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Final Report on the Micromechanic
Theory of Constitutive Relations of Polycrystalline Solids

Abstract

This research is to derive the macroscopic multi-axial stress-strain and stress-strain-time
relations of metals from those of the component crystals. Since the macroscopic stress-strain relation
depends on the grain size, the component crystal properties are also dependent on grain size. Hence
the component crystal stress-strain relation is here derived from the uniaxial polycrystal tests. This
automatically takes care of the grainsize effect. The same approach is used to derive the macroscopic
stress-strain-time relation (creep) of metals. In this derivation, the conditions of mechanicsi.e., the
condition of equilibrium, and the continuity of displacement are fully satisfied. Hence the dis-
crepancy between the calculated and experimental results is likely due to the error in representation
of the component crystal characteristics. Recently Bassani (1990) and Wu et. al.,, (1990) have
compressed a single crystal to activate a primary slip system, unloaded this cry<*al. th=n reoriented
and compressed to activate a second slip system. He found the critical shear stress of the second
system increases rapidly, i.e., high rate of hardening. This characteristic is not shown in a single
crystal under a tensile loading. In the previous physical theories, the stress-strain relations of the
component crystals were calculated from the polycrystal tensile test data (Lin, 1971) and this high
hardening rate was not encountered. In the present study, this high hardening rate is considered.

It is found that the agreement between the calculated and experimental results is much further

improved.

Creep test are generally performed under constant stress. To apply these test data to structures
under varying stress, the so called mechanical equation of state is assumed. This gives a relation
between the macroscopic creep rate, stress and current creep strain under constant temperature.
This relation has been found to hold approximately for tests under uniaxial tension (Lin 1968). To

generalize this relation to multi-axial loading. The critical shear stress in a slip system in a crystal




to slide, is assumed to be a function of the resolved shear stress and the amounts of slip in all slip
systems in the crystal. A form of this function has been found to give a good representation of the
creep data under non-radial loadings given by L. Ding, 1990. The calculated and the experimental
results are presented. The agreement between the present model and the experiments are much

better than those calculated by Von Mise’s criterion commonly used in industries.
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L Introduction

Ductile materials can withstand much additional strain beyond their elastic range. This strain
often induces a redistribution of stresses, which result in a considerable additional load-carrying
capacity. To determine this load-carrying capacity, an elastic-plastic multi-axial stress-strain
relation is needed. Similarly, structures subject to creep strains, we need the stress-strain-time
relations. These stress-strain and stress-strain-time relations are called the constitutive relations of
materials. There are six stress components and six strain components. If the stresses are propor-
tionally increased, it is called a radial loading. If the ratios of the stress components change, it is
called a non-radial loading. Many structural problems involve non-radial loadings. Plasticity and
creep theories based on Von Mise’s and Tresca’s criteria, commonly used in industry, represent
the stress-strain relation and the stress-strain-time relations reasonably well under radial loadings

but show large discrepancies with experiments under non-radial loadings (Budiansky et. al., 1951).

Studies of this stress-strain relation of polycrystalline metals are generally divided into two
classes. One is known as the mathematical theory of plasticity, which is mainly a representation
of experimental data and does not inquire deeply into the physical basis. This type of theory using
Von Mise’s criterion is referred to as Mise’s theory of plasticity. It does not represent well the
stress-strain relation under many non-radial loadings. This theory gives an initial elastic shear
modulus after the material is compressed beyond the elastic limit (Handleman and Prager 1948),
and predicts an elastic-plastic buckling compressive strength of rectangular plates much higher than
the experimental value. Hence this type of theory is not quite satisfactory. The other class of
plasticity theory is known as the physical theory, which does attempt to explain why thi*.gs happen
the way they do, but may not embody mathematical simplicity. With the rapid advances of computer,

the more complex mathematical representation of the physical theory is now possible for use in

design and analyses.




Structures subject to loads at elevated temperatures have been greatly increased during the
lastfew decades. Atthese temperatures, creep strain becomes significant and induces aredistribution
of stress in redundant structures. These redistributed stresses govern the creep rates and hence the
life of the structure. To analyze this stress redistribution in the structure at different time instants,
arealistic stress-strain-time relation of the material is needed. The stress-strain-time relation given
by "time hardening" and "strain-hardening" (Johnson and Henderson, 1962) commonly used for
structural analysis often have large discrepancies with experimental results. These creep theories
do not consider the physical mechanism of deformation. This seems to be one main source of error
of these theories. As Dorn and Mote, 1963, have indicated, among the different mechanisms of
plastic deformation, slip is the main mechanism for face-centered cubic metals at low and inter-
mediate temperatures. Conrad, 1961 has also stated that at these temperatures, the deformation of
af.c.c. polycrystalline metal occurs essentially by deformation of the grains. Grain boundary sliding
is only significant when the temperature approaches one half the melting temperature of the metal.
Present study is mainly concerned with such metals and alloys at low and intermediate temperatures,

hence slip is considered to be the sole source of creep deformation.

