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ABSTRACT

This thesis presents a classification of basic optimization models for

planning underway replenishment of a battle group. In particular, this thesis

focuses on two scenarios, routine and rearming, and considers three

replenishment tactics: circuit rider, delivery boy and gas station. Some of the

models presented can be classified as a (standard) traveling salesman,

generalized traveling salesman or orienteering problem. However, several

models are further generalizations of these problems which have not been

previously considered. Computational experiments using four formations from

the literature and commercially available software identify problems that are

difficult to solve and/or require specialized algorithms.
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DISCLAIMER

The views expressed in this thesis are those author and do not

reflect the official policy or position of the DepartmeriL -e or the U.S.

Government.

The reader i ioned that computer programs developed in this

research may not ha-,, xercised for all cases of interest. While every

effort has been made, Wklih. -e available, to ensure that the programs

are free of computational and logic errors, they cannot be considered validated.

Any application of these programs without additional verification is at the risk

of the user.
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I. INTRODUCTION

Carrier battle groups have the unique capability to deploy military striking

power anywhere in the world. They can operate in international water without

relying upon the support or cooperation of other governments. This capability

is essential to carrying out the strategy of forward engagement, i.e., the

strategy of waging war in the enemy's backyard instead of our own. During

peace time, the mobility and flexibility of carrier battle groups also provide the

ability to project relatively unobtrusive 'over the horizon' presence which is

indispensable for responding to and, perhaps deterring, crises and low intensity

conflicts around the globe.

One of the most important factors in insuring the effectiveness and

survivability of carrier battle groups is sustainability. Battle groups must be

capable of carrying the fight to the enemy as well as sustaining combat

operations for an extended period of time. Certainly, the degree of

sustainability depends on the level of logistic support. One way to insure a

high level of such support involves a three-step process. The first step is to

locate 'advanced logistics support bases' (ALBSs) close to areas of potential

conflict. In the second step, supplies and materiel are transported from ALBSs

to battle groups by 'shuttle' ships. Finally, assets such as station ships and

helicopters distribute the needed supplies and materiel to other ships in the
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battle group. The distribution of supply and materiel by a station ship is often

referred to as 'underway replenishment' or simply 'unrep'. To avoid confusion,

this thesis refers to a station ship as a supply ship.

The tactical disposition of ships in a carrier battle group has changed over

the last forty years due to the increasing sophistication of naval technology. In

the past, a formation of ships was usually extended over a few thousand yards.

Today, a modern battle group is typically dispersed over a very large

geographical area. This large dispersement of ships makes the task of

developing efficient unrep plans more complex. Two similar, but different,

replenishment sequences can take a drastically different amount of time to

complete due to the large distances ships must traverse. Thus, the current

method of manually scheduling replenishment may no longer be efficient, for

it may lead to an unnecessarily long replenishment time. The objective of this

thesis is to facilitate the development of effective and efficient unrep plans. In

particular, this thesis models unrep scheduling a optimization problems.

Under varied tactics and scenarios, some mo ,: jiuce to well known problems

in routing and scheduling while others represent new generalizations not

previously explored. Thus, the results in this thesis not only point out new

applications, they also enrich a well known class of problems in routing and

scheduling.

The outline of this thesis is as follows: Chapter II reviews the existing

literature on underway replenishment and provides basic background on

2



traveling salesman problems. Chapter III provides optimization models for

planning unrep using three tactics and two operational scenarios. These

models were implemented and the resulting problems were solved using

commercially available software. Computational results are reported in

Chapter IV.
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I. BACKGROUND

In this chapter, the first section describes the basic components in unrep

planning. To put this type of planning in perspective, a description of the

traveling salesman problem (TSP) is given in the following section. Finally, the

last section reviews prior work in unri" E:'anning.

A. UNDERWAY REPLENISHMENT i NWING

In the simplest terms, unrep planning is specifying the sequence and

locations for combatant ships to be replenished. In practice, unrep planning

involves synchronization of many facets of carrier battle group operations. In

order to define and characterize underlying analytic models, major components

of the unrep process need to be identified and categorized. Table I summarizes

the basic features of unrep planning. Some are self-evident and others are

explained below.

TYPE OF UNREP: There are two basic methods for transferring supplies

and materiel between two ships at sea. One method is called vertical

replenishment or VERTREP. Here, a logistic helicopter is used to lift pallets

or containers from a supply ship to a receiving ship. For the other method,

connected replenishment or CONREP, the supply ship travels alongside the

receiving ship and the delivery of supplies is accomplished by means of cables,
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e.g.,'"high lines" rigged between them. The models in this thesis address the

latter form of unrep.

TYPE OF ASSETS: Helicopters are the only assets for VERTREP. For

CONREP, two types of vessel are typically used in the role of supply ship: fast

combat support ships (AOEs) and fleet replenishment oiler (AORs). However,

an AOR is usually supplemented by an ammunition ship (AE) and combinations

of AO and AE supply ships are also employed.

UNREP TACTICS: Hardgrave[1989] listed four replenishment tactics for

unrep: gas station, delivery boy, circuit rider and chain saw. Only the first

three are considered in this thesis. The last tactic can be analyzed in a manner

TABLE 1. BASIC FEATURES OF UNREP PROBLEMS

Features Descriptions

Type of unreps Vertical replenishment (VERTREP)
Connected replenishment (CONREP)

Type of assets Helicopters,
Supply ships (AOEs, AORs)

UNREP tactics Delivery Boy,
Circuit Rider,
Gas Station

Number of unrep one ship at a time,
simultaneous unrep unrep several ships at a time

Objective function Minimize time to unrep,
(for CONREP) Maximize combat value

Other Restriction on the no. of ships "off-station",
Speeds of formation and supply ship,
Time period in which a combatant ship can
be replenished.

5



similar to the other three; however, its advantages in battle group defense is

subject to much debate.

In the gas station tactic, the supply ship remains at its position inside the

battle group formation. When a combatant ship is scheduled to be replenished,

it leaves its position in the formation and comes alongside the supply ship. On

the other hand, in the delivery boy tactic, the supply ship travels around the

formation and visits combatant ships requiring replenishment in some specified

sequence. So, in gas station, the supply ship remains in its position and

combatant ships move away from their positions to perform unrep and the

reverse is true for delivery boy. The third tactic, circuit rider, is a hybrid or a

compromise between the first two, in that both the supply ship and combatant

ships move away from their positions to some specified rendezvous locations to

perform unrep. For this third tactic, the best rendezvous location would

depend on the objective or goal to be achieved. Note that when all rendezvous

locations are the same as the position of the supply ship, circuit rider becomes

gas station. When rendezvous locations are set to the positions of combatant

ships, circuit rider is identical to delivery boy. Figure 1 graphically illustrates

these three tactics.

NUMBER OF SIMULTANEOUS UNREP: This feature can apply only to

gas station and circuit rider since the delivery boy tactic dictates that the

supply ship visits each combatant ship in some sequence, hence the supply

ship can only unrep one ship at-a-time. However, for the other two tactics, the

6
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Figure 1 Graphical illustration of unrep tactics
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supply ship can unrep multiple ships, e.g., one on the starboard side and one

on the port side. Utilizing both CONREP and VERTREP, more than two ships

can be replenished simultaneously.

