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ABSTRACT

We construct explicitly a Helmholtz free energy, a kinetic
relation and a nucleation criterion for a one-dimensional
thermoelastic solid capable of undergoing either mechanically-
or thermally-induced phase transitions. We study the hysteretic
macroscopic response predicted by this model in the case of
quasi-static processes involving stress cycling at constant
temperature, thermal cycling at constant stress, or a
combination of mechanical and thermal loading that gives rise
to the shape-memory effect. These predictions are compared
qualitatively with experimental results.

1. Introduction. A purely mechanical continuum theory of stress-induced solid-solid

phase transitions in tensile bars in stable equilibrium was given by Ericksen (1975) on the basis

of the one-dimensional theory of nonlinear elasticity. The principal ingredient of Ericksen's
A

theory is a non-monotonic relation c = ((y) between the longitudinal strain y and the stress a in

the bar: as the strain increases from zero, the stress at first increases to a maximum, then

decreases to a minimum and finally increases again. The associated strain-energy per unit mass
A
v(y) is thus non-convex. If the stress applied to the bar lies between the values associated with D

the local maximum and the local minimum, the bar may find itself in a configuration in which

the stress is constant throughout, as required for equilibrium, but the strain is only piecewise -
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constant, taking any of the three values consistent with the given stress on the three branches of

the stress-strain curve. Each branch of the stress-strain curve is associated with a phase of the

material, the declining branch corresponding to an "unstable phase". A state in which stress is

constant but strain suffers jump discontinuities along the bar is viewed as a phase mixture, and

the points where the strain jumps are called phase boundaries. Let p be the mass per unit

reference volume of the bar. At a fixed stress a that permits phase mixtures, the potential energy
A

per unit reference volume G(y, C) = P W(y) - cy as a function of strain exhibits two minima

separated by a maximum. The minima correspond to equilibria in the high- and low-strain

phases, while the maximum corresponds to equilibrium in the unstable phase.

A one-parameter family of equilibria of the kind described above in which the parameter

is the time t is called a quasi-static motion of the bar. Such processes generally involve moving

phase boundaries: as a phase boundary sweeps past a particle of the bar, the state of that particle

jumps horizontally in the plane of the stress-strain curve from one rising branch to another, or

from one potential energy well to another. Phase boundary motion is generally dissipative, even

for a thermoelastic material (Knowles, 1979). An energetic notion of driving traction f(t) acting

on a phase boundary was shown by Abeyaratne and Knowles (1988) to arise naturally in the

study of quasi-static processes. If the bar occupies a portion of the x-axis in a reference

configuration, and if x = s(t) represents the (Lagrangian) location at time t of a moving phase

boundary., then the rate of dissipation of mechanical energy associated with this phase boundary

is f(t)As(t). where A is the referential cross-sectional area of the bar. As shown in Abeyaratne

and Knowles (1988), the construction of a determinate theory of quasi-static motions of the bar

requires the introduction of a kinetic relation governing the speed of phase boundaries and hence

the rate at which phase transitions proceed, as well as a nucleation criterion that signals the onset

of such a transition. A natural form for a kinetic relation is s = V(f), where V is a function

determined by the material; one type of nucleation criterion specifies a critical level f, of driving

traction, also determined by the material. The predictions of the purely mechanical model
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developed by Abeyaratne and Knowles (1988) are qualitatively consistent with some

experimental observations.

Phase transitions are greatly influenced by temperature, and a purely mechanical theory

of the kind described above is incapable of accounting for their thermal aspects. In generalizing

to the case of a one-dimensional thermoelastic material capable of undergoing phase transitions,
A

one makes use of the Helmholtz free energy density '(y, 0), the kinetic relation 's = V(f, 0) and

the nucleation 4riterion f = f.(0), where 0 is the absolute temperature. A general discussion of

such a theory in three dimensions, accounting for both thermal and inertial effects, shows that the

notion of driving traction again arises naturally, but now in connection with the rate of entropy

production; see Abeyaratne and Knowles (1990). The purposes of the present paper are to
A

construct explicit examples of 4f, V and f,, and to compare the predictions of the associated

model of quasi-static macroscopic response with experiments on shape-memory materials,

paying special attention to the effects of temperature. Previous studies concerned with the

modeling of macroscopic response of shape-memory materials include work based on a

statistical model by Muller and Wilmansky (1981) and Achenbach and Miuller (1985), and

papers by Falk (1980, 1988), in which a special Helmholtz free energy is studied, but kinetics

and nucleation are not. Tanaka, Tobushi and Iwanaga (1988) attempt to account for kinetics by

imposing a relation of the form s = F(f, 0), where s is the volume fraction of one of the phases,

rather than the more natural kinetic law s = V(f, 0) employed here. Jiang (1988) employs a

thermoelastic model along with specified kinetics and nucleation criteria in the context of finite

anti-plane shear to predict qualitatively some experimental results of interest in geophysics.

Although we limit our attention here to quasi-static processes, one of the primary

motivations for the present model is the possibility that, because of its simplicity, it may prove

amenable to an analytical study of fast phase transitions that takes thermal effects into account.

We hope to carry out such a study, making use of analysis of the kind utilized in our earlier work
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on fast stress-induced phase transitions in a purely mechanical context; see Abeyaratne and

Knowles (1991ab, 1992ab).

The next section is devoted to the basic one-dimensional thermrnomechanical framework in

which the model will be constructed; we describe the details of mixed-phase equilibrium states in

a tensile bar, the associated quasi-static processes and the determination of the macroscopic
A

response. The explicit Helmholtz free energy N'(y, 0) and the corresponding potential energy
A

function G(y, C, 0) = Pv(Y, 0) - cry are constructed in Section 3. In Section 4 we derive a kinetic

relation by using an argument based on thermal activation theory, and we describe the nucleation

criterion to be used. The final section contains the detailed predictions of the model for stress-

cycling at constant temperture, for thermal cycling at constant stress and for the shape-memory

effect. We also compare these results qualitatively with some experimental observations

reported by Burkart and Read (1953), Grujicic, Olson and Owen (1985b), Krishnan and Brown

(1973), Muller and Xu (1991) and Otsuka and Shimizu (1986).

2. Thermo-mechanical framework. We describe here the continuum thermo-

mechanical setting within which we shall apply the detailed constitutive model to be constructed

in §§ 3 and 4.

2.1. Equilibrium states. Consider a uniform tensile specimen with length L, cross-

sectional area A and mass density p in a reference configuration. The specimen is viewed here

as a one-dimensional bar that occupies the interval [0, L] of the x-axis in this configuration.

When the bar is stretched to an equilibrium state, the displacement is assumed to be continuous

and piecewise smooth. The bar is modeled as a thermoelastic solid, with a given Helmholtz free
A

energy function N(y, 0) per unit mass; 0 = 0(x) is the absolute temperature, assumed continuous

and piecewise smooth, and y = y(x) is the longitudinal strain, both at the particle whose

Lagrangian coordinate is x. We require the strain to satisfy y > -1, so that the deformation is
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one-to-one. The stress 0(x) and specific entropy Tj(x) at a particle are constitutively related to

the strain y(x) and the temperature O(x) by

A A A A
(y, O)) -- p (7, ), '1 = 1(y, O) -- O(y,). (2.1)

Suppose that the bar is in mechanical and thermal equilibrium with a given stress applied

at each end and in the presence of a heat bath at a given temperature, body forces being absent.

Then necessarily 0(x) = 0 = constant, 0(x) = 0 = constant along the bar, where a is the applied
A

stress and 0 is the temperature of the surroundings. If the stress response function o(y, 0) is

monotonically increasing in y at the given temperature, then (2.1)1 is satisfied at the given stress

o and the given temperature 0 for only one value of the strain y, which therefore is also constant

everywhere in the bar. It then follows from (2.1)2 that T1 has this property as well. Thus in the

presence of a monotonic stress-strain relation, homogeneous equilibrium states of stress and

temperature give rise to homogeneous states of strain and entropy as well.

A

On the other hand, suppose that at the temperature 0, the function a(y, 0) at first increases

with y, then decreases and finally increases again, as is the case in what follows; see Figure 1.