Single crystal test at room temperature (Taylor and Elam, 1923, 1925, Taylor, 1928), have
shown that under stress, slip occurs along certain crystal directions on certain crystal planes. Ina
face-centered-cubic crystal, there are foursuch planes, on each of which there are three slip directions
giving twelve slip systems. These planes correspond to dislocation glide planes and these directions
correspond to Burgers vectors of dislocations. From dislocation theory, (Read, 1953), the force to
move a segment of dislocation line is directly proportional to the shear stress on the slip plane along
the Burgers vector. This is shown in single crystal tests that slip depends on the resolved shear
stress along the slip direction on the slip plane and is independent of the normal pressure on the
plane, Taylor, 1938. The quantitative relations between plastic strain and dislocation movement
have been elegantly given by Mura, 1967, Kroner, 1958 and others. Tests on aluminum single

crystals by Johnson et al., 1953, 1955, show that deformation at elevated temperatures occurred by




slip in primarily the twelve slip systems that are operative at room temperature. There also may be
some slipon (311), (211) or (100) planes but their contribution is small and requires higher resolved
shear stresses than that for slip in the twelve slip systems. Hence in the present study, each crystal
is considered to have time dependent slip only in these twelve systems, and the rate of slip is taken

to depend on the resolved shear stress, Johnson et al., 1953, 1955.

Physical theory involves two parts: one is the derivation of polycrystal stress-strain relation
and stress-strain-time relation from those of the component crystal and the other is a realistic

representation of the characteristics of the component crystal. These two parts are presently shown.

II. Some Previous Physical Theories of Plasticity and Creep

The main difference of a polycrystal from a single crystal is the presence of grain boundaries.
The grain boundary has been estimated to be only a few atoms thick, (Dorn, and Mote, 1963, Barrett,
1952). Hence, in the calculation of slip field of a polycrystal, the grain boundary can be regarded
as a suriace of zero thickness across which crystal orientation changes from one to another. The
anisotropy of elastic constants of single crystals varies from one metal to another. This anisotropy
is small for aluminum, Barrett 1952. The present study concemns mainly with aluminum and its
alloys, hence this anisotropy is neglected. When an aggregate of randomly oriented crystals of
homogeneous and isotropic elastic constants is uniformly loaded, the stress is uniform throughout
before slip occurs. However, crystals of different orientations have different resolved shear stresses.
Assume that a crystal deforms by slip only when the resolved shear stress in some slip system
exceeds certain critical value (Schwope et al., 1952). Slip occurs in the aggregate when the resolved

shear stress in the most faverably oriented crystal reaches the critical value.

After the relation between the stress and strain was experimentally obtained for single crystals,
many attempts were made to reduce the stress-strain relation of the polycrystal from the single
crystal data. The first pioneering realistic model was proposed by Taylor, 1938. He assumed all

crystals to be rigid-plastic. His neglect of elastic strain causes significant error when the elastic




and plastic strains are of the same magnitude. Lin, 1957, modified Taylor’s model to include elastic
strain. However, both Taylor’s model and this model of Lin’s satisfy the condition of compatibility
but not that of equilibrium across the grain boundaries. A rigorous model satisfying both these
conditions was givejby Lin (1971) and is described in a later section. Recently, Tokuda, Kratochvil
and Ohasi (1981) applying this Lin’s model to a two dimensional polycrystal, calculated the variation
of the macroscopic stresses under some arbitrary strain paths and have found their calculated values

agreeing fairly well with experimental results.

Batdorf and Budiansky, 1949 proposed a simplified slip theory assuming each component
crystal in a aggregate to subject to the same stress and slide in slip systems, independent of other
crystals. This theory and some other theories satisfy the condition of equilibrium but not com-
patibility.

Eshelby in 1957 has shown that an ellipsoidal inclusion in an infinite homogeneous elastic
medium to undergo a change in shanc and size that would be an arbitrary homogeneous strain if
the surrounding material were absent, will cause a uniform strain inside the inclusion. Based on
this result, Kroner (1961) considered each crystal in a uniformly loaded polycrystals as an ellipsoidal
inclusion in a homogeneous infinite elastic medium. The crystal orientations are assumed to be
randomly distributed in the aggregate. The sum of the loads carried by all the individual crystals
cut by a section must balance the applied load. The stress relieved by slid crystals must be carried
by other crystals. Hence the sliding of one group of crystals increases the average load taken by
other groups of crystals. Kroner took this average interaction effect between groups of crystals into
consideration and developed an analytical procedure to calculate the polycrystal stress-strain
relationship from single crystal characteristics. Budiansky and Wu (1962) rederived Kroner’s
scheme by a different physical reasoning. This scheme is called the self-consistent method for
polycrystal plasticity analysis. When slip has occurred in a significant portion of the aggregate, the
matrix of the inclusion has pronounced directional weakness. A theory taking into consideration

this directional weakness has been proposed by Hershey (1957) and Hill (1965). Hutchinson (1970)




using Hill’s model, calculated the incremental stress-strain relations atdifferent ratios of incremental
shear and compressive-stresses after the metal is stressed in compression beyond the elastic range.

Studies by this self-consistent method have contributed a great deal to the understanding of the

plastic deformation of polycrystals.

