
AD-A253 822

9@

Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams

Randal E. Bryant
uly 1992 DTIC

CMU-CS-92-160 ELECTE
AUG12 1992 1

SA
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper has been accepted for publication in ACM Computing Surveys. It was written
while an leave at Fujitsu Laboratoies, Kawasaki, Japan. This report supersedes

CMU-CS91-162.

Abstract

Ordered Binary Decision Diagrams (OBDDs) represent Boolean functions as directed acyclic
graphs. They form a canonical representation, making testing of functional properties such as
satiaflability and equivalence straightforward. In most application, their size remains manageable.
A number of operations on Boolean functions can be implemented as graph algorithms on OBDD
data structurs. Using OBDDs, a wide variety of problems can be solved through symbolic
aa/yu. First the possible varaimns in system parameters and operating conditions are encoded
with Boolean variables. Then the system is evaluated for all variations by a sequence of OBDD
operatimm. Rasearcers have thus solved a number of problems in digital system design, finite
state system analysis, artificial intelligence, and mathematical logic. This paper describes the
OBDD data structum and surveys a number of applications that have been solved by OBDD-based
symbolic anaysis.

92- 20969

92 8 00 6

0 4-,.

A

KywcBinary decision diagrams, branching programs, symbolic manipulation, Boole=n
func l Boolea atpbra

1. ODDD REPRESENTATION 3
1.1. Bin aryeism Diagams................... 3
1.2. Ordering uud Rakucig 4
1.3. Effect of Vauiable Ordering 5
1.4. Complexity amtzuc.......... 7
1.5. Refinementsmad Variations............................. 10

2. OPERATIONS 10
3. CONSTRUCTION AND MANIPULATION 11

3.1. Th1C APPLY 0pCraton................................. 11
3.2. Mwe irncT Operation............................... 14
3.3. Derived Operations................................... 15
3.4. Perfonnance Characteristics.............................. 15

4. -ERSETN MATHEMATICAL SYSTEMS 16
4.1. Enxodlzg of Finite Dmains.............................. 17
4.2.Sets.. 18
4.3. Relations... 19

S.DIGITAL SYSTEM DESIGN APPLICATIONS 20
5. 1. Verifion....................................... 20
512. Design Error Corein 200
5.3. Sauklivity Analysis................................. 21 0
5.4. Proabilistic Analysis................................ 22 ----- ---------

6. FINT STATE SYSTEM ANALYSIS 26
7. OTHER APPLICATION AREAS 29 ~ -~
L. AREAS FOR IMPROVEMENT 29
9. SuMMKAXY Statement A per telecon Chahira Hopper 30 v Codes
IREFRENCS WL/AAAT 31 3ndlor

WPAFB,OH 45433 ,~ciaf

INTRODUCTON NWW 8/10/92 i~
Many tasks in digital system design, combinatorial opiiatoMatheatcal logic, and ar-
tificia intelligence can be formnulad in term of operations over small, finite domains. By
introducing a binary encoding of the elenmts in thes domains, thes problems can be fur-
ther reduced to operaions over Boolean values. Using a symbolic rersnainof Boolea
functms we can expes a problem in a very geneiral form. Solving this genmraXzd problem
via symbolic Booleant functinmanplto then provides the solutions for a larg number of
specific problem instances. Thus, an efficient method for represeting andipuatn Boolean
functions symbolically can lead to the solution of a lWrg class of complex problems.
Ordered Binary Decision Diaigrams (OBDDs) [Bryant 1986] provide one such representgtion.
This representraton is defined by imposing restrictions on the the Binary Decision Diagram
(BDD) represenadwo introduced by Lee1 [Lee 1959] and Aker [Aker 1978], such that the
resulting form is canonical. These restrictions and the resulting canonicity were first recognized

'JLeo rsmutu Deals.,n fuicllas Binary Decdlain Prermu, a fam of staight-lie ; upun Suc% a
Ppu ca be viawe is a Now ardeftin of t vu*es in a irected acyclic grqih, and hence the dicmo
betw dhon two fori is inhio

2 lOQ~tM MIMSg

by Fortune, Hopcroft, and Schmidt Vtune et al 19781. Functions are represented as directed
acyclic graphs, with internal vertices corresponding to the variables over which the function
is defined and terminal vertices labeled by the function values 0 and 1. Although the OBDD

reentation of a function may have size exponential in the number of variables, many useful
funcions have more compact resentaion.

Operations on Boolean functions can be implemented as graph algorithms operating on OBDDs.
Tasks in many problem domains can be expressed entirely in terms of operations on OBDDs,
such that a full enumeration of the problem space (e.g., a truth table, state transition graph, or
search tree) need never be constuced. Resacher.s have solved problems using OBDDs that
would not be possible by more traditional techniques such as case analysis or combinatorial
search.

To date, most applications of OBDDs have been in the areas of digital system design, verification,
and testing. More recently, interest has spread into other areas such as concurrent system design,
mathematical logic, and artificial intelligence.

This paper provides a combined tutorial and survey on symbolic Boolean manipulation with
OBDDs. The next three sections describe the OBDD representation and the algorithms used
to construct and manipulate them. The following section describes several basic techniques for
representing and operating on a number of mathematical structures, including functions, sets, and
relations, by symbolic Boolean manipulation. We illustrate these techniques by describing some
of the applications for which OBDDs have been used to date and conclude by describing further
areas for research. Although most of the application examples involve problems in digital system
design, we believe that similar methods can be applied to a variety of application domains. For
background, we assume only that the reader has a basic knowledge of Boolean functions, digital

-logic design, and finite automata.

1. OB*D ONTATION

Binary decision diagrams have been recognized as abstract representations of Boolean functions
for many years. Under the name "branching programs" they have been studied extensively by
complexity theorists [Wegener 1988; Meinel 19901. The key idea of OBDDs is that by restricting
the representation, Boolean manipulation becomes much simpler computationally. Consequently,
they provide a suitable data structure for a symbolic Boolean manipulator.

LL Bmary Dedson Diagram

A binary decision diagram represents a Boolean function as a rooted, directed acyclic graph. As
an example, Figure 1 illustrates a representation of the function f(zI, z 2 , z 3) defined by the truth
table given on the left, for the special case where the graph is actually a u'e. Each nonterminal
verx v is labeled by a variable var(v) and has arcs directed toward two children: Io(v) (shown
as a dashed line) coreslpondg to the cae where the variable is assigned 0, and hi(v) (shown
as a molid line) carpondig to the case where the variable is assigned 1. Each terminal vertex
is labeled 0 or 1. For a given assignment to the variables, the value yielded by the function is
dIned by tracing a path from the root to a terminal vertex, following the branches indicated

3

X X2 X3 f
000 0
0 01 0X22
0 10 0
0 11 1 d

1 0 0 0 X3 X 3X
1 01 1
1 10 0 - i"o11 10o 1 1

Figure 1: Truth Table and Decison Tree Repremmtatios of a Boolean Functim A dashed
(solid) tee branch denotes the case where the decision variable is 0 (1).

by the values assigned to the variables. The function value is then given by the terminal vertex
label Due to the way the branches are ordered in this figure, the values of the terminal vertices,
read from left to right, match those in the truth table, read from top to bottom.

1.2. Ordering and Reducing

For an Ordered BDD (OBDD), we impose a total ordering < over the set of variables and
require that for any vertex u, and either nonterminal child v, their respective variables must be
ordered var(u) < var(v). In the decision tree of Figure 1, for example, the variables are ordered
XI < X2 < T3. In principle, the variable onkring can be selected arbitrily-the algorithms will
operate corrctly for any ordering. In practice, selecting a satisfactory ordering is critical for the
efficient symbolic manipulation. This issue is discussed in the next section.

We define three transformation rules over these graphs that do not alter the function represented:

Remove Duplicate Terminals: limin all but one terminal vertex with a given label and
redirect all arcs into the eliminated vertices to the remaining one.

Revoove Duplicate None If nonterminl vertices u and v have var(u) = vwr(v), lo(u) =
o(v), and hi(u) = hi(v), then eliminate one of the two vertices and redirect all incoming

arcs to the other vertex.

Remove Redundant Tis: If nonterminal vertex v has Io(v) = hi(v), then eliminate v and
redirect all incoming arcs to Lo(v).

Starting with any BDD satisfying the ordering property, we can reduce its size by repeatedly
applying the transfr mation rules. We use the rm "OBDD" to refer to a maximally reduced
graph ta oes some Mdrins. For example, Figur 2 illusrats die reduction of the decision
tee shown in Fgm 1 to an OBDD. Applying the first tasformai rule (A) reduces the
eight trminal vertices to two. Applying the second transformation rule (B) elminates two
of the vertices having variable z3 and ars to terminal vertices with labels 0 (to) and 1 (hi).

4

2X2X2 X2 X2

Ie
I 'e

A). Duplicate Teminals B). Duplicate Nonterminals C). Redundant Tests

Figure 2: Reduction of Decision Tree to OBDD. Applying the three reduction rules to the tree
of Figure 1 yields the canonical representation of the function as an OBDD.

Applying the third transefomation rule (C) eliminates two vertices: one with variable X3 and
one with variable z2. In general, the transfomation rules must be applied repeatedly, since each
transform can expose new possibilities for further ones.