Then if the given stress a is in a suitable range, (2.1) 1 is satisfied for three different values of the

strain; two of these are on the rising branches of the stress-strain curve (branches 1 and 3 in the

figure), while the third is on the declining branch (branch 2). It is now possible to have

distributions of strain and entropy that are only piecewise constant along the bar, despite the fact

that stress and temperature are everywhere constant. In this event, two particles that bear distinct

strains at the same stress and temperature are said to be in different phases of the material. The

different branches of the stress-strain curve are thus identified with different material phases. and

we speak of a low-strain phase, an intermediate "unstable phase", and a high-strain phase

corresponding respectively to branches 1, 2 and 3. We shall be concerned in particular with
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two-phase equilibrium states at a stress a and a temperature 0 for which y = y and r1 = i for

0- x < s, y = + and T1 = for s < x < L, always with :' in the high-strain phase, + in the
A A +"

low-strain phase. Since necessarily a(y, 0) = o(Y, 0) = a, these strains are related to the stress

through

y=y 3(a, 0), - = y l ( a, 0), (2.2)

A A A
where y1(., 0) and Y3(., 0) are the branch-I and branch-3 inverses of a(-, 0); see Figure 1.

(Numerical subscripts will always refer to the corresponding branch of the stress-strain curve.)

The interface x = s at which the strain and entropy jump is a phase boundary. The overall

elongation of the bar in such a two-phase equilibrium state is given by

A A
y s + y (L - s) = Y3(a, 0)s + y1(a, 0)(L-s). (2.3)

2.2. Quasi-static processes. We now consider quasi-static processes, by which we

mean 1-parameter families of equilibrium states of the kind described above, the parameter being

the time t. The applied stress and the heat bath temperature are now functions of time: a = oct),
+ + + +

0 = 0(t), and in a two-phase quasi-static process, one also has y = y(t), fl = rj(t), s = s(t) and

Let

A A A
(y, 0) = N(y, 0) + "(Y' 0) (2.4)

be the internal energy of the material, measured per unit mass. For the two-phase quasi-static

process. set
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+ A±
E(t) = e(y(t), 0(t)), (2.5)

so that the total internal energy in the bar at time t is

E(t) = pA [ (t)s(t) + i(t) (L-s(t))]. (2.6)

If Q(t) is the rate at which heat is supplied to the bar at time t, the first law of thermodynamics

requires that

a(t)A&t) + Q(t) = E(t). (2.7)

In the present setting, the second law of thermodynamics asserts that

Q(t)
r(t) = H(t)- 0(t) > 0, (2.8)8(t)

where

H(t) = pA [rl(t)s(t) + i(t)(L-s(t))] (2.9)

is the total entropy in the bar and F(t) is therefore the rate of entropy production. Eliminating

Q(t) between (2.7) and (2.8) and invoking (2.1), (2.3)-(2.6), (2.9) yields the following alternate

representation for F(t):

F(t) = f(t) A s(t)/0(t), (2.10)
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where we have set

f(t) = P { I(t) - iW(t)} - a(t) {(t) - j'(t)}, (2.11)

and

± A+
N(t) = vY(,(t), 0(t)). (2.12)

The inequality (2.8) of the second law may thus be written in the form

f(t) s(t) 2! 0. (2.13)

There is an alternative representation for f(t) in terms of the Gibbs free energy per unit
A

reference volume g(y, 0) defined by

A A A

g(y, 0) = P (y, 0)-O(, ) y; (2.14)

A + A
since a(y, 0) = o(', 0) = a, one finds from (2.14), (2.11) and (2.12) that

f(t) = +g(t) - g(t), (2.15)

where

+ A±

g(t) = g(y(t), 0(t)). (2.16)

Thus f coincides with the jump in the Gibbs free energy density across the phase boundary.
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The representation (2.10) for the entropy production rate shows that f may be regarded as

the sole agent of entropy production, which, in the present circumstances, occurs only because of

a moving phase boundary. A result entirely analogous to (2.10) holds under much more general

circumstances, as was shown in Abeyaratne and Knowles (1990). The analysis in that paper

pertains to a motion involving strain discontinuities in an arbitrary continuum in three

dimensions, and it accounts both for inertial and thermal effects; it shows that the entropy

production rate F is composed of three parts: F = F C + S .co The first, , arises from

internal dissipation in the bulk material of the continuum, vanishing if the material is

thermoelastic; the second, F , arises from heat conduction, vanishing in the presence ofcon

uniform temperature fields. The third contribution, Fs , arises from moving surfaces of strain
discontinuity. The representation for F is strictly analogous to (2.10) and involves a single

s

local, scalar "agent of dissipation" f ; in quasi-static processes, this f relates to the jump in the

Gibbs free energy across the moving surface precisely as in (2.15). We call f the "driving

traction" for two reasons: first, as shown in Abeyaratne and Knowles (1990), for slow isothermal

processes in an arbitrary continuum, f may be interpreted energetically as a mechanical "traction"

- or force per unit area - acting pointwise on the moving surface of strain discontinuity.

Secondly, the jump in the Gibbs free energy in a phase transition is often referred to by materials

scientists as the "driving force" associated with the transition. In the present one-dimensional

context, we shall speak of fA as the driving force, f as the driving traction.

If the driving traction vanishes at each instant, the quasi-static process is said to take

place "reversibly", since (2.13) then permits s to have either sign, so that the phase boundary max

move in either direction, and consequently the transition may proceed either from the low-strain

phase to the high strain phase, or vice versa. Otherwise, (2.13) and the sign of f fix the sign of S.

and hence the sense of the phase transition: if f > 0, a particle jumpsfrom the low-strain phase to

the high-strain phase upon passage of the phase boundary; if f < 0, the reverse is true.

-9-



We may use the first law (2.7), together with (2.1), (2.3)-(2.6), (2.11), (2.12), to obtain

the following representation for Q(t):

Q(t) = pAO(t) T s(t) + t (L-s(t)) f- - + X(t) pAs(t). (2.17)dtdt p

where

X(t) = O(t)( (t) - 7-l(t) (2.18)

is the latent heat associated with the transition. The contents of the second brace in (2.17)

represent the heat given off by the bar when a unit mass of material crosses the phase boundary.

If the transition takes place reversibly, so that f(t) = 0, this heat coincides with the latent heat.

In what follows, we shall also need to consider single-phase quasi-static processes in

which the equilibrium state at each instant is such that the strain and the entropy are uniform

throughout the bar, and the strain belongs to the same branch of the stress-strain curve

throughout the process. For processes of this kind, the thermoelastic nature of the material

implies that the entropy production rate V(t) vanishes at every time t, so the second law (2.8) is

automatically satisfied.

2.3. Macroscopic response. In the thermomechanical loading processes of interest here,

the histories of the thermal variable 6(t) and one of the two mechanical variables c(t) and 8(t) are

to be prescribed, and the resulting history of the remaining mechanical variable is to be

determined. In an isothermal constant-elongation-rate mechanical loading process, for example.

one would specify 0(t) and 8(t) to be given constants during the process, with a(t) to be found. In

thermal loading, one might prescribe constant values for o(t) and 0(t), with 8(t) to be determined.

When the quasi-static process generated by such a program of loading involves two phases, one
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first makes use of (2.2) to express t) and y(t) in terms of 0(t) and 0(t); substituting these

expressions into (2.3) yields a single equation relating 8(t), o(t), 0(t) and s(t):

A A

8(t) = 'Y3(a(t), 0(t)) s(t) + yl(a(t), 0(t)) (L-s(t)). (2.19)

Since in any program of loading only two of the four functions of time entering (2.19) are

known, further information must be supplied to yield an additional equation and hence a

determinate theory. Requiring the process to take place reversibly, for example, would provide

the additional equation f = 0. More generally, such supplementary information is provided by

the kinetic relation controlling the evolution of the phase transition. We take this to be a relation

which gives s(t) (a measure of the rate at which the transition proceeds) in terms of the driving

traction f(t) and the temperature 0(t); such a relation can be written in the form:

s(t) = V(f(t), 0(t)), (2.20)

where V is a given function determined by the material. Because of the entropy inequality

(2.13), the function V must satisfy

V(f, 0)f >_ 0 (2.21)

for all permissible values of f and 0. With the help of (2.2), (2.12) and (2.11), one can express

f(t) in terms of 0(t) and 0(t), so that (2.20) may equally well be written in the form

s(t) = v(0(t), 0(t)), (2.22)
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where v is a constitutively determined function related to V. Some discussion motivating the

form (2.20) for the kinetic relation may be found in Abeyaratne and Knowles (1990, 1992b).

