantial meta-
level reasoning about control is performed.

Guideline 8.17 Although 1mplementations of advanced backtracking techniques e
not especrally difficult to validate (i.¢. it 15 not especially difficult to erercise them
ways that prowide considerable confidence that they perform as they should). standard
ralidation criteria may be hard to satisfy. If such criteria are erternally tmposed
on the derelopment effort. use the more primitive techniques. such as chronological
backtracking.

S0

9. For Documenters: Documenting Your Efforts

It has often been asserted that DOD-STD-2167A is not really appropriate for \I[de-
velopment because. no matter what the standard may say. it is fundamentally based
on a waterfall development model. while Al development is usually based on an it-
evative protolyping mocdel. One of the principal theses of this manual is that 2167A
is perfectly appropriate to Al development—in fact. that it provides excellent gnide-
lines to help ensure that development will produce a well-engineered system il it
is understood as requiring the development of certain lifecycle products. vather than
dictating a particular lifecvcle process. (See Section 5 for the arguments that require-
ments. specification, and design documents are as valuable when prototyping as when
waterfall development models are emploved.) The adaptation required to fit 21674 1o
Al development is essentially the same as that to fit it to Boehm's Spiral Model [6]-
the requirements definition. system specification. system design. cte.. must be treated
as living documents that are revised and expanded throughout the lifecycle.

The reasons for documenting can be seen most easily by focusing on the maintenance
phase of the lifecycle (although a change in personnel during development provides
nearly as good an illustration). The software was written to solve some problem by
performing its task. When the problem changes. as problems have a tendeucy to
do. the software must be changed as well. If no formal record of requirements was
generated. there is no documentary guidance available when attempting to decide
whether making a change will interfere with the system’s functioning. Will the change
alfect essential features of the implementation, or only accidents? [f essential features
are affected. are they affected in a significant way? The requirements statement
should answer these questions by saving what the svstem must do in order to solve
the problem. What the system actually does. how it does it. how we determine rhat it
does what its supposed to do. and so on, are irrelevant to answering these questions:
this document says what counts as a solution. not which solution was implemented.
Therefore. the system specification. the system design documents. verification traces
and validation suites, and so on. are irrelevant to the requirements statement.

Guideline 9.1 The requirements statement can and should read as if it were wrilten
prior to the other documents. as it s n the waterfall model. cven f it is the last
document actually completed.

Moreover. all other project activities—specifying the system. designing it. and so on—
are influenced by the staff’s current best understanding of the system requirements.
For example. the system specifier must have some guiding idea of what the require-
rents are. tor decisions on what the svstem will do are determined by the specifier’s
nnderstanding of what it must do: the specifier’s job i1s to choose and describe the
specification that will be (or has been) implemented from among those that satisty
the requirements. Even if the requirements are not well understood at the time spec-
ification commences-—the most common case in Al svstem development—it is well

3

worth writing the best curreat understanding of the requirements down, so that there
will be a record of the basis ol the specification. And. unless the development staft
consists of a single person. e¢fficiency demands that the specification be written down,
to ensure a common understanding among the stafl. And since the first project ac-
tivity is an attempt to understand the problem and possible approaches to ~olving
it. it makes sense that the first document produced should be a record the results of
that activity.

Guideline 9.2 The first dvaft of the requirements statement should be written al the
heginning of the project. as « basis for all other lifecycle activities.

But these same arguments can be applied. mutatis mutandis. to the system specifica-
tion: the purpose of the specification is to describe the system as a “black box™ —it
describes the functionality of the syvstem, its external interfaces. and so on—so none
of the information in documents that are produced later in watertall developments is
velevant: all other activities—design. acceptance test definition. and so on, excepting
only requirements definition—depend on the specification: it is well worth document-
ing the best current approximation to the full final specification. both as a record
of presuppositions of other activities and to help ensure a common understanding
among the project staff.

Guideline 9.3 The system specification can and should read as f it were written
after the requirements statement, and before most code development and the system
specification should be updated throughout the development life-cycle. 4 first draft of
the specification should be written at that time. as a basis for all subsequent lifecycle
activities.

The general conclusion should be clear at this point. Each document is intended to
serve a certain purpose in subsequent development and maintenance. The ordering
of these documents imposed by 2167A is really determined by the purpose of the
documents, even though the ordering is that actually employed in waterfall devel-
opments. (This is no accident. of course. The waterfall inodel was suggested bv an
examination of the “natural” ordering of the processes—vou can’t specify a svstem
nnless vou know the requirements. vou can’t design the svstem without knowing the
specification, and so on—without regard to the fact that even the final stages of svs-
tem validation can reveal additional requirements on the system which entail revision
of every lifecycle product.) Guideline 9.3 can he generalized to:

Guideline 9.4 Each docurn.ent should be produced in initial draft form. in the order
called for in DOD-STD-2167A. and should be updated throughout the development life-
cycle. Every document should, in final form. read as if it had been the product of a
waterfall development effort.

Jointly. the documents serve as a sort ol rational reconstruction of the development
effort. a description of the order in which activities would have occurred if ouly we
had known then what we know now.

10. Notes on Testing

Testing Al software is not radically different from testing any other tvpe of soltware.
The same general vules apply: test on typical inputs, test around crivemal values, lest
erhaustively (e.y.. exercising all statements. exercising all branches) (f feasible. and
~o on. Sertion 3 contains comments about the leasibility of strong validation as a
function of programuming techuniques. This section covers the few differences between
testing Al soltware & testing other software.

Fivst. it should be unoted that extensive testing—from the subunit to the svstem
level—usually plays a central role in Al development efforts. Debugging consists of
testing in the context of an error. followed by changes to the code in preparation lor
retesting. Al programmers. especially LISP programmers. become very sophisticated
at debugging during development. and good Al programming environments provide
sophisticated debugging tools. The principal difference. from the viewpoint of VAV
between testing during debugging and validation testing is that the former is much less
formal. Debuggiug tvpically uses ad hoc tests rather than a test suite derived from a
specification. and eschews any recording of the results. (However. a number of studies
have been made of heuristics for debugging Al programs.) Thus. one strategy for
encouraging Al programmers to employ more comprehensive and systematic testing
strategies is to create tools that make validation look more like debugging. [he ASP
rool described in Appendix A is one example of such a tool.

Secound. there is a very important practical question that has not heen addressed ver.
While developing statements of requirements and specifications may be desirable from
the standpoint of V& V. many Al development efforts proceed to develop code based
on an informal understanding of the problem, together with teedback from users on
a series of prototype systems. At the conclusion of the developiment effort. the unly
documentation of the system is the source code and some sort of user’s manual. How
can validation proceed under these conditions? The most promising techniques for
improving testing in the absence of a good specification are automatic generation of
test suites and so-called “program mutation” techniques.

(lassically. autornatic test suite generation has been based upon structural anals<is
of the program, since the program is the only sufficiently formalized representation ot
the intended behavior. [f other lifecycle products are sulficiently formalized. rests can
be generated from them as well. What the tests reveal about the software depends
on the lifecycle product from which they were derived.

o Tests derived from requirements contribute directly to validation (provided
there is good reason to believe the requirements have heen stated accurateiv).

o Tests derived from the specification contribute directly to demonstrating cor-
rectness of the implementation, and hence indirectly to validation.

60

e Tests derived from the system design contribute directly to verification of the
implementation.

o Tests derived from the code itsell can demounstrate that the implementation is
robust. that it is {ree of minor “typographical” ervors. and so on.

All these sorts of testing are desirable. and are mutually complementary.

A good example ol deriving tests {rom code is path analysis testing. a method whose
scope and limits are well understood [23]. But only in special cases can an auto-
matically generated test suite guarantee that errors are detectable: restrictions on
the sort of error sought [8] or on the sort of program being tested [21] are required.
The consensus of the community—as reflected in. e.g.. the OSI Conformance Testine
Methodology and Framework test case selection guidelines—is that expert judgment
and experience are required to supplement informal heuristics.

In cases where an appropriate formal specification is available. fully automatic test
suite generation may well be feasible. [For example. communication protocols are
often specified using finite state automata or Petri nets. For simple protocols. such ax
TCP’s “three way handshake™ for connection establishment. path testing tecliniques
supplemented by a formalization of the OSI heuristics can be nsed to mechaunicallv
generate a reasonable conformance test suite.

Program mutation techniques [10]. on the other hand. can he usefullv applied in
most projects. Given only relatively weak restrictions on the program [20]. mntation
testing can reveal all "typographical™ evrors in the program. Such errors are usually
among the most frequently made and difficult to detect: good programmers gener-
ally understand the algorithms well and design correct implementations. but are not
iminune to simple coding errors, such as being off-by-one on a loop exit condition.
Developing automated support for mutation testing is clearly feasible. based on the
analogy to genetic algorithms. although no attempts to do so have been documente
in the literature.

6l

(1]

(13

(14

[15]

Bibliography

L. Atello and G. Levi, "The uses of metaknowledge in Al systemns.” Proceedings
ECAL-R4, 1984, pp. 707-717.

J. Allen. Anatomy of LISP, McCGraw-Hill. 1973,
Y. Bar-Hillel. Language and Information. Addison-Wesley, 196:}.

M. Bidoit, M. Gaudel. and A. Mauboussin. How to make specifications more nn-
derstandable? An experiment with the PLU'SS specification langnage. Rapport
de Recherche 313, C'entre d'Orsav. Université de Paris-Sud, [937.

D. Bjorner and (. Jones. Formal Specification & Software Developinent.
Prentice-Hall. 1932,

B. Boehm. =\ Spival Model of Software Development and Enhancement.” IEEE
Computer 21(5), May 1938, pp. 61 -72.

L. Bratko. Prolog programming for Artificial [ntelligence. Addison-Weslev. 1986,

M. Brooks. Determining correctness hy testing, Report STAN-('S-30-30-. De-
partment of Computer Science, Stanford University, May 1930.

W. L. Bryan and S. (. Siegel. Software Product Assurance: Techniques for
Reducing Software Risk. Elsevier. 1933.

T. Budd. R. DeMilio. R. Lipton. and F. Savward. “Theoretical and Empiri-
cal Studies on ["sing Program Mutation to Test the Functional (‘orrectness of
Programs.” Proceedings of the Seventh AC'M Svimposium on Principles of Pro-
gramnung Languages. 1930)

R. Carnap and Y. Bar-Hillel. An outline of a theorv of semantic informa-
tion. Technical Report 247. Research Laboratory in Electronics. M.IL.T.. 1932
i Reprinted in [3].)

K. M. Chandy and J. Misra. Parallel Program Design. \ Foundation. Addison-
Wesiey. 1933.

E. Charniak, C. Riesbeck. D. McDermott. and J. Meehan, Artificial Intelligence
Programming, 2nd edn, Lawrence Erlbaum, 1937.

W. Clancey, "The advantages of abstract control knowledge in expert svstem
design.” Proceedings of AAAL-83, 1933, pp. T4-73.

B. Cohen, W. T. Harwood. and M. . Jackson, The Specification of Complex
Svstems. \ddison-Wesley, 1936.

[16]

[17]

9]

301

(31]

(32)

53]

R. Davis, “Meta-rules: reasoning about control.” Artificial Intelligence. 15
(1930). pp. 179-222.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification. Springer-Verlag,
(1985 [1:198Y.

"

J. Goguen, “Paranieterized programming,” [ELE Transactions on Soltware En-
gineering SE-10, 1984, pp. 523-543.

F. van Harmelen. =A classification ol meta-level architectures.” in [25].

J. Gourlay. "\ mathematical framework for the investigation of testing.” IEEF
Trensaction on Software Engineering SE9(6). November 1933.

i C. (. Green. el al.. Report on a knowledge-based software assistant. RADC TR

33-193. Rome Laboratories. 1933.
[. Haves (ed.). Specification (‘ase Studies, Prentice-Hall. 19587.

W. E. Howden, “Reliability of the path analysis testing strategy.” [EEE Trans-
actions on Software Engineering SE2 (3), September 1976.

W. E. Howden, ~Algebraic program testing,” Acta Informatica 10(1). 1973,

P. Jackson. H. Reichgelt. and F. van Harmelen (eds.). Logic-Based Knowledge
Representation. MIT Press, 1989.

L. N. Kkanal and J. F. Lemmer (eds.). ['ncertaintv in Artificial [ntelligence.
North-Holland., 1936.

T. \. Linden. ~\lternative Approaches to V&V for Al Systemis.” VAL Work-
shop on Validation and Testing of Knowledge-Based Svstems. August 1933,

| T. A. Linden and L. Z. Markosian. “Transformational Synthesis ['sing REFINE.”

i (3:')].

T. A. Linden and S. Owre. Verification and Validation of Al Software. Technical
Report TR-3209-02. Advanced Decision Systems. 1Y33.

Theodore A. Linden. "A Meta-level Software DPVPIOPIIIN?HP Model that Supports
VEV for Al Software.” Expert Svstems with Applications: An International
Journal. Pergamon Press. 1.+, Nov. 1990

M. Minsky. "A framework for representing knowledge.” in [47].

R. E. Neapolitan, Probabilistic Resaoning in Expert Svstems: Theotrv and Al-
gorithms. Wilev. 1990.

P. Norvig. Pacadigms of Al Programming: A Comunon Lisp Approach. Morgan
Kantmann. forthcoming (1991).

63

[34]

[43]

]

43]

+6]

g

M. Page-Jones, The Practical Guide to Structured Syvstemns Design. Second [di-
tion. Yourdon Press. 1983.

M. Richer (ed.), AI Tools and Technigues. Ablex Press. 1989.

W. W. Rovce. “Managing the development ol large software systems.” Proceed-
ings of WESCON-70. August 1970.

R. Shank and R. Abelson. Scripts. Goals. Plans. and Understanding, lL.awrence
Erlbaum. 1977,

J. I2. Shore. “Relative entropy. probabilistic inference. and AL™ in [26].

B. Smith. Reflection and Semantics in a Procedural Language. Laboratory {or
Computer Science Technical Report 727. MIT. Cambridge. MA. 1982.

J. M. Spivey, The Z Notation: \ Reference Manual. Prentice-Hail. [939.

R. \. Stachowitz and J. B. Combs. “Validation of Expert Svstems.” Proc. ['wen-
tieth Hawaii International Conference on Svstem Sciences. 1937.

L. Sterling and L. Shapiro. The Art of Prolog. MI'T Press. 1936.

[. Van Horebeek and J. Lewi. Algebraic Specifications in Software Engineering:
An Introduction, Springer-Verlag, 1939.

J. Veitch. “Frames in ('LOS.” Al Expert. June [99{. pp. 4[-4T7.

J. Vincent. \. Waters. and J. Sinclair, Software Quality Assurance. Volume [:
Practice and Implementation. Prentice-Hall. 1933.

D. Warner Hasling, “Abstract explanations of strategy in a diagnostic consulta-
tion svstem.” Proceedings of AAAI-83, 1933, pp. 137-161.

P. Winston (ed.). The Psyvchology of Computer Vision. McGraw-Hill. 1975.

0}

Part III

APPENDICES

A. ASP Manual

A.1 Introduction

ASP is an acvonmy for “A Software Planner.” It is a software tool to be used by
programmers and software test personnel for planning, organizing, and executing the
debugging. testing, verification. and validation of software systems.

26O < -

A.1.1 Motivation

ASP is designed to reduce the problems involved in validating software that changes.
Many modern software systems have very complex requirements that cannot be fully
defined in advance. These systems ave frequently developed with a rapid prototvping
methodology. and they require extensive software maintenance and enhancements
even after they become operational. Traditional testing. verification. and validation
methods assurne that changes to rhe sottware are infrequent and carefully controlled
because changes require costly retesting, veverification. and revalidation each time
the software does change.

