
AD-A252 409
aval Research Laboratory II II II II
shington, DC 20375.5000

D T IC NRLIMRI5120-92-6920

JUL 8 1992

C
The KRAKEN Normal Mode Program

M. B. PORTER

Applied Ocean Acoustics Branch
Acoustics Division

May 22, 1992

Prepared jointly with SACLANT Undersea Research Centre

92-17722

Approved for public release; distribution unlimited.



Io-rm Appr'ovea

REPORT DOCUMENTATION PAGE OMB No. 070-o0a.

Public reporting burden fo, this collection of Information is e tmated to average I hour Ier (esponse. including the lime for reviewing instructions. searching exristing data sources.
gathenrngl nd maintaining the data neoded, and comiPeting and reviewing the collection of inftiorto Send comment regarding ti burden estmalte or any other aspect Of this
collection of iformation. Including suggestions for reducng this burden. to washongton Headquarters Services. Directorate for Mormatiotiperations and Reports. 121S Jefferson
Oai$ Highway. Suite 1204. Arlington. VA 22202-4302. nd tothe Office of Management and Budget. Paperwork Redlution Protect (0704-0 188). Washington. DC 2050.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 22, 1992

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

The KRAKEN Normal Mode Program
PE - 62314N

6. AUTHOR(S) PR - RJ14CO2

M. B. Porter

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5000 NRL/MR/5120-92-6920

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Office of Chief of Naval Research
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

Prepared jointly with SACLANT Undersea Research Centre.

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

In the late 1970's several normal-mode models existed which were widely used for predicting acoustic
transmission-loss in the ocean; however, each had its own problems. Typical difficulties included numerical
instabilities for certain types of sound-speed profiles and failures to compute a complete set of ocean modes. In
short, there was a need for a model that was robust, accurate, and efficient. In order to resolve these problems
a new algorithm was developed forming the basis for the KRAKEN normal mode model.

Over subsequent years, KRAKEN was greatly extended, with options for modeling ocean environments
that are range-independent, range-dependent or fully 3-dimensional. The current version offers a specialist a
vast number of options for treating ocean-acoustics problems (or more generally acousto-elastic waveguides).
On the other hand, it is easy for a less sophisticated user to learn the small subset of tools needed for the com-
mon problem of transmission-loss modeling in range-independent ocean environments.

This report addresses the need for a more complete user's guide to supplement the on-line help files. The
first chapters give a fairly technical description of the mathematical and numerical basis of the model. Addi-
tional chapters give a simpler description of its use and installation in a manner that is accessible to less
scientifically-oriented readers.

14. SUBJECT TERMS 15. NUMBER OF PAGES
99

Normal model Underwater Sound 16. PRICE CODE
Acoustics
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-2B0-S500 Standard Form 298 (Rev 2-89)

Peiic,,bed b ANSI %tO 139 18
,90 102



AC4WA10Qa Ior

@ ,
SDt s __ ( -I en/

Avllability Cdo!_J

Dist iSpecial

Contents

1 Introduction

2 Mathematical Formulation 5
2.1 Derivation ........ ................................. 5

2.2 The Isovelocity Problem ...... ......................... 9

2.3 A Generalized Derivation ....... ........................ 14
2.3.1 Derivation of the Normalization Formula .............. 20

2.4 A Deep Water Problem: the Munk Profile ................... 22
2.5 Elastic Media ........ ............................... 25
2.6 Boundary and Interface Conditions ........................ 27

2.6.1 Perfectly Free Boundary (Dirichlet BC) ................ 28
2.6.2 Perfectly Rigid Boundary (Neumann BC) .............. 28
2.6.3 Acoustic Half-space Conditions (Robin BC) ............. 29
2.6.4 Elastic Half-space Conditions ....................... 30
2.6.5 Tabulated Reflection Coeffcients .................... 31

2.7 Loss Mechanisms ....... ............................. 32
2.7.1 Material Absorption ...... ....................... 32
2.7.2 Twersky Scatter Theory .......................... 33

2.7.3 Kirchhoff Scatter Theory ...... .................... 34
2.7.4 Interfacial Roughness ...... ...................... 34

2.7.5 Perturbational Treatment of Loss Mechanisms ........... 35
2.8 Normal Modes for Range-Dependent Environments ............. 37

2.8.1 Coupled Modes ....... .......................... 37

2.8.2 One-way Coupled Modes ...... .................... 41
2.8.3 The Adiabatic Approximation .... ................. 41

2.8.4 Example: A Warm-Core Eddy .... ................. 43
2.9 Normal Modes for 3-D Varying Environments ................ 46

2.9.1 Horizontal Refraction Equations ..... ................ 48

3 Numerical Solution of the Modal Equation 53

3.1 Finite-Difference Discretization ..... ..................... 53
3.2 Treatment of Interfaces ....... ......................... 57
3.3 Mode Normalization ........................... 58
3.4 Solving the Discretized Problem ...... .................... 59

3.4.1 Method I: Sturm Sequences ..... ................... 60

Ill



iv CONTENTS

3.4.2 Method HI: Deflation............................ 61
3.5 Elastic Media..................................... 62
3.6 Richardson Extrapolation............................. 62

4 Running the Program 65
4.1 Structure of the KRAKEN mocel .. .. .. ... ... ... ... .... 67
4.2 The Main Program .. .. .. .. ... ... ... ... ... .... .. 69

4.2.1 NOTES.HLP. .. .. .. ... ... ... .... ... ... .. 69
4.2.2 KRA.KEN.HLP .. .. .. .. ... ... .... ... ... .... 75

4.3 Acoustic Field Calculations .. .. .. ... ... ... ... ... .... 89
4.3.1 FIELD.HLP .. .. .. .. ... ... ... ... ... ... ... 89
4.3.2 FIELD3D.HLP .. .. .. .. .... ... ... ... ... .... 93

4.4 Plotting routines .. .. .. ... ... ... ... ... ... ... ... 99
4.4.1 PLOTFIELD.HLP............................. 99
4.4.2 PLOTGRN.HLP.............................. 103
4.4.3 PLOTMODE.HLP............................. 105
4.4.4 PLOTSLICE.HLP............................. 107
4.4.5 PLOTSSP.HLP............................... 111
4.4.6 PLOTTLD.HLP.............................. 113
4.4.7 PLOTTLR.HLP.............................. 117
4.4.8 PLOTTRI.HLP............................... 121

4.5 The BELLHOP ray/beam model......................... 123
4.5.1 BELLHOP.HLP.............................. 123
4.5.2 PLOTRAY.HIJP.............................. 131

4.6 The SCOOTER FFP model............................ 135
4.6.1 SCOOTER.HLP.............................. 135
4.6.2 FIELDS.HLP................................ 137

4.7 The SPARC pulse model.............................. 139
4.7.1 SPARC.H1LP................................. 139
4.7.2 PLOTTS.HLP............................... 143

4.8 The BOUNCE reflection coefficient model.................. 147
4.8.1 BOUNCE.HLP............................. . 147
4.8.2 PLOTRTH.HLP.............................. 149

5 Test Problems 151
5.1 PEKERIS....................................... 153
5.2 TWERSKY...................................... 157
5.3 DOUBLE........................................ 161
5.4 SCHOLTE..................................... . 165
5.5 FLUSED........................................ 169
5.6 ELSED..........................................173
5.7 ATTEN......................................... 177
5.8 NORMAL....................................... 181
5.9 ICE........................................... 185



THE KRAKEN NORMAL MODE PROGRAM

Chapter 1

Introduction

Normal mode methods have been used for many years in underwater acoustics. One
of the earliest papers was published in 1948 by Pekeris 1i! who developed the theory
for a simple two-layer model (ocean and sediment) with constant sound speed in
each layer. Progress in the development of normal-mode methods is represented in
an excellent surrmary given by Williams[2] and published in 1970. Today, there
are many models available that are based on normal modes 3-12>. With respect to
Pekeris's original work, these models allow for a more detailed description of both
the ocean and sediment sound-speed profiles.

Work on KRAKEN I was begun in 1980 as part of the author's dissertation with
the objective of developing a normal mode model which was more robust, accu-
rate and efficient[13,14]. The basic algorithm was then extended to treat a more
sophisticated ocean model in which the elastic properties of the ocean bottom are
included[151. At the time, elastic normal mode codes were widely used by seismolo-
gists but not very familiar to the ocean-acoustics community. Additional work was
done to include the effects of shear flows (e.g. ocean currents) [161.

The KRAKEN model was initially developed as a research code to evaluate new
algorithms. As such it required numerous modifications to be usable as a production
code. This work was begun at the Naval Ocean Systems Center and continued at the
Naval Research Laboratory in support of the research on matched-field processing.

The extension to three-dimensional environments 171 was also done at NPL
That work led to the program FIELD3D which formed the nucleus of the Wide- 'Lrea
Rapid Acoustic Prediction (WRAP) system. WRAP has been extended by a number
of people and now includes options for noise modeling 18i and can include this
information to predict array performance in complex 3-D environments with different
kinds of signal processing schemes. This report documents only the KRAKEN model,
not the complete WRAP system.

When the original KRAKEN work was done the algorithm was incorporated into
the very populaz SNAP model at SACLANTCEN and subsequently renamed to
SUPERSNAP. Since 1984 SUPERSNAP has become the standard and is now simply

In answer to the most frequently asked question: KRAKEN kriik-en n iNorw dial. (1755): a
fabulous Scandinavian sea monster. (Webster's Ninth New Coilegiate Dictionary)
Manuscript apprved November 27, 1991.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Cachet engraving of a KRAKEN (from the Canadian Illustrated News,
October 27, 1877).

referred to as SNAP. As a result the current version of SNAP and KRAKEN provide
identical results when ran on the same problem. The execution time is also identical.

In essence, the difference between the two models is that KRAKEN provides a
large number of extensions and options, whose presence is an advantage to a sophis-
ticated user and a disadvantage to the uiitiated. At SACLANTCEN, both models
are being maintained: KRAKEN is recommended for more experienced modelers or
for those requiring 3-D capability and SNAP recommended for those interested sim-
ply in transmission loss calculations. Amongst the features of KRAKEN are:

* efficient eigenvalue finding techniques guaranteed to converge

* stable eigenfunction calculation even with multiple ducts

a ability to handle multilayered environments

• inclusion of stratified elastic layers

* inclusion of interfacial roughness

* tabulated surface and bottom reflection coefficients

* choice of perturbational or exact treatment of loss

* calculation of leaky modes

* free. rigid, and homogenous half-spa:e options for boundary conditions

* adiabatic or coupled mode options for range-dependent problems



3

* tilted and displaced array calculations

* high-accuracy via extrapolation

0 extension to 3-dimensionally varying problems

This report is organized as follows. Chapter 2 provides a fairly technical de-
scription of the mathematical basis for normal modes. This material is intended
as a tutorial on normal modes and makes limited reference to the specifics of the
KRAKEN model. Chapter 3 discusses the numerical treatment of the modal equation
and Chap. 4 provides information on running the program. In Chap. 5 we present a
number of test problems which exercise different parts of the code. These problems
are not particularly physical but they do provide a means of verifying the model
on a new installation. In addition, they illustrate the set-up of the input file for
different types of environmental scenarios.
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Chapter 2

Mathematical Formulation

The normal mode solution involves solving a one-dimensional equation which is
very similar to that of a vibrating string. In this analogy, the "frequencies" of

vibration give the horizontal wavenumbers associated with the modal propagation
and a varying string thickness corresponds to a change in sound speed with depth.
The position where the string is plucked corresponds to the source depth and the
relative excitation of the ocean modes depends on the source depth just as the
harmonic balance of a note is affected by the position where the string is plucked.

We will begin with a simple derivation of the normal mode equations based on
separation of variables. This provides a quick means of introducing the gross features
of the normal mode approach in Sect. 2.2. In Sect. 2.3, we present a generalized
derivation which starts with the spectral representation of the acoustic field. This

derivation is necessary for treating the more complex problems involving interfacial
roughness, homogeneous halfspaces, or other more complicated boundary conditions
which are treated in Sects. 2.5-2.7. Normal modes are normally thought of princi-
pally in the context of range-independent problems. however, they can be extended
in various ways to both range-dependent problems and fully three-dimensional prob-
lems. These extensions are discussed in Sects. 2.8 and 2.9 respectively.

2.1 Derivation

The problem we consider is that of calculating the response to an isotropic point
source in a stratified (i.e. range-independent) acoustic medium. The scenario is
indicated schematically in Fig. 2.1. Within a layer the solution is governed by the
acoustic wave equation:

V ~ ~ - .p P S (z - z,)6(r)(21-s.t)2Pr , (2.1)

kp pc2 (Z) r

where P(r, z, t) is the acoustic pressure as a function of depth z, range r, and time
t. In addition, 9(t) is the isotropic point source. p(z) is the density and c(Z) is
the sound speed. For the moment we assume that the surface is a pressure release
boundary and that at some sufficiently great depth D, the boundary can be treated

5



6 CHAPTER 2. MATHEMATICAL FORMULATION
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Figure 2.1: Schematic of the range-independent environmental scenario.

as perfectly rigid:

P(r,O,t) = 0,
P.(r,D,t) = 0. (2.2)

(The perfectly rigid boundary is often used as a first approximation to the ocean
bottom, but in fact a pressure-release bottom is almost always a better approxima-
tion: long range propagation is dominated by rays at grazing incidence where even
a relatively fast bottom acts like a pressure release boundary.) Furthermore, we
require

P(r, z, t) outgoing as r --+ oc.

When discontinuous interfaces are present the wave equation applies within each
smooth layer and interface conditions requiring continuity of pressure and normal
displacement are imposed.

The first simplification we make is to assume that we are only interested in a
single frequency component. that is. the response of the ocean to a continuous hum.
Thus. we assume that the source time series nas the form

(2.3)

which leads to a pressure field with the same harmonic time-dependence 1:

P(r.z.t I = p(r.) t  (2.4)

Malung this substitution in the wave equation yields the so-called Helmholtz equa-
tion or reduced wave-equation:

1 a ap) (10' -=1 .--W2 (2.5)
r Tr r\Tp(Z)clT, C2-p2irr

'This choice of c-' is probabiv the most common: KRAKEN is actually :mplemented using the
opposite convention to be compatibie with certain FFP models. You need to De alert to tnas point

if you are using model output to do matched-fieid processing.



2.1. DERIVATION 7

Using the technique of separation of variables, we seek a solution of the unforced
equation (with the source removed) in the form p(r, :) = Z(z)R(r). Thus we find.

O.W (26)
[i _rr~ -[P- p( ' ) Tj-g- - c 2 (z)jI = 0.(26

The two components in square brackets are functions of r and z respectively. Thus,
the only way the equation can be satisfied is if each component is equal to a constant.
Denoting this separation constant by k2 we obtain the modal equation:

P(z) ( (- - 2) Z(Z) = 0, -

Z(o) = 0,

dZ
zT( = 0. (2.7)

The modal equation is a classical Sturm-Liouville eigenvalue problem whose
properties are well-known 28. (We assume for the moment that p(z) and c(z) are
real functions.) A brief summary of these properties follows. The modal equation
has an infinite number of solutions (modes) which are characterized by a mode shape
function Z,(z) and a horizontal propagation constant k,. These horizontal prop-
agation constants, are all distinct. The function Zm(z) is an eigenfunction and k,
or k2 is an eigenvalue. The mth mode has m zeroes in the interval [0, D] and the
corresponding eigenvalues, k are all real and we choose to order them such that
1> k > .. . One can also show that all the eigenvalues are less than wic,,n where

cm,, is the lowest sound speed in the problem.
In addition, -he modes of such Sturm-Liouville problems are orthogonal. That

is,
f Z(z)Z(Z) dz = 0. for m : n. (2.8)

The solutions of the modal equation are arbitrary to a multiplicative constant as is
easily seen from Eq. (2.7). In order to simplify certain results. we shall assume that
the modes are scaled (normalized) so that

,(z) 1. (2.9)

With this scaling, the modes form an orthonormal set. Furthermore. the set is
complete which means we can represent an arbitrary function as a sum of the normal
modes. Thus, we write the pressure as

p(r. :) = R Z(,)z (W. (2.10)

If we now substitute this into Eq. (2.5) we obtain:

i p(z) r 0,(r))z,(),-I r ar p z) br
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+RP, (r) p(z) -(z)- + "12 Z ,,((z 2 -rr

Tz- (Z)_ Z_ C2(Z) m2ZJJ

This implies,

[1 a (r 9 R,()) (z) + k 2R,(r)Z,(z) -6(r)6(z - z.) (2.11)

Next we apply the operator:
f .Zj(z)d- (2.121)

to this equation. Because of the orthogonality property (Eq. 2.8) only the nth term
in the sum remains. This gives us:

15 ( rR(r) + k - -6(r)Z((z.)
-\ F k -Or ))I 2rrp(z,) (2.13)

This is a standard equation whose solution is given in terms of a Hankel function[28'
as

R(r) - 4p (z.) (2.14)

The choice of H(1) or H0 is determined by the radiation condition (that en-
ergy should be radiating outward as r - oo). Since we have suppressed a time-
dependence of the form e-i t with w positive and since the ki are chosen to lie in
the right-half plane we shall take the Hankel function of the first kind. Puttimg this
all together, one finds that,

p(r,z)- 4p(-___ Z"(z.)Z ..'(z)H(')(k r), (2.15)

or. using the asymptotic approximation to the Hankel function.

p(r,z) - €-t /4  - Z (Z,)Z, Z) . (2.16)
P(Z,)V, r~r Sn

We normally plot not the complex pressure field but transmission loss. Trans-
mission loss is defined by:

p(r. z (2.17
TL(r.z= -20lo°g (2.p)(r

where

p(r)= (2.18)47.r

is the pressure for the source in free space. Thus one may write:

TL(r.z) -20 log \ Z(()Z,,(:,. (2.19)
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OrM,
Z ==25m

--- -- ------------------ z =50m

c = 1500 mis

p=1

D=lOOm

Figure 2.2: Schematic of the isovelocity problem.

In some cases it is useful to calculate an incoherent transmission loss defined by:

- og i 1 (2.20)

If one is comparing to measured data which has been taken by averaging over
frequency one can often simulate the resulting smoothed result by an incoherent TL
calculation. Incoherent transmission loss is also often appropriate for shallow water
problems. In shallow water the modes are normally bottom-interacting and bottom

properties are usually poorly known. This in turn means that the detailed interfer-
ence pattern predicted by a coherent TL calculation is not physically meaningful.

2.2 The Isovelocity Problem

The principal numerical problem is to solve for the normal modes Z, (:) corre-

sponding to Eq. (2.7). The sound speed profile, c(z) assumes a fairly arbitrary form
so simple analytical techniques are generally not useful. On the other hand. it is

instructive to consider some simple profiles in order to understand the qualitative

features of modal problems. The simplest such case is the isoveloctty profile with

unit density as shown in Fig. 2.2. The general solution is

Z,(z) Asinyz -, B cos')'z, (2.21)

where

72 - Vk. (2.22)
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The surface boundary condition implies that B = 0 while the bottom boundary
condition leads to:

A-y cos-yD = 0. (2.23)

where D is the depth of the bottom. Thus, either A = 0 (the trivial solution) or we
must have

-yD = (M + ) 7 m=1, 2,...,

that is, k must assume particular values,

k- = -c - [(m + ) , m= 1,2, (2.24)

The corresponding eigenfunctions are given by,

Zm(z) = sin -y,z, (2.25)

where we have chosen the constant A so that the modes have unit norm as specified
in Eq. (2.9).

Equation (2.24), which relates the frequency w to the wavenumber kin, is known
as the dispersion rdation. Plots of w versus k, are in turn called the dispersion
curves. The quantities vp(w) = w/k,, and vg(w) = dw;!dk are respectively the phase
velocity and the group velocity of the mth mode. The group velocity is associated
with the radial speed of propagation for a pulse.

The eigenvalues divide into two classes corresponding to propagating and evanes-
cent modes depending on whether the argument of the square root in Eq. (2.24) is
positive or negative. In either case, the square root admits two values k,, and -k,.
The positions of these eigenvalues are indicated schematically in Fig. 2.3 by circles.
(Their precise positions depend on the frequency, depth and sound speed.)

For the propagating modes we select the branch which gives an outgoing wave.
Since we have suppressed a time dependence of the form -  we should take the
positive value for k,. These eigenvalues are indicated by the filled circles lying on
the positive real axis in Fig. 2.3.

For the evanescent modes we have to choose between roots of the form Za and
-Za where a is a positive real number. These modes have the property of either
growing or decaying in range. In order to have a bounded solution we take the
branch for which k, lies in the upper half-plane, i.e. k, = 2a with a positive. These
eigenvalues are indicated by the filled circles lying on the positive imaginary axis in
Fig. 2.3.

The real eigenvalues have an upper bound wic. As we reduce the frequency. the
eigenvalues on the real axis slide to the left and up the imaginary axis. At a suffi-
ciently low frequency the first mode will make the transition leaving no propagating
modes. The frequency at which this occurs is called the cut-off frequency for the
waveguide.

As a concrete example. consider the isovelocity problem with sound speed c =
1500 m,,s. depth D = 100m. and source frequency f = 100 Hz. Selected modes arE
plotted in Fig. 2.4. Note that the mth mode has m zeros.
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Re(k =-()/c Re( k =+w/c
7

I 6 Complex

k-plane

405

4 3 2 1

i:ooo a 0 0 00

Figure 2.3: Location of eigenvalues for the isovelocity problem.

KRAKEN- Isovolocity problem

Mods I Mode 2 Mooe 3 moos 4

* tI*I4 - - L.,1 fl - 0.W44 - • S |

0 1 0

1004 1 0 00 - 100
-I 0 1 1 -" 0 I -1 0 I -1 0 I

Figure 2.4: Selected modes of the isovelocity problem.
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Substituting the formula for the isovelocity modes given in Eq. (2.25) into Eq. (2.15)
we obtain a representation of the pressure field:

p(r, z) = - sin(-z)sin(,,,z)H('(kmT). (2.26)

Similarly, from Eq. (2.19) we obtain a representation for the transmission loss as
-10 log I where I is an intensity defined by

l(r,z) = Jp(r,z)I' = 11  i -r-1 t sin(y 'z,)sin(-.z) e . (2.27)

In Fig. 2.5 we display the transmission loss for this problem keeping 1. 2 and
3 modes respectively in the modal sum. The source depth is z. = 25 m and the
receiver depth is z = 50m in these calculations. Note that as we increase the
number of modes the detail in the TL curves also increases. This can be understood
by writing the intensity as

8w 2
I(r,z) -A, '

k '

rD2

- -" 4 2 A2 -- 2AA, cos(Ak,r) (2.28)-rD 2  A., 1

where.
Ak = k7, - k,. (2.29)

and

A, = sii z. it(2.30)
k,

With just one mode in the series, the complex pressure involves an oscillatory term of
the form ck. however, its envelope (the intensity) is smooth as indicated in Fig. 2.5.
With two modes in the series the intensity is seen to include a term cos (,: - k2 )r.
giving the two-mode interference pattern in Fic. 2.5(b) Note that the interference
pattern occurs over a scale significantly larger than the wavelength. Finally. with 3
modes the interference structure shows a further increase in complexity as shown in
Fig. 2.5(c).

Many of the properties we see for the isovelocity profile will carry through to
more general profiles. On the other hand. while it may still be useful to speak of
propagating and evanescent modes. the distinction is blurred when attenuation is
included for then all of the modes are displaced into the firsr quadrant and so all
the modes have both a propagating and an evanescent component. Similarly. th,
cut-off frequency is poorly defined in such cases. These points will be made clearer
as we consider more complicated cases.
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om

zs= 25 m

c 1500 m/s

p=]

D=lOOm

Figure 2.6: Schematic of the Pekeris problem.

2.3 A Generalized Derivation

The derivation of the modal equation which was followed in Sect. 2.2 is inapplicable
in many ocean acoustic problems. The key assumption was that after applying
the separation of variables we obtained a Sturm-Liouville problem which was non-
singular and therefore possessed a complete set of normal modes. As we shall see,
even fairly simple scenarios can lead to singular problems for which the normal
modes do not form a complete set. More generally. one obtains a mixed spectrum
composed of a discrete and a continuous part. The discrete spectrum in such cases
leads to a representation involving a sum of modes while the continuous spectrum

involves an integral over a continuum of points in k-space.
A simple example of such a problem is provided by the Pekeris waveguide which

consists of an isovelocity layer over an isovelocity halfspace. We shall consider the
particular problem shown schematically in Fig. 2.6.

Applying the separation of variables technique to this problem we obtain the
modal equation (2.7) but with the bottom depth D going to infinity: the modal
equation is singular. We can make the domain finite by constructing a boundary
condition to be applied at the interface between the two layers. To construct the
equivalent boundary condition. we observe that the general solution in the halfspace
is given by,

ZH(z = B -  - C . (2.31)

where.

- - (2.32)



2.3. A GENERALIZED DERIVATION 15

and cb denotes the sound speed in the bottom. Let us assume for the moment that
'Yb is positive. Then, in order to have a bounded solution at infinity, we require C
to vanish. At the interface, we require continuity of pressure and normal velocity:

Z(D) = Be - hD. (2.33)

Z'(D) -B be - ' bD
-B (2.34)

P Pb

where p and Pb denote the density in the water and bottom respectively. Dividing
these two equations we find that Z(z) must satisfy the boundary condition

pZ(D) Pb
Z'(D) 7tb(k 2 )(

Our modal problem then reads:

dz2  -k Z(Z) = O.

Z(O) = 0.

f(k 2)Z(D) -g(k) Z'(D) = 0. (2.36)
P

where.

f(k 2 ) = 1. g(k 2 ) = pb/ k2 - 2'c ('137)

Now we have a modal problem defined on a finite domain, but the boundary condi-
tion involves the eigenvalue k2 . Furthermore, the eigenvalue enters through a square
root function which introduces a branch cut in the k-plane. Thus, we can convert a
modal problem from an infinite domain to a finite domain but the problem remains
singular and we are not assured of the completeness of the eigenfunctions.

We shall take another tack which, briefly stated, is to take the spectral integral
representation of the solution: close the contour: and calculate the integral as a sum
of residues. The terms due to the residues will turn out to correspond to the modes
of the problem. Thus. we start with the spectral integral representation'50'

p(r, z) -I f G(z.z..:k)Jo(kr)kdk

= 1 G(z.z,:k)Hk ;(kr)kdk (2.38)
4,. _-00

where. G(:, z,; k) satisfies:

p(z) [ )1G'(z) - k ) G(z) = 6(z-

fT(k 2 )G(O) g9(k2)G'(O) = 0.
P(O)

gB(k2d),
fB(ki)G(D) - -k G'(D) = o. (2.39)

p(D)
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and primes denote differentiation with respect to z. The top and bottom boundary
conditions involve functions fT.B, 9 T.B representing an angle-dependent impedance.
Incidentally, this form allows for fairly complicated bottom types. For instance.
Ref. [15] shows how to construct an impedance condition equivalent to an elastic
subbottom.

We shall write this problem symbolically as,

C(k,)G = 6(z - z,), B1G = B2G = 0.

The solution of this boundary value problem is given in standard texts (e.g. Ref.
[41]) as:

G(z, z,; k) = -pi(z<;k)p2 (z>;k) (2.40)
W(z.; k)

where z< = min(z, z,) and z> = max(z, z,). Furthermore. W(z: k) is the Wronskian:

W(:; k) = p,(z; k)p'(z; k) - p)(z: k)P2 (z: k).

where P1,P2 are any non-trivial solutions satisfying the top and bottom boundary
conditions respectively. That is,

,(k)pi = 0. Bi1p = 0, (2.41)

L(k)P2  = 0, B2P2 = 0. (2.42)

Let us consider a problem such as the Pekeris waveguide which, has a single
branch cut from a lower halfspace boundary condition. We next close the contour
in the spectral integral representation by adding the semicircle C,, and the branch
cut integral CEjp as shown in Fig. 2.7. (This particular choice of the branch cut
which follows the axes is called the EJP cut after Ewing, Jardetsky and Press[42).
Then from Cauchy's integral formula we can write the integral as a sum of residues:

=2-?'~ res(k,~ (2.4 3

where res(k,) denotes the residue of the mth pole which is enclosed by the contour.
These poles are indicated schematically by the filled circles in Fig. 2.7. (Their precise
positions depend on the frequency and parameters of the waveguide.) Additional
poles, which are not enclosed, will also occur as indicated by the hollow circles.
Furthermore. depending on the particular problem and the choice of the branch cut.
the number of such residues may be zero. finite or infinite.

As the radius of the semicircle C. goes to infinity. the contribution of that
contour goes to zero because the Hankel function decays exponentially as the radius
increases. Substituting the representation of the Green's function given in Eq. (2.40)
into Eq. (2.38) we then obtain a representation of the field as a sum of residues plus
a branch-cut integral. viz.:

- p kA,!p2(:>:I.")
pt r. Z))/= -k, _ ,., H , lkr)k, -J 12.44}

2" - (9 "( , --(ki k £.'



2.3. A GENERALIZED DERIVrATION 17
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Figure 2.7: Location of eigenvalues for the Pekeris problem (EJP branch cut).

where, k,, is the mth zero of the Wronskian. We arbitrarily order these zeros so that

Re{k,} > Re{k 2} > .-.. The equation defining the eigenvalues (W(-o; k,,) = 0) is
known as the characteristic equation or secular equation. (In general. any equation

whose roots are the eigenvalues will be called a characteristic equation.)

Now if W(k,) = 0 then pI,2 (z; ki) are linearly dependent and we can simply
scale them so that they are equal. We shall therefore define Z,(z) = pi(z: k,,) =

p 2 (z: k,) which satisfies,

L(k,)Z, = 0. 13, Z' = 5, Z,' = 0. (2.451

This is, of course, the standard modal equation. If k,,, and Z,,(z) form a non-trivial

solution of this modal equation, then k, is a zero of the Wronskian and vice versa.

In terms of Z, we can write

= M Z,,.(z,)Z,,,(z) [~~I..I
p(r,) W(Z,;k)/gk!kZ.. Hl" -Hc " 2.46)

This representation of the pressure field is somewhat inconvenient since it re-

quires the evaluation of 4 9W/Ok which is defined in terms of functions P1.2(z; k) that

may not be readily available in a particular numerical scheme. In order to simplify

this expression. we seek an alternate form for o9W1/k. The following result is derived

in the next subsection:

_____ D Zf () /g)T 2 df/g)B Di. 2.471
2 k,,Zd 2I (z) d , d(0)- ,Z2.:

Jo p(:) dk dk
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By properly scaling Z,.(z) we can make OW(z,; k)/klk=k = 1. Thus we obtain
our final representation for the pressure field as

p(r, z)= f (2.48)

where the modes are normalized such that

rnk0 D Z ) 1 d(f/g)T + 1 d kf/g)B0 W 2k,.. Z () 2k, dk " (  :

(An alternate derivation of this result is given by Bucker[43] for the constant density
problem.)