In this self-consistent approach, each crystal is considered as an inclusion in the calculation
of the amount of slip in the crystal and is also considered as part of the matrix when the slip is
calculated for any other crystal. The stress in a crystal should be the sum of the stress as an inclusion
and as part of the matrix. However, the stress as in the role of matrix is not explicitly considered
in the calculation of slip. The stress caused by one slid crystal on another increases rapidly as the
distance between these two crystals is decreased. The average interaction effect of slid crystals
provided by the self-consistent theory does not consider the distance between the slid crystals. Slip
and slip rate vary nonlinearly with the resolved shear stress. This nonlinear effect introduces errors
in using this average interaction effect in calculating the macroscopic plastic strain. In most
numerical calculations of the approach, spherical inclusions were considered. The resolved shear
stress Atrelieved insuchaninclusionis2v(l — b )e;a whereb = 2(4 — 5v)/15(1 —v). Withudenoting
shear modulus; v Poisson’s ratio and e;ﬁ the plastic resolved shear strain along the slip direction f3
on the slip plane with normal a, this At with v = 0.3 gives an At = .524 x 2ue;,. The plastic strain
distribution in an inclusion of cubic shape to relieve a constant resclved shear stress was calculated
by Lin et. al., (1961). The average plastic strain in this inclusion to relieve 0.1 C, stress is about
.14 C,/2. This gives AT=.71 x Zue;,. Hence spherical inclusions are softer than cubic inclusions.
From the micrographs of the grain boundaries, the crystals in the aggregate are of polygonal shape.

Besides, three-dimensional space cannot be filled by ellipsoids alone. The assumption of all crystals

to be spherical is not realistic.

Assuming the rate of slip in a slip system to be governed by the resolved shear stress in that
system, Rice, 1970, has shown that it is possible to derive the polycrystal macroscopic creep strain

rate from a potential function of stress. Phillips, 1969, has experimentally obtained loading surfaces




of polycrystal aluminum under combined loading at elevated temperatures. Brown, 1970a, b, has
extended the application of the Budiansky-Wu’s self-consistent model of plastic deformation to

creep strains. Assuming the slip rate ¥ in a slip system to be a power function of the resolved shear

stress 7T in that system,
Y = 7

where ¢ and n are constants and n varies from 3 to 8, Brown has calculated, by this self-consistent
model, the creep strain rates under a given path of non-radial loading. He has compared the calculated
results with experimental strain-rate vs time curves and has found that the experimental curves gives
much larger creep strain rate than the calculated results following each change in loading.
Hutchinson, 1975, has shown a more direct method of estimating the steady creep characteristics
of polycrystals composed of f.c.c. crystals whose slip rate in a slip system is a power function of
its resolved shear stress. These studies have contributed much to the understanding of the relation

L=t cen the creep properties of single crystals and those of polycrystals.

When a polycrystal is loaded at an elevated temperature, many or all crystals may slide; then
the distance between two adjacent slid crystals may become very small. Hence the application of
Eshelby’s results considering the average interaction effect may cause significant error. The
assumption of creep rate of a single crystal as a function of the resolved shear stress only, neglects
the transient creep. This neglect of transient creep and the use of the self-consistent theory seem

to be the main cause of the discrepancy between Brown’s calculated and experimental results

(Brown, 1970a, b).

III.  Derivation of Polycrystal Stress-Strain and Stress-Strain-Time Relations From those
of the Component Crystal

Many metals undergo considerable plastic deformation without crack, so crystals originally

in contactremain so during deformation. This means that equilibrium and continuity of displacement

are satisfied throughout the aggregate. But the previous models do not simultaneously satisfy both




the equilibrium and compatibility conditions.

A, Anal Inelastic Str li r

In order to have the aggregate stress and strain fields fully satisfying both the equilibrium
and compatibility conditions, Lin et. al., (Lin and Ito 1966, Lin 1971) have generalized Duhamel’s
analogy of thermal strain to include plastic strain. Neglecting the anisotropy of elastic constants

and considering the plastic strain to have no dilatation, the stress-strain relations are then

T, = O;hey +2u(e; —e;) (1)

v

where A and [ are Lame’s constants and J; is Kronecker delta. Substituting (1) into the equations

of equilibrium yields

Syhey,; +2ue; ; ~ 2ue; ;+F; = 0 )
and

i = [hew+2u(e; — ey, 3)

where F; is the body force per unit volume, S}’ the surface force along the i-axis per unit area with

the normal v. The subscript j after comma denotes differentiation along the j-axis. The repetition
of the subscript "j" denotes summation from one to three. Itis seen that —2;.1,8;' j»isequivalent to F;
and 2jte;v; to S in causing the strain field e; and hence are called the equivalent body force F; and
surface force S, respectively. Denoting the stress caused by F,and S} by T}, the residual stress

caused by the plastic strain is given by Eq. 1 as,

”

T = T’--—2Lw.~,- 4)

Y Y

With this analogy, the solution of the stress and strain fields of an aggregate with plastic and/or
creep strain reduces to the solution of stress and strain fields caused by a given force applied to a

3-dimensional elastic body. This analogy gives the same results as those obtained by Eshelby’s




ingenious process of imaginary cutting, welding, relaxing etc. in his paper on ellipsoidal inclusions
in 1957. Hence the present method developed by Lin et. al., satisfies both equilibrium and com-

patibility conditions.