The OBDD representation of a function is caonical--for a given ordering, two OBDDs for a
function we ismorphic. This property has several important consequences. Functional equiv-
alence can easily be tested. A function is satisfiable if and only if its OBDD representation
does not correspond to the single terminal vertex labeled 0. Any tautological function must
have the terminal vertex labeled I as its OBDD representation. If a function is independent of
variable z, then its OBDD representation cannot contain any vertices labeled by z. Thus, once
OBDD representations of functions have been generated, many functional properties become
easily testable.

As Figures 1 and 2 illustra, we can contuct the OBDD representation of a function given its
truth table by constuting and reducing a decision tree. This approach is practical, however,
only for fumcdons of a small number of variables, since both the truth table and the decision tree
have size exponential in the number of variables. Instead, OBDDs are generally constructed by
"symbolically evaluatng" a logic expression or logic gate network using the APPLY operation
describe in Section 3.

13. f ed of VWIe Ordering

The form and size of the OBDD representing a function depends on the variable ordering. For
example, FIgure 3 shows two OBDD representations of the function denoted by the Boolean
expression l -bi+ a2 - -4- a-, where denots the AND operation and + denotes the OR
operdomn. Fo the can on the Left d variables ordered a < bi < a 2 < 2 < a3 < 03 , while
fer th cas on the rilght tey we eo red al < a2 < a3 <b < b < b3.

We ca genalize this function to one over variables al,...,a, and bl,...,bk given by the

5.

alia

I d Q

Q2 a3 q3 q3 M3

I II I
02 %\ hi hi hi hi

I%

I
I

Figure 3: ODDReprumentalin of a Single Funcion for Two Different Variable Orderings

expression:
alb +a 2.b2 + - - +a,

Glenerlizing the first variable ordering to at < b < ... <a,~ < b.yields an OBDD with
2n nonterminal vetii sone for each variable. Generalizing the second variable ordering to
al <... < an < b < .< ,,onthe otr hand,yields an BDD with 2(r -) nonternii
vertices. For larg values of n, the difference between the inear growth of the first ordering
versus the exponential growth of the second has a dramatic effect on the storage reureet
and the efficiency of the maiuainalgorithms.

Examining the structure of the two graphs of Figure 3, we can wee that in the first case the
variables Mr paired according to their occurnces in the Boolean expression at bi + a24J2+a3b3.

Thu, from every second level in the graph, only two branch destinations are required: one to
the terminal vertex labeled 1 for the case where the correpodin prduc yields 1, and one to
the next level for the case wher every product up to this point yields 0. On the other hand, the
first 3 levels in the second case form a complete binary tree encoding all possible assignments to
the a variables. In general, for each assignment to the a variables, the function value depends in
a uniue way on the assignment so the b variables. As we gentelize this function and ordering
to one over 2n variables the first n levels in the OBDD form a complete binary tree.

Most applications using OBDDs choose some ordering of the variables at the outset and construct
all graphs according to this orderig. Thiis ordering is chosen either manually, or by a heuristic
analysis of the particular system to be represented. For example, several heuristic methods have
baen devised that, given a logic gate network~ generally derive a good ordering for variables

re~esntngthe primary inputs. [Fujita et al 1988; Mali et al 19881. Others have been
developed fo sequential sysum analysis [Jeong et al 1991]. Nowe that these heuristics do not

6

Function Class Complexity
Best Wont

Symmetric linear quadratic
Integar Addition (any bit) linear exponential
Integer Multiplication (middle bits) exponential exponential

Table 1: OBDD complexity for commm. function dams.

need to find the best possible ordering-the ordering chosen has no effect on the correctness of
the results. As long as an ordering can be found that avoids exponential growth, operations on
OBDDs remain reasonably efficient

1A. Complexity Charceristics

OBDDs provide a practical approach to symbolic Boolean manipulation only when the graph
sizes remain well below the worst case of being exponential in the number of variables. As the
previous examples show, some functions are sensitive to the variable ordering but remain quite
compact as long as a good ordering is chosen. Furthermore, there has been ample empirical
evidence indicating that many functions encountered in real applications can be represented
efficently as OBDDs. One way to more fully understand the strengths and limitations of
OBDDs is to derive lower and upper boums for important classes of Boolean functions.

Table 1 summarizs the asymptotic growth rate for several classes of Boolean functions, and
their sensitivity to the variable ordering. Symmetric functions, where the function value depends
only the number of arguments equal to 1, are insensitive to the variable ordering. Except for
the trivial case of constant functios, these functions have graphs ranging between linear (e.g.,
parity) and quadratic (e.g., at least half the inputs equal 1).
We can consider each output of an n-bit adder as a Boolean function over variables ao, ai,... , a.,,
Arpresentig one opermd, and bo, b,.. ., b -,. representing the other operand. The function for
any bit has OBDD reprsentations of linear complexity for the ordering ao < bo < a, < b, <

< a,,._ < b,-,_ and exponential complexity for the ordering a o < .- < a,-, < 0 < ... <
b-. In fact, these functions have representations similar to those for the function shown in
Figure 3.

The Boolean functions representing integr multiplication, on the other hand, form a particularly
difficult case for OBDDs. Regardless of the ordering, the Boolean function representing either of
the middle two outputs of an n-bit multiplier have exponential OBDD reprsentations. [Bryant
1991].

Upper bounds for odi clases of Boolean functions can be derived baed on the structural psp-
ades of dieir logic network realizations. Berman [Berman 19891 and more recently McMillan
(McJlllan 1992] have derived useful bounds for several class of "bounded width" networks.
Conide" a network with n primary inputs and one primary output consisting of m "logic blocks."
Each block may have multiple inputs and outputs. Primary inputs ar represented by "source"

7

C

Figure 4: Liner Arrangement of Circuit Computing Most Signiicant Bit of Integer Addi-
tim

blocks with no input and one output. As an example,-Figure 4 shows a network having as
output the most significant sum bit of an n-bit adder. This network consists of a carry chain
computing the carry input c-1 into the final stage. Blocks labeled "23" compute the MAJOR-
ITY function having I as output when at least two inputs are 1. The output is computed as the
EXCLUSIVE-OR of the most significant bits of the inputs and c.-I.
Define a Linear arransemem of the network as a numbering of the blocks from I to m such
that the block producmg the primary output is numbered last. Define the forward cross section
at block i as the total number of wires from an output of a block j such that j < i to an input
of a block k such that i < k. Define the forward cross section to of the circuit (with respect
to an arrangement) as the maximum forward cross section for all of the blocks. As the dashed
line in Figure 4 shows, our adder circuit has a forward cross section of 3. Similarly, define the
reverse cross section at block i as the total number of wires from an output of a block j such that
j > i to an input of a block k such that i >_ k. In arngements where the blocks are ordered
topologically (the only case considered by Berman), such as the one shown in Figure 4, the
reverse cross section is 0. Define the reverse cross section to, of the circuit (with respect to an
arrangement) as the maximum reverse cross section for all of the blocks. Given these measures,
it can be shown that there is an OBDD representing the circuit function with at most n2wI12"
vertices. Furthermore, finding an arrangement with low cross section leads to a good ordering
of the function variables--namely the reverse of the ordering of the corresponding source blocks
in the rrangement.

This bound based on network realizations leads to useful bounds for a variety of Boolean func-
tions. For example, functions having realizations with constant forward cross section and zero
reverse cross section, such as the adder circuit of Figure 4, have linear OBDD representations.
A symmetric function of n variables can be realized by a circuit having forward cross section
2 + log n and reverse cros section 0. This circuit consists of a series of stages to compute the
total number of inputs having value 1, encoding the total as a og2 ni-bit binary number. This
realization implies the quadtatic upper bound in OBDD siue stated in Table 1.

Figum 5 shows an application of this result for a circuit with non-zero reverse cross section.
This circuit shows a general realization of the Wihin-K function, where K is some constant
such that 0 < K < n. For inputs zo, x,...,z,,_., this function yields 1 if there are two inputs
xi and zi0 equal to 1 suchthati'equalsi+jmodnforsomevaluej such that 0 < j <K. As
Figme 5 illustrates, this function can be computed by a series of blocks arranged in a ring, where

9

ib S-i S S*2Out
41 •i L ...-. L

BoI 00 Bw

000 00e

I

Figure 5: Linear Arrangement of Within-K Ring Circuit. As shown by the dashed line, the
circuit has forward cross section 2 + Pog2 K] and reverse cross section Pog2 K].

each block B, has as outputs a 1-bit value si and a k-bit integer value Li, where k = log2 K]:

= 1, zi=landL- 96 0

K-l, z,=l
Li = Li-i - 1, xi = 0 and Li-I > 0

0, otherwise.

In this realization, each L signal encodes the number of remaining positions with which the
most recent input value of 1 can be paired, while each a, signal indicates whether a pair of 1
input values within distance K has occurred so far. To realize the modular proximity measure,
output L,- of the final stage is routed back to the initial stage. Note that although this circuit
has a cyclic structure, its output is uniquely defined by the input values. As the dashed line
indicates, this ring structure can be "flattened" into a linear arrangement having forward cross
section k + 2 and reverse cross section k. This construction yields an upper bound of (8K4K)n
on the OBDD size. For constant values of K, the OBDD is of linear size, although the constant
factor grows rapidly with K.