For a loading process in which 8(t) and 0(t) are known, (2.19) and (2.22) comprise two

equations for s(t) and a(t); if a(t) and 0(t) are known, (2.19) and (2.22) are to be used to find s(t)

and 8(t).

We shall encounter quasi-static processes in which the entire bar is in a single phase for

an initial interval of time and in two-phase states for subsequent times. The instant of time and

the point in the bar at which the transition from the single-phase to the two-phase configuration

is initiated are determined by a nucleation criterion. Suppose first that, until a certain instant, the

bar is in a uniform low-strain configuration. As in our purely mechanical model (Abeyaratne

and Knowles 1988, 1991ab, 1992ab), we assume that the transition to the mixed-phase

configuration occurs at x = 0 when the driving traction f at the incipient phase boundary would

be at least as great as a certain materially-determined critical value: f _ f13 (0). The particle at

x = 0 then jumps from branch 1 of the stress-strain curve, or the low-strain phase, to branch 3, or

the high-strain phase, causing a phase boundary to enter the bar and then move in accordance

with the kinetic relation. Since the velocity of the phase boundary must be positive shortly after

nucleation, the entropy inequality (2.13) requires f13 2t 0. Suppose that the phase boundary

continues to move until it reaches x = L, at which time the bar is entirely in the high-strain phase.

If a quasi-static unloading process is now begun, the bar will remain in the single-phase,

high-strain state until the stress and temperature are such that f reaches the nucleation value

f3 1(0) for the reverse transition. When this occurs, the particle at x = L will jump to the

low-strain phase, and a phase boundary will enter the bar from this point. The entropy inequality

requires that f31  0.
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In real materials, the location of the nucleation site is presumably strongly influenced by

non-homogeneities. Because our bar is uniform, the location of the nucleation site is rather

arbitrary. In the case of a bar rendered "non-homogeneous" by means of a slight uniform taper

with the small end at x = 0, the low-strain-to-high-strain transition would necessarily start at

x = 0, the reverse transition at x = L, as we have assumed above; see Abeyaratne and Knowles

(1988).

A

In the next two sections, we construct an explicit Helmholtz free energy function W(Y, 0),

a particular kinetic response function V and a specialized version of the nucleation criterion. The

Helmholtz function is of the non-convex type associated with non-monotonic stress-strain

relations of the kind represented schematically in Figure 1. The kinetic response function V is

modeled on the notion of a "thermally activated" phase transition. When utilized in the
A

framework set out above, the functions W and V so constructed, together with the nucleation

criterion, serve to provide a simple pilot theory whose predictions of quasi-static response can be

compared with experiment.

3. Helmholtz free-energy function. In this section we construct explicitly a particular
A

Helmholtz free-energy function W that is capable of modeling certain features of thermoelastic
A

phase transformations; the final form of W is displayed in § 3.4. Our intent is to supply a model

which, while taking thermal effects into account, preserves the simplicity of the "trilinear"

stress-strain relation used in some of our earlier purely mechanical studies of stress-induced

phase transitions in solids; see Abeyaratne and Knowles (1991ab, 1992ab). In the latter context,

these investigations show that the trilinear model permits, for example, the construction of

explicit global solutions of some dynamic problems involving fast phase transitions. Since there

are major open questions as to when such dynamic problems are well-posed, it is desirable to

have - if possible - a simple, analytically amenable model that will provide helpful insights

before undertaking computations based on more realistic assumptions. In the present paper, we
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develop such a model and apply it to the study of thermal and mechanical quasi-static load

cycling (Section 5). In the future we hope to study fast phase transitions in the present setting.

3.1. The stress-strain-temperature relation. The starting point in our construction of
A

the Helmholtz free energy function is the relation C = (y, 0) between stress and strain at fixed

temperature, which will be specified piecewise in the y, 0- plane. Let y = y., 0 = 0, > 0 be the

critical point in this plane: it is assumed that for 0 > 0., the material exists in only a single phase

no matter what the stress level, while two phases are available for 0 < 0. The stress response

function a must therefore be a monotonically increasing function of Y for 0 > 0.. On the other

hand, at each temperature 0 < 0., as the strain y increases from -1, we require 8 to increase for

-1 <Y y < yM(0), then decrease over an intermediate range yM(0) < y < yr(0), and finally increase

again, as in Figure 1. In order to make this more precise, let YM(0) and Ym(0) be linear functions

of temperature defined for 0 < 0 5 0. by

Y'M(0) = Y. + M(0 - 0.) , Y m(0) = Y, + m(0 - 0.), 0 < 0 < 0, (3.1)

where y. , M and m are material constants, with y, > 0. We require that -1 < YM(() < Ym(0), so

that the constants M and m, though not necessarily positive, must satisfy

m < M <(I + 4)/0.. (3.2)

The quadrant y > -1, 0 > 0 of the y, 0-plane is divided into four regions P, PI' P. and P3 by the

lines 0 = 0, y = ym(0) and y = ym(0). These regions are defined by
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P= {(y, _> 0 : , (3.3)

PI, ) <yyM(0),0<0<0.1, P3= ((y,)Iy2:y(0),),0<0<04 (3.4)

P2 = {(Y, O), M(O) <Y< (O), 0 < O < O.), (3.5)

where yM(0 ym(0) are given by (3.1); P, P1 and P3 are shown dotted and hatched in Figure 2. It
A

is now assumed that for each fixed 0 < 0*, the stress response function a(y, 0) as a function of

strain y increases linearly for -1 <y < YM(), decreases linearly for M(0) *y (), and finally

increases linearly for y _ ym(0). Thus at each temperature below 0., the stress-strain curve is a

"trilinear" special case of the rising-falling-rising curve of Figure 1. We write

4ty- Igta (0 - 0 0)  on P1

A ( -'M (o)

a(, 0)= I Y - - M( ) 1 - .t (0- 0 0) on P2 , (3.6)

It (y -71.) - It~x (0 - 00)  on P3 '

where I, a, 00 and YT are material constants whose physical meaning will be made clear below;

all four are positive, and 00 < 0* as well. Since we intend not to consider points in the single-
A

phase region P in what follows, we do not specify a on P. Bearing in mind that different

material phases are associated with the different branches of the stress strain curve, we may

speak of the respective regions P1 and P3 as the low-strain phase and high-strain phase regions of

the y, 0-plane; P2 is the region that supports the intermediate "unstable phase".

In the trilinear case, the salient features of the stress-strain curve at constant 0 are shown

in Figure 3. The respective local maximum and minimum values of stress are given by
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OM(0) =It[y/M(O) - (x (0 - 00)], cre(0) = g1 [ym(0 ) - yT" -a (0 - 00)], 0 < 0:5 0__ . (3.7)

(It should be noted that, although Figure 3 as shown corresponds to a temperature at which the

local minimum am(0) is negative, this need not be the case at all temperatures.) From (3.1), (3.7)

and the requirement aM(0) > (Ym(0), we find that the inequality yT > (M - m)(0. - 0) must hold

for all 0 betkveen 0 and 0.. In view of (3.2) this will be the case if and only if the constants M,

m, y T and 0. satisfy the restriction

r > (M - m) 0.. (3.8)

Figure 3 also shows that I is the elastic modulus of both the low- and high-strain phases of the

material; the material constant yT represents the horizontal distance between branches 1 and 3 of

the stress-strain curve and is called the transformation strain relative to the low-strain phase. The

coefficient of thermal expansion is x in both low and high-strain phases. The meaning of 00 will

be explained later.