B, n Aggr in an Infinite Elastic Medium; (Lin, 1

To solve a 3-dimensional elasticity problem with a given set of boundary conditions is a big
task. To avoid this task we consider this aggregate to be embedded in an infinite elastic solid of
the same elastic constants. Hence the equivalent body force due to plastic strain is considered to
be applied in an infinite elastic medium. This aggregate is considered to consist of a large 3-di-
mensional solid composing of innumerous basic cubic blocks. Each block with side "a" consists
of 64 differently oriented cube-shaped crystals. The average stress and plastic strain of the center
block represent the macroscopic stress and strain of the polycrystal. The use of innumerous cubic
blocks surrounding the center block is to make the center block to deform more easily than just to

embed it in an elastic medium.

We consider slip occurring at x’ in the nth slip system causing a plastic strain e"(’f ’") [Lin,

1971]. This nth system has a sliding plane with normal o and a slip direction B, then the plastic

strain
. 1., -
e;(x) = ELije x,n) (&)
where
L; = (ofB]+aiB) (6)
The equivalent body force

10




F, = —2u—ai:g%,,ﬂ L, Q)

Kelvin’s Soluti f an Infinite El
The displacement fields in this infinite elastic solid caused by this body force acting in a

volume dV' has been given by Kelvin (Love 1927). His solution gives a stress field caused by F,

as

T,(x) = J:.q)ijk({’x.’)l:k({’) av’
—Zuf_%k(f”f'){ a__e”({',n)L:l] av ®

ox,
. 3 (= x)(x; = x;) (0 — X3)
where ¢ijk(xax) 87:(1 —V) )( - r5 - - -
+ 1 et 2V 5,,()6,, - x;) - 8&(x] —xl’) - Bjk(«xj _xi’)
8n(l —v) I
o= g0 - x)

The size of the 3-dimensional solid may be considered as being infinite as compared to the size of
one block, so the variation of plastic strain from one block to another in the center of this solid is
small and neglected. The slip distributions in the blocks around the center block are taken to be
the same. Hence to calcualte the stress in the center block, the values of the incremental plastic
strain Ae (x E ") and its gradient 0Ae (x y ")/ax[ at (x;, X,, x3) are taken to be the same as those at any
point (x, — mya, x, — m,a, x, — mya), where m,, m,, m; are any integer. Then the integral (8) over
the 3-dimensional infinite region reduces to an integral over one basic block with q>,,,‘({ X ) expressed

as ¢, (xy, Xy, X3, X, —MQ, X — Mya, X3 — mya) with my, m,, my summed over all integers.

11




C.  Virtual Work Condition: (Wu, 1989

Let T; and 8E;; be the macroscopic stress and virtual strain of the aggregate. The virtual work
of the aggregate is then

W = T,

LetAt; =1, - 7;and Ae; = ¢, — e, where T, and ¢; denotes the microscopic stress and virtual

strain respectively and bar on top denotes the average value. The

W = J;T.,se.,dv = J;(EU+A117) (82U+8Aeij)dv

l

[75e,av + | av,ne,av ©)

Since the average stress and strain in the block are taken to represent its macroscopic stress and

strain, the virtual work per unit volume,
- 1
oW = T,OE;= 1,.,-8e it VJ:ATij"jSAuidV (10)

Let the displacement u; be expressed as

w, = u;+Au

To satisfy the compatibility condition, the displacement on the two opposite planes (normal to

Jj-axis) of the basic block with a linear dimension "a" must satisfy the condition

dAu| r( = OAu r(

(3 3)

To satisfy the equilibrium condition, we have

12




Atn)| r@ = Atn) r DO summationon

Hence the second term on the right-hand side of (10) vanishes (Wu, 1989).

T,5E;, = 71,5, (11)

For an incremental loading, let AT be the incremental macroscopic stress and AE; be the

incremental elastic macroscopic strain.
where M, is the elastic compliance, AE; = AE; + AE; = Ae;; + Ae;;. Hence AE; = Ae;;. This gives

—t

T,0E; = 7,0, (13)

Bishop and Hill (1951), Hill (1963, 1967) have shown that this virtual work equation for polycrystal
aggregate is valid only when either the tractions or the displacements on the boundaries are uniform.
In the present model, this relation holds even neither the traction nor the displacement on the

boundaries of the block is uniform.