McMillan has generalized this technique to tree arrangemenwu in which the network is organized
as a tree of logic blocks with branching factor b and with the primary output produced by the
block at the root. In such an arrangement, forward (respectively, reverse) cross section refers to
wires directed toward (respectively, away from) the root. Such an arrangement yields an upper

bound on the OBDD size of n [26n &- 1 .The upper bound for the linear arrangement is
given by this formula for b = 1. Observe that for cnstant values of b, wf, and w,, the OBDD
size is polynomial in n.

These upper bound results give some insight into why many of the functions encounterd in
digital design applications have efficient OBDD representations. They also suggest strategies for
finding good variable orderings by finding network realizations with low cross section. Results
of this form for other repesentations of Boola functions could prove useful in characterizing
the potential of OBDDs for other application domains.

9

1.5. Rduwnuns and Variatims

In recent years, many refinements to the basic OBDD structure have been reported. These
include using a single, multi-rooted graph to represent all of the functions required [Brace et al
1990, Karplus 1989;, Minato et al 1990; Reeves and Irv.,in 1987], adding labels to the arcs
to denote Boolean negation [Brace et al 1990;, Karplus 1989; Minato et al 1990, Madre and
Billon 1988] and generalizing the concept to other finite domains [Srinivasan et al 1990]. These
refinements yield significant savings in the memory requirement---generally the most critical
resource in determining the complexity of the problems that can be solved. Applications that
require generating over 1 million OBDD vertices are now routinely performed on workstation
computers.

2. OPERATIONS

Let us introduce some notation for describing operations on Boolean functions. We will use
the standard operations of Boolean algebra: + for OR, for AND, D for EXCLUSIVE-OR and
an overline for NOT. In addition, we will use the symbol 1 to indicate the complement of
the EXCLUSIVE-OR operation (sometimes referred to as EXCLUSIVE-NOR). We will also use
summation (E) and product ([I) notation in reference to Boolean sums (OR) and products
(AND). Observe that these operations are defined over functions as well as over the Boolean
values 0 and 1. For example, if f and g are functions over some set of variables, then f + g is
itself a function h over these variables. For some assignment a' of values to the variables, h(i)
yields 1 if and only if either f(d) or g(a) yields 1. The constant functions, yielding either 1 or
0 for all variable assignments, are denoted 1 and 0, respectively.

The function resulting when some argument z to a function f is assigned a constant value c
(either 0 or 1) is called a resticdon of f (other refences call this a "cofactor" of f [Brayton
et al 1984]) denoted f 1_.k. Given the two restrictions of a function with respect to a variable,
the function can be reconstructed as

f = 7f1X*-O + zfIX..
This identity is commonly referred as the Shannon expansion of f with respect to z, although
it was originally recognized by Boole [Brown 19901.

A variety of other useful operations can be defined in terms of the algebraic operations plus the
restriction operation. The copositon operation, where a function g is substituted for variable
z of function f is given by the identity

flz+-g M ?"f6+-0 + -
The variable quamificaion operation, where some variable x to function f is existentially or
universally quantified is given by the identities

3- = fIz4-o+f/z.-1
Vzf = flzg-Of1X--1

Some researchers prer to call these operations smoothing (existential) and consensus (universal)
to emphasize that they are operations on Boolean functions, rather than on truth values [Lin et al
19901

10

A2 b

C A6 c B5

A3 d B2 dI

A4 I A5 B3 B4

Figure 6: Example Arguments to APPLY operatlon. Vertices are labeled for identification

during the execution trace.

3. CONSTRUCTION AND MANIPULATION

A number of symbolic operations on Boolean functions can be implemented as graph algorithms
applied to the OBDDL These algmithms obey an important closure pt rty--given that the
arguments are OBDDs obeying some ordering, the result will be an OBDD obeying the same
ordering. Thus we can implement a complex manipulation with a sequence of simpler ma-
nipulations, always operating on OBDDs under a common ordering. Users can view a library
of BDD manipulation routines as an implementation of a Boolean function abstract data type.
Except for the selection of a variable ordering, all of the operations are implemented in a purely
mechanical way. The user need not be concerned with the details of the representation or the
implementation.

3.1. The APPLY Opera"tin

The APPLY operation generates Boolean functions by applying algebraic operations to other

functions. Given argument functions f and g, plus binary Boolean operator (op), (e.g., AND
Or OR) APPLY returns the function f (op) g. This operation is central to a symbolic Boolean

manipulator. With it we can complement a function f by computing f @ 1. Given functions
f and g, and "don't care" conditions expressed by the function d (i.e., d(i) yields 1 for those
variable assignments Z' for which the function values are unimportant,) we can test whether f
and g are equivalent for all "care" conditions by computing (f g) + d and testing whether the
result is the function 1. We can also construct the OBDD representations of the output functions
of a combinational gate network by "symbolically interpreting" the network. That is, we
start by representing the function at each primary input as an OBDD consisting of a test of a
single variable. Then, proceig in order through the network we use the APPLY operation to

construct an OBDD representation of each gate output according to the gate operation and the

11

AIBI

/ \e
A2,B 2

/A 6 ,B 2 A6,B5

A3,B2 A5,B2 A3,B4

A4,B3 A5,B4

Figure 7: Execution Trace for APPLY operation with operation +. Each evaluation step has
as operands a vertex from each argument graph.

OBDDs computed for its inputs.

The APPLY algorithm operates by traversing the argument graphs depth-first, while maintaining
two hash tables: one to improve the efficiency of the computation, and one to assist in producing
a maximally reduced graph. Note that whereas earlier presentations treated the reduction to
canonical form as a separate step [Bryant 1986], the following algorithm produces a reduced
form directly. To illustrate this operation, we will use the example of applying the + operation to
the functions f (a, b, c) = (a + b).c + d and g(a, b, c) = (aZ) + d, having the OBDD representations
shown in Figure 6.

The implementation of the APPLY operation relies on the fact that algebraic operations "com-
mute" with the Shannon expansion for any variable z:

f (op)g = 7.(fIX4--O (op) 9X--o) + z.(fIz4-I (op) giz -- I) (1)

Observe that for a function f represented by an OBDD with root vertex rf, the restriction with
respect to a variable z such that z < var(r1) can be computed simply as:

rj, X < varyf)

fIz.-b lo(r1), x = var(r/) and b = 0
hi(rf), z = var(rf) and b = 1

That is, the restiction is represented by the same graph, or one of the two subgraphs of the root.

Equation 1 forms the basis of a recursive procedure for computing the OBDD representation of
f (op) g. For our example, the recursive evaluation structure is illustrated in Figure 7. Note
that each evaluation step is identified by a vertex from each of the argument graphs. Suppose
functiom f and g are represented by OBDDs with root vertices rf and r., respectively. For
the case where both rj and r, are terminal vertices, the recursion terminates by returning an
appr ty labeled terminal vertex. In our example, this occurs for the evaluations A4 , B3, and

12

a a

b b

I

I
C

El WiFA0
Figure 8: Result Generation for APPLY operation. The recursive calling structure naturally
leads to an unmduced graph (left). By applying reduction rules at the end of each recursive call,
the reduced graph is generated directly (right).

As, B4. Otherwise, let variable z be the spliting variable, defined as the minimum of variables
var(rf) and var(r,). OBDDs for the functions fIz J--0 (op) gI. -0 and f I -- 1 (op) gl. , I

are computed by recursively evaluating the restrictions of f and g for value 0 (indicated in Figure
7 by the dashed lines) and for value 1 (indicated by solid lines). For our example, the initial
evaluation with vertices Ai,Bi causes recursive evaluations with vertices A2,B2 and A6,Bs.
To implement the APPLY opMadon efficiently, we add two mOre refinements to the procedure
described above. First, if we ever reach a condition where one of the arguments is a terminal
vertex representing the "dominant" value for operation (op) (e.g., I for OR and 0 for AND),
then we can stop the recursion and return an a iately labeled terminal vertex. This occurs
in our example for the evaluations As, B2 and A3, B4. Second, we avoid ever making multiple
recursive calls on the same pair of arguments by maintaining a hash table where each entry has
as key a pair of vertices from the two arguments and as datum a vertex in the generated graph.
At the start of an evaluation for arguments u and v, we check for an entry with key (u, v) in
this table. If such an entry is found, we return the datum for this entry, thereby avoiding any
further recursion. If no entry is found, then we follow the steps described above, creating a new
entry in the table before returning the result. In our example, this refinement avoids multiple
evaluatons of the arguments A3, B2 and As, B2. Observe that with this refinement, the evaluation
structure is npeeted by a directed acyclic graph, rather than the more familiar tree structure
for recursive routines.
Each evaluaion step returns as result a vertex in the generated graph. The recursive evaluation
structure naturally defines an unreduced graph, where each evaluation step yields a verex labeled
by the spliting variable and having as children the results of the recursive calls. For our example,
this graph is illustrated on the left hand side of Figure 8. To gnerate a reduced graph directly,
each evaluation step attempts to avoid creating a new vertex by applying tests corewspooning
to the transformation rules described in Section 1.2. Suppose an evaluation step has splitting

13

a a

bb

I C C I C C

0 1 0 1

Figure 9: Example of RESTRICT operation. Restricting variable b of the argument (left) to

value 1 involves bypassing vertices labeled by b (center), and reducing the graph (right).

variable x, and the recursive evaluations return vertices vo and Vi. First we test whether vO = vj,
and if so return this vertex as the procedure result. Second, we test whether the generated graph

already contains some vertex v having var(v) = z, Io(v) = vo, and hi(v) = vj . This test is
assisted by maintaining a second hash table containing an entry for each nonterminal vertex v in
the generated graph with key (var(v), hi(v), Io(v)). If the desired vertex is found, it is returned
as the procedure result. Otherwise, a veex is added to the graph, its entry is added to the hash
table, and the vertex is returned as the procedure result. Similarly, terminal vertices are entered
in the hash table having their labels as keys. A new terminal vertex is generated only if one

with the desired label is not already present. For our example, this process avoids creating the
shaded vertices shown on the left hand side of Figure 8. Instead, the graph on the right hand

side is generated dectly. Observe that this graph represents the function a + b-c + d, which
is indeed the result of applying the OR operation to the two argument functions.