It appears we have only made the problem more complicated since we have
converted the original spectral integral form to one involving a sum of modes plus
another integral term. In practice, however, the branch cut integral can generally
be neglected if we are sufficiently far from the source.

The particular nature of the boundary conditions is important in determining
the representation. As we have seen, if the upper boundary is a pressure release
boundary and the lower boundary is perfectly rigid, then there are no branch-cut
contributions: the solution is represented entirely as an infinite sum of modes. In
problems with an elastic halfspace, there will be branch-cut terms associated with
both S- and P-wave velocities in the halfspace.

Furthermore, the number of terms in the residue series depends on the particular
branch cut taken. For instance, if we take the Pekeris branch-cut shown in Fig. 2.8
then it turns out that an additional (typically infinite) set of poles is exposed. These
poles are represented by the filled circles numbers 4-6 in the figure. The poles in this
second set lie off the real axis in the first quadrant and as a result decay exponentially
in range. For this reason the corresponding modes are referred to as leaky,i modes.
Thus. we can obtain an infinite variety of representations of the field depending on
the choice of branch cut.

In principle, the Pekeris cut offers an advantage in exposing the leaky modes for.
as we shall see in the next section, by including the leaky modes we can obtain a
solution which is more accurate in the near field. In practice. it is somewhat difficult
to reliably locate the leaky modes so the potential gain may come at the expense of
robustness in the model. In addition, the leaky modes grow exponentially in depth
and at some ranges and depths yield a diverging series. Alternatively. it is also
possible to calculate the branch cut term numerically as discussed by Stickler 111

In order to clarify some of these points. let us return to the Pekeris waveguide
problem. The solution in the ocean layer which satisfies the pressure release surface
condition is given by

Zfz) = A sinysz, (2.50)

where.

-, _~- - A-2 (2.5111



2.3. A GENERALIZED DERIVATION '±9

Re(k) =-0ic Re(k)=+o/c

Comolex
C6 k-plane

.5 Cook

I 0

CL

0

0

Figure 2.8: Location of eigenvalues for the Pekeris problem (Pekeris branch cut).

In order to obtain a non-trivial solution that satisfies the bottom boundary condi-
tions we must have

- tanyD = -i. (2.52)~7b

This is a transcendental equation for the eigenvalues k,(w).

In Fig. 2.9 we have plotted selected modes of the Pekeris problem. We see that
modes 1 and 4 are qualitatively similar to the previous isovelocity problem: the
solution in the water column is again a sinusoid however the vertical wavenumber is
different due to the change in phase associated with the bottom reflection coefficient.
Also plotted in Fig. 2.9 are modes 10 and 12 which are leaky modes and therefore
manifest a non-zero imaginary part as shown by the dashed line.

Neglecting the cylindrical spreading term. the contribution of an individual mode
to the pressure field is proportional to

p = - _ .-,-,- ) ,  
7

Thus, the modes can be thought of as consisting of an up and downgoing plane-wave
with an angle of propagation 0 defined by tan 0 = k,11,. The branch point occurs
at k = w/cb which in the angle domain corresponds precisely to the critical angle.
Thus, the modes whose angles are less than the critical angle are trapped. that is.
radiate no energy into the halfspace. The leaky modes however have ?.ngles above
the critical angle and lose energy into the lower halfspace.
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Figure 2.9: Selected modes of the Pekeris problem.

2.3.1 Derivation of the Normalization Formula

In the previous section we used an expression for 8W/9k necessary for normalizing
the modes which for completeness we shall now derive. We consider the problem:

p(z) [ G'(z) + W _ k2 G(z) = 6(z - z.).

fT(k 2 )G(O) -. G(k2 ) = 0,

fB (k 2 )G(D) -qBk G'(D, = 0. (2.53)
p(D)

where primes denote differentiation with respect to :. We shall write this problem
symbolically as,

£C(k,.)g = 6(: -z,). B1 g = 2g = 0.

The Wronskian is defined by:
WV(z: k) = p, (z: k)p2(:: k) - p' (z: kin2(.: k).

where P1,P2 are any non-trivial solutions that satisfy the top and bottom boundary
conditions respectively. That is.

(k)pl = 0. 131p, = 0. (2.54)

L(k)p2 = 0, B 2p2 = 0. (2.55)

Let Z, be a solution of the unforced boundary value problem.

£(kn)Z, = 0, BIZ,, = B2 Zn = 0
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Then,
p2 ,(k,.)Z,. - Z,,,C(k)p 2 = 0. (2.56)

or, equivalently,

[P2 Z_ - (k 2 - k2 )Z ' p 2 = 0. (2.57)

This can also be written:

P2 zn (k2 - k 2 o)=0. (2.58)P PP

Taking the integral then gives:

,DD[P2 (k~ -ZP]D ( 2 
- k 2J ZrnP2 d = 0 (2.59)

P 10 M f P

We shall need two intermediate results giving the value of the term in square brackets
at z = 0 and z = D. To obtain the value at z = 0 we note that W(z)/p(z) is constant
since,

= P = . (2.60)

Thus, we can write:

W(z) _ W(O) pl(O)4(O))- pI(0)p2(O) (2.61)

p(z.) p(O) p(O)

and solving for p'(O) one obtains,

p'(O) = PI(O)P2(O) 4- W(z,)p(O)/p(Z,) (2.62)

Pi(0)

This enables us to write,

P2Z, - Z,,,P'2  - p 2 (0)Z'(0) - p(O)P2(O)Z,(0 )/p(0)- W((,) (2.63)
P 0o p(O) P(Z.)

We can eliminate the derivatives from this equation using the upper boundary con-
dition:

P(°)fT(km) z'(

z'(0) = gT(k) 0

p(O)fT(k)
p, (0) = - PT(k) pi(), (2.64)

Thus Eq. (2.63) becomes:

. - o [fT(k) fo(k) z _o (2.65)

P [g 9T(k) -gT(k,.) jP 2 (0)Zn(0) p(Z,) (.5
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This gives us the value of the term in square brackets in Eq. (2.59) evaluated at
z = 0. The value at z = D is can be written down directly as:

P2Z4-- - ZmIP'2 1 _ rfl(k) _fB(k) 1. P2 (D) Z,,,(D). (2.66)
P g 9pB(k) g(k,)J

where we have used the bottom boundary condition,

Z'.(D) = p(D)f"(k.) z,(D)
) gB(k,.)

p(D)fB(k)
P'(D) = -( p(D). (2.67)I 9,6B(k) r

Using the results of Eqs. (2.65) and (2.66) in Eq. (2.59) we obtain,

[fB(k) f (k,) (D)Z.,(D) f T-(k) f T(k,) P(0)Z(0)

[gB(kJ gBl(k.)l J '' "'- (k) gTlk.)ljP()Z 0

W(z,: k) - W(-o; kn) 2k 2  (2.68)P(,:) - (k - k,,,)1 2 p z = 0 (2.68)

where we have added in the term W(z.; ki). This is permissible since W(z; k,) = 0,
that is. the Wronskian vanishes when k is an eigenvalue.

The functions pI,2 (z; k) and Z,,(z) may all be scaled freely and still satisfy
their respective governing equations. Therefore. without loss of generality. we take
p2(D; k) = Z,(D). Now. dividing both sides of the equation by k - k, and taking
the limit as k -, k, we obtain the final result:

OW/k' 2 , z,,, z~)' d d(f/g)1 d(f/g)yf2k d: z -(O) Zm(D
p(z , J ,, p(z) dk dk

(2.69)

2.4 A Deep Water Problem: the Munk Profile

The Munk profile[47 i is an idealized sound speed profile: however, it allows us to
illustrate many features that are typical of deep-water SSP's. In its general form.
the profile is given by

c(z) = 1500.010- E- 1- (2.70)

The quantity c is taken to be
f = 0.00737

while the scaled depth . is given by

2(: - 1300)
1300
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Figure 2.10: Schematic of the deep-water problem.

The resulting profile is plotted in Fig. 2.10. The bottom is taken to lie at a depth
of 5000 m. In addition, the bottom sound speed is 1600 m/s and the bottom density
is I g/cm3 . Taking a source frequency of 50Hz, we then obtain the modes shown
in Fig. 2.11. (An analytic solution for the modes is not available in this case so we
use a numerical technique as described in Chap. 3.) Notice that the mode shapes
are no longer perfect sinusoids, however the mth mode still has m zero crossings. In
addition, the modes are oscillatory near the sound channel axis and exponentially
decaying in a layer near the surface and near the bottom. The size of the oscillatory
region is larger for the higher order modes.

Some insight into the behavior of the modes can be obtained from the WKB

approximation[48". The WKB approximation to the eigenfunctions is given by

Z(Z)A B (2.71)

where

Thus, locally the solution assumes the oscillating form of sines and cosines near
the sound channel axis (where -y is real) and transitions to a solution involving

exponentially growing and decaying functions near the surface and bottom (where
"y is imaginary). The depths where this transition occurs are the turntng points and

are precisely defined by depths where -f (-) = 0. In addition, the amplitude term is

seen to be governed by 1/-y(z) so that as we move away from the sound channel axis

(where -y is large) towards the turning point (where -y is small) the amplitude tends
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Figure 2.11: Selected modes for the deep-water problem.

to increase. At the turning point the WKB approximation is actually singular. The
correct solution. however, has a smooth behavior in the transition layer as may be
seen in Fig. 2.11.

In Fig. 2.12 we illustrate the effect of using different numbers of modes to cal-
culate transmission loss. The source depth is chosen to be 100m. Figure 2.12(a)
includes only the waterborne modes, that is modes which have their lowest turning
point above the ocean bottom. These modes (modes 1 to 63) are exponentially de-
caying below this turning point and in this sense are not bottom interacting. In ray
terms these modes correspond to paths which are refracted away from the bottom

The transmission loss shows a convergence zone type of pattern involving a beam
of energy that emerges from the source and refracts under the influence of the ocean
sound speed profile. Since we are using a restricted number of modes. we in effect
are producing an angle-limited source. We observe that the transmission loss shows
large shadow zones where the acoustic field is negligible. These quiet zones result
not from the depth-dependence of the eigenfunctions but from the phasing in range
which causes the modes to add up destructively.

In Fig. 2.12(b) we have added in the bottom bounce modes (modes 64 to 102)_
These modes have no turning point and correspond to ray paths which strike the
bottom at a subcritical angle. Including these modes effectively widens the source
beam-width. A second beam is now visible emanating from the source and reflecting
off the bottom.

In Fig. 2.12(c) we have added in a large number of leaky modes (modes 103 to
400). As discussed earlier these modes are leaky in the sense that they are displaced
from the real axis and therefore lose energy as a function of range. In ray terms. they
corresponds to paths which strike the bottom above the critical angle and therefore
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are very weakly reflected. In the transmission loss plot we can see that the source
angle has now been opened up to 900 revealing the full Lloyd mirror pattern of
beams. (The Lloyd mirror results from constructive and destructive interference
between the source and its image reflected in the ocean surface.)

2.5 Elastic Media

As discussed in Ref. [15 the elastic quantities (stresses and displacements) satisfy a
fourth-order system of ordinary differential equations. We first introduce the stress-
displacement vector, r defined by

(r, 2 , 3, r4) = 7,W , -I(2.72)

where u is the horizontal displacement. w is the vertical displacement, r is the
tangential stress and r., is the normal stress. The purpose of introducing the scaling
of u and r given in Eq. (2.72) is to eliminate complex quantities from the governing
equations and to obtain a form where the eigenvalue k occurs only in squared form.
The stress-displacement vector then satisfies

r' = Er (2.73)

where,
o -1 1l(pC.) 0

k2r(z) 0 0 1(pc2) (2.74)
E(z,)= k2 (z) - pw2  0 0 -7(z)0 2 k2  0

where the quantities i7(z) and ((z) are defined by

c; -2c; I
77:)- ' C(Z) = (2.75)

C2  
c

and cp, c, denote the P and S wave velocities respectively. In this form certain prop-
erties of elastic waves are immediately obvious. For instance, since the eigenvalue
occurs only as a squared quantity the the eigenvalues will come in pairs. That is. if
(k,, rj) is an eigensolution then (-kj, rj) is also an eigensolution.

The above equations for r are combined with interfacial and boundary condi-
tions to completely specify the acousto-elastic modal problem. At an elastic-elastic
interface, one requires continuity of r (i.e.. continuity of displacements and stresses).
At an acousto-elastic interface the condition of continuity of horizontal displacement
is relaxed. Noting that 1) pressure is the negative of the normal stress, r.,, 2) r
vanishes in an acoustic medium, and 3) the gradient of the pressure gives the time
derivative of the velocity field, one obtains,

W2r 2 (Z) = p'(Z)

r3 (z) = 0

r4(Z) = -p(z). (2.76)
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Figure 2.12. Transmission loss for the deep-water problem inciuding (a) waterborne
modes only. (b) bottom bounce modes and (c) leaky modes.
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KRAKEN and KRAKENC use the reduced delta-matrix formulation. This is obtained
by introducing a new set of dependent variables defined by,

Yl r13 2 - 12S1

Y2 r3S 4 - r43
Y3 - 1 S3 - r3SI (2.77)
Y4 r233 - r3(2

Ys .154 - r4S1

Y16 r234 - r432

where r and s denote two linearly independent solutions in the elastic medium. Note
that y involves all permutations of r, sj with an ordering chosen to obtain a simple
form for the y equations. By differentiating the above equations and substituting
into Eq. (2.74) we find that y satisfies a system of differential equations:

y, = Wy (2.78)

where,

o o 0 1!(pC,) -1/(pc2) 1
0 0 0 _2p -(k 2t(Z) _ 2 p)

W 0 0 0 1 7(z) (2.79)
k2 ((z) - w2p 1/(pc2) -7 2

7(z) 0 0
w2 p -1/(pc, 2 ) -2k 2  0 0

The differential equation for Y6 reduces to y6 = -k 2ys and has been eliminated from
the system. In terms of the y-functions the interface conditions between the acoustic
medium and a stratified elastic bottom can be written as,

fB(k 2 )Z:(D)- gB(k 2)dZ:(D) = 0 (2.80)

with,

fB(k 2 )= 4,

9B(k 2 ) = Y2 (2.81)

2.6 Boundary and Interface Conditions

In the simplest ocean models the ocean surface is modeled as a pressure release sur-
face and the ocean bottom is assumed perfectly rigid. This leads to Dirichlet and
Neumann boundary conditions2 respectively and the modal problem is a conven-
tional Sturm-Liouville eigenvalue problem. Considering the bottom boundary we
note that there really is no well-defined bottom depth- below sediment lies basalt
and one may continue from mantle to core, ... The truncation of the interval is

'A Robin condition on a function p(z) has the form fp(z) + gp'(z) = 0. A Dirichlet condition

has the form piz) -0 and a Neumann condition has the form p'(z) = 0.
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justified when including additional depth no longer results in a significant change
in the result. This somewhat nebulous transition occurs when the ocean subbottom
is thick enough that material absorption eliminates significant energy return from
deeper depths by refraction or reflection.

Mitigating against a conservative policy in carrying depth varying properties to
great depths is the increased cost of solving the modal equation on a large domain.
Thus it is desirable to truncate the problem at the shallowest possible depth. The
rigid bottom model makes sense at a sediment/basalt interface where there is a
strong impedar-e contrast. Basalts, however, are typically characterized by a strong
elastic wave speed gradient which refracts ray paths back into the ocean. At mid- to
high-frequencies, say above 50 Hz, this refracted energy will be severely attenuated
and may be safely ignored. A more realistic bottom boundary condition is obtained
with an acoustic half-space.

The boundary conditions corresponding to these various cases are provided be-
low. The results are presented in three forms: 1) as a Robin condition on the
pressure, 2) as boundary conditions on the stress-displacement vector r and 3) as
boundary conditions on the solvability vector y. The first form is used for problems
where all internal media are acoustic; the second form is used for problems where
some internal media are elastic; the third form is used when elastic displacements
are required (KRAKEL).

2.6.1 Perfectly Free Boundary (Dirichlet BC)

The free surface condition is an approximation for the surface boundary condi-
tion. (A more sophisticated boundary condition is obtained by using a homogeneous
acoustic half-space to model the atmosphere above the ocean. The impedance con-
trast is, however, so large that there is no practical need for modeling the atmo-
sphere.) For an acoustic medium this yields,

p(0) = 0 (2.82)

while for an elastic medium both stresses must vanish

r3(0) = r 4 (0) = 0. (2.83)

Thus. two linearly independent solutions can be obtained using.

r = (1.0.0,0)

s = (0, 1,0,0) (2.84)

From the definitions of y in Eq. (2.77) we obtain the following boundary conditions.

y = (0, 1,0,0,0). (2.85)

2.6.2 Perfectly Rigid Boundary (Neumann BC)

The perfectly rigid assumption enjoys some popularity for a bottom boundary. For
a purely acoustic problem. this becomes.

p'(D) = 0 (2.86)
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For an elastic medium, this implies that both displacements must vanish,

ri(D) = r 2 (D) = 0. (2.87)

Thus, two linearly independent solutions can be obtained using,

r = (0,0,1,0)

s = (0.0.0,1). (2.88)

From the definitions of y in Eq. (2.77) we obtain the following boundary conditions,

y = (1, 0. 0. 0, 0). (2.89)

2.6.3 Acoustic Half-space Conditions (Robin BC)

We consider first an acoustic bottom half-space characterized by a single wave speed.
cp and a density, Pb. The general solution in the half-space is given by,

ZHS(Z) = Ae - "b - Be-,. (2.90)

where,

2 W7b = k2 --), (2.91)

and the Pekeris branch of the square root is used to expose the leaky modes. In order
to have a bounded solution at infinity, we require B to vanish. At the interface, we
require continuity of pressure and normal displacement which implies,

Z(D) = Ae - -,D (2.92)

Z'(D) = -Aybe -
,

D  (2.93)

Thus, we obtain the bottom impedance condition.

Z(D) - L Z'(D) = O. (2.94)
lb

A similar procedure yields the result for a top homogeneous half-space.

Z(D) - L--Z'(D) = 0. (2.95)
It

which differs by a sign change. Note that by letting p - 0 we obtain the free-surface
boundary condition and p - oo gives the perfectly rigid boundary condition.
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2.6.4 Elastic Half-space Conditions

The solution for a homogeneous elastic medium is given in terms of P- and S-wave
potentials, 0 and k respectively. For a bounded solution these potentials take the
form:

(z) = Ae - ,', (z) = Be- "*-  (2.96)

where,
S W2 / W2

7,= IV- , 8 =  /k2 - , (2.97)

In terms of these potentials, the elastic displacements are given by,

U = 0. - 0', W = 0- + AZ- (2.98)

So in terms of u and w we can write the most general form of the half-space solution
as:

Recall.
(ri, r2) "-i .w (2.100)

and from Eq. (2.74) we obtain,

r = u(r' + r2) (2.101)

r4 = (A - 2p)r' -k 2 Arl (2.102)

so that the most general solution in the lower half-space is

r 1 1 -,

r3 -2i, -) j J (2.103)

r4 J (-, - ki 27,k-

Taking the columns of the above matrix as two linearly independent solutions and
substituting into the the definitions of y in Eq. (2.77) we obtain the following
boundary conditions.

1/i' :' - ic.% p

Y2 2 - 2 - 4jo pk2 )
Y/ 23,r - - 7- 2 k (2.104i

Y/4 ')P(
- -'3e 2 k2 )

Note that the classical dispersion relation for Rayieigh waves is obtained by taking
the free surface condition y2 = 0.
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2.6.5 Tabulated Reflection Coefficients

In some cases, it may be preferred to characterize the ocean surface or bottom by
a complex reflection coefficient as a function of grazing angle. Such a reflection
coefficient may be specified by tabulating the magnitude and phase at a discrete set
of 0-values. To completely define the normal mode problem, R(O) must be defined
continuously for some range of 0-values. A routine (REFCO) accomplishes this

by linearly interpolating the magnitude and phase of the reflection coefficient. In
addition, the reflection coefficient must be converted to an equivalent Robin style
boundary condition with coefficients which are a function of horizontal propagation
number. k.

Note that a surface reflection coefficient asserts a relationship between an upgoing
and downgoing wave of the following form.

p(z) = (Re- SV (2.105)

where

2/ V (2.106 )

is the vertical wavenumber. Then.

P'(z) = i-y (ei" + Re-'z) (2.107)

which implies that,

pj=o - i(-R (2.108)

Thus. the reflection coefficient implies an impedance or Robin style boundary con-
dition of the form.

P- I +R, =0 . (2.109)
i-y 1 -R

For bottom reflection we use the form

p()= - Re tly. (2.110)

which leads to.
P- I-- R = 0. (2.111)

In general, the reflection coefficient is a function of the grazing angle 0 which is
related to I by

tan9 =- (2.112)
k
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2.7 Loss Mechanisms

2.7.1 Material Absorption

Equations for material absorption in the water column are summarized by Urick[53.
A somewhat standard form due to Thorpe is:

QThorpe - 40f 2  + .1f2 (2.113)
4100 + f2 1 + f2

where f is the frequency in kilohertz and aTI 'p, is in units of dB/m. Attenuation
in sediments is somewhat more complicated and must be specified directly.

Material absorption is included by adding an imaginary part to the sound speed
so that c(z) = c,(z) + ici(z). Typically, the attenuation is specified in more physical
units so it is necessary to perform a conversion. In the following subsections we
present the results for various cases.

a in nepers/m

If a is specified in nepers/m then we expect a plane wave to decay in the form

e-a?. (2.114)

In free space, the solution takes the form,

•-S/c = e C; ; (2.115)

Thus,
alc ;2

c= - (2.116)

All other attenuation units will be represented in terms of a in nepers/Im.

o") in dB/meter

We require that the ratio of the intensity in dB between points one meter apart be
given by a r. That is.

a(-= 101ogloI -l - 201oglo 20alog, 0 c (2.117)

which implies
aim
8 . (2.118)8.69

a '" in dB/wavelength

The attenuation in dB/m is given by 0 (m ' =ac /A. Therefore.

a a (2.19
8.69A
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Table 2.1: Approximate conversion factors between attenuation units.

desired units

user units a am) a- a() IQad) 0 -

a 1 8.69 8.69A 8686/f A/3.14
__

( )  0.115 1 A/1000 1000/f 0.037A
a(W) .115/A 1000/A I 1000/c 0.037

I Ut)  f/8686 f/1000 c/1000 1 c/27288
Q-1 3.14/A 0.115/A 27.29 27288/c

a(f) in dB/(km Hz)

The attenuation in dB/m is given by a m) = (f/1000)af). Thus.

a(U) f
a ;: (2.120)

8.69 1000

Q

The term 'Q' is defined in different and inconsistent ways. (See the discussion in
Aki and Richards f501.) We take,

a -(2.121)

These results are summarized in Table 1.

2.7.2 Twersky Scatter Theory

The Twersky scatter model is used primarily for modeling under-ice scatter effects
as suggested by Diachok (51]. In effect the ice is modeled as a free surface with a
uniform distribution of cylindrical bosses with elliptical cross-sections which crudely
represent ice keels. A reflection coefficient for this rough surface is constructed by
combining the effects of the scattering function for each individual cylindrical boss.
The scattering function is in turn computed analytically by a modal sum involving
Mathieu functions. The program for computing this specular reflection coefficient
was developed by Wales[521 for a spectral integral code.

The cylindrical bosses are described in terms of the principal radii of the ellip-
tical cross-section, the linear density, i.e. the number of bosses per kilometer. and
whether the bosses are perfectly free or rigid objects. This leads to a reflection
coefficient, R(6), which is a complex number incorporating both phase and ampli-
tude information. The reflection coefficient is formally valid in the far-field but is
applied in an ad hoc fashion at the ice/water interface. This analytical formula for
the surface reflection coefficient is then converted to an equivalent Robin boundary
condition using Eq. (2.109).
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2.7.3 Kirchhoff Scatter Theory

For open ocean surface roughness a simple scatter model based on Kirchhoff theory
is implemented. The reflection coefficient is simply,

R(O) = 1 - 2-Y02, (2.122)

where o, is the RMS roughness and -y is the vertical wavenumber given by,

2 CC w  _ k 2. (2.123)
C2

When -fyo = 1/vt2 this formula predicts a vanishing reflection coefficient. It
should not be used for larger values of -y.

2.7.4 Interfacial Roughness

Kuperman and Ingenito [491 obtained the following interface condition for an inter-
face with RMS roughness a:

[P2, 2 oA I Pi 214

where the elements of A are given by:

i 2 P2j),; - P172all = .5(ji 1,2)-

i12 -= A

21 = PP2A

a22 = 0 ,2 ) (P - - P( 2,,(i -. ) (2.125)A

with.

A - :1(2.126 i

and,

2
2 2

k (2. 1) 71

The subscripts 1 and 2 denote properties in the upper and lower media. respec-
tively. For a free surface the appropriate result is obtained by letting p and -y go to
zero. Note that this formula also breaks down in a catastrophic fashion if -y is too
large.
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2.7.5 Perturbational Treatment of Loss Mechanisms

Loss may be caused by scatter at boundaries or interfaces or by material absorption.
In the former case the loss is manifest as a complex sound speed while in the latter
case the interfacial condition is modified. Both of these mechanisms can be handled
by straightforward modifications of the numerical algorithm: however, the eigenval-
ues become complex, requiring the use of complex arithmetic. More importantly,
the root-finder must be modified to perform not just a line search on the real axis
but a 2-D search in the complex k-plane. While robust and efficient root-finders can
be constructed for the real problem, the complex root-finders are failure-prone.

An attractive alternative to complex eigenvalue searches is to compute the real
eigenvalues and then obtain an approximation to the imaginary parts using per-
turbation theory. To illustrate the technique we consider the modal problem with
simple pressure-release and rigid-bottom boundary conditions. That is,

p(z)~-Z~)1 -(K2(: k) Z,',(Z) =0.

Z,,(0) = 0.

Z,'n(D) = 0,
f Z;(Z)d = 1, (2.128)

p( z)

where, K 2 (Z) = w 2 /c 2 (z). We next write

K (Z) = K(z) - K2(z) - .. (2.129)

where K2(z) corresponds to the unperturbed sound speed profile which for lossy
problems is simply the real part of K 2(z). In the following the subscript indicating
mode number will be suppressed. The next step is to seek a solution of the form:

Z(Z)= Zo(z) - tZl( - " (2.130)

and
= k2(z)- - (2.131)

Substituting into Eq. (2.128) and collecting terms of like order we obtain:

0(1): p(z) [ 1 Zo(z)]' - (Kz2(?- k2) Zo(Z) = 0.

Zo(O) = 0,

Z0(D) = 0,

oo' d 0 'd = 1. (2.132)Jop(z)

This is the lossless eigenvalue problem and can be solved on the real axis. The next
higher-order equation is,

(e) p(z) p-iz'()- (Ko(z) - ko) Z1(z) = (K -) Z
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Zi(o) = 0,
Z'(D) = 0,

JDZ?(z)dz = 1. (2.133)

From the Fredholm Alternative Theorem, the inhomogeneous term on the right-
hand side must be orthogonal to all solutions of the homogeneous adjoint problem
in order for a solution to exist[41]. (In terms of a vibrating string, this means that a
steady-state solution does not exist when the string is forced at a resonant frequency.)
The solutions of the adjoint problem are simply the modes ZO(z). Therefore, we must
have

ZD ') )dz = 0, (2.134)
jD(K'(z)k p(Z)

which implies,
D - j K()Z2(Z)/p(z)dz 215= - f D 1-0(2.135)

This is the first correction due to an arbitrary perturbation Ki(z). To apply this
formula to material absorption we take the complex sound speed c(z) = c,(z) + ici(z)
and form K 2 (z) = K'(z) + iK?(z) = w/c(z). The real part, K,. is used to generate

our zeroth-order unperturbed problem which is easily solved to provide eigenvalues
k,. and eigenfunctions Z(z). We next denote the perturbation term by cK2 = iK2(z)
and the corresponding perturbation to the eigenvalue by ek2 

- ik*. In this notation.
Eq. (2.135) reads

ik = ,k2

- I K?(z)Z2(:)/p(:)dz

f Z2(z)/p(z)d:

f iiKz)Z2 zl: )dz (2.136,

- of Z2(:)ip(z)d:

or.

fc= - f ° K (=)Z(z)1P(z)d: (2.137)
foD Z2(z)lp z dz

In practice, this perturbational approximation is usually adequate. It gives poor
numerical accuracy when the imaginary part is very large. that is. when the mode
decays very rapidly in range. In such cases the accuracy is normally not critical since
the pressure field is then usually dominated by other modes which are less severely
attenuated.

A similar perturbational approach is also useful for treating loss due to surface
or bottom roughness. Kuperman and Ingenitol49i derive the iesult:

klca! ,  pe'r: r, tdZ,.i"

k 2 d, d: ):=o (2.138)
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for the perturbation in the eigenvalues due to surface scatter loss. Here, a denotes
the RMS roughness of the sea surface, and

7y , = 2 k2. (2.139)

2.8 Normal Modes for Range-Dependent Environments

We tend to think of normal mode models as primarily suitable for range-independent
problems, however, it is in principle easy to extend them to provide range-dependent
solutions. One way of doing this is to divide the range axis into a number of segments
and approximate the field as range-independent within each segment. The solution
within a range independent segment is constructed using the standard normal mode
solution and interface conditions (continuity of pressure and normal velocity) are
used to 'glue' the solutions together.

This -coupled mode" approach is straightforward but leads to a computationally
intensive procedure. For this reason it is, at least at the present, primarily useful for
providing an exact solution for verifying simpler approximate models such as the PE
technique. The full two-way solution is not actually implemented in KRAKEN. how-
ever, it provides a useful starting point for discussing two successive simplifications
in which we ignore 1) the back-scattered component, and 2) coupling between dif-
ferent modes at the interfaces (the adiabatic approximation). These approximations
are frequently a reasonable compromise between accuracy and run-time.