OBJECTIVE: One of the most common objectives is to minimize the time

to replenish all ships that require replenishment. On the other hand, e.g.,

when an air raid is anticipated, a more suitable objective might be to maximize

readiness. In this thesis, the readiness is quantified in terms of "combat values"

gained by replenishing combatant ships.

OFF-STATION RESTRICTION: When a combatant ship leaves its

position in the formation, it is considered to be "off-station". In order not to

degrade the integrity of the formation, there may be a requirement that no

more than one ship can be off-station during a replenishment cycle.

B. TRAVELING SALESMAN PROBLEM

As stated previously, an unrep plan consists of a sequence and locations

for combatant ships to be replenished. Consider first the sequencing part of

the planning. Basic to many sequencing problems found in the operations

research literature is the TSP. In this problem, a salesman has to visit

customers in n cities and he wants to find a sequence in which he can start

from his home, visit each city once and only once and return home in the

shortest time possible. If one associates ships with cities and the supply ship

with the salesman, then the sequence in which he visits the cities corresponds

8



to the sequence in which the supply ship replenishes the combatant ships. In

the case of unrep planning, the time the salesman takes to travel between two

cities would depend on the tactic used as well as other factors such as the off-

station restriction, the rendezvous locations and time to unrep. For further

details on TSP see Lawer et al.[1985]. The subsections below describe three

extensions of the basic TSP which are applicable to planning unrep.

1. Multiple Traveling Salesman Problem (M-TSP)

As in the basic TSP, there are n cities to be visited. However, the

M-TSP has m salesmen who can visit these cities. The restrictions are that

each city must be visited by one and only one salesman and each salesman

begins and ends his/her tour from the same (home) city. If all m salesmen

have a common home city, then M-TSP can be formulated as a TSP (see,

Bellmore and Hong[1974]).

2. Generalized Traveling Salesman Problem (GTSP)

In the GTSP, n cities are separated into k mutually exclusive groups

and the salesman has to visit only one city in each of the k groups before he

can return home. If k = n, then the GTSP reduces to a TSP. General

applications of GTSP can be found in, e.g., Henry-Labordere[1969],

Sakaena[1970], Laporte et al.[1987], Noon[1988] and Rousseau[1988].

Early approaches for solving GTSP are given in Henry-

Labordere[1969], Srivastava et al.[1969] and Sakaena[1970]. More recently,

9



Laporte and Nobert[1983] and Noon and Bean[1991] proposed branch and

bound approach for solving GTSP where the distance between cities are

symmetric and asymmetric, respectively.

3. Prize Collecting Traveling Salesman Problem (PCTSP)

Some authors (see, e.g., Golden et al.[1987] and Tsiligirides[1984])

also refer to this problem as the orienteering problem. As in the TSP, assume

that there are n cities, however, not all cities need to be visited by the

salesman. With each city, there is an associated prize or value which the

salesman can 'collect' if he visits the city. The salesman's objective is to visit

the subset of cities which provides the maximum prize collection and return

home within a given time.

Applications of PCTSP in vehicle routing and inventory problems can

be found in Golden et al.[1981, 1984 and 1987]. Balas and Martin[1985], Golden

et al.[1987, 1988] and Tsiligirides[19841 describe heuristic procedures for

PCTSP. Ramesh et al.[1989] provided an optimal algorithm based on

Lagrangean relaxation and problem reformulation. However, PCTSP can also

be viewed as a special case of routing and scheduling problems with time

windows. These windows indicate the time interval during which the cities can

be visited. For PCTSP, the time windows for n cities as well as the salesman's

home city are the same. Solomon and Desrosiers[1988] provide a state-of-the-

art survey for routing and scheduling with time window. The book by Golden

and Assad[1988] also provides many articles on this subject.

10



C. PRIOR STUDIES ON UNDERWAY REPLENISHMENT

The majority of studies on unrep have focused on simulation models.

Only a few provided any guidance or methodology to develop efficient unrep

plans. In the United States, there are three existing simulation models: the

Replenishment-at-sea Model (RASM), the Battle Force Operation

Replenishment Model (BFORM) and the Resupply Sealift Requirements

Generator/Ship On-line Scheduler (RSRG/SOS). RASM was developed at the

Center for Naval Analyses in 1986. It is written in SIMSCRIPT and considers

only the delivery boy and gas station tactics. For a more detailed description

of RASM, see Branting[1986]. BEFORM was developed at the Applied Physics

Laboratory of Johns Hopkins University and implemented in PASCAL. The

model allows three tactics: delivery boy, gas station and a third tactic which

generalizes gas station. The details of the model are described in Hereford and

Spiegel[1988]. Finally, RSRG/SOS was developed by the David Taylor

Research Center in 1988 (see, Vondersmith and Miller[1988] and Melton[1988]).

This model is concerned with shuttle lift to a battle group. Williams et

al.[1989] and Holder and Gittins[1989] built a simulation model to study the

unrep requirements for the British Royal Navy. In all of the above, none

discussed the development of an efficient plan. Schrady[1991] wrote that these

references either let the safety of replenishment equipment override the unrep

planning, myopically sequence ships to be replenished, implement plans created

by "intelligent users," or only provide rules of thumb for unrep.

gruiw14y to1



Among those that considered methodologies for scheduling unrep,

Hardgrave[19891 showed that, under suitable assumptions, the scheduling of

unrep under three tactics (delivery boy, chain saw and circuit rider) can all be

formulated as a TSP. Pflnick[1989] and Pilnick et al.[1991] considered

replenishment problems using VERTREP. Braunschweig[1991] developed a

optimization program to analyze battle group vulnerability using gas station

and delivery boy tactics. The combatant off-station time and the length of the

minimum replenishment cycle were used as measures of effectiveness for

vulnerability. More recently, Zabarouskas[1992] developed two branch and

bound algorithms for the delivery boy and circuit rider tactics and

Williams[1992] described a heuristic algorithm to schedule unrep for the British

Royal Navy.

Other related studies have been completed at the Naval Postgraduate

School. Barnaby[1988] used BEFORM to analytically evaluate the trade-offs

between delivery boy and gas station tactics. Conley[1988] developed a

statistical model to predict replenishment rates and compsr, hem against

published rates. Ratliff[1990] modified RA".'T " e VERTREP.

Harris[1989] compared the thr ". 'im United States.

Schrady and Wadsworl , ' * , support system which tracks

and predicts the l.. .LU of a battle group and its component unit.

12hUWW
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III. BASIC MODELS FOR UNREP OPERATION

In this chapter, mixed integer programs are used to model unrep

operations under three tactics: delivery boy, circuit rider and gas station. For

each tactic, two specific scenarios are considered. The first, the routine

scenario, is most prevalent while the battle group is in transit or in a relatively

peaceful environment. During such situations, the objective is to accomplish

replenishment in the most efficient manner. In the models below, efficient

refers to the time needed to replenish the battle group. The other scenario,

the rearming scenario, is motivated by a battle group which expects reattack

in, say, a few hours. Most likely, it would be impossible to replenish every ship

in the battle group. In this scenario, the objective is to selectively replenish

combatant ships which provide the greatest level of strategic readiness before

the predicted attack

To frame the problems, the next section describes the assumptions

underlying all models in this chapter. Following these assumptions, models and

their relationship to TSPs are described. It is interesting to point out that,

unlike many applications of the TSP found in the operations research

literature, unrep operations yield TSPs with a relatively small number of cities

(or group of cities in the GTSP case). Moreover, unrep operations represent a

rich class of TSPs. By varying parameters or features of an unrep operation,

13
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............... .. .....

all known extensions of the TSP can be generated. For example, one

combination of tactics and scenarios, i.e, circuit rider and the rearming scenario,

produces a new extension of the TSP - the generalized orienteering or prize

collecting salesman problem.