The use of a table to avoid multiple evaluations of a given pair of vertices bounds the complexity
Of the APPLY operation and also yields a bound on the size of the resuIL That is, suppose

functions f and g are represented by OBDDs having my and m. vertices, respectively. Then,
there can be at most m, m. unique evaluation arguments, and each evaluation adds at most one

vertex to the generated result. Given a good implementation of the hash tables, each evaluation
step can be performed, on average, in constant time. Thus, both the complexity of the algorithm

and the size of the generated result must be O(mf m,).

IL Th RESTRICT Oiperatio

Computing a restriction to a function represented by any kind of BDD is straightforward. To
restrict variable z to value k, we can simply redirect any arc into a vertex v having var(v) = z
to point either to/o(v) for k = 0, or toh (v) for k = 1. Figure 9 illustrates the restriction of

variable b in the function b.c + a-.Z to the value 1. With the original function given by the

OBDD on the left, redirecting the arcs has the effect of bypassing any vertex labeled by b, as
illusuaed in the center.

14

As this example shows, a direct implementation of this technique may yield an unreduced
graph. Instead, the operation is implemented by traversing the original graph depth-first. Each
recursive call has as argument a vertex in the original graph and returns as result a vertex in the
generated graph. 7b ensure that the generated graph is reduced, the procedure maintains a hash
table with an entry for each vertex in the generated graph, applying the same reduction rules
as those described for the APPLY operation. For our example, the result would be an OBDD
representation of the function c as shown on the right hand side of the Figure 9.

Computing the restriction of a function f having an OBDD representation of m1 vertices involves
at most m, recursive calls, each generating at most one vertex in the result graph. Using a good
hash table implemetation, each recursive step requires constant time on average. Thus, both
the complexity of the algorithm and the size of the generated result must be 0(mj).

3.3. Derived Operations

As was described in Section 2, a variety of operations on Boolean functions can be expressed in
terms of algebraic and restriction Op ions. The APPLY and the RESTRICT algorithms therefore
provide a way to implement these other opemtions. Furthermore, for each of these operations,
both the complexity and the size of the generated graph are bounded by some polynomial function
of the argument functions. For function f, let mf denote the size of its OBDD representation.
Given two functions f and g, and "don't care" conditions expressed by a function d, we can
compute the equivalence of f and g for the "care" conditions in time O(mf mg md). We can
compute the composition of functions f and g with two restrictions and three calls to APPLY.
This approach would have time complexity O(mf m0). By implementing the entire computation
with one traversal, this complexity can be reduced to O(m mn2) [Bryant 1986]. Finally, we can
compute the quantification of a variable in a function f in time O(m2).

3A. Performance Characteristics

A problem is solved using OBDDs by expressing the task as a series of operations on Boolean
functions such as those discussed above. As we have seen, all of these operations can be im-
plemented by algorithms having complexity polynomial in the sizes of the OBDDs representing
the arguments. As a result, OBDD-based symbolic Boolean manipulation has two advantages
over other common approaches. First, as long as the graphs remain of reasonable size, the total
computation remains tractable. Second, although the graph sizes can grow with each successive
operation, any single operation has reasonable worst case performance. In contrast, most other
representations of Boolean functions lack this "graceful degradation" property. For example,
even if a function has a reasonably compact sum of products representation, its complement
may be of exponential size [Brayton et al 1984].

33. Implmuado. Techidquu

From the standpoint of implementation, OBDD-based symbolic manipulation has very differ-
ent character from many other computationa tasks. During the course of a computation,

15

Clam Typkal Operatks T1ypk Tes
Logic A, V, -, V# 3 satisfiability, implication

Finite domains domain deendent equivalence
Functions application, composition equivalence

Sets U, n, - subset
Relations composition, closure symmetry, transitivity

Table 2: Example System that can be Represented with Boolean Fumctom.

thousands of graphs, each containing thousands of vertices, are constructed and discarded. In-
formation is represented in an OBDD more by its overall structure rather than in the associated
data values, and hence very little computational effort is expended on any given vertex. Thus,
the computation has a highly dynamic character, with no predictable patterns of memory ac-
cess. To date, the most successful implementations have been on workstation computers with
lage physical memories, where careful attention has been given to programming the memory
management routines [Brace et al 19901.

To extract maximum performance, it would be desirable to exploit the potential of pipelined
and parallel computers. In symbolic analysis tasks, parallelism could exist at the macro level
where many operations are performe simultaneously, and at the micro level where many vertices
within a given OBDD are operated on simultaneously. Compared to other tasks that have been
successly mapped onto vector and parallel computers, OBDD manipulation requires consider-
ably more comunication and synhronization among the computing elements, and considerably
less local computtion Thus, this task provides a challenging problem for the design of parallel
computer architectures, programming models, and languages. Nonetheless, some of the early at-
tempts have proved promising. Researchers have successfully exploited vector processing [Ochi
et al 1991] and have shown good results executing on shared memory multiprocessors [Kimura
and Clarke 1990]. Both of these implementations exploit micro parallelism by implementing the
APPLY operation by a breadth-first traversal of the argument graphs, in contrast to the depth-first
traversal of conventional implementations.

4. REPRESENTING MATHEMATICAL SYSTEMS

Some applications, most notably in digital logic design, call for the direct repre tation and
mapulatin of Boolean functions. In general, however, the power of symbolic Boolean ma-
nipulation comes more from the ability of binary values and Boolean operations to represent
and implement a wide range of different mathematical domains. This basic principle is so well
ingrained that we seldom even think about it For example, few people would define the ADD
operation of a computer as a set of 32 Boolean functions over a set of 64 arguments. Table 2
lists examples of several areas of mathematics where objects can be represented, operated on,
and analyzed using symbolic Boo= manipaon, as long as the underlying domains are finite.

By pwviding a unified framework for a number of mathematical systems, symbolic Boolean
mcan solve not just problems in the individual areas, but also ones involving multiple
a simulteously. For example, recent prgas to analyze the sequential behavior of digital

16

0 1 X +t 0 1 X a at

000 0001X 01

101 X 1111 10
X 0 X X X X 1X X X

"[ble 3: Trnary Extensm of AND, OR, and NOT. The third value X indicates an unknown
or potentially nondigital voltag.

circuits (see Section 6), involve operating in all of the areas listed in Table 2. The desired
properties of the system an expressed as formulas in a logic. The system behavior is given by
the next-state functions of the circuit. The analyzer computes sets of states having some particular
properties The transition structure of the finite sot system is represented as a relation. During
execution, the analyzer can readily shift between these rer1esentations, using only OBDDs as
the underlying data structures. Furthermore, the canonical preperty of OBDDs makes it easy to
deteu conditions such as convergence, or whether any solutions exist to a problem.

The key to exploiting the power of symbolic Boolean manipulation is to express a problem in
a form where all of the objects are rpesented as Boolean functions. In the remainder of this
section we describe some standad techniques that have been developed along this line. With
experience and practice. a surprisingly wide rng of problems can be expressed in this manner
The mathematical concepts underlying these chmiques have long been understood. None of
the techniques rely specifically on the OBDD repesentation-they could be implmentd using
any of a number of ireprowtations. OBDDs have simply extended the range of problems that
can be solved practically. In doing so, however, the motivation to express problems in terms of
symbolic Boolean operations has increased.

4.L Fcoding of Finite Domal.

Consider a finite set of elements A when JAI = N. We can encode an element of A as a vector
ofn binary values, where n = rlog2 NJ. This encoding is denoted by a function o: A --o {0, 1)"
mapping each element of A to a distinct n-bit binary vector. Let ori(a) denote the ith element
in this encoding. A function mapping elements in A to elements in A, f:4 -. A is represented
as a vector of n Boolean functions f, where each fi: {o, 1}" -+ {O, 1} is defined as:

fj(o(a)) = cr(f(a))

In many aliaons, the domains have a "natural" encoding, e.g., the binary encoding of finite
intgrs, while in others it is consructed artificially.
As an example, the COSMOS symbolic simulator [Oo and Bryant 1989] uses OBDDs to
COMpuW the behavior of a tasiso circuit symbolically. Such a simulator can be used to
a macally enerate tes for faults in a circuit and to formally verify that the circuit has

17

some desired behavior. The circuit model represents node voltages with a three-valued signal
set, when values 0 and I represent low and high volages, and the third value X indicates an
unknown or potentially nondiptal voltage. During symbolc simulation the node states must be

computed as dne-valued functions over a set of Boolean variables introduced by the user to
rquesent values of the primary inputs or initial state. COSMOS represents the state of a node by
a pak of OBDDs. That is, it encodes each of the N = 3 elements of the signal set as a vecw of

S = 2 binary values accmding to the encoding (0) = [0, 1], (1) = [1,0], and o(X) = [1, l].