A

3.2. Construction of W. From (2.1)1, we may write

A Y A
pw(y, 0) f (y', 0) dy'+ pep(0) for (0, 0) in P1 2 P + P3 (3.9)

where (p(0) is an as yet undetermined function of temperature, assumed to be continuously
A A

differentiable for 0 < 0 < 01. By (3.6), a is a continuous function on the strip P1 + P2 + P3 ' so

as defined by (3.9) will be continuously differentiable there. A direct calculation using (3.6)

gives
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(0 
onPi

2 2
f)d . {'T [y- YM(e)1 2 - tYm(O)- (Y "6

J 2 a (0 - 0 0) onP 2 ' (3.10)
(0/ 2[ym() M(O)-"T o

2. {( )2 +,Y[y ~)+fM )YTInPay(e Bo) on P3 .

For a thermoelastic material, the specific heat at constant strain is given by

A
C = _90 0i(y, 0). In view of (3.1), the function on the right side of (3.10) is linear in 0 on the

high- and low-strain regions P1 and P3. so by (3.9), the specific heat is the same in the high- and

low-strain phases of our material, being given by

c = -0 q"(0). (3.11)

We now require that this specific heat be constant, this determines (p to within an inessential

additive linear function of 0 as

(p(0) = - cO log (0/00, 0 < 0 < 0, (3.12)

where the constant c is the specific heat at constant strain common to the high- and low-strain

phases of our material. Using (3.10) and (3.12) in (3.9) provides the Helmholtz free energy in

the form
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'9 -? -pa y (o 0()o P c 0 log(0/ 0) o n P ,

22

A I. Y'T [ Y - YM ( ) ] 2 " [ym ( ) " _M_,( O) ] 2

PW(' = - 2 Ym(8)) ... Yy( - o) - P c 8 log(0/0) on P2 , (3.13)

2" 1(y- 'YT) ' + -fT [Tm,(O) + yM(0) - yT] } " a y' ( 0 / ( - 00) - p c 0Olog(O/O 0 ) on P3'

where (0) and ym(0) are given by (3.1).

3.3. Potential energy, driving traction and latent heat. Since stress and temperature

are uniform throughout the bar, it will often be convenient to utilize expressions for the

quantities of physical interest in terms of a and 0. Because the relation (3.6) between stress and

strain at fixed 0 is not globally invertible, such expressions must be obtained separately for each

phase. Inverting the restrictions of (3.6) to P1 and P3 yields the form of the relations (2.2)

appropriate to the present trilinear material:

-A 0 + A

Y=Y3(aO )--YT+-+o(O-00 ) onS 1, y=y 1(a, 0)- -+a(0-00) onS 3 ; (3.14)

here SI and S3 are the regions in the 0, a-plane where the low- and high-strain phases exist,

respectively; they are defined by

A
S ={(, a) I F(-1, 0) < a __ CM(6), 0 < 0 < }, (

A (3.15)

S {3 (O, ) 1m(0) a O< 0 0.1. }
The coexistence region S = SI riS 3 corresponds to the values of 0, a for which the low- and

high-strain phases can coexist. The region S is the union of the two hatched regions in Figure 4:

for definiteness, the figure is drawn under the assumption that the material parameters satisfy
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certain inequalities. If this is not the case, the region would differ from that shown in Figure 4 ii

some details.

In terms of 0 and a, the Gibbs free energy per unit reference volume for each phase is
A A A

given by gk(' 0) = g(yk(O, 0), 0) for k = 1,2,3; for the low- and high-strain phases, one finds

from (2.14), (3.13) and (3.14) that

A I
gl(;, 0)=-_ [a + g (0- 00)] 2 + p (p(0) onS 1, 1

(3.16)
A-0 + +(93( ' 0) 1a'+gat( 0 0) + gyT 2----m() M(l+p() on S3 '

where (p(0) is given by (3.12). Schematic graphs of g1' g2 and g3 as functions of stress ca at a

fixed temperature 0 > 00 are shown in Figure 5. The figure shows that the present model

behaves in the manner of the "cusp catastrophe" as in, for example, the van der Waals model of

the gas-liquid phase transition; see the discussion in Chapters 5 and 6 of Pippard (1985).

When the bar is in a two-phase equilibrium state, the associated driving traction f can be

expressed in terms of 0 and a on the coexistence region S with the help of (2.15), (2.16) and

(3.16):

A A Ar . l
f= f (C,)-gl(Y, ()-g3(Y,0)=YT13+ gt (0-00)2 [YT-yM(0)'Ym( 0 ) ]I onS. (3.17)

It is helpful to introduce the potential energy G(y, a, 0) per unit reference volume by

A A
G (, Cy, 0 =p(y, 0) - o;Y, y> -1, > o(-1, 0), 0 < 0 < 0.; (3.18)
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note that although G(, a, 0) is not the same as the Gibbs free energy per unit volume, from
A A A

(2.14), it is clear that G(y, a(y, 0), 0) = g(y, 0), and hence that G(yk(a, 0); a, ) = gk(a, 8). Let 6
A

be fixed in (0, 0.). As y varies with a fixed in the interval a(-1, 0) < a < am(0), G has a single
A

minimum, and it occurs at a strain y =7 1(a, 0) in the low-strain phase. If a is fixed at a value

greater than aM(0), G as a function of y again has a single minimum, but now it occurs at a strain
A

_f = ,3(a, 0) in the high-strain phase. On the other hand, if am(6) _< a M(0), then G has two
A A

local minima at y =yl(a, 0) and y = 0'3(a, 8), and these are separated by a local maximum;

schematic graphs of G vs. y for various values of a, all at the same 0, are shown in Figure 6. The

stress a0(0) that appears in the figure is the stress at which the values of G at its two minima are

the same; it i given explicitly in (3.27) below

From (3.18) and (2.1), one finds that, at each local extremum of G( ; a, 0), the quantities
A

a, y and 0 are related by a = a(Y, 0), so that at an actual equilibrium state, the strain at each

particle of the bar must be an extremal of G( ; a, 0).

A A

The difference G(yI (a, 0); a, 0) - G(y 3(a, 0); a, 0) of the values of G at its minima

clearly coincides precisely with gI(a, 0) - g3(0, 0) and hence also with the driving traction

A
f(a, 0) of the two-phase equilibrium state. When the high-strain minimum is less than the

low-strain minimum, f is positive, so by the entropy inequality (2.13), the phase boundary moves

to the right, creating more high-strain phase particles at the expense of the low-strain phase. Thus

the phase corresponding to the lesser minimum of G is preferred. The same is true when f is

negative. Thus we shall call a phase stable if it corresponds to an absolute minimum of G,

metastable if the associated extremum of G is a local minimum that need not be absolute, and

unstable if it corresponds to the local maximum of G. If in a two-phase mixture both phases are

stable, the driving traction vanishes, and one speaks of phase equilibrium. It is important to keep
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in mind, however, that during a quasi-static two-phase process, one of the phases may be merely

metastable; in the case of solids, metastable states may persist for relatively long times.

The values of G at the two local minima will shift with both stress and temperature. We

now assume that two-phase states exist when a = 0 and 0 = 00 ; the point (0, a) = (60 0) is thus

required to lie in the coexistence region S, so that

CM(00) << (M(00) , (3.19)

A

and the driving traction f of (3.17) is defined at the unstressed state with temperature 00. We

further assume that at the temperature 00 in the stress-free state, both phases are stable, so that

the values of G at the two minima coincide, and

A
f(0, e0) = 0; (3.20)

00 is then called the transformation temperature. It is easily shown from (3.17) and (3.1) that

(3.20) imposes the restriction

T + M+m
S 2( 0)

which we assume to hold from here on. Conversely, (3.21), together with (3.1), (3.2), (3.7) and

(3.8), imply that (3.19) holds. With (3.21) in force, the driving traction f can be written as

A P X0  (.2
f = f (c, 0) = Y'T C _1 0 (0- 0), (3.22)

0
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where the material constant X 0 is given by

'0=~ Y%( 2  -a. (3.23)

From (2.1)2 , (2.18), (3.13) and (3.14), the latent heat in the present model is found to be

S 0 0(3.24)
0

where X 0 is given by (3.23). Thus the parameter X0 represents the latent heat at the

transformation temperature e0 .