A. MODEL ASSUMPTIONS

To capture the basic structure and to concisely model unrep problems, the

assumptions described below are assumed throughout this chapter. Although

some assumptions may be relaxed, their relaxations would obscure the

underlying structure and extend the treatment beyond the intended scope of

this thesis. Some of these extensions have already been investigated (see,

Braunschweig[1991]).

ASSumption 1: The supply ship has sufficient supply to replenish all ships in
the battle group.

Assumption 2: Both the supply and receiving ships maintain the same
formation during unrep. Thus, neither ship falls behind the
formation as course and speed remain constant during unrep.
Braunschweig[1991] considered fall back in his thesis.

Assumption 3: The time to replenish a given combatant ship is constant and
is not affected by the sequence in which unrep occurs. In
addition, replenishing a ship below the required level is
prohibited.

A~lamoio4: Combatant ships are always available to unrep at the designated
time. Implicitly, this assumption requires that the decision to
begin unrep has been planned with cooperating sea and weather
condition in mind. However, by modifying the time window
constraints, the supply ship can be forced to unrep combatant
ship outside a certain interval, e.g., during an aircraft landing
window for an aircraft carrier.

14



Assumption 5: In both scenarios, it is assumed that an unrep process begins
when the first ship to be replenished or the supply ship moves
away from its station and ends when all ships including the
supply ship have returned to their stations. We refer to the
elapsed time between the start and the end of the unrep
process as " the total unrep time". Certainly, different methods
for measuring total unrep time exist and they can be easily
incorporated into the models in this chapter.

B. DELIVERY BOY MODELS

Recall that in delivery boy, the supply ship leaves its station and travels

to combatant ships at their stations. In this manner, combatant ships can

remain at their stations, thereby maintaining the integrity of the formation

near the desire level. Below the delivery boy tactic under the routine scenario

is formulated.

INDICES:

b the initial (or beginning) location of the supply ship;

e the ending location of the supply ship;

i, j the position (or location) of combatant ships in the battle group
and i, j = 1, 2, 3 ..... , n (assume that n z 2);

k stage number (see explanation below) k = 1, 2, 3 ..... , (n+l).

DATA.

ri replenishing time for ship i;

dbi travel time from initial position b to ship i;

du travel time from location i to locationj;

die travel time from ship j to ending position e.

15



DECISION VARIABLES:

Xvbi equals 1 if the supply ship visits ship i first and equal 0
otherwise;

X11# equals 1 if ship i is visited (or replenished) before shipj in stage
k and equal 0 otherwise;

Xf" j ,  equals 1 if the supply ship visits ship j last and equal 0
otherwise.

Minimum Unrep Time Problem
(Delivery Boy Tactic)

n n n n n

Minimize F dlrIXb + (d.,+r.) xk 1 3 + dX(n,

1-1 k-2 '=1 J-1 J.1

subject to
n

E = 1 (DB-1)

1.1

n

X 1 bi = X21j , V i (DE -2)

n n

x -ji x l i i (DB-3)

n

X 1 (DB-5)
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X1 bi+ rTX-k J,=1 , V i (DB - 6)k-2 .1

In the above formulation, the sequence of n ships to be visited is

replenished in (n + 1) stages. During stage 1, the supply ship travels to the first

ship in the sequence, during stage (n + 1) the supply ship travels from the last

ship in the sequence to its ending position, and during the intermediate stages

the supply ship travels from one combatant ship to another. Figure 2

graphically displays this stage representation for a formation with three

combatant ships. The dotted arrows or arcs indicate one possible unrep

sequence. Note that not all sequences of connected arcs from b to e

corresponds to a legitimate unrep sequence. For example, a path: b - 2 - 1 -2 -

e is illegal for it visits ship 2 twice.

This representation of the unrep sequences naturally creates more

decision variables. A more compact representation without the stage index is

shown in Figure 3. However, the first representation is utilized throughout the

remainder of this thesis due to its faster computation time when implemented

in commercial software packages such as XA (Sunset Software Technology

[1985]) and ZOOM (Singhal et al.[1989]).

In the above formulation, b and e may represent the same position, e.g.,

the supply ship's on-station position inside the formulation, or they may

represent two different positions, beginning and ending, as the definition

suggests. Moreover, in the definition of the decision variables, there are three

17
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Figure 2 A network structure for the minimum unrep time problem with
delivery boy tactic
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Figure 3 A compact graphical structure of unrep sequence

sets of variables. The first set represents the feasible set of arcs in the first

stage, i.e., arc from b to combatant ship i, the second are arcs between

combatant ships i andj, and the last from combatant ship i back to e.

The objective consists of three items. The first is the time for the supply

ship to travel to the first ship in the sequence plus its unrep time. The second

is the travel time and the unrep time for ships in the rest of the sequence.

The last term is the time for the supply ship to return to its ending position.

Constraint (DB-1) requires that the supply ship visits only one ship in the

first stage. Constraints (DB-2) to (DB-4) simply state that after visiting ship

i in stage (k-1) the supply ship must proceed to the next ship j in stage k.

Observe that (DB-2) and (DB-4) can be viewed as a special case of (DB-3).
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Constraints (DB-5) insures that the supply ship returns to its ending position.

In the network flow terminology, (DB-1) to (DB-5) simply specify that there is

one unit of flow that goes from b to e through the network similar to the one

depict in Figure 2. The last constraint, (DB-6), guarantees that each combatant

ship is visited once and only once and is sometime referred to as the subtour

elimination constraint in the TSP literature. In fact, constraints (DB-1) to (DB-

6) precisely describe a traveling salesman tour and the minimum unrep time

problem using delivery boy is exactly the basic TSP.

For the rearming scenario, assume that the time available for unrep is h

hours. During these h hours, some ships may not be replenished at all. This

possibility changes the underlying network structure of the problem. In

particular, there are additional arcs connecting nodej to node e in every stage

signifying that unrep operations may terminate during any stage (see Figure

4). Recall that under this scenario, the objective is to maximize strategic

readiness which is taken to be the sum of combat values associated with the

replenished ships. Below the formulation for this scenario along with

additional data and decision variables are provided. Any notation previously

introduced maintains its definition.

ADDITIONAL DATA.

Wi combat value of ship i;

h time available for unrep operations.
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stage I stage 2 stage 3 stage 4

$3 = ship i

= station ship's initial position

= station ship's ending position

Figure 4 A network structure for the maximum combat value
problem with delivery boy tactic
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ADDITIONAL DECISION VARIABLES:

V equals 1 if ship i is replenished and equals 0 otherwise;

Xf%, equals 1 if ship i is replenished last and equals 0 otherwise.

