
AO
form Approved /

REPORT DOCUMENTATION PAGE FMB o 0o4-0ro

Pubhc reaortinc, ourden !or *nm w..le ron Cf ntorraton 5 etlm'aea w .etao e I h,,.r ok' 'eso.,., ml n .,nQ the time to, re,.e. n nstwr,. search-nq e xh.t;
gatheonq and n a,natnnln) -.he ola needed and (Omoiletnc an rev eq the 0oIectCeon of information Sond comment% reqgaron 1 tee. burOen etirmate of any Other a)ec(t of thi.
colle lion ot m9oreation, no.ing suggettoni tor recducmn th , buraen % Wtashngton Heaouartef% Se,ice,, Directorate for niormation Operation% tfld ReDorts, 12 !1 Jefferson
Dav , Highway, Sute 124. AhnlOn v, 2220 -4302, and to the ()ffte jf Malnagement and 8u0.jet. Paperworx Relcton Projed (01O4-0188), asenyton. C 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Ai'qust 1992. THESIS
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

N _System Design and Relaxation oscillations of a
Titanium-Sapphire Laser

f 6. AUTHOR(S)

William L. Erikson, Captain

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT Student Attending: University of Arkansas
AFIT/CI/CIA-92-072

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

AFIT/CI
Wright-Patterson AFB OH 45433-6583

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION! AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release IAW 190-1I
Distributed Unlimited
ERNEST A. HAYGOOD, Captain, USAF
Executive Officer

13. ABSTRACT (MaxImum 200 words)

92-23498

92 8 24 007
14. SUBJECT TERMS 15. NUMBER OF PAGES

102
16 PRICE CODE

i 17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE1 OF ABSTRACT

NSN 7540-0'-280-5500 Sa~dard or.,m '98 (Rev 2-89)
, . n t



C' -

SYSTEM DESIGN AND RELAXATION OSCILLATIONS

OF A TITANIUM-SAPPHIRE LASER

Abstract of thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

by

WILLIAM L. ERIKSON, B.S.

United States Air Force Academy, 1982

August, 1992

University of Arkansas



This abstract is approved by:

Thesis Director:

Dr. Surendra P. Singh

DTIC QUALITY INSPECTED

NTIS GRA&I
DTIC TAB 0
U~r oinced 0
Just ificatlon

Ditribution/

Avaiab ilit CodqS

D~tAvail and -/ or

Dis 
specialj



Abstract

A general method for designing a laser system is presented. Using the Ti:sapphire laser

as an example, the requirements of stability, astigmatic compensation, and matching
of the pump and cavity modes are addressed. Investigations into the relaxation

oscillations of a Ti:sapphire laser are reported. Using four level laser rate equation
theory, a technique is developed for analyzing relaxation oscillations exhibited by a

laser. This technique presents a new and simple method for measuring the upper

state lifetime and intrinsic cavity losses of a laser system. Beam-like vector solutions

to Maxwell's equations are also presented. These solutions present a more detailed

description of the polarization properties of laser beams. Experimental evidence of

these properties is shown using an Argon laser.
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Chapter 1

Introduction

The Ti:sapphire laser has been the subject of continuing research since it was tir t

introduced by Moulton [1] as a broadly tunable solid state laser. Because of i1-

broad tunability ( 650-1200 nm). high output power. and demonstrated stability.

the Ti:sapphire laser is gaining prominence in many areas of research. These area,

include high resolution spectroscopy and high energy laser applications.

Many areas of high resolution spectroscopy research require frequency slabilized.

single-mode. continuous wave (cw) lasers. Although dve lasers have been dominant

in this held, the Ti:sapphire laser offers the advantages of wide tunability, ease of use.

and increased stabilitv. The dominant absorption band for Ti:sapphire is centered

around 500 nm. allowing direct pumping with an argon ion laser for cw operation and

doubled Nd:YAG lasers, dye lasers, and flash lamps for pulsed operation. Active fre-

quency stabilization involves a reference cavity (Fabry Perot), some type of feedback

to the laser cavity, and an intracavity compensating element. By actively stabilizine

a Ti:sapphire laser, a frequency stability of 1 kHz rms relative to the reference cavity

has been observed [2]. Stabilized Ti:sapphire lasers have been used for examining

the hyperfine structure of the D lines and the absorption spectroscopy of the 5S-.51)

transition in rubidium [3]. A similar Ti:sapphire laser was used to investigate the

two-photon excitation of the 2S-,4S transition in atomic hydrogen [1]. Other areas

of spectroscopic research require broadly tunable short laser pulses of relatively high

energy. This is another area where the capabilities of the Ti:sapphire laser are being

exploited. Various methods for active and passive mode locking of a Ti:sapphire laser

have been employed to generate high power pulses in the femtosecond regime [5. 6. 7

High energy laser applications, such as future remote space sensing systems. have

generated the need for studying the energy output capabilities of Ti:sapphire lasers [S].



O)It put powers of 0.5 terawatt for 125-fs pulses have been observed using the technique

of chirped-pulse amplification [9]. For cw operation. :350 watts of output power has

been proposed using a liquid nitrogen-cooled Ti:sapphire laser [10].

Other areas of research where Ti:sapphire lasers may be useful are nonlinear opt ifs.

laser cooling, and trapping of atoms. Because of the many possible and diverse,

applications for a Ti:sapphire laser. there is a need for a general method for designifg

simple and flexible Ti:sapphire laser cavities from which a specific laser system can

be constructed.

Although most of the current research involving the Ti:sapphire laser is centered

around areas of specific application, little attention has been paid to the study of the

dynamical behavior of this laser system. One particular dynamical behavior of interest

is the relaxation oscillations exhibited by the Ti:sapphire laser. These oscillations

characterize the behavior of certain laser systems when they are perturbed from

steady state. Relaxation oscillations have been observed and studied in a number of

other laser systems including ruby [11], dye [12] and copper-vapor [13]. By studying

these relaxation oscillations, one can gain a greater insight into the parameters that

drive the dynamics of the laser. Recent studies in the ultra-high speed relaxation

oscillations (up to 39 GHz) of vertical cavity surface emitting diode lasers indicate

potential application in the area of optical interconnect [14].

In this thesis, w- present a general method for designing a Ti:sapphire laser that

can be customized for specific research applications. We also report on investigations

of the relaxation oscillations of a Ti:sapphire laser that we constructed. To our knowl-

edge. these are the first such investigations to have been carried out on a Ti:sapphire

laser system. By analyzing the relaxation oscillations. we measured the tipper state

lifetime and the intrinsic cavity losses of our laser. Our method for analyzing these

oscillations presents a simple and new technique for measuring these important laser

parameters.

In Chapter 2. we review the propagation characteristics of laser beams including

their transformation characteristics through optical elements. With this foundation.

we describe a technique using ray transformation matrices in Chapter 3 to address the

problems of stability. astigmatism. and mode matching in the design of a laser system.

2



\We also describe the design of a specific Ti:sapphire laser. In Chapter I we discuss

the theorv of relaxation oscillations based on two simplified laser rate equations. We

then develop a method for analyzing the relaxation oscillations exhibited by certain

lasers which allows us to measure the upper state lifetime and the intrinsic cavity

losses of a laser system. Chapter 5 describes two sets of experiments conducted wit h

our Ti:sapphire laser. The first set involved the study of the relaxation oscillations

generated by cavity loss modulation. The second set of experiments was conducted to

determine the intrinsic cavity losses of our laser by an independent method. Finally.

in Chapter 6 we describe vector beam-like solutions of Maxwells equations. We use

these solutions to discuss the polarization properties of Gaussian laser beams. We

also present experimental evidence representing these solutions.

3



Chapter 2

Propagation of Laser Beams

Any study of lasers must involve a basic understanding of the propagation character-

istics of laser beams. To this end. we begin this chapter with a review of the wave

nature of light and its propagation characteristics in free space (vacuum). We then

derive the paraxial wave equation, which describes propagation of electromagnetic

waves (beams) whose energy is concentrated near the axis of propagation. and look

at a particular beam-like solution to this equation. Finally, we will see how laser

beam parameters are transformed as they pass through various optical elements.

2.1 Propagation of Electromagnetic Waves

The behavior of an electromagnetic field is governed by Maxwell's equations. which

for free space can be written in the form

V .E(r.t) = 0, (2.1)

V x E(rt) =- t (2.2)

V.B(rt) = 0. (2.3)

V x B(r.t) = I OE(r. t) (2)

where c is the speed of light in free space. E(r, t) is the electric field and B(r. t) is

the magnetic field. If we eliminate B(r, t) from these equations by taking the curl

of Eq. (2.2) and the time derivative of Eq. (2.4). we obtain a closed equation for the

electric field. Using the fact that time and space derivatives commute and the vector

identity

V x (V x E) = V(V .E) - V2 E. (2.5)

4



toge her with Eq. (2.1 ). we find that the electric field satisfies the wa rt cquatiou

v, 2 - - E(r.t) = 0. (2.6)
C2 Ot 2 /

Similarly. by taking the curl of Eq. (2.4) and the time derivative of Eq. (2.2) we

can show that the magnetic field also satisfies the wave equation. This r;meatis that

Maxwell's equations admit wave-like solutions and each component of the E field and

B field satisfies the scalar wave equation

(-7T2 ,2 r.t) = 0. (2.7)
C2 t2 )

The solutions of this equation are of the form:

f(t F z/c) plane wave

,Y(r, t) = .f(t T r/c) spherical wave (2.8)

-'f (t F p/c) cylindrical wave

where t[(r, t) represents any component of E(r. t) or B(r, t). The particular forim of

the solution chosen depends on the symmetry of the problem. In describing laser

propagation. we are interested in quasi-monochromatic fields (coherent light), so we

desire solutions of the form

'I'(rt) = 'o(r)e i t. (2.9)

If we substitute this solution into the scalar wave equation (2.7), we find the space

dependent part. 'F0(r), satisfies the Helnholtz equation

(V2 ± 'p0(r) = 0. (2.10)

Perhaps the most familiar solution of this equation is the plane wave solution. We

can represent a plane wave propagating in the z-direction by

0 (r) = ,eiks :  (2.11)

where v,' is a constant and the propagation constant k is related to the wavelength

and angular frequency of the wave by

wC 2-
12.12)

A



The E field of a plane electromagnetic wave is then written as

E(r.t) = . 2.13)

and the B field as
B(r.t) = k x (2.1 I

c

For plane waves. E. is a constant vector. These two equations satisfy Eqs. (2.2) and

(2.4). Maxwell's equations (2.1) and (2.30 require

k -E(rt) =k-. B(r. t)=0. (2.15)

Then the energy flow as defined by the Poynting vector
11 2

S = -IRc (E' x B) = ;C0 cEok (2.16,21t,

is in the z-direction as expected. Although the unidirectional propagation of plane

waves is characteristic of laser beams, the fact that the wave has the same amplit ude.

%P1o(r) = ioEikz, for the entire plane z = constant is not characteristic of a laser beam.

In addition to a predominant direction of propagation, laser beams also have a finite

extent in the transverse direction. We therefore look at other potential solutions of

Eq. (2.10) that mimic these properties of laser beams.

The second important solution of Eq. (2.10) is the spherical wave. which can be

written for r 0 0 in the form

= r = 6k , (2.17)r

where A is a constant. This represents a wave of constant amplitude over a sphere

of radius r. Since we are interested in the predominantly unidirectional propagation

of a wave, we restrict ourselves to a small cross-section of the wave near the :-axis

(paraxial) at a distance : = R away from the origin, or the point source. For these

points close to the z-axis, we can write r as

r=R I + X2 +Y2) 

(.

and since .r + y2 < R 2 for the paraxial points, we can approximate r. using the

binomial expansion. by
X2 + Y 2

r R± + R (2.19)
2R

6



The pherical wave solution on the :-axis at z = R can then b written as

'I kR, 1k(,r2 +y,)/2R 2 ()¢,()= R.

for distances far from the source. Because of its small relative magnitude compared to

R, the second term in Eq. (2.19) can be neglected in the denominator of Eq. (2.20).

It must be kept in the exponential term however, because there it is compared to

a wavelength. In Eq. (2.20), R is the radius of curvature of the phase fronts. We

now have a solution to the Helmholtz equation which has a non-uniform amplitude

in a plane perpendicular to the :-axis. We will see that this solution suggests very

important "beam-like" solutions to the paraxial wave equation, which we derive next.

2.2 The Paraxial Wave Equation

We are interested in solutions that give a finite transverse extent and vet travel

predominantly in the z-direction. To this end we propose a solution of the form

* o(r) = L,(r)e ikz (2.21)

where t'(r) describes the transverse profile of the beam. Substituting this into the

Helmholtz equation (2.10) and using the fact that k = a/c. we obtain

[ 022 '(r) + )k& +(r)+ 02 0(r)] ik = 0 (2.22)

5X 2 dy 0 0Z2]

We now assume that the z dependence of L-(r) is slow. This means that the transverse

profile of the beam does not vary significantly over distances comparable to the optical

wavelength A = 27r/k. In other words, the beam spreads slowly as it propagates in

the : direction. This assumption is known as the paraxial approximation and is

represented mathematically by the conditions

& < kl0(r) . (2.23)

/02 ,.(r) Ot'( r) i d v Q I(2 4

(9:1 < 2k 0 and I (r) ,2.24)

0:2 «2k-



where the franv rsr Laplacian is given by

i)2 i)2
v2 J2(2.25)l

T = ).-1.2 + ) 1 2

[Under tie para xial approximat ion. tie I lelhiliol! z equ al ion ( 2. 10) leads Io lie imriial

wart equation:

i,(r) + 21k '  = [0. (2.26)

Before we look at specific solutions to this equat ion, let us invest igate t he validit)"

of the paraxial wave approximation. Suppose we have a wave Iraveling ini thli .t--

plane whose k-vector makes an angle 0 with the z-axis. Since we can always describe

a wave as a siiperl)osition of plane waves, we can represent the wave component iI

the x-z plane as
or z = ,, k sm' Ox + i k e° s° z = '.,z) ik - '- .' 7

where

12(1. z ) fik~~r((O ) (2.2s )

Xe then find for each term in Eq. (2.24):

- - (co.sO - 1)2L( X.z) (2.29)

az
21 k )4, -k(CO,) - I )tu(x. (2.30

02 .' ,, _ O2sl 1201.,( ., ) ( 2.310:,

I sing the approximations smnO 0 and co.sO - I - 02/2. we find that Eq. (2.21) leads

to the inequaliltv
0 4 102

k2 -<< k2o2  ==- -< 1. (2.32)
4 1

iii us the pa raxial a pproximation is good as long as this Inequality is ,at islivd. If

we say that two orders of magnitude is sufficient to call tle approximation valid.

then the inequality holds for 0 < 1.2 radian or 12'. This means thle paraxial wave

approximation is valid as long as the beam does not converge or diverge outside of a

Cone of 2-10. or as long as most of the tlane waves cOtmp1rising I he teatnI have t heir

k-vetor inside a ('one of "2 0 .