D, rystal Orientations;

Metals generally are composed of crystals of random orientations. Their macroscopic stress
T, and plastic strain E; generally satisfy the condition Ey, = Eyy = —3Ey;, Eyy = Ey = Ey = 0
under tensile loading T,,. Similar conditions have been observed under loading 7, or T3;. Under
a pure shear loading T;(i # j), all plastic strain components except E,, vanish. These properties have
been referred to as the initial isotropy of polycrystals. In order to simulate this property, the 64
crystals in the basic block are divided into 8 groups, each of which occupies one octant. Among

the 8 crystals in the first octant, one crystal has a slip system most favorable under uniaxial loading

13




T,, and another under T,. If the T}, to initiate slip is 0.50 or 0.577 of T, in initiating slip, this gives
Tresca’s or Von Mise’s criterion for initial yielding. Another crystal is oriented to give a mirror
image of the first with respect to the plane making 45° with x, and x, axes. These give two crystals
associated with T,,. Similarly, there are two crystals associated with Ty, and two with Ty;. These
take 6 crystals. The remaining two crystals have their axes coinciding with the specimen axes. The
positions of these 8 crystals are chosen so as to give no preference to loading T,;, T,, or Ty;. As for
the other seven groups of crystals, the orientations and arrangement of each group are chosen to
give mirror images to other groups with respect to the three coordinate planes of the specimen axes.
This gives three planes of symmetry and satisfies the property of cubic symmetry. By this way,
the property of initial isotropy of polycrystals, referring to this set of axes. is fulfilled.

E, implification of i ion: (Lin and Ribeiro, 1981

To simplify the numerical calculation, the plastic strain is assumed to be uniform in each
crystal. Then plastic strain gradient within each crystal vanishes, but arrass th2 boundary, plastic
strain drops from the uniform value to zero and causes an equivalent uniform surface force on the
plane boundary surfaces. The stress-field at x caused by this surface forces due to slip in the nth

slip system of the gth crystal is obtained by integrating Eq. 8 as

Yo ¥) = 2§ T o5 me e mle (gL, (14)

integrated over the boundary surfaces of the crystal, where dT, denotes the differential projected

boundary area on the plane normal to x,-axis. Inevaluating the infinite triple sums, the cubic blocks

were grouped according to their distance from the center block. Let

m,2+r7122+m32 = k2

14




The triple sum is evaluated with monotonically increasing values of ¥ It was found that these

sums converge well at & = 48. The average stress of the pth crystal calculated from Eq. 8 is written

(Lin, 1984), as
T.(p) = 2ue(q,nLia),uP) (15)

The average residual stress of the sth crystal due to slip in the nth slip system of the gth crystal

Ta) = 2ulny(@)0,u(s) - 8, Li(s)le (g,n)

3jm(s)e (g, 1) (16)

Under a uniform stress 1, applied to the infinite medium.

T,(5) = T, +a;.e (q.n) (17)

The average stress ?:,, over the 64 crystal block represents the macroscopic stress S;. We have

AS, = AT, = AT, +a,,Ae’(q,n) (18)

where the bar denotes the average value of the 64 crystals. Writing (17) in incremental form and

substituting AT, from (18), we have

AT(s) = AS;+(a;,, —a;)Ae (q,n) (19)

ijgn
The 2nd term represents the increase of stress due to incremental slip Ae (g,n). Let

Cogn = 15(5) (@ = A ) 20
The incremental resolved shear stress in the mth slip system of the sth crystal

Atsm(s ) = mij(s )ASU + Cpmane ”(q 1 ) (2 1 )

15




where ¢, is the influence coefficient of the resolved shear stress in the mth slip system of the sth
crystal caused by a unit plastic strain in the nth slip system of the gth crystal. The influence

coefficients satisfy this reciprocal relation and form a symmetric matrix.
Let t,, denote the critical shear stress. These slip systems with resolved shear stress equal to

the critical, i.e., T" = T, are called the potentially active systems. Those potentially active systems
with AT™ = AT} will slide. Hence from Eq. 21, At™ = AT, governs the amount of slip in different

slip systems. There are as many such equations as the number of unknown Ae “(s,m)’s.

F. Takahashi’s Verification by Finite EI ¢ Analvsis:

Takahashi (1987) examined this polycrystal plasticity model by 2-dimensional finite element
analysis. A two-dimensional inhomogeneous problem of a non-hardening infinite medium con-
taining inclusions subject to a simple tension was calculated by the finite element method. The
calculated results of the plastic strains were substituted in this and a self-consistant model to get
the stress fields, which were compared with the results of FEM. It was found that Lin’s model

agrees well with the FEM, but not the self-consistent model As indicated by Takahashi, 1987, "the
validity of the Lin model has been proved".

IV. Single Crystal Time-Independent Slip Characteristics

A,  Taylor’s Isotropic Hardening:

Early single crystal tests (Taylor 1938) have shown that under stress slip occurs along certain
crystal directions on certain crystal planes. This slip depends on the resolved shear stress and is
independent of its normal pressure on the sliding plane. The critical shear stress in duplex slip (two
active slip systems) depends on the sum of slip in the two systems. Based on these early results,

Taylor assumed the active and latent slip systems to have the same critical shear stress. This model

16




is known as isotropic hardening, which is a first approximation of the deformation behavior of
single crystals. Based on this approximation, Taylor has calculated the stress-strain relation of the

polycrystal under tension from that of single crystals.

B, n . . . ni

Torefine Taylor’s isotropic hardening, Wu 1989 considered two cases: (1) the single crystals
to have latent hardening rates to be 1.2 to 1.4 of that of active hardening and (2) these crystals to
have kinematic hardening. In the latter, the yield surface moves rigidly in stress space and gives
Bauschinger effect. Using these single crystal characteristics, Wu, 1989 has derived the component
crystal of the polycrystal and then calculated incremental stress-strain relations of the polycrystal
loaded under different ratios of incremental shear to axial loadings, after being compressed beyond
the elastic range. The calculated results are compared to the experimental results carefully obtained
by Budiansky et. al., 1951. These calculated results give agreement with the experiments better
than the Von Mise’s and Tresca’s critevia, but appreciable discrpancies were still found between

the calculated and experimental results.