Maximum Combat Value Problem
(Delivery Boy Tactic)

n

Maximize Wi V

subject to
n

I-I

n

X1bi = Xij + X 2 ie ,V i (DB-8)
"J-1

n n

E X(k-1)j! = X .kij + X ,i V k23 , i (DB-9)
j.1 i.1

I n= j = X (n1+l) . , V i (D-10)
J.1

(n-1) n

E = 1 (i.- 11)
k-2 i-1

n n

X i+EF i= ! V i (DB-12)
k-2 J-1

n n n n n n+1 n

11 k-2 2-1
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The objective function seeks to maximize the total combat value of

replenished ships. The constraint sets (DB-7) to (DB-11) are analogous to (DB-

1) to (DB-5). Any additional term involving X . allows the supply ship to return

to its ending position at any stage. Constraints (DB-12) is analogous to (DB-6)

except the right hand side of (DB-12) has V instead of 1. In this manner, V

signifies that a flow of one unit enters node i only if unrep is performed. The

last constraint ensures that the unrep operations does not run beyond the

available time, h. The first term in (DB-13) is the total unrep time and the last

three terms are the travel time for the supply ship.

Observe that the maximum combat value problem using the delivery boy

tactic fits the description of the orienteering or prize collecting TSP. As in the

PCTSP, the maximum combat value problem allows the supply ship (i.e., the

traveling salesman) to visit a subset of cities (ships) in order to maximize the

combat value (prizes) and return home by time h.

C. CIRCUIT RIDER MODELS

The delivery boy tactic requires each combatant ship to be replenished at

its on-station location which is assumed to consist of only one point. In circuit

rider, this assumption is relaxed to allow for more flexibility. In particular,

each combatant ship can unrep at more than one locations which are referred

to as 'rendezvous (r.v.) locations'. For simplicity, it is assumed that every ship

has exactly m r.v. locations. Figure 5 displays the network structure for an
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@ ship i at rendezvous position p

stotion ship's Initial posilon

() station ship's ending posiWorn

Figure 5 A network structure for the minimum unrep time
problem with circuit rider tactic
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unrep problem with three ships where each ship has exactly two r.v. locations.

Note that two ships can be replenished simultaneously if the r.v. locations for

two different ships coincide. In the routine scenario, the problem involves

selecting the r.v. location for each ship as well as selecting the sequence in

which to unrep the ship. To formulate the problem, define the following

additional indices and data.

ADDITIONAL INDICES:

p,q denote a rendezvous location; pq = 1,2,...,m.

ADDITIONAL DATA.

db(4p) travel time from the beginning position to ship i at r.v. location
P;

d( .p)oq) travel time from ship i at r.v. locationp to shipj at r.v. location
q;

d(ip)e travel time from ship i at r.v. location p to the ending
position.

NEW DECISION VARIABLES:

X'( 4p) equals 1 if ship i is replenished first at r.v. locationp and equals
0 otherwise;

X(j.p)Gq) equals 1 if ship i is replenished at r.v. location p directly before
shipj is replenished at r.v. location q during stage k and equals
0 otherwise;

V A  equals 1 if ship i is replenished last at r.v. location q and equals
0 otherwise;

V(,,P) equals 1 if ship i is replenished at r.v. location p and equals 0
otherwise.
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The problem under the routine scenario can be stated as follows.

Minimum Unrep Time Problem
(Circuit Rider Tactic)

n R
Minimize T E (db(ip) +ri) Xlb(i.,)

p-1
n n m n a n a

+ E (d(ip) (j q) () XkP)(uq) + d x

subject to
n a

X 1fj.q (CR- 1)

n a
X1 b(i,p) = TX2 (,P)() , i P (CR-2)

i-i qq

n wE xn' p) ,. = 1 (c-s)

i-1 q-i

i 1 p) =1 , i 1Cm =7)
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The objective function and constraints (CR-1) to (CR-5) are analogous to

those of the delivery boy tactic. Constraint (CR-6) differs from (DB-6) because

variable V(3,) is needed to indicate the r.v. location of ship i. Constraint (CR-7)

ensures that each ship uses only one r.v. location.

Observe that the above formulation corresponds to that of a GTSP. In

the circuit rider, each r.v. location can be considered as a city in the GTSP.

These cities (r.v. locations) are then grouped into n groups, one for each ship.

Then, the salesman must visit one and only one city in each of the n groups

and return home, which matches the minimum unrep time problem with the

circuit rider tactic.

For the rearming scenario, the problem of maximizing combat value with

a circuit rider tactic becomes a generalization of the orienteering or the prize

collecting TSP. The prize collecting TSP requires the salesman to visit a

subset of n cities in order to maximize the value of the collected prizes while

returning to his/her home city in a given amount of time, h. The model below

for circuit rider generalizes the "n cities" to "n group of cities". In the

framework of underway replenishment, a group of cities represent a group of

r.v. locations for a combatant ship. Moreover, the salesman collects only one

prize by visiting a city (or r.v. location) in a given group (or of a given ship). So,

visiting an additional city in the same group yields no extra prize. This

restriction translates to not allowing the same ship to be replenished twice at

two different r.v. locations. This generalization has not been previously
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addressed in the literature and is modeled below in a manner similar to the

same problem with the delivery boy tactic.

Maximum Combat Value Problem
(Circuit Rider Tactic)

n m

maximize E Wi Vu, P)

subject to
n m

FXb (J.q) = ~-8

n m

,Xlb(i,P) = .X2(..p)(j,q) + X 2 (I,.). , Vif,i pt (CR-9,

bip ((i, P)~p T E"i )Uq
.1-1-

n m n m

T ,X(k-1) (J~q)(iP) , ~X k(,p) (,q) +Xk ip aV kZ3, i, P (CR-la)

nnM) ( i ,p ) = ( l e " PM R -1 1 )

E X'(J,) U)

-1

n1= 1 iCR-12)

p-1
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Vip + E db(Ip)X'b(i,p)

P 1. 2 21 m41

+ d(i,p) (j,q)Xk(ip) (Jq) + d((,pI)eX (jp)e I h
k-2= . . - 2 . 1p-1

(CR-is)

With the exception of the subscripts, the above objective function and

constraints are similar to those for the maximum combat value problem with

the delivery boy tactic. As before, (CR-13) and (CR-14) ensure that each ship

is replenished at only one r.v. location.

D. GAS STATION MODELS

Unlike the delivery boy and circuit rider tactics, gas station admits several

optimization models/problems instead of just one for each of the two scenarios

considered thus far. This is due to the flexibility inherent in the tactic. Under

the gas station tactic, more than one ship can be replenished simultaneously

alongside the supply ship. Typically, a supply ship can replenish two combatant

ships, one on the starboard side and the other on the port side. For simplicity

sake, this thesis refers to such a supply ship as having two "transfer stations".

In addition, because the supply ship is stationary relative to the moving

formation, the combatant ships must leave their positions to receive supplies

alongside the supply ship. This degrades the integrity of the formation. In the

extreme case, all ships leave their positions to form a "gasoline alley" (see,

Braunschweig [1991]). In this section, the following cases are considered.
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1) A limited number of ships off-station: If the supply ship has m
transfer stations, then at most m ships are allowed off-station at any
time.

2) No off-station restriction: There is no limit on the number of
ships that can be off-station. However, it is assumed that the
practice of forming a "gasoline alley" is prohibited. Instead, ships are
assumed to wait for their turn at their stations. They are allowed
to leave when their arrivals at the supply ship coincide with another
ship finishing its unrep.

1. Limited number of ships off-station

Under the routine scenario, having m transfer stations can be viewed

as having m supply ships, each with one transfer station. If the objective is to

minimize the sum or average of the total unrep time at the m transfer stations,

then resulting optimization problem is a M-TSP. However, it is more

appropriate to minimize the maximum total unrep time at the m transfer

stations, as this represents the time at which the supply ship completes its task

and all ships returned to their stations. To state the problem in the framework

of a M-TSP, the following are new definitions of indices and variables.