The "next-atew functions" computed by the simulator ae defined entirely according to this
Boolean encoding, allowing Boolean functions to accurately describe the three-valued circuit
behavior. For example, Table 3 shows the devalued extensions of the logic operations AND,
OR, and NOT. Observe that the operations yield X in every case where an unknown argument
would cause an uncertainty in the function value. Letong [a,, ao] denote the encoding of a
three-valued signal a, the three-valued operation can be expressed entirely in terms of Boolean
Operations:

[ai,aoj t [bi,bo] = [a.',bao+b]
[ai,aoj +, [bi,o] = [a, + bi, ao.&o]

a ,ao't = [ao,at]

During operation, the simulator operates much lk a conventional event-driven logic simulator.
It begins with each internal node initialized to state [1, 11 indicating the node value is unknown
under all conditions. During simulation, node sams ae updated by evaluating the Boolean
representation of the next-stave function with the APPLY operation. Each time the state of a
node is recomputed, the old state is compared with the new state, and if not equivalent, an event
is created for each fanout of the node. This process continues until the event list becomes empty,
indicating that the network is in a stable state. This method of processing events relies heavily
oan having an efficient test for equivalence.

".2 Sot

Given an encoding of a st A, we can represent and manipulate its subsets using "characteristic
functions" [Cemy and Mann 19771. A set S ; A is denoted by the Boolean function xs:
{, l)" - {O,1), wher

Ps() = E I zizo,(a)

where represents the complement of the EXCLUSIVE-OR operation. Operations on sets can
then be implmented by Boolean operations oan their chactes functions, e.g.,

X0 = O

XSUT = XS +XT
XSnT = XS'XT

18

XS-T = XS'W

Set S is a subset of T if and only if Xs'-TT = O. In many applications of OBDDs, sets are
constructed and manipulated in this manner without ever explicitly enumeradng their elements.

Alternatively, a (nonempty) set can be represented as the set of possible outputs of a function
vector [Coudert et al 1990]. That is, we consider fto denote the set

{a I (a)=f(), for some E {o, 1}n}

This Arepreentton can be convenient in applications where the system being analyzed is repre-
sented as a function vector. By modifying these functions, we can also represent subsets of the
system states.

4.3. Rltlatkm

A k-ary relation can be defined as a set of ordered k-tples. Thus, we can also represent
and manipulate relations using chractristic functions. For example, consider a binary relation
R C_ A x A. This relation is denoted by the Boolean function XR defined as:

With this representation, we can perform operations such as intersection, union, and difference
on relations by applying Boolean operations to their charateristic functions.
Using a combination of functiona composition and variable quantification, we can also compose
relations. That is:

Xpas = 3Z[xt(i,)xs(, y)]

where R o S denotes the composition of relations R and S. Quantification over a variable vector
involves quantifying over each of the vector elements in any orIer.

Taking this further, we can compute the transitive closure of a relation using fixed-point tech-
niques [Burch et al 1990a]. The function Xw is computed as the limit of a sequence of functions
X&, each defining a relaion:

Rof=I

R+t = IURoIj

where I denotes the identity relation. The computation converges when it reaches an iteration
i such that X& = xp_,, apin making use of efficient equivalence testing. If we think of R
as rmenting a graph, with a vertex for each element in A, and an edge for each element in
A, dten the relation A denotes those pairs reachable by a path with at most i edges. ThMus,
the computatio must converge in at most N -1 iterations, where N = IAI. A technique
known a "irstive quaing" [Burch et al 1990a] reduces the maximum number of iterations to

19

at2

Figure 10: Univeral functio, block. By assigning different values to the variables di, an
arbitrary 2-input operation can be realized.

n = [log NJ. Each iteration computes a relation R ,q denoting those pairs reachable by a path
with at most 2i edges:

R(O) IUR

Many applications of OBDDs involve maiuaig relations over very larg sets, and hence the
reductionrAm N ieraions (e.g., UP)down t (e.g.,30) canbe dramatic.

5. DIGITAL SYSTEM DESIGN APPLICATIONS

The use of OBDI~x in diital system design, verification, and testing has gained widiespread

acceptance. In this section, we describe a few of the areas and methods of application.

5.1. Vlcatla.

OBDDs can be applied &diety to the task of testing the equivalence of two combinational
logic circuits. 7%is problem aries when comparing a circuit to a network derived from the
systm specification [Bryant 1966, or when verifyig that a logic optimizer has not altered the
circuit funcioalty Using the APPLY operation, flunctional repeetain for both networks
wre derived and testd for equivalence. By this method, two sequential systems can also be
compared a long as they use the same state encoding [Madre and Billon 1988]. That is, the
two sysans must hav identical a pat and neat-state functions.

5.2. D~p Err. Creim

Not conent to simply detc the existnce of errers in a logic design, researchers have developed
uchaIqu Dt uoaial corsct a defective design. This invoves, considering some relatively

small class of posmaulal design eas, such as a single incorrect logic gat, and detenng if'
mny var at of given network could meet the required fNc-tIonality [Madre et al11989]. Thfis

-Aayi d e -m 0 awues doe power of doe qummulcation operations for computing projections, in
this case piojecting ctthe piary inpu values byv universalqunicao.

PS

Figure 11: SIga be modlier. A nonm value of P. alters the value carried by the line.

Such an analysis can be performed symbolically by encoding the possible gate functions with
Boolean variables, as illustrated in Figure 10. As this example shows, an arbitrary k-input
gat can be emulatd by a 2h-input multiplexor, where the gate operation is determined by the
multiplemo data inu [Mead and Conway 1990]. Consider a single output circuit N, where
on e the gass is replaced by such a block, giving a resulting network functionality of N(z, a)
where Z reprsents die set of primary inputs. Suppose that the desired functionality is S(-
Our task is to dermine whether (and if so, how) the two functions can be made identical for
all primary input values by "progamming" the gate appropriately. This involves computing the
function C(8), defined as

C(a) =

Any assignment to Z for which C yields 1 is then a satisfactory solution.

Although major design enors cannot be corrected in this manner, it eliminates the tedious task
of debugging circuits with common errors such as misplaced inverters, or the use of an incorrect
gate type. This task is also useful in logic synthesis, where designers want to alter a circuit to
meet a revised specification [Fujita et al 1991].

5.3. Sensitivity Analysis

A second class of applications involves characterizing the effects of altering the signal values
on different lines within a combinational circuiL That is, for each signal line s, we want to
compute the Boolean difference for every primary output with respect to s [Sellers et al 19681.
This analysis can be performed symbolically by inuoducing "signal line modifiers" into the
network. as illustrated in Figure 11. That is, for each line that would normally carry a signal
line s, we selectively alter the value to be a' under the control of a Boolean value P. by
computing a' = a 9 P.. We can determine the conditions under which some output of the circuit
is sensitive to the value on a signal line by comparing the outputs of the original and altered
circuits, as illustrated in Figure 12. As this figure illustrates, we can even compute the effect of
every single-line modificato in a circuit in one symbolic evaluation [Cho and Bryant 19891.
That is, number every signal line from 0 to m- 1, and introduce a set of Pogml "permutation
variables"", Each permutation signal P, is then defined to be the function that yields 1 when
the permutation variabis ate the binary representation of the number assigned signal a. In logic
desg terms, ds is equivalent to generating the permutation signals with a decoder having F as
input. Mh rdng funcdon T(f, -) yields 1 if the original network and the network permuted
by ir produce the s-m oupu values for input 1.
One applicatio of his sensitivity analysis is to automatic t generation. The sensitivity function

21

Permuters
.X

Figure 12: Computing sensitivities to single line o tion. Each assignment to the
variables in F causes the value on just one line to be modified.

describes the set of all tests for each single fault. Suppose a signal line numbered in binary as
b has function s(-') in the normal circuit. Then an input pattern a will detect a stuck-at-i fault
on the line if and only if T(, b .-s(5 = 1. Similarly, Z will detect a stuck-at-0 fault if and only
if T(--,b .,(") = 1. This method can also be generalized to sequential circuits and to circuits
represented at the switch-level [Cho and Bryant 1989].
A second application is in the area of combinational logic optimization. For a signal line
numbered in binary as 9, the function T(x, b) represents the "don't care set" for each line of
the circuit, i.e., those cases where the circuit outputs me independent of the signal value on this
line. Using this information as guidance, the circuit optimizer can apply transformations such
as eliminating a signal line, or moving a line to a different gam output. One drawback of this
approach, however, is that the sensitivity function must be recomputed every time the optimizer
modifies the circuit An alternative approach yields a more restricted, but "compatible" set of
don't care functions, where the don't care sets remain valid even as the circuit structure is altered
[Saw et al 1990].