2.8.1 Coupled Modes

Our derivation follows Evans [65]. We begin by dividing the problem into N segments
in range as illustrated in Fig. 2.13. Neglecting contributions from higher order modes
or the continuous spectrum, the general solution in the jth segment can be written
as follows:

M

p,(r, Z) = f3 ( - bi ,H2 (r) ZA(Z), (2.140)

where fl1, 2 are the following ratios of Hankel functions.

H1-(r) = (0 r), (2.141)M H(1)tzk r

M H (2;L )(k0 ' M' -

and we define rj-l = r, in the special case where j = 1. This scaling of the Hankel
functions is done to avoiU overflow problems for the leaky modes. For such modes
the Hankel functions involve growing and decaying exponentials. In practice. it

is convenient to replace the Hankel functions by their large argument asymptotic
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r

z

Figure 2.13: Segmentation for coupled mode formulation.

representation yielding:

H11(r) -- Hl4(r) = ei 4(,,._) (2.143)

W M.

H21(r)-, H2-(r)=-V -  -  (2.144)

We shall use this asymptotic representation in the remainder of the analysis.

Next we impose continuity of pressure at the jth interface:

M M
' T' (aJ- + b+') 1(z) a' Hi (r)-b 2mr~ Zjz). (2.145)
1n=l n=

This matching condition involves a continuum of depth points in that we require
continuity of pressure for all z-values. In practice. however. we are going to work
with a limited mode set and therefore we need a finite set of conditions which relate
the Al mode coefficients a,, 6,,. This can be done in several ways. For instance, we
could require continuity of pressure at M discrete depth points. Ve shall impose
a moment condition that the error considered as a function of depth should have
vanishing components of each of the first il modes. Thus. we apply the operator

/ Z- dz (2.146)

to our matching equation where I = 1 ..... Af Because of the orthogonality property:

/ Z-i z Z / 'l )d: ( , 2.1471
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only one term remains from the sum on the left of Eq. (2.145). Therefore we have:

M

aj+ I -  = [a H1j (ri) + bH2 (rj)J I I = .... ,A, (2.148)

where,

E J Z ,+-(--Z) dz. (2.149)

p,~1(z)

In matrix notation, we can write this equation as:

+ 1 = C (Hja' + Hjb') , (2.150)

where, H i and Hj denote the diagonal matrices with entries H 1.(rj) and H27(rj)
respectively. In addition, C is the matrix with entries Elm and a. b are column
vectors with entries al, b1 respectively.

We next impose continui y of radial particle velocity. The particle velocity is
proportional to

1 1pJ (r z) 1 M
1n [amHl' (r) - b',,H2(r (2.151)

pj Or PJm= 1

This time we apply the operator,

Z/+1(z) dz, (2.152)

to obtain,

M

a'= a 7H1-7(rj) - V H21,(rj)j i,,, I= 1 ...... , (2.153)

where.

' I (z)Z (z) d,. (2.154)

Note that E differs from 6 in the density term of the integral and by a ratio of
horizontal wavenumbers.

In matrix notation, this matching condition can be written as
aj+ 1 - b'+ 1 = Cj (Hjaj - H~bJ) . (2.155)

Combining this equation with the pressure-matching equation (2.150) we can obtain
an explicit expression for aj"+1 and bj *:

[ ]i 1 [ R' 2 ][a] (2.156)
b'j' RJ= RJ b7

b#+I= R R b ' (.156
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where,

R = + H i. (2.157)

Finally, we need to include the boundary condition at r = 0 and a radiation
condition as r -, oo. The latter is imposed by requiring that bN = 0, for mn =

1,... , M. The appropriate condition at r = 0 can be shown to be"

1 _____ ( ) 1 1 _____( __)

R~ ~ / (Ibi - t) j

= .Z (,)H 0(kr 1 )± + (j m= 1,.... (2.158)

am 4 p(z3  
m H "'kr

Collecting all of these equations together we obtain a block matrix problem of
the following form.

I -D 0 a s

R R I 0 1,' 0
R4B) R 0 I a 0

b0 0

R - RN,- I 0 l 0
R - R -2  0 I a2- 0

R '-I I bA- 0
RN- R "-I 0 aA  0

(2.159)
where D is the diagonal matrix with entries

di= 2 t (k ) (2.160)

and s is the column vector with entries:

,, = 2 Z, (z:)H(1 (k, ri). (2.161)
4 p(z.)

Computationally. this approach requires the solution of a whole family of normal
mode problems, one for each range segment. followed by the solution of a large
banded. block linear system. The range segments are frequently required to be less
than a wavelength which leads to extremely long run times.

Finally, we should also mention that it is possible to formulate the coupled-mode
problem in a differential form. In fact, we shall follow this approach in a subsequent
section since it leads more naturally to the adiabatic mode approximation. This
development, in terms of piecewise range-independent sections. may then be viewed
as simply one way of solving the coupled-differential equations in range.
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2.8.2 One-way Coupled Modes

The full two-way coupled mode formulation allows for interactions between each
segment in range and as a result leads to a global problem rather than a marching
type of solution provided by. for instance, the parabolic equation. Computation
time can be reduced by neglecting these multiple interactions, usually with only a
minor degradation in accuracy.

An efficient marching implementation of coupled modes can be done in several
ways with different degrees of accuracy. This is discussed in detail in Ref. [801. A
good compromise between accuracy and complexity is provided by the single-scatter
formulation which treats each interface in range as an independent process thus
neglecting the higher-order multiple-scattering terms. To derive this form we begin
with the matching condition for the jth interface given in Eq. (2.156):

b'j = [R 2 4  [b'J (2.162)

For the single-scatter approximation, the incoming wave in the left segment is
assumed to be given, and we require that the solution is purely outgoing in the right
segment, i.e. b' + 1 = 0. Solving for the backscattered amplitudes. bi. we find:

W = -R 'R 3 aj . (2.163)

Therefore, the forward scattered amplitudes, a jI+, are given by

a - 1 Ri- R2R R3) a', (2.164)

which is an explicit equation for the forward scattered field. The field in any given
segment can then be computed by summing the terms in the modal sum representing
the forward scattered field.

In practice. an approxrmate sngle-scatter solution works nearly as well. This
solution is obtained by neglecting lower-order terms in the single-scatter recursion:

a.7- = Ra'. (2.165)

It can be shown that the matrix R is an arithmetic mean of coupling matrices
based on pressure matching and velocity matching.

2.8.3 The Adiabatic Approximation

The one-way coupled mode approach discussed in the previous section provides a
great speed-up in execution time but in many cases still remains too time consum-
ing. For this reason a further approximation is often invoked in which one neglects
the cross-coupling terms which allow energy from one mode to transfer into other
modes. Instead. one assumes that in going from one range to the next the modes will
couple adtabattcally, that is. without any transfer of energy to other modes. This
approximation was introduced to ocean acoustics problems by Pierce '541 based on
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analogous results for the Schr6dinger equation. Our derivation follows Pierce, how-
ever we note that a somewhat more formal derivation is given by Weinberg and
Burridge in Ref. [55].

To derive this approximation, we return to the Helmholtz equation in two-
dimensions:

p 0 (r Op + a (lOp) W2 -6(z- z,)6(r) (2166)
rr (par) OZ \P Z c(r,z)' 21.1

Since the modes form a complete set, we can represent the solution at any range
as a sum of local modes. We therefore seek a solution of the range-dependent problem
in the form

p(r, z) - E R,(r)Zm(z, r), (2.167)

where, Z, (r, z) are the local modes defined by

p(r,z,) Zn (z, r)] z - k (r)) Zm(z,r) = 0. (2.168)

and primes denote differentiation with respect to z. Thus, at any range r, Z, (r, z)
is found by solving the depth-separated modal equation with the environmental
properties at that range. Substituting in the Helmholtz equation yields:

(: 0 r O(RmZm) ) :k 2(r)R,,Z_ = -'(z - Z,)6(r) (.19

Or(p Or M ( Z / (2.169)

where we have used Eq. (2.168) to eliminate the z-derivatives. Rearranging terms
leads to,

(r OR-) Zm pO fr aZ,

+[O( OrR Z-+E49)R.
r Orp OrOr Or r Or (pOr

-= k(. (r z)(Z) (2.170)27rr

For simplicity we shall now assume that p is independent of r. Then we can
apply the operator

f (.) Z(z. r)d (2.171)
P

and because of the orthogonality property many of the terms in the sum will disap-
pear. The result is:

1 a (4R 1 ) +'2B OR,,L AR k2(r)R -Z(z,)6(r)
rr Or m Or m 27-r

where,

A lm (rZ,)KZ ZLdz,
f 8Z,. Z dr.

Am = Or L (2.173)
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Note that B1m = -Bn, since differentiating

J Z..(z)Z(z) dz = ti, (2.174)
P(Z)

gives
(9,Z jZ ~~doz~ Z'Z abi. dz = 0. (2.175)ar p(_) p(z) ar

Equation (2.172) is a statement of coupled modes written for the case of con-
tinuous variation of sound speed. It can be solved directly by. for instance, finite

differences. The adiabatic approximation can now be stated simply as the assump-
tion that the coupling matrices B1, and Al, are negligible. (Some authors retain
the diagonal terms A, which alters the results slightly.) This yields the set of
decoupled equations

I (r k 2 k(r)R -Zj(,)b(r) (2.176
r Or "2r

The WKB approximation then yields the solution:

RT(r) A - t2.177)
V'ki(r)

The value of A is found by requiring that the WKB solution must match our normal
solution, Eq. (2.16), when the problem is range-independent. Thus.

.4= i.e-/4 Z1(o,). (2.178)

v%8rr

Substituting this results back into Eq. (2.167) we obtain the final result:

3C f " k,1 S Ias-,ir,4 1 - Z zr
p(r. z) ;= 219

V rr ,=1 V km r)

In practice, the eigenfunctions and eizenvadues are normallv calculated at a discrete
set of ranges: values at intermediate ranges are then calculated by linear interpoia-
tion. Note that the adiabatic form is sensitive to the polarity of the modes: that is.
if you flip the sign of Z,,(:. r)i at some particular range. the computed pressure is
changed. Therefore. care must be taken that the modes are polarized in a consistent
fashion in range. In KRAKEN the modes are polarized so that they assume a positive
value at the turning point nearest to the surface.

2.8.4 Example: A Warm-Core Eddy

Range-dependence can occur as both bathymetric variation (due to seamounts. con-
tinental slopes) and variation in material properties (due to oceanographic features
such as fronts and eddies or to changes in bottom type). We consider a flat-bottom
problem involving an eddy with a source located roughly above the center of the
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Figure 2.14: Sound speed profiles taken through the eddy.

eddy. The actual sound speed profiles are shown in Fig. 2.14. The warm-core eddy
which is centered at roughly 1000 m depth and at zero range, shows up as a zone of
increased sound speed.

Figure 2.15 shows plots of the transmission loss obtained with a) range-independent
normal modes using the first SSP throughout, b) coupled mode theory and c) adia-
batic normal modes. The source frequency is 50 Hz and the source depth is 300 m.
The range-independent calculation in Fig. 2.15(a) shows deep-cycling convergence-
zone paths. A band of energy is also seen to propagate in the duct that is roughly
centered at the source depth in the first profile.

The one-way coupled-mode calculation in Fig. 2.15(b) shows that as the duct
disappears in range the energy passes into the main SOFAR duct. The result is
a great increase in transmission loss for a receiver located at. for instance, 100 n
depth. Thus, in this particular case a range-independent calculation would almost
certainly be considered inadequate.

The faster adiabatic calculation shown in Fig. 2.15(c) provides an intermediate
result in terms of accuracy: it correctly shows the transition of energy from the
near surface duct into the main SOFAR duct but fails to reproduce the details of
the pattern. Whether this result would be considered adequate depends on the
application.

The adiabatic approximation provides accurate predictions when the range-
dependence is sufficiently weak. What constitutes "weak" range-dependence? This
is a question which has been addressed in numerous papers but is difficult to an-
swer in any general sense. In some cases the adiabatic approximation provides very
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poor results. An interesting example of such a problem is obtained by introducing
a seamount into our eddy problem. If the seamount is placed in the shadow zone
between 100 and 150 km then the convergence zone paths will pass over it unaf-
fected. If the seamount is placed in the ensonified area centered at 90 km then the
convergence zone paths will reflect off the seamount and be displaced in range. How-
ever, past the seamount the adiabatic formula depends only on the integral of the
wavenumbers and is therefore insensitive to the location of the seamount. Despite
these problems, the adiabatic approximation is frequently very useful.

2.9 Normal Modes for 3-D Varying Environments

As with all of the range-dependent 2-D models, a direct extension to 3-D problems
is possible by simply running the 2-D models repeatedly along a number of different
bearings. Along each bearing one then uses the sound speed profile and bathymetry
for that track. Combining these results along numerous bearings allows one to
build-up a three-dimensional image of the acoustic field.

As in the 2-D problem it is convenient to calculate the mode sets on a coarse
grid and calculate intermediate values by interpolation. As an example, we consider
a scenario in the North Atlantic which encompasses a segment of the Gulf Stream.
The environment is sampled at a number of different points in the ry-plane and
modes are calculated at each of these points. The nodes are then used to construct
a triangulation of the environment as shown in Fig. 2.16. The position of the Gulf
stream, two eddies that have spun-off from it, and other features of the environment
are echoed in the triangulation.

The nodes of the triangles may be arbitrarily located: however, we have found it
convenient to distribute them along isobaths. This enables extremely complicated
bottom profiles to be treated without the burden of computing sets of modes at
many different nodes- modes computed at one point on an isobath are unchanged
(assuming no sound speed change) in going to other points on the isobath. Regular
grids are also suitable: they are easier to set-up but may require more nodal points
to produce an acceptable sampling of the environment.

Once the modes are calculated and stored. 3-D acoustic images can be computed
extremely rapidly by using the adiabatic formula in Eq. (2.179) along a fan of ra-
dials emanating from the source. Where the adiabatic formula requires modes in a
triangle, they are computed by bilinear interpolation. (A more complete discussion
is given in Ref. [17].)

An example of this type of calculation is given in Fig. 2.17 where we have plot-
ted transmission loss in the zy-plane at a constant receiver depth of 400m. The
source depth and frequency for this calculation are 400 m and 50 Hz. Note how the
Gulf stream casts an acoustic shadow behind it. (In fact, the energy is really just
redirected to other depths.) The eddies in turn produce visible perturbations in the
transmission loss field.
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Figure 2.16: Triangulation for the Gulf Stream problem.
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Figure 2.17: Transmission loss for the Gulf Stream problem.
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2.9.1 Horizontal Refraction Equations

The range-dependent 2-D models assume azimuthally-symmetric environments and
we violate this assumption in applying the model with different profiles for each
bearing. In practice, this approximation is generally adequate and indeed is nor-
mally implicit in a 2-D run of a range-dependent model. That is, we normally
use environmental information on a bearing-line between source and receiver, not
intending the slice to define an azimuthally-symmetric environment.

In some cases, effects of horizontal refraction must be included. In principle, this
is easily done. The derivation follows the pattern developed in the previous section
for adiabatic modes in two-dimensions. We start with the Helmholtz equation in
three-dimensions:

pv + W, p = -6(x)b(y)b(z- z.), (2.180)

or, written out in full,

+ '2((,)PzzP p = - 6 (z) 6 (y) 6(z - Z.).

We next seek a solution of the form

p(z,Y, z) = ZF,0,(Z,Y)Z,,y(zY, z), (2.181)
vn

where Z,(z, y, z) are the local modes. Substituting in the Hehnholtz equation and
applying the operator

J ) z , Y Y. )dz, (2.182)
P

gives:

O'er 'd~t+ k (z, y)4j + y t, ,901 9 0: k,2

-2Bt, -5- + 2C=, = -6(z)6(y)6(z- z.), (2.183)

where,

A =2 Z, Z I dz.
_raz, z1

Bm = -Bi = --- z .

Ci = -C,,. J - -dz. (2.184)
by d
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The adiabatic approximation can then be obtained by neglecting the contributions
of the coupling matrices A, B and C. This yields the horizontal refraction equation:

-,1 01 - k(z, y) = -z-(z.)6(x)6(y). (2.185)
49Z2 ' y2  I

Using the local normal modes, we have eliminated the z-dimension from the
problem and obtained a new Helmholtz equation, but now in the lateral coordinates
z and y. The effective index of refraction is given by the horizontal wavenumber
kl(z, y) so that every mode generates a corresponding Helmholtz equation. Such 2-D
Helmholtz equations can be solved using normal modes, PE, ray or spectral integral
methods. Weinberg and Burridge[551 present results using ray theory to solve the
horizontal refrac:ion equations.

Note that the horizontal refraction equation leads to the usual results for the
cases of stratified range-independent or range-dependent but cylindrically symmetric
profiles. For instance, if we rewrite the horizontal refraction equation in cylindrical
coordinates and assume a cylindrically symmetric sound speed profile, we obtain.

1 (rO')' -i- kj(r)p1 = p(z.; 0)- ( ) . (2.186)
r r

The WKB approximation to the solution is then,

)1(r) = Z,(z.;0) e (2.187)

Using this result in Eq. (2.181) yields the usual adiabatic mode result of Eq. (2.179).
In KRAKEN the horizontal refraction equations are solved using Gaussian beams

which refract in the horizontal plane. As we have just seen, the "refractive medium"
for each set of Gaussian beams is constructed from the phase velocity field corre-
sponding to that particular mode. The field due to an individual beam involved a
Gaussian decay in the horizontal plane and a depth dependence determined by the
local mode.

The Gaussian beam solution to the horizontal refraction equation is straightfor-
ward. As discussed in references (59.60.61 the method begins by tracing a fan of
beams originating from the source. The beams are defined by a central ray (which
obeys the usual ray equations), the beam radius, L(s) and the curvature. K(s),
which are functions of arclength along the ray. The beams are Gaussian in that
at any point on the central ray of an individual beam the intensity falls-off in a
Gaussian form as a function of normal distance from the central ray. The final step
is to sum up the contributions of all of the beams to compute the solution.

In more detail, the process is as follows. We begin by solving for the central rays
of the beams which satisfy ray equations:

ds

d 1 dc

ds c2 dz"
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da -y C17(3),
ds

? 1 ldcL
d - 1 dc' (2.188)ds ¢ dy'

where, s denotes arclength along the ray and cl(z, y) is the phase speed of the jth
mode. A beam is then constructed about each ray using ray-centered coordinates,
(s, n) where n denotes the normal distance from the ray. The result is,

91(s, n) = A C(S) exp{ iW[Tr(s) -t P(J) n~ (2.189)

where the complex quantities p(s) and q(a) are obtained by integrating an auxiliary
set of differential equations,

dqdq c(s)p(s), (2.190)

dp - -q(S).q() (2.191)

ds c'(5)
where the subcript n in c,, indicates the derivative of the sound speed in a direction
normal to the central ray.

The term -r(s) in Eq. (2.189) is the phase delay or travel time which satisfies,
dr 1

- 1 (2.192)ds c(s)"

It is convenient to think of the p - q functions as defining the evolution of the beam
in terms of its radius and curvature. Consider,

L(s) = v/2wImi P() (2.193)q(j) J

K(s) = -c(s)Re IL S). (2.194)

Clearly, L(s) characterizes the beam radius in terms of the normal distance at which
the beam decays by 1le. Furthermore, K(s) is a representation of the number of
phase fronts crossed as one travels normal to the central ray and is a measure of
curvature of the beam.

To summarize, the beam is defined in terms of (z(s), y(s)), ( 7(s), il(s)), (p(s), q(j)),
and r(j) representing respectively the central ray of the beam. the tangent to the
central ray, the beam width and curvature, and the travel time. Ail of these functions
are obtained by integrating a set of ordinary differential equations. To complete the
definition we must provide initial conditions. For the central ray these are simply,

z(0) =X

y(O) Y ,

V(0) Cos a

sin a
77(0) si- ) (2.195)c(0)"
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where (z,, y,) is the source coordinate and a is the take-off angle of the central ray.
The optimal choice of initial conditions for the p - q equations is a matter of

current research. The two extremes of infinitely wide and infinitely narrow beams
may be favored in cases with strong variation of wave speeds or when head waves are
generated. Fortunately, the horizontal refraction equations are especially benign. In
contrast to the usual r - z ocean acoustic problem. there are no boundaries to worry
about. Secondly, the effective sound speed is so gradually varying that in may cases
there is no clear need to even try to account for it. We have obtained good results
using the anaiytic result for an isovelocity medium and selecting the initial beam
width to minimize the beam width at the receiver. The beam curvature is chosen
to be zero at the origin.

The final step is to synthesize the field by summing up the Gaussian beams.
Thus. we seek a solution,

u(x.y, z) = jAa)glis. n)da. (2.196)

where gl(s, n) is the lth beam. Following the standard procedure, we construct the
expansion by the method of canonical problems. i.e.. we require that the beam ex-
pansion be reasonable for a homogeneous medium. In a homogeneous medium, the
equations whid, define the beam may be solved analytically. In addition analytical
representations for the receiver coordinate (x,, y,) in terms of the ray-centered coor-
dinates (s, n) may also be obtained without fanfare. Finally, one applies the saddle
point method to compute the high-frequency asymptotic expansion of the integral.
The result is,

u(z,y) = A(--) (2.197)

On the other hand. the exact solution for a single-mode propagating in a stratified
medium is

u(X. y) = Zt{ ,(Z ' ' .. (2.198)

Evidently the forms match if the weighting for each beam. .4(o) is Zj(z,)Iv4%.
Putting all these haings together. we obtain

p(X1y.: Z 0- 1 (X. y )Zif . (2.1991

where
0 (X, Y. Z=j is. n ac. (2.200)

and

-s.n . Cs exp i{. (s - P(s. 2  . 12.2011' -T 2q(s)

The procedure then is to begin a loop over each mode. For each mode one
has a Helnholtz equation with that mode's phase speed acting like the usual ocean
sound speed. Each such horzontal refraction equation is solved by looping over an
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azimuthal take-off angle and each azimuthal take-off angle leads to a beam which
propagates out from the source. As each beam is traced out its contribution to the
field is summed up. This procedure is repeated for each mode to obtain the complete
field representation.



Chapter 3

Numerical Solution of the
Modal Equation

There are many ways of numerically treating the modal equation. Generaily. core
storage is not a problem so that the algorithms can be impartially compared by
setting an accuracy threshold and seeing which method requires the least execution
time to meet tnat criterion on a typical set of test problems. The algorithm used
in KRAKEN was chosen by just such a fly-off of numerous different algorithms.
This included 3- and 5-point difference schemes, Numerov's method. iterated defect
corrections and layer methods. Richardson extrapolation was also studied using
polynomial and rational (Pad6) approximations with the various algorithms. Several
root-finders were also compared including newton, secant. and bisection schemes.
The algorithm described below was the most rapid across the suite of test problems:
however, it should be noted that the optimal algorithm is partly a function of the
types of problems forming the test ensemble.

In the following sections we shall describe the algorithm which emerged as the
fastest technique. Sections 3.1-3.3 describe the finite-difference discretization which
leads to an algebraic eigenvalue problem (EVP). The EVP is solved using what is
sometimes called the determinant search method as described in Sect. 3.4. Sec-
tion 3.5 describes the treatment of elastic media and Sect. 3.6 discusses the use of
Richardson extrapolation which provides an adaptive technique for controlling the
error as well as an efficient means of obtaining high-accurac..

3.1 Finite-Difference Discretization

As illustrated in Fig. 3.1 we divide the interval 0 < z < D into N equal intervals to
construct a mesh of equally spaced points

zj = jh, j = 0 ..... V (3.1)

where h is the mesh width given by h = D/N. Furthermore. we shall use the

notation Z, = Z(zj). The number N should be chosen large enough so that the
modes are adequately sampled: usually 10 points per wavelength are sufficient.

53)
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z 0 - z=O

Zi -

Z2 -

h

ZN 1 -

ZN - z=D

Figure 3.1: Finite-difference mesh.

We shall assume for the moment that the density is constant, yielding the modal
problem

Z"(z) + - k2 Z(Z) = 0, (3.2)

where the primes denote differentiation with respect to Z. Following a standard
procedure for deriving finite difference equations. we use the Taylor series expansion
to obtain

Zj+i = Z. +- Z~h -;. Z" h 3" h3 (3)= -~--**(3.3)

Rearranging terms. we obtain a forward-difference approximation for the first deriva-
tive,

, -Z, Z,,h_ (3.4)Z: - h " 'J 2

An O(h) approximation to the first derivative is therefore.

, zJ_: - Z (3.5)
h

An improved approximation is obtained by using the governing equation Eq. (3.2)
to evaluate the first term in the forward difference approximation. That is. we
substitute

Z"1(z) = .. ~.-k)Z(Z). (3.6)
)2(
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This yields the O,'h2 ) approximation

ZJ-_ - Z'4 C h
z ;Z: h C-(,i) - ) Zi 1). (3.7)

Similarly, a backward-difference approximation is obtained starting with the Tay-

lor series
h 2  3 h 

3

Zj-I = Z,- Zjh- Z'" '- * (3.8).. : 3!(3S

yielding, the 0(h) approximation

, z, - ZJ-l
Z/ z h (3.9)

and the O(h) approximation

Z' :z Z - Z  -1  - k2z-
S h c2(---_ z. ) " (3.10)

Finaly. adding Eqs. (3.3) and (3.8) we obtain a centered-difference approxima-
tion to the second derivative:

-j Zj-1 - 2Zj + Zj .i 0(2.= h +2: - 0(h 2 ). (3.11)
Zill h2

With these finite-difference approximations in hand. we can proceed to replace
the derivatives in the continuous problem with discrete analogues. Let us recall the
continuous problem:

( ZZ"(z)- ( -k) ZZ, = 0.

fT(k")Z(0) gT(k2)Z'() = 0.

P

fB(k 2)Z(D) - B(k)Z'(D) = 0. (3.12)
P

Using the centered. forward and backward difference approximations for the ODE.
the top and bottom boundary conditions we obtain:

ZI-I- -2- h2  c23 ) - k) z- - = 0. 1......- 1

fT I Z - o w2"\ 2 = O.
- -1.- -kj - = 0

Tg p n C 2 (0)J2J

fBZ-1 [ZN- Z -: 2 2)_N- "k Zy 0. (3.13)
9B p h c2(*D)2
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We next write the first of these equations as

1 + -2 + h2 [w2 /c2(zj) - k2  1 (3.14)-'Zj- 1 +"Z - Z. .(.

h'p hopT

Then collecting the difference equations together we obtain an algebraic eigenvalue
problem of the form:

A(k 2)Z = 0. (3.15)

Here, Z is the vector with components Zo, Z1 .... ZN. These components are ap-
proximations of the eigenfunctions of Eq. (3.2) evaluated at the mesh points. In
addition, A is a symmetric tridiagonal matrix defined by

do ei
ei di e2

e2 d2  e3

A= . . 3.16)

eN-2 dN-2 eN-j
eN- 1 dN_ 1 eN

eN dNJ

where the coefficients dj and ej are defined by

-2 + h2 [w2 /C(zo) - k2 fT(k2)
2hp gT(k 2)"

-2h 2  2 /C2 (Z)-k 2 ] ..... -

hp

-2 +h 2 [w 2/c2 (z ") - k2  fB(k 2 )
dN - 2hp gB(k 2 ) (3.17)

and, 1~~j=1..

We have consciously introduced a scaling factor of 1 /(hp) in every row here. For

a constant-density problem with a single mesh width this would serve no purpose:
however, later we shall consider multiple layers for which this scaling is the natural
one.

Note that for a pressure-release surface the ratio fI; g which appears in the bound-
ary condition goes to infinity. In this case. Z0 vanishes and we can simply delete
the first line and column from the matrix eigenvalue problem. Furthermore. if the
functions fT.B, gT.B are independent of k (as happens for the pressure release sur-
face and rigid bottom conditions) then the above problem is a standard agebraic
eigenvalue problem and can be solved using standard routines. In general. only the
lower-order modes will be sufficiently accurate: the higher order modes are under-
sampled by the finite-difference mesh. Thus. routines which are designed to extract
a subset of the eigenvectors and eigenvalues are desired.
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Figure 3.2: Finite-difference mesh for an interface.

The problem is a non-standard eigenvalue problem because the eigenvalue enters
in a functional form through bottom boundary conditions. (For perfectly rigid or
free boundary conditions the problem reduces to a classical algebraic eigenvalue
problem.) We shall discuss the solution of the eigenvalue problem in Sect. 3.3.

3.2 Treatment of Interfaces

Frequently ocean acoustic problems involve discontinuities in the sound speed or
density, for instance in passing from ocean to sediment. Such problems are treated
by dividing the problem into layers such that within a layer these material properties
vary smoothly. Within a layer the previous finite difference equations are applicable.
At the interface one then derives a special condition to tie together the individual
layers.

As an example, we consider a a single interface between two layers representing
the water and the sediment. Within each layer we construct independent finite-
difference meshes with grid spacing h,. and h, as illustrated in Fig. 3.2. In the
water, the finite-difference approximation to Eq. (3.2) is

Zj-i 2 - h ' k 2 Z.ZI- =..I = . j l. (3.18)
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and in the sediment the finite-difference approximation is

Z_. + -2 + h2 ( Z2 Z-Z,+1 = 0. N + 1'... (3.19)
(clz)

At the interface, the pressure must be continuous, a condition which is imposed
implicitly by allowing for a unique value ZN at the interface. We must also impose
continuity of normal velocity, that is,

Z'(D) - Z'(D) (3.20)
Pu, Pa

where p.. and p, denote the densities in the water and sediment respectively. This
interface condition can then be approximated by,

[ZN -ZN-1 + k~~- - 2) ZN 'I /P_

= ZN- - -, ( 2+ k2) Z ! .] (3.21)h. o2(D ) 2 .2st

where we have used the backward difference formula for the water and the forward
difference for the sediment. Furthermore. c(D ± ) denotes the limiting value of the
sound speed at the interface as approached from z < D (D-) and z > D (D ).
Rearranging we obtain,

ZN-1 -ZN o - t;W2 /c 2(D-) - k2' ZNh2. f2
p. hp.

-Z.N -;. c(D-) -k2, .yh 2 N-
Z ,n,, 0/_ . (3.22)

h~vps hp,

Note that if h,. = h,. p,. = p, and c(z) is continuous we obtain the same finite-
difference formula given in Eq. (3.18) for a poir.t not on an interface.

This process can obviously be repeated for every interface in the problem and.
just as for the single layer case. leads to a symmetric matrix eigenvalue problem.
Incidentally. the resulting problem is precisely equivalent to what one would obtain
by using finite elements with hat-shaped basis functions and -mass-lumping'.