INDICES:

a transfer station a = 1,..., m, where m = number of transfer stations;

k stage k = 1,..., K (see discussion below).

DECISION VARIABLES:

F time when all ships are back to their on-station locations;

)&,k) equals 1 if ship i is replenished before shipj during stage k at
transfer station a and equals 0 otherwise;
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X-b equals 1 if ship j is the first ship to replenished at transfer
station a and equals 0 otherwise;

equals 1 if shipj is the last ship to be replenished at transfer
station a and equals 0 otherwise.

Below is one formulation of the gas station tactic with m transfer

stations (A different formulation is provided in Appendix A).

Minimum Unrep Time Problem

(Gas station with limited number of ships off-station)

Minimize F

subject to

nX(.1)bJ = 1 , Va (GS-1)

n

x(a, )bi = (a,2)ij + X( ,2 I V a, i (GS -2)

n n

x(ak-1): -X=k)iJ + X~ak)i " V k>3, a, i (GS-3)

n

.= X(a.k)is IV a, i (GS -4)

K n

E T X(ak)i.= 1
, V a (GS-5)

k-2 J-i

m ? K n

EX+ EE = V, Vi (as-6)
a-1 a- k- J-
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n K n n

K

+E T dbX(a.k) , F V a

In the above definition, the index k ranges from 1 to K. If m = 1,

the value of K must be set to (n+1). When m 2 2, each transfer station must

replenish at least one ship and can replenish at most (n-m + 1) ships. To ensure

an optimal solution, K should be set to (n-m + 1). However, this value of K

generates the maximum number of variables in the above formulation. If the

combatant ships require similar amount of supplies and approximately the

same amount of time to travel to and from the supply ship, then a good choice

of K is the ceiling of (n/m).

For the above problem, the constraints (GS-1) to (GS-6) are

conceptually the same as (DB-7) to (DB-12). The left hand side of (GS-7)

computes the time each transfer station finishes replenishing ships and the

variable F simply represents the maximum of these finishing times among the

m transfer stations.

When there is only one transfer station, and only one ship is allowed

off-station, Hardgrave[1989] showed that all sequences yield the same total

unrep time. Thus, the above problem is unnecessary when m = 1.

Consider now the maximum combat value problem with limitations

on the number of ships allowed off-station. The model below uses the following

definition of decision variables and is stated for a = 1, 2.

32



ADDITIONAL DECISION VARIABLES:

V', equals 1 if ship i is replenished at transfer station a.

Maximum Combat Value Problem
(Gas Station with unlimited number of ships off-station)

m n

Maximize ET ia
a-1 . 1 Va

subject to constraints (GS-1) - (GS-5) and

K n

X baE1)b+b-E X(ak)ji = Vi , V a, i (GS-8)
k-2 J-1

m
F , V i (GS-9)
a-1

n K n n

1-i k-2 J-1 j-1 (GS-1O)K n

+ dbJX(a, F . V a
k-2 j-1

The combination of (GS-8) and (GS-9) allow each ship to be

replenished at most once at only one transfer station. Constraint (GS-10)

ensures that all transfer stations complete their task by time h.

2. Unlimited number of ships off-station

To facilitate the formulation of the optimization problem, it is

assumed without loss of generality that the time of the first replenishment at

any transfer station is at time zero. Note that this does not mean that every
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transfer station starts replenishing a ship at time zero. In fact, to achieve

minimum unrep time, it is sometimes necessary to start replenishing after time

zero at some transfer stations. Figure 6 illustrates an example in which it is

desirable to have a transfer station begin replenishing ships after time zero.

In Figure 6, there are two ships, A and B, to be replenished and the supply ship

has two transfer stations. Making ships A and B replenish at time zero yields

a total unrep time of 7. However, when ship B is allowed to replenish later,

the total unrep time reduces to 6.

In the formulation below, the time each transfer station begins

replenishing ships is denoted as g("'l where a indicates the transfer station. In

Figure 8, gl.1 = 0 and g2." = 1. In words, g14l) is the difference (or gap)

between the start of the replenishment process at station a and the time of the

first replenishment at any station (which is assumed to be zero).

The concept of assuming that the first replenishment begins at time

zero is extended to replenishing the next ship in the sequence. In particular,

it would be ideal to have the transfer static. --pleni.Lh ships one after the

other, i.e., without any gap. However, this is not always optimal. Figure 7

illustrates a counter example with 2 combatant ships and one transfer station.

Below is the statement of the problem where TF-TS represents the

time needed for the unrep operation. As before, notation not explicitly defined

maintains its previous definition.
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a) Both transfer stations begin replenishing ships at time 0

dAbIJ rA db . transfer station 1

d I) r d
?transfer station 2

-2 -1 0 1 2 3 4 time
<- total unrep time -J

b) Only station 1 begins replenishing ships at time 0

C"

Figure 6 : Gaps for the first replenishment at transfer
stations
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Figura 7 Gaps between successive replenishment
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ADDITIONAL DECISION VARIABLES:

TS the start time of the unrep process;

TF the finfish time of the unrep process;

G(a,k) gap at transfer station a during stage k, where k = 1..K

Minimum Total Unrgn Time

(Gas station with unlimited number of ships off-station)
Minimize TF - TS

subject to

- dX + g (a.l) 2t TS ,Va (GS-li)

E rx (a, 1) bJ + g(a~i) -E dJbX (ao2) j + g (a. 2 ) k TS V Va (GS -12)

n2 k- 12 n 12

r rx (a,1 ) j+9 g(a, 1) + T x(,1 j+ g (a,1))
71 12 -1J-

-jK(,k + g (a, k) : TS V k?.3, a

(08-13)

S(d.,j.r.) X(a,1) bj g g(a,1) :9 TF , V a (GS-14)

12~ ~ n2 1

ri x (a,) bJ +g (a,1) +~~(d,+r,) X(a,2) 1 J+g(R. 2 ) TF, (08-15)
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n k-in n
r~xai + g(Ui + +E T(e)

n a
+ . (d,,+.j) X(,k) + g(.,k) I TF V kk3, a

TS :g 0 A 0 g(a0 , Jr) 0 , V a, k (GS-17)

The left hand side of constraint (GS-11) computes the time the first

ship replenished at station a must start its travel toward the supply ship. For

example, if ship j is the first in the sequence at station a and there is no gap,

then shipj must begin its travel to the supply ship at time -dj. Similarly, the

left hand side of constraints (GS-12) and (GS-13) compute the time that the k'

ship to be replenished at station a must start its travel toward the supply ship.

To illustrate, assume that ship 1, 2 and 3 are replenished successively at station

a (see Figure 8). Then, ship 3 must begin its travel toward the supply

ship at time (r, + g") + (r2 + gja)) + JO)- d = 0. Thus, TS represents

theearliest start time among n ships. Constraints (GS-14) - (GS-16) are

analogous to (GS-11) - (GS-13) and, in combination, they compute TF which is

the time needed for all ships to return to their stations.