Much Al software must adapt to evolving requirements. and this adaptability makes
Al sottware difficult to validate. ASP is a software tool that reduces the cost and im-
proves the effectiveness of retesting, reverification. and revalidation tor Al software—-
or tor any other frequently changing software.

A.1.2 ASP as a Software Tool

ASP allows programmers and software testers to specify and selectively control the
execution of software test routines. The test routines are written as executable
specifications-as predicates expressed either in the programming language in which
the software is written or in a compatible executable specification language. These
executable specifications are stored separately from the code. and ASP associates
them with appropriate test points iu the software implementation.

These tests or executable specifications are called verifications. and ASP makes it easy
for a programmer to define these verifications early in the software development life
cvcle. These verifications are often more stable than the object software. By defining
the verification early, the programmer can use them for debugging the software and
also make them available to the personnel involved in the testing, documentation.
verification, and validation phases of software development.

ASP gives the programmer full control over when the verificatious are executed. Since
execution of the verifications is frequently time consuming. ASP includes a declara-
tive language for specifving which verifications are to he executed under what civenm-

H6

stances. These declarative specifications of what verifications are to be executed are
called validations. A validation is a plan for controlling the execution of the object
software while conditionally executing verifications that monitor. test. and verify the
software as it is executing.

Executions of these validations or software plans are useful in all of the lollowing
roles:

External Debugger - ASP can hLelp find bugs without perturbing the code being
tested.

Procedural Debugger - C'omplex debugging scenarios can be easily devised in the
Sottware Plan by specifving the conditions under which additional verifications
are to he executed.

Validation - Validation suites ave organized in the Sottware Plan.

Verification - Traditional correctness assertions in the code are replaced by resrs in
the Software Plan outside of the code.

Code Instrumentation - The prograinmer can specify in the Software Plan ways
of visualizing how the code is performing and what it i1s doing in various cir-
cumstances.

ASP is an integrated tool that supports debugging. testing. verification. and valida-
rion. Part of the idea being supported by ASP is that it 15 nseful for programmers to
write verifications during the early stages of software development because these ver-
ilications can then be reused throughout the software lite cvcle. [hese verifications
should not involve modifying the code that directly implements required software
functionality: and. for performance reasons, these verifications should be executed se-
lectively to meet the different goals of debugging. testing. validation. and operational
execution.

The ASP software plans give the programmer control over the execution ot software
verifications without changing the software being tested or instrumented. ASP does
not require recompilation before executing a different validation or software plan.
and ASP tries to shorten rather than lengthen the programmer’s cvele of execnting.
debugging, modifying, and re-executing the software.

ASP is designed so dependencies on the programming lanaguage in which the object
software is written are isolated. The curreni ASP tool works for programs written in
(‘ommon Lisp and handles executable specifications written in either Common Lisp
or REFINE. It will be relatively easy to extend ASP to work with software written
in other languages that allow function calls to be intercepted and redirected without
recompilation. More effort will be required to make ASP work efficiently for languages
like (" and Ada where function calls do not involve a level of indirection. .

A.1.3 A Software Planning Methodology

ASP can be used with any software development methodology. It is intended to re-
duce the validation problems associated with evolving software, and this subsection
describes a general software methodology that is appropriate for the kinds of evolv-
ing software systems which ASP was designed to support. This software planning
methodology is depicted in Figure A-1.

Partial Specification » Evolving text or code
Software Requirements

Software Plan q
! .
¥ v \sL
[: Software Code #

Figure A-1. Developing Evolving Software

68

In the early stages of software development, an initial version of the software require-
ments should be defined. Then these requirements, the software specification, and the
software code are evolved concurrently—with the software plan used to interrelated
the evolving specification and the evolving code.

Rarely is a software implemented in one phase from the software requirements. This
is especially true of large or Al software systems. It is natural to develop it in
bits and pieces over time combining smaller pieces into larger ones or stubbing out
smaller pieces and adding them in progressive steps. With the software planning
methodology supported by ASP, one tries to tighten the focus on this process by
having the development of these bits and pieces driven by partial specifications. In
Figure A-1 a partial specification is depicted by a PS in an oval.

A partial specification is a statement of truth about the results of some partial compu-
tation of a software implementation. The collection of all partial specifications in this
methodology represents the current software requirement. When all of the partial
specifications in this collection are true we say that the current software requirement
has been satisfied and we are ready to go on to the next phase of development. For
example, suppose the current software requirement is that we construct a program
that builds a table of the first n prime numbers. We could create three partial speci-
fications:

1. A table exists with n entrys.
2. Every entry in the table is a prime number.

3. The n entries are the first n prime numbers.

When all three of these partial specifications are true then we have achieved the
current software requirement. Partial specifications 2 and 3 could have been stated
as one partial specification but it may have been easier to test for them as two weaker
statements. In Figure A-1 this is depicted as a PS splitting off into two PSs. For the
same reasons that it is easier to break programs into smaller pieces to debug them.
it is easier to break program specifications into smaller pieces to test them.

The Software Plan in Figure A-1 ties these partial specifications to the Software
Code and a decision can be made by the Software Plan that the current software
requirement has been met. With ASP, using the prime number example, you have
semi-automated this decision by displaying the table and visually inspecting the table
to make sure that every number is a prime number. But you could also have written
a predicate function that computes that every number in the table is in fact a prime
number. We call such a predicate function an ezecutable specification. In many cases
it is actually easier to write an executable specification than it is to visually verify.
In very complex software it is perhaps the only way to verify. The art of using this
software planning methodology rests in being able to write a minimum number of
executable specifications such that to a large extent the software verifies itself.

69

A.1.4 Using ASP

To use ASP one must supply the shaded boxes in Figure A-2, that is, the boxes
labeled ASP Software Plan and Verifications.

Host Software
Symbolic References
Software =
Implementation
Loads
(Executes ASP
Tool

Figure A-2: ASP Components

The box labeled Software Implementation represents the software implementa-
tion before ASP is introduced. To use ASP nothing in the software implementation
needs to change. All code in the box labeled Host Software is written in the Aost
language. For example, if your software implementation is coded in Common Lisp
then the verifications would be coded in Common Lisp. Verifications are usually just
simple predicate functions. In the last section we described an executable specifica-
tion which could be represented as such a predicate. In general an ASP verification
is any function that supports verifying the results of computations in the software
implementation.

The box labeled ASP Software Plan represents a text file that you configure. How
to write a Software Plan will become clear in the frllowing Find Word Example.
Within the software plan you specify how you expect the software to perform. You
do this by building condition-action trees in the Software Plan. At the top level these
condition-action trees are called validations. Within the Software Plan are symbolic
references to program objects in the software implementation and verifications. Since
all of the references are symbolic, new implementations and verifications can be loaded
dynamically, and ASP can do the right thing without recompiling the Software Plan.

We are now ready to talk about the box labeled ASP tool. To use ASP the first
thing that you do is write a Software Plan which attempts to demonstrate the results
of the current phase of software development. You then load the Software Plan and
run the ASP Tool. The ASP Tool recognizes the loaded plan as the current Software
Plan. Most of what the Tool does is based on interpreting the Software Plan. You

then select various validation scenarios depending on the desired effect. During the
interpretation of any validation. ASP may load implementations and verifications and
control execution of the host sottware depending on conditions in the validation.

A.1.5 Learning by Example

We use the method of teaching by example. We will first give a simple succinct
example of using ASP. then we will explain how to use ASP in general. Since this
example is delivered with ASP it might be helpful 1o actually load its Software Plan
and interactively follow the example. A following chapter will describe the complete
semantics of the Software Plan. Section \.6 has the complete syntax of the Software
Plan. Examples of nsing some of ASP’s more esoteric features are given later.

A.2 Find Word Example

The example Host Software we use is called Find Word. Tt implements a search
algorithm in Common Lisp. Using this algorithm Find Word will find the number
of vccurrences of a given word in some given text. l'or example the word ~entence
occurs 3 time in the text “This sentence is an crample sentcnce for finding the word

sentence.”

We will fivst describe the algorithim and write the implementation. Then we will write
a Soltware Plan to show that the implementation performs the way that we expect.
Although this is not a very complex example, it will illustrate the idea of writing an
ASP Verification, testing the software with multiple implementations. then debugging
the software given that it fails the test. This example also illustrates the importance
of exccutable specifications because in this case one ASP Verification that we write
will represeut an executable specification.

A.2.1 Writing the Find Word program

The intuitive approach to find a word in some text is to search for the first letter of
the word and if found then compare the second letter in the word with the next letter
in the text and so on. This is called a linear search. It turns out that we can search
taster than that by using a sublinear search algorithm.

What we do in a sublinear search is

I. First look at the character at the words length into the text.

2. If this character is the last character in the word search backwards in the text
to see if we are on the word.

3. It this character is another character in the word we skip ahead in the text by
the same number of characters from where the character is in the word (closest
to the end of the word) to the end of the word. And continue the search.

t. Otherwise we skip ahead the length of the word. \ud continue the search.

For examnple if we are looking for the word “seutence™ in the text above

“This sentence is an example sentence for finding the word sentence"

skip points: 12 3

-1
[

First we go into the text to skip point 1. the length of the word “sentence™. Since
there is an “n” there we skip ahead to point 2 where the end of the word “sentence”
would be if its character “n” was in that position. Since there is an "e” we search
backwards and discover that we are not sitting on the last character of “sentence.”
so we skip to point 3 for the same reason that we skipped to point 2. Now we scarch
backwards and find a match.

This skipping effect produces a faster search. We use sublinear search here not for
its efficiency per se but because sublinear search needs a skip table set up for a given
word prior to doing the search. We can specify what the skip table is to look like
given any word. And in fact we write a predicate function that tests for what we
specifv. And we will refer to it in the ASP software plan. In ASP terminology we call
this test predicate a Verification.

A.2.2 Find Word Code

[irst. we write the code called WORD-SEARCH to implement Find Word nsing sublinear
search. This code was adapted from the book How to Solve i by Computer hy
R. (i. Dromey. We also write a top level function called COUNT-WORD that calls
WORD-SEARCH just so that we can print out the results. [For this example it is not
important to understand the code: just notice that we call SETSKIPS to set np 1
skip table.

(defun COUNT-WORD (word text)
(let ((n (word-search word text)))
(format t "~%The word “s occurs ~a times in the text ~%\""a~a" word n
(1f (< (length text) 101) text (subseq text O 99))
(1f (< (length text) 101) "\"* " .. ."))
(values)))

; Given a word and text find the occurremces of word in text using
; a sublinear search algorithm.
(defun WORD-SEARCH (word text)
(let ((wlength (length word)) (tlength (length text))
;+s Set up skip table.
(skip (SETSKIPS word (make-array 128)))
(nmatches 0))
7+, The 1 i1ndex skips through the text to the character nxt.
(do ({1 (1- wlength))) ((> i tlength) nmatches)
(let ((nxt (char-code (aref text i))))
;.; Use skip table to drive search for pattern.
(1f (> (aref skip nxt) 0) (setq i (+ i (aref skip nxt)))
i3; Skip table indicates maybe at end of word so match backwards.
(let ((3 (1- 1))
(k (- wlength 2))
(match t))
(do () ((or (< k 0) (not match)))
(cond ((eql (aref text j) (aref word k))
(dect j) (dect k))
(t (setq match nil))))
(vhen match (incf nmatches))
;v Skip in the text to where the end of the word would be
;;, based on the character nxt.
(setg 1 (- i (aref skip nxt)))))))))

; Set up the skip table of all ascii characters for the given word.
(defun SETSKIPS (word skip)
(let ((wlength (length word)))
;5; The default skip for all characters not in the word is the word length
(dotimes (i (length skip)) (setf (aref skip i) wlength))
;+: Otherwise the skip is determined by the character'’s
;;: position in the word.
(do ((j 1t (1+ 3))) ((> j (- wlength 2)))
(set?f (aref skip (char-code (aref word j))) (- wlength j 1)))
:;, assign negative skip to last character to differentiate from others
(let ((p (char-code (aref word (1- wlength)))))
(setf (aref skip p) (- (aret skip p))))

skip))

A.2.3 Find Word Trials

To check our code we create two trials called TRIALL and TRIAL2. Actuallyv these
trials are well engineered for this example so that the first one will prodnce the
correct answer and the second one will produce an incorrect answer (for our first
implementation of WORD-SEARCH) because of two extra spaces between ~“This™ and

“sentence .

(defun TRIAL1 ()
(count-word
"sentence"
"This sentence is an example sentence for finding the word sentence”))

(defun TRIAL2 ()
(count-word
"sentence"”
“This sentence is an example sentence for finding the word sentence"))

A.2.4 Find Word Verification

To verify rhat the skip table is set up as we specified we create the test predicate. or
verificatiou, that we mentioned earlier. You might notice that SKIPTABLE-CORRECT is
about the same size as the function SETSKIPS. Don't let tlus discourage vou against
using ASP to do program verification. This is apparent because the example is so
simple. As the complexity of an implementation goes up. the size of the verifications
goes down in proportion to the length of the unplementations code: consequently rhe
return in investment becomes greater.

(defun SKIPTABLE-CCRRECT (word table)

“For every character in Word there 1s a corresponding entry in the
skiptable that skips relative to the word’s end character position. The
entry that corresponds to the last character position 15 a minus skip. All
other entries contain a skip equal to the length of the word."

(let ((predicate t)

(word-max (1- (length word))))
(dotimes (i (length table))
(let ((word-char-position "~nsition (code-char i)
word :from-end t)))
(unless
(it word-char-position
(if (= word-char-position word-max)
. inusp (aref table 1))
(= (aref table 1) (-~ word-max word-char-position)))
(= (aref table 1) (length word)))

(setq predicate nil))))

predicate))

6

A.2.5 Find Word Software Plan

Finally we write a Software Plan for Find Word.

(asp:specify-plan
‘name 'find-word
:specifications
'((skip-table-specification
*/systems/asp/examples/find-word/verify"))
:implementations
'((find-word-sublinear-implementaticn
"/systems/asp/examples/find-word/sublinear”
“/systems/asp/examples/find-word/trials")
(new-setskips-implementation
"/systems/asp/examples/find-word/new-setskips’))
:executables ’((triall) (trial2))
:verification-points '((setskips word :output skiptable))
:verifications ’'((skiptable-correct) (list))
:validations
* ((LCAD-FIND-WORD
{((:load find-word-sublinear-implementation skip-table-specification)
(:on-entry :report) (:on-exit :report)))
(TRIAL1
((:execute triall)))
(TRIAL1-VERIFY
((:execute triall) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-pass :repcrt) (:on-fail :report)))))
(TRIAL1-DEBUG
((:execute triall) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-fail :report
((:record (list word skiptable) skiptable-snapshot)))))))
(TRIAL2
((:execute trial2)))
(LOAD-NEW-SETSKIPS
((:load new-setskips-implementation) (:on-exit :report)))))

Reading the plan from top to bottom: Its name is find-word. It has one spec-
ification called skip-table-specification which refers to the file verify.cl which
contains the SKIPTABLE-CORRECT function. [t has two implementations. One called
find-word-sublinear-implementation which contains the code we defined earlier
for the implementation of sublinear search and its trials. Another called new-setskips
-implementation we will use later to fix a problem in the original code. It speci-
files that there are two possible execution point functions called triall and trial2.

There will be one verification point called setskips whose input arguments will
get bound to the Plan scoped variable word and whose output argument will get
bound to the I"ian scoped variable skiptable. There is une verification specified called
skiptable-correct that we mentioned earlier and another verilication list which
i just the common lisp function LIST. A test (or executable specification) must be
a veriication. but a verification does not need to be a test. for exauple in this case
the vertfication 1ist is just used to record a list of outputs as one object. Finally
for this example we choose to have six validations called: LOAD-FIND-WORD, TRAIL1,
TRIAL1-VERIFY, TRIAL1-DEBUG, TRIAL2, LOAD-NEW-SETSKIPS.