SA. PobIllhti Analys

Recently, researhers have devised a method for statistically analyzing the effects of varying
circuit delays in a digital circuit [Deguchi et al 1991]. This application of OBDDs is particularly
intriging, since conventional wisdom would hold that such an analysis requires evaluation of
real-valued parametric variations, and hence could not be encoded with Bookan variables.
Consider a logic gate network in which each pt has a delay given by some probability distribu-
tim. This circuit may exhibit a range of behaviors, some of which ae classified as undesirable.
The "yield" is then defined as the probability that these behaviors do not occur. As an example,
Figure 13 shows a simple circuit where two of the logic gates have a variable distribution of

22

FRem 13: Circuft with uncertan delays. Gates labeled by min/max delays. Inverters have
distribution of delays.

0.30

o.20

0).10

0.00

Trime

*D UOut (Independent)
C *Out (Actual)

Figu= 14: Mfet of onowish delays. Signal A switches from 0 to 1 at time 0. Ignoring signal
conelaics caume overestinmae of tansition probability.

23-

do d l d2
I 3 3

~01234

i MUX • out

Figure 15: Modeing uncertain delays. Boolean variables control delay selection. Signals are
replicated according to delay distribution.

delays, and we wish to evaluate the probability of a glitch occurring on node Out as the input
signal A makes atransition for 0 to 1. Figure 14 shows an analysis when signal A changes to
1 at time 0. Signals C and D will make transitions, where the transition times have probability
distributions shown. One simple analysis would be to treat the waveform probabilities for all
signals as if they were independently distributed. Then we can easily compute the behavior of
each gate output according to the gate function and input waveforms. For example, if we treat
signals C and D as independent, then we could compute the probability of a rising transition on
node Out at time t as the product of the probability that C makes a transition at t and the prob-
ability that no transition on D occurs at time _ t. This would lead to the transition probability
distribution labeled as "Out (Independent)." The net probability of a transition occurring (i.e.,
a glitch) would then be computed as 30%. In reality, of course, the transition times of signals
C and D are highly correlated- both ar affected by the delay through the initial buffer gate.
Hence, a more careful analysis would yield the transition time probability distribution labeled as
"Out (Actual)," having a net probability of occurrence of 12.5%. Thus, the simplified analysis
underestimates the circuit yield. In other cases, a simplified analysis will overestimate the yield
[Deguchi et al 1991).

To solve this problem through symbolic Boolean analysis, we must make two restrictions. First,
all circuit delays must be integer-valued (for an appropriately chosen time unit), and hence tran-
sitions occur only at discrete time points. Second, the delay probabilities for a gate must be mul-
tiples of a value l/k, where k is apowerof2. For example both variable gates in Figure 13 have
delays ranging from 1 to 4. One has uniformly distributed delays [1/4, 1/4, 1/4, 1/4], while
the other has delays that more nearly approximate a normal distribution [1/8, 3/8, 3/8, 1/8].
The delay value for a pa can then be encoded by a set of log k Boolean variables, as shown in
Figure 15. That is, we model the circuit element with a k-input multiplexor, whee a delay value
having probability c/k is fed to c of the inputs. The circuit is then evaluated using a symbolic
extension of a conventI logic gate simulation algorithm. The signal value on a node N at
each time t is then a Boolean function N(t) of the delay variables.

For the example of Rlpm 15 supp o that variables [el, col encode the delay between A and B,
wh'fi variabld [d, d, do] encode the delay between B and C, as shown in Table 4. For times
t < 0, the nd functionsa given as: A(t) = B(t) = D(t) = Out(t) = O and C(t) = 1. For

24

A--B B--+C

Delay Condition Delay ConditionI F--.i I d2-41.-
2 e 2 T.(di + do)
3 e .z 3 d2.(+ 2)
4 eI.eo 4 d2.di -do

Table 4: Delay Conditions for Example Circuit.

times t 0, node A has function A(t) = 1, while the others would be computed as:

B(t) = .o-.A(t-1)+z--eo.A(t-2) + e.E.A(t-3) + el.eo.A(t-4)

C(t) = 2.'.o.B(t-l) + 2.(d + do).B(t-2) +
d2 .(it+).B(t-3) + d2di.do.B(t-4)

D(t) = B(t-3)
Out(t) = C(t).D(t)

From these equations, the output signal would be computed as Out (t)= 0 for t < 3 and t > 8,
and for other times as:

Out(4) = d2.d.d.'+j.'

Out(5) = d2 "dj.do.-j.eo

Out(6) = d2 -dj-d 0 e-Z

Out(7) = d2.dj-do-epeo

We can compute a Boolean function indicating the delay conditions under which some undesir-
able behavior arises. For example, we could compute the probability of a glitch occurring on
node Out as G -= Out(t). In this case, we would compute G = d2 .d .do, i.e., a glitch occurs
if and only if the delay between B and C equals 4.

Given a Boolean function representing the conditions under which some event occurs, we can
compute the event probability by computing the density of the function, i.e., the fraction of
variable assignments for which the function yields 1. With the aid of the Shannon expansion,
the density p(f) of a function f can be shown to satisfy the recursive formulation:

p() = 1 +

p(0) = 0

ADf =

7%us, siven an OBDD epre enttion of f, we can compute the density in linear time by

avenkS the grph depth-first, labeling each vertex by the density of the function denoted by

25

02 32

3/1 di" di 1/4

I 'I' % I

1/ l \ i 1/4 eif1/

1 o%~% eo 1/2

1 1 0 0

Figure 16: Computation of Function Density. Each vertex is labeled by the fraction of variable
assignments yielding 1.

its subgraph. This computation is shown in Figure 16 for he OBDD representing the conditions
under which node C in Figure 15 has a rising transition at time 6, indicating that this event has
probability 7/32.
As this application shows, OBDD-based symbolic analysis can be applied to systems with
complex parametric variations. Although this requires simplifying the problem to consider only
discrete variatioms, useful results can still be obtained. The key advantage this approach has over
other simplified methods of probabilistic analysis (e.g., controllability/observability measures
[Brglez et al 1984]) is that it accurately considers the effects of correlations among stochastic
values.

6. FINITE STATE SYSTEM ANALYSIS

Many problems in digital system verification, protocol validation, and sequential system op-
timization require a detailed ct of a finite state system over a sequence of state
tramsitions. Classic algorithms for this task construct an explicit representation of the state graph
and then analyze its path and cycle structure [Clarke et al 19861. These techniques become
impractical, however, as the number of states grows large. Unfortunately, even relatively small
digital systems can have very large state spaces. For example, a single 32-bit register can have
over 4 x 10' states.

More recently, researchers have developed "symbolic" state graph methods, in which the state
transition structure is repesnted as a Boolean function [Burch et al 1990a; Coudert et al 19901.2

'AWIM,Milm P&Mi 1992 Wkqemead th &at syMbolic model c iecker in 1967, but be did not

26

1

02

03 Mi

Figure 18: Sypinbl repreunatio of non-detamidnitc finite state mchine. Th senumbte
ofp inari grows logiemarly with the num b of states.

27

This involves first selecting binary encodings of the system states and input alphabet. The next-
state behavior is described as a relation given by a characteristic function 6(z, 6, i) yielding I
when input F can cause a transition from state 6 to state ni. As an example, Figure 18 illustrates
an OBDD representation of the nondeterministic automaton having the state graph illustrated
in Figure 17. This example represents the three possible states using two binary values by the
encoding o(A) = [0,0], o(B) = [1,0], and o(C) = [0, 1]. Observe that the unused code value
(1,] can be treated as a "don't care" value for the arguments J and t in the function 6. In the
OBDD of Figure 18, this combination is treated as an alternate code for state C to simplify the
OBDD representation.

For such a small automaton, the OBDD representation does not improve on the explicit rep-
resentation. For more complex systems, on the other hand, the OBDD representation can be
considerably smaller. Based on the upper bounds derived for bounded width networks discussed
in Subsection 1.4, McMillan [McMillan 1992] has characterized some conditions under which
the OBDD representing the transition relation for a system grows only linearly with the number
of system components, whereas the number of states grows exponentially. In particular, this
property holds when both (1) the system components are connected in a linear or tree struc-
ture, and (2) each component maintains only a bounded amount of information about the state
of the other components. As the example of Figure 5 illustrated, this bound holds for ring-
connected systems, as well, since a ring can be "flattened" into a linear chain of bidirectional
links. McMillan has identified a variety of systems satisfying these conditions, including a
hierarchical distributed cache in a shared memory multiprocessor, and a ring-based distributed
mutual exclusion circuit.