2.3 Gaussian Beam Solutions

We now recall the spherical wave solution. Eq. (2.20) derived in Section 2.1. Since it

is a solution to the Helmholtz equation (2.10) in the paraxial approximation. it must

also satisfy the paraxial wave equation. We generalize the form of the spherical wave

solution such that it has a Gaussian transverse profile.
,(r) = . 4 eik( l2 +y2 )/2q(z)+tp(z) (233)

where A is a constant and we introduce the cornplex beam paramfer q(x) and a

complex phase shift p(Z). Requiring Eq. (2.33) to be a solution of Eq. (2.26) allu,.

us to determine the parameters q(z) and p(.). With i ,(r) given by Eq. (2.33). each

term in Eq. (2.26) can be written as

a2  ik k2.r 2

- (r) = q_(z) q2(Z) (r) (2.34)

d2 ik k 2Y2  (2.3)
q() q2(z)dq() dp35)

a = 1k(x)2q 2( ) dz + I d ) ('(r)' (2.36)

With the help of these, we find that Eq. (2.26) becomes

k2 (x2 + Y ) - 2k (dp(-) e k(X2 +y 2 )2q)+Ip() 0Al d: dx q(z)
(2.37)

To satisfy this equation. we must simultaneously have

dq(z) d dp(z) I( S

d--an d: = (: (2.38)

Integrating Eq. (2.38). we find

q(z) = q,,, + where q(0) = q, (2.39)
p(z) = I In ±1 +  where p(0) = 0. (2.40)

q ,

In order to understand the physical significance of the complex beam tparameter

q(x). we write it in terms of its real and imaginary parts by introducing two real beam

9



parailetpr 1?(z) and w(z) as

1 1 ,\
q(z) T() 1-u'2(z)

In the plane z = 0 this equation leads to

1 _ 1 A
I - I I + A(2.1)

q(O) q, R 7rw2
0

If we choose z = 0 to be the point where Ro = x.. then q, is pure imaginary and we

can write
I A\

1- , (2.13)
qo 7 wt2 zo

where
W,2  kw 2

- - 0

Using Eqs. (2.43) and (2.44) we can rewrite Eq. (2.39) as

q(z) = -iz, + z (2.45)

and Eq. (2.41) as 1 1 _ 1/q0q(1) - q 1z/q (2.16)

Separating the real and imaginary parts of Eq. (2.46) we find

-f+ +(2.47)

q(z) 1 + 2 / : 1 + zI2 -2

Comparing Eq. (2.47) with Eq. (2.41) we find that

-2

R(z)=z +-. (2.4S)

and

w(z) = 1+ (2.19)

Making use of Eq. (2.4:3) in Eq. (2.40) we can write the expression for p(z) as

p(z) =in I + I - in + .- tan - t (2.50)
100

10



Finally. lising Eqs. (2.41) and (2.50) in Eq. (2.:33) and letting p2 = .r + q2 . we call

write the (,aussian beam solution as

(r) = .k02l 2R )-tA/ '2() 2..51
I + z 2/-2

In terms of the expression for it,(:) from Eq. (2.49) we write the full solution to the

paraxial wave equation in the form

er)t,, k212R:) _p21,, 2 (z)i[k:-tan _(./lz)] (2.52)

We are now in a position to understand the physical significance of w(z). z, . and

R(z) and how they characterize Gaussian beams. If we look at the intensity of a wave

of total power P,

1 ccAtwt e2 0 /_.2(Z 2P1(r) = ,--Co IE(r)12 = /~.22 (2.3)
I? w2z 7rW2 ( -)

we see a Gaussian distribution in the transverse direction with i,(:) representing the

characteristic width of the beam or the beam's spot size at the plane intersecting the

beam axis at z. The meaning of -spot size" is not uniform in the literature. For

our purposes. we define the spot size to be wL(z) and therefore 2w(z) represents the

diameter of the beam. The plane intersecting the beam axis at z = 0 is known as the

beam waist. From Eq. (2.49) we see that the spot size is minimum at the beam waist

w(0) = We . (2.54)

A diagram of the beam waist region of a Gaussian beam is shown in Fig. 2.1. The

length scale over which the beam's spot size grows in the direction of propagation is

determined by the quantity zo, known as the Rayleigh range. defined by Eq. (2.44).

From Eq. (2.49) we can see that

w(:,) = v2 iv (2.55)

so the cross section of the beam doubles over the length equal to the Rayleigh range.

The distance of 2Z, from -z, to z, is referred to as the confocal paramrtr of the

beam, the distance over which the beam remains approximately collimated.

11



2W. PHASE
FRONT

2W

Figure 2.1: A diagram of the beam waist region of a Gaussian beam. The beam waist
is the plane : = 0. The minimum spot size is found at the beam waist and has a
diameter of 2w0 . The angle of divergence of the beam is represented by 0 and the
radius of curvature of the phase fronts is given by R(z).

To understand the physical significance of R(z). we compare the full Gaussian

beam solution. Eq. (2.52). with the spherical wave solution. Eq. (2.20) and see that

R(z) represents the radius of curvature of the phase front. This radius of curvature is

infinite at the beam waist, where the beam is collimated. In the far field, the radius

of curvature is approximately equal to z. By convention, for a beam traveling in tile

positive z direction. R(z) > 0 for a diverging beam and R(z) < 0 for a converging

beam. It is interesting to note that if the quantity zo and the beam waist location

is known, all other information concerning the Gaussian beam at any other point in

space can be determined from Eqs. (2.44) - (2.49). This means zo uniquely determines

a Gaussian beam.

We saw in Section 2.2 that the paraxial approximation would be valid if the

solution did not diverge at an angle greater than approximately 12' (or ;t 1/4 radian).

We solve for the beam divergence angle of the Gaussian spherical wave solution by

evaluating Eq. (2.49) at z > :,. With the help of the binomial expansion we find

w,(z > z0) = . (2.56)
zo rwILo

The angle of divergence is expressed as

w'(z) A
0 - tan -- -- = A(2.57)

12



Ihils as long as the minimum spot size is larger than a few wavelengths, a condition

which is fulfilled for most laser beams. the paraxial approximation is expected to

hold.

The solution we have assumed in this section is the so called fundamental solil-

tion. In general. there are other solutions of the paraxial wave equation (2.26). For

rectangular symmetry. there are the Hermite-Gaussian solutions, which have the form

1I nr)= Am -Hr - , (I I exp[-I'rni + n + I)tanr 1 (z/z0 )] x
mrl()~\W(S / \W(:)j

exp[ik(r 2 + y')/2R(z) - (X 2 + Y2 )/w 2 (z)]. (2.-)

Here H,(X) represents a Hermite polynomial of order n and argument x. For cylin-

drical symmetry, the solutions are known as Laguerre-Gaussian solutions and are of

the form

= A21P i21+m+) L7 2PA(1 +bo,)r(l+i)! w 1 / kw 2 (z))

x exp[ikp2/2R(z) - p2/w 2(z) + im0]. (2.59)

where L' (x) refers to an associated Laguerre polynomial of degree 1. For most appli-

cations, the fundamental solution is the desired solution, and is therefore most often

encountered in the literature. We now look at the effect of various optical elements

on a Gaussian beam.

2.4 Transformation Characteristics of Gaussian Beams

We have seen that for free space propagation laser beams may be represented by a

Gaussian spherical beam solution to the paraxial wave equation. We now investigate

how these beams are transformed as they pass through various optical elements.

Specifically. we are interested in how q(z) transforms as the beam propagates.

We start with the example of free space propagation. According to Eq. (2.39).

an initial beam parameter. q,. will transform into the final beam parameter qf after

propagating through a distance d by

qf =q, +d . (2.60)
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If w represent this transformation by the equation

q1 4 qi + B
q, + D.

we can write the coefficients in the beam transformation matrix

= . (2.6'2)
C D 0 1

We now take the example of a thin lens with a ' ,cal length f. which transforms a

spherical wave of radius Ri incident from the left into a spherical wave of radius R,

exiting the lens to the right according to the equation

1 1 1( .:
_( 2.63 t

Rf R, f

For a Gaussian beam incident on a thin lens, we expect the radius of curvature to

be transformed as in Eq. (2.63). but the spot size just to the left of the lens should

be exactly the same as the spot size just to the right of the lens. We can therefore

relate the transformed beam parameter, qf, just after the lens to the incident beam

parameter, q1. just before the lens by

1 1 1 (2.64)

qj qi f

Solving explicitly for qf,
qif qi (2.65)f] - - qi -qilf + I

we can write the beam transformation matrix for a thin lens

C" D 1/ 12.6

These two specific transformations are examples of the general ABCD law for

Catssian beams [15]. The transformed q parameter of a Gaussian beam can be

obtained from Eq. (2.61) where the coefficients are determined from the ray transfer

matrices of geometric optics.

In this chapter we have reviewed the propagation of electromagnetic waves and

saw how they can be used to represent laser beams. From a scalar treatment of

14



Nlaxwell's equations. we dlerived the paraxial wave equation. Beam-like so1ltions to

the paraxial wave equation characterize mnost of the propagation chlaracteristic. ()f

laser beams. For Gaussian beam solutions, these characteristics are determined fromn

the complex beam parameter q(z:). The manner in which a Gauissian heami t ra sfornil.

through optical elements is determiuned from the ray transfer matrices of Igeometric

optics. These matrices will play an important role as we design a laser system Iii lit,

next chapter.
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Chapter 3

Laser Design

Solid state lasers have proved to be widely tunable and simpler to use than dye

lasers. They are finding increasing use in spectroscopic and nonlinear optical experi-

ments. Because of broad tunability, in order to ninimnize losses, one must use crystals

with Brewster windows. This presents the problem of how to compensate for the

astigmatism induced by Brewster surfaces and other nonparaxial elements. For most

applications, cylindrically symmetric (TEM00 ) beams are needed. In this chapter we

present a general method that allows us to compensat- -- igmatism using curved nir-

rors. Our objective is to design a tunable singk-frequency. single-mode Ti:sapphlire

laser. We begin our discussion of laser system design with a comparison between

standing and ring cavity desigi ;. We then describe the stability requirements for

a laser cavity and address astigmatic compensation. The problem of matching the

pump mode ir.to the cavity mode is considered next. We use our cavity design as an

example. Finally, we describe various intracavity elements that can be used to make

the laser unidirectional and tunable to single wavelength.

3.1 Ring versus Standing Wave Cavity

The first consideration in designing a laser is to choose between a standing wave or a

ring cavity to optimize the particular laser system. A standing wave cavity is generally

simpler in design and offers the advantage of the elect romagnetic wave passing through

the gain medium twice during a round trip in the cavity. One disadvantage of a

standing wave cavity however is spatial hole burning. The electromagnetic field inside

a standing wave cavity may be considered to be the superposition of two oppositely

propagating traveling waves. The interference between these two waves sets up nodes

16



inside the cavity (and hence inside the gain medium) where the intensity of the

electromagnetic wave goes to zero. Between two nodes is an antinode corresponding

to intense fields. The result is periodic gain depletion or -holes burned'* at the spacing

of A/2 inside the gain medium. Therefore. standing wave cavities do not utilize the

gain completely and various grating effects can occur. The problem of spatial hole

burning is overcome in a ring laser. where no standing waves exist. Another advantage

of ring lasers is found in the pumping scheme. Many solid state lasers require optical

pumping of the gain medium. which is often accomplished with another laser. In a

standing wave cavity, part of the pump beam can be reflected back onto itself. causing

interference and stability problems, especially in situations involving longit liinal

pumping schemes. In a ring laser, such reflections or feedback are not present. A

disadvantage of a ring laser is the directional mode competition which may result

in large intensity fluctuations. This directional competition can be suppressed by

introducing a Faraday rotator and waveplate assembly as described in Section 3.5.2.

Finally, the design of a ring laser generally affords for easier introduction of intracavity

elements with the second beam waist and extra space available in the long arm. One

beam waist is in the middle of the crystal (gain medium) and the other is at the center

of the long arm and is available for elements such as atomic vapor cells and nonlinear

crystals. For our specific needs, we opted for a ring cavity for our Ti:sapphire laser.

3.2 Stable Cavity: The Ray Matrix Approach

Once the choice between a standing wave and a ring cavity has been made. the

stability of the laser cavity must be addressed. While certain high power applications

may require the use of an unstable resonator, most spectroscopic applications involve

stable laser cavities. We address only this type of cavities in this section. Although

we look at the specifics of a ring cavity, the general procedure outlined applies to

standing wave cavities as well. To determine the stability of a cavity, we must first

review some basics from geometrical optics.

Light propagation can be described in terms of rays. which are geometric curves

representing the direction of propagation of energy. In most cases we are interested
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-- ---.

- L
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Figure 3.1: A basic ring laser design consisting of a crystal of length 2t. two curved

mirrors with radius of curvature R, and two flat mirrors to steer the beam in the long

arm. The distance between the curved mirrors and the faces of the crystal is d and

the length of the long arm from Ml to M2 is L. The crystal has Brewster surfaces at

both ends, and the long and short arms are taken to be parallel. Angle 0 is one half

the fold angle of the laser and represents the angle of incidence for all cavity mirrors.

in light propagating predominantly in a single direction. We chose this direction to

be the z-axis and refer to it as the optic or cavity axis. At any given point in space.

we can then describe a light ray with two parameters. The lateral displacement off

the z-axis at a specific z location is given by r(z) and the slope of the ray at : is

dr/dz = r'(z). If we form a column vector from these two parameters, we can ubtain

the ray at a distance z from the original ray (at zo) by the transformation

I B I ] (3.1)

IC r'(z)

where the ABCD transformation matrix (or the ray matrix) depends on the optical

element through which the ray passes. The specific parameters for various optical

elements can be derived from the laws of geometric optics and are available in many

optics and laser textbooks [16. 17. 18]. The matrices most often used in designing

laser cavities are reproduced in Table 3.1 for reference.

The round trip matrix represents the transformation of a ray after one round trip

through the cavity. This matrix is found by multiplying in sequence the matrices of

each optical element that is encountered by a ray in one round trip. An analysis of this

matrix gives us the stability region. beam spot size, and beam waist locations inside

the cavity. For a basic ring laser as depicted in Fig. 3.1. we have two beam waists.

one at the center of the crystal and one in the center of the long arm. A knowledge
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Free space propagation of distance d inside [ ]
a medium of refractive index n.

Thin lens with focal length f, [/f 

Curved mirror with radius of curvature R [ 1 0
at an angle of incidence 0. tangential plane. .21RcosO 0

Curved mirror with radius of curvature R 1 0

at an angle of incidence 0, .sagittal plane. i -2colsO/R I J

Flat interface between air and medium n 1
with refractive index n at Brewster's an- 0 ln

gle. tangential plane.

Flat interface between air and medium [ 0

with refractive index n at Brewster's an- 0

gle. sagittal plane.

Table 31: Transformation Ray Matrices for Optical Elements
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of the beam waist location and spot size is necessary for mode matching and efficient

pulilping of tile cavity mode volume by the punip laser. Using the ray transformat ion

matrices from Table 3.1, we find the round trip matrix in the tangential plane for

starting at the center of the crystal to he

4c ~ ~ ~ / [i T i d]1
[ D [ 0 1 0 1/, 0 1 -2/Rco.sO 1

0 1 -2/RcosO 1 0 1 0 n 0 1]

Here 2t is the length of the crystal along the optic axis. d is tie distance between

either curved mirror and the face of the crystal. and L is the total length of the long

arm (free space propagation). For notational purposes, the subscript t refers to the

tangential or the horizontal plane containing the optic axis and the subscript ., refers

to the sagittal or vertical plane containing the optic axis. We will use the superscript

c to refer to the beam waist at the center of the crystal and the superscript I to refer

to the beam waist at the center of the long arm. If we define the optical path length

between the two curved mirrors in the tangential plane as

21t = 2t + 2d, (3.3)

then the round trip matrix is simplified and its elements can be written in the forin

A':_ 2 (1 L (I 21t.I
= R(1 o)( 1  RcosO) 34

( -nRcoO - Rco, (3."

D'. = A . (3.7)

For the sagittal plane. each RcosO term is replaced by R/cosO and the Brewster's

interface matrices become unit matrices. Defining the optical path length between

the two curved niirrors in the sagittal plane as

2+= +2d. (3.8)
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the elements of the round trip matrix for the sagitta plane can be written

V - 2) - 1. (3.9

BI _ 1sc)) =2/, + L I- 2ISco-s) 3.10)

- R R ).11

D' = c .4 .3. 12)

Once each element of the round trip matrix is known for a given plane. the stability

conditions can be derived. Since the ray is transformed by the ABCD matrix in each

round trip through the cavity, we are interested in the range of the parameters that

allow rf(zo) and r'(zo) to remain finite as N goes to Dc in the matrix equation

[rz] = [A B][r.(z:]r)

For this to be the case, the eigenvalues of the round trip matrix must be less than or

equal to unity. This leads to the range of parameters or rfgion of.stabdity defined by

the inequality

-l<n< (3.1)

where the parameter m is given by:

M - (3.15)

A complete derivation of the region of stability using eigenrays and eigenvalues of the

round trip matrix can be found in [17, pages .599-602]. For our round trip matrix.

A = D, so m = A and the stability condition becomes

-1 < < 1 . (3.16)

This condition must be satisfied simultaneously for both the tangential and sagittal

planes. We are interested in near confocal spacing between the curved mirrors. In

order to investigate the sensitivity of cavity stability in the vicinity of confocal spacing.
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we jIt roduwe a sensitivity variable 6 by writing the actual distance between the curved

mirrors as

21-_2d+2t= R + . (3.17)

where R is the radius of curvature of the curved mirrors. In terms of the o)tical pat I

lengths 2t and 21, introduced earlier, we can write

21 = R+ 6-2t(- -2t 1 1,3 R + 6:- 2.1s

and

91, = R + 1 -2t I - R ±6 -2ts (3.2N)

where 6, represents the 6 variable in the tangential plane. 6, represents the 4 varialble

in the sagittal plane. We also introduce the quantities tt and t, by

= t (I - 2~).(3.20)
and

a n t t ( I - 1 ) .3 2 1 )

Using Eqs. (:3.18) and (3.19) in Eqs. (3.4) and (3.9), we obtain the region of stability
defined by Eq. (3.16) in terms of 6 for each of the planes

RcosO - LR(l -co.s9 )

2tt - R(1 - cosO) _ 6t <2tt + L - Rco sO (3.22)

2t,-R 1-cosO 6, <2t,+ R' + LR(l - cosO) (3.23)
S cosO ) LcosO- R

Figure 3.2 shows the region of stability for both the tangential and sagittal planes as

a function of the variables 6 and L the free space propagation length. The angle of

incidence is 0 = 15' and the radius of curvature of the cavity mirrors is R = 10 cm.