C. Bassani’s Interpretation of Single Crystal Tests (Bassani, 1990):
Single crystal tests under tensile loading © gives a resolved shear stress T in the most

favorably slip system. T =mo, where m is the Schmid’s factor. From the measured axial extension
e, the shear strain 7y is calculated from the expression Y=e/m. The total axial plastic strain was
assumed to be due to slip in this system alone. A typical T —ycurve for a f.c.c. single crystal with

the tensile axis oriented within the standard sterographic triangle, is shown in Fig. 1.

Let ¥, denote the rate of slip on the /th slip system with unit normal », and slip direction s,.

The resolved shear stress in this system
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Fig. 1.  Typical 1—7curve of a pure FCC smglc crystal loaded in uniaxial tension/com-
pression with an initial orientation for single slip. Point B denotes where secondary
slip commences and II denoted state in Stage II deformation.

Representing the hardening rate of a slip system as a linear combination of slip rates of all systems

(Hill, 1966).

. N .
™ = XA (22)

where N denotes the total number of slid systems, A,,, denotes the hardening rate for the mth slip

system due to slip in the nth slip system and dot denotes the time rate. In Stage I (Fig. 1), only

system 1 is activated.
"Yl 2 0, ‘.Yz =0

At point B of Fig. 1,
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s

L]
9 = Tt | hudt Q= T, +t | hadn (23)

o

For simplicity, assume T, =1, and 2 -7 =q(t} —T), where q is the constant. Experimental

evidence indicates that at the beginning of deformation II, as indicated by B (Fig. 1) the loading
axis is within the standard triangle. This indicates mf < m{. Hence 13/7; = m;/mf < 1. This leads

to 0 < ¢ < 1 and h,, < hy,. This indicates that latent hardening is less than active hardening (Bassani

1990).

Writing Eq. 22 for incremental plastic strain, the incremental critical shear stress At°(s,m)

in the meh slip system of the s-crystal is then

AT(s,m) = h_(s)Ae (s,n) (24)
Equating the incremental resolved shear stress given by Eq. 21 to the above,

m,.j(s)AS‘-j +C P,mAe"(q,n) = hM(s)Ae"(s,n) (25)

This gives a set of linear equations. Writing in matrix form, we have the non-diagonal coefficients
less than the diagonal coefficients. This facilitates much the numerical solution of the incremental
slip strains. Bassani and his colleagues (Wu et. al., 1990) have further shown a single crystal test
in latent hardening experiment. The crystal was first compressed to activate the primary slip system
(111)[101] denoted by the subscript 1. After the plastic compression has developed to some extent,
the crystal was unloaded, reoriented and reloaded to activate a secondary slip system (111)[101]
denoted by subscript 2. The compression rate was kept constant. A typical resolved shear stress
and strain curve is shown in solid lines in Fig. 2. The test data had been interpreted as the dotted
line giving latent hardening more than active hardening. Actually the testdata is given by the solid
line. At the start of reloading, the critical stress T, in the primary system is larger than that in the

secondary system t,. However right after reloading, 1; seems to dip a little (Fig. 7, Wu et al, 1990)
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and the hardening rate of the secondary system starts out very high and then decreases. More tests
of this type are desirable. These characteristics are not represented by isotropic hardening nor well
represented by a linear hardening of slip systems in different systems as given by Eq. 22. Their
data seem to indicate that the hardening rates are greatly affected by the change of the ratios of the

incremental slip in different systems. Let the distribution of slip rates of slip systems be represented

V, = AT, (26)

Ts (from backward extrapoiation)

N -

Secondary

Tp

~

Primary

RESOLVED SHEAR STRESS

SHEAR STRAIN

Fig. 2. T—7vCurve from the Latent Hardening Experiment.

Referring to Fig. 3, the rate of compression on the specimen was constant, so the rates of slip are
taken to be constant as shown by the straight lines, ¥, from O to A; and , from A to B with a small

¥, occurs before A and a small ¥y, before B.
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A A
= o sV, = ot 27N
A, + AY, Ay, + Ay,

V., V, versus the summation of slip in all slip systems are plotted in Fig. 4. Torepresent the hardening
effect due to change of slip distributions, we modify Eq. 22 by adding a term to the right-hand side

giving

AT, = X h AY,+fIV,, 1] (28)

where fIV,,, 1] has the same units as AT;, and represents the large increase of critical shear stress

in the second slip system at the change of crystal orientation (Fig. 2). To evaluate f[V,,, T.,] more
closely more single crystal tests with orientation changes are needed. Considering the aggregate
to have eight different oriented crystals with 12 slip systems in each crystal, we have a total of 96
slip systems. Writing Eq. 21 in a differential form with subscripts 7 and » denoting one of the 96

slip sysicnis,

s Y;- (TR ¢!