Using the constraints and variables described thus far, the problem

rearming scenario can be stated as following
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Figure 8 A replenishment sequence at a transfer station

Maximum Combat Value Problem
(Gas station with unlimited number of ships off-station)

Maximize E T wi

subject to (GS-1) - (GS-5), (GS-8), (GS-9), (GS-11) - (GS-17) and the following

TF - TS i h (G8-18)

Recall that TF and TS are computed in constraints (GS-11) to (GS-17).

To summarize, the models for gas station tactic, particularly those

without any off-station restriction, represent generalizations of TSP which are

unique to underway replenishment operations. Although these models may

involve no more than 15 ships (future battle groups may contain between four

and seven combatant ships), some contain a rather large number of (binary)

decision variables. As demonstrated in the next chapter, these
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models/problem can requie a larg amount of cpu time to obtain an optimal

solution using available comrilsoftware.
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IV. COMPUTATIONAL EXPERIENCE

Four battle group formations from the literature (Barnaby[1988] and

Hardgrave[1989]) were utilized to validate models in Chapter III and to study

the effects of various tactics and scenarios. Data concerning the formations are

summarized in Table 2 (see Appendix B for graphical displays of the four

formations). In Table 2, there are five columns of data for each formation.

The first column provides the names of the ships. The second and third

columns provide ship positions in term of the relative bearing (BR) in degrees

and range (RG) in nautical miles, respectively. Note that it is assumed that

AOE is the supply ship in all four formations. The fourth column (Unrep

Time) gives the time to refuel ( or replenish) each ship in hours. These times

are based on (i) the current amount of fuel on board (which were randomly

generated), (ii) the assumption that every ship is to be refueled to 75% of the

capacity listed in the 'The Naval Institute Guide to Combat Fleets of the World

1990/1991' and (iii) the transfer rates from Barnaby[1988]. The final column

provides the randomly assigned combat values for each ship. For the circuit

rider tactic, combatant ships, i.e., all ships except the aircraft carrier, have

three additional on-station positions that are randomly selected within ± 10

degrees and ± 10 nautical miles from the position listed in the second and third
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columns. To obtain the travel times for either the AOE or the combatant

ships, it is assumed that the formation speed is 15 kts and the ship speed for

both AOE and combatant ship is 26 kts. The formula to calculate travel time

from (Euclidean) coordinate (x,y,) to (x,,y) is as follows (see, Hardgrave[1989]):

FX (y -y) +{[FX (y -y -F4) X [ (X-i 21y-
Travel Time= j j {[ ] 2+ (S2 ) [ ) 2] r

(S2-Fe)

where F (formation speed) = 15 and S (ship speed) = 26.

The two sections below report computational results for the two scenarios:

routine and rearming. For each scenario, all three tactics, delivery boy (DB),

circuit rider (CR) and gas station, are considered. For gas station, there are

four variations. The first and second variations, Li and Ul, have one transfer

station; however, Li allows at most one ship to be off-station and U1 allows an

unlimited number of ships to be off-station. Similarly, the next two variations,

L2 and U2, have two transfer stations; however, L2 allows at most two ships

to be off-station and U2 allows an unlimited number. All models were

implemented in GAMS (Brooke et al.[1988]) and the resulting mixed integer

programming (MIP) problems were solved by a program developed by Sunset

Software Technology called XA (see Appendix C for GAMS listings of all the

models). The computing (cpu) times are based on an IBM PS/2 personal

computer model P-70 with an Intel-386 (20 MHz) processing chip and an Intel

387 math-coprocessor. Most problems are solved to within ten percent of the

optimal solution, i.e., OPTCR is set to 0.1 in GAMS, or until the time limit of
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three hours is exceed, i.e., RESLIM = 10800 seconds. Exceptions to these

criteria are indicated in the tables summarizing various results. To speed up

the solution time of some problems, in particular problems with tactic CR and

U2, additional restrictions and constraints (valid inequalities) are utilized to

reduce the number of (binary) decision variables and to improve the bounds

provided by the linear programming relaxation.

A. ROUTINE SCENARIO

Recall that, during a routine operation, the objective is to minimize the

time to replenish all ships in the formation. Table 3 summarizes the

computational results. Figure 9 graphically displays the cpu times for the five

possible tactics. These figures point out that tactic CR and U2 are much more

difficult to solve by standard MIP solvers. Figure 10 compares unrep times

across the different tactics. As expected, U2 provides the quickest unrep time

over all four formations. Note also that CR is only slightly better than DR.

This is due on part by the limitation imposed on the model. First, there are

only four possible rendezvous points for each combatant ship, except the

aircraft carrier which only has one. Second, all rendezvous positions are

relatively near the on-station positions listed in the second and third columns

in Table 2. Finally because of the time limit of three hours, some of problems
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Figure 10 Comparison for unr-ep times across tactics
with the CR tactic are not Solved to within 10% Of optinality. For a more
Complete experimentation with a specialized algorithm for problems with the
CR tactic, see Zabarouskas[ 19 92j.

B. REAARING SCENARIO

To demonstrate the algorithmic performance of the different models, theproblem of maximizing combat values were solved with the tine limits set at
50%, 75% and 85% of the minimum unrep time. It is important to note thatthe actual time limits are different from one tactic to the next. This is because
different tactics yield different minimum unrep times. The results are
summarized in Table 4 and 5. Figure I I displays the average combat values
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TABLE 4 COMBAT VALUE FOR REARMING MODELS

Combat values

50 percent 75 percent
Formation CR DB Li L2 Ul U2 CR DB Li L2 Ul U2

1 22 22 28 28 22 18 29 28 33 33 33 28
2 31 31 33 33 28 26 38 42 42 40 39 39
3 40 39 47 43 40 38 NA 60 59 59 57 62
4 NA33 39 40 30 33 39 44 47 44 42 44

Average 31 31 37 36 30 29 35 44 45 44 43 43

85 PERCENT MAX
Formation CR DB Li L2 Ul U2

1 29 33 33 30 38 38 38
2 40 43 48 47 43 48 53
3 63 61 63 64 62 65 77
4 43 44 48 52 47 44 55

Average 44 45 48 48 48 49 56
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TABLE 5 CPU TIME FOR REARM[NG MODELS

Computing Time in Seconds

50 percent 75 percent
Formation CR DB Li L2 UI U2 CR DB Li L2 U1 U2

1 10693 15 16 131 39 904 1637 65 10 121 10 1348
2 359 639 82 6806 265 9327 2246 221 126 506 394 352

3 1003l* 1558 105 2948" 1948 3126 NA 622 393 10792 310 1838
4 NA 508 152 1287 793 10793* 6070 712 26 107921153 446

Average 7028 679 89 2793 761 6038 3318 405 139 5553 467 996

85 percent
Formation CR DB Li L2 Ul U2

1 9 13 8 48 17 3489
2 129 91 249 1513 92 5451

3 10313 2823 427 107930 1216 225
4 8449 10798 61 2 457 107944

Average 4725 3433 186 3089 446 4990

Note: The solver was terminated after 3 hours of cpu time without achieving the 10% optimality
criterion.

# Additional constraints were added to decrease problem size.
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Average Combat Values
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Figure 11 Average combat values over the four formations
using the six tactics

over the four formations using the six tactics. Subject to the varied solution

quality, the average combat values appeared to be constant across all six tactics.

This confirms the intuition that, if the time limit is 50% of the minimum unrep

time, the maximum combat value should be approximately 50% of the total

combat value. In particular, the average combat value are 57.74%, 75.60% and

83.93% when the time limits are set to 50%, 75% and 85%, respectively. Figure

12 graphically shows the average cpu times require to solve the problems.