Since am () 5 a 5< aM(0) in a two-phase state, one finds from (3.22) that the range of f at

each e is given by

fro(0) < f -< fM(0), (3.25)

where

P x_0  P
f (0) E Y T Cm() - "6 (0 - 00 ), fM(0) YT M(O)- (-0) (3.26)

At a temperature 0, the stress a0 (0) at which the driving traction vanishes is found from

(3.22) to be given by
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0y I 0 0 , (3.27)

YT

so that by (3.22), f can be written as

A
f=f (a, 0) = YT [a- O(0)J; (3.28)

0(0) is called the Maxwell stress at the temperature 0. By the entropy inequality (2.13), the

phase boundary moves into the low-strain phase for a > 0(0), into the high-strain phase for

a < a0(0), and the bar is in phase equilibrium for a = a0(0). In particular, nucleation of the

low-strain to high-strain phase transition can only occur at a stress at least as great as the

Maxwell stress; an analogous remark applies to nucleation of the reverse transition.

From the discussion given above, it is clear that the portion S of the 0, a-plane in which

both phases can exist may be divided into regions in which each phase is stable. Referring to

Figure 4, we observe that the portion of the coexistence region S that lies above the Maxwell line

a = a0(0) corresponds to states 0, a for which the high-strain phase is stable, while below this

line, the low-strain phase is stable; on the Maxwell line, both phases are stable. In particular, at

the transformation temperature 80, the low-strain phase is stable in compression, the high-strain

phase is stable in tension, and in the unstressed state, both phases are stable.

3.4. Summary. Applicability of the model. For future reference, we list here in final
A A A

form the representations of W, a and Tj constructed above; we give only the restrictions of these

functions to the low- and high-strain regions P1 and P3 . Making use of (3.1), (3.21) and (3.23).

we find from (3.13) that
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(y- TI) - ta (y -yT)(0 0 P )+ C(0-0)-pc 0 log (0/) on 3 .

t0

From (3.6), the stress-strain-temperature relation is

A { ja y-.tou (0-e 0 ) onP 1

ay, 0) =) (3.30)

wa(Y-T)-P a ( 0 - 0 0) onP 3 .

Using (3.29) in (2.12 gives the entropy-strain-temperature relation as

j Y+c1 +log(0/%0)"] onP 1 ,

0

S(y T) - 4oa[ (0 -o 00) 3 on 3  .

According to (3.22), (3.28), the driving traction acting on the interface between a high-sain

phase on the left and a low-strain phase on the right in a phase mixture is

A P' 0f1f(oy)=yTo -- "0(0- 4)=YTL- S. (3.32)

P0

The material constants are subject to the inequalities (3.2), (3.8) and the restriction (3.21).

We observe that the form of the stress-strain-temperature relation (3.30) in the low- and

high-strain phases is linear in 0 - 00. so that one might expect the utility of the model to be

limited to modest values of the departure of the temperature from the transformation tempera-
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ture 0 Also, the nature of our model in the neighborhood of the critical point (y., 0.), near

which the plane is divided into wedge-like regions, is fundamentally flawed, in the sense that,
A

although '(y, 0) is continuous on the region -1 < y < -c, 0 < 0 < 0., this is not true of its gradient,

which, though continuous on the strip P 1 + P2 + P fails to be continuous at the critical point.

This is not the case, for example, with the Helmholtz free energy functions constructed by Falk

(1980, 1988) and by Jiang (1988) for martensitic transformations, both of which describe a

smooth bifurcation from single-phase to multiple-phase states near the critical point, as does the

corresponding function for the van der Waals fluid; see Pippard (1985). Furthermore, the

predictions of the present model are likely to be unrealistic near 0 = 0. As a result of these

limitations, we confine our attention to temperatures in a subinterval of the interval (0, 0.) that

includes 00 but is well removed from both 0 = 0* and 0 = 0.

In developing the present model, we have had the thermoelastic martensitic

transformation in mind as a prototype. In our setting, a transformation of this type is described

as follows. Suppose the tensile bar is in the reference configuration at the transformation

temperature 00, and therefore at zero stress. Assume the material is such that the latent heat ' is0~0

positive. If the bar is now heated to a temperature 0 > 00, still at zero stress, it follows from

A
(3.32) that f(0, 0) < 0, so the low-strain phase is stable. If instead the bar were cooled at zero

stress to a temperature less than 00, the high-strain phase would be the stable one. In keeping

with the terminology of materials science, we would then call the low-strain phase austenite. the

high-strain phase martensite. The reverse would be true if X 0 < 0. Although in real materials

martensite often exists in many forms, our model acknowledges only one.
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4. Kinetic relation and nucleation criterion. In the present section, we construct

explicit versions of a kinetic relation and a nucleation criterion of the form described in § 2.

4.1. The kinetic relation. The kinetic relation to be constructed here has the form

s = V(f, 0) introduced in (2.20). It is based on the classical notion of "thermally activated" phase

transitions; for related discussion, see Porter and Easterling (1981) and Weiner (1970). Our

presentation is meant to be illustrative and to provide a physically-based example of a kinetic

relation of the form (2.20). Indeed, not all phase transitions need be thermally activated, and it

may well be that kinetic relations not of the form (2.20) may be appropriate in some

circumstances; see Grujicic, Olson and Owen (1985a).

The construction depends critically on the potential energy function G(y, c, 0) defined in

(3.18). Consider a two-phase equilibrium state in the bar, with - as always - particles in the

segment 0 < x < s in the high-strain phase, those in s < x < L in the low-strain phase. In such a

state, the stress must be in the range Orm(0) < y < (YM(O) if the temperature is 0. The two-well

potential G then has two minima, and particles immediately adjacent to the phase boundary on

the left and the right must be in states that correspond to the high-strain and low-strain minimum,

respectively. As the phase boundary moves through the bar, the particle immediately in front of

the interface thus "jumps" from one local minimum to the other. The kinetic relation is

constructed by viewing this jumping process on an atomic scale: atoms undergo random thermal

fluctuations in their positions and velocities, and their energies vary accordingly. In order to

jump from one minimum of G to the other, an atom must acquire an energy at least as great as

that of the relevant "energy barrier" at the stress a and the temperature 0: for an atom undergoing

a low-strain to high-strain transition by jumping from the minimum on the left (corresponding to

branch 1 of the stress-strain curve) to the one on the right (branch 3) in Figure 6, this barrier -

call it B1 3 - is proportional to the minimum-to-maximum height b13(a, 0) shown in the figure.

Since the units of G, and therefore of b13, are those of energy per unit volume, we have
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B13 = b13(ay, 0)/r, where the absolute constant r is the number of atoms per unit reference

volume. For the reverse transition, the barrier is B31 = b31(a, 0)/r. Under suitable assumptions

about the statistics of this process, the probability that the energy of a single atom is at least as

great as, say, B, is exp(- B/ke), where k is Boltzmann's constant. The average rate at which

atoms jump from one minimum to the other is taken to be proportional to the probability of

exceeding the corresponding energy barrier. The velocity s of the phase boundary, being the

macroscopic measui , of the net rate at which atoms change from the low-strain phase to the

high-strain phase, is taken to be the difference of the average rates associated with the two

atomic transitions:

s = v(a, 0) = R{exp[- b 13 (a, 0)/rk0] - exp [- b3 1(a, 0)/rk0]}, (4.1)

where R = n/(rA), n is the frequency with which atoms attempt to surmount the relevant energy

barrier, and A is the referential cross-sectional area of the bar. For simplicity, we have assumed

that n is the same for both phase transitions. We also assume that n is independent of

temperature; see the discussion in Weiner (1970). Thus R is an absolute constant.

We next calculate the values of the energy barriers for the particular material described in
A

Section 3. From Figure 6 and the fact that G = G(yi(a, 0); a, 0), i = 1,2,3, at the extrema, it is

clear that

b 13(a, 0) = G (72(Y, 0); a, 0) - G( y(a, 0); a, 0),

(4.2)
(A 

A

b3 1(a, 0) = G(Y2(a, 0); a, 0) - G(Y3(a, 0); a, 0).