A.2.6 Using the ASP tool

Newo that we have defined a Software Plan for the Find Word soltware we ave readv
to run the ASP tool and run our software through the trails. First vou wonld load
the ASP svstem (see site specific README file tor how to do this). and then load
the Iind Word Software Plan.

[u the lisp listener we evaluate the following

(asp:tool)

7.

After doing this we will see

Select ASP activity for FIND-WORD plan:

0
1
2
3

Exit ASP tool.

Select a plan validation for execution.
View PO attributes.

Change plan defaults.

Enter a number from 0 to 3 -> 1

At this point we enter a 1 to Select a plan validation for execution. We would
then see

Select and execute one of the plan validationms:

0

b W N

6

Execute no validation
LOAD-FIND-WORD

TRIAL1

TRIAL1-VERIFY
TRIAL1-DEBUG

TRIAL2
LOAD-NEW-SETSKIPS

Enter a number from 0 to 6 -> 1

Notice that the names of the 6 validations that we specified in the Software Plan
now appear as selectable validations. We will first choose 1 to load the Find Word
software. [t is not necessary to have such a Load Software validation in vour software
plan. vou may load your software independently of ASP. But it is included here to
illustrate two things:

L.

2.

Loading software in itself can be considered to be a validation

When vou get involved with more complex Software Plans that load many
implementations over the course of ditferent tests. vou frequently want to have
a Validation that simply reloads the base nmplementation.

After entering 1 we would see the following appear:

P L . I e e kL L R e L R R i

| ASP controlling FIND-WORD plan. |
} Loading: FIND-WORD-SUB-LINEAR-~IMPLEMENTATION |

P L L X e L e R R T R R I A

P e R L L L R R R L L L R R I

| ASP controlling FIND-WORD plan. !
| Loaded: FIND-WORD-SUB-LINEAR-IMPLEMENTATION [

P T Y I L I e e I A I

| ASP controlling FIND-WORD plan. {
| Loading: SKIP-TABLE-SPECIFICATION !

Dl I . T L L L I N e i A I

P T T B I e T I e T . Ry s

| ASP controlling FIND-WORD plan. !
| Loaded: SKIP-TABLE~SPECIFICATION [

...

Looking back at the Sottware Plan notice that in the LOAD-FIND-WORD Validation we
rold it to report the results on entering and exiting the load process tor find-word-
sublinear-implementationand skip-table-specification and the above output
shows that it did just that.

(LOAD-FIND-WORD
((:load find-word-sublinear-implementation skip-table-specification)
(:on-entry :report)} (:on-exit :report)))

S0

At this point we will see the top level menu again. [or the rest of what follows we
will not repeat this. but assume that you will know that vou start from the top level
menu.

Select ASP activity for FIND-WORD plan:

0 = Exit ASP tool.

1 = Select a plan validation for execution.
2 = View PO attributes.

3 = Change plan defaults.

Enter a number from 0 to 3 -> 1

Select and execute one of the plan validationmns:
0 = Execute no validation
= LOAD-FIND-WORD
= TRIAL1
TRIAL1-VERIFY
= TRIAL1-DEBUG
= TRIAL2
6 = LOAD-NEW-SETSKIPS
Enter a number from 0 to 6 -> 2

G W N
[

This time we select 2 for the TRIAL1 validation. Looking at the Software Plan we see
that this Validation does nothing more than just execute the function called trialt
with no other conditions. [t is as if we ran the program without ASP being around
and it produces rhe output of the Find Word program that it would if triall were
run by itselt:

The word "sentence" occurs 3 times in the text
“This sentence 1s an example sentence for finding the word sentence”

This output looks correct and in fact if the programmer saw this he might assume
that his program is working fine. But now we will try TRIAL1-VERIFY Validation:

Nt

Select and execute one of the plan validatioms:
0 = Execute no validation
1 = LOAD-FIND-WORD

= TRIAL1

= TRIAL1-VERIFY

= TRIAL1-DEBUG

= TRIAL2
6 = LOAD-NEW-SETSKIPS

Enter a number from Q to 6 -> 3

" bW N
[

...

| ASP controlling FIND-WORD plan.
{ Entering: TRIAL1 !

...

| ASP controlling FIND-WORD plan.
| Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS. I
| ‘Result = =*sFAILED=== |

The word "sentence™ occurs 3 times in the text
“This sentence 1s an example sentence for finding the word sentence”

...

| ASP controlling FIND-WORD plan. |
| Exiting: TRIAL1 |

This tiwe nstead of just the program output we see that ASP is now engaged.

Looking at this Validation in the Software Plan

(TRIAL1-VERIFY
((:execute trialil) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-pass :report) (:on-fail :report)))))

We see that we told it to report on the result of the test skiptable-correct in hoth
cases of a pass ot a failure of the test. In the case of our implementation of Find
Word it reports a tailure. This looks peculiar in light of the correct output. bur was
intentionally used in this example ro illustrate that working software is not alwavs
ralid OR correct!

Furthermore we now go on to show that by executing TRIAL2 the output can be made
wrong. TRIAL2 is exactly the same as TRIAL1 except for two extra spaces hetween
“This™ and “sentence” in the text:

Select and execute one of the plan validations:
= Execute no validation

= LOAD-FIND-WORD

= TRIAL1

TRIAL1-VERIFY

= TRIAL1-DEBUG

= TRIAL2

6 = LOAD-NEW-SETSKIPS

Enter a number from O to 6 -> 5

bW~ O
"

The word "sentence' occurs 2 times in the text
"This sentence is an example sentence for finding the word sentence”

A serendipitous discovery here was that verification and debugging of programs are
not only closely related but are part of a continuum. such that where verification cuds
blends into debugging and vice versa. [f debugging is made sophisticated enough.
at some point in the continuumn debugging and verification are one and the same.
Furthermore verification can support debugging and vice versa. We give a taste of
this idea in this Find Word example. The validation TRIAL1-DEBUG is pretty much
like TRIAL1-VERIFY

(TRIAL1-DEBUG
((:execute triall) (:on-entry :report) (:on-exit :report)

N3

((:after setskips)
.((:test (skiptable-correct word skiptable))
(:on-fail :report
((:record (list word skiptable) skiptable-snapshot)))))))

\What is different is that we take advantage of when the verification fails to do some
debugging. So given ton-fail we not only report the results of the test but we record
a snapshot of the skiptable.

The actual interaction with the ASP tool when selecting this Validation goes as tollows

Select and execute one of the plan validations:
0 = Execute no validation

= LOAD-FIND-WORD

= TRIAL1

TRIAL1-VERIFY

= TRIAL1-DEBUG

= TRIAL2

6 = LOAD-NEW-SETSKIPS

Enter a number from 0 to 6 -> &

n P W
0]

B I I R I I I kT Ik L R e

...

...

{ ASP controlling FIND-WORD plan. f
| Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS. !
| Result = s*xsFAILED»s= I

L i d I R e I R I I I

The word "sentence" occurs 3 times in the text
"This sentence 1is an example sentence for finding the word sentence"

...

i ASP controlling FIND-WORD plan. |
I Exiting: TRIAL1 l

...

At this point the results look the same as the TRIAL1-VERIFY because we patterned
TRIAL1-DEBUG after it. But since we included the :record given an :on-fail con-
dition we can expect to see an attribute value for SETSKIPS. namely a snapshor of it
when the test failed.

Select ASP activity for FIND-WORD plan:

~

0 = Exit ASP tool.

1 = Select a plan validation for execution.
2 = View PO attributes.

3 = Change plan defaults.

Enter a number from 0 to 3 -> 2

Select a Program Object to view its attributes:
0 = Select nothing

1 = SETSKIPS
Enter a number from 0 to 1 -> 1

Program object SETSKIPS has the following attributes

SKIPTABLE-SNAPSHOT is a SINGLE value
("sentence"

2(88888888888888888888888888888888888288S8
888888888888 88888888888888888888888828SE
8888888888838 8888888888818-388888888288S38
8848888888888 8))

In the top level menu we choose View PO attributes (PO stands lor Program Ob-
ject). which shows that the program object SETSKIPS now has recorded attributes.
When we look at the attributes we see an attribute called SKIPTABLE-SNAPSHOT which
has the value of the word given to SETSKIPS and the actual contents of the table when
the test failed. The table looks pretty good tor the word “sentence™ except for one
thing. Since this is an ascii value indexed table we see a correct skip of 4 for the =t~
position in the table. but just before it in the 7s” position we see an 3 and expect
to see a 7 since s’ in “sentence” is seven characters awayv from the end of the word
“sentence”. Aha! Could it be that we have a problemn with the indexing of the word
and especially of the first character? Yes indeed. When we translated the algorithm
from Pascal in our text book to actual code we forgot that Pascal defaults to | origin
arrays and in this case we want (origin arrays.

We correct this problem with a new implementation of SETSKIPS and now have ASP
bring in this implementation with a Validation called LOAD-NEW-SETSKIPS.

Select and execute one of the plan validations:
0 = Execute no validation
= LOAD-FIND-WORD
= TRIAL1
TRIAL1-VERIFY
= TRIAL1-DEBUG
= TRIAL2
6 = LOAD-NEW-SETSKIPS
Enter a number from 0 to 6 -> 6

Db W N -
1]

...

| ASP controlling FIND-WORD plan. I
| Loaded: NEW~SETSKIPS-IMPLEMENTATION I

D R T R R I ek I I e i AU Vg

And now we retry TRIAL2 and and it works:

Select and execute one of the plan validations:
0 = Execute no validation

LOAD-FIND-WORD

TRIAL1

TRIAL1-VERIFY

TRIAL1-DEBUG

TRIAL2

LOAD-NEW-SETSKIPS

Enter a number from O to 6 -> 5

D N WD
([}

The word "sentence" occurs 3 times in the text
"This sentence is an example sentence for finding the word sentence”

N6

Finally. just as a detail, we can retry TRIAL1-VERIFY and see that it now passes the
test:

Select and execute one of the plan validations:
0 = Execute no validation

= LOAD-FIND-WORD

= TRIAL1L

TRIAL1-VERIFY

= TRIAL1i-DEBUG

= TRIAL2

6 = LOAD-NEW-SETSKIPS

Enter a number from 0 to 6 -> 3

G W N -
"

...

| ASP controlling FIND-WORD plan.
| Entering: TRIAL1 |

...

B L R N R e i R R L L R ey R

| ASP controlling FIND-WORD plan. I
| Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS. |
| Result = PASSED! l

. B BB e B e - . . A D Al A B . e ————-

The word "sentence” occurs 3 times in the text
"This sentence is an example sentence for finding the word sentence"

...

| ASP controlling FIND-WORD plan. |
| Exiting: TRIAL1

...

A.3 Complete Semantics of the Software Plan

[n this section, the complete semantics of the Software Plan are explained by listing
the kevword arguments of the function specify-plan and their meanings. Section
A.6 contains the complete syntax ol the Software Plan. Since kevword argumeunts are
Comumon Lisp kevwords. theyv can be specified in any order in relation to each other
that the user linds most readable. Requiring quoting of these keyword argnments.
such as a quoted list. was done intentionally, so that one could use variables or
expressions tor kevword arguments values if they needed that flexibility and also 10
make it easier to programmatically generate Software Plans. The term plan scoped
identifiers refers to all ol the svmbols mentioned in the Software Plan that only have
valites within the scope of the Software Plan. When the soltware plan is interpretced
Ly ASP conditions in the software plan canse ASP to arrange for the special handling
of program objects i the implementation code such that when those objects are
invoked randomly within the implementation, ASP will get control. We refer ro thix
arrangement as condilioned code and the invocation of such objects as triggering.

For most of the keywords a briet description suffices. We first list and give hrief
descriptions of all the kevwords. The kevwords that need more detailed descriptions
will be expounded later. We now list the specify-plan kevwords:

:name - The name of the plan (such as find-word). This needs to be a svmbol.
This 1s used to distinguish one Sottware Plan tfrom another and in report iden-
rification.

:log-file - A string representing the file specification of the file that the results ot a
:log Validation will get appended to. [t not specified the log file defaults to
/ .ASP-log .

:verbose-loading - Set to t if vou want the actual files being loaded displaved during
a :load action.

:undefined-attribute-value - When referencing the values of :record attributes.
if the attribute is undefined this value is returned. It defaults to the svmbol
:undefined .

:collection-coercion-type - When referencing the value of :collect attributes.
which are recorded as sequences. they will be coerced to this data tvpe. The
default value is 11st.

:globals - A list of the global clauses that assouiates plan scoped identifiers with
global identifiers ot the host language.

:specifications - A list of specification clauses that associates file specification strings
with plan scoped identifiers. These files will contain user defined code repre-
senting verifications.

NN

:implementations - ~ list of implemnentation clauses that associates file specification
strings with plan scoped identifiers. These files will essentially be the code of
the user’s software implementation. including multiple implementatious.

:executables - \ list of execution clauscs that defines how ASP will pass control to
the host language code.

:verification-points - A list f clauses that defines where in the users code verifica-
tions can take place.

:verifications - A list of clauses that defines how ASP will invoke user defined Ver-
ifications.

:sub-validations - A\ list of user defined validations. These are exactly the same as
:validations but o not appear in the ASP tool selection menu.

:validations - A list of user detined validations.

A.3.1 Software Plan Constants

('onstauts. referred to as plan constants, may appear in the Software Plan. in certain
positions. They may be either an integer or a string. For example

12345
-1
"Beginning of test'

are permissible plan constants.

A.3.2 Plan Scoped Identifiers

Several constructs in a Software Plan take arguments much like a function call. But
one construct, the :verifications-points clauses qire rather than take arguments.
This means that when a plan scoped identifier 1s included in the clause. its value 1s
not passed to the function named 'n the clause but instead the plan scoped identifier
is bound to the value of the actual parameter when the function gets triggered. [n
the Find Word example the :verifications-points clause

(setskips word :output skiptable)

causes the plan scoped identifier word to get hound to the setskips function's first
arguent value whenever setskips happens to be triggered by the implementation
code. Sunilarly the plan scoped identifier skiptable gets bonnd to the returned value
of setskips. Note that such bindings are only ready to be made in the scope of a
:before or :after condition. Once such a binding actually occurs by a triggering,
tts scope in the Software Plan is indefinite. Or, in other words. the scoped identifier
will have that value in the local scope of the plan indefinitely nntil the next time it
1s caused to be changed as specified in the plan. So in the Find Word example once
word gets bound to setskip’s first argument value that will be its visible value in
the Software Plan until the next triggering of setskips.

All other occurrences of plan scoped identifiers pass the value bound to the identifier to
a specitied function in the enclosing construct. In the Find Word example cousidering
the construct

(skiptable-correct word skiptable)

rhe verification (function) skiptable-correct gets passed the current plan hound
values for the plan scoped identifiers word and skiptable.

Plan scoped identifiers are also used to specify attributes and the attribute’s value
binding has the same scope rules as a plan scoped identifier’s regular value binding.
[n the Find Word example considering the construct

(:record (list word skiptable) skiptable-snapshot)

the plan scoped identifier skiptable-snapshot becomes the attribute that gets a
value as a result of the :record action. A plan scoped identifier can he both a
vegular value and an attribute value at the same time.

A.3.3 Software Plan Arguments

As mentioned in the previous section various constructs can take argnments. Follow-
ing ~ections will describe the meaning of the arguments for the particular construct.
Unless otherwise stated an argument specified in the Software Plan. with rhe excep-

tion of arguments for verification points. can be one of the following:

L. .\ plan constant (as defined above)

o

A\ plan scoped identifier (as defined above)
3.\ recorded attribute value reference

Lo\ vertfication form (as defined below)

90

:implementations - A list of implementation clauses that associates file specification
strings with plan scoped identifiers. These files will essentially be the code of
the user’s software implementation. including mulitiple implementatious.