Again, the tactics CR and U2 are among those requiring large amount of cpu

time. To analyze the efficiency of the tactics, Figure 13 plots the maximum
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combat values using formation 1 and time limits of 4.5, 6.25 and 7.65 hours.

As expected, U2 achieves the highest combat value.

Ave-age CPU TImne in Secancls

8000-

7000

60

2000

0
09 08 L1- Ul U2

Figure 13 MheaxiCP cobtivales reuing foton 1 andlem
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IV. CONCLUSION

This thesis offers a classification of basic optimization models for planning

underway replenishment of a battle group. In particular, this thesis focuses on

two scenarios, routine and rearming, and considers three replenishment tactics:

circuit rider, delivery boy and gas station. Optimization problems whose

solutions yield plans for performing replenishment are developed. These

problems all belong to an important class of problems in routing and scheduling

called the traveling salesman problem. In the literature, researchers typically

consider the traveling salesman problem and its generalizations such as

generalized traveling salesman and prize collecting traveling salesman (or

orienteering) problems with a large number of cities or locations. In contrast,

problems for underway replenishment usually consist of less than 15 cities

(ships) or group of cities (rendezvous locations). In addition, underway

replenishment problems also offer new generalizations to the traveling

salesman problem, e.g., the generalization of orienteering (maximize combat

values problem with circuit rider strategy) and m-traveling salesmen problem

(gas station tactic with two or more transfer stations).

Although many algorithms, optimal and heuristic, exist for the traveling

salesman problem, they are developed with large scale applications in mind.

To assist in the identification of fruitful areas for algorithmic development
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particularly tailored toward underway replenishment, models developed in this

thesis were implemented and solutions obtained using commercially available

software such as GAMS and XA. The results show that replenishing with gas

station with two transfer stations and circuit rider yield difficult optL P "ition

problems.

Being a preliminary study in the area of underway replenishment, this

thesis points out many directions for future investigation; some of which are

list below.

1) Develop models that take into account the fact that while replenishing

the supply and combatant ships must travel at a speed slower than the

formation speed for safety precautions.

2) Develop models which include stochastic components. In particular,

parameters such as combat values and time available for replenishing depend

on the incoming air raid whose axis and time are not known with certainty.

3) Develop specialized algorithms (optimal and/or heuristic) to solve

difficult problems quickly.

53



7- 7.. 57*

APPENDMIX A. ALTERNATE GAS STATION MODEL WIT LIMITED
NUMBER OF SHIPS OFF-STATION RESTRICTION

Note: All decision variables and data used here are defined as before.

Minmum Unren Time Problem

MIN F

subject to

n

(dib+rl+d.) Val 5 F , V a

E va I , Vi
a-1

Maimum Combat Value Problem

MAX F, TWi
a-1 i-i

subject to

n

S(dlb+-ri+d.I) Val h ,Va

a-1
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APPENDIX B. FOUR BATTLE GROUPS FORMATION LAYOUT

A. FORMATION 1
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C. FORMATION 3
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D. FORMATION 4
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APPENDIX C. UNREP GAMS MODELS

A. DELIVERY BOY TACTIC WITH MINIMUM TOTAL UNREP TIM
OBJECTIVE FUNCTION

$TITLE * ** Battle Group Replenishment Problem *

$STITLE * ** DELIVERY BOY TACTIC ** *
*------ GAMS and dollar control options ------------- ---
$OFFUPPER OFFSYMLIST OFFSYMXREF

OPTIONS LIMCOL = 0, LIMROW = 0,SOLPRINT = OFF, DECIMALS =2;

OPTIONS RESLIM =10800,ITERLIM =1000000, OPTOR=
0.1 0,WORK =200000;
* OPTIONS MIP = ZOOM;
OPTIONS INTEGER1 = 6;

$INCLUDE 'BG-F1 .DAT'
$INCLUDE 'SUB.SET'

*------- ---COMPUTED DATA---------------------------
PARAMETER

DIST(S,T) travel time between candidate UNREP points;

DIST(S,T)$(ORD(S) NE ORD(T))
(FP*(CP(T,'Y')-CP(S,'Y')) +
SQRT(SQR(FP*(CP(T,Y')-CP(S,'Y'))) +
(SQR(SP)-SQR(FP))*(SQR(CP(T,'X')-CP(S,'X')) +
SQR(CP(T,'Y')-CP(S, 'Y')))))/(SQR(SP)-SQR(FP));

DIST(S,BB) = 0;
DIST(EE,T) = 0;
DIST(S,T)$(ORD(S) EQ ORD(T)) = 0;

BINARY VARIABLE
X(KS,T) EQUAL 1 IF ARC S P TO T Q IS SELECTED

X.FX(KS,T)$(ORD(S) EQ ORD(T)) = 0;
X.FX(KBB,EE) = 0;

VARIABLE
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TTIME;

EQUATIONS
OBJ
BEGIN
FINISH
BET WEEN(KS)
ONCE(S)

> >>> OBJECTIVE FUNCTION <<<
OBJ..
TTIME = E = SUM((BB,TT,FT), X(FT,BB,TT)*(DIST(BB,TT) + UTIME(TT)))

" SUM((TT,EE,LT), X(LT,TT,EE)*DIST(TT,EE))
+ SUM((SS,TT,KK), X(KKISS,TT)*(DIST(SS,TT) +UTIME(TT)));

* > > > subject to< < <

BEGIN..
SUM((FT,BB,TT), X(FT,BB,TT)) = E= 1;

FINISH..

SUM((LT,SS,EE), X(LTSS,EE)) = E=1

BETWEEN(KSS)$(ORD(K) GT 1)..

SUM(BB,X(K-1,BB,SS))$(ORD(K) EQ 2) +
SUM(TT,X(K-1,TT,SS))$(ORD(K) GT 2) =E
SUM(TT,X(KSS,TT)) $(ORD(K) LT CARD(K) +
SUM(EE,X(KSS,EE)) $(ORD(K) EQ CARD(K))

ONCE(SS)..
SUM((FT,BB),X(FT,BB,SS)) + SUM((KKTT),X(KKTT,SS)) =E= 1;

* - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -

MODEL UNREP / ALL /;
SOLVE UNREP USING MIP MINIMIZING TTIME;

------------------------ Solution Report ------------------------

OPTION X-1:2:1;
DISPLAY TTIME.L, DI1ST, XL;
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B. DELIVERY BOY TACTIC WITH MAXIUM COMBAT VALUE
OBJECTIVE FUNCTION

$TITLE * ** Battle Group Replenishment Problem *

$STITLE * ** DELIVERY BOY TACTIC ** *
* -----------GAMS and dollar control options ------------------
$OFFUPPER OFFSYMLIST OFFSYMXREF

OPTIONS LIMCOL = 0, LIMROW = 0,SOLPRINT = OFF, DECIMALS =2;

OPTIONS RESLIM =10800,ITERLIM =1000000, OPTCR=
0.1 O,WORK =200000;
* OPTIONS MIP = ZOOM;
OPTIONS INTEGERi = 6;

$INCLUDE 'BG-F1 .DAT'

$INCLUDE 'SUB.SET'

* ------------------COMPUTED DATA ---------------------------
PARAMETER

DIST(S,T) travel time between candidate UNREP points;