A
Using (3.7) and the explicit form of W given in (3.13) to calculate G from (3.18) leads to
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bl 3(a, ) = 2 DO)[a m()]

(4.3)

b3 1(o, 0) = 2 D(O)

where

D() = a M(O) - Ym(O), 0 < 05 < .. (4.4)

Since aM(0) > am(O), necessarily D(0) > 0. By making use of (3.7), (3.1), (3.21), (3.23) and

(3.27), one can show that ao(0) = [aM(O) + cm(0)]/2 . This fact, together with (3.28), allows

one to express the b's in (4.3), and hence the kinetic relation (4.1), in terms of driving traction f.

The result is

f2+y D2(0)/4 1
T= V(f, 0) M 2R exp sinh - . (4.5)f)2 [-T r k OD(O) 2rk0

Clearly, V is odd in f at each 0, and V(f, 0)f - 0, as required by the entropy inequality; see (2.21).

Moreover, one can show that, at each fixed 0, V(f, 0) increases monotonically with f in the range

(3.25). From (3.22), it then follows that v(a, 0) increases monotonically with a for each 0. A

plot of the relation (4.5) when recast in terms of appropriate dimensionless variables will be

shown later (see Figure 8).

If the driving traction is small, so that quasi-static processes take place in a nearly

reversible manner, one might linearize (4.5) with respect to f, obtaining

s= v(O) f, (4.6)
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where v(O) is given by

R

V(0) exp -ITD(0)/(8rk0)] , 0<0<0,. (4.7)
rk0

4.2. The nucleation criterion. For simplicity, we now assume that the nucleation levels

of driving traction f13 
-> 0 and f3 1!5 0 are independent of 0 and are thus material constants. Then

by (3.22), nucleation occurs when stress and temperature are such that

PT 0 00 0 ) 213 (low-strain to high-strain),

u (4.8)

TCT - P0 0 ( - f31  (high-strain to low-strain).

The nucleation levels of stress as functions of temperature are found from (4.8) to be

f13- + ° (0- 0), 31(0) =- +7 6(0 00), (4.9)
YT T00 YT VT0 0

for the two types of phase transition. On the other hand, the nucleation levels of temperature as

functions of stress are given by

0 1 3 (a) =60 (P1 T f13 031(a)=00 1+ fTf31 (4.10)
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Suppose momentarily that the material is such that X 0 > 0, so that the low-strain phase is

austenite, the high strain phase martensite. Assume that the bar is in the reference configuration

at zero stress and at the transformation temperature O . Upon cooling at zero stress, martensite

will nucleate at the temperature 013(0), which by (4.10) 1 is necessarily less than 00 in the

materials science literature, 013(0) is denoted by Ms and is called the "martensite start

temperature". One can similarly identify 031(0) with the "austenite start temperature" A .

5. Quasi-static processes. Here we use the explicit forms of the Helmholtz free energy

of § 3 and the kinetic relation and nucleation criterion of § 4 to study quasi-static thermo-

mechanical processes of the kind described in § 2.3. Let us consider a process of this kind in

which the bar remains entirely in the low-strain phase until the instant at which the high-strain

phase is nucleated at the left end of the bar, thus generating a two-phase process. We take the

nucleation instant to be the time t = 0, and we wish to study the histories a(t), 0(t) and 8(t) of

stress, temperature and elongation d,!-ing the subsequent evolution of the two-phase state. By

the nucleation condition (4.8) 1, we have the initial condition

00 7T o(O) - p XO [0(0) - 00] = 00 f 13 " (5.1)

As shown in § 2.3, the macroscopic response of the bar is governed by (2.19) and (2.22). For the

material described in § 3, (3.14) can be used to specialize (2.19) to

Ys+ -+ a(00 L; (5.2)

it follows that during a quasi-static process,
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=T- - + - a . (5.3)

We now use the kinetic relation (4.1 ) with the energy barriers expressed in terms of stress and

temperature by means of (4.3). Eliminating s between (4.1) and (5.3) leads to the "master

equation" relating 5(t), a(t) and 0(t) during an arbitrary quasi-static process:

- a - =- v(a, 0), (5.4)
L L

where

v(a, 0) = R exp Y0 O-M(O)- -(e)] p "2rk0 -- EO- (0 ) ' (5.5)

and cM(0) and am(0) are given by (3.7), (3.1).

In the remainder of this section, we investigate the detailed predictions of the present

model for isothermal stress cycling, for temperature cycling at constant stress, and for a process

that illustrates the shape-memory effect. We assume throughout that X 0 > 0, so that the low

strain phase corresponds to austenite.

5.1. Isothermal mechanical loading and unloading. We first consider an isothermal.

grip-controlled quasi-static process in which the elongation rate is prescribed. The specimen is

initially unstressed at a temperature 0, which we assume to exceed the stress-free nucleation

temperature 013(0). By (5.2) with s = 0, Y = 0, the initial elongation 8 0 relative to the reference

configuration is 8 0 = c (0 - 00) L. The bar is then stretched at a constant elongation rate 8 = q.
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the temperature being held constant at the value 0. We wish to determine the resulting relation

between the stress a and the elongation A = 8 - 80 relative to the initial configuration. During the

initial period of loading, the bar remains in the low-strain phase, and this relation is simply

a = g± A/L. When the stress reaches the critical value a13(0) for the temperature 0 given in

(4.9) 1, nucleation of the high-strain phase will occur at the left end of the bar, the critical

elongation A13(0) corresponding to Y13(0) is given by

A13(0) = Y13(0)L4Lt. (5.6)

As the phase boundary moves into the bar, the master equation (5.4) that controls its motion

becomes a differential equation relating a and A:

dc = _t[1 -- v(a, 0)1; (5.7)
dA L q

here the kinetic response function v is understood to be given by (5.5). Thus the a - A relation is

the solution of the initial value problem consisting of (5.7) for A _ 0, together with the initial

condition 0 = 013(0) at A = A13(0) ; this solution will depend on the temperature 0 and the

loading rate q as parameters.

One feature of the rate-dependent response governed by (5.7) may be noted immediately.

The initial slope of the a - A curve after nucleation will be negative for load rates q less than the

critical value 0T v(o 1 3 (0), 0), positive for load rates greater than this value . Thus depending on

the loading rate, either "load drop" or "load rise" can occur in the initial response caused by the

emergence of the phase boundary.
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Suppose next that the constant-elongation-rate loading process is maintained until a value

A1 of the elongation is achieved; assume further that this occurs before the bar has transformed

completely to the high-strain phase. At this instant, suppose that an unloading process is begun

at the elongation rate - q, leading to a new initial value problem in which (5.7) is replaced by

1 += v(I1 , o), (5.8)

for A < A1 , together with the initial condition a = u1 at A = A1, where I is the final value of

stress achieved according to (5.7) during loading. Unloading is presumed to continue until the

stress is reduced to zero; as we shall see below, under some circumstances this occurs at a

non-zero value of the elongation A, corresponding to permanent deformation of the bar. Phase

boundary motion is the dissipative mechanism that permits this to occur, despite the fact that the

material is thermoelastic.

In addition to the grip-controlled loading-unloading process described above, one can

also consider isothermal load-controlled processes, in which one specifies a constant value of the

stress rate ; (in addition to 0 = 0) in the master equation (5.4).

Together, the respective solutions a = cL(A) and a = au(A) to the grip-controlled loading

and unloading initial value problems generate a hysteresis loop; this is illustrated schematically

in Figure 7, which is drawn under the assumptions of load-rise and no permanent deformation.