Figure :3.3 shows the region of stability as a function of the angle of incidence 0

and the sensitivity variable 6 for a free space propagat;.n length L = 100 cm and

R = 10 cm. For both figures, the tipper boundary of stability in the tangential plane

is represented by the dashed line given by the equation

R 2co.O- LR(1 - cosO)
ht,a,,,x = 2it + L - RcoO 3.2 1)



The lower boundary of stability in the tangential plane is shown by the (lotted line

given by the equation

t = 21t - R I - cosO) . (3.25)

The region between these two curves is the region of cavity stability for the tangential

plane. For the sagittal plane. the upper boundary of stability is represented by the

solid line given by the equation

R 2 + L R( l - cosO)
6$a = 2t + LcosO-R(3.2)

The lower boundary of the sagittal plane is given by

= 2ts - R (I - CosO (3.27)

and is shown by the dot-dashed line. The region between these two curves is the

region of stability for the sagittal plane.

A cavity is stable in both planes where the tangential and sagittal regions of

stability overlap. By choosing a value for 6 from this region, a stable cavity can

be designed for a given angle of incidence 0 and free space propagation length L

by setting the distance between the two curved mirrors equal to 21 as defined by

Eq. (3.17).

In order to determine the spot size at the beam waist in the long arm, we must

determine the round trip matrix from the center of the long arm. Using a procedure

similar to that used to obtain Eqs. (3.4)-(3.7) and Eqs. (3.9)-(3.12). we find the

elements of the round trip matrix starting at the center of the long arm for the

tangential plane to be

A'L _41t L (8At - - R-o,*O 1 RcosO RcoO (2

t' Rcos) [L + 24 - Rcos) (:.29)

oRcoOO (-(CO)0

-l = . (3.31)
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Figure :3.2: The stability region for a ring laser as a function of the sensitivity variabl,
6 and the free space propagation length L. The stability region in the sagittal plane is
the area between the solid and dot-dashed curves. These curves represent Eqs. (3.26)
and (3.27) respectively. For the tangential plane. the region of stability is the area
between the dashed and dotted curves, representing Eqs. (3.24) and Eq. (3.25). A
cavity is stable in the region where the stability regions of both planes overlap. For
these curves, the angle of incidence is 0 = 150 and R = 10 cm.
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1 igtire .. : t he stability region for a ring laser as a function of the sensitivity variable

andl the angle of incidence 0. The stability region in the sagittal plane is the area
between the solid and dot-dashed curves. These curves represent Eqs. (:3.26) and
(:3.27) respectively. For the tangential plane. the region of stability is the area between
the (lashed and dotted curves, representing Eqs. (3.24) and Eq. (3.25). A cavity is
stable in the region where the stabilities of both planes overlap. For these curves, the
length of the long arm L is 100 cm.
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Siniilarlv. the matrix elements in the sagittal plane are

=(-L(O)(- 41.,cosO LcosO(332.4, 1 R 1 R ] R (.

- LcosO) [L + 21( 1  Lcos)j (3.33)

C1 =,4-o s4 cIs O (3 .3 1 )

D' = A. (3.35)

The expressions for the round trip ray transformation matrices derived in this

section will allow us to determine the size of the Gaussian beam waists inside the

cavity. This information will be used to analyze and compensate for astigmatism in

the beam profile, as we now show.

3.3 Intracavity Beam Waists: Astigmatic Compensation

As seen from Table 3.1, the transformation of a Gaussian beam at a curved mirror

and at an interface between media of different indices of refraction is different for the

tangential and sagittal planes. The tangential plane is the plane of incidence. The

sagittal plane is perpendicular to the plane of incidence. This difference in trans-

formation between planes is one source of astigmatism in laser systems. Nonnormal

incidence at curved mirrors is another source of astigmatism. The result is an asym-

metric transverse beam profile, which is usually undesirable.

In this section we describe a method for determining the spot size and the loca-

tion of the cavity beam waists. We then describe a technique for compensating the

astigmatism generated in the intracavity beam by the Brewster windows and curved

mirrors for the cavity shown in Fig. 3.1. A method for compensating astigmatism in

a standing wave cavity composed of three curved mirrors can be found in [19].

In Section 2.A we saw that the coefficients of a ray matrix can be used to determine

the transformation of the complex Gaussian beam parameter q(z). For a stable cavity.

after one round trip, we require qf = = q in Eq. (2.61). This leads to
.4q, + B (3.36)

qo- C'qo + D
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or

Cq 2 + (D - A)qo - B =0. (3.17)

Solving for 1!q, we find

I D -A D 2 - 2AD + .4 + I'B- - 2B .::8)

q,) 2B 2B

Since the determinant of each individual ray transfer matrix is equal to one, so also

must be the determinant of the round trip matrix

AD - CB = 1. (3.:9)

Using Eq. (3.39) in Eq. (3.38) we find that the complex beam parameter q, is giVel

by

I =_D - 4 - (A+D) 2  (10)

qo 2B 2B

RecallJy.g that 1/qo is pure imaginary at a beam waist. we see that A = 1) for the

round trip matrix starting at the location of one of the beam waists. For asymmetric

:avities, one can solve for the location of the beam waists by allowing the starting

point for the round trip matrix to be represented by a variable and then requiring

that A = D. In the case of symmetric cavities, the waist location can be found by

symmetry. For the cavity shown in Fig. 3.1, the beam waists are located at the center

of the crystal and the long arm as confirmed by Eqs. (3.7). (3.12), (3.31). and (3.35).

Another method for defining stable resonators is suggested by Eq. (3.40). By

requiring that the beam waist remain real, we obtain the condition

(A + D) 2 < 4 (3.41)

for stability. This condition is equivalent to

< .4 +< - <- < 1 7 1 < 1 .(3.12)

in agreement with the stability requirement Eq. (3.14) found in Section :3.2 usino

eigenray analysis.
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Fu determine the spot size at the beam waist, we recall Eq. (2.12) from Section 2.3.

We then find
I A V - (,A + D) 2

iA _ __ __ __ (:1.13)

Using the fact that A = D. the spot size of the beam at its waist in terms of the ray

matrix elements can be written as

rAB~ 1/2

= (3.1 4)

Using the expressions for A and B given in Eqs. (3.4). (3.5). (3.9) and (3.10). the

spot size at the beam waist at the center of the crystal in the tangential plane is

= [An2~ (, i) [21, + L - 2.O )1 RcosO

and for the sagittal plane it is

FA (R.cs - )21, + L (I - 21, R O)] R 1/

W -j 2 r (L.CO - i) coso j(.6

Similar calculations at the beam waist in the long arm using the expressions for A

and B given in Eqs. (3.28). (3.29). (3.32) and (3.33) yield

for the spot size in the tangential plane and
A L - 1) [L +921, ' 11/2

Res (2RoG )cosO J o .s(1.8

for the spot size in the sagittal plane.

In general. one finds that the beam waist spot sizes in the two planes are not

equal ,,t $ wu.. However. we note that the spot size at the beam waists depend

on the adjustable variables 0. L. and 6. Therefore. by adjusting the curved mirror
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spaing 21. the angle 0. and the cavity free space length L. we can find a regime where

astigmatism is minimized, or possibly removed, at least at one of the beam waists. In

the ideal situation, we want a symmetric beam both inside the crystal and in the long

arm. But since this may not be possible, or even desirable for all applications, one

must find the parameters that best fit a particular design. In most cases, the output

beam is required to have a cylindrically symmetric transverse profile. If the output

comes from one of the flat mirrors steering the long arm, then we try to achieve

,t = ,to in the long arm by choosing the proper values for 6, angle 0, and free space

length L. for the given values of crystal length 2t. index of refraction n, and radiuls

of curvature R of the curved mirrors.

A plot of the spot size (beam radius) at the center of the crystal and at the center

of the long arm is shown in Fig. 3.4. The variation of the spot size is shown as a

function of the free space length L for an angle of incidence 0 = 15.5'. Figure :3.5

shows the spot size variation as a function of angle of incidence 0 for a free space

length L = 100 cm. For both figures, the radius of curvature R = 10 cm. b 1.5 cm.

and A = 780 nm, representing the average wavelength of laser radiation inside the

cavity. The solid curve shows the spot size in the sagittal plane at the center of the

long arm as given by Eq. (3.48). The dotted curve shows the spot size in the tangential

plane in the long arm as given by Eq. (3.47). For the beam waist at the center of the

crystal, the spot size in the tangential plane is depicted by the dashed curve and in

the sagittal plane by the dot-dashed curve. These curves represent Eqs. (3.45) and

(3.46) respectively. From Figs. 3.4 and 3.5, we see that for a free space length of

L = 100 cm. angle of incidence 0 = 15.50 and 6 = 1.5 cm. the spot size in each plane

at the beam waist in the long arm are equal. Therefore. under these conditions, the

astigmatism in the long arm is fully compensated and the beam in the long arm is

circularly symmetric.

Since we chose to compensate ior the astigmatism in the long arm, the transverse

profile of the beam inside the crystal remains asymmetric. This astigmatism must be

kept in mind when addressing the problem of matching the pump beam mode into

the cavity mode. This is the subject of the next section.
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Figure 3.4: Variation of the spot size w, at the two intracavity beam waists as a
function of L, tl~e length of the long arm. For the beam waist in the long arm, the
dotted curve represents tvo in the tangential plane as given by Eq. (3.47) and the soli(
curve shows wo in the sagittal plane given by Eq. (3.48). For the beam waist at tile
center of the crystal, the dashed curve represents wo, in the tangential plane as given
in Eq. (3.45) and the dot-dashed curve shows w0 in the sagittal plane according to
Eq. (3.46). For this plot, the angle of incidence is 15', R 10 cm, 1.5 cm.
and .\ 7O nm.
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figure 3.5: Variation of the spot size tvo at, the two intracavity beam waists ts a
function of the angle of incidence 0 for a free space propagation length L = 100 cmi.
For the beam waist in the long arm, the dotted curve represents iv,, in the tang-lential

plane as given by Eq. (3.47) and the solid curve shows iv,, in the sagittal plant- given
by Eq. (3.48). For the beanm waist at the center of the crystal, the dashed curve
represents u-, in the tangential plane as given in Eq. (3. 15) and the dot-dashed curve
shows tv, in the sagittal plane according to Eq. (31.46). For this plot. R = 10 cmn.
6 = 1.5Scm. andA = 780 nm.
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3.4 Mode Matching

Having determined the beam waists and spot sizes, we now address the problem of

coupling the pump energy as efficiently as possible into the fundamental mode inside

the cavity. For this to occur, we require the pump beam spot size and waist to

coincide with the cavity mode beam waist and spot size as much as possible. Our

initial treatment of the problem assumes a symmetric spot size at the beam waist.

In Section 3.3 we saw that this is not the case for our cavity. We therefore conclude

this section with a technique to introduce astigmatism in the pump beam to better

match the spot size inside the crystal. Our objective is to optimize the spatial mode

matching of the pump and intracavity beams. A detailed investigation of the influence

of this spatial mode matching on the efficiency of longitudinally pumped solid state

lasers can be found in [20].

The theory of mode matching two Gaussian beams is developed in [15]. The basic

problem consists of placing a focusing lens in the path of a Gaussian beam to generate

a second beam waist at a predetermined point and with a predetermined spot size.

We call the distance from the first beam waist to the lens d, and the distance to

the second beam waist d 2. Using the transformation matrices from Table 3.1. we

determine the transformation matrix for a Gaussian beam traveling a distance of di,

then passing through a lens of focal length f, and finally through a, distance of d2.

The resulting matrix is

A B I - d2 /f di + d, - did 2 /f 1349
C D = -1/f 1 -d,/f I:..49)

Recalling Eq. (2.61). we relate the initial beam parameter q, to the final beam pa-

rameter q2 by
(1 -d 2/f)q1 + di + d2 - dd 2/f

q2 = -qlI/f +1-d/f (3.50)

Requiring the initial and final points of the transformation to be beam waists. we use

Eq. (2.43), which describes the complex beam parameter q, at the beam waist. to

write

q, = I. and q'2 - (3.51)
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lere 'I, it the spot size at the original beam waist of the puimp beam (inside the

punip laser) and u 2 is the "transformed" spot size of the pump beamn at the second

beam waist (inside the cavity). Substituting the expressions from Eq. (3.51 into

Eq. (3.50). we obtain

__ 2 1 iTr 2 ( ) 1 1 1 + ~f -112I l -1' _ L =--+ 2 -L _ -- _ I - 2 ( 3 .5 2 )

Equating the imaginary parts of Eq. (3.52), we find

f -d, _,w

-2 mu (3.5:3f -d2 ,2

and equating the real parts of Eq. (3.52) gives

(f - d1 )(f- d2) = f2 - f. (3.54)

Here we have defined the characteristic focal length

fo 7"' W I tL27A1 L {:3.55)

A

To satisfy both Eqs. (3.53) and (3.54) simultaneously, we require

f > fo. (:3.56)

This means that if a pump beam having a spot size of w1 at its original beam waist is

to be matched onto a second beam waist of spot size w2, it must be focused through

a lens (or focusing system) with a focal length greater than the characteristic focal

length defined by Eq. (3.55). We now look at the mode matching requirements of our

laser system.

The problem for our laser system is to find the optimum position and focal length

of a lens to focus the pump beam into the beam waist at the center of the crystal.

Collinear pumping of the crystal is desired to optimize energy transfer from the pump

source and simplicity of design. This requires the pump to be focused through one of

the cavity curved mirrors. A schematic of the various elements and distances involved

in our mode matching problem are shown in Fig. 3.6. The focusing lens has a focal

length f, and the mirror has a focal length of f2. They are separated by a distance (1.
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Figure .6: A schematic of the optical elements used in matching the spot size of the
pump beam to the cavity spot size at the beam waist at the center of the crystal.
The lens has a focal length f, and the mirror has a focal length of f2. These elements
are separated by the distance a. The effective lens is depicted with dash lines and
has a focal length represented by D. The distance between the cavity mirror and the
center of the crystal is s and A is the distance between the effective focusing lens and
the cavity mirror.

From basic optics [21], we know the effective focal length of two optical elements with

focal lengths fi and f2 separated by a distance a is given by

1 1 1 a
- + (3.57)f ::f, TI f2 f2"

The location of the "effective lens" is a distance

af2  (:3.58)

A f + f2 - a

from the second element (cavity mirror). For our particular application, we can only

vary the position of the lens, so we solve Eq. (3.57) for f,

fl -f2 a (3.59)

to estimate the focal length requirement of the matching lens. To match a beam waist

with spot size wl to a beam waist with spot size w2 using a lens as depicted in Fig. 3.6,

the effective focal length obtained from the "focusing system" must be greater than
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the cjlaracteristic length fo defined by Eq. (3.55). Because of space limitations, one

,houlld ,,elect a lens wit'i as small a focal length as possible while still meeting all

other design requirements. The stability requirements outlined in Section :1.2 often

place stringent requirements on this focusing lens. since the cavity mirror Tnust be a

minimum distance from the center of the crystal. Also. very small changes in the ,

variable defined in Eq. (3.17) can result in large changes in the spot size at the center

of the crystal. These changes in turn result in large changes in the mode matching

requirements.

Taking our cavity design as an example, we obtain a value for the characteristic

focal length f, as follows. Pumping with all lines from an argon ion laser. we take the

average wavelength to be A = 500 nm. Matching a beam waist spot size of 1.8 mm

from the pump laser to an average spot size at the beam waist inside the crystal of

25 microns, we find

fo z 28 cm. (3.60)
Solving Eq. (3.59) assuming f -sf = ff and f 2 = -5 cm, from a 10 cm concave cavity

end mirror. we obtain the minimum focal length for the lens to be

4
zz- 4 + -a. (1.61)

We see that the minimum focal length depends on the minimum acceptable spacing

between the lens and the cavity mirror. Assuming we want a minimum of 5 cm from

the mirror to the lens for mounting and adjusting, we have a minimum focal length

of

f.. 8 cm (3.62)

for the focusing lens in our mode matching problem. For our laser system., a 10 cm

achromatic lens was selected to meet the minimum fi requirements, and allow for

variations in the pump laser. the value of 6. spot sizes and cavity configurations.

The position of the "effective lens" from the beam waist inside the crystal is

determined from the formula

D = A + = ff ± w f2 -_. (3.63)
IVi
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where ,c is being matched to U'2.The distance .s between the cavity mirror and the

center of t lie crystal is determined by the value of 6 according to Eq. (3.17). Since

this value is determined from the stability requirements of Eqs. (3.22) and (3.23). we

consider it to be a constant for the mode matching problem. The value of s is given

by
1

s =. (R+6) . (3.61)

where R is the radius of curvature of the cavity mirror in the focusing system and

is chosen from the stability diagrams (see Figs. 3.2 and 3 3).

To find the position of the focusing lens. we first solve Eq. (3.57) for ff f explicit lY

f 1 Af 2  (3.65)
f, + f2 - a

Using Eqs. (3.65) and (3.58) we rewrite Eq. (3.63) as

af2  + f_ f2 ± -2 2 fo2. (366)
f, + f2- 2 -a - a -G -.