:executables - A list of execution clauses that defines how ASP will pass control to
the host language code.

:verification-points - A list of clauses that defines where in the users code verifica-
tions can take place.

:verifications - A list of clauses that defines how ASP will invoke user defined Ver-
tfications.

:sub-validations - A list of user defined validations. These are exactly the same as
:validations but do not appear in the ASP tool selection menu.

:validations - A list of user defined validations.

A.3.1 Software Plan Constants

Constants. referred to as plan constants. mav appear in the Software Plan. in certain
positions. They may be either an integer or a string. For example

12345
-1
"Beginning of test"

are permussible plan constants.

A.3.2 Plan Scoped Identifiers

Several constructs in a Software Plan take arguments much like a function call. Bur
one construct, the :verifications-points clauses gire rather than take arguments.
This means that when a plan scoped identifier is included in the clause. its value is
not passed to the function named in the clause but instead the plan scoped identifier
is bound to the value of the actual parameter when the function gets triggered. In
the Find Word example the :verifications-points clause

(setskips word :output skiptable)

Iu the case of a Software Plan constant the constant’s value is used as the actual
argument. [n the case of the plan scoped identifier its Software Plan currently bonnd
value is used as the actnal argument.

A\ recorded attribute value has the form:
(object-name atiribule-identifier)

where object-name is the name of the object that gets the attribute, alfribute-ideniificr
is the plan scoped identitier that names the attribute. [he value of the attribute
attribute-identifier ol object named object-name is used as the actual argument.

Verification formis are defined in the section Software Plan :verifications. !le
value returned as a resuit of ASP invoking the verification is used s the actual
argument.

A.3.4 Software Plan :globals

The :globals value is a list of clauses of the form:

(plan-arg global-val)
the global-ral can be either a plan constant or a symbol in which case it is iuterpreted
as an identifier of the host language that names a global variabie. plan-urg is a

plan scoped identifier that is associated with the global-ral in the scope of the whole
Sottware Plan. For example. in

:globals ’((pdb *person-data-base*)
(alert "We are changing implementations at this point"))

pdb is a plan scoped identifier that is associated with the global variable xperson-data-base=

and alert is a plan scoped identifier that is associated with the constant string "We
are changing implementations at this point".

A.3.5 Software Plan :specifications
The :specifications value is a list of clauses of the form
(specification-name string string ...)
specification-name is a plan scoped identifier that names an implementation. The
implementation is associated with string string ... that are file specifications of hles

in the host operating svstem environment. For example.

9]

:specifications
* ((SKIP~TABLE-SPECIFICATICON
"/systems/asp/examples/find-word/verify"))

names one specification called SKIP-TABLE-SPECIFICATION that gets associated with
one file in the host operating svstem.

A.3.6 Software Plan :implementations

The :implementations value is a list of clauses of the form
(implementation-uame string string ...)

implementation-name is a plan scoped identifier that names an implementation. The
implementation is associated with string string ... that are file specifications of files
in the host operating system environment. For example

‘implementations

> ((FIND-WORD-SUBLINEAR-IMPLEMENTATION
"/systems/a.p/examples/find-word/sublinear"
“/systems/asp/examples/find-word/trials"))

names one implementation called FIND-WORD~SUBLINEAR-IMPLEMENTATION that gets
associated with two files in the host operating system.

A.3.7 Software Plan :executables

The :executables value is a list ol clauses of the form

(erecutable-name arg arq ...)

where erecutable-name is the name of a function in the software implementation and
arg arg ... ave plan scoped identifiers. The erecutable-name is usually named in the
cerecute action which results in a call to the implementation’s function. [n this call
the actual values of ary arg ... arve passed as parameters.

A.3.8 Software Plan :verification-points
The :verification-points value is a list of clauses of the form
(verification-point arg arg ... :output output-arg output-ary ...)

where verdfication-poini is the name of a function in the software implementation
and -arg arg ... arve plan scoped identifiers that get bound to the function’s actual
parameters when the function gets triggered. If :output is specified then the pla
scoped identifiers oulput-arg output-arg ... will get bound to the function’s ontpu
parameters.

The verification-point also serves as au identifier for the :before. :after couditions.
The above bindings will only occur during the scope of a :beforeor :after condition
and during that coundition when rhe verification point gets triggered.

A.3.9 Software Plan :verifications

The :verifications value is a list of clauses of the form
(verification-name arg arg ...)

Where rerification-name is the name of a verification that the user writes. The
verification must be a predicate tunction. The arg arg ... are plan scoped identitiers
whose values get passed to the verification whenever rhe verification is invoked in a
Sottware Plan validation.

You may specity arg arg ... in the verification rlause mentioned above or in a ver-
ification form that occurs as an argument in a validation or both. The arguments
in the verification form will always override the arguments in the verification clause.
Some modifications to the Find Word example will make this clear. [n the Find Word
example we specified:

:verifications ’((skiptable-correct) ...)

(TRIAL1-VERIFY
(:test (skiptable-correct word skiptable)))

But we could have gotten exactly the same effect with

:verifications ’((skiptable-correct word skiptable) ...)

(TRIAL1-VERIFY
(:test skiptable-correct))

93

Furthermore if we had specified

:verifications ’'((skiptable-correct word skiptable) ...)

(TRIAL1-VERIFY
(:test (skiptable-correct new-word new-skiptable)))

Then the skiptable-correct verification would have received parameters that were
the values of the plan scoped identifiers new-word and new-skiptable since the
identifiers in the verification form override the identifiers in the verification’s clause,

[n general a verification {orm looks like

rerfication-name
(rermfication-name arg arg ...)

where rerification-name is defined in a verification clause in the :verifications list.
In the first form ASP looks at the verification clause to compute the verification’s
actual arguments. In the second form arg arg ... is used.

A.3.10 Software Plan :sub-validations

The semantics of :sub-validations are exactly the same as the semantics of :validations.
The only difference is that thev do not show up in the validations selection menu in

the ASP tool. This is handy tor validations that vou want to invoke from other
validations. like subroutines. but not he selectable.

A.3.11 Software Plan :validations

The :validations value is a list of clauses of the form
i ralidation-name action action ...)

where ralidation-name appears in the ASP tool validations selection menu. ralidation-
name may also occur any place that an action can occur in any other validation. The
effect of selecting validation-name in the ASP tool menu or invoking it from another
validation is simply to have the ASP tool interpret the actions action action The
following sections will explain these actions in more detail.

l)l

A.3.11.1 Action Condition Semantics

The general schema of any ASP Software Plan validation is based on actions and
conditions which have the following forms:

(action condition condition ...)
(condition action aclion ...)

What this means is that given action ASP will perforn that action on the implemen-
tation code subject to that code being conditioned by condition condition And
given the one instance of conditioned code condition. ASP will perform the actions
action action ... on the implementation code.

Furthermore any action in action action ... has precisely the form ol the top formn and
any condition in condition condition ... has precisely the form of the bottom torm.
This recursive detinition implies that actions can have conditions which can have
actions which can have conditions ...etc. This gives the Plan writer the capability
to have nested actions based on verification conditions carried out to finer aud finer
levels ot detail. This is a natural paradigm for verifying software.

One should not assume that ASP performs this chain of actions and conditions in a
sequential control thread as in a conventional progranuming language. Consider the
following construct:

(action-a ((:before verification-point-1) action-1)
((:before verification-point-2) action-2)
((:before verification-point-3) action-3 action-4))

action-2 could occur any number of times before action-1 depending on when
verification-point-2 and verification-point-1 trigger in the implementation
coce. In fact. action-1 might never occur if verification-point=-1 never triggers.
However. if verification-point-3 triggers. action-3 and action-4 are guaranfeed
1O OCCUr 1N SUCCessIon.

Within any validation the only kinds of top level entities that can occur are:

Predefined actions - actions that are predefined by ASP
Predefined conditions - conditions that are predefined by ASP

Predefined validations - ASP caunned validations which can occur anvwhere that
an action can occur

User defined validations - User defined validations whose names can occur anv-
where that an action can occur

The predefined actions conditions and validations are explained and itemized in the
following sections.

A.3.11.2 Predefined Actions

The predefined actions have the following meanings:

:load - Specified specifications or implementations are loaded into the ASP condi-
tioned host implementation.

:execute - A\ specified executable is control executed by ASP. Usuallv it will have
conditions that allect verifications.

:engage - lntended to be the same semantics as :execute but provides an escape
mechanisi for user intervention or manual code execution.

itest - Specified verifications that act as predicates are control execited by ASP.
The vesults of these Verifications will each respond to subsequent :on-pass
and :on-fail conditions.

:record - The value of the specified verification is recorded as the valuc ol the spéc-
ilied object’s attribute.

:collect - The same meaning as :record except that the value is recorded in a
sequence which becomes the attribute’s value. The sequence is ordered by most
recentlv recorded first.

:report - There s a predefined :report validation that does a specific canned thing
depending on its enclosing condition. The :report action gives the user control
over what is reported and when it is reported.

:log - There 1s a predefined :log validation that does a specific canned thing de-
pending on its enclosing condition. The :log action gives the nser control over
what 1s logged and when 1t is logged.

The form of the :load action 1s
i:load name name ...)

where name name ... are the names of implementations or specifications defined by
the :implementations or :specifications keywords. [f the existing host imple-
mentation is conditioned, ASP maintains the conditions. Nlultiple implementations
can be introduced this way by loading and overlaying same named functions.

The form of the :execute action is

(:execute narme)

96

where name is an executable defined hy the :executables kevword. When inter-
preted. ASP will first condition the implementation hbased on the conditions of the
:execute then call the host function named by the executable.

The form of the :engage action is
(:engage :listener)

where :listener is the type of engagement. Others tvpes of engagement mayv be
introcduced in future ASP releases. \When interpreted ASP will first condition the
implementation based on the conditions of the :engage then give control 1o the ASP
Lisp Listener. While in the ASP Lisp Listener by evaluating a :c the user mayv give
control back to the ASP tool. The basic idea of : engage is to have the same semantics
as :execute hut without the execution ol anyv user code. This has two nses. [Fipst,
as a way tor the user to inspect his environment at some point in the Software Plan.
And second as a way ftor the nser to manually execute code at some pcint in the
Software Plan while his code is conditioned by the Software Plan. Since this is a
difficult concept to convey. an example of doing this by extending the Find Word
example is given in a following section.

The torm ot the :test action is
(:test verification-form rerification-form ...)

where rerification-form is a verification form as defined above. If the :test action
has any :on-pass or :on-fail conditions, ASP will invoke the verification predicate
functions based on verification-form verification-form ... perform the :on-pass ac-
tions tor every predicate that is true. and perform the :on-fail actions for everv
predicate that is false. The user should note that given the following:

((:test vl v2 v3) (:on-pass actionl))

actionl will be performed for every predicate of v1 through v3 that is rrue. If rhis
is not desired then something like

((:test v1) (:on-pass actionl))
((:test v2) (:on-pass action2))
((:test v3) (:on-pass action3))

should be written.

The :record action records a plan scoped attribute value. It has one of two forms:

97

(:record ral-arg object utliribute)
(:record val-arg attribute)

ral-arg is a Software Plan argument as defined above. object and attributc are plan
scoped identifiers. As a result of the :record action the object named by object will
acquire an attribute named by attribule with a value determined by the actnal value
of val-arg. This attribute can then be later viewed via an ASP menu or nsed in other
places in the validation or other validations.

The ouly difference in the second lorm is that object does not appear. [n this case
ASP uses the nanme of the verification point in the last enclosing :before or :after
clause as the object.

Tle :collect action has exactly the same form and semantics as the :record action
except that the attribute value is a sequence and the computed :record value is
mace the first element of the sequence. When such a collected attribute 1s used s
a Software Plan argument the actual value is computed by coercing the sequence to
the data tvpe specified by the Soltware Plan kevword :collection-coercion-type.
If not specified this kevword defaults to the 1ist data type.

The :report and :log actions are similar in what the :report and :log predefined
validations do. The predelined validations do a specific canned thing depending on
their enclosing condition. where as the actions do a user specified thing where ever
thev are specificed in the Software Plan. Their form is

(:report format-string val-argl val-argl ...)
2 log format-string cal-argl ral-arg2 ...

where format-string is a Common Lisp type format control string and ral-argl ral-
arg2 ... are 0 or more Software Plan arguments as defined above. The resulting values
of these arguments are consumed exactly as the arguments would be consumed by
the ('ommon Lisp format control string. An example of using :report with the Find
Word example is given in a following section.

A.3.11.3 Predefined Conditions

The predefined conditions have the following meanings:

:on-entry :on-exit - given an action, before the action is performed the actions of
the :on-entry condition are performed. :on-exit is similar but applies after
the action is performed.

:on-pass :on-fail - The results of the last previous :test verification trigger these
conditions. If the result of the verification predicate is frue the :on-pass con-
dition’s actions are performed. If the result of the verification predicate is false
the :on-fail condition’s actions are performed.

N

:before :after - If a previously specified :execution causes the triggering of the
:before or :after condition’s specified verification point. the condition’s ac-
tions are performed vefore the verification point in the case of a :before con-
dition and after the verification point in the case of an :after condition.

A.3.11.4 Permissible Conditions

All conditions can have any actions or validations. But not all conditions that actious
can have. have meaning. Only those that have mneaning will be performed. The ones
that have meaning are as follows:

Action Meaningful Conditions

:execute :before :after :on-entry :on-exit
:engage :before :after :on-2ntry :on-exit
:test :on-pass :on-fail

:Zoad :on-entry :on-exit

:record none
:collect none
:report none
:log none

A.3.11.5 Predefined Validations

The predetined validations are as follows:

:report - The results of the last action of the enclesing condition are displaved to
the user in some way.

:log - The results of the last action of the enclosing condition are logged to the log
file specified in the Software Plan.

:abort - Aborts all nested validations up to the current top level validation.

A.3.11.6 Using Validations

The form of any validation is simply
ralidation

where ralidation 1s the name of a predefined or a user defined validation. This vali-
dation form validation can appear anywhere that an action can appear. For example
we could write

99

(:on-fail :report DO-MY-VALIDATION :abort)

100

A.4 More Find Word Examples

In this section we use modifications of the Find Word example to illustrate some of
ASP’s capabilities that were not illustrated bv the Find Word program example itself.

A.4.1 An Example Using the :report and :log Actions

In the Find Word example we had a validation called TRIAL1-DEBUG

(TRIAL1-DEBUG
((:execute triall) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-fail :report
((:record (list word skiptable) skiptable-snapshot)})))))

After selecting this validation with the ASP tool we then later manually looked at:
the skiptable-snapshot attribute value to visualize what was going on. By using
the :report action we could have specified that we want to see the attribute value
during the validation.

(TRIAL1-DEBUG
((:execute triall) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-fail :report :
((:record (list word skiptable) skiptable-snapshot))
((:report "~YWord and Skiptable ="%"a~%"
(setskips skiptable-snapshot))))))))

10l

We could get the same effect without having the plan execute triall but instead
put us into the ASP Lisp Listener from where we could execute trialtl and trial2
or any number of manual executions or inspections. When we are though with these
manual activities we enter :c and the ASP Lisp Listener puts us back in the ASP
tool where we started. We could add a validation called simply TRIAL-VERIFY to
accomplish this.

(TRIAL-VERIFY
((:engage :listener) (:on-entry :report) (:on-exit :report)
((:after setskips)
((:test (skiptable-correct word skiptable))
(:on-pass :report) (:on-fail :report)))))

Then upon selecting the TRIAL-VERIFY validation in the ASP tool we could get the
following dialog:

g P R L e L L X B e L

| ASP controlling FIND-WORD plan. |
| Entering: ASP Listerer f

P I R L L L R i R R e]

ASP Listener with validation TRIAL-VERIFY engaged.
Enter :¢ to continue with ASP tool.