3.3 Mode Normalization

Recall that the evaluation of the pressure requires the normalhzed modes. The
normalization constant is

D Z2() 1 d(f/g)" 2 1 d(f ig)Bz ( -Z; (D). (3.23
0 P. Zp) 2k,, dk k_ 2k,. dk , D,,2

The integral term can be evaluated by the trapezoidal rule. That is.

rD7Z i 1 ,7--: :z 1 - 0 - C" - 602. .. ON'- -=Q)') (3.24,
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where

Pz?)o, -(3.25,

In problems with density discontinuities. the trapezoidal rule is applied separately
within each smooth region. Finally. the derivatives d(fig)T'Bidk can be either
evaluated analytically or by a simple centered-difference formula depending on their
complexity. In order to accommodate a wide variety of boundary conditions without
over-complicating the code. KRAKEN uses the difference approach.

3.4 Solving the Discretized Problem

The solution of the above matrix eigenvalue problem proceeds in two steps. First.
the eigenvalues are found by applying a root finder to the characteristic equation.

A( I = 0 (3.26)

where z( k2 ) denotes the determinant of the matrix. Finally. once the eiaenvalues are
found. the eigenvectors are computed using inverse iteration. The inverse iteration
is given by.

A(k )Zl-l' = Z', l . (3.271

The matrix A is (nearly) singular because k. is (nearly) an eigenvalue of A.
One may easily show that the effect of this iteration is to continually amplify the
eigenvector component in the starting vector that corresponds to the eigenvalue k,.
Thus. the starting vector ZM1 ) may be picked fairly arbitrarily. After each iteration.
the new iterate Z(1-1) is renormalized to avoid overflow. In addition, the growth of
the iterates is used as a check for convergence. (Typically 2 iterations are sufficient.)

This inverse iteration technique is described in numerous texts on algebraic eigen-
value problems. see for instance. Wilkinson 62 . The usual development applies for
this nonlinear eigenvalue problem with some minor restrictions. In particular. the
inverse iteration will not be reliable in cases where one-sided shooting would be un-
stable for constructing the impedance conditions. There are two cases where this
could be an issue: 1) when the internal refiection coefficient option is used recklessly
and 2) for certain elastic problems with internal ducts.

One of the most difficult aspects of normal moce computations is that of finding
the roots of the characteristic equation. The fundamental difficulty is that man,
familiar root-finding algorithms (such as the secant method or Newtons method) will
only converge to a particular root if an initial guess is provided which is sufficiently
close. Unfortunately. even though the eigenvalues of a purely acoustic problem are
guaranteed to be distinct, they can be very nearly degenerate. As a result. many
existing mode codes provide accurate but incomplete mode sets.

Two root-finding techniques are used in the KRAKEN program which we shall
describe next. The first is efficient and robust. in fact fool-proof. but is applicable
only to purely azoustic problems, or acoustic problems with an elastic half-space
The second is less reliable but valid for problems with elastic layers.
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3.4.1 Method I: Sturm Sequences

For a purely acoustic problem a bisection approach is generally the most attractive
solution. For this fairly broad class of problems the method will calculate a particular
subset of the modes in a predictable amount of time without jail. However, for more
complicated problems, for instance problems involving elasticity or complex wave
speeds this technique is not applicable.

In brief, the bisection algorithm relies on the interlace property of the Sturm-
Liouville problem that the number of zeroes in a trial eigenfunction increases mono-
tonically as k decreases. (Recall that the mth mode has m zeroes.) A discrete
analogue of a trial eigenfunction is the vector Sj of principal minors of A. That is,

S = 1, (3.28)
Sj = dS,-. - e Sj- 2 . (3.29)

For any fixed k2 the number of sign changes in the sequence indicates the number
of eigenvalues greater than that particular k2. In addition, the function SN(k 2) is
the characteristic equation, the roots of which are the eigenvalues. The first property
is used to construct isolating intervals for the eigenvalues. Thus. for each eigenvalue
one computes interval endpoints which contain exactly one eigenvalue. The second
property is used by a root finder to refine the eigenvalues within their isolating
intervals.

In more detail this process proceeds as follows. First we compute an upper
bound on the eigenvalues using Gerschgorin's theorem. (Incidentally, Gerschgorin's
theorem applied to the discrete problem yields the bound kmaz = w/c~i. where c,,.
is the lowest sound speed in the problem.) This provides an upper bound for the
mode search. There are an infinite number of modes so that a lower bound must be
selected in some fashion. This bound is user specified. but if it exceeds the halfspace
velocity in the problem. the bound is reduced to eliminate leaky modes from the
problem.

Next, we take the midpoint of the interval and compute the number of modes
to the right of the midpoint. Based on the number of zero-crossings in the trial
eigenfunction one may decide whether the first eigenvalue lies to the left or to the
right of the midpoint. The midpoint then becomes either a new iower bound or a new
upper bound for the eigenvalue. This process of interval halving is repeated until
the interval contains precisely one eigenvalue. With the isolating interval computed
for the first mode, one then performs the same process for the second mode and so
on. For subsequent modes an upper bound is available from the lower bound of the
previous mode. In addition. information generated during the bisection for the first
mode provides useful bounds for higher order modes. As a result the generation of
all M of the isolating intervals typically requires little more than M bisection steps

In the second stage these bracketing intervals are passed to sophisticated root
finder (Brent's method [631) which combines bisection. linear n'nterpolation and in-
verse quadratic interpolation to provide an estimate of the eigenvalue. This latter
root finder is guaranteed to converge given an isolating interval for the root. The



3.4. SOLVING THE DISCRETIZED PROBLEM 61

whole process is very efficient (compared to brute force linear searching) and ro-
bust (compared to techniques which rely on asymptotic estimates to provide initial
guesses for a root finder).

In practice. the sequence S3 is replaced by pj where,

pj = Sje' (3.30)

The sequence pj then satisfies the following recursion:

p! = 1 (3.31)
pi = bjpj- -1 Pj-2. (3.32)

where.

b,= -2- i=1. 2V, (3.33)

The number of sign changes in pj is the same as that for the original sequence.
since ej has no sign changes. However, p, is well scaled and requires half as many
floating-point operations to compute. Incidentally, this latter sequence is precisely
equivalent to what one obtains in a simple one-sided shooting scheme. Instabilities
often occur in this sequence which are removed by simply scaling it down as it
gets too large. The scale factors are retained and passed separately to the root
finder. Surprisingly, this instability does not in the least affect the accuracy of the
eigenvalues. This is proven in Wilkinson's text [62].

We have glossed over a difficult aspect of this method. Namely, the information
provided by the Sturm sequence (regarding 0he number of modes to the right of
some trial eigenvalue) is only justified for purely acoustic problems with free or rigid
boundaries. However, for homogeneous half-spaces or elastic half-spaces there exists
a simple correction to the count[16,71.. For elastic or acousto-elastic problems with
more than one elastic layer or elastic gradients there is no useful extension and we
are forced to use the deflation method described next.

3.4.2 Method II: Deflation

The philosophy of the deflation method is to start above the first eigenvalue and
use the secant method to find the first eigenvalue. Once that eigenvalue is located
it is deflated. that is, divided out of the characteristic equation, and the process is
repeated for each eigenvalue in turn. Interestingly, one may formally prove that the
secant method will always converge to the first eigenvalue if started at a point above
that first eigenvalue. (See Wilkinson, [62].) Naturally, there are some footnotes to
this sweeping statement. The key one is that the characteristic function should be a
polynomial. Some care is required to avoid violating this requirement. Secondly, the
eigenvalues should all be real. In practice. the deflation procedure works very well
for most realistic ocean acoustic problems- even for complex eigenvaues. However.
if branch cuts are present, problems are not unlikely.
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The deflation of previous eigenvalues is a trivial process. Instead of computing
the characteristic function, A(k 2), one computes:

A(k 2) = A(k 2 ) (3.34)rfjk 2 -k(3

where kj are the previously computed eigenvalues which are to be removed or de-
flated.

3.5 Elastic Media

Mixed acousto-elastic problems are treated in one of two different ways. The first
approach is to simply incorporate all of the elastic effects into a boundary condition.
The particular boundary condition was already written down in Eq. (2.81). The
coefficients of that boundary condition require the solution of Eq. (2.79) which is
accomplished using a simple explicit integrator. Specifically, we employ the modified
midpoint method which for a first-order system Y' = f(z, Y) takes the form:

Yo = y(zo) (3.35)

Yi = yo4- ..f(zj,yj), jN= 1....N,, (3.36)

and,

YNV = YN-1 + 2YN -L YN+I (337)
4

The integration is carried out in succession through each of the elastic layers to
compute the coefficients of the impedance boundary condition. This approach is
used in KRAKEN and KRAKENC.

The other approach, which is implemented in KRAKEL. is simply to apply fi-
nite differences directly to the stress-displacement equations (2.74). The result is a
somewhat complicated 9-diagonal matrix whose characteristic is evaluated using a
LINPACK routine (DGBDI).

3.6 Richardson Extrapolation

The above sections provide an essentially complete description of a numerical algo-
rithm for the modal problem. The techniques described involve the simplest finite
difference schemes and therefore lead to a relatively simple algorithm. However. as
it stands. the method would be inefficient compared to certain methods based on
higher-order difference schemes, e.g. Numerovs method. The simplicity of the ba-
sic method however can be retained while gaining great improvements in efficiency
by using Richardson extrapolation. This is the technique used in KRAKEN and is
described next.

It can be shown that the numerically derived eigenvalues vary as a function of

the mesh width h. as follows:

k2(h) = k -- b2 h2 4 b4 h4 .... (3.38)
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where k2 denotes the exact eigenvalue of the continuous problem. It is, of course.
k2 which is sought. however it is computationally expensive to evaluate k2(h) with
small values of h. Instead, we solve the discretized problem for a series of meshes
and fit a polynomial in h2 through the mesh points. The value of the polynomial
evaluated at h = 0 provides the Richardson extrapolation of the eigenvalue.

The extrapolation can be done with little effort. We denote the Richardson
extrapolation using meshes hp,... , hq by k2(p _... , q). The Richardson extrapola-
tion for the first mesh is trivial since the polynomial fit degenerates to a constant.
Thus. k2(1) is identically equal to the value obtained at the first mesh. Subsequent
extrapolations are obtained recursively as follows:

(h2 - h2)k2(p.- I...,p.- q) - (h.q - h2)k;(p...,p-- q - 1)k (p , ..,p + q ) = hP 3 _
- hm~q

(3.39)
where h denotes the mesh width for which the extrapolation is desired.

As discussed in Chap. 2, a water/sediment interface can be handled by setting
up an independent mesh in each medium and applying matching conditions at the
interface. In such cases there are two mesh spacings h, and h,. As long as the
ratio h,,/h, is kept constant when the mesh is refined one can pick either h = h,, or
h = h, in Eq. (3.39) and obtain the same result.

The extrapolation is implemented in an adaptive fashion. An error tolerance
E in the eigenvalues is computed based on the maximum range for which the field
will be calculated. Then, the problem is solved for successively refined meshes and
at each step the extrapolation to zero mesh width (h = 0) is performed using the
above recursion. When the difference between two successive extrapolations is less
than e. the extrapolated eigenvalue is accepted and the process is terminated. For
simplicity, this convergence test is performed on a "key-value" which is a particular
eigenvalue chosen roughly in the middle of the spectrum.

The solution of the discretized problem for each mesh can be performed as de-
scribed above, however, for subsequent meshes the circumstances are changed in
that we have a good estimate of the eigenvalue and eigenfunction. This information
is exploited by using Richardson extrapolation in a second fashion to provide an
estimate of the eigenvalue for each new mesh. In order to be confident that we ex-
trapolations are sufficiently accurate for the root-finder this process is adopted only
for the third and subsequent meshes.

A priori it is not at all obvious how well the extrapolation process should work.
It depends on how rapidly the coefficients in the Taylor series for k2(h) decay. Con-
sequently. it is necessary to examine the merits of the method for individual classes
of problems. Our initial experience with smooth single layer ocean acoustic prob-
lems was extremely favorable[13". For more complicated multilayer problems one
must take care that the mesh does not straddle an interfacei64'. For this reason
the difference eauations have been set up to allow an independent mesh within each
medium.

An additional issue arises when the sound speed is provided in a tabular form
as is typical for ocean acoustic problems. If piecewise-linear interpolation of the
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sound speed profile is used, then the mesh must be set up to land precisely on those
depths where the sound speed is tabulated. Since this must be done at each mesh,
the mesh refinement is refined by simple halving. Alternatively, a new "medium"
can be introduced for each piecewise linear layer. Finally, one can bypass both these
alternatives by simply using a very smooth fit to the sound speed profile. In the
present version, one has the option of using a splme fit, which however can introduce
its own artifacts.

The reader who is having difficulty remembering the constraints and the various
alternatives may be comforted to know that in practice the extrapolation works quite
well even when the theoretical requirements are not satisfied. At one extreme, if you
have a single medium with numerous discontinuities within the medium, you would
probably find that the extrapolation provided no improvement over the answers
obtained at the finest mesh. On the other hand, for extremely smooth profiles the
extrapolation yields typically 3 additional significant digits per extrapolation.

We should also mention for the reader that contemplates modifying the code,
that we have found that seemingly innocuous changes can introduce terms of odd
power in h to the Maclaurin series for k2(h). The result then is to eliminate the
usefulness of polynomial extrapolation in h2 . Such terms can easily be introduced
at interfaces if care is not taken that the interface condition is O(h 2 ) and that
higher-order terms of odd power are not present.



Chapter 4

Running the Program

The KRAKEN program is actually part of a complete package of modeling tools
referred to as the Acoustics Toolbox and structured as shown in Fig. 4.1. Besides the
KRAKEN normal mode model. there is also a 1) ray/beam tracing model. BELLHOP.
2) an FFP (spectral integral). SCOOTER. and 3) a time-domain FFP model. SPARC.

The models take as input a user-provided environmental file (ENVFIL) to de-
scribe the problem. This file has the same format for all models. PLOTSSP can be
used to produce a plot of the sound speed profile defined in the environmental file.

The models then produce a binary 'shade' file (SHDFIL) that contains calculated
pressure fields. PLOTFIELD can be used to convert the pressure to transmission
loss and produce a color or grey shade plot of the transmission loss over range and
depth. The program PLOTSLICE is used to plot a slice of the field along a fixed
receiver depth. Additional programs exist for using the shade files to do matched-
field processing, to compute n. probability of detection or a radius of detection.

There are utilities availabIe for conventing between the NRL shade file format and
the SACLANTCEN format (TONRL and TOSAC). This allows the SACLANTCEN
models to be plotted using PLOTFIELD and PLOTSLICE for intermodel compar-
isons. There are also utilities for converting the shade file to an ASCII format
(TOASC) and back to their original binary format (TOBIN). These programs allow
you to transfer files between computers with incompatible binary files by transferring
an ASCII file instead.

While the basic structure is as shown in Fig. 4.1. each of the models has adc' )na
plotting routines which are unique to it. For instance, the BELLHOP ray ._odel
produces rays and so it has a ray plotting program. while the KRAKEN normal
mode produces modes and so it has a mode plotting program. In this chapter. we
focus on the description of the KRAKEN component, however, the other models are
also discussed (briefly).

Most of the development work has been done on a VAX using VMS Fortran but
careful thought has been given to portability. The following changes are necessary
to run KRAKEN under UNIX using the f77 compiler:

1. Change the logical record length used for opening flies. VMS uses longwords
(4 bytes) most other systems seem to use bytes.

65
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FigueN BELLHOP Structur STolo

TOSAC TOASC
SAFI SHDFIL ACI

I P°OFiE Fpl-OTcE
Figure 4.1: Structure of the Acoustics Toolbox.
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2. Change the timing routines in TIME.FOR.

3. Change the machine constants in SLATECBESSEL.FOR or eliminate the
Twersky ice-scatter option which uses those routines. This is done by re-
placing TWERSK.FOR with TWERSKYFUSE.FOR. With the latter routine
it is no longer necessary to link with SLATECBESSEL and MATHIEU.

4. Apparently there is no way for the Unix system to retrieve a record length for a
file automatically. You will need to modify the mode-file format to include the
record length, do a preliminary read to obtain the record length. then re-open
the file with the correct record length.

5. If you have core space problems. change the parameter MAXN which controls
the maximum number of mesh points in depth. In KRAKEN this and other
parameters are defined in the include-file COMMON.FOR . Similar include-
files exist for KRAKENC. SCOOTER, SPARC. and BELLHOP.

4.1 Structure of the KRAKEN model

A schematic of the KRAKEN program structure is shown in Fig. 4.2. At the first level
we see that KRAKEN actually consists of three different models KRAKEN. KRAKENC
and KRAKEL. KRAKENC and KRAKEL are for more sophisticated users with special
requirements. The differences are discussed in more detail in the KRAKEN.HLP
file below.

A transmission loss calculation involves a two-step process running in sequence
1) KRAKEN to calculate the modes and 2) PLOTTLR or PLOTTLD to sum up the
modes and plot TL versus range or depth. In addition. PLOTMODE can be run
to look at the individual modes and PLOTGRN can be used to calculate a Green's
function.

Producing a grey shade or color plot of transmission loss involves a three-step
process running in sequence 1) KRAKEN to calculate the modes and 2) FIELD to
sum the modes and calculate the pressure field. and 3) PLOTFIELD to plot the
results.

Three-dimensional calculations follow a simiiar sequence but using FIELD3D
instead of FIELD to sum the modes. As discussed in Chap. 2. 3-D calculations
use a triangular patchwork over the ocean bottom tnat is defined in an input field-
parameter file (FLPFIL). PLOTT1I is used to plot the triangular patchwork. Be-
sides the 3-D pressure fields. FIELD3D also produces output describing the hori-
zontal refraction which can be plotted using PLOTRAYXY.

Detailed information on how to run KRAKEN is contained in a sequence of help
files included with the source code. These help fies are reproduced below.
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ENVFIL

KRAKENJ KAENC KRAKEL

MODFIL

..PLOTMODE PLOTTLO PLOTGRN

FIELD FIELD3D PLOTTRI

Figure 4.2: Structure of the KRAKEN model.
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4.2 The Main Program

4.2.1 NOTES.HLP

KRAKEN is a normal mode program for range-varying environments in either carte-
sian (line sources) or cylindrical coordinates (point sources). The basic method is
described in

Porter, Michael B. and Reiss, Edward L., "A numerical method for ocean-
acoustic normal modes", JASA 76, 244-252 (1984).

Porter, Michael B. and Reiss, Edward L., "A numerical method for bottom
interacting ocean acoustic normal modes", JASA 77, 1760-1767 (1985).

Range-dependent solutions are obtained by using optionally adiabatic or coupled
mode theory.

The principal plot package used is DISSPLA. (The PLOTFIELD program ac-
tually uses the UNIRAS plot package; however, an older version. PLOTFIELDD.
which uses DISSPLA, is available on disk.)

The following modules are part of the package.

GROUP I: MODE COMPUTATIONS:

KRAKEN Solves for the modes and writes them to disk.

Elastic media are allowed but material attenuation
in an elastic medium is ignored.

KRAKENC A version of KRAKEN which finds the eigenvalues in the
complex plane. KRAKEN uses perturbation theory to
obtain imaginary parts of the eigenvalues while KRAKENC
computes the complex eigenvalues exactly.

KRAKENC runs about 3 times slower but is necessary for
leaky mode computations or for including material
attenuation in elastic media. Internally KRAKENC replaces

elastic layers by an equivalent reflection coefficent.
For this reason, you cannot use KRAKENC to look at
fields within the elastic layers.

KRAKEL Analogous to KRAKENC but also computes elastic
displacements and stresses for elastic media.
KRAKEL is seldom used and tends to not be kept
up-to-date.

GROUP II: BASIC PLOTTING ROUTINES:
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PLOTSSP Plots the sound speed profile.

PLOTMODE Plots selected modes.

PLOTGRN Plots the Green's funtion for the depth separated wave
equation for a particular source/receiver combination.

PLOTTLR Plots transmission loss versus range.

PLOTTLD Plots transmission loss versus depth.

PLOTTRI Plots the triangular elements used for 3-D field
calculations.

GROUP III: FIELD COMPUTATIONS:

FIELD Computes fields on a vertical array over a specified
range and for a series of source depths. Individual
phones in the array may be displaced from the
vertical. Range dependence is handled by either
adiabatic or one-way coupled mode theory.

FIELD3D Computes field for a three-dimensionally varying SSP
using adiabatic mode theory.

GROUP IV: PLOTTING ROUTINES THAT USE GROUP III PROGRAM OUTPUT:

PLOTFIELD Plots tranmission loss in plan or elevation, i.e.
an (x,y) plot or an (r,z) plot.

PLOTSLICE Plots overlays of transmission loss versus range
curves by extracting slices from several shade files.

PLOTRAYXY Plots the ray paths of the Gaussian beams

generated during 3D field calculations.

The various programs for computing fields (GROUP III) are only
needed for PLOTFIELD, or for special user programs (e.g.
ambiguity surfaces). PLOTTLR and PLOTTLD compute the field
internally and therefore do not need a shade file from FIELD to
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run.

The following extensions are used with these programs:

.FOR The FORtran source code

.HLP A HeLP file documenting the module

.COM A COMmand file which runs the module

.LNK A command file which performs a LiNK

All user input in all modules is read using list-directed I/0.
Thus data can be typed in free-format using space, tabs, commas
or slashes as delimeters. Character input should be enclosed in
single quotes like this: 'CHARACTER INPUT'.

You will see the '/' character in a number of the input files.
This terminates an input line causing the program to use
default values.

***** INSTALLATION NOTES *****

There is a VMS command file for each of the programs in this package
which assigns necessary input files to the appropriate Fortran
unit number used by that program. In order to simplify the installation,
these command files make use of logical names for certain directories.
The logical names are in turn defined in a single file call ATINIT.COM
which is the ONLY file which needs to be customized for a new VMS installation.

The following symbols and logical names for directories are used with
the KRAKEN command files:

AT: This is the Acoustics Toolbox directory which contains

command files for running KRAKEI and other models

in the toolbox.

KRAK: The KRAKEN source code

MISC: Miscellaneous scientific subroutines, e.g.

root-finders, linear equation solvers, ...

GLOB: Global routines, that is, routines which operate on

shade files. These routines operate on the output of

a number of different propagation codes including
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KRAKEN, FSTFLD, BELLHOP, SCOOTER and SPARC.

SCR: A directory for scratch files.

DISSPLA is a symbol which points to the DISSPLA plotting

library.

The following is an example of how these might be defined under:

$ DEFINE AT US: [PORTER.AT]
$ DEFINE BELL US:[PORTER.AT.BELLHOP]

$ DEFINE GLOB US: [PORTER.AT.GLOBAL
$ DEFINE KRAK US: [PORTER. AT. KRAKENJ
S DEFINE MAN US: [PORTER.AT .MANUALJ
$ DEFINE MISC US:[PORTER.AT.MISC]
$ DEFINE SCO US:[PORTER.AT.SCOOTER]

$ DEFINE SCR US:[PORTER.SCR]
$,

$ DISSPLA == "[DIS11.LIB]DISLIB/L, INTLIB/L, DISLIB/L, HCBS/L"

***** HOW TO RUN KRAKEN *****

0. Starting out for the first time? Take a look at
CLINK.COM for a compile and link of the whole package.

1. Create the environmental file for your problem, following the
directions in KRAKEN.HLP.

2. Run KRAKEN (or KRAKENC). On the VAX this is done by typing
either

CKRAKEN filename

or
SUBMIT KRAKEN/PAR=filename

where "filename" is the environmental file.
The KRAKEN.HLP file details the differences between the
KRAKEN and KRAKENC.

3. You now have several choices (all the GROUP II programs):
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a. Plot tranmission loss:

CPLOTTLR filename

b. Plot the modes:

©PLOTMODE filename

c. Plot the sound speed profile (actually, this can be done
even before running KRAKEN):

QPLOTSSP filename

d. Plot the pressure field as a function of range and depth.
This is a 2-step process:

©FIELD, filename
OPLOTFIELD filename

In general, you'll have to modify each command file before
running it to provide the appropriate inputs as described in

the help file for each program.

Once the modes are created by KRIKEN or KRkKENC you can run
the above plot programs in any sequence or as often as you
like.
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4.2.2 KRAKEN.HLP

KRAKEN is the main program. It takes an environmental file, computes the modes.
and writes them to disk for use by other modules. A print file is also produced,
echoing the user input.

KRAKENC is a complex arithmetic version (hence the C in KRAKENC) of
KRAKEN. By working in the complex domain, loss mechanisms such as ice scatter
and material absorption may be included 'exactly' rather than perturbatively. In
addition, leaky modes may be computed. The price of this non-perturbative treat-
ment is a slowdown in speed by approximately a factor of 4. This factor principally
represents the difference between complex and real arithmetic.

A further slow down by a factor of 2 or more may occur it the Twersky scatter
option is used in KRAKENC. The calculation of the Twersky scatter function can
require significant CPU time; enough to actually be a dominant part of the cost
of computing the modes. KRAKEN incorporates the scatter perturbatively and is
much less sensitive to the cost of Twersky scatter.

KRAKEN does not at allow for losses in elastic media due to material attenua-
tion. Thus, for attenuating elastic media, KRAKENC should be used.

Files:

Name Unit Description
Input

*.ENV 1 ENVironmental data
*.BRC 10 Bottom Refl. Coef. (optl)
*.TRC 11 Top Refl. Coef. (optl)
*.IRC 12 Internal Refl. Coef. (opti)

Output
*.PRT 6 PRinT file

*.MOD 20 MODe file

EXAMPLE AND DESCRIPTION OF ENV FILE:

'FRAMIV Twersky S/S ice scatter' TITLE
50.0 FREQ (Hz)

4 ! NMEDIA

'NSF' ! OPTIONS

0.0092 8.2 5.1 BUMDEN (1/m) ETA (m) XI (m)

750 0.0 3750.0 ! NMESH SIGMA (m) NSSP

0.0 1436.0 0.0 1.03/ ! Z(m) CP CS(m/s) RHO(gm/cm3)

30.0 1437.4 /
50.0 1437.7 /
80.0 1439.5 /
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100.0 1441.9 /
125.0 1444.6 /
150.0 1450.0 /
175.0 1456.1 /
200.0 1458.4 /
250.0 1460.0 /
300.0 1460.5 /
350.0 1460.6 /
400.0 1461.0 /
450.0 1461.5 /
500.0 1462.0 /
600.0 1462.9 /
700.0 1463.9 /
800.0 1464.8 l
900.0 1465.8 l

1000.0 1466.7 /

1100.0 1467.0 /
1200.0 1469.0 /
1300.0 1469.5 /
1400.0 1471.8 /
1600.0 1474.5 /
1800.0 1477.0 /
2000.0 1479.6 /
2500.0 1487.9 /
3750.0 1510.4 /

35 0.0 3808.33
3750.0 1504.6 0.0 1.50 .15 0.0

3808.33 1603.07 /
35 0.0 3866.66

3808.33 1603.07 0.0 1.533 .15 0.0
3866.66 1701.53 /

35 0.0 3925.0

3866.66 1701.53 0.0 1.566 .15 0.0

3925.0 1800.0 /
'A' 0.0 ' BOTOPT SIGMA (m)
3925.0 1800.0 0.0 1.60 .15 0.0
0.0 1504.0 CLOW CHIGH (m/s)
300.0 RMAX (km)

1 100.0 / ' NSD SD(1:NSD) (m)
1 200.0 / ! NRD RD(1:NRD) (m)

DESCRIPTION OF INPUTS:
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(1) - TITLE

Syntax:
TITLE

Description:
TITLE: Title of run enclosed in sinqle quotes.

(2) - FREQUENCY

Syntax:
FREQ

Description:
FREQ: Frequency in Hz.

(3) - NUMBER OF MEDIA

Syntax:
NMEDIA (<20)

Description:
NMEDIA: Number of media.

The problem is divided into media within which it is
assumed that the material properties vary smoothly. A new
medium should be used at fluid/elastic interfaces or at
interfaces where the density changes discontinuously. The
number of media in the problem is defined excluding the
upper and lower half-space.

(4) - OPTIONS

Syntax:
OPTION

Description:
OPT(1:1): Type of interpolation to be used foz the SSP.

'C' for C-linear,
'N' for N2-linear (n the index of refraction),
'S' for cubic Spline,
'A' for Analytic. The user must modify the

analytic formulas in PROFIL.FOR then
compile and link.
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If your not sure which option to take, I'd suggest
you use 'C' or 'N'. Practically, you can pick
either one: the choice has been implemented to
facilitate precise intermodel comparisons.

Option 'S' is a little dangerous because splines
yield a poor fit to certain kinds of curves,
e.g. curves with sharp bends. If you insist
on splines, you can fix a bad fit by dividing the
water column into two 'media' at the bend.

Run PLOTSSP to check that the SSP looks the way you
thought it should. Apart from potential typos,
this will also show up fit-problems.

OPT(2:2): Type of top boundary condition.
'V' VACUUM above top.
'A' ACOUSTO-ELASTIC half-space.

Requires another line as described in

block (4a).
'R' Perfectly RIGID.
'F' Reflection coefficient from a FILE

(available in KRAKENC only). Requires
additional lines as described in
block (4c).

'W' WRITE an internal reflection coefficient to
a file (available in KRAKENC only). The file
is given the extension '.IRC' and can
subsequently be read in as a bottom boundary
condition. (See option 'P' under
bottom boundary conditons.)

'S' for Soft-boss Twersky scatter.
'H' for Hard-boss Twersky scatter.
'T' for Soft-boss Twersky scatter, amplitude

only.
'I' for Hard-boss Twersky scatter, amplitude

only. The Twersky scatter options require
another line as described in block
(4c). Mnemonically, T, I options are one
letter after S, H in the alphabet. Current
wisdom is that option T is most

appropriate for ice scatter.

For open ocean problems option 'V: should be
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used for the top BC. The Twersky options
are intended for under-ice modeling.

OPT(3:3): Attenuation units.
'N' Nepers/m.
'F' dB/(kmHz) (F as in Freq. dependent)
'M' dB/m (M as in per Meter)
'W' dB/wavelength (W as in per Wavelength)

'Q' quality factor.
'T' Thorp attenuation formula. This overrides

any other attenuations specified.

KRAKEN ignores material attenuation
in elastic media. (KRAKENC treats
it properly).