In most applications, u'2 K< w, and ff f: f, so we neglect the second term and

solve for a
2ff - s(f + f2) _ flf2 - !(R + 6)(fl + f2) (:.67)

f2 - 8 f 2 -1(R + 6)

For a 10 cm lens (fl), a curved mirror of R = 10 cm (f2 = -5 cm) and 6 = 1.5 cm

we obtain

a ; 7.3 cm . (3.68)

Thus by placing the 10 cm lens a distance of 7.3 cm behind the cavity end mirror. we

can focus the pump beam to its minimum spot size at the center of the crystal. In

pra-tice. this calculated distance is a -starting point" for the laser design and should

be adjusted by trial and error to compensate for the term neglected in Eq. (3.66) and

optimize the performance of the laser.

We saw from Section 3.3 that the spot size at the center of the crystal may be

asymmetric. To effectively mode match the pump volume and the intracavitv volume

inside the crystal. we need to introduce astigmatism into the pump beam. This can be

done by rotating the focusing lens about the vertical axis by a few degrees. In fact.
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sone astigmatism is already present due to the nonnornal approach of the pump

bea n on tie cturved cavity mirror. Calculations bv Schulz [22] for a 14' angle of

incidence at the curved cavity mirror show a required rotation of approximately S'

Our experience showed that a similar rotation in the focusing lens r-sulted in increased

output power.

In this section we have described the problem of matching the mode of the pump

beam to that of the cavitv. We saw that this can be accomplished by proper selection

and placement of a focusing lens outside the cavity. We also briefly discussed how

astigmatism may be introduced in the pump beam to better match the cavity mode

volume. We now investigate various intracavity elements that can be used in the laser

system.

3.5 Intracavity Elements

The specific application for a laser system dictates the type of intracavitv elements

required. In this section, we describe some intracavity elements that can be used

inside a laser cavity to meet design requirements. These include unidirectional lasing

and single wavelength operation. Our objective in this section is only to give a brief

overview of certain intracavity elements. A more rigorous treatment of the theory of

these elements can be found for example in [23].

Since some of these elements rely on the birefringent characteristics of certain

materials, we begin this section with a basic review of birefringence.

3.5.1 Birefringence

Birefringence. or double refraction. is a property of anisotropic crystals where the

index of refraction seen by incident light is a function of its polarization. Refractive

indices are determined from the dielectric permeability of the medium. Here we only

consider aniarial crystals. In these crystals, two axes defined by the crystalline struc-

ture have the same dielectric permeability while the third axis has a different value.

The axis with the unique dielectric permeability is referred to as the optic axi,.' and

represents a unique direction of propagation inside the crystal. The electromagnetic
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waves representing the light incident on a birefringent medium are broken down ilt)

(O11joponents based on the orientation of the E field vector relative to the optic axis.

The components of the electromagnetic waves with the E field vector oriented along

the optic axis experience one index of refraction n, and travel at the speed c/,,, Ihe

trajectory of these waves represents the cxtraordinary bram. The components of the

electromagnetic waves with the E field vector orthogonal to the optic axis experience

a different index of refraction n-, and travel at the speed c/n. The trajectory of these

waves represent the ordinary beam.

The different speeds of the ordinary and extraordinary beams result in a phase

difference between the two types of electromagnetic waves. This phase difference is

represented by 27"
d = --rd (n -n,) . (3.69)

A
where d represents the thickness of the birefringent medium. By varying this thickness

one can control the phase difference induced by the birefringence. If the overall phase

difference is d = ±rr/2. then the birefringent crystal changes linearly polarized fight

into circularly polarized light, provided the crystal is oriented so that the optic axis

is at 45' to the plane of polarization of the incident beam. This optical element

is known as a quarttr ware plate. If the overall phase difference is d) = ±7. then

the birefringent crystal rotates the plane of polarization by an angle of 2o. where

o represents the angle between the plane of polarization and the optic axis of the

crystal. Such optical elements are known as polarization rotators or half tvair platts.

The direction of rotation is determined by the direction of propagation through the

birefringent crystal.

3.5.2 Unidirectional Lasing

A basic ring cavity, as shown in Fig. 3.1, allows for an electromagnetic wave to

propagate in both directions. This means that as the gain medium is pumped anrd

energy inside the gain medium builds up. the modes of each direction compete against

each other. This competition can result in bisiability or chaotic behavior. Many

applications for ring lasers require the laser to be stable and therefore the direction
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of la ,ing to be controlled. Th: %:; usually accomplished by giving the cavity a favored

direct ion by suppressing or enhancing one of the directional modes.

One technique for introducing a favored direction inside the cavity is to reflect the

output from one direction of the cavity back onto itself with an external mirror. This

method has the effect of transferring a percentage of the energy from the undesired

directional mode to the desired directional mode. O''ie drawback of this technique

is that pure unidirectional lasing cannot be obtained since energy buildup in the

unfavored direction inside the cavity is not fully suppressed. Furthermore. this type

of feedback may lead to phase and frequency instabilitv.

To obtain unidirectional lasing, one must suppress the undesired directional cavitv

mode sufficiently to ensure that the threshold condition for that mode is not met.

This suppression is often accomplished with an optical diode consisting of a Faraday

rotator and some type of optical compensator. The manner by which these elements

produce unidirectional lasing is as follows.

Laser systems usually contain surfaces oriented at Brewster's angle with respect to

the cavity axis in order to minimize the insertion loss of intracavity elements. These

Brewster windows give rise to a dominant polarization of the electromagnetic wave

traveling inside the cavity. This dominant polarization is in the tangential plane. or

the plane of incidence defined by the cavity axis and the normal to the surface of the

Brewster window. This polarization component experiences no loss at the Brewster

interface.

Certain materials rotate the plane of polarization of the electromagnetic wave as

it passes through the medium. Birefringent crystals, alluded to in Section 3.5.1. are

such materials. Other materials rotate the polarization of an electromagnetic wave

when they are placed in a magnetic field. This effect is known as the Faraday fffc-t

and elements using this principle are referred to as Faraday rotators. The extent of

rotation of polarization per unit length, or the "rotary power." of a Faraday rotator

is proportional to the intensity of the magnetic field and an intrinsic property of

the material represented by the Verdet constant. Unfortunately, materials with large

Verdet constants usually also have high absorption coefficients. This means that large

rotation angles can only be obtained at the expense of high transmission losses. The
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dire t ion of polarizat ion rotation is determined solely by the direction of the magnetic

field and is therefore independent of the direction of propagation. In other words.

if the polarization of a wave changes by an angle 0 after passing once through a

Faraday rotator. it will have a total rotation of 2o if it i reflected back through the

same Faraday rotator in the opposite direction.

To induce loss in one direction inside the cavity and not the other. a Faraday

rotator is combined with a half wave plate. The half wave plate is oriented to corn-

pensate for the rotation induced by the rotator. In one direction. the half wave plate

rotates the polarization back to its original orientation. For this direction, the wave

suffers no loss as it travels through the Brewster windows inside the cavitv. In the

other direction however, the waveplate adds to the rotation of polarization arid the

electromagnetic wave is attenuated by traveling through a Brewster window. Even

with small rotation angles, the attenuation of the wave is usually sufficient to fully

suppress the undesired directional cavity mode.

3.5.3 Tuning to Single Wavelength

Lasers operating with broad gain medium require some type of wavelength selecting

device if single wavelength operation is desired. To fully utilize broad tunability.

we desire single wavelength operation with minimal loss to the desired wavelength.

We also want to have a high transmission bandwidth at the selected wavelength and

maximum rejection at the unwanted wavelengths. The optical element best suited

for these requirements is the birefringent filter.

Since their introduction as a tuning element for broadband lasers, the theory and

design of birefringent filters has been an area of active research [24. 25. 26. 27]. These

filters have been used as tuning elements in a number of broadband lasers. including

dye. high power Nd:glass. Ti:sapphire, and He-Se+ [28. 29]. The basic theory behind

birefringent filters is as follows.

As was shown in Section :3.5.1. birefringent crystals can be used to rotate the

polarization of an incident electromagnetic wave. A birefringent plate which can be

used as a wavelength selecting devise is shown in Fig. 3.7. The birefringent plate is

placed into the laser cavity such that the normal of the plate is at Brewst,,r's angle
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Figure 3.7: A birefringent plate used as an intracavity tuning element. The normal
to the plate is at Brewster's angle OB to the cavity axis. The optic axis of the
crystal makes the angle with the path of the refracted beam inside the crystal. The
thickness of the plate is d.

0B to the cavity axis. The refracted beam inside the plate travels in a direction that

makes the angle with the optic axis of the crystal. The phase difference induced

between the ordinary beam and the extraordinary beam of wavelength A after it has

travelled through the plate of thickness d is given by

S2ir(n. - n,)dsin2 .
AsinOB

Electromagnetic waves for which this phase difference is a multiple of 27r will experi-

ence no rotation in polarization and hence no attenuation as they pass through the

end surface of the plate at Brewster's angle. The wavelength of these waves can be

determined by setting d = 2mr in Eq. (3.70) and solving for A

A = (ne - no)dsin 2  (3.71)

rnsinOB

where in is an integer. Since the plate is introduced into the cavity at Brewster's

angle. all other wavelengths will suffer loss as they exit the plate.

In practice, birefringent filters are composed of a series of birefringent plates.

This is to provide stronger suppression of the undesired wavelengths and narrowing

the transmission bandwidth of the filter. By rotating the filter around the normal
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to the surface of the plate and hence keeping the plate at Brewster's angle to the

cavit " axis. one. can change the angle c between the optic axis of the crystal and the

direction of the refracted beam inside the piate. From Eq. (3.71 ). we see that such a

change in will result in a change in t lie -privileged" wavelength which is transmitted

without loss. In this manner. one can tune the laser to a desired wavelength.

A more rigorous treatment of the theory and design of these filters can be found

in the references cited at the beginning of this subsection. For a study of cavity

modes containing birefringent filters see [30] and a detailed discussion of the stability

of birefringent plates can be found in (31].

In this chapter. we have discussed the basic principles of designing a laser system.

We discussed the advantages and disadvantages of standing wave and ring cavities.

We presented an approach to the cavity design in terms of ABCD ray transformation

matrices and showed how they can be used to analyze the stability of laser cavities.

We also developed a technique for compensating for astigmatism in the intracavitv

beam. We then discussed the mode matching problem and showed how to optimize the

pump mode coupling into the cavity mode inside the gain medium. We also presented

a brief survey of the intracavity elements that can be used for unidirectional lasing

and tuning the laser to a single wavelength. With an understanding of the basics of

laser design. we now turn our attention to the theory of laser dynamics.
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Chapter 4

Laser Dynamics

An understanding of the behavior of any dynamical system requires a theoretical

framework within which the system dynamics can be analyzed. Such a framewokrk

usually consists of a small number of equations of motion. These equations of motion

are derived for an idealized system that mimics the physical system under investiga-

tion as much as possible. In this chapter. we present two basic equations of motion for

a laser system known as the laser rate equations. We then show how these equations

can be used to analyze relaxation oscillations exhibited by certain lasers. Many solid

state lasers exhibit these oscillations. In particular, the Ti:sapphire laser described

in this thesis exhibits pronounced relaxation oscillations when perturbed by external

excitations from the steady state. W\e also describe a numerical method for modeling

the dynamical behavior of the laser within the rate equation approximation. Finally.

we look at the threshold condition for laser action and see how this condition can be

used to determine the intrinsic cavity losses of a laser system.

4.1 Laser Rate Equations

The treatment of laser dynamics using rate equation theory involves the exchange

of energy between two important dynamical variables, the number of photons inside

the laser cavity q and the number of excited atoms n inside the laser gain nedlium.

These two quantities evolve in time according to the cotipled carity and atomic rate

qrationrs. The derivation of these equations can be found in most textbooks on laser

theory [16. 17. 32. :33]. The form of these equations depends somewhat on the model

used to describe the gain medium. We opt, for the four level laser moldel for the

Ti:sapphire gain medium, as shown in Fig. (4.1). We assume that the upper pump
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Figure 4.1: A general model of the four level laser pumping scheme. The decay rates
from the upper pump band 13 and the lower lasing level -y are assumed to be much
greater than the decay rate of the upper lasing level _/2. RP represents the rate at
which atoms are introduced into the upper lasing level.

band and the lower lasing level decays instantaneously compared to the fluorescence

lifetime. Assuming single mode laser operation, we arrive at the cavity rate equation.

which describes the time evolution of the number of photons q inside the laser cavity

dq(t) - Kn(t) [q(t) + 11 - q(t) (4.1)

Here K is the spontaneous emission rate per mode and % is the cavity decay rate

which is related to the round trip cavity loss t, (in percent per pass) and the cavity

round trip time T by
- ¢ - r -  (4.2)

^1 = 100T =7 42

Eq. (4.2) introduces r as the photon lifetime inside the cavity. The -'I*' inside the

square brackets in Eq. (4.1) is sometimes referred to as the "'extra photon" and

represents the first photon inside the cavity mode due to the spontaneous emission

process. Without this spontaneously emitted photon, the cavity photons would not

-build up." Therefore. this -l" is required when Eq. (4.1) is used to describe the

initial build up of laser action. At steady state, or other conditions where q > 1, this

term can be ignored.
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The atomic rate equation. which describes the number of atoms ,n in the i, wpr

state is giveiN b
d t)dIt- - .2't) - K(t)q ; . (1.3)

where RP represents the rate at which atoms are introduce into the upper [asing level

and ,2 is the tipper lasing level decay rate. The lifetime of the upper state. 72 . is

related to its decay rate by

-12 = 72'

Since it is assumed that there is no accumulation of atoms in the lower lasing level.

Eq. (4.3) also describes the evolution of laser inversion or the population inversion.

The steady state solution of Eq. (4.1) and Eq. (4.3) gives us an expression for the

number of atoms in the upper state

= =i (4.5)

and the number of photons inside the cavity

q = _ /12 r -  I "2 (1.6)

Here we have introduced the laser pump parameter r by

r .= (4.7)

The laser pump parameter can also be written as the ratio of the pump power to the

threshold pump power

I Vt h

Note that at threshold. r = I and from Eq. (4.6) we can write

n - . (4.9)

Comparing Eq. (4.9) with (4.5). we see that in the steady state, laser inversion is

'clamped" at its threshold value

n.s., = nth • (1.10)

We use these rate equations to look at one specific dynamical behavior known as

relaxation oscillations exhibited by certain lasers.
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4.2 Relaxation Oscillations: Laser Rate Equation Analysis

Many d(lnallic -sstems operating in the steady state will return to their steady state

after being perturbed if the steady state is stable. The approach back to the steady

state may not be monotonic. Instead. the system may approach the steady state

in an oscillatory manner. These oscillations are usually damped and are known as

rlaxation oscillations. In this section. we analyze the rate equations of Section 4.1 in

the presence of perturbations from steady state and see under what conditions a laser

system exhibits relaxation oscillations. We will determine the equations of motion

for the relaxation oscillations in terms of characteristic laser parameters.

Since the laser rate equations (4.1) and (4.3) are coupled., a perturbation in either

the number of photons inside the cavity or the number of atoms in the upper state will

result in a perturbation of the other. Treating the perturbations as small compared

to the steady state values, we look for solutions to Eqs. (4.1) and (4.3) of the form:

q(t) =q, + t(t) where f(t) <q, .4.11

n(t) n*, + q(t) where q(t) < n,. (1.12

Substituting Eqs. (4.11) and (4.12) into Eqs. (4.1) and (4.3) and keeping only terms

linear in e and q. we find the coupled rate equations for the perturbations to be

d ( (r- )i 2 q(t) (4.13)

dt
d~ ( t)dt = -^i, (t) - r12q(t) (1.14)dt

If we take the time derivative of Eq. (4.13) and use Eq. (4.14) for i). we obtain a

closed equation for c(t).

d'c.(t) dfdt)

W "12 (r - 1); 2 %E(t). (4.15)

A similar equation is obtained for population perturbation. Equation (4.15) describes

the perturbation in the cavity photon number. By introducing parameters .1 and ,-

as

23 = rr2 and , - (r - 1 (.16)
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we cai rewrite the equation of motion for the perturbation of cavity photon number

as
d_____) ,d((t)+2 +.t -(t) 2 o. + 2.17)

(t2 dt
This is the equation of motion for a damped harmonic oscillator with natural fre-

quency ,',, and energy decay constant 2.3. The solution of this equation is of the

form
e~t) oe" t  (MIS)

Substituting Eq. (4.18) into Eq. (4.17) we get the auxiliary equation

,,2 2 3 ,,, 2 = 0.( .1 )

which determines ,;. Solving this equation for w we find

=- 32 -3 ±,, (4.20)

where we have introduced a shifted frequency w, by

As is well known, dissipation shifts the frequency of oscillation [34].