ASP> (triall)

| ASP controlling FIND-WORD plan. [
| Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS. !
| Result = =s=FAILED=*s |

B R L I L L N R R e R

The word "sentence' occurs 3 times in the text

“This sentence is an exampie sentence for finding the word sentence"
NIL

ASP> (trial2)

B I L R R e R R R R el

| ASP controlling FIND-WORD plan. |
| Verification SKIPTABLE-CORRECT : AFTER point SETSKIPS. !
| Result = #»s=FAILED»»» !

L R I I R I e i R S I R R B I I S R i

The word "sentence” occurs 2 times in the text
~"This sentence 1s an example sentence for finding the word sentence”

103

P U S L L L R L R PP YR R R R PR PR R LR R X TR R R Sl

| ASP controlling FIND-WORD plan. |
| Exiting: ASP Listener [

A U g S . e R A ettt dt e I I I A

Select ASP activity for FIND-WORD plan:

0 = Exit ASP tool.

1 = Select a plan validation for execution.
2 = View PO attributes.

3 = Change plan defaults.

Enter a number from 0 to 3 -> 0
ASP: :DONE

While in the ASP Lisp Listener we evaluated the expression (triall). Notice that
when we did this the effect was the same as selecting TRIAL1-VERIFY except that we
returned back to the ASP Lisp Listener at which point we evaluated the expression
(trial?2).

The ASP Lisp Listener is the same as an ordinary Lisp Listener except that the
prompt is ASP> and when we evaluate :c. which stands for continue. we are returned
to the ASP tool.

Another use for the :engage action would be to include it without any condirions
within a nested set of actions and conditions so that the user could manuaily inspect
his environment in that state. For example given

(actioni (condition!l action2 action3
(actiond (condition2 action$
((:engage :listener))))))

[n the case of condition2. actionS would take place followed by the ASP Lisp
[.istener getting control.

104

A.5 Using ASP with Specification Languages

Using ASP with a specification langnage lurther brings into focus its capabilitics.
Formal specifications play the part of executable specifications. testable verifications
are short logic expressions, decomposition of specifications maps into the idea ot
partial specifications. the before and after effect of complex transformations is aligned
with the idea of centralizing multi-point tests in validations. and one has more coutrol
over generating multiple implementations.

We demonstrate some ol these capabilities by giving an example of using ASP with the
Refine specification language as the host language. At the same time we demonstrate
more features of the Sotiware Plan. We use an example called Buses which is «
tov example of resource scheduling and planning. We will show an early software
evolution phase Software Plan that discovers a constraint fauit in the knowledge-base
bv using decomposition of specifications. We will not emphasize the interaction with
the ASP tool as much as we did with the Find Word example. The complete sources of
the Buses example are delivered with the ASP software. To follow this example more
thoroughly we hope that the user will load the Buses software implementation and
the Buses Software Plan and apply the ASP tool by stepping through the validations
in the Software Plan. '

A.5.1 The Buses Example

The Buses example is one of scheduling resources for a bus system. These resources
are buses. drivers. routes and trips which are modeled in a knowledge base using the
Refine language. Constraints such as what tvpes of buses can be used on each route.
what routes a driver is qualified to drive, and limits on the amount of time a driver
can drive during a day can be expressed as assertions using logic and set-theoretic
constructs.

We build a Buses implementation that will create a schedule and refine the schedule
into a sequence of events. We build executable specifications by writing verifications
that are logic expressions in Refine. These verifications when taken as a whole validate
the constraints mentioned above. [n the example we invalidate the constraints by
introducing a fault in them. A Software Plan validation detects this by failing one of
the composite tests. We then try a validation that decomposes that particular test
into partial specifications and discover the tault.

A.5.2 The Buses Implementation
We onlv show the top level functions {or the buses implementation here. The BUSES

example is an extension of a Bus Scheduling example given by Reasoning Systems in
their Refine tutorial. [f the user is interested. all of the code for the Buses example

10D

is delivered with the ASP software. The function GENERATE-SCHEDULES generates all
possible schedules. [t does most of its work by calling RECURSIVE-CREATE-SCHEDULE.

"Top-level function that generates all possible schedules and returns
the number found."
function GENERATE-SCHEDULES (b-w%: bus-world) : integer
= inirialize-bus-world (b-w);
initialize-globals();
recursive-create-schedule (b-w);
report-scheduling-done (b-w);
*schedule-count»

“Recursive scheduling function for the bus world. Incorporates
backtracking and finds all schedules.”
function RECURSIVE-CREATE-SCHEDULE (b-w) : bus-world
= let (rts = the-routes (b-w))
let (r = Route-with-Earliest-Uncovered-Time (rts))
let (return-time = Last-bus-trip-return-time (r))
Report-new-recursion-level-and-route-data (r, return-time);
(it return-time >= end-time-requirement(b-w)
then report-schedule-found (rts)
else ‘
4% Generate all legal combinations of
%% bus & driver for next bus-trip.
let (legal-bus-driver-pairs =
generate-legal-bus-driver-pairs (b-w, r, return-time))
(it empty (legal-bus-driver-pairs)
then report-schedule-failure (r)
else
(enumerate
b-d:tuple(bus, driver) over legal-bus-driver-pairs
do
let (new-bus-trip = make-structure
(‘the-bus-trip @(newsymbol('TR))
with-bus-trip-driver @(b-d.2)
vith-bus-trip-bus @(b-d.1)
on-route Or
starting-at Qreturn-time’))
report-new-bus~trip (new-bus-trip);
Recursive-Create-schedule (b-w);
Retract-bus~trip (new-bus-trip))));
Report-backtracking();
b-w

A.5.3 Buses Executable Specifications

The following verifications serve as executable specifications for the Buses example. 1
The natural language specification that the executable specification verifies precedes

106

each test verification. Each verification is based on resource constraints in the Buses
object world. Notice that all of the verifications arve expressed in Refine as logic
formulas. Also uotice that they are all quantified conjunctions. This helps ns when
we want to decompose specifications into partial specifications.

"TEST-P-1: A partially completed schedule has a schedule for every route.”
function TEST-P-1 (world: bus-world):boolean =
fa(r) (r in the-routes(world) => ex(s)
(s = route-schedule(r)
% the times in s make s a continuous schedule starting at 0.
& ((defined?(last(s)) & defined?(bus-trip-start(last(s))))
=> bus-trip-start(last(s)) = 0.0)
& fa(el)
(t1 in s =>
((defined?(bus-trip~end(t1)) and defined?(bus-trip-start(ti1)))
=> (bus-trip-end(tl) - bus-trip-start(til)
= trip-time(bus-trip~bus(tl),r))))
& ta(tl, t2)
((t1 in s & t2 in s) =>
(s = [..,t2,t1,..] => bus-trip~start(t2) = bus-trip-end(t1)))))

"TEST-C-1: A completed schedule has a schedule for every route."
function TEST-C-1 (world: bus-world):boolean =
fa(r) (r in the-routes(world) => ex(s)
(s = route-scheduls(r)
% the times in s make s a continuous schedule covering the
% whole time period.
& bus-trip-start(last(s)) = 0.0
& bus-trip-end(first(s)) >= end-time-requirement(world)
& fa(c1)
(t1 in s =>
bus-trip-end(t1) - bus-trip-start(ti) = trip-time(bus-trip-bus(tl),r)
g fa(tl, t2)
((t1 in s & t2 in s) =>
(s = [..,t2,t1,..] => bus-trip-start(t2) = bus-trip-end(t1)';)))

"TEST-2: No two buses are in use at the same time,
and there is at least 15 minutes for refueling between uses."
function TEST-2 (world: bus-world):boolean =
ta(r) (r in the-routes(world) => ex(s)
(s = route-schedule(r) &
fa(t1,t2) ((t1 in s & t2 in s) =>
((defined?(bus-trip-start(tl)) & defined?(bus-trip-end(ti)) &
defined?(bus-trip-start(t2)) & defined?(bus-trip-end(t2))) =>
(t1 = £2 =>
((bus-trip-start(tl) < bus-trip-start(t2)
& bus-trip-end(t1) <= bus-trip-start(t2)) or
(bus-trip-start(t2) < bus-trip-start(ti)
& bus-trip-end(t2) <= bus-trip-start(t1))))))))

107

let (schedules = { route-schedule(r) | (r) r in the-routes(world)})

fa(s1,s2) ((s1 in schedules & s2 in schedules) =>
(sl "= 32 =>
fa(t1,t2) ((t1 in s1 & t2 in s2) =>
(t1 "= t2 =>
((defined?(bus-trip-start(tl)) & defined?(bus-trip-end(ti)) &
defined?(bus-trip-start(t2)) & defined?(bus-trip-end(t2)) &
detined?(bus-trip-bus(t1l)) & defined?(bus-trip-bus(t2))) =>
(bug-trip-bus(t1) = bus-trip-bus(t2) =>
(bus-trip-end(t1) + 0.25 < bus-trip-start(t2) or
bus-trip-end(t2) + 0.25 < bus-trip-start(t1)}))))))

“TEST-3: No two drivers are on different trips at the same time,
and they are not driving more that 8 hours a day."
function TEST-3 (world: bus-world):boolean =
fa(d) (d in the-drivers(world) =>
total-driving-time(d) <= 8.0)
&
fa(r) (r in the-routes(world) => ex(s)
(s = route-schedule(r) &
fa(t1,t2) ({(t1 in s & t2 in s8) =>
(t1 "= t2 =>
({ bus-trip-driver(tl) = bus-trip-driver(t2)) =>
((bus-trip-start(tl) > bus-trip-end(t2) or
bus-trip-end(t1) <= bus-trip-start(t2))))))))

“TEST-4: All the other problem-specific constraints."
function TEST~4 (world: bus-world):boolean =
fa(b) (b 1n the-buses(world) =>
fa(bt) (bt in bus-bus-trips(b) =>
bus-trip-driver(bt) in drivers-trained-for(bus-trip-route(bt))
& bus-size(b) in qualified-for(bus-trip-driver(bt))
& yard-of-driver(bus-trip-driver(bt)) = bus-yard(bus-trip-bus(bt))
& mountain-view~restriction?(b, bus-trip-route(b))
& fremont-restriction?(b, bus-trip-route(b)}))

A.5.4 Buses Constraint Fault
[n the Software Plan the validation that introduces the constraint fault loads an imple-

mentation with the fault. This fault is in the constraint called BUS-DRIVER-CONSISTENCY
which is a conjunction of three sub-constraints given a particular driver. bus and route:

. The vard of the driver should he the same as the vard of the bus.

—

2. The dniver should be qualified for the size of the bus.

3. The total honr limit is correct for the combination of driver. bus and route.

103

function BUS-DRIVER-CONSISTENCY
(d:driver, b:bus, r:route) : boolean

%%% bus-yard (b) = yard-of-driver (d) &
bus-size (b) in qualified-for (d) &
total-hour-limit-ok? (4, b, r)

For demonstration purposes we artificially comment out sub-constraint number |.
This is equivalent to leaving it out at some phase of the software evolution.

A.5.5 Buses Partial Executable Specifications

Because ot the tault. TEST-4 will fail. so we decompose TEST-4 into partial specifica-
tions and create verifications TEST-4-1 through TEST-4-5:

function TEST-4-1 (world: bus-world):boolean =
fa(b) (b in the-buses(world) =>
fa(bt) (bt in bus-bus-trips(b) =>
bus-trip-driver(bt) in drivers-trained-for(bus-trip-route(bt))))

function TEST-4-2 (world: bus-world):boolean =
fa(b) (b in the~buses(world) =>
fa(bt) (bt in bus-bus-trips(db) =>
bus-size(db) in qualified-for(bus-trip-driver(bt))))

tfunction TEST-4-3 (world: bus-world):boolean =
ta(b) (b in the-buses(world) =>
fa(bt) (bt in bus-bus-trips(b) =>
yard-of-driver(bus-trip-driver(bt)) = bus-yard(bus-trip-bus(bt))))

function TEST-4-4 (world: bus-world):boolean =
fa(b) (b in the-buses(world) =>
ta(bt) (bt in bus-bus-trips(b) =>
mountain-view-restriction?(b, bus-trip-route(b))))

function TEST-4-5 (world: bus-world):boolean =
fa(b) (b in the-buses(world) =>

fa(bt) (bt in bus-bus-trips(b) =>
fremont-restriction?(b, bus-trip-route(b))))

A.5.6 Buses Software Plan

We now show the Buses Software Plan that refers to the implementations and speci-
fications that we discussed above.

109

(asp:specify-plan
:name ’'buses
:specifications
'((buses-specification "/systems/asp/examples/buses/vnv-spec")
(buses-finer-specification "/systems/asp/examples/buses/vnv-spec-sub"))
:implementations
'((buses-base-implementation "/systems/asp/examples/buses/load-base"
‘ “/systems/asp/examples/buses/impl")
(buses-faulty-implementation "/systems/asp/examples/buses/plant-bug"))
:globals ' ((w2 *world2s))
:executables ’'((generate-schedules w2))
:verification-points ’((report-new-bus-trip) (report-schedule-found))
:veritications ’((test-p-1 w2) (test-c-1 w2)
(test-2 w2) (test-3 w2) (test-4 w2)
(test-4-1 w2) (test-4-2 w2) (test-4-3 w2) (test-4-4 w2)
(test-4-5 w2) (1+) (>))
:sub-validations
' ((SHOW-NO-REPORT-SCHEDULE-FOUND
((:record 0 report-schedule-found count)))
(LIMIT-REPORT-SCHEDULE-FOQUND
((:record (1+ (report-schedule-found count)) report-schedule-found count))
((:test (> (report-schedule-found count) 4)) (:on-pass :abort))))
:validations
* ((LOAD-BUSES
((:load buses-base-implementation buses-specification)
(:on-entry :report) (:on-exit :report)))
(ORDINARY-RUN)
((:execute generate-schedules)))
(ORDINARY-TEST-RUN
SHOW-NO-REPORT-SCHEDULE-FQUND
((:execute generate-schedules) (:on-entry :report) (:on-exit :report)
((:before report-new-bus-trip)
((:test test-p-1 test-2 test-3 test-4)
(:on-pass :report) (:on-fail :report :abort)))
((:before repcrt-schedule-found)
LIMIT-REPORT-SCHEDULE-FOQUND
((:test test-c-1 test-2 test-3 test-4)
{:on-pass :report) (:on-fail :report :abort)))))
(ORDINARY-TEST-RUN-WITH-SUSPECT
((:load buses-faulty-implementation)
(:on-entry :report;, (:on-exit :report))
ORDINARY-TEST-RUN)
(FIND-SUSPECT-TEST-RUN
((:load buses-faulty-implementation buses-finer-specification))
((:execute ganerate-schedules)
((:before report-new-bus-trip)
((:test test-p-1 test-2 test-3) (:on-fail :report))
((:test test-4)
{:on-pass :report)
(:on-fail :report)
(:on-fail ((:test test-4-1 test-4-2 test-4-3 test-4-4)

110

(:on-pass :report) (:on-fail :report :abort)})))))
((:before report-schedule~found)
((:test test-c-1 test-2 tast-3) (:on-fail :report))
((:test test-4)
(:on-pass :report)
(:on-fail :report
((:test test-4-1 test-4-2 test-4-3 test-4-4)
(:on-pass :report) (:on-fail :report :abort))))))))

At this phase of the software evolution we have five validations:

l. LOAD-BUSES

2. ORDINARY-RUN

3. ORDINARY-TEST-RUN

4. ORDINARY-TEST-RUN-WITH-SUSPECT

FIND-SUSPECT-TEST-RUN

<

LOAD-BUSES simply loads the base implementation.