OPT(4:4): Slow/robust root-finder.
As in: I want all the modes and I don't
care how long it takes. Period.
(Available in KRAKENC only.)
In certain problems with elastic layers
the old root-finder has been known to
skip modes.

(4a) - TOP HALFSPACE PROPERTIES

Syntax:
ZT CPT CST RHOT APT AST

Description:
ZT: Depth (m).
CPT: Top P-wave speed (m/s).
CST: Top S-wave speed (m/s).
RHOT: Top density (g/cm3).
APT: Top P-wave attenuation. (units as given in Block 2)
AST: Top S-wave attenuation. ( " 11.. .. .. . .)

This line should only be included if OPT(2:2)='A', i.e.
if the user has specified a homogeneous halfspace for
the top BC.

(4b) - TOP REFLECTION COEFFICIENT

Syntax:
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NTHETA
THETA(1) RMAG(1) RPHASE(1)
THETA(2) RMAG(2) RPHASE(2)

THETA(NTHETA) RMAG(NTHETA) RPHASE(NTBETA)

Description:
NTHETA: Number of angles.
THETA : Angle.
RMAG(: Magnitude of reflection coefficient.
RPHASEO: Phase of reflection coefficient (degrees).

Example:
3
0.0 1.00 180.0
45.0 0.95 175.0
90.0 0.90 170.0

These lines should be contained in a separate '.TRC' file.
This file is only required if OPT(2:2)='F', i.e. if the
user has specified that the top BC is read from a '.TRC'
(Top Reflection Coefficient) file.

This option for tabulated reflection coefficients is
somewhat experimental at this time. I haven't worried about
the multivalued character of the phase function: choose
your reference and make sure the phase varies continuously.
A complicated reflection coefficient may well cause
problems for the mode-finder.

(4c) - TWERSKY SCATTER PARAMETERS

Syntax:
BUMDEN ETA XI

Description:
BUMDEN: Bump density (ridges/kn).
ETA: Principal radius 1 (n).
XI: Principal radius 2 (i).

This line should only be included when one of the
Twersky-scatter options is selected.
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(5) - MEDIUM INFO

Syntax:
NMESH SIGMA Z(NSSP)

Description:
NMESH: Number of mesh points to use initially.

The number of mesh points should be about 10

per vertical wavelength in acoustic media. In
elastic media, the number needed can vary quite

a bit; 20 per wavelength is a reasonable

starting point.

The maximum allowable number of mesh points is
given by 'MAXN' in the dimension statements.

At present 'MAXN' is 50000. The number of mesh
points used depends on the initial mesh and the

number of times it is refined (doubled). The

number of mesh doublings can vary from 1 to 5

depending on the parameter RMAX described
below.

SIGMA: RMS roughness at the interface.

Z(NSSP): Depth at bottom of medium (m).
This value is used to detect the last SSP point
when reading in the profile that follows.

(5a) - SOUND SPEED PROFILE

Syntax:
Z(i) cp(1) CS(1) RHO(i) AP(1) AS(1)

Z(2) CP(2) CS(2) RHO(2) AP(2) AS(2)

Z(NSSP) CP(NSSP) CS(NSSP) RHO(NSSP) AP(NSSP) AS(NSSP)

Description:
Z(): Depth (i).

The surface starts at the first depth point
specified. Thus if you have say, XBT data which
starts at 50 m below the surface, then you'll

need to put in some SSP point at 0 m. otherwise
the free-surface would be placed at 50 m giving

erroneous results.
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CPO: P-wave speed (m/s).
CSO: S-wave speed (m/s).
RHO(: Density (g/cm3).

Density variations within an acoustic medium
are at present ignored.

AP : P-wave attenuation (units as given in Block 2)
ASO: S-wave attenuation ( " " " " .

These lines should be omitted when the 'A' option is used
(indicating that an analytic profile is supplied by a user
written subroutine).

The '/' character signals that the remaining data on the
line is the same as in the previous line of SSP data. For
the very first line the default or 'previous' line is:

0.0 1500.0 0.0 1.0 0.0 0.0

This block should be repeated for each subsequent medium.

(6) - BOTTOM BOUNDARY CONDITION

Syntax:

BOTOPT SIGMA
Description:

BOTOPT: Type of bottom boundary condition.
'V' VACUUM below bottom.
'A' ACOUSTO-ELASTIC half-space.

Requires another line with the half-space
parameters. The format is the same as that
used for specifying the top halfspace BC.

'R' Perfectly RIGID.
'F' reflection coefficient from a FILE (available

in KRAKENC only). Requires a Bottom
Reflection Coefficient file with
extension '.BRC'. The format is the same as
that used for a Top Reflection coefficient.

'P' Precaculated internal reflection coefficient
from a FILE (available in KRAKENC only)

Option 'A' is generally used for ocean bottom
modeling.

SIGMA: Interfacial roughness m).
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(7) - PHASE SPEED LIMITS

Syntax:
CLOW CHIGH

Description:
CLOW: Lower phase speed limit (m/s).

CLOW will be computed automatically if you set
it to zero. However, by using a nonzero CLOW you
can skip the computation of slower modes. Mainly
this is used to exclude interfacial modes (e.g.
a Scholte wave). The root finder is especially
slow in converging to these interfacial
modes and when the source and receiver are
sufficiently are far from the interface the
interfacial modes are negligible.

CHIGH: Upper phase speed limit (m/s).
The larger CHIGH is, the more modes are
calculated and the longer the execution time.
Therefore CHIGH should be set as small as
possible to minimize execution time.

On the other hand, CHIGH controls the maximum
ray angle included in a subsequent field
calculation-- ray paths are included which turn
at the depth corresponding to CHIGH in the SSP.
Thus a larger CHIGH means more deeply
penetrating rays are included.

Choice of CHIGH then becomes a matter of
experience. In the far-field and at
high-frequencies, rays travelling in the ocean
bottom are severely attenuated and one may set
CEIGH to the sound speed at the ocean bottom. In
the near-field, low-frequency case, rays
refracted in the bottom may contribute
significantly to the field and CHIGH should be
chosen to include such ray paths.

KEAKEN will (if necessary) reduce CHIGH so that
only trapped (non-leaky) modes are computed.

KRAKENC will attempt to compute leaky modes if
CHIGH exceeds the phase velocity of either the
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S-wave or P-wave speed in the half-space. Leaky
mode computations are somewhat experimental at
this time.

(8) - MAXIMUM RANGE

Syntax:
RMAX

Description:
RMAX: Maximum range (km).

This parameter should be set to the largest
range for which a field calculation will be
desired.

During the mode calculation the mesh is doubled
successively until the eigenvalues are
sufficiently accurate at this range. If you set
it to zero, then no mesh doublings will be
performed. You don't need to worry too much
about this parameter-- even if you set it to
zero the results will usually be reasonable.

(9) - SOURCE/RECEIVER DEPTH INFO

Syntax:
NSD SD(1:NSD)
NRD RD(1:NRD)

Description:
NSD: The number of source depths.
SD): The source depths m).
NRD: The number of receiver depths.
RDC): The receiver depths (m).

This data is read in using list-directed I/O so you can
type it just about any way you want, e.g. on one line or
split onto several lines. Also if your depths are
equally spaced then you can type just the first and last
depths followed by a '/' and the intermediate depths
will be generated automatically.

CPU time is essentially independent of the number of
sources and receivers so that you can freely ask for up
to 4095 depths. However, for high-frequencies the
storage for the mode fi)3s can be excessive.
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The source/rcvr depths are sorted and merged and then the

modes are calculated at the union of the two sets

of depths. Thus, it doesn't matter if you mix up source
and receiver depths. Furthermore, you can leave out

either the source or receiver specification (but not

both simultaneously) simply by using a '/' for that

line.

Sources and receivers cannot be placed in a half-space.

SAMPLE PRINT OUT

The print-out for this deck is shown below

KRAKEN- FRAMIV Twersky S/S ice scatter
Frequency = 20.00 NMEDIA = 4

N2-LINEAR approximation to SSP
Attenuation units: dB/mkHz
TWERSKY SOFT BOSS surface scatter model

Twersky ice model parameters:
Bumden 0.920000E-02 Eta = 8.20 Xi = 5.10

Z ALPHAR BETAR RHO ALPHAI BETAI

( Number of pts = 750 RMS roughness = O.OOOE+O0 )
0.00 1436.00 0.00 1.03 0.0000 0.0000

30.00 1437.40 0.00 1.03 0.0000 0.0000
50.00 1437.70 0.00 1.03 0.0000 0.0000
80.00 1439.50 0.00 1.03 0.0000 0.0000
100.00 1441.90 0.00- 1.03 0.0000 0.0000

125.00 1444.60 0.00 1.03 0.0000 0.0000
150.00 1450.00 0.00 1.03 0.0000 0.0000
175.00 1456.10 0.00 1.03 0.0000 0.0000

200.00 1458.40 0.00 1.03 0.0000 0.0000
250.00 1460.00 0.00 1.03 0.0000 0.0000
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300.00 1460.50 0.00 1.03 0.0000 0.0000
350.00 1460.60 0.00 1.03 0.0000 0.0000

400.00 1461.00 0.00 1.03 0.0000 0.0000
450.00 1461.50 0.00 1.03 0.0000 0.0000

500.00 1462.00 0.00 1.03 0.0000 0.0000
600.00 1462.90 0.00 1.03 0.0000 0.0000

700.00 1463.90 0.00 1.03 0.0000 0.0000

800.00 1464.80 0.00 1.03 0.0000 0.0000
900.00 1465.80 0.00 1.03 0.0000 0.0000

1000.00 1466.70 0.00 1.03 0.0000 0.0000

1100.00 1467.00 0.00 1.03 0.0000 0.0000
1200.00 1469.00 0.00 1.03 0.0000 0.0000
1300.00 1469.50 0.00 1.03 0.0000 0.0000

1400.00 1471.80 0.00 1.03 0.0000 0.0000

1600.00 1474.50 0.00 1.03 0.0000 0.0000

1800.00 1477.00 0.00 1.03 0.0000 0.0000

2000.00 1479.60 0.00 1.03 0.0000 0.0000

2500.00 1487.90 0.00 1.03 0.0000 0.0000

3750.00 1510.40 0.00 1.03 0.0000 0.0000

( Number of pts = 35 RMS roughness = O.OOOE+00 )
3750.00 1504.60 0.00 1.50 0.1500 0.0000

3808.33 1603.07 0.00 1.50 0.1500 0.0000

( Number of pts = 35 RMS roughness = O.OOOE+00 )

3808.33 1603.07 0.00 1.53 0.1500 0.0000

3866.66 1701.53 0.00 1.53 0.1500 0.0000

( Number of pts = 35 RMS roughness = O.OOOE+00 )
3866.66 1701.53 0.00 1.57 0.1500 0.0000

3925.00 1800.00 0.00 1.57 0.1500 0.0000

ACOUSTO-ELASTIC half-space, C RS roughness = O.OOOE+00 )

3925.00 1800.00 0.00 1.60 0.1500 0.0000

CLOW = O.OOOOOE+00 CHIGH = 1504.0

RMAX = 300.0000000000000

Number of sources 1
100.0000

Number of receivers =

200.0000

Mesh multiplier CPU seconds
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1 16.4
2 15.1

I K ALPHA PHASE SPEED
1 0 .8625082052E-01 -0. 8519020992E-06 1456.956646
2 0. 8582849772E-01 -0. 130269565SE-06 1464.125663
3 0. 8562855085E-01 -0. 1059327457E-06 1467.544468
4 0 .8545402623E-01 -0. 1136748056E-06 1470.541667
5 0.8527187871E-01 -0.1192384459E-06 1473.682861
6 0.8510445198E-01 -0.1156165482E-06 1476.582050
7 0 .8495255965E-01 -0. 1130917467E-06 1479.222129
8 0. 8479984039E-01 -0. 11854S3302E-06 1481.886116
9 0. 8465149335E-01 -0. 1314814525E-06 1484.483039

10 0 .8450452348E-01 -0. 1255743704E-06 1487.064845
11 0. 8435857532E-01 -0. 1276318031E-06 1489.637606
12 0.8421637950E-01 -0.1377681231E-06 1492.152796
13 0.8407780307E-01 -0. 1377169389E-06 1494.612151
14 0.8393959060E-01 -0.1339925824E-06 1497.073136
15 0 .8380370528E-01 -0. 1378264389E-06 1499.500598
16 0.8367091002E-01 -0.1450063419E-06 1501.880476

If the progra~. aborts in some way, examine the print file which is produced.
Frequently an expected line has been omitted and the environmental file is therefore
misinterpreted.

The message "FAILURE TO CONVERGE IN SECANT" occurs when KRAKEN
requires more than 500 iterations to converge to a mode. Usually less than 20 iter-
ations are needed but convergence to interfacial mode's (Scholte or Stoneley waves)
can be exceptionally slow, especially at higher frequencies. The simplest solution is
to exclude interfacial modes by setting the lower phase-speed limit to the minimum
p-wave speed in the problem. Alternately, you can increase the value of MAXINIT
which controls the MAXimulm Number of ITerations in the root finder.
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4.3 Acoustic Field Calculations

4.3.1 FIELD.HLP

The FIELD program uses the modes calculated by KRAKEN and produces a shade
file which contains a sequence of snapshots of the acoustic field as a function of range
and depth. A snapshot is produced for every source depth specified by the user.

Files:

Name Unit Description
Input

*.FLP 5 FieLd Parameters
*.MOD 30-99 MODe files

Output
*.PRT 6 PRinT file
*.SHD 25 SHaDe file

EXAMPLE AND DESCRIPTION OF FLP FILE:

/I, ! TITLE
'RA' OPT 'X/R', 'C/A'
9999 ' M (number of modes to include)

1 0.0 ' NPROF RPROF(1:NPROF) (km)
501 200.0 220.0 / ' NR R(1:NR) (km)
1 500.0 / ' NSD SD(1:NSD) (i)
1 2500.0 / NRD RD(1:NRD) (i)
1 0.0 / ' NRR RR(1:NRR) Cm)

(1) - TITLE

Syntax:

TITLE
Description:

TITLE: Title to be written to the shade file.
If you type a /, the title is taken from the
first mode file.

(2) - OPTIONS

Syntax:
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OPTION
Description:

OPTION(i:1): Source type.

'R' point source
(cylindrical (R-Z) coordinates)

'X' line source
(cartesian (X-Z) coordinates)

OPTION(2:2): Selects coupled or adiabatic mode theory.

'C' Coupled mode theory.
'A' Adiabatic mode theory (default).

(3) - NUMBER OF MODES
Syntax:

M
Description:

M: Number of modes to use in the field computation.
If the number of modes specified exceeds the
number computed then the program uses all the
computed modes.

(4) - PROFILE RANGES

Syntax:
NPROF RPROF(:NPROF)

Description:
NPROF: The number of profiles, i.e. ranges where a new

set of modes is to be used.
RPROFO: Ranges (km) of each of these profiles.

For a range independent problem there is only
one profile and its range is arbitrary.
mode files must exist for each range of a
new profile and be assigned in sequence to
units 30,31,... The modes for the last SSP
profile are extended in a range-independent
fashion to infinity so that RMAX can exceed
RPROF(NPROF).

(6) - SOURCE/RECEIVER LOCATIONS

Syntax:
NR R(1:NR)
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NSD SD(1:NSD)

NRD RD(1:NRD)
NRR RR(1:NRR)

Description:
NR: Number of receiver ranges.

(NR<4094 and NR*NRD <= 210000)
RO: The receiver ranges (km)
NSD: The number of source depths. (<51)
SD(): The source depths (m).
NRD: The number of receiver depths.

(<201 and NR*NRD < 210000)
RDO: The receiver depths m).
NRR: The number of receiver range-displacements.

Must equal NRD. (YES, IT IS REDUNDANT)
RRO: The receiver displacements Cm).

This vector should be all zeros for a perfectly
vertical array.

The field is computed by stepping through the
ranges, R(1:NR), and adding in the range
displacements, RR() before computing the field
on the array. Nonzero values are used to tilt or
distort the receiving array, thereby simulating the
distortion which occurs on an array deployed in
the ocean.

The format of the source/rcvr info is an integer
indicating the number of sources (receivers) followed by
real numbers indicating the depth (range) of each
receiver. Since this data is read in using list-directed
I/O you can type it just about any way you want, e.g. on
one line or split onto several lines. Also if your depths
are equally spaced then you can type just the first and
last depths followed by a '/' and the intermediate depths
will be generated automatically.
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4.3.2 FIELD3D.HLP

The FIELD3D program uses the modes calculated by KRAKEN and produces a shade
file which contains a sequence of 2-D slices of the acoustic field. It is commonly used
to compute a field in plan view, i.e. as a function of horizontal coordinates (x,y).
It can also be used to compute the field on a vertical slice along any fixed bearing
through the 3-D environment.

FIELD3D uses a tiling of the ocean environment based on triangles. The ter-
minology is taken from finite-elements. To define the triangles you must do the
following:

(1) Lay out a grid of points (nodes) where you will construct environmental files
for KRAKEN and solve for the modes. A coarse rule-of-thumb is to pick points every
10 km but obviously a coarser spacing can be used in sites with less environmental
change.

(2) Assign a number to each of the nodes.
(3) Form a triangulation of the nodes. That is, connect the nodes with lines such

that the grid is divided into a number of triangles. This should be done with an eye
towards keeping the area of the individual triangles uniform. All nodes should be a
corner of at least one triangle. Each triangle is referred to as an element.

There are algorithms for performing this step automatically and if you write one
I would be glad to receive it. If instead you do this by hand you will rapidly discover
the merits of using a regular grid.

(4) Assign a number to each of the elements.
You now have the information required by FIELD3D to describe your triangu-

lation. In the input file you first tell FIELD3D the coordinates of each node and
the name of the file containing the modes at each node. You then tell FIELD3D
how you connected the nodes to form a triangulation. This is done by specifying
the node numbers which define the corners of each successive element (triangle).

Files:

Name Unit Description
Input

*.FLP 5 FieLd Parameters
*.MOD 30-99 MODe files

Output
*.PRT 6 PRinT file
*.SHD 25 SHaDe file

EXAMPLE AND DESCRIPTION OF FLP FILE:

'MUNK3D' ! TITLE
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'STDFM' ' OPT
9999 M (number of modes)
0.001 0.001 IS YS (source position) (km)
1 1000.0 NSD SD(1:NSD) (i)
1 800.0 ! NRD RD(I:NRD) (W)
0.0 100.0 501 RMIN RIUX NR (km)
19 0.0 360.0 / ' NTHETA THETA(1:NTHETA) (degrees)
5 Number of SSP's (NSSP)
100.0 0.0 'SCR:MUNKTO' ' (x, y) i=1, NSSP (km)
0.0 100.0 'SCR:MUNKT90'

-100.0 0.0 'SCR:NUNKTO'
0.0 -100.0 'SCR:MUNKT270'
0.0 0.0 'SCR:MUNKTO'

4 NELTS
5 1 2 Nodes of corners
5 2 3
5 3 4
5 4 1
4.0 360.0 90 ALPEA1 ALPHA2 NALPHA
500.0 160 ! STEP NSTEPS
0.3 EPNULT

(1) - OPTIONS

Syntax:
OPT

Description:
OPT(3:3): Type of caculation.

'STD' (Standard) for an Nx2D run.
'GBT' (Gaussian beam trace) for a 3D run.
'PDQ' For a fast preview run.
The 'STD' option neglects horizontal
refraction but runs a lot faster.
Avoid using the 'GBT' option:
it requires some care to use
properly. Option 'PDQ' runs about 3x as fast
as 'STD' but is less accurate.

OPT(4:4): TESCHECK (tesselation check) flag.
'T' Perform the tesselation check.
'F' omit the tesselation check.
For all but the simplest setups the user will
INVARIABLY make an error in setting up the
triangulation. The first step to avoid this
is to run PLOTTRI to get a plot of the
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triangulation. Even after that one should
invoke this 'TESCHECK' option however for
large problems some time can be saved by
turning off this feature after the
triangulation has been checked once.

OPT(5:5): Type of beams.
There are several types of Gaussian beams
available. I suggest using 'M'. This option
is ignored unless the Gaussian beam
calculation has been selected.

OPT(6:6): Ray file flag.
Use 'R' to have a file of ray path
trajectories (in the horizontal plane) written
to disk for subsequent plotting using the
PLOTRAYXY program. These rays show the
horizontal refraction of individual modes.
This option is ignored if you select a 'STD'
or 'PDQ' run for then the ray paths are just
straight lines.

(2) - NUMBER OF MODES

Syntax:
M

Description:
M: Number of modes to use in the field computation.

If the number of modes specified exceeds the
number ccmputed then the program uses all the
computed modes.

(3) - SOURCE COORDINATES

Syntax:
ZS YS

Description:
XS: X-coordinate of source (km).
YS: Y-coordinate of source (km).

(4) - SOURCE/RECEIVER DEPTHS

Syntax:
NSD SD(1:NSD)
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NRD RD(1:NRD)
Description:

NSD: The number of source depths. (<3)
SD(): The source depths (i).
NRD: The number of receiver depths.

(<51 and NR*NRD < 54000)
Multiple receiver depths and multiple
azimuthal radials are exclusive. If the number of

receiver depths is greater than one then
the program will overide your specification of
multiple radials.

RDO: The receiver depths (W).

(5) - RECEIVER RANGES

Syntax:

RMIN RMAX NR
Description:

RMIN: First receiver range (km). MUST BE ZERO!
RMAX: Last receiver range (km).

NR: Number of receiver ranges.
(NR<4094 and NR*NRD <= 210000)

(6) - RADIALS

Syntax:
NTHETA THETA(I:NTHETA)

Description:
NTHETA: Number of radials. (<101)
THETA(): Angles for each radial (degrees).

For full circle (or disc) coverage our plotting prograr

likes to have a repeated radial, say 0 and 360 degrees.

(7) - NODES

Syntax:
NNODES
X(1) YC1) FILNAM(1)
X(2) Y(2) FILNAM(2)
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X(NNODES) Y(NNODES) FILNAM(NNODES)

Description:
NNODES: Number of nodes. (<1000).
X): X-coordinate of node (km).
Y): Y-coordinate of node (km).

FILNAMO: Name of the mode file for that node.
Use the name 'DUMMY' to produce an acoustic

absorber.

(8) - ELEMENTS

Syntax:
NELTS
NODEI(1) NODE2(1) NODE3(1)

NODE1(2) NODE2(2) NODE3(2)

NODE1(NELTS) NODE2CNELTS) NODE3(NELTS)
Description:

NELTS: Number of elements. (<1500)
NODE1(: Number of node at first corner of the triangle.
N O D E 2 () : of to " s e c o n d .. . . .

N ODE 3 ) : " o #I " th ird it . .. ..

In this fashion we define a tiling of triangular
elements. The ordering of the elements is arbitrary.

(9) - GAUSSIAN BEAM INFO

Syntax:
ALPHA1 ALPHA2 NALPHA
STEP NSTEPS
EPMULT

Description:
ALPHA1: First angle for beam fan (degrees).

ALPHA2: Last .. .. .. .. ..

NALPHA: Number of beams in fan.
STEP: Step size (W).
NSTEPS: Number of steps.
EPMULT: Epsilon multipler for beam initial conditions.

This Gaussian beam info can be omitted if the 'STD' option



98 CHAPTER 4. RUNNIVG THE PROGRAM

in block (1) is used.

To get a rough idea of run time, consider a 50 Hz deep water problem
with 60 modes (waterborne modes only) and for 37 radials with 501

range points per radial. On a 1 megaflop workstation, this required
about 3 minutes with option 'STD' and 6 hours when including horizontal

retraction via option 'GBT'.

Run time is roughly proportional to M * NTHETA * NR.

Dimensional constraints:
Number of modes at a single node <= 1500
Number of distinct sets of modes <= 250
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4.4 Plotting routines

4.4.1 PLOTFIELD.HLP

PLOTFIELD produces either rectangular or polar plots of shade files. The former
are used for range-depth plots of transmission loss (slices in a verLical plane) and
the latter for range-range plots of transmission loss (slices of in a horizontal plane).

Files:

Name Unit Description

Input
*.PLP 1 PLot Parameters

Output
*.SHD 11-99 SHaDe file

EXAMPLE AND DESCRIPTION OF PLP FILE:

'RD' I'S' SCALE, 'L' OR 'D' LINEAR OR DB

'CA' I POLAR OR CARTESIAN ('PC', 'CA')

'VUGC' I DEVICE ('PRX', 'TEK', 'TEK', 'T41')

0 I Segment number (0 for none)

0.0 SMOOTHING WINDOW (m)
1 NPLOTS
'SCR:DEEPB' 100.0 SOURCE DEPTH
0.0 50.0 0.0 5000.0 RMINPL RMAXPL (km) ZMIN ZMAX (W)
66.0 102.0 4.0 TLmin TLmax (dB)

(1) - SCALING

Syntax:

OPT

Description:

OPT(1:1): Source type.
'R' No scaling applied.

'S' Field multiplied by sqrt(r).

OPT(2:2): Linear or dB

'L' Linear scale (useful for pulse plots).

'D' dB scale (for most other plots).

(2) - COORDINATE SYSTEM:
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Syntax:
COORD

Description:
COORD1(:2): Source type.

'CA' Cartesian.
'PO' Polar.

COORD(3:3): Grid plotting.
'G' Grid.
I ' No grid.

(3) - OUTPUT DEVICE:

Syntax:
DEVICE

Description:
DEVICE(1:3): Device type.

'VUG' Vugraph machine.
'TEK Tektronix 4691 hardcopy device.
'THE' Tektronix 4693 hardcopy device.
'VUG' Tektronix VUGRAPH hardcopy device.
'T41' Tektronix 41xx terminal.
'VTT' DEC VT340 terminal.
'MGP' VAistation 2000.
'Xl' X-windows device.
'PSP' PostScript printer.

DEVICE(4:4): Color or black and white
'C' Color
'B' Black and white

DEVICE(5:5): Smooth (linear interp.) or blocky shading.
'S' Smooth.
'B' Blocky.

DEVICE(6:6): Final copy.
'F' Final
P ' Standard labels
This option labels the plots (a), (b), (c)
and strips out certain other information to
ma.ke the plot suitable for a final report.

(4) - SEGMENT NUMBER:

Syntax:
SEGNUM

Description:
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SEGNUF: If you specify a nonzero segment number, then
the file will be added into the default segment
file. (See UNIRAS documentation for info on
segment files).

(5) - SMOOTHING WINDOW

Syntax:
DR3DB

Description:
DR3DB: Three dB smoothing window (m). The trammission

loss is computed then smoothed in range using a
Gaussian filter. DR3DB gives the range interval
over which the smoothing is performed.

(6) - NUMBER OF PLOTS

Syntax:
NPLOTS

Description:
NPLOTS: You can do 1,2 or 3 plots per page as indicated

by NPLOTS.

(7) - PLOT DATA:

Syntax:
FILNAM SD
RMIN RMAX RINC RAIL
ZMIN ZMAX ZINC ZAIL
TLMIN TLMAX TLINC

Description:
FILNAK: Name of the shade file.

The file name is provided without the
extension which is assumed to be '.SHD'

SD: Source depth.
RMIN: Minimum range (km).
RMAX: Maximum range (km).
RINC: Range interval for tick marks (m/s).
RAIL: Range axis length (cm).

ZMIN: Minimum depth (m).
ZMAX: Maximum depth (m).
ZINC: Depth interval for tick marks (m/s).
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KRAKEN- FRAMIV Twersky S/S ice scatter
FREQ= 20. Sd= 25. -7A1OVE 95

9'-95

Oak. 93-94
Aw 92-93

7509 9-9

9-90

20 503100

Range (kin)

Figure 4.3: Sample output of PLOTFIELD: transmission loss for the Arctic problem.

ZAXL: Depth axis length (cm).

TLMIN: Minimum transmission loss (0B).
TLMAX: Maximum transmission loss (0E).
TLINC: Increment in transmission loss (d0).

This information should be repeated for ISRC =1, NSRCS

For a polar plot the form is:

Syntax:
FILNAM SD
XMIN XMAX XINC ZAIL
YMIN YMAX YINC YAXL
TLMIN TLMAX TLINC

where XMI17, XMAX, YMIN, YMAX, specify the x and y limits of
the plot in kilometers.
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4.4.2 PLOTGRN.HLP

PLOTGRPN uses the modes to produces plots of the amplitude of the Green's func-
tion corresponding to a particular source/receiver combination. The Green's func-
tion is plotted as a function of slowness (k).

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters
*.MOD 30 MODe file

Output
*.PRT 6 PRinT file

EXAMPLE AND DESCRIPTION OF PLP FILE:

25.0 25.0 ' SD RD (m)
1400.0 1500.0 2000 ' CMIN CMAX NKPTS
2.5E-6 ATTEN (Stabilizing attenuation)
10.0 8.0 XAIXL YAXL

(1) - SOURCE/RECEIVER DEPTHS

Syntax:
SD RD

Description:
SD: Source depth (m).
RD: Receiver depth (m).

(2) - PHASE SPEED LIMITS

Syntax:
CLOW CHIGH NKPTS

Description:
CLOW: Lower phase speed limit (m/s).
CHIGH: Upper phase speed limit (m/s).
NKPTS: Number of points in k-space for evaluating

the kernel.
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240,KRAKEN- FRAMIV
F= 20 HZ
SD = 25 m
RD = 25

-o 1800-

2

< 1200-

U

a 600

0.083 0.084 0.085 0.086 0.087 0.085 0.089 0.09C

K

Figure 4.4: Sample output of PLOTGRN: the Green's function for the Arctic prob-
lem.

(3) - STABILIZING ATTENUATION

Syntax:

ALPHA

Description:

ALPHA: Stabilizing attenuation (1/m).

Since G(k) has singularities on the real k-axis. it is

evaluated on a slice displaced into the comolex plane a

distance i ALPHA.

(4) - AXIS LENGTHS

Syntax:

XAXL YAXL

Description:
XAXL: X-axis length (cm).

YAXL: Y-axis length (cm).
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4.4.3 PLOTMODE.HLP

PLOTMODE produces plots of specified modes using a solid line for the real part
and and dashed line for the imaginary part. It requires the usual KRAKEN output
files containing the modes and an additional file containing a list of which modes to
plot terminated by a zero. The number of points used to plot a mode is determined
by the number of source/receiver points you used in the original KRAKEN run.