The behavior of c(t) depends on the relative magnitude of ,:, and 3. We consider

three cases separately.

a.) For the case 2 < 32, ,' is pure imaginary and the solution from Eq. (4.18)

takes the form

C(t) = 4
-(3+)t + Be - (3- )t. (4.22)

Thus any perturbation from the steady state exponentially decays to zero. The system

is said to be oucrdamped. In this case no oscillations in the laser photon number will

he observed. The condition c.2 < 32 can also be expressed in terms of decay rates

of the laser system. By recalling the definitions of 3 and ,, from Eq. (4.16). we find

that the condition for an overdamped response is

(r - I)-,, < ' (4.23)

4
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This implies that the cavity decay rate must be less than or of the same order of

inagnitule as the upper state atomic decay rate. This is characteristic of niosI gas

lasers. where relaxation oscillations are not observed.

b.) \Vhen P. = 2 tle two roots to Eq. (4.19) are equal. For this case. tlhe

solution from Eq. (4.18) takes the form

C(t) (3 -t (At + B) . (1.21)

and the system is said to be critically darnpud. Any perturbation in the system decays

to zero asymptotically with time. This condition exits in a laser system when

(r - Ih = r-- 2  (4.25)

4

or the cavity decay rate and upper state decay rate are of the same order of magnitude.

c.) For the case ,,w > 32, ,,'r is real. Using Eq. (4.20). the solution from Eq. (4.18)

takes the form

f(t) =C 3 t ( Ad.;t + Be-iwt) . 1.26)

This solution can also be rewritten in the form

((t) = e- 3tCos(,,;, t + 0) . (1.27)

In this case. the system is said to be underdamped and displays an exponentially

damped sinusoidal response to the perturbation as it returns to steady state. In

terms of decay rates, we expect to see these relaxation oscillations in a laser system

where

"It > /2 - (4 . 8 )

This is the case for many solid state lasers. Expressed in terms of laser parameters

from Eq. (4.16) the oscillations around the steady state have a frequency given by

,A, = (r - 1)-2c - r 21, /44 • (4.29)

The perturbation has an exponentially decaying envelop characterized by a decay rate

given by

.7 = r%(1.:I0)2
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From Eqs. (1.29) and (4.30) we see that one can determine certain laser parameter,

b\ analyzing the relaxation oscillations. Indeed. this was one of the objectives of I he

experiments discussed in Chapter 5.

Once we understand the characteristic equations of motion for a dynariic systeiii

and their controlling parameters, we can now address the question of whether these

equations adequately describe the system dynamics in general. This is the subject of

the next section.

4.3 Relaxation Oscillations: Numerical Modeling

One of the best ways to stud,, a dynamic system is to model it and compare the

observed response with that predicted by the model. In this section. we describe a

method for modeling the relaxation oscillations exhibited by a laser.

Although the coupled laser rate equations of Section 4.1 are fairly simple in form.

exact analytical solutions to them are limited and complex in form [351. Therefore.

in order to effectively model any type of laser dynamic these rate equatin"im must

be solved numerically. The number of photons q and the number of excited atoms

n are very large for realistic systems. These large numbers are difficult to manage

numerically. We therefore introduce scaled variables that are better suited for nu-

merical modeling. The scaling should be chosen in such a way as to minimize the

number of parameters in the equations of motion. Also, the scaling should allow the

equations to be solved with parameters measured from the experiment. We present

two different procedures for scaling. These are suitable for modeling different types

of pert urbations.

[or the system when gain is perturbed we scale the cavity photon number and

the number of excited atoms by introducing the variables

q Kq

ri Knx = - (1.32)
11 th - .

Here q, represents the saturation photon numnber for the active atoms. It is defined

as the ratio of population decay rate 2 and the spontaneous emission decay rate per
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no(le K by

q=^1 2 (1.A3
K

The scale factor for population nth is the th.r'shold population inr rsion defined by

Eq. (4.9). Equations (4.31) and (4.32) imply that x is the cavity photon number

in units of saturation photon number and y is the populatiou inver'ion in units of

threshold inversion. Using Eq. (4.7) we can express the population pumping rate in

terms of laser pump parameter r and various decay rates as

RP = r ' * 411K (-4.3 1

Substituting the scaled variables from Eqs. (4.31). (4.32) and (4.34) into Eqs. (4.1)

and (4.3). the rate equations for the scaled variables are found to be

dt
Tt(1.35)

dy- 2(r- y- yx) . (4.36)
dt

Finally. scaling time in terms of the cavity lifetime 7, by

t
' = Ict = - . (4.37)

we can rewrite Eqs. (4.35) and (4.36) as

dx
- (y- 1)x +-- (4.38)d7 q,

dy
-- .(r -.- ,). (1.3!)dr

Here s is the ratio of the population decay rate "72 and the cavity decay rate

, '2= . (-1.4 0 )

These equations are appropriate for modeling a system where the gain of the laser

is modulated. Modulation of gain can be described in terms of the pump parameter

alone.
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1For systems where loss is modulated, both , and r are changing. so a different

scaling is more appropriate. For dynamical studies with this type of svsteni. we

replace q defined in Eq. (4.32) with the variable

Kn
-. - - . 11.111

;2

In this model we scale both the number of atoms in the upper state and the number

of photons in the cavity by the saturation photon number defined by Eq. (1.33). We*

scale the time in terms of the upper state lifetime b%

t
7 = 12t = - • (4.12)

r2

Using Eqs. (4.31). (4.41) and (4.42) into Eqs. (4.1) and (4.3) we obtain the new rate

equations

d- = z X+ - pr (4.13
dzdz = R--z(x+l1). 1.11I)

dr

where we have introduced a new parameter p by

p=- . (4.15)

'he normalized pumping rate

RNh
R RK= rp (1.1()

then depends only on the pumping rate RP and sta's constant as long as R o is

constant. The only parameter that changes when the cavity loss is modulated is p.

defined in Eq. (4.45). It is helpful to solve Eqs. (4.43) and (4.44) for the steady state.

For the scaled cavity photon number at steady state we find

R
X= -- 1 = r- 1 . (1.47)

P

For the scaled population inversion we find (neglecting the l/q, term)

.- p. (.8)
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We will find These steady state values useful in Section 5.2.1 when we use Eqs. (H.t3)

and ( .14 to model our experimental observations.

('sing Eqs. (4.38) and (4.39). or Eqs. (4.43) and (4.44). one could model a systeni

numerically depending on whether the gain or the loss is modulated. These equat ions

are scaled in such a manner that only a single parameter is needed to describe the

modulation of the system. For Eqs. (4.38) and (4.39). r is varied to represent gain

modulation. For Eqs. (4.43) and (4.44). p is varied to represent loss modulation.

From their definitions in Eqs. (4.8) and (4.45). these parameters can be measured

experimentally.

4.4 A Method for Determining Intrinsic Cavity Loss

The threshold for a laser system is defined to be the operating point at which the

round trip gain is equal to round trip loss. In other words, the rate at which the

signal grows inside the cavity is balanced by its decay rate out of the cavity. In this

section we derive an equation that represents the threshold condition and describe an

experimental method to determine the intrinsic losses of a laser system.

Let o represent the gain coefficient (fractional gain per watt per second) of the

laser and H'th be the pumping power at threshold. Then the threshold condition can

be written as

= u*th . (4.49)

where the cavity decay rate -y is defined in Eq. (4.2). If we let the total cavity decay

rate - be represented by the sum of the decay rate due to intrinsic losses of the

laser -,,,,t and an induced decay rate -1.4o._% due to a variable loss element such as an

acousto-optic modulator (AOM). then we can write

Sn = int + 1'./o1 • (4.50)

The threshold condition then becomes

"ft + "AOAM = o"'th . (4.51)
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If the losses are mall. we can express Eq. (1.51) in terms of percent loss. I nIrlg

Eq. ( 1.2) we write

(- = f,, + i.AO.-1 = gih (1.52)

Here g represents the gain of the laser in pt rcf d gain pf r pass pf r watt of pumping
power. In terms of the fractional gain coefficient a and the cavity round trip time T

we express g as

g = 10OTo . (1.53)

Since the intrinsic cavity loss ii,,t is a constant of the laser. we rewrite Eq. (1.52) with

f.4o.1 as a dependent variable

f.40M = gi,' th - , • 1.54)

This is an equation representing a straight line of slope g and intercept -,t. From

Eq. (4.54). one can determine the intrinsic cavity loss by measuring the threshold

pump power Wth required at different levels of induced loss .AOM. Indeed this was

the objective of the second set of experiments described in Chapter 5.

From this same experimenta method, we can also determine other parameters of

our laser system. Recalling the definitions of the laser pump parameter r in Eq. (1.8)

and the normalized pumping rate R in Eq. (4.46), we can write

g-
100 5 2T (4.5

where we have also used Eqs. (4.49) and (4.53). Therefore, once we know g from

the slope of Eq. (4.54). we can determine the normalized pumping rate R. which is

another constant of the system, for a given pump power It'. We apply this method

to determine R for our laser system in Chapter 5.

Finally, we can approximate the stimulated emission cross section a21 of the laser

gain medium. Near threshold. the gain coefficient is known as the small signal gain

coefficient. In terms of percent gain per watt per pass. the small signal gain coefficient

g can be written
g = 1009 0 1q2 13 2 2  (1.56)

Ahv.
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The qj terms represent efficiencies of transferring energy from the pump laser to the

laser Iransition. The quanturn efficiency r/0 represents the fraction of absorbed pho-

tons into the pump band that actually participate in the laser transition. The energy

efficiency term '7i represents the ratio of the energy of a laser photon to that of a

pump photon
hv, \ 1.57)

Here the subscript p refers to the pump and I refers to the laser. The fraction of the

actual pump beam that is incident on the laser gain medium is represented by r/2.

which accounts for reflection losses, scattering. etc. The fraction of the incident light

actually absorbed by the gain medium is given by q3. The upper state lifetime r 2

is defined in Eq. (4.4) and A is the cross sectional area of the pump beam passing

through the gain medium. Finally, hvp represents the energy of a pump photon.

Solving Eq. (4.56) for U21 we find

g A h vv
(Y21 = ~ v (O4.58)q~r

-10071o'7IM7 2 2 ~.~

All terms except qo in Eq. (4.58) can be determined experimentally, with a little extra

work. from the method for determining cavity losses outlined in this section. We will

use Eq. (4.58) in Chapter .5 to approximate the stimulated emission cross section a 21

for our Ti:sapphire crystal.

In this chapter we saw how Eqs. (4.1) and (4.3) can be used to analyze the relax-

ation oscillations of lasers. We also developed a method for modeling this dynamical

behavior in lasers. We concluded the chapter with a brief look at the threshold con-

dition and saw how the intrinsic cavity loss. the normalized pumping rate. and the

stimulated emission cross section can be determined with experimental measurements

at threshold. In the next chapter, we describe the experiments conducted with our

Ti:sapphire laser.
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Chapter 5

Experimental Results

In the Ti:sapphire laser, population inversion evolves on a time scale comparable

to the cavity lifetime. Such lasers are known as class-B lasers. Most solid state

lasers fall into this category. When perturbed, this class of lasers exhibits a wide
variety of dynamical behavior. These include simple relaxation oscillations. spiking

oscillations, and chaotic behavior. The type of dynamical behavior observed depends

on the frequency and depth of perturbations from the steady state.

This chapter begins with a description of the laser system used to conduct the

experiments. We then describe the data acquisition procedure. results. and analysis

of two sets of experiments. The first set involved the measurement of the relaxation

oscillations and spiking behavior exhibited by the Ti:sapphire laser. The second set

involves experiments that allow us to determine the intrinsic loss of the cavity by an

independent method. From the analysis of these experiments, we were able to derive

useful information such as the upper lasing level decay rate. cavity losses and gain

per pass for our laser system. Although the results presented here are specific to the

Ti:sapphire laser we designed and constructed, similar procedures and conclusions

could be applied to other laser systems as well. Information from these experiments

would be useful in other experiments on the dynamics of class-B lasers.

5.1 Laser Description

'The laser system used for the experiments described in this chapter was designed

according to the methods developed in Chapter 3. A diagram of the laser is shown

in Fig. 5.1. The laser cavity consists of two curved mirrors, each with radius of

curvature R = 10 cm and two flat mirrors for steering the long arm. All four mirrors
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Figure 5.1: Laser cavity design used for the experiments in Chapter 5.

were coated for high reflectivity in the wavelength range 650 to 900 nm and high

transmittivitv (>85(X) for the argon ion pumping lines of 488 and 511.5 nn. The

coat ing was optimized for incident angles of 200 for p-polarization. The mirror mounts

were constructed of anodized aluminum and had three contact points for adjust nient.

This mount design afforded precise translational and sensitive tilt adjustments with

80-pitch adjusting screws. The mirror mounts were secured to a 2-inch stainless steel

optical breadboard mounted on a four pedestal floating optics table.

The 2 cm long Ti:sapphire rod was cut with Brewster windows at both ends and

had a diameter of 4 rm. The rod was housed in a water-cooled copper jacket mounted

on a tilt/rotation stage. This stage allowed for rotational adjustment about all axes

of the crystal. The crystal was wrapped with thin flexible copper foil to ensure good

thermal contact with the cooling jacket.

The dimensions of the cavity were determined by uiIg the stability requirements

discussed in Section 3.2. The size of the laser was to be large enough to accommodate

various intracavitv elements and still fit the confines of the I' x 2' bread)oard. The

actnal length of the long arm was approximately 107 cm and the value selected from

the stability diagrams for 6 was about 1.5 cm (see Figs. :3.2 and 1.3). This gave a

total distance of 11.5 cm between the two curved mirrors along the cavity axis and

4.75 cm between the faces of the crystal and the curved mirrors. T1he physical round

trip length of the cavity was 118 cm. The angle of incidence at the curved mirrors

was 15.5". selected to give maximum astigmatic compensation in the long arm of the

laser, as detailed in Section 3.3.
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Lii' purnp beam was mode matched to the fundamental cavity mode with a

10 cm achromatic lens positioned 7.9 cm behind one of the curved cavity mirrors.

as described in Section :3.4. The theoretical position of 7.3 cm from Eq. :3.6S) was

initially used. then the lens was translated to optimize output. The mount for the lens

afforded two dimensions of translational freedom as well as tilt around the vertical

and lateral axes. The polarization of the pump beam was rotated with a half wave

plate (polarization rotator) anti-reflection coated for the pump wavelengths. The

vertical polarization was rotated 90" into the tangential plane for minimal loss at the

Brewster window of the crystal.

A Brewster's angle Faraday rotator and compensating waveplate were placed in

the long arm of the cavity to obtain unidirectional lasing. The combination was

placed inside the cavity to permit clockwise propagation of the laser eam in the long

arm, as shown in Fig. 5.1. A three-plate birefringent filter, inserted at Brewster's

angle was used to obtain single wavelength performance. Single mode operation was

obtained by introducing a 3 mm thick etalon into the cavity. The etalon has about

30 'A reflectivity centered at 780 nm for normal incidence. The entire laser system

was enclosed in a plexiglass dust cover to improve stabilty. The pump beam was

steered through a plexiglass tube to minimize fluctuations due to air currents and

dust particles over the 2 meters of propagation to the Ti:sapphire laser. The laser

operated stably in a single longitudinal mode. This was checked with the help of a

scanning spectrum analyzer. Experiments were conducted with this laser as described

in the following sections of this chapter.

5.2 Experiment 1: Relaxation Oscillations

There were two objectives in the first set of experiments. The first objective was

to determine the fluorescence lifetime. 72. of the upper lasing level and the intrinsic

cavity losses. f, (percent loss per round trip), of our Ti:sapphire laser. Both of these

quantities were determined by analyzing the results of the experiments in terms of

the linearized rate equation model introduced in Chapter 4.

The second objective was to see how well the full rate equations predicted the



olse(ved behavior of the laser. The theoretical model assumed a four level laser and

ignored all sources of noise, fundamental as well as deterministic. It assuined that

polarization dynanics are fast compared to the population and field dynarnics arid

that the lower level decays almost instantaneously to the lower pumping level.

The experimental method involved switching the cavity Q. or modulating the laser

cavity loss. The output waveforms from the laser were digitized and recorded as a

function of time. A series of measurements were made of the relaxation oscillations

at different pump parameters. From this series, one particular waveform was selected

at random to extract characteristic laser parameters. Once known. these parameters

were used to predict the relaxation oscillation behavior of the laser at other pump

parameters.

5.2.1 Experimental Procedure

In order to perturb the laser. an acousto-optic modulator (AOMI) was placed in the

long arm of the laser, as shown in Fig. 5.2. The AOM was manufactured by IntraAc-

tion Corporation. It consists of a quartz crystal. anti-reflection coated for minimal

static insertion loss in the 700 to 900 nm wavelength range. sandwiched between

two piezoelectric transducers. The transducers set up acoustic waves in the crystal

causing spatially periodic changes in the index of refraction. These periodic changes

give rise to a refractive index grating in the path of the beam. This grating causes

a certain fraction of the beam to be diffracted out of the beam path and acts as a

source of intracavity loss. The loss suffered by the beam passing through the AOM

depends on the angle of incidence of the beam and the amplitude of the acoustic wave.