Given the OBDD representation, properties of a finite state system can then be expressed by fixed
point equations over the transition function, and these equations can be solved using iterative
methods, similar to those described to compute the transitive closure of a relation. For example,
consider the task of determining the set of states reachable from an initial state having binary
coding f by some sequence of transitions. Define the relation S to indicate the conditions under
which for some input , there can be a transition from state 6 to state n. This relation has a
characteristic function

XS(0 6) = 3z [b(z, - fr)]

Then set of states reachable from state fhas chc function:

XR(-') = xs*(4')

Systems with over 1020 states have been analyzed by this method [Burch et al 1990b], far larger
than could ever be analyzed using explicit state graph methods. A number of refinements have
been proposed to speed convergence [Burch et al 1990a, Ftlkorn 1991] and to reduce the size
of the intermediate OBDDs [Coden et al 19901.
Unfortunately, the system characteriss that guarantee an efficient OBDD representation of the
transition relaion do not provide useful upper bounds on the results generated by symbolic state
machine analysis. For example, one can devise a systmn having a linear interconnetion structure
for which the caractei-ic function of the set of reachable states requrs an exponentially-sized

pasabi dd win2

28

OBDD [McMillan 1992]. On the other hand, researchers have shown that a number of real-life
systems can be analyzed by these methods.

One application of finite state system analysis is in verifying the correctness of a sequential digital
circuit. For example, one can prove that a state machine derived from the system specification is
equivalent to one derived from the circuit even though they use differnt state encodings. For this
application, mom specialized techniques have also been developed that exploit characteristics
of the system to be verified, e.g., that the circuit is synchronous and deterministic, and that
the specification requires analyzing only a bounded number of clock cycles [Bose and Fisher
1989; Beatty et al 1991]. For example, we have verified pipelined data paths containing over
1000 bits of register state. Such a system, having over 101 ° states, exceeds the capacity of
current symbolic state graph methods.

7. OTHER APPLICATION AREAS

Historically, OBDDs have been applied mostly to tasks in digital system design, verification,
and testing. More recently, however, their use has spread into other application domains. For
example, the fixed point techniques used in symbolic state machine analysis can be used to solve
a number of problems in mathematical logic and formal languages, as long as the domains are
finite [Burch et al 1990a Touati et al 1991]. Researchers have also shown that problems from
many application areas can be formulated as a sets of equations over Boolean algebras which
are then solved by a form of unification [Bilnner and Simonis 1987].

In the area of artificial intehligence, researchers have developed a truth maintenance system based
on OBDDs [Madre and Coudert 19911. They use an OBDD to represent the "database," i.e.,
the known relations among the elements. They have found that by encoding the database in this
form, the system can make inferences more readily than with the traditional approach of simply
maintaining an unorganized list of "known facts." For example, determining whether a new fact
is consistent with or follows from the set of existing facts involves a simple test for implication.

8. AREAS FOR IMPROVEMENT

Although a variety of problems have been solved successfully using OBDD-based symbolic
manipulation, there are still many cases where improved methods are required. Of course, most
of the problems to be solved are NP-hard, and in some cases even PSPACE-hard [Garey and
Johnson 1979]. Hence, it is unlikely that any method with polynomial worst case behavior can
be found. At best, we can develop methods that yield acceptable performance for most tasks of
inteluaL

One possibility is to improve on the representation itself. For working with digital systems
containing multipliers and other functions involving a complex relation between the control
and don signals, OBDDs quickly become impracticaly lare. Several methods have been

praioed that follow the same general pnciples of OBDD-based symbolic manipulation, but
with few restrictims on the data structure. For example, Karplus has proposed a variant
termed "If-Then-lse DAGs," where the test condition for each vertex can be a more complex
ftmem than a simple variable test (Karplus 1989]. Resemhers at CMU have experimented

29

Discovering new application areas, and improving the performance of symbolic methods (OBDD
or otherwise) for existing areas will provide a fruitful area of research for many years to come.

REFERENCES

[Abelson et al 19851 Abelson, H., Sussman, G. J., and Sussman, J. 1985. Structure and Inter-
pretaton of Computer Programs, MIT Press, Cambridge, MA, pp. 261-264.

[Akers 1978] Akers, S. B. 1978. Binary decision diagrams. IEEE Transactions on Computers
C-27, 6 (Aug.), pp. 509-516.

[Ashar et al 1991] Ashar, P., Devadas, S., and Ghosh, A. 1991. Boolean satisfiability and equiv-
alence checking using general binary decision diagrams. International Conference on Corn-
paer Design, (Cambridge, Oct.). IEEE, New York, pp. 259-264.

[Beatty et al 1991] Beatty, D. L., Bryant, R. E., and Seger, C.-J. H. 1991. Formal hardware
verification by symbolic trajectory evaluation. Proceedings of the 28th ACM/IEEE Design
Autmaton Conference (San Francisco, June), ACM, New York, pp. 397-402.

[Berman 1989] Berman, C. L. 1989. Ordered binary decision diagrams and circuit structure.
International Coference on Computer Design (Cambridge, October), IEEE, New York,
pp. 392-395.

[Blum and Chandra 1980] Blum, M. W., and Chandra, A. K. 1980. Equivalence of free Boolean
graphs can be decided probabilisfically in polynomial time. Information Processing Letters
10 (March 18), pp. 80-82.

[Bose and Fisher 1989] Bose, S., and Fisher, A. L 1989. Verifying pipelined hardware using
symbolic logic simulation. International Coference on Computer Design (Boston, Oct.).
IEEE, New York.

[Brace 1988] Brace, K. S. 1988. private communication, Carnegie Mellon University, (Pitts-
burgh, PA).

[Brace et al 1990] Brace, K. S., Bryant, R. E., and Rudell, R. L. 1990. Efficient implementation
of a BDD package. Proceedings of the 27th ACM/IEEE Design Automation Conference
(Orlando, June), ACM, New York, pp. 40-45.

[Brayton et al 1984] Brayton, R. K., Hachtel, G. D., McMullen, C. T., and Sangiovanni-
Vincentelli, A. L. 1984. Logic Minimization Algorithms for VLSI Synthesis. Kluwer Aca-
demic Publishers, Boston.

[Brglez et al 19841 Brglez, F., Pownall, P., and Hum, P. 1984. Appicatios of testability analy-
sis: From ATPO to critical path tracing. Internadonal Test Conference (Philadelphia, Oct.),
IEEE, New York, pp. 705-712.

[Brown 1990] Brown, . M. 1990. Boolean Reasoning. Kluwer Academic Publishers, Boston.

31

with "Fzee BDDs," in which the variable ordering restriction of OBDDs is relaxed to the extent
that the variables can appear in any order, but no path from the root to a terminal vertex
can test a variable more than once [Brace 1988]. Such graphs, known as "1-time branching
programs" in the theoretical community [Wegener 1988], have many of the desirable properties
of OBDDs, including an efficient (although probabilistic) method for testing equivalence [Blum
and Chandra 19801. Recently, techniques based on this representation have been developed
that maintain several of the desirable characteitc of OBDDs, including a canonical form
and a polynomial time APPLY operation [G rgov and Meinel 1992]. Other researchers have
removed all restrictions on variable occurwrce, allowing paths with multiple tests of a single
variable [Ashar et al 1991; Burch 1991]. In each of these extensions, we see a trade-off between
the compactness of the aepresentation and the difficulty of constructing them or testing their
propertes.
In many combinatorial opfimization problems, symbolic methods using OBDDs have not per-
formed as well as more traditional methods. In these problems, we are typically interested in
finding only one solution that satisfies some optimality criterion. Most approaches using OB-
DDs on the other hand, derive all possible solutions and then select the best from among these.
Unfortunately, many problems have too many solutions to encode symbolically. More traditional
search methods such as branch-and-bound techniques often prove more efficient and able to solve
larger problems. For example, our test generation program determines all possible tests for each
fault [Cho and Bryant 1989], whereas moe traditional methods stop their search as soon as a
single test is found. One possibility would be apply the idea of "lazy" or "delayed" evaluation
[Abelson et al 1985] to OBDD-baed manipulation. That is, rather than eagerly creating a full
representation of every functon during a sequence of operations, the program would attempt
to construct only as much of the OBDDs as is required to derive the final information desired.
Recent test generation programs have some of this character, using a hybrid of combinatorial
search and funcional evaluation [Girali and Bushnell 1990].

9. SUMMARY

As researhr explore new application areas and formulate problems symbolically, they find
they can exploit several key features of Boolean functions and OBDDs:

* By encoding the elements of a finite domain in binary, operations over these domains can
be rpresened by vectors of Boolean functio.

9 Symbolic Boolean manipulation provides a unified framework for representing a number
of different mhematal systems.

9 For many prblems, a variable ordering can be found such that the OBDD sizes remain
reasonbl.

* The ability to quickly test equivalence and satisfdability makes techniques such as ierative
mthods and sensitivity analysis feasible.

• The APPLY and RESTRICT operations pride a powerf basis for many more complex

30

[Bryant 1986] Bryant, IL F. 1986. Graph-based algorithms for Boolean function manipulation.
IEE Transactionis on Computers C-35, 6 (Aug.), pp. 677-691.

[Bryant 19911 Bryant, R. E 1991. On the complexity of VLSI implementtions and graph rep-
resPnta-ions of Boolean functions with application to integer mliicto.IEEE Trans-
acuioiu on Computers 40 2 (Feb.), pp. 20U-213.

[Burch et al 1990&] Burch, L. R., Clarke, F- M., and McMillan, K. 1990. Symbolic model
checkIng OPO staue and beyond. Fofh Annual IEEE Sy7mposum on Logic in Computer

* Science (Philadelphia, June), IEEE, New York, pp. 428-439.