Before plotting each mode the maximum absolute value of the (complex) eigen-
function is calculated, that is,

T = max ( abs( Z(z) )
where Z(z) denotes the eigenfunction and the maximum is calculated over the

depth points in the plot window. The eigenfunctions are then scaled by this factor
and plotted along with the value of T. As a result, purely real eigenfunctions will
peak at 1 on the plot; complex eigenfunctions may have a peak in their real or
imaginary parts which is less than 1.

Files:

Name Unit Description
Input

*.PLP 5 PLot Parameters
*.MOD 30 MODe file

Output
*.PRT 6 PRinT file

EXAMPLE AND DESCRIPTION OF PLP FILE:

0.0 5000.0 1000.0 15.0 ZMIN ZMAX ZINC ZAXL

1
2
3
4
0

(1) - COMPONENT

Syntax:
COMP

Description:
COMP: Selects which component of a mode is plotted.

'V' Vertical displacement
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Mode I Mode 2 Mode 3 Mode 4

. i 0.0769 mc. - 0.0506 Ma. - 0.0"47 I=. - 0.0426

01O 01 01

001 1000 100011010OlOO100 1000.

2000 20001 2000- 2000

3000 3000 3000 3000j

4000 4000 4000 4000
- 0 1 - 0 - o -1 0

Figure 4.5: Sample output of PLOTMODE: selected modes for the Arctic problem.

'H' Horizontal displacement
'T' Tangential stress
'N' Normal stress
'P' Pressure (gives same result as 'N')

(2) - DEPTH AXIS INFO

Syntax:
ZMIN ZMAX ZINC ZAXL

Description:
ZMIN: Z minimu. (i).

ZMAX: Z maximum (m).
ZINC: Z interval for tick marks (m).

ZAXL: Z axis length (cw).
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4.4.4 PLOTSLICE.HLP

PLOTSLICE produces plots of coherent transmission loss versus range by extracting
a particular slice from a shade file which is produced by any of several propagation
models including FSTFLD, KRAKEN, SCOOTER and IFD. An additional input file
'.PLP' contains plot parameters.

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters

Output
*.PRT 6 PRinT file

*.SHD 11-99 SHaDe file

EXAMPLE AND DESCRIPTION OF PLP FILE:

OR) OPT 'R/S' (scaling), 'L/D' (linear/dB)
3 NCURVES
500.0 2500.0 ! SD RD (i)

200.0 220.0 / ' RMIN RMAX RINC (km) RAXL (cm)

70.0 110.0 / ' TLMIN TLMAX TLINC (dB) TLAXL (cm)

0.0 DR3DB (i) (smoothing window)

(1) - SCALING

Syntax:
OPTION

Description:
OPTION(1:1): Source type.

'R' No scaling applied.
'S' Field multiplied by sqrt(r).

OPTION(2:2): Linear or dB.
'L' for linear scaling

(useful for pulse plots).

'D' for plots in dB
(for most other plots).

(2) - NUMBER OF CURVES
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Syntax:
NCURVES

Description:
NCURVES: Number of curves to plot.

For each curve a shade file name should be

passed in the parameter list.

(3) - SOURCE/RECEIVER DEPTHS

Syntax:
SD RD

Description:

SD: Source depth (m).
RD: Receiver depth (m).

(4) - RANGE AXIS INFO

Syntax:
RMIN RMAX RINC RAIL

Description:
RMIN: Range minimum (m/s).

RMAX: Range maximum (m/s).

RINC: Range interval for tick marks (m/s).
RAIL: Range axis length (cm).

(5) - TRANSMISSION LOSS AXIS INFO

Syntax:
TLMIN TLMAX TLINC TLAXL

Description:
NCURVES: Number of curves.
TLMIN: TL minimu. (dB).
TLMAX: TL maximum (dB).
TLINC: TL interval for tick marks (dB).
TLAIL: TL axis length (cm).

(6) - SMOOTHING:

Syntax:

SIGMA
Description:
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SIGMA: Smoothing window (m).
A gaussian filter is applied with this
window size.
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4.4.5 PLOTSSP.HLP

PLOTSSP produces plots of the sound speed profile. It requires as input an environ-
mental file of exactly the same form used by KRAKEN. It ouputs a print file echoing
the input data. The number of points used in plotting the sound speed profile is 200
per mediun.

Files:

Name Unit Description
Input

*.ENV 1 ENVironmental data
*.PLP 3 PLot Parameters

Output
*.PRT 6 PRinT file

EXAMPLE AND DESCRIPTION OF PLP FILE:

1425.0 1525.0 25.0 10.0 ' CHIN CMIX CINC (m/s) CAlL (cm)
0.0 4000.0 1000.0 10.0 ' ZMIN ZMAX ZINC (m) ZAIL (cm)

(1) - SOUND SPEED AXIS INFO

Syntax:

CHIN CMIX CINC CAXL
Description:

CMIN: Sound speed minimum (m/s).
CMAX: Sound speed maximum (m/s).
CINC: Sound speed interval for tick marks (m/s).
CAXL: Sound speed axis length (cm),

(2) - DEPTH AXIS INFO

Syntax:
ZMIN ZMAX ZINC ZAXL

Description:
ZMIN: Depth minimum (m).

ZMAX: Depth maximum (m).
ZINC: Depth interval for tick marks (m).
ZAXL: Depth axis length (cm).
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0-PLOTSSP- FRAMiv

2000-

3000-

1000 1425 145- 1475 .5 '5
So'un: Soeec :r-/s'

Figure 4.6: Sample output of PLOTSSP: the sound speed profile for the Arctic
problem.
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4.4.6 PLOTTLD.HLP

PLOTTLD produces plots of coherent transmission loss versus depth. The user
must provide a mode file as computed by KRAKEN.

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters
*.MOD 30 MODe file

Output
*.PRT 6 PRinT file

EXAMPLE AND DESCRIPTION OF PLP FILE:

)R0 'OPT (X or R for cart or cyl coords)

999 M (number of modes to include)

25.0 ' SD Cm)
50.0 ' Receiver range (km)

501 0.0 3750.0 / ! NRCVRS RD(I:NRCVRS) Cm)
0.0 4000.0 1000.0 10.0 ' ZMIN ZMAX ZINC (i) ZAXL (cm)

70.0 110.0 10.0 10.0 TLMIN TLMAX TLINC (dB) TLAXL (cm)

(1) - OPTIONS

Syntax:
OPTION

Description:
OPTION(1:1): Source type.

'R' for a point source
(cylindrical or R-Z coordinates).
'X' for a line source
(cartesian or X-Z coordinates)

OPTION(2:2): Dummy variable for consistency with PLOTTLR.

OPTION(3:3): Component.
s (null) for pressure.
'H' for Horizontal displacement.
'V' for Vertical displacement.

'T' for Tangential stress.
'N' for Normal stress.
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(2) NUMBER OF MODES

Syntax:
M

Description:
M: Number of modes to use in the field calculation.

If this number is larger than the actual number of

modes in the mode file it is reduced according]y.

(3) - SOURCE/RECEIVER LOCATIONS

Syntax:
SD
RR
NRD RD(I:NRD)

Description:
SD: Source depth (m).
R1: Receiver range (km).
NRD: Number of receivers.
ROO: Receiver depths (m).

The format of the source/rcvr depth info is an
integer indicating the number of receivers
followed by real numbers indicating the range
of each receiver. Since this data is read in
using list-directed I/O you can type it just

about any way you want, e.g. on one line or
split onto several lines. Also if your depths

are equally spaced that you can type just the
firzt and last depths followed by a 'I' and the
intermediate depths will be generated
automatically.

(6) - Z AXIS INFO

Syntax:
ZMIN ZMAX ZINC ZAIL

Description:
ZMIN: Z minimum (m).
ZMAX: Z maximum (m).

ZINC: Z interval for tick marks (m).
ZAXL: Z axis length (cm).
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Figure 4.7: Sample output of PLOTTLD: transmission loss vs. depth for the Arctic
problem.

(7) - TRANSMISSION LOSS AXIS INFO

Synt ax:
TLMIN TLMAX TLINC TLAXL

Description:
TLMIN: TL minimu (B).
TLMAX: TL maximum (dB).
TLINC: TL interval for tick~ marks (dB).
TLAZL: TL axis length (cm).

If you set TLM7NTLMAX then the curve is autoscaled.
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4.4.7 PLOTTLR.HLP

PLOTTLR sums the modes to produces plots of coherent transmission loss versus
range.

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters
*.MOD 30-99 MODe files

Output
*.PRT 6 PRinT file

EXAMPLE AND DESCRIPTION OF PLP FILE:

'RAN' ! OPT (cart, cylin or scaled coords)
999 ' M (number of modes to include)
1, 0.0 ' NPROF RPROF(1:NPROF) (km)
25.0 25.0 ' SD RD Cm)
0.0 100.0 501 10.0 10.0 I RMIN RMAX NR RINC (km) RAXL (cm)
70.0 110.0 10.0 6.0 TLMIN TLMAX TLINC (dB) TLAXL (cm)
0.0 ' 3dB smoothing window Cm)

(1) - OPTIONS

Syntax:
OPTION

Description:
OPTIOK(1:1): Source type.

'R' point source.
(cylindrical or R-Z coordinates)

'IX' line source.
(cartesian or X-Z coordinates)

OPTION(2:2): Selects coupled mode or adiabatic mode theory
'C' for Coupled mode theory.

'A' for Adiabatic mode theory (default).
OPTION(3:3): Component

10 (null) for pressure.
'H' for Horizontal displacement.
'V' for Vertical displacement.
'T' for Tangential stress.
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'N' for Normal stress.

(2) - NUMBER OF MODES

Syntax:

Description:
M: Number of modes to use in the field comDutation.

If this ILumber is larger than the actual number of
modes in the mode file it is reduced accordingly.

(3) - PROFILE RANGES

Syntax:
NPROF RPROF(1:NPROF)

Description:
NPROF: The number of profiles, i.e. ranges where a new

set of modes is to be used.
RPROF(: Ranges (km) of each of these profiles.

For a range independent problem there is only
one profile and its range is arbitrary. Mode
files must exist for each range of a new
profile and be assigned in sequence to units
30,31,... The modes for the last SSP profile
are extended in a range-independent fashion to
infinity so that RMAX can exceed RPROF(NPROF).

(4) SOURCE/RECEIVER DEPTHS

Syntax:
SD RD

Description:

SD: Source depth (m).
RD: Receiver depth (m).

(5) - RECEIVER RANGES/AXIS INFO

Syntax:
RMIN RMAX NR RINC RAXL

Description:

RMII: First receiver range (kmn).
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RD: Last receiver range (kin).
NR: Number of receiver ranges.
RINC: Range interval for tick marks (km).
RAIL: Range axis length (cm).

(6) - TRANSMISSION LOSS AXIS INFO

Syntax:
TLMIN TLMAX TLINC TLAXL

Description:
TLMIN: TL minimum (dB).
TLMAX: TL maximum (dB).
TLINC: TL interval for tick marks (dB).
TLAXL: TL axis length (cm).

If you set TLMIN=TLMAX then the curve is autoscaled.

(7) - SMOOTHING WINDOW

Syntax:
DR3DB

Description:
DR3DB: Three dB smoothing window (m).

The tranmission loss is computed then smoothed in

range using a Gaussian filter. DR3DB gives the
range interval over which the smoothing is
performed.



120 CHAPTER 4. RUNNINVG THE PROGRAM

70 KRAKEN- FRAMIV
=20 HZ1

S:) = 25M
RD = 25m

80-

-D

U)
V)
0

100-

0 20 4, 60 8, 100

Ronce (Kr-"

Figure 4.8: Sample output of PLOTTLR: transmission loss vs. range for the Arctic
problem.
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4.4.8 PLOTTRI.HLP

PLOTTRI takes an input file '.FLP' in the same format that FIELD3D uses. and
produces a plot showing the layout of triangular patches which the user has specified.

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters
*.FLP 20 FieLd Parameters

Output
*.PRT 6 PRinT file

EXAMPLE AND DESCRIPTION OF PLP FILE:

-200.0 100.0 0.0 10.0 / X XMIN XMAX XINC (km) XAXL (cm)
-100.0 200.0 0.0 10.0 / YMIN YMAX YINC (km) YAXL (cm)

(1) - X-AXIS INFO

Syntax:
XMIN XMAX XINC XAXL

Description:
YMIN: The minimum Y-value (kin).
YMIN: The maximum Y-value (km).
YINC: Y-interval for tick marks (km).
YAXL: Y-axis length (cm).

(2) - Y-AXIS INFO

Syntax:
TMIN YMAX YINC YAIL

Description:
TMIN: The minimum Y-value (kin).
TMIN: The maximum Y-value (km).
YINC: Y-interval for tick marks (km).
YAXL: Y-axis length (cm).
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Figure 4.9: Sample output of PLOTTRI: triangulation used for a 3D Mediterranean
scenario.
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4.5 The BELLHOP ray/beam model

It is often useful to be able to plot the rays for a given environment for illustrative
purposes. Also for high-frequency problems the ray model provides results more
rapidly. The reslts are almost inevitably less accurate than KRAKEN or SCOOTER
calculations but sometimes the inaccuracy is negligible.

BELLHOP is not particularly efficient as far as ray models are concerned. nor
is it very general. With regard to efficiency the model actually is set up internally
to do a full range-dependent ray trace while it allows only for a range-independent
input structure.

BELLHOP differs from standard ray models in using a robust variant of Gaussian
beam tracing referred to as geometric beam tracing. For those familiar with tradi-
tional implementations of ray tracing, the results are often astonishingly accurate.

4.5.1 BELLHOP.HLP

BELLHOP computes acoustic fields in oceanic environments via Gaussian beam trac-
ing. The environment treated consists of an acoustic medium with a sound speed
which may depend on range and depth. A theoretical description may be found in:

Michael B. Porter and Homer P. Bucker, "Gaussian beam tracing for computing
ocean acoustic fields," J. Acoust. Soc. Amer. 82, 1349-1359 (1987).

The following programs are used with BELLHOP:
BELLHOP Main program for doing Gaussian beam tracing
PLOTRAY Produces plots of central rays of beams
ANGLES Given the source and recvr sound speeds, computes the angle of the

limiting ray.
PLOTSSP Plots the sound speed profile
BELLHOP produces pressure fields in the NRL standard format. These fields

can then be plotted using the following routines:
PLOTSLICE Plots a transmission loss versus range curve.
PLOTFIELD Plots a full TL field versus range and depth.

The steps in running the program are as follows:

1. Set up your environmental file and run PLOTSSP to make sure

the SSP looks reasonable.

2. Do a ray trace. That is,

A. Run BELLHOP with the ray trace option to calculate about 50

rays.

B. Run PLOTRAY to make sure you have the angular coverage you

expect. Do the rays behave irregularly? If so reduce the

step-size and try again.
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3. Re-run BELLHOP using the coherent, incoherent or semicoherent

option for transmission loss. (Use the default number

of beams.)

4. Run either PLOTSLICE to plot a single transmission

loss curve or PLOTFIELD to plot a full range-depth field plot.

5. Double the number of beams and check convergence.

Files:

Name Unit Description
Input

*.ENV 1 ENVironmental data

Output
*.PRT 6 PRinT file
*.RAY 21 RAY file
*.SHD 25 SHaDe file

EXAMPLE AND DESCRIPTION OF ENV FILE:

'Munk profile' ' TITLE
50.0 FREQ (Hz)
1 NMEDIA
'SVN' SSPOPT (Analytic or C-linear interpolation)
51 0.0 5000.0 ' DEPTH of bottom (m)

0.0 1548.52 /

200.0 1530.29 /
250.0 1526.69 /
400.0 1517.78 /
600.0 1509.49 /
800.0 1504.30 I
1000.0 1501.38 /
1200.0 1500.14 /
1400.0 1500.12 /
1600.0 1501.02 I
1800.0 1502.57 /
2000.0 1504.62 /
2200.0 1507.02 /
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2400.0 1509.69 /
2600.0 1512.55 /
2800.0 1515.56 /
3000.0 1518.67 /
3200.0 1521.85 /
3400.0 1525.10 /
3600.0 1528.38 /
3800.0 1531.70 /
4000.0 1535.04 /
4200.0 1538.39 /
4400.0 1541.76 /
4600.0 1545.14 /
4800.0 1548.52 /
5000.0 1551.91 /
'V, 0.0
1 1000.0 / NSD SD(1:NSD) m)
2 0.0 5000.0 / NRD RD(1:NRD) (W)
501 0.0 100.0 / ' NRR RR(1:NR ) (km)
'R O Run-type: 'R/C/I/S'
51 -11.0 11.0 / NBEAMS ALPHA(I:NBEAMS) (degrees)

200.0 5500.0 101.0 STEP (i) ZBOX m) RBOX (km)

DESCRIPTION OF INPUTS:

(1) - TITLE

Syntax: TITLE

Description:
TITLE: Title of run enclosed in sinqle quotes

(2) FREQUENCY

Syntax: FREQ

Description:

FREQ: Frequency in Hz

(3) - NUMBEF OF MEDIA

Syntax: NMEDIA (<20)
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Description:
Dummy parameter for compatibility with KRAKEN.

(4) - OPTIONS

Syntax: OPTION

Description:
OPTION(1:1): Type of interpolation to be used for the SSP

'S' for cubic Spline (recommended)
'C' for C-linear
'N' for N2-linear
'A' for Analytic. The user must modify the

analytic formulas in ANALYT.FOR and re-link.

Use PLOTSSP to check that
the SSP looks the way you thought it should.
Apart from potential typos, this will also
show up fit-problems which might occur with
the spline option. Splines yield a
poor fit to certain kinds of curves, e.g.
curves with sharp bends.

OPTION(2:2): Type of top boundary condition
'V' VACUUM above top
'R' Perfectly RIGID

For open ocean problems option 'V' should be
used for the surface BC.

OPTION(3:3): Volume attenuation option
'T' Thorp attenuation formula.
'N' No volume attenuation.

(5) - SOUND SPEED PROFILE

Syntax:
NMESH SIGMA Z(NSSP)
Z(1) CP(1) /
Z(2) CP(2) /

Z(NSSP) CP(NSSP) I
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Description:

NMESE: Dummy parameter for KRAKEN compatibility

SIGMA: Dummy parameter for KRAKEN compatibility
Z(NSSP): Depth at bottom of medium (i).

This value is used to detect the last

SSP point when reading in the
profile which follows.

The following should be omitted when the 'A' option

is used (indicating that an analytic profile is
supplied by a user written subroutine).

Z0: Depth (m). Note that the surface starts at the first

depth point specified. Thus if you have say, XBT
data which starts at 50 m below the surface, then
you'll need to put in some SSP point at 0 m,
otherwise the free-surface would be placed at 50 m
giving erroneous results. Try to keep the number of
depth points to the minimum necessary to describe the

physics: a fine SSP sampling can force a fine step-size
for integrating the rays.

CPO: P-wave speed (m/s) (Must be followed by a '/'
for compatibility with the KRAKEN program.)

(6) - OPTIONS

Syntax: OPTION SIGMA

Description:
OPTION(1:1): Type of bottom boundary condition

'V' VACUUM, below bottom
'R' Perfectly RIGID

SIGMA: Bottom roughness (currently ignored)

(7) - SOURCE/RLECEIVER DEPTHS AND RANGES

Syntax:
NSD SD(1:NSD)
NRD RD(1:NRD)

NR R(I:NR )

Description:
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NSD: The number of source depths (<51)
SDO: The source depths (W)
N.D: The number of receiver depths (<101 and NR*NRD <= 52000)
RDO: The receiver depths m)
NR: The number of receiver ranges

(NR < 1001 and NR*NRD <= 50000)
RO: The receiver ranges (km)

This data is read in using list-directed I/O you can type it
just about any way you want, e.g. on one line or split onto
several lines. Also if the depths or ranges are equally spaced
then you can type just the first and last depths followed by a
'/' and the intermediate depths will be generated automatically.

(8) - RUN TYPE

Syntax:
OPTION

Description:
OPTION: 'R' generates a ray file

'C' for Coherent TL calculation
'I' for Incoherent TL calculation
'S' for Semicoherent TL calculation

(Lloyd mirror source pattern)

(9) - BEAM FAN

Syntax:
NBEAMS ALPHA(1:NBEAMS)

Description:
NBEAMS: Number of beams (use 0 to have the Program

calculate a value automaticaily.
ALPHAO: Beam angles (negative angles toward surface)

For a ray trace you can type in a sequence of angles
or you can type the first and last angles followed by a
'/'. For a TL calculation, the rays must be equally spaced
otherwise the results will be incorrect.

(10) - NUMERICAL INTEGRATOR INFO
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Syntax:
STEP ZBOX RBDX

Description:
STEP: The step size used for tracing the rays m).
ZBOX: The maximum depth to trace a ray (m).
RBOX: The maximum range to trace a ray (km).

The required step size depends on many factors. This includes
frequency, size of features in the SSP (such as surface
ducts), range of rcvrs, and whether a coherent or incoherent
TL calculation is performed. If you use STEP=O.0 BELLHOP will
use a default step-size and tell you what it picked. You should
then halve the step size until the results are convergent to
your required accuracy. To obtain a smooth ray trace you should
use the spline SSP interpolation and a step-size less than the
smallest dista-tce between SSP data points.

Rays -Pe traced until they exit the box ( ZBOX, RBOX ). By
settin6 ZBOX less than the watLf depth you can eliminate
bo-.tom reflections.
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4.5.2 PLOTRAY.HLP

PLOTRAY produces plots of the rays generated by BELLHOP and contained in a
file 'P'.RAY.

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters
*.RAY 9 RAY file

EXAMPLE AND DESCRIPTION OF PLP FILE:

0.0 2500.0 500.0 5.0/ ZMIN ZMAX ZINC (m) ZAIL (cm)
0.0 75.0 25.0 10.0/ ' RMIN RMAX RINC (km) RAIL (cm)
'RED' 'GREEN' 'YELLOW' 'YELLOW'

'DASH' 'DOT' 'SOLID' 'SOLID'

(1) - DEPTH AXIS INFO

Syntax:
ZMIN ZMAX ZINC ZAIL

Description:
ZMIN: Depth minimum (m/s).
ZMAX: Depth maximum (m/s).
ZINC: Depth interval for tick marks (m/s).
ZAXL: Depth axis length (cm).

(2) - RANGE AXIS INFO

Syntax:
RMIN PMAX RINC RAXL

Description:
RMIN: Range minimum (km).
RMAX: Range maximum (km).
RINC: Range interval for tick marks (kin).
RAIL: Range axis length (cm).

(3) - RAY COLORS

Syntax:
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COLR COLS COLB COLSB
Description:

COLR: Color for paths which are purely Refracted.
COLS: Color for paths which strike the Surface only.
COLB: Color for paths which strike the Bottom only.
COLSB: Color for paths which strike both Surface and Bottom.

Choose from 'BLACK', 'WHITE', 'RED', 'GREEN', 'CYAN',
'MAGENTA', 'YELLOW'.
(default is 'BLACK' for all rays)

(4) - RAY PATTERNS

Syntax:
PATR PATS PATB PATSB

Description:
PATR: Pattern for paths which are purely Refracted.
PATS: Pattern for paths which strike the Surface only.
PATB: Pattern for paths which strike the Bottom only.
PATSB: Pattern for paths which strike both Surface and Bottom.

Choose from 'SOLID', 'DASH', 'DOT'.
(default is 'SOLID' for all rays)
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Figure 4.10: Sample output of PLOTRAY: ray trace for the Munk profile
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4.6 The SCOOTER FFP model

Both normal mode models and Fast-Field Programs are based on a contour integral
representation of the acoustic pressure. Normal mode models evaluate the integral
by residues which involves finding the poles of the Green's function. FFP models
evaluate the integral directly by stepping along the contour.

In terms of efficiency, the question is whether one can find poles more rapidly
than directly integrating. It takes about 15 Green's funtion evaluations to find
a pole. The number of Green's function evaluations for an FFP model increases
linearly with range.

On the other hand, the normal mode series neglects certain contributions which
tend to be important in the near-field (say within 10 water depths). Indeed some
problems have no modes at all such as the problem of a point source in free space.
Also for very complicated problems (with elasticity) it can be difficult to reliably
find the modes. Then an FFP model is a good alternative.

A complete explanation of when to use which model would require many pages.
A rule-of-thumb ib to use SCOOTER when you are concerned about the field within
10 water depths and KRAKEN otherwise. SCOOTER can be used for larger ranges
but will generally require more CPU time. KRAKEN can be run for closer ranges
but requires some insight in setting up the environment to make sure that the modes
are adequate for describing the field. This is done either by extending the model of
the ocean bottom in depth, introducing a false bottom, or computing leaky modes.

4.6.1 SCOOTER.HLP

SCOOTER is a finite element code for computing acoustic fields in range-independent
environments. The method is based on direct computation of the spectral integral
(reflectivity or FfP method). Pressure is approximated by piecewise-linear elements
as are the material properties. (One exception is the density which is approximated
by piecewise constant elementsL

The SCOOTER package includes two modules:

SCOOTER the main program

FIELDS Produces shade files or
plots of the Green's function and transmission loss.

The input (.ENV) file is identical to that used by KRAKEN or KRAKENC.
The output is a Green's function file (in place of the mode file
produced by KRAKEN ).

Note that SCOOTER includes the effect of density gradients within
media (KRAKEN and KRAKENC do not). Also, interfacial scatter is not
treated in SCOOTER.
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Files:

Name Unit Description
Input

*.ENV I ENVironmental data
*.BRC 10 Bottom Ref1. Coef. (opti)
*.TRC 11 Top Refl. Coef. (optl)
*.IRC 12 Internal Refl. Coef. (opt1)

Output
*.PRT 6 PRinT file
*.GGRN 20 GReen's function

---------------------------------------------

EXAMPLE AND DESCRIPTION OF ENV FILE:

'Pekeris problem'
10.0
1
' NVF'

500 0.0 2
0.0 1500.0 /

5000.0 1500.0 /
'A' 0.0
5000.0 2000.0 0.0 2.0 /

1400.0 2000.0
500.0 ' RMAX (km)
1 500.0 / ' NSD SD(1:NSD)
1 2500.0 / ' NRD RD(1:NRD)

RMAX is the maximum range for a receiver. It translates directly into the
number of k-space points that will be used in the spectral integral. CPU time is
proportional to RMAX so it shouldn't be any larger than necessary.

Note that both source and receiver must lie within the finite element domain.
That is. the capability for placing source or receiver in the homogeneous half-space
has not been implemented.

CPU time is roughly independent of the number of receivers but increases linearly
with the number of sources. (However, the first source requires about 3 times as
much CPU time as subsequent sources, since an LU decomposition is required only
for the first source.)

Shade files or plots of transmission loss versus range are obtained by running
FIELDS which uses the '.GRN' file as input.
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4.6.2 FIELDS.HLP

The FIELDS program uses the Green's functions calculated by SCOOTER or SPARC
and produces a shade file that contains a sequence of snapshots of the acoustic field
as a function of range and depth. Alternatively, if a single source/receiver combina-
tion is specified then FIELDS produces a plot directly of the Green's function and
transmission loss.

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters
*.GRN 20 GReen's function

Output
*.PRT 6 PRinT file
*.SHD 25 SHaDe file

EXAMPLE AND DESCRIPTION OF ENV FILE:

'RDB' 'R/X (coord), Lin/DB, Pos/Neg/Both'
200.0 220.0 501 ' RMIN, RMAX, NR
0.0 0.0 ' SOURCE, RCVR DEPTHS (0,0 FOR ALL)
70.0 110.0 ' TLMIN, TLMAX

(1) - OPTIONS

Syntax:
OPT

Description:
OPT(1:1): Coordinates

'R' Cylindrical (R-Z) coordinates.
'I' Cartesian (X-Z) coordinates.

OPT(2:2): Scale
'D' dB
'L' linear

OPT(3:3): Spectrum
'P' Positive (recommended)
'N' Negative
'B' Both positive and negative
The spectral integral should formally be done
from all along the real k-axis, however the
negative portion contributes significantly
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only in the near-field. Run-time is less

if it is neglected.

(2) - RECEIVER RANGES

Syntax: RII RMAX NR

Description:
RMIN: First receiver range (km)
RD: Last receiver range (km)

NR: Number of receiver ranges

(3) - SOURCE/RECEIVER DEPTHS

Syntax: SD RD

Description:
SD: Source depth (m)

RD: Receiver depth (m)

Specify zero SD and RD to have the entire file converted.

(4) - TRANSMISSION LOSS AXIS INFO

Syntax: TLMIN TLMAX TLINC TLAXL

Description:
TLMIN: Transmission loss minimur. (dB)
TLMAX: Transmission loss maximur (dB)
TLINC: Transmission loss interval fcr tic.- marks (dB)
TLAXL: Transmission loss axis length (cm)

These lines are ingnored if you are running FIELDS to simply
produce a Green's function file and not a plot.
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4.7 The SPARC pulse model

4.7.1 SPARC.HLP

SPARC (SACLANTCEN Pulse Acoustic Research Code) is an experimental time-
marched FFP. It treats problems with broadband or transient sources, that is. pulses.
The environmental file is patterned after that used for KRAKEN and SCOOTER. The
mathematical basis and numerical algorithm is described in:

Michael B. Porter, "The Time-Marched FFP for Modeling Acoustic Pulse Prop-
agation," J. Acoust. Soc. Amer. 87, 2013-2023 (1990).

Files:

Name Unit Description

Input
*.ENV 1 ENVironmental data

*.STS 10 Source Time Series

Output
*.PRT 6 PRinT file

*.GRN 20 GReen's function

*.RTS 35 Receiver Time Series

EXAMPLE AND DESCRIPTION OF ENV FILE:

'Munk profile'
5.0

2
' NVWS'

500 0.0 27

0.0 1548.52 0.0 1.0 0.0 0.0
200.0 1530.29 I
250.0 1526.69 /
400.0 1517.78 /

600.0 1509.49 /
800.0 1504.30 /
1000.0 1501.38 /
1200.0 1500.14 /
1400.0 1500.12 /
1600.0 1501.02 /
1800.0 1502.57 /
2000.0 1504.C2 /
2200.0 1507.02 /
2400.0 1509.69 /
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2600.0 1512.55 /
2800.0 1515.56 /
3000.0 1518.67 /
3200.0 1521.85 /
3400.0 1525.10 /
3600.0 1528.38 /
3800.0 1531.70 /
4000.0 1535.04 /
4200.0 1538.39 /
4400.0 1541.76 /
4600.0 1545.14 /
4800.0 1548.52 l
5000.0 1551.91 /

500 0.0 2
5000.0 1551.91 0.0 1.00 1.0 0.0
10000.0 /
'R' 0.0
1500.0 1550.0
10.0 RMAX (km)
1 250.0/ NSD SD(1:NSD) Cm)
26 0.0 5000.0 / NRD RD(1:NRD) Cm)
'PH' 0.0 15.0 PULSE FMIN FMAX (Hz)
1 60.0 0.200 / ! NRR RR(1:NRR) (km)
6 1.0 3.0 5.0 10.0 20.0 30.0 ! NTOUT TOUT(1:NTOUT)
-0.1 0.9 0.0 0.0 0.0 ' TSTART (s) TMULT ALPHA BETA V (m/s)

The input structure is identical to KRAKEN except for
additional option in line 4 and 4 additional lines at tne end.