An 80 MHz acoustic wave was set up by the driver (IntraAction Corporation Model

ME-SOB). The driver produces an 80 MHz signal whose amplitude is proportional to

the input voltage in the range 0 to I volt. The depth and frequency of modulation

(duration of acoustic power on) was controlled by pulses from a Krohn-Hite Model

2000 signal generator to the driver.

After the AOM was put inside the cavity, all elements were adjusted to minimize

the threshold of laser action. Laser threshold was found to be at 4.7.5 watts from the

argon ion pump laser when no signal was applied to the AOM. The cavity was then
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Figure 5.2: Experimental setup to conduct relaxation oscillation experiments de-
scribed in Section 5.2. The laser beam is represented by the light dashed line and the
pump beam by the heavy dashed line. The solid line represents electrical conn0ctioris.
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Figure 5.3: A timing diagram comparing the outputs of the signal generator, the
AOM driver, and the laser for shallow cavity loss modulation. The cavity experienced
greater loss during the time period that the acoustic wave was on.



loss lodlllated. Both the frequency and depth of loss modulation could be controlled.

('avitv losses are related to cavity Q by

Q =Z - (5.1
A f,

where L is the round trip length. A is the lasing wavelength, and ( is the percent

power loss per round trip. It follows that since the AOM modulates the internal loss.

it modulates the cavity Q.
Output from the laser was detected by a variable gain. high bandwidth. fast

photodetector using the light output from one of the flat cavity mirrors. To keep the

threshold pump power as low as possible, no output coupler was used. This setup also

allowed us to determine just the intrinsic cavity loss. without having to compensate

of output losses. The signal from the photodetector was monitored with a Tektrollics

2-165A 3350 MHz oscilloscope and digitized with a LeCroy TR8837F transient recorder.

The transient digitizer was housed in a CAMAC crate controlled by a LeCroy S0IA

GPIB crate controller. Both the transient digitizer and the AOM driver were triggered

from the same source. At the end of each measurement, the recorded waveforms were

transferred to an IBM PC/AT for further analysis. A full schematic of the experiment

is shown in Fig. 5.2. A timing diagram comparing the output of the signal generator.

the AOM driver, and the laser as a function of time is shown in Fig. 5.3. Data were

taken and evaluated for two independent experiments to determine the parameters

that govern the rate equations of Section 4.1.

5.2.2 Results

For the transient dynamics experiments, the cavity Q was modulated at two different

depths. Deep modulation resulted in the laser being completely off during the pe-

riod of modulation. This means that the cavity loss and AONL induced loss exceeded

round trip gain. Shallow modulation resulted in the laser operating continuously, but

jumping between different "cavities," one with a high Q and the other with a lower

Q. For the sake of distinguishing the response of the laser to the loss modulation in

these two cases, we refer to the transient oscillations in the case of deep modulation
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as .,pikwyg o.,cilhtion.s and those in the case of shallow modulation as rtaxation oscil-

lation.,. -fhe output waveforms were recorded for different pump parameters.. \t each

operatin g point, we recorded waveforms from a single sweep and from an average of

ten sweeps.

One particular waveform averaged over ten sweeps. chosen at random. was ana-

lvzed to determine all the characteristic parameters describing the relaxation oscilla-

tion equations of Section 4.2. The procedure for determining r2 and the corresponding

uncertainty is as follows. From Eq. (4.27). we see that the envelop of transient os-

cillation is a pure exponential with a decay rate 3. This exponential decay rate is

related to the ipper state decay rate -2 via Eq. (4.30). Therefore. knowing the plnip

parameter r and measuring 3 allows us to determine -12. The upper state lifetime is

related to the upper state decay rate by the expression

72 =(5.2)

To measure 3. we let p(t) represent the peak amplitudes of the oscillations front

the steady state. These peaks form an exponentially decaying curve according to the

expression

1(t) = 1 e -3 t . (5.3)

Here it, represents the amplitude of the initial perturbation and 3 is the decay rate.

The positions of the peaks of the oscillation versus elapsed time were fit to an expo-

nential decay curve to determine 3 in Eq. (5.3). This measured value of 3 was then

used along with the pump parameter of the waveform being analyzed to determine the

upper state decay rate according to Eq. (4.30). We then determine r 2 using Eq. (3.2).

The uncertainty in r 2 was estimated from the uncertainty in 3. Since the peaks

of the recorded waveform correspond to a specific number of counts. .V we assmne

a Poissonian distribution for the counts and take the statistical uncertainty in the

peaks to be

('70 (Z5.4)

The steady state value of the waveform was determined by taking the time average

of the la, ie half of the waveform. where the laser had reached steady state. The
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uncertainty in the steady state value was also estimated. The statistical uncertainty

in time separation between successive peaks was simply the root mean squared of

the deviations of the time period between peaks. If we take the natural logarithm

of Eq. (5.3). we can express .3 in terms of the amplitudes of the peaks and the time

periods, T. ln # - In ti
T =(.5.5)T

Using the laws of error propagation [36], we can approximate the uncertainty. A-1. in

3 to be

A3, 4(A + (A)o (AT+  (5.6)

Here Ap represents the averaged uncertainty of the peaks of the waveform. Ap,, rep-

resents the uncertainty in the steady state value of the waveform, and AT represents

the uncertainty in the time separation between peaks.

Using r = 1.:39 for the pump parameter of the waveform being analyzed and the

measured value of 3 in
23

2 = - , '(5.7)
r

we find the value for the tipper state decay rate to be

' 2 = 288 + 10 KHz. (.5.8)

The upper state lifetime 72 is then given by

= :3.47 ± .13psec (5.9)

To find [,. the intrinsic cavity loss, we first determine the relaxation oscillation

frequency ,'. from the measured waveform using the average time period between

successive peaks T,.,
2,r

:= T ."(5.10)

From the measured value of ,. we are able to determine the cavity loss rate, ,,. by

using Eq. (4.16) into (4.29) to obtain

.2 + 3

2- ) 2(1 - I)
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The i ncertainty in the oscillation frequency was determined from the uncertainty in

the time periods according to
1 . (3.12j

.:r Trl '

The uncertainty in -, is determined from the relation

\• J -% ( ;- ) 2 ( - % 2
.4 (A'.513

where
A-Y2  L3
-;-' -

Using the measured values for 3. ,:r. ,2 and r in Eq. (5.11), % is found to be

-,,, = 9.18 ± .05 MHz. (5.15)

Using Eq. (5.15) into Eq. (4.2) we obtain a cavity loss of

I = (3.6 ± .2) % per pass (5.16)

for our 118 cm cavity. This figure includes the static insertion loss of the AOM which,

according to the specifications, carries a loss of about 0.25 %.

Once the values for the upper state decay rate 32 and the cavity decay rate -/, are

determined, a relaxation oscillation frequency can be predicted for all pump parame-

ters and compared with the relaxation oscillation frequency measured experimentally

from the recorded waveforms. Figure 5.4 shows the results of such a comparison

for deep modulation. All experimental data for 'r were extracted from single sweep

records. Figure 5.6 shows the same comparison except that the experimental data

were extracted from waveforms averaged over ten sweeps. Error bars for the single
sweep results represent the root mean squared deviations in the period of oscillation.

-1he error bars for the ten sweep results represent the largest variation between the

single sweep measurement and the ten sweep measurement for a given pump parame-

ter. For completeness. a plot of the output power of the laser. measured by the same

detector used for detecting the waveform signal. as a function of pump parameter

is shown in Fig. 5.5. Figures ..7-3.9 show the same comparison as Figs. 5.4 -5.6 for

shallow modulation of the cavity.
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Figure 5. 1: Variation of oscillation frequency ,;, with pump parameter r. Experinmen-
tal points are from single sweep waveforms recorded with deep cavity loss modulation.
The continuous line represents the theoretical curve from Eq. (4.29). Parameters
and ,'2 were extracted from a single waveform averaged over ten sweeps at the pump
parameter r = 1.39.

10.0

(j3 U

c 7.5

0
"-p5.0U

D

D 2.5
0

0.0 i I I I

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

PUMP PARAMETER r
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ulation. The line represents theoretical output characteristics.
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cavity loss modulation. Experimental points are from single sweep waveforms. The
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sweeps for pump parameter r = 1.239.
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lh, experiment was repeated to explore the role of noise, intrinsic or extrinsic. in

the experiment. The same experimental procedure was used. with the exception that

only single sweep waveforms were recorded. All parameters were then extracted from

a single waveform as opposed to a waveform averaged over ten sweeps. The result for

the upper state lifetime was

Tr2 = 3.48 ± (A .1p7)

and the cavity loss was determined to be

I i, = (:1.6 + .4) '7( per pass5.1,

The plots in Figs. .5.10 through 5.1:3 show the observed and predicted spiking and

relaxation oscillation frequency and the corresponding output power as a function of

pump parameter. No error bars are shown in Fig. 5.12 since in many cases there were

only two peaks on the waveform. This single data point did not allow an estimate of

error in the period or frequency of oscillation.

5.2.3 Discussion of Results

The close agreement between the two data collection runs for the values for the up-

per state lifetime 7 2 . and the intrinsic cavity loss e. suggests that noise did not

significantly effect the experimental measurement of these quantities. except per-

haps at lower operating points. The value for the upper state lifetime can be corn-

pared with other measurements whose primary objective was to measure this value

precisely. Spectroscopic and lasing characteristics of Ti:sapphire have been of con-

siderable interest ever since its potential as a broadly tunable solid state laser was

recognized [. :37. 38]. Experiments to determine the fluorescence lifetime of the Ti '+

io. in A12 0 3 have been carried out by monitoring the fluorescence decay after exciting

a crystal with a pulse of radiation from a dye laser at various wavelengths [1. 39. 40].

The results of various experiments are consistent and show a temperature-dependent

upper state lifetime. The lifetime has a maximum value of approximately 3.85 psec

below 200 K. It then decreases rapidly in the temperature range of 200 to 400 K to

a value less than I psec.
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and -12 were extracted from a single sweep waveform for pump parameter r = 1.
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Figure 5.1: Variation of laser output power as a function of pump parameter r' fo~r
,hallow modulation in the second experiment. The line represents theoretical output
characterist ics.
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InI our experiments, the crystal was cooled by circulating water in a jacket sur-

rolinding the crystal. Good thermal contact between the jacket and the crystal wa

achieved by wrapping the crystal with thin. flexible, copper foil. This cooling kept

the crystal at a temperature of approximately 280 K. Extracting a value for the upper

state lifetime from the published results [1. 39. 40] for this temperature gives a lifetime

of 3.20 to 3.35 psec. Our results are consistent with this value, within experimental

error. This agreement gives support to our experimental method for determining the

upper state lifetime 72 by analyzing the relaxation oscillations. Further. this agree-

ment suggests that the assumptions made in deriving the equations governing the

relaxation oscillations in Section 4.2 were indeed valid.

The value of the intrinsic cavity loss [,, is unique to our laser system. Therefore it

can only be compared with a measurement of the cavity loss by a method independent

of the relaxation oscillations. This measurement was the primary objective of the

second set of experiments, the results of which are described in Section 5.3.

To see how well the rate equation model is able to predict the observed behavior of

the laser. we compare the experimental results with the theoretical predictions based

on Eq. (4.29) in Figs. 5.4. 5.6. 5.7, 5.9. 5.10. and 5.12. Such a comparison shows that

the general behavior of the relaxation oscillation frequency foliows the theoretical

prediction at low pump parameters (r < 1.5). At higher pump parameters however.

noticeable deviations from the predicted behavior appear. This same behavior is

observed in the output power of the laser. as shown in Figs. 5.5. 5.8. 5.11. and 5.13.

The output power should increase linearly with increased pump power. as depicted

by the continuous line in these figures. This deviation of laser output from a linear

dependence on the pump parameter has been observed in other experiments [22.

41[. This departure from the expected output power is probably due to temperature

changes inside the mode volume of the crystal at higher pump powers. As previously

noted. the upper state lifetime r2 is temperature dependent. with a steep slope in

the room temperature operating regime. This means that a small change in the

temperature inside the crystal can result in a significant change in the tipper state

lifetime. Recalling the small gain coefficient given in Eq. (4.56). we see that the gain

of the laser has a linear dependence on the upper state lifetime. A shorter upper
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state lifetime reduces the gain per pass inside the laser and hence would decrease the

out put. This would have tie same effect as lowering tie pump paranet er r. since t lie

threshold for lower gain requires greater pumping.

The effect that a change in the tipper state lifetime would have on the relaxation

oscillation frequency can be determined by analyzing Eq. (4.29). The dominant fre-

quency is ,,. found in the first term of the square root and defined in Eq. (4.16).

Since r decreases with a decreasing upper state lifetime, we would anticate that the

relaxation oscillation frequency would decrease as the temperature insi ,he crystal

goes up. This is what is seen in Figs. 5.4. 5.6, 5.7, 5.9.5.10. and 5.12. At lower pump

parameters. in the range of r = 1.0 to 1.5, the observed relaxation oscillation fre-

quency agrees with the predictions of Eq. (4.29) derived in Section 4.2. This suggests

that the simple laser rate equations (4.1) and (4.3) describe the dynamics of the laser

system well for lower pump parameters. where thermal effects can be ignored.

5.2.4 Results of Numerical Modeling

We also analyzed the data obtained from our experiments in terms of a model that

describes the dynamics of the system. This comparison between theory and experi-

ment is more detailed than that based solely on Eq. (4.29) and provides a much more

stringent check of the validity of the simple rate equation model. In Section 4.3. a

method for modeling the laser rate equations (4.1) and (4.3) of Section 4.1 was pre-

sented. For a loss modulated system. the appropriate equations of motion were given

by Eqs. (4.43) and (4.44). These equations were solved numerically with experimen-

tally measured parameters using the Runge-Kutta method of algorithms. Computer-

generated waveforms were then produced based on these solutions for comparison

with the recorded waveforms. Using this technique, we modeled several waveforms

selected at random. The method in which the computerized model "laser- was used

to generated the various waveforms is as follows.

For deep modulation, the model equations were solved starting at f = 0 with the

number of atoms in the upper lasing state at the scaled stationary state value of p

as defined in Eq. ( 1.48). Using the results from our first experiment for 2 (5.8) and
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5.15 into E(. 1.-15). tile equation for the modulating parameter, we find

p =- : 31.9. (5.19)

The normalized pumping rate R was set as defined by Eq. (4.46) uising the pump

parameter of the waveform being modeled and the value of p given in Eq. (5.19). \Ve

started with the laser -off" initially. For this. the value for the number of photons

in the cavity was first estimated to he 10-10. based on the value of the saturation

photon number q, defined in Eq. (4.33). The actual number of photons in the cavity

mode is indeterninant because of spontaneous emission noise. The initial number of

photons was adjusted to get the model laser to initiate buildup at approximately the

same time as the recorded waveform. With the parameters initialized as described.

the waveform generated by the model represents the turn on of a laser recovering

from deep modulation.

Comparisonq of the measured and model-generated waveforms for deep cavity

loss modulation are shown in Figs. 5.14-5.17. The model-generated waveforms are

represented by the continuous curve and the measured waveform by the dotted curve.

Figure .5.14 compares a single sweep waveform at pump parameter r = 1.29 with the

model predictions and Fig. 5.15 compares a waveform averaged over ten sweeps with

the model predictions at the same pump parameter. Figure 5.16 compares a single

sweep waveform at pump parameter r = 1.39 with the model predictions and Fig. .5.17

compares a waveform averaged over ten sweeps at the same pump parameter.

For shallow modulation, the initial values for the model laser were chosen in

the same manner as for deep modulation, except that the cavity photon number

was set to its stationary state value (r - 1), as defined by Eq. (4.47). The loss

parameter p was then modulated at a frequency corresponding to the modulating

frequency of the AOM in the actual experiment. The model was allowed to -run- long

enough to eliminate transient effects of the initial conditions. Since the exact depth

of cavit% loss modulation was not known for the relaxation oscillation experiments,

the depth of modulation for p was determined by varying the fractional change in p

until the steady state values of the recorded and modeled waveforms overlapped. The

actual depth of modulation for the cavity loss was then estimated from this fractional
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Figure 5.14: A comparison of recorded and modeled waveforms representing the spik-
ing oscillations of the Ti:sapphire laser with deep loss modulation. The solid curve
depicts the modeled waveform generated by the model described in Section 1.3. The
dotted curve represents the single sweep waveform recorded at r = 1.29.
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h'igure 5.15: A comparison of recorded and modeled waveforms representing the
spiking oscillations from deep loss modulation. The solid curve depicts the model-
generated waveform and the dotted curve represents the recorded waveform averaged
over ten sweeps at r = 1.29.
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chime in p. WVith the parameters for the mode] determined as described here. the

generate I waeforms represent a laser systeim being disturbed with shallow cavitv

loss modulat ion.