ORDINARY-RUN simply executes GENERATE-SCHEDULES. ASP will pass it the value of
rhe plan scoped identifier w2 which is associated in the Software Plan with the refine
variable *world2=* which points to the Buses world knowledge-base. By selecting
this validation with the ASP tool vou will see the output that GENERATE-SCHEDULES
produces without any conditioning and output by \SP.

ORDINARY-TEST-RUN does the same thing as ORDINARY-RUN except that it condi-
rions the implementation code before the verification point report-new-bus-trip
by testing the verifications test-p-1, test-2. test-3. and test-4. I[f any one
of these tests pass it will simply report that it passed. if any one fails it will re-
port rthat it fails and abort the validation ORDINARY-TEST-RUN. Simultaneously it
conditions the code before report-schedule-found. Since it was discovered that
report-schedule-found triggers a huge number of times. ORDINARY-TEST-RUN in-
vokes the validation LIMIT-REPORT-SCHEDULE-FOUND which limits the number of trig-
sers to 5 then aborts.

\When vou select ORDINARY-TEST-RUN vou will see that all tests pass. So we select
ORDINARY-TEST-RUN-WITH-SUSPECT. Notice that this validation simply loads the con-
straint tault implementation that we discussed above and perforins the ORDINARY-TEST
-RUN validation. This is common: we want to test the code the same way we did before.

hut with a different implementation of the same function. Now with ORDINARY-TEST-RUN-
WITH-SUSPECT we will see failures heing reported and in particular test-4 which will
cause ASP to output:

tLl

----- D R e I N e I i R Y

| ASP controlling BUSES plan. !
| Verification TEST-4 : BEFORE point REPORT-NEW-BUS-TRIP. I
| Result = s»sFAILED##*s [

P e L L e L T e L L K R T

Finally we select FIND-SUSPECT-TEST-RUN which will make use of our partial specifi-
cations we discussed above by loading the specification buses-finer-specification.
[n this validation we see a bhit more complex nested testing going on. Given that
test~4 fails. ASP is directed to test the partial executable specifications of test-4
namely test-4-1 through test-4-4. This eventually results in a triggering that
produces the ASP output:

...

| ASP controlling BUSES plan. |
| Verification TEST-4-3 : BEFORE point REPORT-NEW-BUS-TRIP. l
| Result = s=«FAILED#=»s |

..

B I e . I I R E E R T R I T YR PP S g

| ASP controlling BUSES plan. |
| Controlled aborting of validation |
| FIND-SUSPECT-TEST-RUN ... I

D I R e I I e X I A Lk R X Y AP I N S

These results pin down the constraint fault and end this phase of software evolution.
The current validations and verifications will be used over and over again for future
phases.

A.6 Software Plan Complete Syntax

The syvntax for an ASP Software Plan is expressed here in BNF. The usual BNT
notations are used: The production syvmbol is : :=, angle brackets <> describe non-
terminals. a bar | indicates alternatives, curly brackets followed bv an asterisk {}=*
indicates 0 or more occurrences of the construct inside of the curly brackets. and
anvthing else is a terminal symbol.

The Production tree starts at that described under TOP LEVEL and continues with that
described under BNF sections SPECIFICATIONS, IMPLEMENTATIONS, EXECUTABLES.
VERIFICATION POINTS. VERIFICATIONS, and VALIDATIONS. At the lowest level of the
VALIDATIONS part of the tree are ACTIONS and CONDITIONS. All sections will refer to
non-terminals described nnder the PARAMETERS and ATTRIBUTES sections.

Some terminal svibols include the quote ’ symbol. Thev are used for top level
quoted lists. This was done intentionally to make it easy for more advanced work
involved with programmatically generating Software Plans as lists and applying rhe
function SPECIFY-PLAN to those lists.

TOP LEVEL

<plan-specification> ::= (specify-plan {<plan-attribute>}s)
<plan-attribute>
::= <plan-name-spec> | <log-file-spec> | <verbose-loading-spec> |

<undefined-attribute-value~spec> | <collection-coercion-type-spec>
<globals-spec> | <specifications-spec> | <implementations-spec>
<executables-spec> | <verification-points-spec> |
<verifications-spec> | <sub-validations-spec> | <validations-spec>

<plan-name-spec> ::= :name '<symbol>

<log-file-spec> ::= :log-file <string>
<verbose-loading-spec> ::= :verbose-loading <choice-symbol>
<undefined-attribute-value-spec> ::= :undefined-attribute-value <host-val>
<collection-coercion-type-spec> ::= :collection-coercion-type ’'<symbol>
<globals-spec> ::= :globals ’({<plan-arg> <global-val>}*)
PARAMETERS
<global-val> ::= <host-var> | <plan-constant>
<plan-par> ::= <plan-arg> | <recorded-val> | <plan-constant>
<plan-constant> ::= <string> | <integer>
<plan-arg> ::= <symbol>
<host-var> ::= <symbol>
<host-val> ::= <symbol> | <string> | <integer>
<choice-symbol> ::= t | nil
ATTRIBUTES
<recorded-val> ::= (<object-name> <attribute-name>)
<record-syntax> ::= <record-syntax-i> | <record-syntax-2>

13

<record-syntax~1> ::= <recording-val> <attribute-name>

<record-syntax-2> ::= <recording-val> <object-name> <attribute-name>
<recording-val> ::= <verification-form> | <plan-par>
<object-name> ::= <symbol> | <verification-point-spec>
<attribute-name> ::= <symbol>

SPECIFICATIONS
<specifications-spec> ::= :specifications '({<specification-form>}#)
<specification~form> ::= (<specification-name> {<string>}=)
<specification-name> ::= <symbol>

IMPLEMENTATIONS
<implementations-spec> ::= :implementations ’({<implementation-form>}=*)
<implementation-form> ::= (<implementation-name> {<string>}s)
<implementation-name> ::= <symbol>

EXECUTABLES
<executables-spec> ::= :executables ’({executable-form}+)
<executable~form> ::= (<executable-name> {<plan-par>}=*)
<executable-name> ::= <symbol>

VERIFICATION POINTS

<verification-points-spec>

::= :verification-points ’'{({<verification-point-form>}»)
<verification-point-form>

1:= '(<verification-point-name> <verification-point-arg-spec>)
<verification-point-arg-spec>

::= {<point-arg>}* | {<point-arg>}* :output {<point-arg>}=*

<verificati-n-point-name> ::= <symbol>
<point-arg> ::= <symbol>

VERIFICATIONS
<verifications-spec> ::= :verifications ’'({<verification-form>}=*)
<verification-form> ::= ’{(<verification-name> {<plan-par>}#*)
<verification-name> ::= <symbol>

VALIDATIONS
<sub-validations-spec> ::= :sub-validations ’'({<validation-form>}s)
<validations-spec> ::= :validations ’'({<validation-form>}=*)
<validation-form> ::= (<validation-name> {<action>}#)

<validation-name> ::= <symbol>
<predefined-validation> ::= :report | :log | :abort

(Lt

ACTIONS

<action> ::= <validation-reference> i (<action-form> {<condition>}=)
<validation-reference> ::= <validation-name> | <predefined-validation>
<action-form>
1:= <load-action> | <execute-action> | <engage-action> | <test-action> |
<record-action> | <collect-action> | <report-action> | <log-action>

<load-~action> ::= (:load <load-form>)
<load-torm> ::= <specification-name> | <implementation-name>
<execute-action> ::= (:execute <executable-name>)
<engage-action> ::= (:engage :listener)
<test-action> ::= (:test {<verification-name>}s)
<test-spec> ::= <verification-name> | (<verification-name> {<plan-par>}s)
<record-action> ::= (:record <record-syntax>)
<collect-action> ::= (:collect <record-syntax>)
<report-action> ::= (:report <string> {<plan-par>}=)
<log-action> ::= (:log <string> {<plan-par>}s)
CONDITIONS
<ccnaition> ::= (<condition-form> {<action>}*)
<condition-form> ::= <predefined-condition> | <verification-point-spec>
<predefined-condition> ::= :on-pass | :on-fail | :on-entry | :on-exit

<verjfication-point-spec>
::= (<condition-nam: - <verification-point-name>)
<condition-name> ::= :before | :after

B. Definitions — Terms and Abbreviations

B.1 General Acronyms

ADP Automatic Data Processing

ADS Advanced Decision Svstems

Al'B Air Force Base

ATD Acceptance Test Description

ATP Acceptance/Accreditation Test Plan
ATR Acceptance Test Report

cc (‘ommand and Control Division
('C'B (Configuration C'ontrol Board

('DR (Critical Design Review

('DRL (Contract Data Requirements List
CEO (hief" Executive Officer

Cr'E Customer Furnished Equipment
CTI ('ustomer Furnished Information
CFG (Computer [acilities Group

CFS Customer Furnished Softwar-

C'l Configuration [tem

M ('onfiguration Mian2gement
C\P (‘onfiguration Management Plan
('Ol Commuuity of Interest

00 ("hiet Operating Officer

PP t ost Performai..= Review
('RISD Computer Resources Integrated Support Document

COTS (‘ommercially available. Off-the-Shelf

(QrE Chief Quality Assurance Evaluator
('RC (‘velic Redundancy Check

CSC (‘fomputer Software Components

(SCI (‘omputer Software Configuration [tem
('SOM ('omputer System Operator’s Manual
'SP (‘ommunications Support Processor
('SSR ("ost Schedule Status Report

St Computer Software Unit

DCAA Defense Contracting Audit Agency
DC'S Defense C'ommunications Svstem
DDCMP Digital Data Communications Message Protocol
DES Data Encryption Standard

DIFAR Defense Federal Acquisition Regulation
DIA Detense Intelligence Agency

116

DID Data [tem Description

DIS Daily Intelligence Summary

DLR Direct Labor Rates

DoD Department of Defense

DSCIS Daily 7.S. Space ('ommand Intelligence Summary Message
DTG NDate Time Group

ECP IZngineering ("hange Proposal

EPROM [Erasable-Programmable Read-Only Memory

FAR Federal Acquisition Regulation

FCA Functional Configuration Audit

FCCM Tacilities C'apital Cost of Money
FDMP Full Duplex Message Protocol

FoC Final Operational ("apability

FQT Formal Qualification Test

FSM Firmware Support Manual

GFE Government [Furnished Equipment
GFI Government Furnished [nformation
GFS Government [urnished Software
G&A General & Administrative

HMI Human Machine Interface

HOL Higher order Language

HQ Headquarters

HW(CT Hardware Configuration [tem

ICD Interface Control Document

[CWG Intertace Control Working Group
(DD [ntertace Design Document

[OC [nitial Operational (‘apability

[/O [nput and/or Qutput

[P [nternet Protocol :
[RS [nterface Requirements Specification
[5S [ntelligence Support Systems

v Imagerv Division

[ANANAY [ndependent Verification and Validation
[2 Intelligence Data Handling Svstems Communications. Version?2
JSR Jobh Status Report

LAN Local Area Network

LLCSC Lower-level computer software component
LOL Level-of-Effort

MOG Mapping, Charting and Geodesy

MOCS Mission-Critical Computer Svstem

MIL Military

MLDT
MMI
MTBF
MTBSF
MTBSH
MTTR
NDS
NFS
NeWs§
NLP
0A
0OCD
OCR
oM
0S
PCA
PDR
PID
P\
PQM
PRC
PROM
PRT
QA
QAC
QAM
RCS
RFP
RGB
ROM
RP(
RTMS
R&D
SA
SAC
SAD
SCI
SCIF
SCN
SDD
SDF
SDL

Mean Logistics Delay Time
Man-Machine Interface

Mean Time Between Failures

Mean Time Between Software Faults
Mean Tune Between Software Halts
Mean Time to Repair
Non-Development Sottware
Network FFile System

Network extensible Window System
Natural Language Processing
Operational Availability
Operational (‘oncept Document
Optical (haracter Reader
Operators Manual

Operating Svstem

Physical Conliguration Andit
Preliminary Design Review

Process [D

Program Manager

Program Quality Manager
Program Review (‘oordinator
Programmable Read-Only Memory
Program Review Team

Quality Assurance

Quality Assurance Committee
Quality Assurance Manager
Revision Control Svstem

Request for Proposal

Red. Green. Blue

Read-Only Memory

Remote Procedure (all

Real Time Message System
Research and Development

Svstem Administrator

Strategic Air Command

Situation Assessment Division
Sensitive Compartmented Information
Special Compartmented Intelligence Facility
Specification Change Notice
Software Design Document
Software Development Folder
Software Development Library

SDP
SDR
SDRL
SER
S
SO
SOW
SPM
SQEP
SQPP
SPS
SRR
SRS
SSDD
§SS
STD
STP
STR
U
SUM
SW
SWCT
TBD
TCP
TCP/IP
TELNET
TIM
TOMP
TQM
TRR
('DF
I
M
('P$
VDD
VeV
WBS

WYSIWYG

Software Development Plan

Software Design Review or Software Deficiency Report
Subcontract Deliverables Requirements List
Software Engineering Report

Systemn [ntegrators

Security Officer

Statement of Work

Software Programmer’s Manual
Software Quality Evaluation Plan
Software Quality Program Plan
Software Product Specification
System Requirements Review

Svstem Requirements Specification
Svstem/Segment Design Document
Syvstem/Segment Specification
Standard

Svstem Test Plan

Syvstem Test Report

Superuser

Software User's Manual

Software

Software Configuration Item

To Be Determined

Transmission Control Protocol
[nternet protocol suite
Telecommunications Network Protocol
Technical Interchange Meeting

Task Order Management Plan

Total Quality Management

Test Readiness Review

Unit Development Folder

User Interface

User's Manual

Uninterruptible Power Supply

Version Description Document
Verification and Validation

Work Break-Down Structure

What You See Is What You Get (pronounced: Whiz-E-Wig)

[

B.2

Definitions

ASCII. Standard alphanumeric character set for computers.

Authentication. Determination bv the Government that specification con-
tent is acceptable.

Background. A non-realtime message hardcopy document entered through
the optical character readers. imagnetic tape. or hy hand.

Baseline. A configuration identification document or a set of such docu-
ments formally designated and fixed at a specific time during a CT's life cycle.
Baselines. plus approved changes from those baselines, constitute the current
configuration identification. For 2167A configuration management techniques
there are three baselines. as follows:

l. Functional baseline. The initial approved tunctional configuration iden-
tification.

[0
.

Allocated baseline. The initial approved allocated configuration identi-
fication.

3. Product baseline. The initial approved or conditionally approved prod-
uct configuration identification.

However. for iterative prototvping programs the tunctional and allocated re-
quirements are not identified until late in the de elopment process. The use of
a test or development baseline in place of the functional and allocated baselines.
allows for the svstem evolution. The two standard baselines that ADS ntilizes
are:

. Test baseline. The test baseline will be established as segments are
released from each task group.

2. Product baseline. The product bhaseline will he establiahed at the suc-
cessful completion of contract requirements/deliveries.

Baseline Management. Application of technical and administrative direc-
tion to designate the documents which formally identifv and establish the initial
configuration identification at specific times during its life cvcle.

Certification. A process which may be incremental. by which a contractor
provides objective evidence to the contracting agency that an item satisfies its
specified requirements.

Computer data definition. .\ statement of the characteristics of the basic
elements of information operated upon by hardware in responding to computer
instructions. These characteristics may include, hut are not limited to. tvpe.
range. structure, and value.

120

Computer hardware. Devices capable of accepting and storing computer
data, executing a systematic sequence of operations on computer data or pro-
ducing control outputs. Such devices can perform substantial interpretation.
computation, communication, control, or other logical tunctions.