OPT(4:4): Type of calculation
'S' for Snapshot.
FIELDS must be run afterwards to convert the
'.GRN' file to a '.SHD' file containing the pressure field.
The shade file can then be plotted using PLOTFIELD.

'R' for Range stack (horizontal array).
The time series is written in a '.RTS'
(Receiver Time Series) file which can be plotted using
PLOTTS

'D' for Depth stack (vertical array).
The time series is also plotted using PLOTTS.
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Additional lines:

(1) - SOURCE PULSE INFORMATION:

Syntax: PULSE FMIN FMAX

Description:
PULSE(1:1): Type of interpolation to be used for the SSP

'P' Pseudo-Gaussian

'R' Ricker wavelet
'A' Approximate Ricker wavelet
'S' Single sine
'H' Hanning weighted four sine
'N' N-wave
'G' Gaussian
'F' From a '.STS' (Source Time Series) file.
'B' From a '.STS' file Backwards

PULSE(2:2): Hilbert transforming.
'H' perform a Hilbert transform of the source

'N' don't
Hilbert transforming is used to eliminate
the left travelling wave.

PULSE(3:3): Source sign flipping.
'+' don't flip it (recommended)

flip it
PULSE(4:4): Source filtering.

'L' low cut filter
'H' high cut filter
'B' both high and low cut filter
'N' no cut

FMIN: Low cut frequency (Hz)
FMAX: High cut frequency (Hz).

This should be no higher than necessary
since the CPU costs are
proportional to the bandwidth.

(3) - RECEIVER RANGES

Syntax: NRR RR(1:NRR)

Description:
NRR: Number of receiver ranges
RRO: Receiver ranges (k)
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This line is ignored unless option 'R' has been selected for a
range-stack.

(3) - OUTPUT TIMES

Syntax: NTOUT TOUT(1:NTOUT)

Description:
NTOUT: Number of output times
TOUTO: Output times (s)

(3) - TIME INTEGRATION PARAMETERS

Syntax: TSTART TMULT ALPHA BETA V

Description:
TSTART: Starting time for the march. This should always be

earlier than the time at which the source begins to
rise.

TMULT: Time step multiplier. Specifying TMULT = 1.0 means
that the maximunm stable time step is used.

ALPHA: Lumping parameter
BETA: Explicitness parameter
V: Convection velocity

A good check of convergence can be done by running an isovelocity problem
with a gaussian pulse. The pulse should. of course, be undistorted at the receivers.
Remember that Hilbert transforming the source causes it to rise early so TSTART
has to be adjusted accordingly. It's a good habit to plot the source function using
PLOTTS before running SPARC.
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4.7.2 PLOTTS.HLP

PLOTTS PLOTs the Tine Series used in or created by a SPARC

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters
*.?TS 10 Source/Receiver Time Series

Output
*.PRT 6 PRinT file
*.GRN 20 GReen's function
*.RTS 35 Receiver Time Series

----------------------------------------------

EXAMPLE AND DESCRIPTION OF PLP FILE:

5.0 0.0 5000.0 'PH+N' FREQ FMIN FMAX PULSE
0.0 1.5 0.5 / TMIN TMAX TINC (s) TAXL (cm)
-1.0 1.0 1.0 / YIN YMAX YINC Cm) YAXL (cm)

(1) FREQUENCY SPECTRUM / PULSE INFORMATION:

Syntax:
FREQ FMIN FMAX PULSE

Description:
FREQ: Characteristic frequency (Hz).

This is only used for those canned signals
defined by a characteristic frequency.

FMIN: Low cut frequency (Hz)
FMAX: High cut frequency (Hz).
PULSE(1:1): Signal type

'P' Pseudo-Gaussian
'R' Ricker wavelet
'A' Approximate Ricker wavelet
'S' Single sine
'H' Haming weighted four sine
'N' N-wave
'G' Gaussian
'F' From an '.STS' (Source Time Series) file.
'B' From an '.STS' file Backwards

PULSE(2:2): Hilbert transforming. This is used to eliminate
the left travelling wave.
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'H' perform a Hilbert transform of the signal
'N' don't

PULSE(3:3): Signal sign flipping.
' ' don't flip it

flip it
PULSE(4:4): signal filtering.

'L' low cut filter
'H' high cut filter
'B' both high and low cut filter
'N' no cut

(2) TIME AXIS INFO

Syntax:
TMIN THAX TINC TAIL

Description:
TMIN: First time (s).
TMAX: Last time (s).
TINC: Time interval for tick marks (s).
TAIL: Time axis length (cm).

(3) - VERTICAL AXIS INFO

Syntax:

YMIN YMAX YINC YAXL
Description:

YMIN: Y minimu -(m ).
YMAX: Y maximu. (m).
YINC: Y interval for tick marks (m).
YAXL: Y axis length (cm).
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SPARC- isovelocity probiem.

Mox 0.0163 = 100 Hz

10

30r 50- A.A

70

0.00 0.05 0.10 '.15 0.2Z
7;,re (s)

Figure 4.11: Sample output of PLOTTS: an isovelocity problem.
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4.8 The BOUNCE reflection coefficient model

4.8.1 BOUNCE.HLP

BOUNCE computes the reflection coefficient for a stack of acoustic media optionally
overlying elastic media. The reflection coefficient is written to a '.IRC' file (internal
reflection coefficient). This file can be used by KRAKENC to provide a boundary
condition or plotted using PLOTRTH.

The input structure is identical to that used by KRAKENC although the input
lines for source and receiver depth are not read and can be omitted. Furthermore,
the surface boundary condition is ignored and, in effect, replaced by a homogeneous
halfspace where the incident wave propagates.

If you are interested in getting a reflection coefficient for a bottom which is being
used in a KRAKENC run you will need to delete the layers corresponding to the
water column. Otherwise you will get a reflection coefficient corresponding to a wave
incident from above the ocean surface.

The angles used for calculating the reflection coefficient are calculated based
on the phase velocity interval iCNMN, CMAXI. For a full 90 degree calculation set
CMIN to the lowest speed in the problem (say 1400.0) CMAX to 1.0E9. The actual
number of tabulated points is determined by RMAX.

I suggest you pick RMAX equal to 10 km, interrupt BOUNCE after about 5
seconds and look at NKPTS which is displayed in the print file. You can then
increase or decrease RMAX to obtain adequate sampling of the reflection loss curve
(200 points is probably sufficient).

Files:

Name Unit Description

Input
*.ENV 1 ENVironmental data

*.BRC 10 Bottom Refl. Coef. (optl)

*.IRC 12 Internal Refl. Coef. (opti)

Output
*.PRT 6 PRinT file

EXAMPLE OF ENV FILE:

'Refl. coef. test problem'

50.0
1

'NVW'
100 0.0 20.0
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0.0 1600.0 400.0 1.8 0.2 0.5
20.0 /

'A' 0.0
20.0 1800.0 600.0 2.0 0.1 0.2

1400.0 19000.0

10.0 RMAX (Win)

1 50.0 / ' NSD SD(1:NSD)
501 0.0 150.0 / ! NRD RD(1:NRD)

The above example (taken from the SAFARI reference manual) involves two
elastic layers.
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4.8.2 PLOTRTH.HLP

PLOTRTH produces plots of the plane wave reflection coefficient as a function of
angle ( R(THETA) ). Reflection loss defined as -20 loglO ( R ) may also be plotted.
An Internal Reflection Coefficient file computed by BOUNCE provides the input.

Files:

Name Unit Description
Input

*.PLP 1 PLot Parameters
*.IRC 10 Internal Refl. Coef.

Output
*.PRT 6 PRinT file

EXAMPLE AND DESCRIPTION OF PLP FILE:

WD, ! 'L/D' linear or dB scale
1500.0, ' CO
0.0 90.0 10.0 / ' THMIN, THMAX, THINC, THAIL (cm)
0.0 15.0 5.0 / ! RMIN, RMAX, RINC, RAIL (cm)

(1) - OPTIONS

Syntax:
OPTION

Description:
OPTION(1:1): Reflection coef. or reflection loss.

'L' Linear scale
(reflection coef.)

'D' dB
(reflection loss.)

(2) - Reference wave speed

Syntax:
CO

Description:
CO: Sound speed in the halfspace.

The reflection coefficient depends on the sound speed
and density of the medium from which the wave is incident.
The density is assumed unity.



150 CHAPTER 4. RUNNINVG THE PROGRAM

BOUNCE- Refl. coe'. tes-, problem
-50 NZ

-~10-

'In

0

00 10 2C 30, 4, 50 60 70C 80 9

Grczinc ancie

Figure 4.12: Sample output of PLO TRTH.

(3) -ANGLE AXIS INFO

Syntax:
TEMIV 7EMIX 'NTH TEINC TRAIL

Description:
THMIN: First angle (degrees).
THMAX: Last angle (degrees).
THINC: Angular interval for tick marks (degrees).
THAIL: Angle axis length (cm).

(4) -REFLECTION LOSS AXIS INFO

Syntax:
RMIN RMAX RINC RAXL

Description:
RHIN: R minimurr. (0B).
RMAX: R maximur, (dB).
RINC: R interval for tick marks (dB).
RAIL: R axis length (cm).

If you set RMIN=RMAX then the curve is autoscaled.
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Test Problems

The following test problems have been developed to validate the model by exercising
various components of the code and to illustrate the input structure required for
various kinds of scenarios. In brief, we have:

" PEKERIS: A simple (two-layer) Pekeris waveguide.

" TWERSKY: The Pekeris wave guide with surface roughness. Demonstrates
that the Twersky scatter works properly.

* SCHOLTE: A two-layer waveguide with an elastic bottom which leads to a
Scholte wave. Demonstrates that the elastic half-space condition functions
correctly.

" DOUBLE: A double-duct problem demonstrating that gradients are handled
properly.

* FLUSED: A three-layer problem involving ocean, sediment and half-space.
Demonstrates that multiple layers are treated properly.

" ELSED: A three-layer problem with shear properties in the sediment. Demon-
strates that elastic media are handled properly.

" ATTEN: A two-layer problem with volume attenuation. Demonstrates that
attenuation is handled properly.

" NORMAL: A problem with several density changes to check out the modal
normalization in a severe case.

" ICE: A problem with an elastic ice layer to demonstrate that elastic layers
above the water column are handled properly.

For each of these cases, we provide the environmental file along with the print-out
from KRAKEN. The CPU times printed were obtained on a 0.5 megaflop workstation.

In all cases, the frequency is chosen as 10 Hz and the transmission loss is com-
puted for a source/receiver depth combination of 500 m and 2500 m respectively. The

15i
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transmission loss plots show an overlay of KRAKEN (solid line). KRAKENC (dotted
line) and SCOOTER (dashed line) results. These results have also been checked
against the NRL FSTFLD code which agrees to within 1 dB (usually less).
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c-=1500 M/s P 1.Og/CM 3

5000 M

.2.0 g cm-.. ... .. .
Figure 5.1: Schematic of the PEKERIS problem.

5.1 PEKERIS

This problem involves a homogeneous fluid layer with a sound speed of 1500 mis
overlying a faster bottorr with sound speed 2000 m/ s and density of 2. .g/ cm.

'Pekeris problem'

10.0

I
NVF'

500 0.0 2
0.0 1500.0/

5000.0 1500.0/

'A' 0.0
5000.0 2000.0 0.0 2.0/

1400.0 2000.0
1000.0 RLMAX (AM)

1 500.0 /NSD SD(1:NSD)

1 2500.0 /NRD RD(1:NRD)
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KRAKEN- Pekeris problem

Frequency = 10.00 NMEDIA I

N2-LINEAR approximation to SSP
Attenuation units: dB/mkHz

VACUUM

Z ALPHIR BETAR RHO ALPELI BETAI

( Number of pts = 500 MS roughness = 0.000E400 )
0.00 1500.00 0.00 1.00 0.0000 0.0000

5000.00 1500.00 0.00 1.00 0.0000 0.0000

( MS roughness = D.OOOE+00)
ACOUSTO-ELASTIC half -space

5000.00 2000.00 0.00 2.00 0.0000 0.0000

CLOW = 1400.0 CHIGH = 2000.0

MAX = 1000.000000000000

Number of sources =1

500.0000

Number of receivers 1

2500.000

Mesh multiplier CPU seconds

1 5.49

2 6.21

I K ALPHA PHASE SPEED

1 0.4188332253E-01 0.OOOOOOOOOOE.00 1500.164010

2 0.4186958032E-01 0.OOOOOOOOOOE.0O 1500.656385

3 0.4184666447E-01 0.0000000000E+00 1501.478167

4 0.4181455674E-01 0.OOOOOOOOOOE+00 1502.631092

5 0.4177323161E-01 0.OOOOOOOOOOE+00 1504.117605

6 0 .4172265636E-01 C. OOOOOOOOOOE.00 1505.940862

7 0 .4166279103E-01 0. OOOOOOOOOOE+00 1508.104751

8 0.4159358848E-01 0.OOOOOOOOOOE400 1510.613904

9 0.4151499439E-01 0.OOOOOOOOOOE+00 1513.473722
10 0 .4142694720E-01 0. OOOOOOOOOOE400 1516.690399

11 0 .4132937809E-01 0. OOOOOOOOOE.00 1520.270954
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12 0.4122221089E-01 0.00000000OOE+O0 1524.223270
13 0.4110536194E-01 0.0000030000E+00 1528.556132
14 0.4097873993E-01 O.OOOOOOOOOOE+O0 1533.279285
15 0.4084224568E-01 000000000E+O0 1538.403485
16 0.4069577186E-01 0.00000000E+O0 1543.940567
17 0.4053920272E-01 0.000000000E+00 1549.903522
18 0.4037241363E-01 O.OOOOOOOOOOE+00 1556.306582
19 0.4019527072E-01 O.OOOOOOOOOOE+0O 1563.165317
20 0.4000763035E-01 0.OOOOOOOOOOE+00 1570.496741
21 0.3980933859E-01 O.OOOOOOOOOOE+00 1578.319442
22 0.3960023053E-01 O.OOOOOOOOOOE+O0 1586.653720
23 0.3938012967E-01 O.OOOOOOOOOE+O0 1595.521741
24 0.3914884708E-01 0.OOOOOOOOOOE+00 1604.947725
25 0.3890618058E-01 O.OOOOOOOOOE+O0 1614.958141
26 0.3865191380E-01 O.OOOOOOOOOOE+0O 1625.581942
27 0.3838581509E-01 O.OOOOOOOOOOE+00 1636.850824
28 0.3810763645E-01 O.OOOOOOOOOOE+00 1648.799530
29 0.3781711221E-01 0.OOOOOOOOOOE+00 1661.466183
30 0.3751395766E-01 O. OOOOOOOOOE+0 1674.892680
31 0.3719786754E-01 0 OOOOOOOOOOE+00 1689.125136
32 0.3686851438E-01 O.O000000000E 00 1704.214399
33 0.3652554677E-01 O.OOOOOOOOOoE+O0 1720.216633
34 0.3616858743E-01 O.O000000000E+00 1737.194000
35 0.3579723130E-01 O.OOOOOOOOOOE+00 1755.215440
36 0.3541104368E-01 0.OOOOOOOOOOE00 1774.357560
37 0.3500955866E-01 O.OOOOOOOOOOE+00 1794.705659
38 0.3459227830E-01 O.OOOOOOOOOOE+00 1816.354868
39 0.3415867360E-01 O.O000000000E+00 1839.411384
40 0.3370818983E-01 O.O000000000E+00 1863.993688
41 0.3324026217E-01 O.OOOOOOOOOOE+00 1890.233379
42 0.3275436107E-01 O.OOOOOOOOOOE+00 1918.274423
43 0.3225014368E-01 O.OOOOOOOOOOE+00 1948.265834
44 0.3172824619E-01 O.O000000000E+00 1980.312832
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Figure 5.2: Transmission loss for the PEKERIS problem.
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5.2 TWERSKY

The previous Pekeris problem is modified by the inclusion of surface scatter. The
rough surface involves a density of 0.092 bosses per km of width 8.2 m and height
5.1m. Note that the KRAKEN result differs from the KRAKENC and SCOOTER
results. This reflects the error in using a perturbation theory which however is
probably negligible considering the approximations of the scatter model.

'Pekeris problem with Twersky ice scatter'
10.0
1
' NSF'

0.092, 8.2, 5.1

500, 0.0, 2

0.0, 1500.0 /
5000.0, 1500.0 /

'A', 0.0

5000.0, 2000.0, 0.0, 2.0, 0.0, 0.0

1400.0, 2000.0

1000.0 ! PMAX (kmn)

1 500.0 / ' NSD SD(I:NSD)

1 2500.0 / , NPJ RD(I:NRD)
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cp. 1500 ms P 1.Og/Cr 3

5000 M

p."p2.0 g cm3

Figure 5.3: Schematic of the TWERSKY problem.

KR&LKEN- Pekeris problem with Twersky ice scatter
Frequency = 10.00 NMEDIA = 1

N2-LINEAR approximation to SSP

Attenuation units: dB/mkHz

Twersky SOFT BOSS scatter model

Tversky ice model parameters:

Bumden = 0.920000E-01 Eta = 8.20 Xi = 5.10

Z ALPHAR BETAR RHO ALPHAI BETAI

(Number of pts = 500 R!!S roughness = O.OOOE+00 )
0.00 1500.00 0.00 1.00 0.0000 0.0000

5000.00 1500.00 0.00 1.00 0.0000 0.0000

( RMS roughness = 0.OOOE+00)
ACOUSTO-ELASTIC half-space

5000.00 2000.00 0.00 2.00 0.0000 0.0000

CLOW = 1400.0 CHIGH = 2000.0
RMIX = 1000.000000000000
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Number of sources
500.0000

Number of receivers =
2500.000

Mesh multiplier CPU seconds
1 8.08
2 6.19

I K ALPHA PHASE SPEED
1 0.4188333967E-01 -0.7143639068E-09 1500.163396
2 0.4186964892E-01 -0.2858563396E-08 1500.653927
3 0.4184681891E-01 -0.6435953313E-08 1501.472626
4 0.4181483151E-01 -0.1145206277E-07 1502.621218
5 0.4177366141E-01 -0.1791463612E-07 1504.102129
6 0.4172327607E-01 -0.2583358102E-07 1505.918494
7 0.4166363582E-01 -0.3522095285E-07 1508.074172
8 0.4159469382E-01 -0.4609093903E-07 1510.573761
9 0.4151639611E-01 -0.5845985229E-07 1513.422622

10 0.4142868154E-01 -0.7234613786E-07 1516.626905
11 0.4133148173E-01 -0.8777040005E-07 1520.193577
12 0.4122472102E-01 -0.1047554344E-06 1524.130462
13 0.4110831629E-01 -0.1233263186E-06 1528.446279
14 0.4098217683E-01 -0.1435104786E-06 1533.150699
15 0.4084620412E-01 -0.1653378169E-06 1538.254396
16 0.4070029155E-01 -0.1888408516E-06 1543.769115
17 0.4054432412E-01 -0.2140548873E-06 1549.707744
18 0.4037817804E-01 -0.2410182110E-06 1556.084403
19 0.4020172036E-01 -0.2697723168E-06 1562.914535
20 0.4001480842E-01 -0.3003621806E-06 1570.215017
21 0.3981728933E-01 -0.3328365176E-06 1578.0C4282
22 0.3960899938E-01 -0.3672481421E-06 1586.302458
23 0.3938976329E-01 -0.4036543176E-06 1595.131522
24 0.3915939350E-01 -0.4421171667E-06 1604.515480
25 0.3891768932E-01 -0.4827041259E-06 1614.480566
26 0.3866443598E-01 -0.5254884517E-06 1625.055467
27 0.3839940360E-01 -0.5705497741E-06 1636.271587
28 0.3812234607E-01 -0.6179747460E-06 1648.163336
29 0.3783299981E-01 -0.6678576894E-06 1660.768466
30 0.3753108238E-01 -0.7203013712E-06 1674.128458
31 0.3721629100E-01 -0.7754178193E-06 1688.288956
32 0.3688830091E-01 -0.8333291792E-06 1703.300275
33 0.3654676364E-01 -0.8941686039E-06 1719.217978
34 0.3619130513E-01 -0.9580810818E-06 1736.103543



160 CHAPTER 5. TEST PROBLEMS

70 7 = 10 Hz
SD = 500 m
RD =2500 m

80'

90

100.

110+-

200 210 220

Range (kin)

Figure 5.4: Transmission loss for the TWERSKY problem.

35 0.3582152384E-01 -0.1025224135E-05 1754.025132

36 0.3543698884E-01 -0.1095768032E-05 1773.058466

37 0.3503723827E-01 -0.1169895081E-05 1793.287833

38 0.3462177842E-01 -0.1247796785E-05 1814.807209

39 0.3419008460E-01 -0.1329666243E-05 1837.721486

40 0.3374160587E-01 -0.1415679057E-05 1862.147680

41 0.3327577965E-01 -0.1505943298E-05 1888.215805

42 0.3279207350E-01 -0.1600349816E-05 1916.068317

43 0.3229012280E-01 -0.1697989094E-05 1945.853643

44 0.3177042607E-01 -0.1793021126E-05 1977.683678
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C 100 10M s P 1.0Og/cm 3

5000 M ........... .... ..

p .-2.0glcm3

Figure 5.5: Schematic of the DOUBLE problem.

5.3 DOUBLE

The ocean profile is converted to one involving three piecewise linear segments defin-
ing a double-duct profile.

'Double-duct problem'

10.0

3
, NVF'

100 0.0 2
0.0 i 00.0

1000.0 1550.0/
200 0.0 2

1000.0 1550.0/
3000.0 1500.0/

200 0.0 2

3000.0 1500.0/

5000.0 1550.0/

'A' 0.0
5000.0 2000.0 0.0 2.0 0.0 0.0
1400.0 2000.0

1000.0 'RMAX (kmn)

1 500.0 /NSD SD(1:NSD)

1 2500.0 /!NRD RDC1:NRD)
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KRAKEN- Double-duct problem
Frequency = 10.00 NMEDIA = 3

N2-LINEAR approximation to SSP
Attenuation units: dB/mkHz
VACUUM

Z ALPHAR BETAR RHO ALPHAI BETAI

( Number of pts = 100 RMS roughness = O.OOOE+00 )
0.00 1500.00 0.00 1.00 0.0000 0.0000

1000.00 1550.00 0.00 1.00 0.0000 0.0000

( Number of pts = 200 RMS roughness = O.OOOE+00 )
1000.00 1550.00 0.00 1.00 0.0000 0.0000
3000.00 1500.00 0.00 1.00 0.0000 0.0000

( Number of pts = 200 RMS roughness = O.OOOE+00 )
3000.00 1500.00 0.00 1.00 0.0000 0.0000
5000.00 1550.00 0.00 1.00 0.0000 0.0000

( RMS roughness = O.OOOE+O0 )
ACOUSTO-ELASTIC half-space

5000.00 2000.00 0.00 2.00 0.0000 0.0000

CLOW = 1400.0 CHIGH = 2000.0
RMAX = 1000.000000000000

Number of sources 1
500.0000

N.mber of receivers =

2500.000

Mesh multiplier CPU seconds

1 5.60
2 6.18

I K ALPHA PHASE SPEED
I 0.4171018652E-01 O.OOOOOOOOOOE+00 1506.391084
2 0.4147891740E-01 O.OOOOOOOOOOE.00 1514.790091
3 0.4131862874E-01 O.OOOOOOOOOOE+00 1520.666464
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4 0 .4123681174E-01 0 .OOOOOOOOOOE+00 1523.683583
5 0.4117017415E-01 0.0000000000E+00 1526.149801
6 0 .4104029641E-01 0 .0000000000E+00 1530.979515
7 0.4091561041E-01 0.0000000000E+00 1535.645013
8 0. 4080128302E-01 0. OOOOOOOOOOE+00 1539.947973
9 0.407494972E-01 0.OOOOOOOOOOE.0O 1541.904988
10 O.406832459E-01 0.OOOOOOOOOOE400 1544.415928
11 0 .4057281144E-01 0. 0000000000E..o 1548.619650
12 0. 4046123964E-01 0. OOOOOOOOOOE+00 1552.889967
13 0.4035440690E-01 0.OOOOOOOOOOE+00 1557.001029
14 0. 4024224926E-01 0. 0000000000E00 1561.340487
15 0 .4011172669E-01 0. OOOOOOOOOOE+Oo 1566.421051
16 0.3996592323E-01 0.0000000000E+00 1572.135660
17 0. 3980769235E-01 0. OOOOOOOOOOE+00 1578.384713
18 0. 396420TSOOE-01 0. 0000000000E.00 1584.978796
19 0 .3946677171E-01 0. OOOOOOOOOOE+00 1592.019067
20 0. 3927946746E-01 0. 0000000000o 1599.610614
21 0.3907987820E-01 0.0000000000E+00 1607.780166
22 0.3886748929E-01 0.0000000000E+00o 1616.565778
23 0.386454S686E-0. 0.OOOOOOOOOOE+00 1625.853546
24 0 .3841222010E-01 0 .OOOOOOOOOOE+00 1635.725634
25 0.3816711818E-01 0.0000000000E.00 1646.229951
26 0. 3790948500K-Ol 0 .OOOOOOOOOOE400 1657 .417743
27 0. 37638S3318E-01 0. OOOOOOOOOOE+00 1669.349142
28 0. 3735627690E-01 0. OOOOOOOOOOE+00 1681.962398
29 0 .3706135033E-01 0 .OOOOOOOOOOE'00 1695.347107
30 0.367S356291E-01 0.OOOOOOOOOOE+oo 1709.544548
31 0. 3643204686E-01 0. OOOOOOOOOOE+00 1724.631430
32 0.3609604877E-01 0.OOOOOOOOOOE+00 1740.685067
33 O.3574683553E-0i 0.000000000O0EO0 1757.689937
34 0.3538311960E-01 0.0000000000E+00 1775.757869
35 0 .3500480248E-01 0. OOOOOOOOOOE+00 1794.949511
36 0.3461083089E-01 0.OOOOOOOOOOE+0o 1815.381239
37 0.3420046728E-01 0.0000000000E+0O 1837.163585
38 0. 3377442369E-01 0. OOOOOOOOOOE.00 1860.338274
39 0 .3333144286E-01 0. OOOOOOOOOOE+00 1885.062502
40 0.3287145204E-01 0.OOOOOOOOOOE+00 1911.441362
41 0 .3239342265E-01 0. 0000000000E00 1939.648482
42 0 .3189739326E-01 0. OOOOOOOOOOE.00 1969.811532



164 CHAPTER 5. TEST PROBLEMS

7 F = 10 HZ
SD = 500 rn
RD =2500m

80.

go0
c,
In,
0

100-

1100

ROnCe (Kr-'

Figure 5.6: Transmission loss for the DOUBLE problem.
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5.4 SCHOLTE

This problem is a version of the Pekeris waveguide but with an elastic half-space
as the bottom. This type of problem has a Scholte mode with a phase velocity less
than the slowest speed in the problem. (Since the source and receiver are many
waveienghts from the interface the Scholte mode is not actually important for the
transmission loss calculation.)

'Scholte waveguide'
10.0
1
,NVM'

500 0.0 2
0.0 1500.0 /

5000.0 1500.0 /
'A' 0.0

5000.0 4000.0 200.0 2.0 /

1400.0 2000.0
1000.0 RMAX (kin)
1 500.0 / NSD SD(I:NSD)

1 2500.0 / ! NRD RD(1:NRD)
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cI=1500 M S p 1.Og/Cm
3

....... .. Aw2.0 g/cm3.. ....
Figure 5.7: Schematic of the SCHOLTE problem.