Figures 5.18--5.21 show the comparison between the model predict iolls and the

measured waveforms for shallow cavity loss modulation. The model generated wave-

forms were adjusted on time scale to compensate for the trigger delay in the recorded

waveforms. The depth of loss modulation for all modeled waveforms was about 0.3 V.

Figure 5.IS shows a comparison of a single sweep waveform recorded at pump param-

eter r = t.28 with the model prediction. A waveform averaged Ct ten sweeps at

the same pump parameter compared with the model prediction is shown iii Fig. 5.19.

Figures .5.20 and .5.21 compare the waveforms recorded at another pump parameter

of value r = 1.50 for a single sweep and averaged over ten sweeps with the iespective

model predictions.
By comparing the recorded waveforms with the model-generated waveforns we

conclude that the model describes the qualitative behavior of the laser from loss

modulation weil. Quantitative comparisons between the model and the actual laser

behavior are linited by a number of factors. First is the fact that the recording of

the actual laser behavior by the transient digitizer is limited by the speed of the

digitizer. A comparison between the signal rise time on the oscilloscope and the

rise time displayed on the recorded waveform indicated tha' the bandwidth of the

transient recorder was less than that of the detector. Second. since the model uses

experimentally measured parameters, uncertainty in the measured values will result

in uncertainty in the modeled waveforms.

\Ve can also derive conclusions based on the differences between the single sweep

waveforms and those averaged over ten sweeps. For the deep modilation waveforms.

the averaged waveforms consistently have shallower initial peaks or "'spikes" than

the waveforms recorded from single sweeps. Fer shallow modulation t01. difference

is not as pronounced. Slight fluctuations in the time to reach this first peak would

result in an overall decrease in the amplitude of the spike as it is averaged. This

suggests that the rise time to the first peak fluctuates more from a cavity with deep

loss modulation than for a cavity with shallow loss modulation. lhe somirce of this
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Figure 5.18: A comparison of recorded and modeled waveforms representing the re-
laxation oscillations of the Ti:sapphire laser with shallow loss modulation. The solid
curve depicts the modeled waveform generated by the model described in Section 1.3.
The (lotted curve represents the single sweep waveform recorded at r 1.28. Depth
f loss modulation for the model was 0.3 '/c.
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I- .l'ire -. 119: A (omparison of recorded and modeled waveforms representing the re-
laxat lo, oscillations from shallow loss modulation. The solid curve depicts the model-
generated waveform and the clotted curve represents the recorded waveform averaiged
over ten sweeps at r = 1.28.
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Figire 5.20: A comparison of recorded and modeled waveforms representing Ihe Ire-

laxation oscillations from shallow loss modulation at pump parameter r = 1.50. The
solid curve depicts the waveform generated by the model and the dotted curve rep-
resents the recorded single sweep waveform. Depth of loss modulation va> Ui.: .
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Fi,,ire 5.21: A comparison of recorded and modeled waveforms representing the re-

laxat ion oscillations from shallow loss modulation. The solid curve depicts the model-
generated waveform. The (lotted curve represents the recorded waveform averaged
over tcrn sweeps at r = 1.50.
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slight temtporal fictuation for the deep modulated cavity is (uant11 noise since the

laser i, off (hiring the time the cavity suffers large loss. The buildup time to the

first peak is dependent upon the niniber of photons insid(e the filn(lalimitt a] /)iiode of

the cavity. The buildup of the laser radiation starts once a population inversiont has

developed and a spontaneously emitted photon passes through Ile gain inteditii. The

average time for laser buildup decreases as the number of photons present initially in

the cavity increases. The study of this quantum noise and its deterministic effect on

the rise time of a laser signal offers an excellent opportunity for further research.

5.3 Experiment 2: Cavity Losses

In Section .5.2. we described an experiment to measure the intrinsic loss of a laser

system by studying its relaxation oscillations. In this section. we describe another

experiment that was carried out to determine the intrinsic cavity losses. Ihis 1net hod

also allows us to determine the normalized pumping rate R of our laser as defined by

Eq. ( 1.16) and estimate the stimulated emission cross section o 21 of the Ti:sapphire

crystal. The theoretical background for this experiment is given in Section 1. 1. To

carry out this experiment, the loss offered by the acousto-optic modulator used in the

experiment was calibrated. The experimental procedure consisted of measuring the

threshold pump power as a function of the AOM loss.

5.3.1 Experimental Setup: AOM Calibration

Our objective in calibrating the AONl loss was to determine the percent loss out of

he primary beam as a function of iiipit voltage to the driver of the AONI. The AONI

was placed at normal incidence immediately outside the Ti:sapphire laser cavil Y. The

laser was then operated at a certain pump power above threshold. The light output

from one of the cavity mirrors was allowed to pass through the \OM. Th zero order

lea in IiI the transinitted light illuminated a photodetector. The detector was placedI

far enough away from the AONl to ensure sufficient separat ion het ween the zero a ii

higlier order diffracted beants so thal they would not he detected. The signal front

the photodetector was displayed on an oscilloscope art digilized and recorded ,v i fht
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I ra II it, I It (It t4)t I zer. H it ,outi' of DC( voIt age to the AOM d Iriv'er wa,, a 1Power lDes9 gI is.

Iii. Nli~h'l h;7()5\ )( DC powr sipl~v. [The carrier level (bias) oni Ihe driver was, sei iT

Zero. I'l( D(' vo~ tlt age to t ie (, dri ver was iiicreiiieit ed I II si cps oh 0 IOUIIiV InIi i rait,

f'rot 0( to I V. Wa veforiiis were recordled at each level of' DC )( Ti Ni t lie r(, I

To 1mi i1 imize tile effect of fluctuat ions int thle pumip an~d t he I i :a ppli ire laser. the

wav-eforms were averaged over 100J sweeps. The recordled wavefornis were t lien fitrt her

time averaged over the 2 mis dutrat ion of thle sweep to dleterine ain average valuie for

the light intensity. Any cont ribuition fromn the detector offset was siibt racted fromt

he measured mean signal prodlucinig a nu~mb~er A-1, where x represents, thle applied

volt age to the driver and N represents the average intensity of thle transmit ted Learn.

Percent loss for thle applied1 voltage was dletermined according,- to tilie relation

~loss Induced Lv AOM1=N - N.X 100 5

The data points showing V loss a~s a function of DC volts applied to thle dliVer are

shown in Fig. 5.22. The straight line is the best lit to thle data polits. lie slope

of this line gives the relationship between loss induced out of the primary Learnl arnd

voltage applied to the AOM driver. This relationship was determined to be

loss = 0.0l21V/tnV . 5

The uncertainty in this value is less than 0.15(/c of the mneasured v-alue.

5.3.2 Experimental Setup: Cavity Losses

On rce tile .\OM~ was calibrated, it was placed at normal Iniiidence ii thle long arin of'

ilt c avi tv. .\II lilnt racav t v element s Were adj iiIe t I n Ir i ietetI lo .wii

was, let ermiined to be at .1-5 watts of' pumip power. Ont put froni thle laser was

iiioglti ioed by a hiigh gain rideotect or front reflect ions off one of' I hie Blrewst er wvindihows

of h ie crkst a I as shown M Ti [i . 5).23. Thiis light %%as fiIt ered Iwxithi a colored qlass

filter anrd focused onto thle (letect or. IThe signal front the (let4ct or was I iol ii 0red(

wit i a ni oscilloscope. [lie thIires hold coiidit ion was dcli ted as the4 po int ati whtichi the4

Iii ct iiat ions in t the signal were equal tot t lie, average of t lie, s ignial . I'( i nt eisit v of t Ie(
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F~igure 5.22: Loss calibration curve for the nt raAct ion C orp. acolisto-OJ)t WC iulo'u lit I of

used in the relaxation oscillationl and the cavit v loss experiments. Data were a ken

at normal incidence using outplut from the Ti:sapph Ire laser.

pumrp power was measured using a photodetector monitoring the reflect lons of Jpliip

light from the cavity curived mirror. as shown in Fig5..Threlcd i.tws

attenuiated through a series of neutral density filters.

\'oltage app)lied to the AO\I driver was incremented in steps of approximiatelY

M0 II\. The range of applied voltage was from zero to a maximumn of approximvately

200 in\V. At the level of loss corresponding to 200 mk' to the driver. thie pumip power

was insufficient to overcome the .\OM induced loss. At each Increment of voltage to

h fe AO\I driver. thfe pump power was increased uintil1 the laser threshold (-ond( it lonl was

mect. For each value of voltage applied ( mV) to the AOMI. threshold punip power was,

recorded from lt- out put of t he (let ect or in volts. This process was repeate th iirte

j Wit - in ' liccessloll. Flach measurement was converted Ito dat a points , flo~

Il he volt age applied to the A()NI driver was converted into0 percent loss b ased onl thle

f'rula give inm Eq. .5.21 ). -Ill(e signal from the photodetector was convert ed into

watt of ut iP power by nsing the formula

Watts r0).1) x signial volt aat' x 2.0(52

I I is formiula %v iv, det ermuin11ed b%. calibrat Ing thle out put volt age from I hie pliol t )tl cl orI

agfainst thlit out pit power readlings froni the nueter omi lit', power >utippl~v of lie pmiiip
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Id wtr-. F I it v, It aLe front t hie detect or was recor(I~~ at I wo \-allIies of puit ij powxer

arid 11) watt.;,) as Ind~icatedl oil t ie mret er otti the powver siipplY. This volt~g i~'ww

henl rte(luiced hYV the volt age readling obt aitiel front t he det ector whent te IlilvInt

lbearn was llocked withI a b~eami dliini) andily backrouf(l l1it wads dltedi4(. I1bis
redutct ion represented approximately 1 0YX of thle -inllock('Il value. Fihe rc'atlt III,_,

volt age readings corresponding to I te two prip power settings were compared w\It i

he power mneter readlings to est ablish a scale fact or of - 2.

5.3.3 Results

A\ll the dlata points of VX loss with threshold pumnp power were Ihen plot ted and hii ttd

with a line of minimutm regression. The results are shown in Fio. 5.21 I'lThe dat a

points are shown for onlY two of thle three runs to minimize oVerCrowdhitg of I hie d at a

points. The straight line dlepicts the best fit to all (data points. The intercept of
the straight line on the ( ,axis gives the value of (.the intrinsic cavil v los, in

acCordance with Eq. (4.54). The measured value for the Intrinsic cavityv loss frI'onT

these measurements is

(2.9. ± .5)(A(--).23)

Ii ordler to determine the niormlalizedl pumiping rate R? deliitcd hy EKq. (I. tfi). we

nmeasu~red the slope of the line of regression. As described in Sect ion 4.. thle slope

represenits y. the percent gain per pas through the cavity l)er watt of pumpIII Jmwer.

The mieasuired value of y was

Ig (0. 707 ± 0.011t) V/ pe'r watt Ppas 5.2 1,1

1'inrg this valu te ]it Eq. (1.5.5 with the upper state decay rate (let ermi ned front thle

first oxperiment we find

I? = 7136 ± .381 x 1

I III,, experimntt also allows its, to es~timate t he galin cross sect ion of, thle nled i urnl

wit It the help of Eq. ( 1.56). Tlie efircieticies lin Eq. 04.56i) were e'st itiated as follow'.

The qtantirun efficiencY Conuld tiot be Iteasured (IirectlY. b~itl we, est itmat ed it Io b e

7.2')
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)I I' I)Ite\ i( I I ex))er Irlerlts '1. I1). 121. 1 le eIlker!V efie iencv( 1/1 Was (leterililleil

fnrut ii ! 1.51 usli ii 50i0 i as hilt average wavelentig I of thle mp1) phio imsd

I 1111il a - lhe averagYe wavelvillt it of a laser phuoti

ii _- 0.6 . 15.27

The pri mary loss in the t ranlsm~issionl of tile pumpIII lealni to t he cryst al was frotl

reflect ions off the curvedl cavItY numrror prior to the crvst al. Mleasuiremets of tii

reflected beam compared with the out put from pump laser showed a conlsistent 4,!,,

of 28tA . This gives anl efficiency 112 of

1/= 0.-72.

Single pass absorption measurements of thle crystal1 showed that app~roximnately s3'/ of

thei pump beam was absorbed by the crystal over a pumping range of 0.5 to 7.0 wil ts.

This give(-s

3= 0. 815.9

To determine A. the average cross sectional area of t.-(, pumnp beam Inside thle crysial.

we refer to the mode mnatchinig p)rob~lem described in Sect ion 3. 1anl tile cltarac teist I(5

of the spot size at the beam waist given in Section 2.3. For otur cavity, the Spot sizeI

at tilte beam waist was est imated1 to lbe 2-5 microns (see F-igs. :3.1 an~d 3.5). Since tilt

c-r\vst al is 2 cmi long. we take the average spot size to be at a posit ion 50 min mside thet

crysl al 1 50 mmn). To del ermnile the spot size at this location. we use Eqs. (2.1II

aml l 2.49)) to obtain

:Z 10 microns 5 .10)

13 1V \tilt alt aVerage cross sect ional area of t ie pii 1111) blti

..I x~ I o- ci' 5.3 1

Isimn litese valuies In E.( I.5 s). we est inial e the the silmlalted ellssion1 crOSsN sect ion

t o be

T21 ~II .l2 13



5.3.4 Discussion of Results

I-he close avreetinent in I he measured valies for the int rinsic cavit v loss 1< btw ,en

this experimnenit and the relaxation oscillation ex)eriments suggests that hoth exper-

imental techniques are reliable. Indeed. a procedure based oil variable loss similar to

that used in tie secondi set of experimnents has been use( )Y Sanchez r1 al. to nteasllre

the intrinsic loss of a Ti:sapphire laser [41]. However. the techniqlte of deteriningy

cavity losses by analyzing the relaxation oscillations of a laser is a new technique that

can be easily applied to other solid state lasers.

For our results. the slightly higher value for the intrinsic cavity loss from the first

experiment is probably (lue to an increase in thermal losses with increased pulping

power. The values of loss from the first set of experiments were measured from data

obtained while the crystal was being pumped with approximately 6.5 watts from the

pump laser (r = 1.39 and Wth = 4.75 watts). Comparing this pump power with the

pump power used in the second set of experimrients (see Fig. 5.24), we see that the

data from the second experiment was for the most part obtained using lower pump

powers.

Schulz gives an excellent account of the thermal effects in the Ti:sapphire crystal

in [22]. He estimates that between 30 and 45 percent of the power absorbed by the

crystal is deposited as heat. resulting in thermal lensing and a change in the index of

refraction inside the crystal. Both of these effects have the result of "'detuning" the

cavity or increasing loss.

The gain cross section has been measured using several different experimental

techniques fl. 38. 10. 11. 12. 13]. The measured values range from 6.5 x 10 -"( cr

to 1.5 x 10-1' cm' depending on technique and wavelength used in the measurement.

Our result agrees well with these measurenments.

In this chapter we have described in detail the laser system used to conduct two

different experiments. The simple laser rate equation approximations developed in

(Chapter I seem to describe well the dynamical behavior of the Ti:sapphire relaxation

oscillations. The cavity loss experiment s confirmed that the int rinsic cavil v losses can

be deterniited from relaxation oscillations. Both sets of experiments open 111) nany

opportunities for studying tile dynainics of Ti:sappjhire lasers. Some of these vill be
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Chapter 6

Polarization Properties of Gaussian Beams

Our treatment of laser beams in Chapter 2 was within the framework of the scalar

wave equation (2.7) and the paraxial approximations (2.23) and (2.24). For most

applications which do not involve the polarization properties of laser beams. this

framework is quite adequate. Indeed, the cavity design and experiments described

in this thesis were developed within this framework. When describing the polariza-

tion properties of laser beams however, a scalar representation is inadequate. Even

for a linearly polarized laser beam, a scalar description of a finite cross section laser

beam is inconsistent with Maxwell's equations (2.1)-(2.4). The transverse natire

of the electromagnetic field expressed by Eqs. (2.1) and (2.3) implies that th- spa-

tial variation of the field in directions transverse to the direction of propagation is

coupled to the polarization properties of the field. Thus it is well known that spa-

tial variation of the field in the direction of polarization gives rise to a longitudinal

field component [44]. This coupling of the transverse spatial variation of nonplaiar

wavefronts to polarization was investigated in an interesting paper by Fainman and

Shamir [.15]. They analyzed the cross polarization in , pherical wavefront from a

point source. They also recorded experimentally the cross polarization of a linearly

polarized fundamental (;aussian beani passing through a pin hole. Simon. Siidar-

,han and Mukunda [441 used an analysis of Maxweil's equations in the relativistic

front form to establish the polarization properties of the fundamental Gaussian laser

beams, Several other approaches to this problem have been discussed, including po-

tential formulation of Xlaxwell's equations [46. 47] and a power series expansion of

electromagnetic fields [48]. In this chapter, we present another approach to this prob-

lem. Our approach is simpler and more direct amid allows us to establish he general

polarization structure of paraxial Hlermite-Gaussian niodes of a laser. We also present
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ex wt t ~!t levjdlic(e for t his si'Idtreising t he lintearly polarized1 beam fronm an

argon ion laser.