Computer resources. The totality of computer hardware, software. person-
nel. documentation, supplies, and services applied to a given effort.

Computer software. A combination of associated computer instructions and
computer data definitions required to enable the computer hardware to perform
computational or control functions.

Computer Software Component (CSC). A distinct part of a computer
software configuration item (CSC'T). CSCs may be further decomposed mto
other ('SCs and Computer Software Units (('SUs).

Computer Software Configuration Item (CSCI). A confignration item
for computer software. ’

Computer Software documentation. Technical data or information. in-
cluding computer listings and printouts, which documents the requirements,
design. or details of computer software. explains the capabilities and hmira-
tions of the software. or provides operating instructions for using or supporting
computer software during the software’s operational life.

Computer Software Unit (CSU). An element specified in the design of a
(‘omputer Software Component (CSC) that is separately testable.

Configuration. The functional and/or physical characteristics of hard-
ware/software as set torth in technical documentation and achieved in a producr.

Configuration control. The systematic evaluation. coordination. approval.
disapproval. and unplementation of all approved changes in the configuration
of a C'I after formal establishment of its configuration identification.

Configuration Identification. The current approved or conditionally ap-
proved technical documentation for a configuration item as set forth in <pecifi-
cations. drawings and associated lists. and documents.

Configuration Item Number (CIN). A CIN is a permanent number as-
signed by the configuration manager to identifv a configuration item. The C'IN
is composed of alpha-numeric characters.

Configuration Item (CI). An aggregation of hardware/software. or any of
its discrete portions. which satisfies an end use tunction and is designated for
configuration management.

e Configuration Mangement. A discipline applying technical and adminis-
trative ditection to (1) identify and document the functional and physical char-
acteristics of a configuration items. (2) control changes to those characteristics.
and (3) record and report change processing and implementation status.

¢ Configuration status accounting. The recording and reporting of the in-
formation that is needed to manage configuration effectivelv. including a listing
ot the approved configuration identification. the status of proposed changes to
configuration. and the implementation status of approved changes.

e Cost. The term ~cost” means cost.

|. Non-recurring costs. One-time costs which will be incurred it an en-
gineering change is ordered and which are independent of the quantity of
items changed. such as. cost of redesign. special tooling or qualification.

2. Recurring costs. ('osts which are incurred for each item changed or for
each service or document ordered.

o Critical Design Review (CDR). This review shall be conducted for each
configuration item when detail design is essentially complete. The purpose of
this review will be to (1) determine that the detail design of the configuration
item under review satisfies the performance and engineering speciality require-
ments of the HWC'[development specification(s), (2) establish the detail design
compatibility among the configuration item and other items of equipment. facil-
ities. computer software personnel. (3) assess configuration item risk areas ion
a technical. cost. and schedule basis). (4) assess the resulted of the producibil-
ity analyses conducted on system hardware. and {3) review the preliminarv
hardware product specifications. For ("SCls. this review will focus on the de-
termination of the acceptability of the detailed design. performance. and test
characteristics of the design solution, and on the adequacy of the operation and
support «ocuments.

e Critical item. An item within a CI which, because of special engineering or
logistic considerations. requires an approved specification to establish technical
ot inventory control at the component level.

¢ Deficiencies. Deficiencies consist of two tvpe: (1) conditions or characteris-
tics in any hardware/software which are not in compliance with specified cou-
figuration. or (2) inadequate (or erroneous) configuration identification which
has resulted. or may result, in configuration items that do not fulfill approved
operational requirements.

o Developmental Configuration. The contractor’s software and associated
technical documentation that defines the evolving configuration of a CSC'I dur-
ing development. [t is under the development contractor’s configuration con-
trol and describes the <oftware design and implementation. The Developmental

[22

Configuration for a ('SCI consists of a Software Design Document and source
code listings. Any item of the Developmental Configuration may be stored on
electronic media.

Domain. The area of interest of a particular program.

Engineering change. An alteration in the configuration of a configuration
item or item, delivered. to be delivered. or under development, after formal
establishment of its configuration identification.

Engineering Change Proposal (ECP). A term which includes hoth a pro-
posed engineering change and the docuinentation by which the change is de-
scribed and suggested.

Evaluation. The process of determining whether an item or activity meets
specified criteria.

Firmware. The combination of a hardware device and computer instructions
or computer data that reside as read-only software on the hardware device. The
sottware cannot be readily modified under program control.

Formal Qualification Review (FQR). The test, inspection. or analyvtical
process by which a group of configuration items comprising the system are
verified to have met specific contracting agency contractual requirements {spec-
ifications or equivalent). This review does not apply to hardware or software
requirements verified at FCA for the individual configuration item.

Formal Qualification Testing (FQT). A process that allows the contracting
agency to determine whether a configuration item complies with the allocated
iquirements for that item.

Functional area. A distinct group of system performance requirements
which. together with all other such groupings. forms the next lower level hreak-
down of the svstem on the basis of function.

Functional characteristics. Quantitative performance. operating, and lo-
gistic parameters and their respective tolerances. Functional characteristics
include all performance parameters. such as range. speed. lethality. reliabiliry,
maintainability. and safety.

Functional Configuration Audit (FCA). The formal examination of func-
tional characteristics’ test data for a configuration item. prior to acceptance. to
verity that the item has achieved the performance specified in its functional or
allocated configuration identification.

Hardware Configuration Item (HWCI). A configuration item for hard-
ware.

Independent Verification and Validation (IV&V). Verification and val-
idation performed by a contractor or independent group that is not responsible
for developing the product or performing rg w activity being evaluated. {VV
is an activity that is conducted separately from the software development ac-
tivities.

Interface Control. Interface control comprises the delineation of the proce-
dures and documeuntation. both administrative and technical, contractually nec-
essary for identification of functional and physical characteristics hetween two or
more configuration items whicli are provided by different contractors/Governiment
agencies, and the resolution of the problem thereto.

Interface Control Working Group (ICWG). For programs which encom-
pass a system/counfiguration item design cvcle. an [CWG normally is established
to control interface activity between contractors or agencies. including resolu-
tion of interface problems and documentation of intertace agreements.

MMI. Term used to describe the interface between the user. the computer, and
the program. Terms include: man-machine interface. human-machine interface.
user-interface.

Non-development software (NDS). Software that is not required to be
delivered by the contract.

Operator. [ntext'management. a term that describes the connection between
a subtopic and a topic (e.g. and. or not. vote. phrase). For computers. one who
maintains the computer.

Physical characteristics. Quantitative and qualitative expressions of ma-
rerial features. such as composition. dimensions. finishes. form. fit. and their
respective tolerances.

Physical Configuration Audit (PCA). A technical examination of a des-
ignated configuration item to verify that the configuration item “As Built”
conforms to the technical documentation which defines the configuration item.

Preliminary Design Review (PDR). This review shall be conducted for
each configuration item or aggregate of configuration items to (1) evaluate the
progress. technical adequacy, and risk resolution (on a technical. cost. and sched-
ile basts)m of the selected design approach. (2) determine its compatibility with
performance and engineering speciality requirements of the HIWC] development
specification, (3) evaluate the degree of definition and assess the technical risk
associated with the selected manufacturing methods/processes. and (4) estab-
lish the existence and compatibility of the physical and functional interfaces
among the computer software and personnel. For ('SCIs, this review will focus
on: (1) the evaluation of the progress. consistency. and technical adequacy of

(24

the selected top-level design and test approach. (2) compatibility between soft-
ware requirements and preliminary design. and (3) on the preliminary version
of the operation and support documents.

Qualification.

Reusable software. Software developed in response to the requiremeucs lor
one application that can be used. in whole or in part. to satisfy the requirements
ol another application.

Software development file/folder (SDF). A repository for a collection of
material pertinent to the development or support of software. (‘ontents tvpically
include (either directly or by reference) design considerations and constraints.
design documentation and data. schedule and status information. test require-
ments. test cases. test procedures. and test results.

Software development library (SDL). A controlled collection of software.
documentation. and associated tools and procedures used to facilitate the or-
derly development and subsequent support of software. The SDL inclides the
Developmental Configuration as part of its contents. A software development
library provides storage ol and controlled access to software and documentation
in human-readable form, machine-readable form, or both. The library may also
contain management adat pertinent to the software development project.

Software engineering environment. The set of automated tools. firmware
devices. and hardware necessary to perform the software engineering effort.
The automated tools may iiaclude but are not limited to compilers. assemblers,
linkers. loaders. operating systems, debuggers. simulators. emulators. test tools.
documentation tools, and data base management system(s).

Software quality. The ability of a software product to satisfy its specified
requirements.

Software Specification Review (SSR). A review of the finalized Computer
Sottware ('onfiguration [tem (CSCI) requirements and operational concept. The
SSR is conducted when CSCI requirements have been sufficiently detined 10
evaluate the contractor’s responsiveness to and interpretation of the system.
~egment. or prime item level requirements. A successful SSR is predicated
upon the contracting agency's determination that the Software Requirements
Specification. Interface Requirements Specification(s). and Operational (‘oncept
Document form a satisfactory basis for proceeding into preliminary software
design.

Specification. A document intended primarily for use in procurement. which
clearly describes the essential technical requirements for items. materials. or
services including the procedures by which it will be determined that the re-
aquirements have been met.

l. General specification. A document which covers the requirements com-
mon to different types, classes. grades and/or stvies of items or services.

2. Detail specification. A document which covers (either within itself
or by referencing and supplementing a general specification) the complete
requirements for only one type of item, or for a limited number of types.
classes, etc. of similar characteristics.

3. System specification. A document which states the technical and mission
requirements {or a svstem as an entity. allocates requirements to functional
areas (or coufiguration items). and defines the interfaces between or among
the functional areas.

+. Development specification. A document applicable to an item below
the system level which states performances. interface and other techmnical
requirements in sufficient detail to permit design. engineering for service,
use. and evaluation.

5. Product specification. A document applicable to a production item
below the system level which states item characteristics in a manuner suitable
for procurement. production. and acceptance.

Specification Change Notice (SCN). .\ document used to propose. trans-
mit. and record changes to a specification.

Synonym. An operator that allows a topic to be a syvnonvm of {the same as}
another topic.

System. .\ composite of subsystems. assemblies (or sets). skills. and tech-
niques capable or performing and/or supporting an operational {or non-operational,
role. A complete system includes related facilities. items. material. services. and
personnel required for its operation to the degree that it can be cousidered a selt-
sufficient item in its intended operational (or non-operational) aud/or support
environment.

System Design Review (SDR). This review shall be conducted to evaluate
the optimization. correlation. completeness. and risks associated with the allo-
cated. technical requirements. Also included is a summary review of the svstem
engineering process which produced the allocated technical requirements and of
the manufacturing planning for the next phase of effort.

Subcontractor. A subcontractor is an indeividual. partnership. corporation.
or association, who (which) contracts with a contractor to design. develop. de-
sign and manufacture, manufacture items. which are or were. designed specifi-
cally for use in a military application.

System Requirements Review (SRR). The objective of this review is to
ascertain the adequacy of the contractor’s efforts in defining svstem require-
ments. [t will be conducted when a significant portion of the system {unctional
requirements has been established.

126

Software support. The sum of all activities that take place to ensure that
implemented and fielded software continues to fully support the operational
mission ot the software.

Software test environment. .\ set of automated tools. irmware device. and
hardware necessary to test software. The automated tools may include nbut are
not limited to test tools such as simulation software. code analvzers. etc. and
may also include those tools used in the soltware engineering enviconment.

System Specification. A svstem level requirements specification.

Technical Report. A technical report encompasses the evaluated relevant
facts on a study or phase of a study of a particular art, sctence. profession. or
trade. and stands as a permauent otficial record in a formal document. 1The
prime purpose of a technical report is to disseminate the results of activity and
to toster the exchange ot information.

Test Readiness Review (TRR). A review conducted for each C'SCI to
determine whether the sottware test procedures are complete and to assure that
the contractor is prepared for tormal CSCI testing. Software test procedures
are evaluated for compliance with software test plans and descriptions. and
tor adequacy in accomplishing test requirements. At TRR. the contracting
agency also reviews the results of intormal software testing and any updates
to the operation and support documents. A successful TRR is predicated on
the contracting agency's determination that the software test procedures and
informal test results form a satistactory basis for proceeding into formal C'SC'1
testing.

Unit. One complete configuration item.

Validation. The process of evaluating software to determine compliance with
specified requirements.

Vendor. A vendor is a manufacturer or supplier of a commercial item.

Verification. The process of evaluating the products of a given software
development activity to determine correctness and consistency with respect 1o
the products and standards provided as input to that activity.

Version. An identified and documented body of software. Modification to a
version of software (resulting in a new version) require configuration manage-
ment actions by either the contractor, the contracting agency. or both.

Waiver. A written authorization to accept a counfiguration item or other
designated items. which during production or after having been submitted for
inspection. are found to depart trom specified requirements, but nevertheless
are considered suitable for nse ~as 1s” or alter rework by an approved method.

127

¢ Work Breakdown Structure (WBS). A product-oriented tamily tree. com-

B.3

posed of hardware. software, services and other work tasks, which results from
project engineering effort during the development and production of a defense
material item. and which completely delines the project/program. A\ WBS dis-
playvs and defines the product(s) to be developed or produced and relates the
elements of work to be accomplished to each other and to the end product.

Document Definitions

Configuration Management Plan (CMP). The Configuration Manage-
ment Plan (C'MP) describes the procedures and methods to be used for conliy-
uration management during the life of the program. This include development.
testing. and installation.

Computer Resources Integrated Support Document (CRISD). The
Computer Resources Integrated Support Document (CRISD) provides the iu-
formation needed to nlan for life cycle support of deliverable software. The
CRISD documents the contractor’s plans for transitioning suppert of deliver-
able software to the support agency.

Computer System Operators Manual (CSOM). The (omputer Svstem
Operator’s Manual (CSOM) provides information and detailed procedures tor
initiating, operating. monitoring. and shutting down the computer svstem and
for identifving/isolating computer malfunctions.

Firmware Support Manual (FSM). The Firmware Support Manual 1 FAM)
provides the information necessary to load software or data into firtnware com-
pouents of a svstem. It is equally applicable to read only memory (ROMs). Pro-
grammahble ROMs (PROMSs). Erasable PROMs (EPROMSs). and other firmware

devices.

Interface Control Document (ICD). The Interface Control Document
(IC'D) specifies all of the external (other systems) and internal (hetween sub-
systems) interfaces necessary to ensure proper development of software for the
svstem. [t serves to document and control interface decisions.

Interface Design Document (IDD). The Interface Design Document (IDD)
specifies the detailed design for the interface between the C'SC'ls.

Interface Requirements Specification (IRS). The Interface Requirements
Specification ([RS) specifies the requirements for one or more interfaces between
one or more ('SCls and other configuration items.

Software Data Dictionary Document. The Software Data Dictionary
Document is a technical document prepared for the programmers and data
hase administrators. It provides for the central collection of information about

123

all data used by the software system: all files. all record tvpes, all items within
records, all relationships between records. and all pertinent information about
the use of the data. The Software Data Dictionary Document is designed to
provide a standard. consistent. simple framework for information abougs +he Jdata
used by the system being developed.

Software Design Document (SDD). The Software Design Document (SDD)
describes the complete design of the each CSCIL. [t describes the ('SC'[as con-
posed of Computer Software Components (('SCs) and Computer Soltware Units

(C'SUs).

Software Development Plan (SDP). The Software Development Plan
(SDP) describes a contractor's plans for conducting software development. The
SDP is used to provide the Government insight into the organizatici(s) respon-
~sible tor pertorming software development and the methods and procednres 1o
be tollowed by these organization(s). The SDP is used by the Government to
monitor the procedures. management, and contract work effort of he organiza-
tion. performing software development.

s>oftware Product Specification (SPS). Thle Software Product Specitica-
tion (SPS) consists of the SDD and source code listings for a C'SC'1.