As indicated in the figure, this hysteresis loop must lie in the region described by

oL/i A < (yT + a/pt)L, Orn(0) 5 o _< aM(O), where 0 is the temperature at which the experiment

is conducted.
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To investigate in detail the effect of temperature and load rate on the macroscopic

response of the bar in isothermal grip-controlled stress cycles, we have undertaken some simple

numerical computations. In carrying out these and later calculations, we make use of

dimensionless phase boundary location s', time t', stress a', temperature 0', elongation from the

initial state A' and elongation rate q' defined as follows:

s' = s/L, t' = Rt/L, o" = /iYT, 0' = (0 - 0)/%, A' = A/LyT, q' = q/RyT, (5.9)

where L is the referential length of the bar, R is the proportionality constant in the kinetic

relation (5.5), .t is the elastic modulus of both phases, yT is the transformation strain and 00 is the

transformation temperature. We also introduce dimensionless material parameters:

ar'= oe0yT , 0, = (0, - 0)/A > 0, Mi = Me M/T , = me(TT
aaO~/y0 0~(~ 0>O M'M YT IA

(5.10)

13 13' T ' 31 f3 1/iT k'=rkO0 /(4}T

Except for the dimensionless nucleation parameters fl and f' a single set of numerical values

13 319 igesto nmrclvle

was assigned to these material parameters in the calulations underlying Figures 8 - 12 below:

c' = .1, 0' = 1, M' = 1.15, m' = 0.85, k' = 0. 1 . (For this particular choice of material

parameters. the latent heat X0 is indeed positive.) As regards the nucleation parameters, for

Figures 9, 11 and 12, we take f13 = 28 f' = -.28. In order to make clear the most significant
13 ' ' 31

features in Figure 10, the numerical values for the nucleation parameters have been chosen

differently: we have taken f1' = 0.09, f' = -0.09 in this case. Figure 8 does not depend on the
13 '31

nucleation parameters.

The nature of the kinetic response function V of (4.5) is illustrated in Figure 8. in which

the dimensionless version V' = V/R is plotted against the dimensionless driving traction
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= f/(gqy2) at various dimensionless temperatures. According to the figure, increasing the

temperature at a fixed level of driving traction decreases the velocity V of the moving interface.

However, for the present model, the behavior of the interfacial velocity as a function of

temperature at fixed driving traction is quite sensitive to the choice of material parameters. For

example, if the value m' = 0.85 chosen above is replaced by m' = 1.05, then for an interval of

temperature surrounding the transformation temperature, interfacial velocity is predicted to

increase with increasing driving traction. In reporting experiments involving compression of

single crystals of a particular CuAlNi alloy, Grujicic, Olson and Owen (1985b) show data in

their Figure 5 indicating that interfacial velocity for slowly moving phase bondaries increases

with temperature at each of several values of driving force.

Figure 9 shows the grip-controlled loading-unloading hysteresis loop for various

dimensionless loading rates q' at a fixed dimensionless temperature 0'. The figure is based on

direct numerical solution of the initial value problems for loading and unloading. At the lowest

elongation rate (Figure 9(a)), the load drops after nucleation, whereas it rises at the higher load

rates in Figures 9 (b)-(d). Figure 9(c) shows that permanent deformation can occur at higher load

rates at this temperature. In Figures 9 (a)-(c), unloading was initiated before the bar transformed

entirely to the high-strain phase. In contrast, Figure 9(d) describes the response when loading

continues to the fully-transformed regime and beyond, followed by unloading that leads to

nucleation of the low-strain phase at x = L and to the eventual return of the bar to a stress-free

state.

Figure 10 exhibits the grip-controlled macroscopic response of the bar predicted by the

present model at various temperatures, all tests being carried out at the same elongation rate q'

until the bar is completely transformed, with subsequent unloading at the rate -q'. The lowest

value of dimensionless temperature represented in this figure is 0' = 0, corresponding physically

to a test carried out at the transformation temperature: permanent deformation occurs at this
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temperature, as illustrated in Figure 10(a). Indeed, permanent deformation upon unloading to

zero stress must occur at any temperature at or below the transformation temperature. This is

because, when the latent heat X 0 is positive, (3.27) shows that the Maxwell stress c0 is

non-positive if 0' < 0, and the entropy inequality prohibits leftward movement of the phase

boundary at any stress level greater than 00. We note also that the principal effect of increasing

temperature is to shift the hysteresis loop in the direction of increasing stress, without

significantly altering the vertical "thickness" of the loop. In fact, the hysteresis loops in the four

cases corresponding to positive temperature departures 9' are nearly congruent. Thus the

hysteresis in these grip-controlled stress-elongation curves is essentially independent of

temperature. This insensitivity of hysteresis to temperature is also predicted by the present

model in isothermal load-controlled processes.

The shape of the calculated macroscopic response curves shown in Figures 9 and 10 is

qualitatively similar to some - but not all - of those determined experimentally for a variety of

alloys; see, for example, Grujicic, Olson and Owen (1985b), Krishnan and Brown (1973),

Otsuka, Sakamoto and Shimizu (1979), Otsuka and Shimizu (1986), Pops (1970) and Muller and

Xu (1991). In particular, substantial permanent deformation is found to occur at low

temperatures but to be absent at high temperatures in experiments on AgCd (Krishnan and

Brown, 1973) and NiTi (Otsuka and Shimizu, 1986), but some tests on CuZnSn indicate that

permanent deformation may appear at higher temperatures, having been absent at lower ones

(Pops, 1970). The prediction of the present model that the hysteresis loop is moved in the

direction of increasing stress with little effect on the magnitude of the hysteresis itself seems to

be consistent with experimental observations on CuZnSi (Pops, 1970), CuA1Ni (Miuller and Xu

,1991) and NiTi (Otsuka and Shimizu, 1986), but inconsistent with tests on CuZnSn (Pops,

1970). Experiments of Otsuka and Shimizu (1986) on CuAINi seem to indicate that the

magnitude of the hysteresis may increase or decrease with increasing temperature, depending on

the type of martesite involved.

-36-



5.2. Thermal cycling at constant stress. We next consider a quasi-static process in

which the stress is held constant while the temperature changes at a prescribed rate. Initially, the

specimen is assumed to be at a given temperature greater than the transformation temperature 00

and under a stress a. The bar is then cooled at a constant rate 0, the stress being maintained at

the level ay. We seek to determine the relationship between the temperature 0 and the elongation

A relative to the initial configuration. During the initial period of cooling, the bar remains in the

low-strain phase until the temperature has decreased to the nucleation value 0 13(a) given by

(4.10)1 for the stress a. Nucleation of the high-strain phase will then take place at the left end of

the bar. After nucleation, a phase boundary will move into the specimen under the control of the

master equation (5.4), which now becomes a differential equation relating the temperature 0 and

the elongation A during the cooling process, the stress and the cooling rate remaining as

parameters. The A - 0 relation during cooling is then determined as the solution of a suitable

initial value problem.

The cooling process is continued until the bar has fully transformed to the high strain

phase and beyond, terminating at some final temperature and a corresponding final elongation.

The bar is then heated at a constant rate - 0 until the low-strain phase nucleates at x - L, the

stress always remaining at the value a. The master equation (5.4) and the appropriate nucleation

condition lead to a new initial value problem whose solution relates A and 0 during heating. The

heating process is continued until the bar is fully transformed to the low-strain phase and beyond.

with 0 returning to its the initial value.

To illustrate the macroscopic response associated with the thermal cycling program

described above, we have solved numerically the relevant initial value problems. In these

computations, we have used the dimensionless variables and material constants introduced in

(5.9) and (5.10). For the same numerical values of the material constants underlying Figure 9. we

plot in Figure I I the dimensionless temperature 0' versus the dimensionless elongation A' at
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three values of the dimensionless stress c', all curves corresponding to a common

cooling/heating rate. The cooling process begins at the point A and terminates at B in each case;

heating then returns the bar to the state corresponding to point A. The effect of increasing the

level of stress is to move the hysteresis loop in the direction of increasing temperature without

significantly increasing the thickness of the hysteresis loop itself.

The only thermal cycling experiments of which we are aware are those carried out by

Burkart and Read (1953) on single crystals of indium-thallium at different levels of compressive

stress. Because the stresses are compressive, the results of these experiments cannot be directly

described by the present model. It may be noted, however, that the hysteresis loops reported in

Figure 6 of the work of Burkart and Read correspond to thermal cycling at two different stresses.