< -
r

<
1

1

133 . “'V YL—( v
o] A 8

Fig. 3. Variation of Critical Shear stress t,, T,, Slip Strains vy,, v,
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V v,
l
Va . v, sy -
Fig. 4. Variation of V, V, in Latent Hardening Test
9
At, = AT+ X C Ay, (29)

a=1

Equating this to At;, in Eq. 28, gives

8, = AT Cull, = T AN+, T 60)

D. . Qtrai . Pol Tests:

The size of single crystals in single crystal tests is much larger than that of the grains in the
poly ~'stal and it is known that the stress-strain curve of crystals varies with grain size (Livingston
et al., 1975). Hence the component crystal stress-strain relationship is calculated from the exper-
imental polycrystal tensile stress-strain curve (Lin, 1971). This approach is similar to the derivation
of the characteristic shear function from the tensile stress-strain curve in the development of the
first simplified slip theory of plasticity by Batdorf and Budiansky 1949. This is a reverse process
to the calculation of polycrystal stress-strain relation from a given single crystal characteristic. In
polycrystals under tensile loading, the AV,,’s in the component crystals are small and are neglected.
Eq. (28) reduces to Eq. (22). The set of h,,,’s were found from the tensile stress strain curve of the

polycrystal. Kinematic hardening is first assumed and the variation of the critical shear stresses in
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differentslip systems in the component crystal are derived from the polycrystal testdata. Previously,
these component crystal stress-strain relations was calculated from a polycrystal tensile loading test
data (Batdorf and Budiansky, 1949, Lin, 1971). In the present study, these component crystal
stress-strain relation are calculated from not only from the polycrystal tensile test data, but also
from the polycrystal stress-strain relation under a non-radial loading (Figs. 7 and 9). From the latter,

AV,, T) were found. This takes care of the effect of the change of slip distributions.

V. Numerical Calculation of Polycrystal Stress-Strain Relation

The orientation of a crystal is completely determined by the orientation of one of its slip
systems. Referring to the crystals in the first octant of the cubic block (Fig. 5), the orientation of
the first slip system of the crystal is defined by the normal o to the slip plane and the slip direction
B as shown in Fig. 6, where 6, and 6, are taken to be 80° and 12° respectively. The orientations of
the other seven crystals are determined to obtain cubic orthotropy. Crystal orientations of the other
seven octants of the cubic block are obtained to give mirror images with respect tc the three

coordinate planes, as described in Section III.

The polycrystal considered is aluminum alloy 14ST. Its mechanical properties are:

Shear modulus G = 27,241 MPa (3.95 % 10 k.s.i.)

Poisson’s ratiov = 0.3

Tensile initial yield stress 179 MPa (26 k.s.i.)
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il e2 -

Fig. 5. Crystal Numbers in the First Octant of the Block

1

Fig. 6. Orientation of a Slip System o Normal to Slip Plane, B Along Slip Direction

Assuming kinematic h¢ -.. ~ing, the active hardening coefficient 4,, (no summation on "n")

of the component crystal was calculated from the axial test data of the polycrystal. Allthe polycrystal
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test data were taken from the tests performed by Budiansky et al., 1951, Fig. 7. Then AV,,, ¢¢) of
Eq. 28 was computed from one non-radial loading, (Fig. 8) and check with another (Fig. 10). It

was found the last term in Eq. 28 can be approximately represented by

T, AV,
Cytanh| 1.2V A —-1 i o — > 0
c Tg) VM
f(Vm’Tm) =
C,(1-V )" E—1 AV 0
1 m ‘[8 ’ Vm -
¢, = 026, ¢, = 22

AT, ¢, and ¢, are in k.s.i.

When more single crystal data with orientation change are available. The above expression may
be more accurately determined. Using the above described model with the above expression of
AV.., T.), we have calculated the incremental stress-strain relation for the cases with the ratios of
incremental axial to incremental shear stress of 1.18 and -0.652 of thc specimens after being
compressed beyond the elastic range. The calculated results are shown with the experimental data
in Figs. 9 and 11. The comparison between Von Mise’s flow theory and the experimental results
are shown in the paper by Budiansky et. al, 1951. It is seen that the present theory gives a much

realistic representation of the experimental results.

The above method has also been used to calculate the macroscopic plastic deformation under
static tension and cyclic shear. Two cases of component crystal hardening were considered. One
is isotropic hardening and the other is kinematic hardening. The growth of the polycrystal plastic
axial and shear strains verses cycles of loading were calculated. The details and the numerical
results are given in ASME, PVP, Vol. 184, visco-plastic behavior of new materials, Book No.