6.1 Paraxial Solutions to Maxwell's Equations

In Chapter 2. we derived the p)araixial wave eqilat ion (2.26) and (developed a soltit hill

representing the basic characteristics -o-f Gaussian beanis. In this section. we deter-

mine the form of paraxial solutions to NMaxwells equations which allow uis to better

represent the polarization prop)ertijes of' laser beamns. I.Or quasi- mniochromia tic fields

propagating iW the :-direction. we write? the electric and magnetic fields of the wave

as

E~r~t) E~r)(kz~.a (f() + E,(r)C- + I7tre!t (kz - ti

f3(r. t) B(r)c(z~t BI,(r) 1 + B2 (r) (2 + R 3 (r) ) ( (i-i.

Here E(r) and B(r) dlescribe the transverse spatial profile of the beam and ('. , -in

( re unit vectors along the xr. y, and z-axes respectively. For the fields in EqIs. I h. I '

ald (6.2) Maxwell's equations in free space become

ikhE3 (r) + V E(r) = 1 0 6.3)

1'" 3 x E(r) + V x E(r) = ikcB(r) . (6i. 1)

,A'B3 (r) +±V -B(r) =0 . ( 6.-))

i143 x B(r) + V x B(r) = -,*-kE(r) .)ii

Fromn thlese equat ions we see t hat each cartesian com1ponent of thle eleci nic and niag-

nletic field satisfies the scalar wave equation (2.7). For paraxial beami like soltion(s.

he inequalities defining the paraxial approximation EqIs. (2.23) and (2.21 1 hold for.

each field component and each component satisfies the p~araxial wave equnal in (2.26).

These courtponernl s are riot a rbit rary. Thyare coup~led via ELIs. (6.3) (6.6). lir the

paraxial approximation of EPqs. (2.23) and (2.21). K'qs. (6.31 ari(1 (6. 1 allow its to

express the longitudinal field components in t ermns of the transverse field comiponent

Fdr)~i i(d. 7)2



H HNUNSAPHIE LAEF'II I H FORE S OF TECH

I EIE E IG-TR.NAL HLEEONAUI9um m imIFE F .FAFTN



IMAGE EVALUATION

"# TEST TARGET (MT-3) , '.,

IIIIIN Illl llIIl111.0 L~m 12 2.5

4 " 1&2

SPHOTOGRAPHIC SCIENCES CORPORATION _ . g

770 BASKET ROADP.O( BOX 338C

WEBSTER, NEW YORK 14580
(716) 265-1600



B3(r) = III +i) 12

where we have used tie inequality from Lq. ( 2.23 in arriving at these etualiolls.

I-sing Eq.(6. I) we can express the magnetic nIeld components in terims of the

electric field components as

I (OI &E01  ,cB1 (r) -E 2 +.)1T2 I q2  ).2)

I, dy x2  k Ox
cB 2(r) = El + E, d' x2  02 E,2 (6.10)

cB 3(r) = - (OE 2  OI)

Sinifilarly. using Eq. (6.7) and the paraxial wave equation (2.26) in Eq. (6.6). we can

express the electric field components in terms of the magnetic field components

E,(r) = c B2 + I (O'B 2  ,2  I 2 B1 (B2.12)

2k2 dX
2 j~ ()2U' V r7)jB.12

E 2(r) c [B, + 1  ( yB  B I o2 .1B.)

= c 9(0B2  OB)E-1 (r) = -. x] .,

In writing Eqs. (6.7) and (6.8), we have kept terms up to 1/(kw)2. where wv is some

characteristic length scale associated with the transverse beam profile. An inspection

of these equations shows that the electric and magnetic field components can be

expressed in terms of two solutions of the paraxial wave equation (2.26). Let us

denote these solutions of the paraxial scalar wave equation by f(r) and y(r). then

1 (0'.f(r) 2 f(r)+ I 02g(r) (6.15)
E'(r) = f)X2 dy 2  2k29 OxOy

I (a2g(r) 02 g(r) I Of(r)
E.2(r) = g(r)-7, )x O 2  -+ 2 . (6.16)

____~r 0)g(rt'\
E3(r) = I r + (- . 6.17)

I ( Og(r) )2g(r)+ I I)2f(r) 6. 1
cB,(r) = -g(r) + O -.i z  2k 2 )
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1 ( 2 f (r) 0'f(r) I __l_(r)

cI3A(r) = f(r) +,7 ).2  .x / 2 0MYr (6. 19)

(1~r) = - i (iqlr) f(r)) (20

One can easily check that Eqs. (6.15)-(6.20) satisfy tile paraxial Nlaxwell's eqla-

tions (6.3)-(6.6) up to terms of order l/(,') 2 . We now consider some explicit exam-

ples of these solutions.

6.2 Linearly Polarized Electromagnetic Waves

From Eqs. (6.15)-(6.20) we see that finite cross section electromagnetic waves, in

general, have a longitudinal field component. In this sense it is not possible to have

pure transverse electromagnetic beams. However, since the longitudinal component

is smaller by a factor of 1/kw compared to the transverse fields. it is possible to have

beams that have dominant transverse polarization. We now examine the form of a

linearly polarized electromagnetic beam.

Without loss of generality, we take the direction of dominant polarization to be

the x-direction. Then. choosing

f(r) ='mn(r) and g(r) =0. (6.21)

we find Eqs. (6.15)-(6.17) take the form

E("")(r) = .4, ,,n,(r) . (6.22)

EI 02 _'mn(r) (6.23)E~m )r)= 2k2  OxOy

E( ,, ) -1 O .,,r,(r) (6.21)3; r k 0.r

where .m,,(r) is given by Eq. (2.58).

In writing Eq. (6.22) we have dropped terms involving second order derivatives

of L'm,,(r) since compared to the first order terms they are smaller by the factor

1/(kw)2 . The leading term in the cross-polarization term E"")(r) is smaller by the

factor l/(kw')2 compared to the E,-component. It is kept here because if the beam
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6.22) (6.2 I) is passed I Iirough a crossed polarizer. then h .. "'(r) is t!I,

ollv terin that is transmitted. The longitudinal term is smaller I)v the factor 114kw

compared to t lie dominant transverse component.
The magnetic field components corresponding to Eqs. (6.22_)-(6.2 1) are obtaine l

by the relations

cBI (r) = E."(r) , (6.25)

cB"'"(r) E*""( r) (6.2 7
3 k dyq

Using the properties of Hermite polynomials we can write down explicit, expressions

for E,2(tr) and E(m")(r) as

E= f ) A. ',(r) . {6._8)

E( mn)(r) _ r4) ( 4 rnrn ..-1n - 2 1-,rn...r+ -4(kwt)2

2n4'rn+1.n-I + h',,+,n+1 ) (6.2)

E?"')(r) Amv ( 2 rnvim.,, - ',m+l.,n) - (6.30)

These equations explicitly indicate the relative magnitudes of various field compo-

nents. A more quantitative measure of the relative strengths of various field conpo-

nents is obtained by comparing the powers associated with different field components.

Let the total power associated with the beam be P,. Then the power associated with

different electric field components is found to be

P = -=.Jc 'RC E Edrd= -- (6.31)

P, (2m + 1)(2ri + l)
-2 = 2 i(kj 4  (6.32)

P, (2w + 1)
- 2 (k ,j)2 (6.: )

It follows from these equations that the power associated with different field conipo-

nents is a constant of propagation. that is. it is independent, of -. Equations (6.11)

(6.33) together with Eqs. (6.28)-(6.30) show that an electromagnetic beam predom-

inantly polarized in the .r-direction has a small cross-polarization COMponent in tlhe
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.q-,lirectil in addition to a small longitudinal component. The longitudinal field

component is smaller by a factor of l/k'r and the cross-polarization field component

is smaller bv a factor of 1/(klt')2 compared to the dominant polarizat IOn coMI)onent.

From these considerations it is clear that a pure transverse linearly polarized elect ro-

magnetic beam is the geometrical optics limit (kit, --+ oc) of Eqs. (6.28) and (6.29 ).

In general. for finite cross-section beams. both the cross-polarization and longitudinal

field components must be kept for consistency with Maxwell's equations.

The presence of longitudinal field components is also required for a correct de-

scription of energy flow in the beam. Energy flow in a beam is described in terms of

rays. which are curves along which energy is transported. The tangent to these curves

at a given point indicates the direction of energy flow of the Poynting vector. For an

electromagnetic beam, rays should converge as they approach a focal region (beam

waist) and diverge as they leave the focal region. The Poynting vector averaged over

an optical cycle is

S /cocIc? (E x B) (6.3 1)

Using the fields given by Eqs. (6.28)-(6.30) and certain recursion relations for Hlernite

polynomials. we find that the Poynting vector for the beam can be written as

( - I A,,,,,121w.,(r)I [;I + R2 + (6.35)

The quantity before the square brackets is simply the beam intensity (watts/m 2 ).

The vector inside the square brackets denotes the direction of energy flow. If we

recall that the radius of curvature is negative for a converging wave and positive tor

a diverging wave. it follows from Eq. (6.35) that for a beam approaching the beam

waist (focal region). energy flow occurs toward the Z axis and away from the : axis as

it leaves the focal region. If the longitudinal component of the fields is ignored. then

the energy flow occurs only along the :-axis and such a beam is not only inconsistent

with Maxwell's equations, but also does not provide a correct description of focusing

properties of laser beams. From Eq. (6.35) we find the equation for the family of rays

is

p = + (6.36)
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where p vKX2-y an(I p., is t lie distance of the ray from the beam axis at the beam

waist = .
The cross-polarization component is even smaller than the longittudinal conlPo-

nent. If polarization properties of the wave are not of interest, it may be inored.

For a correct description of polarization properties however, the cross-polarization

component must be kept. For example. if the beam passes through a linear polar-

izer whose axis is crossed with respect to the dominant, direction of polarization. the

cross-polarization component is the dominant component in the transmitted beam.

It is also interesting to compare the distribution of fields in a plane transverse to

the direction of propagation. In general. the transverse distribution of fields evolves

during propagation. It is interesting to note that this evolution does not involve

a change in the energy associated with the field. This follows from Eqs. (6.31 )

(6.33) where we showed that the power associated with each field component remains

constant during propagation. Expressions for the transverse distribution of fields are

complicated in general. In the far zone however, the fields take the form
rnn ) (r) = Ann(-_I )rn+"i+1 l( - ,V '2tk,'12q

H- \ , / ('- /2. (6.37)
F7't1'

2  U.' II

E ~mn)(r) = I 2xy E,,('(r) (6.38)(k,,) 2  ,,,2

E.( )(r) _ ( ) (r). (6.31)(kwo) w

These field components lead to the following distributions for the intensities

ILr) 1 '22 r,,,.Hn!m! t , " 2" ) H ) (. ((. 4 ()

12(r) - (ku, )4  4  
(6.41)

4 c2
13(r) - (kw 2 1/(r). (6.12)

Figures 6.1. 6.2. and 6.3 show these intensity distribut ions for TE.M mode (aussian

beams. For each of these figures. the z-axis scale is arbitrary and not related betw(en

figures. In the next section we look at the form of a circularly polarized wave.
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Figure 6.2: A 3-dimensional profie of the intensity distribution of a erly 1puizei/t
TEM0 0o mode Gaussian beam as defined by Eq. (6.41). [he :axzs scal, is arbitrar.

0.11



0.2

F 0ur .4 A4~dmninlpoieo h nesiydsrbto ftelntuii

copnn ofaT. oeGusa ema eie yE.(.2.Tezai
scal is rbitar2

E~ml1)(r4 -46.4

igthe far: Aoe thesqions prle tof the followingytransverseiinenoitthelist ribtit ion

comonntf) ENI(r) mod Gaussia = ea as Hefne byE.(.2. Th.e 7

f3 = 2Y.r 2n 1 (r) . (6. 1:)

6.4n Expoufeimnntal Obserain

2 V22



011r t)hject ixe was to c'ompare the linearly polarized intensity protile of the laser beam

given Fly .t i. 10) with its cross polarized intensity profile given In i -q. (6. 11 1.

The 1 ii lt'iiityv profile of the laser beam was photographed using a ('olu Inc. 1",10

series monochrome solid-state ('(') camera. The picture was recorded using an IBM

PC and Beamcode 6.1 software. A picture of the linearly polarized beari was taken

with the laser operating at less than 10 milliwatts (minimum scale on the digital

power meter) and the beam attenuated through a neutral density filter witl optical

density (OD) 2. Pictures of the beam intensity profile are reproduced in Figs. 6. 1

and 6.5. Figure 6.4 shows a 3-dimensional contour of the beam intensity and Fig. 6.5

shows a 2-dimensional planview of the beam intensity. To observe the cross polarize(l

intensity profile, the laser was operated at approximately 110 milliwatts and the beani

was transmitted through two dichroic sheet polarizers. The polarizers were oriented

so that their polarization axes were orthogonal to each other. Pictures of the cross

polarized beam intensity profile are reproduced in Figs. 6.6 and 6.7. Figure 6.6 shows

the 3-dimensional pattern and Fig. 6.7 shows the 2-dimensional planview. The linear

and cross polarized intensity distributions of Eqs. (6.40) and (6.41) can be clearly

seen from these pictures. Due to the fact that the dichroic materials polarize using

absorption, the relative intensity magnitudes of the beams photographed in Figs. 6.4-

6.7 are undetermined.

In this chapter we have discussed the polarization properties of Gaussian beams

by developing paraxial solutions to Maxwell's equations. \\e saw that the field corn-

ponents of these solutions were not independent, but coupled by Eqs. (6.3)-(6.6).

This results in the presence of cross polarized and longitudinal fields in the transverse

direction. The presence of the cross polarized field was observed experimentally.
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Figure 6.4: A 3-dimensional intensity profile of a linearly polarized TEM4t) 1a.,er iwali.
The picture was taken from an argon ion laser operating at 488 nm.

----------

Figure 6.5~: A 2-dimensional planview of the intensity profile of a linearly polatrized
TEM0 0 laser beam. The picture was taken from an argon ion laser operating at
488 nm.
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Figure 6.6: A :-dimiensional int~ensity profile of a cross polarized TENl 0.. laser beami.

The picture was taken from an argon ion laser operating at, 488 nrn.

Figure 6.7: A 2-dimensional planview of the intensity profile of a cross polarized
TEM0 0O laser beam. The picture was taken from an argon ion laser operating at
488 nm.



Chapter 7

Conclusions

In this thesis we have reviewed the characteristics of laser propagat ion ai(l used

those characteristics to develop a method for designing a laser system. The unique

characteristics of the Ti:sapphire laser make it an excellent choice for a variety of

research applicatiotis. The techniques described in this thesis can be used to de-

sign a Ti:sapphire or other type of laser system for specific research applications.

These techniques address the requirements of stability, astigmatism compensation.

and mode matching of the pump and cavity modes.

We also studied some features of the dynamical behavior of Ti:sapphire lasers. To

our knowledge, this is the first study of the relaxation oscillations of a Ti:sappliire

laser. Using rate equation theory, we developed a method for measuring the upper

state lifetime r2 and intrinsic cavity loss analyzing these oscillations in the Ti:sapphire

laser. Our measured values for these parameters are consistent and in agreement

with the values of the upper state lifetime and the intrinsic cavity loss of our laser

obtained by independent methods. Our method for determining these parameters

from the study of relaxation oscillations presents a new and simple technique which

can be applied to other laser systems as well.

BY also using rate equation theory, we developed a method for modeling the

(ynamical behavior of lasers. This method scales the laser rate equations in such a

way as to allow numerical solutions from experimentally measured parameters.

We described an experiment for measuring the intrinsic cavity loss by inducing

variable cavit' loss and measuring the pump power required to reach laser threshold.

This expet~mental procedure allows us to also estimate the normalized pumping rate

I. the small signal gain coefficient g. and the stimulated emission cross section t72 1

of any laser system.
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I: 1 1 liv we di1scu ssed thet Interestinug hield of beam-like vector solit Ionuis to Maxwell'

C(1iiat ions. Ihiese solut ions chta racterize the polarization propertiles of (a iassian bieami-.

\\a I ko Saw exper-imentalI evidlence ot the cross pol arization Intensi I V profile p redhut edl

bY our solutions.

'Pie field of laser dYnamics is verY rich alnd the li1:sapplilre laser provides an excel-

lent system for studving many aspects of dvinamical b~ehavior. lBy vatying the dlepthI

and frequency of cavity gain or loss modulatilon, an Invest igation Into chaoit ( ynla In-

ics. deep spiking osci t lations. and generation of specific wav-eforms can be conducted.

Stud~ies of directional mode comnpet ition and[ bistability c-an also be carried ut oil

a laser system similar t) the one dlescribed In this thesis. Other Interest in~g oppor-

unities for research include first passage time studies in the scaling regime 19. .

antiphase studies, and other mnulti-lniode phenomena.
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