Software Programmer’s N'anual (SPM). The Softwai - Programmer’s
Manual (SPM) provides information needed by a programmer to understand the
mstriction set a-chitecture of the specific host or target computers. The SPM
provides information that mav be used to interpret. check out. troubleshoot. or
modify existing software on the host or target computers.

Software Quali.y Program Plan (SQPP). The Software Quality Program
Plan iSQPP) identifies the organizations and procedures to be used by the con-
tractor to perform activities related to the Software Quality Program specified
bv DoD-STD-2168. The SQPP is used to evaluate the contractor’s plans fo:
implementing the Software Quality Program.

Software Test Plan (STP). The Software Test Plan (STP) describes the
formal qualification test plans for acceptance testing of the svstem. The STP
identifies the software te;t environment resources required for accreditation rest-
ing. The STP identifies the individual tests that will be pertormed during ac-
creditation testing.

Software Test Description (STD). The Software Test Descripiic- describes
cach of the procedures identified in the the STP.

Software Test Report (STR). The Software Test Report (STR) is a recor
of the formal qualification testing performed on the svstem. The STR provides
the Government with a permanent record of FQT performed on the system.

129

Software Users Manual (SUM or UM). The Soltware User’s Manual

(SUM) provides the user personne] with instructions sufficient to run the svsteum.

System Operational Concept Document (SOC). The Svstem Opera-
tional Concept Document describes the mission of the system and its operational
and support environments. Also described are the functions and characteristics
ot the computer svstem within the overall svstem.

System Requirements Specification (SRS). The Software Requirements
Specification (SRS) specifies the engineering and qualification requirements for
the system.

System/Segment Design Document {(SSDD). The System/Segment De-
sign Document (SSDD) describes the design of the system and its operational
aud support environments. It describes the organization of the svsten as com-
posed ol Hardware Configuration Items (HWC('Is). Computer Software (‘onhe-
uration Items 1C'SCls). and manual operations.

System/Segment Specification (SSS). The System/Segment Specification
(5S5) specifies the requirenients for a system or a segment of a svstem. The S55.
upon {ormal approval. becomes part of the Functional (or Test/Development
Baseline.

Version Description Document (VDD). The Version Description Docini-
ment (VDD) identifies and describes a version of a Computer Software (‘onhg-
aration [tem (C'SCI) being released.

130

C. A Guide to CASE Tools

Although this List will quickly become outdated. the impact of Computer-Aided Solt-
ware lingineering (C.\ASI) of VAV activities is too important to ignore. This manual
has argued for the importance of formality in system specification and design. \n
additional henehit of formality is that formal representations can he manipulated by
computers, resulting in better quality than would likely be obtained manually. A\t a
minimum, certain obvious “clerical™ errvors can be found automatically. such as incon-
sistencies in interface definitions. Present generation ("ASE tools are far from ideal.
but vou may find something in the list helow—based on a list compiled by the (' ASI-
Research Group of I'lorida Atlantic University—that will prove very useful on vour
project.

Adpac Corp. \dpac CASE Tools: 340 Brannan St.. San Francisco. ¢ ° ' [07. 115-
97 1-6694 '

Advanced Logical Software \unatool: 9903 Santa Monica Blvd.. suite 103. Beverly
Hills. CA 90212, 213-653-5736

Advanced Technology International, Inc. SuperCase

AGS Management Systems, Inc. Multi/CAM; category: front end: 330 First
Ave.. King of Prussia. PA 19406. 215-265-1550

American Management Systems, Inc. Life Cvcle Productivity System: catecory:
front end. back end: 1777 North Kent St.. Arlington. VA 22209. 703-341-6060

Applied Business Technology Corp. Project Workbench: 361 Broadwav. New
York. NY 10013, 212-219-3945

Applied Data Research, Inc. DEPICTOR. category: front end: Route 206 and
Orchard Rd.. ('N-3. Princeton. N.J 03543

Arthur Andersen & Co. Design/! (part of Foundation Series): category: troni
end. hack end, RE/M: 33 West Monroe St.. Chicago. IL 60603: 69 West Wash-
ington. Chicago. IL 60602. 312-330-0069. 312-530-0033. 312-307-5161

Atherton Technology Software BackPlane; 1333 Bordeaux Drive. Sunnvvale. (" \.
)4089. Tele: 408 734-9822. Fax: 403 744-1607

ASYST Technologies, Inc. The Developer; One Naperville Plaza. Naperville. [I.
60540. 500-361-3673

Bachman Information Systems BACHMAN Product Set

Cadre Technologies, Inc Teamwork OS/2 3.0: category: front end: 222 Richmond
St.. Provideuce, RI 02903, 401-351-5950. -101-351-CASE

131

The CADWARE Group, Ltd SYLVA Series; categorv: Front end
CASET IPSYS lool Building Kit: 714-496-3670

CaseWare, Inc \MPLIFY: 3530 Hyvland Avenue, Suite 113, Costa Mesa, '\ 92626,
T14-754-0308

The Catalyst Group PATHV Series: category: RE/M: Peat Marwick Maind
("o.. 303 East Wacker Dr., C'hicago, [L. 60601, 300-323-3059. 312-9338-3352

CGI Systems, Inc. PACBase, PAC'Bench. PACDesign: categoryv: tront end. back
end. RE/M: 8200 Greensboro Dr. Suite 1010, McLean, VA 22102, 703-443-3131:
I Blue Hill Plaza, Pearl River. NY 10965, 914-735-5030

Chen& Associates ER-Designer (ERD); 1834 Constitution Ave. Ste [E. Baton
Rouge. LA 70308, 504-9238-3763

Cincom Systems, Inc. Supra. Mantis. Easy PC Contact. CASE Interchange: 2300
Montana Ave.. Cincinnati, OH 45211, 300-333-0115

Coding Factory (oFac
Cognos Powercase: 67 S. Bedford St.. Burlington. Mass. 01303. 617-229-6600

Computer Associates International, Inc. CA-Datacom. ('A-Ideal. CA-Dataquery.
("A-Dataquery PC: Computer Associates World Headquarters. 711 Stewart
Ave., Garden City. NY 11530. 516-227-3300

Computer Data Systems Scan/COBOL. SuperStructure: | C'urie Court. Rockyviile.
MD 20850, 202-921-7000

Computer Sciences Corp Design Generator: category: front end: 3610 Fairview
Park Dr. Falls Church. VA 22042. 703-376-1000

Computer Systems Advisers, Inc POSE 4.0: 50 Tice Blvd.. Woodcliff Lake. N.J
07675, 300-537-4262, 201-391-6500

Compuware Corporation CATItools: Abend-AID. CICS Abend-AID. CICS RADAR.
File-AID family, TransRELATE. PLAYBACK. File PLAYBACK. SIMULCAST.
dBUG-AID. XPEDITER. NAVIGATOR: 31 110 Northwestern Highwav, Farm-
ington Hills, Michigan 43013-3530

Cortex Corp. CorVision, Application Factory: category: front end. back end. RE, M:
138 Technology Dr., Waltham. MA 02154; 100 Fifth Avenue. Waltham. MA
02154-9863, 617-394-7000

Cullinet Software, Inc. IDMS/Architect

D. Appleton Company [DEI/Leverage: 1334 Park View Ave.. Suite 220. Man-
hattan Beach. CA 90266. 213-346-7375

132

Deft Inc. Deft; 567 Dixon Rd.. suite 110. Rexdale. ON M9W 1H7, Canada, 416-
249-2246

Deloitte, Haskins& Sells 4Front; 200 East Randolph Dr.. Chicago. [L 60601, 312-
356-3163

Digital Equipment Corp. DECASE: DECdirect. Continental Blvd.. Merrimack.
NH 03054, 300-3-+4-4325

ECS Associates SQL-Link-Plus; 3812 Sepulveda Bivd., Torrance. CA 490505, 213-
373-9260

ICONIX Software Engineering Inc. PowerTools Series: category: frout end, back
end, RE/M: 2300 Twenty Eighth St. Suite 320. Santa Clara, ('A 90405. 213-
153-0092

Forschungszentrum Informatik (FZI) STONE: Haid-und-Neu-Str. {0-14.. D-
7500 Karlsruhe, Germany, +49-721-6906-731

i-Logix StateMate: 22 Third Ave.. Burlington. MA 01303, 617-272-3090

Index Technology Corp. LExcelerator 1.34: category: front end; One Main St..
(Cambridge, MA 02142, 800-777-3358. 617-494-3200

Institute for Information Industry KangaTool Series; category: front-end: Sth
Floor. 106 Ho-Ping E. Rd.. Taipei. Taiwan. R.O.C'.

Integrated Systems, Inc. AutoCode: 2500 Mission College Blvd.. Santa ("lara. CA
95054. 408-930-1500

Interactive Development Environments Software Through Pictures: category:
front end: 595 Market St.. 12th Floor. San Francisco. ('A 94105. }15-343-0900

KnowledgeWare, Inc. [IEW/WS: category: tront end: 3340 Peachtree Rd.. At-
lanta. GA 30026, 404-231-8575. 300-338-4130

Language Technology RECODER. INSPECTOR: categorv: RE/M: 27 (ongress
St. Salem. MA 01970, 300-732-6337. 508-741-1507

Learmonth& Burchett Management Systems, Inc. (LBMS) System Engineer
(nee Auto-Mate Plus); 1300 West Loop South. Suite 1300, Houston, TX 77027.
713-682-8530. 8300-231-7515

Manager Software Products, Inc. Manager Series; category: Front end. back
end; 131 Hartwell Ave, Lexington. MA 02173-3126. 617-863-3300

Matterhorn, Inc. HIBOL: category: back end

133

McDonnell-Douglas ProKit*Workbench STRADIS. PRO-1V: category: front end:
P.O. Box 316. Dept. L313. MS 2312301, St. Louis. MO 63166, 300-325-1087.
N00-322-7337. 314-232-5715

Mentor Graphics Corp. Analyst/RT. Desiguer. Auditor: category: tront end: 8500
Southwest Creekside Place, Beaverton. OR 97005. 503-626-7000

Meta Systems QuickSpec. Structured \rchitect (SA). Strnctnred Aechitect-Integrator
(SA-1). PSL/PSA. Report Specification [nterface (RSI). View Integration Svs-
tem (VIS): category: front end. RE/M: 315 E. Eisenhower Parkwayv. Suite 200,
Ann Arbor. MI 13108, 313-663-6027

Micro Focus, Inc. COBOL/2 Workbench: 21465 Fast Bavshore Rd.. Palo Alto. ("\
94303, 113-356-4161

Netron, Inc. NETRON/CAP: 99 5t. Regis Crescent N. Downsview, Ontario. Canada
MBI Y9, 416-636-8333

On-Liné Software International (‘asePac; 2 Executive Dr.. F't. Lee Executive
Park. Ft. Lee. N.J 07024, 201-592-0009

Optima, Inc. DesignVision L.7. DesignMachine 2.0: categoryv: front end. back end

Oracle Systems Corp. CASE*Designer. CASE*Dictionary. (ASE“Generator. SQL "Forms.
SQL*Report. SQL*QMX. Oracle, SQL*Louder: Oracle World Headquarters.
500 Oracle Pkwy. Redwood Shores. ('A 94065, 415-306-7000: ORACLE Corpo-
ration. 20 Davis Drive. Belmont. C A 94002. 300-343-DBMS

Pansophic Systems Inc. Telon: 2400 ("abot Drive. Lisle. 1. 60532, 312-303-6000).
~00-323-7335

Phoenix Technologies, Ltd. P-Source. P-Tools: 346 University Ave.. Norwood.
MA 02062, 617-551-4000

Popkin Software& Systems Svstem Architect: 111 Prospect St.. Suite 305. Stam-
tord. C'T 06901. 203-323-3434

ProMod, Inc. ProMod Series: category: front end. back end. RE/M: 23635 Birtcher
Dr.. El Toro. C'A 92630. 714-353-3046. 300-255-2639

Rational Rational Design Facility; category: front end: 3320 Scott Blvd. Santa
(lara. CA 95054

Ready Systems Corp. CardTools: 170 Potrero Ave.. P.O. Box 60217. Sunnyvale.
C'A 94036

Sage Software Inc. Polytron Version C'ontrol System (PV('S). APS Development
Center: category: back end. RE/M: 1700 N.W. 167th Place. Beaverton. OR
97006. 300-547- 1000

(34

Sapiens International Perfect. Object-Modeller. Sapiens. Quix: Sapiens ['S A, 295
Tth Ave.. New York. NY 10001. 212-366-9394

Schemacode International Inc Schemacode, Datrix: 39 Gleenbrooke. suite 100,
Dollard des Ormeaux. Quebec HIA 2L7, 51 1-633-3693. fax 51 1-683-6792. da-
trix@rgl.polymtl.ca

Six Sigma Case (anonizer; 13456 SE 27th Place. Bellevue, WA 93005, 206-6 13-
6911

Softlab, Inc. Maestro; category: tront end, back end, RE/M; 133 The Embarcadero.
Bayside Plaza, Suite 730, San Francisco. CA 94103, £15-957-9175

Software AG of North America, Inc. Adabas, Natural. C'onstruct. Predict. Pre-
dict Case. Super Natural: 11190 Sunrise Vallev Drive. Reston. VA 22091, T03-
360-3050

Software Architecture and Engineering Strategic Networked \pplication Plat-
torm: 1600 Wilson Blvd.. Arlington, VA 22209, 703-276-7910

StarSys, Inc. MacBubbles: category: front end: 11113 Norlec Dr.. Silver Spring.
MD 20902

Syscorp International, Inc. MicroStep 1.3: 9420 Research Blvd.. Suite 200. \ustin.
TX 78759, 512-338-0591

Telelogic Europe SDT: 33 Boulevard de la Cambre, B-1050 Brussels. Belginm. 011-
32-2-647-3670

Texas Instruments Inc. Information Engineering Facility (IEF) 4.0: 6350 Chase
Oaks Blvd., Plano. TX 75023. 300-527-3300

Tom Software Application Xcellence; 127 SW 15/*L Street, Seattle. WA 93166,
206-246-7022

Tranform Logic Inc. (Previosly Nastec Corp.) DesignAid 1.3: category: front
end: 24681 Northwestern Hwy., Southfield. MI 43075. 300-372-3296 7799 Lees-
burg, Suite 1110, North Tower. Falls Church, VA 22043, 703-556-9401

Transform Logic Corporation Transform: 3502 East Via de Ventura. Scottsdale.
AZ 35258, 602-948-2600

Unisys Corp. Linc Design Assistant. Linc, Mapper, DMS [1: P.O. Box 300. Bluebell.
PA 19424, 215-986-4011

ViaSoft, Inc. Via/lnsight. Via/SmarTest; 3033 North 4ith St.. Suite 230. Phoenix.
AZ 35018. 602-952-0050

Visible Systems Corp. Visible Analyst Workbench; category: front end: 950 Win-
ter St.. Waltham. MA 02154, 617-969-4100

135

Visual Software, Inc. vsDesigner. vsSQL. vsObject Maker: category: front end:
3945 Freedom Circle. Suite 310, Santa Clara. CA 95054, 103-983-7575

Westmount Technology B.V. [SEE, TSEE. RTEE: 5020 143th Ave. N.E.. P.O.
Box 97002, Redmond. WA 93073-9702

Yourdan, Inc. \ualvst/Designer Toolkit, Cradle: category: front end: 1501 Broad-
wav, New York, NY 10036, 212-391-2823

136

MISSION
OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C31 systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Alr Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic rellability/maintainability and testability.

D 0 1050 S0 50 I B IC A DE A I IQEIQEIQQG‘?:BQ