KRAKEN- Scholte waveguide

Frequency = 10.00 NMEDIA I

N2-LINEAR approximation to SSP

Attenuation units: dB/m

VACUUM

Z ALPHIR BETAR RHO ALPHAI BETI

( Number of pts = 500 RMS roughness = 0.OOOE+00)

0.00 1500.00 0.00 1.00 0.0000 0.0000

5000.00 1500.00 0.00 1.00 0.0000 0.0000

( RMS roughness = O.OOOE+00

ACOUSTO-ELASTIC half-space

5000.00 4000.00 2000.00 2.00 0.0000 0.0000

CLOW = 1400.0 CHIGH = 2000.0

RMAX = 1000.000000000000

Number of sources 1

500.0000

Number of receivers 1

2500.000
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Mesh multiplier CPU seconds
1 5.61

2 6.51

4 4.64

I K ALPHA PHASE SPEED
1 0 .4400982929E-01 0. OOOOOOOOOOE+OO 1427.677728
2 0 .4188306870E-01 0. OOOOOOOOOOE+00 1500.173101
3 0 .4186856672E-01 0. OOOOOOOOOOE+00 1500.692715
4 0 .4184439022E-01 0. OOOOOOOOOOE+00 1601.559773
5 0 .4181052921E-01 0. OOOOOOOOOOE+00 1502.775838
6 0 .4176696933E-01 0. OOOOOOOOOOE+00 1504.343123
7 0.4171369148E-01 0.OOOOOOOOOOE+00 1506.264510
8 0 .4165067147E-01 0. OOOOOOOOOOE+00 1508.543581
9 0.41577879S5E-01 0.OOOOOOOOOOE.00 1511.184643

10 0.4149527997E-01 0.OOOOOOOOOOE.00 1514.192774
11 0 .4140283053E-01 0 .OOOOOOOOOOE+00 1517.573853
12 0.4130048217E-01 0.OOOOOOOOOOE.00 1521.334613
13 0 .4118817854E-01 0. OOOOOOOOOOE+00 1525.482682
14 0 .4106585662E-01. 0. OOOOOOOOO0E+00 1530.026639
15 0 .4093344142E-01 0. OOOOOOOOOOE+00 1534.976071
16 0 .4079085659E-01 0. OOOOOOOOOOE.00 1540.341632
17 0 .4063800914E-01 0 .OOOOOOOOOOE.00 1546.135118
18 0.4047480418E-01 0.OOOOOOOOOOE+00 1552.369538
19 0 .4030113364E-01 0. OOOOOOOOOOE+00 1559. 059197
20 0 .4011688100E-01 0. OOOOOOOOOOE+00 1566.219793
21 0. 3992192010E-01 0 .0000000000E+00 1573.868514
22 0 .3971611492E-01 0. OOOOOOOOOOE+00 1582.024153
23 0. 3949931943E-01 0. OOOOOOOOOOE+00 1590.707232
24 0 .3927137754E-01 0. OOOOOOOOOOE+00 1599.940135
25 0. 3903212305E-01 0. OOOOOOOOOOE+00 1609.747258
26 0. 3878137986E-01 0. OOOOOOOOOOE+0O 1620.155170
27 0. 3851896232E-01 0. OOOOOOOOOOE.00 1631.192776
28 0. 3824467597E-01 0 .OOOOOOOOOOE+00 1642.891500
29 0. 3795831866E-01 0.0000000000OE+00 1655.285463
'30 0 .3765968244E-01 0. OOOOOOOOOOE+00 1668.411654
31 0 .3734855636E-01 0. OOOOOOOOOOE.00 1682.310086
32 0.3702473075E-01 0.OOOOOOOOOOE+00 1697.023903
33 0.3668800348E-01 0.OOOOOOOOOOE.00 1712.599409
34 0. 3633818906E-01 0. OOOOOOOOOOE.00 1729.085975
35 0 .3597513167E-01 0. OOOOOOOOOOE.00 1746.535736
36 0. 3559872314E-01 0. OOOOOOOOOOE+00 1765.002998
37 0. 3520892659E-01 0. OOOOOOOOOOE+00 1784.543272
38 0. 3480580404E-01 0. OOOOOOOOOOE+00 1805. 211941



168 CHAPTER 5. TEST PROBLEMS

70 
F 0H
SD = 500 mn
RD =2500 rn

80-

go-
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100-
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Figure 5.8: Transmission loss for the SCHOLTE problem.

39 0.3438954040E-01 0.OOOOOOOOOOE.OO 1827.062890
40 0 .3396044231E-0.4 0.OOOOOOOOOOE+00 1850.148255
41 0. 3351886824E-01 0. OOOOOOOOOOE.00 1874.521915
42 0.33065034S1E-01 0.OOOOOOOOQOE.00 1900.250643
43 0. 3259872074E-01 0 .OOOOOOOOOOE.00 1927.433091
44 0.3211925126E-01 0.QOOOOOOOOOE.00 1956.205410
45 0. 3162787575E-01 0. OOOOOOOOOOE.00 1986.S97316
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c 1500 M/ s P .1.O0g /cm 3

5000 m

C-lOW i 140MjS P 1.5g CM 3

5100 m
..... . . ...... . ... 3

Figure . .9: Scea.co.h.F E polm

5.5 FLUSED .
A~~~~~~~~~~........ ..i.eiet.sisre. etentebttm hl-pc adteoen

'Fluid... seimn .......
10.0.. .....

20 0.0. 2 c
5000.0.1400 . .0 1.5 ..
5100.0.1400 . .0 1. .. . . .......

'A'0.0

500.0 400020.2.

1300.0 2000.0

100 0.0 2 HX 1m
*1500.0 /40. 0. 1.5S(:ND

1 2500.0 /!NSD RD(1:NSD)
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KRAKEN- Fluid sediment problem
Frequency = 10.00 NMEDIA = 2

N2-LINEAR approximation to SSP
Attenuation units: dB/mkHz
VACUUM

Z ALPRAR BETAR REO ALPHAI BETAI

( Number of pts = 500 IMS roughness = O.OOOE+00 )
0.00 1500.00 0.00 1.00 0.0000 0.0000

5000.00 1500.00 0.00 1.00 0.0000 0.0000

( Number of pts = 200 RMS roughness = O.OOOE+00 )

5000.00 1400.00 0.00 1.50 0.0000 0.0000
5100.00 1400.00 0.00 1.50 0.0000 0.0000

( RMS roughness = O.OOOE+0O )
ACOUSTO-ELASTIC half-space

5100.00 4000.00 2000.00 2.00 0.0000 0.0000

CLOW = 1300.0 CHIGH = 2000.0
RMAX = 1000.000000000000

Number of sources 1

500.0000

Number of receivers =

2500.000

Mesh multiplier CPU seconds
1 7.96

2 9.19

I K ALPHA PHASE SPEED
I 0.4762029270E-01 O.OOOOOOOOOOE00 1319.434416
2 0.4188346068E-01 O.OOOOOOOOOOE0O 1500.159062
3 0.4187012980E-01 O.OOOOOOOOOOE+00 1500.636692
4 0.4184788935E-01 O.OOOOOOOOOOE+0O 1501.434219
5 0.4181670690E-01 O.OOOOOOOOOOE+00 1502.553829
6 0.4177653892E-01 O.OOOOOOOOOOE+0O 1503.998529
7 0.4172733229E-01 O.OOOOOOOOOOE0O 1505.772107
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8 0.4166902579E-01 O.O000000000E+00 1507.879099
9 0.4160155146E-01 O.O000000000E+00 1510.324756

10 0.4152483561E-01 O.O000000000E+00 1513.115035
11 0.4143879961E-01 O.OOOOOOOOOOE 00 1516.256592
12 0.4134336028E-01 O.OOOOOOOOOOE+00 1519.756804
13 0.4123843013E-01 O.O000000000E+00 1523.623787
14 0.4112391725E-01 O.OOOOOOOOOOE+O0 1527.866441
15 0.4099972515E-01 O.OOOOOOOOOOE+00 1532.494495
16 0.4086575247E-01 O.OOOOOOOOOE+00 1537.518565
17 0.4072189255E-01 O.OOOOOOOOOOE+00 1542.950220
18 0.4056803308E-01 O.OOOOOOOOOOE+00 1548.802057
19 0.4040405563E-01 O.OOOOOOOOOOE+00 1555.087778
20 0.4022983521E-01 O.OOOOOOOOOOE+00 1561.822283
21 0.4004523991E-01 O.O000000000E+00 1569.021767
22 0.3985013046E-01 O.OOOOOOOOOOE+O0 1576.703824
23 0.3964435995E-01 O.OOOOOOOOOOE+00 1584.887564
24 0.3942777350E-01 O.OOOOOOOOOOE+O0 1593.593741
25 0.3920020817E-01 O.OOOOOOOOOOE+00 1602.844883
26 0.3896149284E-01 O.OOOOOOOOOOE+00 1612.665442
27 0.3871144846E-01 O.OOOOOOOOOOE 00 1623.081945
28 0.3844988844E-01 O.OOOOOOOOOOE+00 1634.123157
29 0.3817661955E-01 O.OOOOOOOOOOE+00 1645.820238
30 0.3789144340E-01 O.OOOOOOOOOOE+00 1658.206904
31 0.3759415875E-01 O.OOOOOOOOOOE+00 1671.319565
32 0.3728456516E-01 O.OOOOOOOOOOE+00 1685.197422
33 0.3696246847E-01 O.OOOOOOOOOOE 00 1699.882494
34 0.3662768905E-01 O.OOOOOOOOOOE+00 1715.419528
35 0.3628007398E-01 O.OOOOOOOOOOE+00 1731.855704
36 0.3591951486E-01 O.OOOOOOOOOOE+00 1749.240025
37 0.3554597307E-01 O.OOOOOOOOOOE 00 1767.622255
38 0.3515951389E-01 O.OOOOOOOOOOE+00 1787.051245
39 0.3476034709E-01 O.OOOOOOOOOOE+00 1807.572661
40 0.3434886085E-01 O.OOOOOOOOOOE+00 1829.226691
41 0.3392560858E-01 O.OOOOOOOOOOE+00 1852.047928
42 0.3349116237E-01 O.OOOOOOOOOOE 00 1876.072630
43 0.3304572812E-01 O.OOOOOOOOOOE+00 1901.360831
44 0.3258859668E-01 O.OOOOOOOOOOE+00 1928.031872
45 0.3211808726E-01 O.OOOOOOOOOOE+00 1956.276305
46 0.3163418448E-01 O.OOOOOOOOOOE+00 1986.201133
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Figure 5.10: Transmission loss for the FLLTSED problem.
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5.6 ELSED

The previous problem (FLUSED) is modified by including shear properties in the
sediment. This problem has several interfacial modes with phase velocities below
1300 m/s which have been excluded from the calculation.

'Elastic sediment problem,

10.0
2
' NV!'

500 0.0 2
0.0 1500.0 /

5000.0 1500.0 I

200 0.0 2
5000.0 1400.0 700.0 1.5 /
5100.0 1400.0 700.0 1.5 /
'A' 0.0
5100.0 4000.0 2000.0 2.0 /
1300.0 2000.0

1000.0 ' RMAX (km)
1 500.0 / ' NSD SD(1:NSD)

1 2500.0 / NRD RD(I:NRD)
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cp=150M IS p .1.Og /cri
3

5000m

C- 7-00 ms 13 -I400m is P 1.5g CM 3

51 00 M .......

w pp2.0Og cm3

Figure~ 11 Shemati of.th.ELSEDproble

..AEN Els. sed.men problem....
Frequency . ..0.00 ......=

....NEA approx.mation.to SS
Attenuaton.units.......
..V A...... ..CU U......... .

NFibere of11 pSceai of 200 Rl'ES rougnes lem.OO

5100.00y 10.00 700.00 1.5 0.00 000

Numer f ps =50 RMS roughness =0.OOOE+00
ACUSO-LATI half-space.0.000 0.00

5100.00 4000.00 200.00 2.00 0.0000 0.0000
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CLOW = 1300.0 CHIGH = 2000.0

RMAX = 1000.000000000000

Number of sources =1

500.0000

Number of receivers 1

2500.000

Mesh multiplier CPU seconds

1 23.9

2 38.2

I K ALPHA PHASE SPEED

1 0. 4271788618E-01 0. OOOOOOOOOOE.00 1470.855857

2 0.4188323798E-01 0.OOOOOOOOOOE.00 1500.167038
3 0 .4186924441E-01 0. OOOOOOOOOOE+00 1500.668425
4 0.4184691718E-01 0.OOOOOOOOOOE+00 1501.504981

5 0.4181324891E-01 0.OOOOOOOOOOE+00 1502.678091
6 0.4177122866E-01 0.OOOOOOOOOOE+00 1504.189728

7 0 .4171984138E-01 0 .OOOOOOOOOOE+00 1506.042473
8 0.4165906753E-01 0.OOOOOOOOOOE.00 1508.239545

9 0 .4158888289E-01 0. OOOOOOOOOOE+00 1510.784823

10 0.4150925843E-01 0.OOOOOOOOOOE.00 1513.682861

11 0 .4142016032E-01 0. OOOOOOOOOOE+00 1516.938916

12 0.4132155011E-01 0.OOOOOOOOOOE+00 1520.558955

13 0 .4121338489E-01 0. OOOOOOOOOOE+00 1524.549688

14 0.4109561752E-01 0.OOOOOOOOOOE+00 1528.918577

15 0.4096819680E-01 0.OOOOOOOOOOE+00 1533.673873

16 0 .4083106766E-01 0. OOOOOOOOOOE+00 1538.824642
17 0 .4068417123E-01 0. OOOOOOOOOOE+00 1544.380804

18 0 .4052744476E-01 0. OOOOOOOOOOE.00 1550.353185

19 0.4036082144E-01 0.OOOOOOOOOOE+00 1556.753575

20 0.4018422979E-01 0.OOOOOOOOOOE.00 1563.594808

21 0.3999759286E-01 0.OOOOOOOOOOE+00 1570.890861

22 0.3980082677E-01 0.OOOOOOOOOOE.00 1578.656982

23 0.39S9383877E-01 0.OOOOOOOOOOE+00 1586.909858

24 0.3937652458E-01 0.OOOOOOOOOOE+00 .1595.667818

25 0. 3914876608E-01 0. OOOOOOOOOOE.00 1604.951087

26 0.3891042253E-01 0.OOOOOOOOOOE.00 1614.782081

27 0.3866 133664E-01 0 .0000000000E+00 1625.185742

28 0.3B40132111E-01 0.OOOOOOOOOOE.00 1636.189883
29 0.3813016132E-01 0.OOOOOOOOOOE.00 1647.825524

30 0. 3784761400E-01 0. OOOOOOOOOOE+00 1660.127190

31 0.3755340932E-01 0.OOOOOOOOOOE+00 1673.133125
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70
7=10 Hz

SD = 500 mn
RD =2500 r

80-

S90-
(n)
0

100 -

110-1
200 210 220
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Figure 5.12: Transmission loss for the ELSED problem.

32 0.3724725578E-01 0.OOOOOOOOOOE.00 1686.885430
33 0. 3692884747E-01 0. 0000000000E+00 1701.430111
34 0. 3659787314E-01 0. 0000000000E.00 1716.817063
35 0. 362540262TE-01 0 .0000000000E+00 1733.100004
36 0. 3589701555E-01 0. 0000000000E.00 1750 .336403
37 0. 35S265751SE-01 0 .OOOOOOOOOOE.00 1768.587397
38 0. 3514247440E-01 0. OOOOOOOOOOE.00 1787.917730

39 0. 34744S2577E-01 0 .OOOOOOOOOOE.00 1808.395759
40 0.3433258869E-01 0.OOOOOOOOOOE+00 1830.093665
41 0.3390656461E-01 0.0000000000E+0C 1853.088150
42 0.3346637756E-01 0.OOOOOOOOOOE.OC 1877.462028
43 0.3301194133E-01 0.0000000000E.00 1903.306820

44 0.325431554SE-01 0.OOOOOOOOOOE+00 1930.724056
45 0.3206016806E-01 0.OOOOOOOOOOE.00 1959.810471

46 0. 3156608684E-01 0 .OOOOOOOOOOE+0O 1990.485973
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c =1500m/s p -1.0 g/cn3

0.001 dB /km Hz

5300 m I

W:i2.0 g crn 3

Figure 5.13: Schematic of the ATTEN problem.

5.7 ATTEN

Volume attenuation is included in both ocean and half-space.

'Attenuation test .O0ldB/kmHz'

10.0
1
' NVIF

500 0.0 2
0.0 1500.0 0.0 1.0 0.001 0.0

5000.0 1500.0 0.0 1.0 0.001 0.0
'A' 0.0

5000.0 2000.0 0.0 2.0 0.001 0.0
1400.0 2000.0
1000.0 'RMAX (kmn)

1 500.0 /INSD SDC1:ND)
1 2500.0 /'NRD RD(I:NRD)
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KRKEN- Attenuation test .O01dB/kmHz
Frequency = 10.00 NMEDIA = 1

N2-LINEAR approximation to SSP
Attenuation units: dB/mkHz
VACUUM

Z ALPHAR BETAR REO ALPHAI BETAI

( Number of pts = 500 RMS roughness = O.OOOE+00 )
0.00 1500.00 0.00 1.00 0.0010 0.0000

5000.00 1500.00 0.00 1.00 0.0010 0.0000

( RMS roughness = O.OOOE+O0 )
ACOUSTO-ELASTIC half-space

5000.00 2000.00 0.00 2.00 0.0010 0.0000

CLOW = 1400.0 CHIGH = 2000.0
RMAX = 1000.000000000000

Number of sources 1
500.0000

Number of receivers 1
2500.000

Mesh multiplier CPU seconds
1 5.40
2 6.08

1 K ALPHA PHASE SPEED
I 0.4188332250E-01 -0.1151416386E-05 1500.164011
2 0.4186958029E-01 -0.1151788191E-OE 1500.656387
3 0.4184666444E-01 -0.1152408844E-05 1501.478168
4 0.4181455671E-01 -0.1153279807E-0S 1502.631094
5 0.4177323158E-01 -0.1154403131E-05 1504.117606
6 0.4172265632E-01 -0.1155781449E-05 1505.940863
7 0.4166279100E-01 -0.1157417981E-05 1508.104752
8 0.4159358845E-01 -0.1159316538E-05 1510.613905
9 0.4151499436E-01 -0.1161481525E-05 1513.473723

10 0.4142694717E-01 -0.1163917959E-05 1516.690400
11 0.4132937806E-01 -0.1166631476E-05 1520.270955
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12 0.4122221086E-01 -0.1169628360E-05 1524.223271
13 0.4110536191E-01 -0.1172915566E-05 1528.556134
14 0.4097873990E-01 -0.1176500754E-05 1533.279287
15 0.4084224564E-01 -0.1180392329E-05 1538.403486
16 0.4069577183E-01 -0.1184599493E-05 1543.940568
17 0.4053920269E-01 -0.1189132294E-05 1549.903523

18 0.4037241360E-01 -0.1194001698E-05 1556.306584
19 0.4019527068E-01 -0.1199219655E-05 1563.165318
20 0.4000763032E-01 -0.1204799188E-05 1570.496742
21 0.3980933855E-01 -0.1210754481E-05 1578.319443
22 0.3960023050E-01 -0. 217100991E-05 1586.653721
23 0.3938012964E-01 -0.1223855559E-05 1595.521743
24 0.3914884705E-01 -0.1231036550E-05 1604.947727
25 0.3890618055E-01 -0.1238663998E-05 1614.958142
26 0.3865191376E-01 -0.1246759776E-05 1625.581943
27 0.3838581506E-01 -0.1255347785E-05 1636.850826
28 0.3810763642E-01 -0.1264454167E-05 1648.799531
29 0.3781711218E-01 -0.1274107542E-05 1661.466184
30 0.3751395763E-01 -0.1284339274E-05 1674.892681
31 0.3719786751E-01 -0.1295183771E-05 1689.125138
32 0.3686851435E-01 -0.1306678812E-05 1704.214400
33 0.3652554674E-01 -0.1318865902E-05 1720.216634
34 0.3616858740E-01 -0.1331790655E-05 1737.194002
35 0.3579723127E-01 -0.1345503170E-05 1755.215441
36 0.3541104365E-01 -0.1360058366E-05 1774.357562

37 0.3500955864E-01 -0.1375516165E-05 1794.705661
38 0.3459227827E-01 -0.1391941313E-05 1816.354869
39 0.3415867357E-01 -0.1409402284E-05 1839.411385
40 0.3370818980E-01 -0.1427967936E-05 1863.993689
41 0.3324026214E-01 -0.1447697921E-05 1890.233381
42 0.3275436104E-01 -0.1468612832E-05 1918.274424
43 0.3225014365E-01 -0.1490575913E-05 1948.265835
44 0.3172824616E-01 -0.1512451223E-05 1980.312834



180 CHAPTER 5. TEST PROBLEMS

70
F= 10 Hz

SD = 500 r-'
RD =2500 m~

80-

m

100

110
200 210 22C

FRance(K-

Figure 5.14: Transmission loss for the ATTEN problem.
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5.8 NORMAL

Mode normalization is checked using several density changes. Due to the shear in
the lower halfspace, there is a Scholte wave with a phase velocity of about 1393 m/ s.
It has been excluded from the calculation.

'Mode normalization test'

10.0
2
' NVF'

300 0.0 2

0.0 1500.0 /
3000.0 1500.0 /

200 0.0 2

3000.0 1500.0 0.0 2.0 /
5000.0 1500.0 0.0 2.0 /

'A' 0.0
5000.0 4000.0 2000.0 3.0 /

1400.0 2000.0
1000.0 ' RMAX (km)
1 500.0 / ' NSD SD(1:NSD)

1 2500.0 / ' NRD RD(I:NRD)
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c,,.1500 m /s P wl.Og /CM 3

3000 m

5000 m

Frequency3. g 100cmEI

N2-LINEAR approximation to SSP
Attenuation units: dB/mkHz

VACUUM~

Z ILPHAR BETAR RHO ALPHAI BETAI

(Number of pts = 300 RMS roughness = 0.OOOE+00)
0.00 1500.00 0.00 1.00 0.0000 0.0000

3000.00 1500.00 0.00 1.00 0.0000 0.0000

( Number of pts = 200 RMS roughness = 0.OOOE.00 )
3000.00 1500.00 0.00 2.00 0.0000 0.0000
5000.00 1500.00 0.0) 2.00 0.0000 0.0000

CRMS roughness = 0.OOOE+00
ACOUSTO-ELASTIC half-space

5000.00 4000.00 2000.00 3.00 0.0000 0.0000



5.8. NORMAL 183

CLOW = 1400.0 CHIGH = 2000.0

RMAX = 1000.000000000000

Number of sources =1

500.0000

Number of receivers 1

2500.000

Mesh multiplier CPU seconds

1 5.55

2 6.40

4 4.54

I K ALPHA PHASE SPEED
1 0 .4188367900E-01 0 .OOOOOOOOOOE+00 1500.151242
2 0. 4186658699E-01 0. OOOOOOOOOOE+00 1500.763678
3 0 .4184753177E-01 0. OOOO0OOOOE.00 1501.447049
4 0.4180919493E-01 0.OOOOOOOOOOE.00 1502.823797

5 0 .4176674150E-01 0. OOOOOOOOOOE.00 1504.351329
6 0 .4171909765E-01 0. OOOOOOOOOOE+00 1506 .069321
7 0.4164470397E-01 0.OOOOOOOOOOE+00 1508.759748
8 0.4158680917E-01 0.OOOOOOOOOOE+00 1510.860158
9 0 .4149472381E-01 0. OOOOOOOOOOE+00 1514.213069
10 0.4140185763E-01 0.OOOOOOOOOOE+00 1517.609515
11 0. 4131280307E-01 0. OOOOOOOOOOE.00 1520.880899
12 0 .4117924681E-01 0. OOOOOOOOOOE.00 1525.813557
13 0 .4108058576E-01 0. OOOOOOOOOOE+00 1529.478022

14 0 .4093552018E-01 0 .OOOOOOOOOOE+00 1534.898123
15 0 .4078858493E-01 0 .OOOOOOOOOOE.00 1540 .42738 1
16 0. 4065836697E-01 C. OOOOOOOOOOE.00 1545.360961
17 0 .4046343001E-01 0. OOOOOOOOOOE+00 1552.805905
18 0. 4032142497E-01 0. OOOOOOOOOOE.00 1558.274617
19 0.4012239980E-01 0.OOOOOOOOOOE.00 1566.004361
20 0.3991798210E-01 0.OOOOOOOOOOE.00 1574.023780
21 0. 3974491332E-01 0. OOOOOOOOOOE+00 1580.877849
22 0. 3948540371E-01 0. OOOOOOOOOOE+00 1591 .267840

23 0 .3929733220E-01 0. OOOOOOOOOOE+00 1598.883424
24 0. 3904083516E-01 0. OOOOOOOOOOE+00 1609.388037

25 0.3877585468E-01 0.OOOOOOOOOOE.00 1620.386026

26 0 .3855610943E-01 0. OOOOOOOOOOE+00 1629.621194
27 0. 3822733064E-01 0. OOOOOOOOOOE+00 1643.636948

*28 0. 3799085539E-01 0. OOOOOOOOOOE+00 1653.867817

29 0. 3766977091E-01 0. OOOOOOOOOOE+00 1667.964831
30 0. 3734233184E-01 0. OOOOOOOOOOE.00 1682.590507
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70
F = 10 Hz
SD = 500 rn
RD =2500 rr

80

-o
90'

U)
0-J

100,

110
200 210 22C

Range (km)

Figure 5.16: Transmission loss for the NORMAL problem.

31 0.3706900744E-01 O.OOOOOOOOOOE 00 1694.996910

32 0.3666482678E-01 O.OOOOOOOOOOE+00 1713.681983
33 0.3637907870E-01 O.OOOOOOOOOOE+00 1727.142504

34 0.3598056675E-01 O.OOOOOOOOOOE+00 1746.271911
35 0.3559408137E-01 O.OOOOOOOOOOE+00 1765.233169

36 0.3525354551E-01 O.OOOOOOOOOOE+00 1782.284652
37 0.3477030998E-01 O.OOOOOOOOOOE+00 1807.054729

38 0.3443753112E-01 O.OOOOOOOOOOE+00 1824.516771
39 0.3393983898E-01 O.OOOOOOOOOOE+00 1851.271395

40 0.3351944923E-01 O.OOOOOOOOOOE 00 1874.489424
41 0.3307617837E-01 O.OOOOOOOOOOE+00 1899.610419

42 0.3254372213E-01 O.OOOOOOOOOOE+00 1930.690436
43 0.3214824698E-01 O.OOOOOOOOOOE+00 1954.441034

44 0.3155272679E-01 O.OOOOOOOOOOE.00 1991.328784
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1c..1400m is c30M S PAI.oglcm3

c P1500Om/s p ml.og/cm 3

5000 M

.u2.Og/cm 3

Figure 5.17. Schematic of the ICE problem.

5.9 ICE

This problem is loosely based on an Arctic scenario with an elastic ice-canopy. Here
the elastic medium lies above the acoustic media. Note that the KRAKEN result
disagrees with both KRAKENC and SCOOTER. This is expected since KRAKEN
ignores attenuation in elastic media.

'Ice problem'

10.0

2
,NVW'

50 0.0 2

0.0 3000.0 1400.0 1.0 0.3 1.0

30.0 3000.0 1400.0 1.0 0.3 1.0

500 0.0 2

30.0 1500.0 0.0 1.0 0.0 0.0

5000.0 1500.0 0.0 1.0 0.0 0.0

'A, 0.0
5000.0 2000.0 0.0 2.0 0.0 0.0

1400.0 2000.0
1000.0 'RMAX (kmn)
1 500.0 /!NSD SD(1:NSD)

1 2500.0 /INRD RD(1:NRD)
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KRAKEN- Ice problem

Frequency = 10.00 NMEDIA 2

N2-LINEAR approximation to SSP

Attenuation units: dB/vavelength

VACUUM

Z ALPEAR BETAR RHO ALPEAI BETLI

( Number of pts = 50 RMS roughness = O.OOOE+00 )

0.00 3000.00 1400.00 1.00 0.3000 1.0000
30.00 3000.00 1400.00 1.00 0.3000 1.0000

( Number of pts = 500 RMS roughness = O.O00E+00 )

30.00 1500.00 0.00 1.00 0.0000 0.0000

5000.00 1500.00 0.00 1.00 0.0000 0.0000

( RMS roughness = O.OOOE+O0 )
ACOUSTO-ELASTIC half-space

5000.00 2000.00 0.00 2.00 0.0000 0.0000

CLOW = 1400.0 CHIGH = 2000.0
RMAX = 1000.000000000000

Number of sources 1

500.0000

Number of receivers =
2500.000

Mesh multiplier CPU seconds
1 11.5
2 16.6

I ALPHA PHASE SPEED
1 0.4188333139E-01 0.OOOOOOOOOOE O0 1500.163692
2 0.4186961576E-01 0.OOOOOOOOOOE+0O 1500.655115
3 0.4184674417E-01 0.O000000000E 00 1501.475307
4 0.4181469833E-01 0.O000000000E 00 1502.626004
5 0.4177345263E-01 0. O000000000E+00 1504.109646
6 0.4172297425E-01 0. O000000000E00 1505.929388
7 0 4166322309E-01 0.O000000000E00 1508.089111
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8 0.4159415182E-01 O.0000000000E..00 1510.593445
9 0 .4161570588E-01 0. 0000000000E+00 1513.447784

10 0 .4142782343E-01 0. 0000000000O 1516.658320
11 0 .4133043533E-01 0. 0000000000E.00 1520.232066
12 0 .4122346498E-01 0. OOOOOOOOOOE+00 1524.176900
13 0 .4110682824E-01 0 .0000000000E+00 1528.501608
14 0.4098043325E-01 0.0000000000E+00 1533.215930
15 0 .4084418017E-01 0. 0000000000E+00 1538.330622
16 0 .4069796094E-01 0. OOOOOOOOOOE+00 1543.857521
17 0 .4054165894E-01 0. OOOOOOOOOOE+00 1549.809621
18 0 .4037614862E-01 0 .OOOOOOOOOOE+00 1556.201159
19 0 .4019829603E-01 0. OOOOOOOOOOE+00 1563.047712
20 0. 4001095339E-01 0. 0000000000E.00 1570.366306
21 0 .3981296844E-01 0 .OOOOOOOOOOE+00 1578.175543
22 0.3960417391E-01 0.0000000000E.00 1586.495737
23 0 .3938439178E-01 0. OOOOOOOOOOE+00 1595.349077
24 0.3915343149E-01 0.0000000000E+00 1604.759805
25 0.3891108916E-01 0.OOOOOOOOOOE+00 1614.754417
26 0 .3865714660E-01 0 .OOOOOOOOOOE+00 1625.361895
27 0 .3839137032E-01 0. OOOOOOOOOOE+00 1636.613972
28 0. 3811351037E-01 0. OOOOOOOOOOE+00 1648.545423
29 0 .3782329915E-01 0. OOOOOOOOOOE+00 1661.194409
30 0.3752045003E.-01 0.OOOOOOOOOOE.00 1674.602864
31 0 .3720465592E-01 0 .OOOOOOOOOOE+00 1688.816938
32 0.3687658766E-01 0.OOOOOOOOOOE+00 1703.887506
33 0 .3653289237E-01 0. OOOOOOOOOOE+00 1719.870752
34 0 .3617619171E-01 0 .OOOOOOOOOOE+e00 1736.828840
35 0. 3580508009E-01 0. OOOOOOOOOOE+00 1754.830681
36 0. 3541912307E-01 0. OOOOOOOOOOE.00 1773.952815
37 0.3501785613E-01 0.OOOOOOOOOOE+00 1794.280405
38 0. 3460078429E-01 0. OOOOOOOOOOE+00 1815.908349
39 0. 3416738384E-01 0 .OOOOOOOOOOE+00 1838.942465
40 0.3371710848E-01 0. 0000000000E+00 1863.500635
41 0.3324940638E-01 0 .OOOOOOOOOOE.00 1889.713529
42 0. 3276376704E-Ul 0. OOOOOOOOOOE.00 1917.723716
43 0.3225987273E-01 0.OOOOOOOOOOE.00 1947.678269
44 0.3173836536E-01 0. OOOOOOOOOOE.00 1979.681448
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70F = 10 Hz
SD = 500 m
RD =2500 m,

U)
(n

100-

1104_ _ __ _

200 210 220
Ronce (K-KN

Figure 5.18: Transmission loss for the ICE problem.
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