As in the predictions of the present model illustrated in Figure 11, these experimentally

determined loops are moved in the direction of increasing temperature upon increase of the

magnitude of the stress, and the amount of hysteresis seems not to be significantly different at the

different stress levels.

5.3. The shape-memory effect. The shape-memory effect is exhibited under

circumstances in which permanent deformation can occur during isothermal stress cycling. The

specimen, which is initially in the low-strain phase at a given temperature and zero stress, is

subjected to a four-stage program of thermnomechanical loading. First, one stretches the bar at a

constant elongation rate A until it is fully transformed to the high-strain phase. In the second

stage, unloading at the rate - A is initiated and continued until the bar - still entirely in the

high-strain phase - returns to a state with zero stress but non-zero elongation, corresponding to

permanent deformation. Throughout the stress cycle, the temperature has remained at its intial

value. In stage three, the stress is kept at the value zero while the specimen is heated at a

constant rate 0 until nucleation of the low-strain phase occurs. Heating continues until the bar

has fully transformed to the low-strain phase, still at zero stress but at some non-zero value of
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elongation and at a high temperature. In the fourth and final stage, stress-free cooling is used to

restore the bar to its initial length and temperature.

To illustrate the shape-memory effect as manifested by the present thermoelastic model,

we have numerically integrated the master equation (5.4) in a program of mechanical and

thermal loading and unloading of the kind described above. The initial temperature is taken to be

the transformation temperature (0' = 0). The corresponding stress-elongation and temperature-

elongation relations are shown in Figure 12, based on calculations that utilize the same values of

the dimensionless material parameters underlying Figure 9. Note that dimensionless stress is

plotted on the upper half of the vertical axis, dimensionless temperature on the lower half: the

horizontal axis represents dimensionless elongation relative to the initial state. Stage one

corresponds to mechanical loading along OAB of the stress-elongation curve. Stage two consists

of unloading from B to a permanently deformed state C. In stage three, the bar is heated until it

is fully transformed to the low strain phase (CDE in the figure). Finaly, cooling takes place

along EO until the specimen has returned to its initial state. Figure 12 is qualitatively similar to

the schematic description of the shape-memory effect given by Krishnan, Delaey, Tas and

Warlimont (1974) in their Figure 11.

References

Abeyaratne, R. and Knowles, J.K., 1988, On the dissipative response due to discontinuous strains
in bars of unstable elastic material, International Journal of Solids and Structures. 24, pp.
1021-1042.

Abeyaratne, R. and Knowles, J.K., 1990, On the driving traction acting on a surface of strain
discontinuity in a continuum, Journal of the Mechanics and Physics of Solids. 38, pp. 345-360.

Abeyaratne, R. and Knowles, J.K., 1991a, Kinetic relations and the propagation of phase
boundaries in solids, Archive for Rational Mechanics and Analysis. 114, pp. 119-154.

-39-



Abeyaratne, R. and Knowles, J.K., 1991 b, Implications of viscosity and strain gradient effects
for the kinetics of propagating phase boundaries in solids, SIAM Journal on Applied
Mathematics. 51, pp. 1205-122 1.

Abeyaratne, R. and Knowles, J.K., 1992a, On the propagation of maximally dissipative phase
boundaries in solids, Quarterly of Applied Mathematics, 50, pp. 149-172.

Abeyaratne, R. and Knowles, J.K., 1992b, Nucleation, kinetics and admissibility criteria for
propagating phase boundaries, to appear in Proceedings of the Workshop on Shock Induced
Transitions and Phase Structures in General Media, (E. Dunn, R. Fosdick and M. Slemrod,
eds.), Institute of Mathematics and its Applications, University of Minnesota.

Achenbach, M. and Muller, I., 1985, Simulation of material behavior of alloys with shape
memory, Archives of Mechanics, 37, pp. 573-585.

Burkart, M.W. and Read, T.A., 1953, Diffusionless phase change in the indium-thallium system,
Journal of Metals, Transactions of the AIME, 197, pp. 1516-1524.

Ericksen, J.L., 1975, Equilibrium of bars, Journal of Elasticity, 5, pp. 191-201.

Falk, F. 1980, Model free energy, mechanics and thermodynamics of shape-memory alloys,
Acta Metallurgica, 28, pp. 1773-1780.

Falk, F., 1988, On the motion of martensitic domain walls in shape-memory alloys, in Phase
transformations, (G.W. Lorimer, ed.), Inst of Metals, London, pp. 77-79.

Grujicic, M., Olson, G.B. and Owen, W.S., 1985a, Mobility of martensite interfaces,
Metallurgical Transactions, 16A, pp. 1713-1722.

Grujicic, M., Olson, G.B. and Owen, W.S., 1985b, Mobility of the I31-' 1 martensitic interface in

CuAINi: Part I. Experimental measurements, Metallurgical Transactions, 16A , pp. 1723-1734.

Jiang, Q., 1988, A continuum model for phase transformation in thermoelastic solids, Technical
Report No. 9, U.S. Office of Naval Reseat Contract N00014-87-K-01 17, California Institute of
Technology, to app-ar in Journal of Elastlctiy.

Knowles, J.K., 1979, On the dissipation associated with equilibrium shocks in finite elasticity,
Journal of Elasticity, 9, pp. 131-158.

Krishnan, R.V. and Brown, L.C., 1973, Pseudo-elasticity and the strain-memory effect in an
Ag-45 at. pct. Cd alloy, Metallurgical Transactions, 4, pp. 423-429.

-40-



Krishnan, R.V., Delaey, L., Tas, H. and Warlimont, H., 1974, Thermoplasticity, pseudoelasticity

and the memory effects associated with martensitic transformations. Part 2. The macroscopic

mechanical behavior, Journal of Materials Science, 9, pp. 1536-1544.

MIller, I. and Wilmansky, K., 1981, Memory alloys - phenomenology and Ersatzmodel, in

Continuum Models of Discrete Systems, (0. Brulin and R.K.T. Hsieh, eds.), North Holland,

Amsterdam, pp. 495-509.

Mller, I. and Xu, H., 1991, On the pseudo-elastic hysteresis, Acta Metallurgica et Materialia,

39, pp. 263-271.

Otsuka, K., Sakamoto, H. and Shimizu, K., 1979, Succesive stress-induced martensitic

transformations and associated transformation pseudo-elasticity in Cu-Al-Ni alloys, Acta

Metallurgica, 27, pp. 585-601.

Otsuka, K. and Shimizu, K., 1986, Pseudo-elasticity and shape-memory effects in alloys,
International Metals Reviews, 31, pp. 93-114.

Pippard, A.B., 1985, Response and Stability, Cambridge University Press, Cambridge.

Pops, H., 1970, Stress-induced pseudo-elasticity in ternary Cu-Zn based beta prime phase alloys,

Metallurgical Transactions, 1, pp. 251-258.

Porter, D.A. and Easterling, K.E., 1981, Phase Transformations in Metals and Alloys, van
Nostrand-Reinhold, New York.

Tanaka, K., Tobushi, H. and Iwanaga, H., 1988, Continuum mechanical approach to
thermomechanical behavior of TiNi alloys, in Proceedings of the 31st Japan Congress on

Materials Research, (K. Komai, ed.), Society of Materials Science, Kyoto, pp. 51-56.

Weiner, J. 1970, Thermal activation and tunneling phenomena in solids, Proceedings of the Sixth

U.S. National Congress of Applied Mechanics, (G. Carrier, ed.), ASME Publishers, New York,
pp. 62-77.

-41-



A

a0)

BRANCH I BRANCH 3

y = Y (010) y = Y3,6

A

y 72

-1 0 Ym'(8) m)

FIGURE 1. STRESS-STRAIN CURVE ay = (y,8) AT A FIXED TEMPERATURE 0.
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FIGURE 2. REGIONS P, P1, P2 AND P3 IN THE STRAIN-TEMPERATURE
PLANE; SEE (3.3) - (3.5).
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FIGURE 9. MECHANICAL CYCLING AT VARIOUS ELONGATION RATES q',

ALL AT THE SAME TEMPERATURE 0'= 0.4.
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