H00576, pp. 79-83, 1989.
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VI.  Stress-Strain-Time Relationship

A,  Mechanical Equation of State

Most structures are subject to stress varying with time. Creep tests have generally been done
under constant stress. In applying these data to structures in which stress varies with time, certain
assumptions have to be made. One commonly used assumption for creep analysis of structures is
the existence of a mechanical equation of state between creep rate, stress, temperature, and current
creep strain. The Mechanical Equation of State is not derived from the physics and therefore may

not be valid for some metals. Under constant temperature, this equation may be written for a

polycrystal,
E$, = F(E,,Ty) (31)

where T}, is the macroscopic stress and F denotes a function. Here the stress is assumed to depend
only on the current creep strain and its rate, and not on the strain rate during earlier stages of

deformation. The creep behavior of the component crystal is generally assumed of similar form
¥ = FO.1) (32)

Here 1 represents the resolved shear stress, y and ¥ denote the creep strain and creep strain

rate, respectively in a slip system. It is interesting to find out whether this component crystal creep
behavior would yield a similar macroscopic behavior given by (31). The strain-time curve under
a constant tensile T;, = 2800 k.s.i. and the stress-strain-time curve of a relaxation test with an initial
loading of 30,000 k.s.i. were calculated with a component crystal following the mechanical equation
of state given by Eq. 32. It was found that at the same creep strain and the same strain rate, the
stresses in both cases are the same. Hence the mechanical equation of state is satisfied for the
macroscopic creep behavior in tensile loading. This is expected to hold also for other radial loadings.
It is also noticed that the resolved creep strain rates of all the component crystals are the same at

the instant, at which the macroscopic creep strains and strain rates of the creep test (constant load)
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and the relaxation test are the same. This indicates that the mechanical equation of state can predict

the creep behavior of polycrystalline solids reasonably well for radial loadings, but not for non-radial

loadings.
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Component crystal creep behavior is expected to vary with grain size. Hence this crystal
behavior is derived from polycrystal tests. It was informed by Prof. D.L. Ding that his test data by
Ding and Lee published in Proc. Exp. Mechanics, Vol. 28, No. 3, p. 304, 1988 were performed
from specimens of the same batch of materials and specimens of other tests might be obtained from
different batches. Hence, the present development of micromechanic theory is based on this set of
creep tests. In this development, the component crystal stress-strain-time relation is assumed to
follow the mechanical equation of state. The slip rate in the mth slip system ¥ is assumed to depend

on its resolved shear stress t,, and slips in all the remaining slip systems. This is expressed as

<,C

Y. = fC.Y.'s) (33)

where the superscript ¢ denotes creep, the three sets of cree test data are shown in Figs. 13-15. A
form of this component crystal creep satisfying the general mechanical equation of states as given
in Eq. 33 has been found to represeni the test data. Considering the creep to compose of the transient
creep and steady creep. The creep rates are then

Yo = TatTa (34)

where

Yo = Cf(t,.7,)

Y Pf(t,, Y.)E (m)

) = [:—:T[l*'R(ixz}uY‘)%]’

and ¢ is the base of the natural logarithm.
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M denotes the currently non-active slip systems. 1,is 10,000 p.s.i. C, P, Q, R and n are constants.

They were found from the test data shown in Fig. 13,

C = 048x10*
P = 700x10*
g = 060x10*
R = 30
n = 60

When there is a reduction of the resolved shear stress as shown in Fig. 16, (Tm, > T), the recovery

creep rate in this slp sysem, is represented by

R = £, - 35
YM -fR( m ‘Yn)[C+P£ g' 4,1.] ( )

where

f,1) = (%] R[l .,.R(‘%”Y.-):]

T

(T, = T.),

ng = 35

The above expressions were used to calculate the stress-strain-time curves of the tests shown in
Figs. 15 & 16. The corresponding curves calculated by Von Mise’s criterion are also shown in the

same figures (14 to 16). It is seen that the present theory represents the test data much better than

the Von Mise’s theory.
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VII. Conclusions

The derivation of the polycrystal stress-strain and the stress-strain-time relation from those
of the component crystal satisfies both the equilibrium and compatibility conditions and hence
fulfills all the requirements of continuum mechanics. The calculation of component crystal
deformation behavior (both time-independent and time dependent) from polycrystal test data
automatically takes care of the crystal size effect on the plastic deformation. Refined single crystal
data obtainea by Bassani, 1990 and Wu et al., 1990, including those with change of crystal orien-
tations are embodied in the representation of the component crystal characteristics. More such data
are dsirable. Their interpretation of the single crystal data contributes greatly to the development
of this plasticity theory. Component crystal characteristics, previously derived from polycrystal
tensile test data, are presently derived from both polycrystal tensile and non-radial loadings. The
calculated incremental stress-strain results are compared with the experiments. The agreement is

seen (o be quite good. This will increase the accuracy of elastic-plastic analyses and designs of

many structures.

A micromechanic theory of creep in polycrystalline solids is also developed. We have learned
that creep test data under non-radial loading given by Ding and Lee 1988 were performed on test
specimens from the same batch of material and other test data may not be from the same batch.
Hence Ding and Lee’s data were used for the development of the present theory. The slip rate of
a slip system of the component crystal is assumed to be a function of the resolved shear stress of
the system and the amounts of slip in all slip systems. A form of this function to satisfy a non-radial
loading was found. This function was used to calculate the stress-strain-time relations of two other
non-radial loadings. Similar calculations were made using Von Mise’s criterion for plasticity. These
calculated results were shown in Figs. 14 to 16. It is seen from these figures, the present theory

agrees well with the experimental data. Von Mise’s model deviate considerably from the test data.

These developed methods should be able to improve the accuracy of the analyses and design

of many structures.
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