[Burch et al 1990bJ Burch, J. R., Clarke E. M., Dill, D. L, and McMillan, K 1990. Sequential
circuit verification using symbolic model checking. Proceedings of the 27th ACM/IEEE
Design Automation Conference (Orlando, June) ACM, New York, pp. 46-5 1.

[Birch 1991] Burch, J. R. 1991. Using EDDs to verify multipliers Proceedings of the 28th
ACMIIEEE Design Automsaion Co,(erence, (San Francisco, June) ACM, New York,
pp. 408-412.

[Bilune and Simonis 1987] Bfittner, W. and Simonis, H. 1987. -Embedding Boolean expres-
sions into logic programming. Journal of Symbolic Computaton 4 pp. 191-205.

[Corny and Maria 19771 Ceny, E and Marin, M. A. 1977. An approach to unified methodology
of com--b inational switching circuits. IEEE Transactions on Computers C-26, 8 (Aug.),
pp. 743-756.

[Cho and Bryant 1989] Cho, K., and Bryant, R. E, 198. Test pattern generation for sequential
MOS circuits by symbolic fault simulation. Proceedings of the 26th ACM/IEEE Design
Automaion Coiterence (Las Ntgas, June), ACM, New York, pp. 418-423.

[Clake et al 1986] Clarke, E M. , Emerson, &. A., and Sistla, A. P.1986. Automatic verification
of finitestate concurrent systems using temporal logic specifications. ACM Transactons
on Prormln Languages 8 2 (April), pp. 244-263.

(Coudert et al 1990) Coudert, 0. Madre, J.-C., and Berthet, C 1990. Verifying temporal prop-
erties of sequential machines without building their state diagrams. Computer-Aided Verifi-
cation '90, E. M. Clarke, and R. P. Kurshan, cii,. (Rutgers, June), American Mathematical
Society, pp. 754.

(Deguchi et al 1991] Deguchi, Y., Ishiura N., and, Yajima, S. 1991. Probabilistic CFSS: Anal-
ysis of timing curm probabilit in asynchronous logic circuits. Proceedings of the 28th
ACM/lWM Design Automation Couot ivne, (San Francisco, June) ACM, New York,
pp. 650-655.

[Filkor 1991] Filkamn T. 1991. A method for symbolic verification of synchronous circuits.
Cwomr Heviuwv Dewlpolon Languages (Marseilles, April), IFIP pp. 229-239.

32

[Fortune et al 1978] Fortune, S., Hopcrokt J., and Schmid4 E- M. 1978. The complexity of
equivalence and Containment for free single variable pogam schemes- Automat, Lan-
gu~ages and protgrammning, Lecture Notes in Com~puter Science, Vol. 62, G. (3oos, J. Hart-
manis, Ausio, and Boehm, edg. springer-Verhag, Berlin, pp. 227-240.

[Fujita et al 198] Fujita, M., Fujisawa, H. and Kawato, N. 1988. Evaluations and improve-
ments of a Boolea comparison progam based on binary decision diagrams- International
Coifrence on Computer-Aided Design (Santa Clara Nov.), IEE New York, pp. 2-5.

[Fujita et al 1991] Fujita, M., Kakuda, T., and Matsunaga, Y. 1991. Redesign and automatic
error correction of cmIntoa circuits. Logic and Architecture Synthesis: Proceedings
of the IFIP TC1OIWG)OS Workshop on Logic and Architecture Synthesis, P Michel, and
0. Saucier, edr. Elsevier, Amstedam,. PP. 253-262.

[Garey and Johnson 1979] Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability,
W. a- Freean and Company, New York.

[Gergov and Meinel 199] Gergov, J., and Meinel, C. 199. Efficient analysis and manipulation
of OBDDs can be extended to read-once-only branching programs. Technical Report 92- 10,
Universitit Thier, Fachbeeih JY-MathematikInformatik, Ther, Germany.

[Giraldi and Bushnell 1990] Girali, J., and Bushinell, M. L 1990. EST- The new frontier in
automatic test-pattern generation. Proceedings of the 27th ACM/IEEE Design Automation
Corference (Orlando, June), ACM, New York, pp. 667-672.

(Jeong et al 1991] Jeong, S.-W., Plessier, B., Hachtel, 0. D., and Somenzi, F. 1991. Variable
ordering and Selection for FSM traversal. International Coterence on Comtputer-Aided
Design (Santa Clara Nov.), IEEE, New York, pp. 476-479.

[Karplus 1989] Karplus, K. 1989. Using if-then-else DAGs for multi-level logic minimization.
In Advanced Research in VWSI C. Seitz, ed., MIT Press, Cambridge, pp. 101-118.

[Kinmura and Clarke 1990] Kimura, S., and Clarke, E. M. 1990. A parallel algorithm for con-
structing binary decision diagrams. International Copference on Computer Design (Boston,
Oct.), IEEE, New York, pp. 220-223.

[Lee 1959] Lee, C. Y. 1959. Representation of switching circuits by binary-decision programs.
Bell System Technical Journal 38, pp. 985-999.

[Lin st &1 1990] Lin, B., Touati, H. J., and Newton, A. R. 1990. Don't carmizaon Of
multi-level sequential logic networks. International Cotference on Computer-Aided Design
(Samt Ciuu, Nov.), IEEE, Now York, pp. 414-417.

[Ma~i and Billn 1988] Maft, J. C., and Billon, JL P. 1988. Proving circuit correctness uig
ftral campnisoa between expected and extracted behavour Proceedings of the 25th
ACM/lWFZ Dat,. Asaaaon Co~re, (Anaheim, June), ACM, New York, pp. 205-
210.

33

[Macire et al 1989) Madire, J.-C., Coudert, 0., and Bumlo, J. P 1989. Automating the diagnosis
and rectification of design errors with PRIAM. International Conference on Computer-
Aided Design (Santa Clara, Nov.), IEEE, New York, pp. 30-33.

[Madre and Coudert 19911 Madre, J.-C., and Coudert, 0. 1991. A logically complete reasoning
maintenance system based on a logical constraint slver. 12th International Joint Confer-
ence on Artifscia Intelligence (Sydney, Aug.), pp. 294-299.

[Malik et al 19881 Malik, S., Wang, A., Brayton, R. K, and Sangiovanni-Vincentelli, A. 1988.
Logic verification using binary decision diagrams in a logic synthesis environment. In-
ternational Conference on Computer-Aided Design (Santa Clara, Nov.), IEEE, New York,
pp. 6-9.

[McMillan 1992] McMillan, K L 1992. Symbolic model checking: an approach to the state
explosion problem PhD thesis, School of Computer Science, Carnegie Mellon University.

[Mead and Conway 1990] Mead, C. A., and Conway, L. 1980. Introduction to VLSI Systems,
Addison-Wesley, Reading, MA.

[Meinel 1990] Meinel, C. 1990 Modified branching program and their computational power,
Lecture Notes in Computer Science Vol. 370, 03. Goos, and J. Hartmanis, eds. Springer-
Verlag, Berlin.

[Minato et al 1990] Minato, S., Ishiura, N., and Yajima, S. 1990. Shared binary decision diagram
with attributed edges for efficient Boolean function manipulaton. Proceedings of the 27th
ACM/IEEE Design Automation Conference (Orlando, June), ACM, New York, pp. 52-57.

[Ochi et al 1991] Ochi, FL, Ishiura, N., and Yajima, S. 1991. Breadth-first mnpltO f
SBDD of function for vector processing. Proceedings of the 28th ACM/IEEE Design Au-
tomation Conference, (San Francisco, June) ACM, New York, pp. 413-416.

[Reeves and Irwin 1987] Reeves, D. S., and Irwin, M. J. 1987. Fast methods for switch-level
verification of MOS circuits. IEEE Transactions on CAD/IC CAD-6 5 (Sept), pp. 766-779.

[Sato et a&11990] Sato, IL, Yasue, Y., Matsunaga, Y., and Fujita, M. 1990. Boolean resubsti-
tution with permissible functions and binary decision diagrams. Proceedings of the 27th
ACM/1IEEE Design Autonmion Conference (Orlando, June), ACM, New York, pp. 284--289.

[Sellers et al 1968] Seller., F. R, Hsiao, M. Y., and Bearnson, C. L 1968. Analyzing erors
with the Boolean difference. IEEE Transactions on Computers C-17, pp. 676-683.

[Srinivusan et al 19901 Srimivaswn A., Kam, T, Malik, S., and Brayton, K. K 1990. Algorithms
for discrete functionmaiuai. International Conference on Computer-Aided Design
(Sant Clara, Nov.), IEE, New York, pp. 92-95.

['ibuas et al 19911 bumi, H. J., Brayton, R. K., and Kurshan, R. P. 1991. Testing language
contanmen for w-aulomata uwing BDD's Formal Methods in VLSI Design (Miami, Jan.),

ACM, New YcrL

34

[Watanabe and Brayton 1991] Watanabe, Y., and Brayton, K. K. 1991. Heuristic minimization
of multiple-valued relation. Internadonal Coip~erence on Carmpaaer-Aided Design (Santa
Clara, Nov.), IEEE, New York, pp. 126-129.

[Wegener 1988] Wegener, 1. 1988. On the complexity of branching programs and decision trees
for clique functions. J. ACM 35 2 (April), pp. 461-471.

35-