DIST(S,T)$(ORD(S) NE ORD(T))
(FP*(CP(T,vY')-CP(S,'Y')) +
SQRT(SQR(FP*(CP(T,'Y')-CP(S,Yi'))) +
(SQR(SP)-SQR(FP))*(SQR(CP(T,-X')-CP(S, 'X')) +
SQR(CP(T, 'Y')-CP(S, 'Y')))))/(SQR(SP)-SQR(FP));

DIST(S,BB) =0;

DIST(EE,T) =0;

DIST(S,T)$(ORD(S) EQ ORD(T)) = 0;

BINARY VARIABLE
X(K,S,T) equal 1 if arc s to t is selected
V(S) equal 1 if ship s is visited

X.FX(KS,T)$(ORD(S) EQ ORD(T)) = 0;
X.FX(KBB,EE) =0;

X.F'X(FT,ST,T) =0;

VARIABLE
CVAL;
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EQUATIONS
OBJ
BEGIN
FINISH
BET WEEN(S,K)
ONCE(S)
TLIMIT

> >>> OBJECTIVE FUNCTION < < <

OBJ..
OVAL = E= SUM(SS, VAL(SS)*V(SS));

* > > > subject to< < <

BEGIN..
SUM((FT,BB,TT), X(FT,BB,TT)) = E= 1;

FINISH..
SUM((KT,SS,EE), X(KT,SS,EE)) = E= 1;

BETWEEN(SS,K)$(ORD(R) GT 1)..
SUM(BB,X(K-1,BB,SS))$(ORD(K) EQ 2) +
SUM(TT,X(K-1,TT,SS))$(ORD(K) GT 2) E
SUM(ST,X(KSS,ST)) $(ORD(K) LT CARD(K)) +
SUM(EE,X(KSS,EE)) $(ORD(K) EQ CARD(K))

ONCE(SS)..
SUM((FT,BB),X(FT,BB,SS)) + SUM((KKTT),X(KKTT,SS)) =E= V(SS);

TLIMIT..
SUM(SS,UTIME(SS)*V(SS)) +
SUM((FT,BB,SS),DIST(BB,SS)*X(FT,BB,SS)) +
SUM((KKSS,ST),DIST(SS,ST)*X(KKSS,ST)) +
SUM((LT,SS,EE),DIST(SS,EE)*X(LT,SS,EE)) =L= AVAIL;

*-----------------------------------------------------------------

MODEL UNREP / ALL/I;
SOLVE UNREP USING MIP MAXIMIZING OVAL;

-------- ----Solution Report-----------------------

OPTION X:1:2:1;
DISPLAY CVAL.L, AVAIL, DIST, XL;
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C. CIRCUIT RIDER TACTIC WITH MINIUM TOTAL UNREP TIME
OBJECTIVE FUNCTION

$TITLE * ** Battle Group Replenishment Problem**
$STITLE * ** CIRCUIT RIDER TACTIC ** *
* *----------GAMS and dollar control options ------------------
$OFFUPPER OFFSYMLIST OFFSYMXREF

OPTIONS LIMCOL = 0, LIMROW = 0,SOLPRINT = OFF, DECIMALS =2;

OPTIONS RESLIM =10800,ITERLIM =1000000, OPTCR=
0. 10,WORK =200000;
*OPTIONS MIP = ZOOM;
OPTIONS INTEGER1 = 6;

$INCLUDE 'BG-F1 C.DAT'

$INCLUDE 'CSUB.SET'

* ------------------COMPUTED DATA ---------------------------

PARAMETER
DIST(S,P,T,Q) travel time between candidate UNREP points;

DIST(S,P,T,Q)$(ORD(S) NE ORD(T))
(FP*(CP(T,Q,'Y')-CP(S,P,?Y')) +
SQRT(SQR(FP*(CP(T,Q,'Y')-CP(S,P,'Y'))) +
(SQR(SP)-SQR(FP))*(SQR(CP(T,Q,'X')-CP(S,P,'X')) +
SQR(CP(T,Q,'Y')-CP(S,P,'Y')))))/(SQR(SP)-SQR(FP));

DIST(S,P,BB,P) =0;

DIST(EE,Q,T,Q) =0;

DIST(S,P,T,Q)$(ORD(S) EQ ORD(T)) = 0;

BINARY VARIABLE
X(KIS,P,T,Q) EQUAL 1 IF ARC S P TO T Q IS SELECTED
V(SP)

X.FX(KIS,P,T,Q)$(ORD(S) EQ ORD(T)) =0;

V.FX(BB,BP) = 1;
V.FX(EE,EP) = 1;

VARIABLE
TTIME;
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EQUATIONS
OBJ
BEGIN
FINISH
BET WEEN(KASP)
ONCE(S,P)
VISIT(S)

> >>> OBJECTIVE FUNCTION < <<
OBJ..
TTIME =E= SUM((FT,BB,BP,TT,Q),

X(FT,BB,BP,TT,Q)*(DIST(BB,BP,TT,Q) +UTIME(TT)))
+ SUM((LT,TT,Q,EE,EP), X(LT,TT,Q,EE,EP)*DIST(TT,Q,EE,EP))
" SUM((KKSS,P,TT,Q),

X(KKSS,P,TT,Q)*(DIST(SS,P,TT,Q) +UTIME(TT)));

* > > > subject to< < <

BEGIN..
SUM((FT,BB,BP,TT,Q), X(FT,BB,BP,TT,Q)) = E= 1;

FINISH..
SUM((LT,SS,P,EE,EP), X(LT,SS,P,EE,EP)) = E= 1;

BETWEEN(KSS,P)$(ORD(K) GT 1)..
SUM((BB,BP),X(K-1,BB,BP,SS,P))$(ORD(K) EQ 2) +
SUM((TT,Q),X(K-1,TT,Q,SS,P)) $(ORD(K) GT 2) =E
SUM((TT,Q),X(K,SS,P,TT,Q)) $(ORD(K) LT CARD(K)) +
SUM((EE,EP),X(KSS,P,EE,EP)) $(ORD(K) EQ CARD()

ONCE(SS,P)..
SUM((FT,BB,BP),X(FT,BB,BP,SS,P)) +
SUM((KKTT,Q), X(KKITT,Q,SS,P)) =E= V(SS,P);

VISIT(S)..
SUM(P, V(S,P)) = E= 1;

-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --*

MODEL UNREP / ALL /;
SOLVE UNREP USING MIP MINIMIZING TTIME;

*------- -----Solution Report------------------------
OPTION X:1:3:2;
DISPLAY TTIME.L, DIST, X.L;
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D. CIRCUIT RIDER TACTIC WITH MAIMUM COMBAT VALUE
OBJECTIVE FUNCTION

$TITLE * ** Battle Group Replenishment Problem *

$STITLE * ** CIRCUIT RIDER TACTIC ** *
*----------- GAMS and dollar control options -----------------
$OFFUPPER OFFSYM11ST OFFSYMXREF

OPTIONS LIMCOL = 0, LIMROW = 0,SOLPRINT = OFF, DECIMALS =2;

OPTIONS RESLIM = 108000,ITERLIM =1000000, OPTCR=
0. 10,WORK =200000;
*OPTIONS MIP = ZOOM;
OPTIONS INTEGERi = 6

$INCLUDE 'BG-F1 C.DAT'

$INCLUDE 'CSUB.SET'

* ------------------COMPUTED DATA--------------------------
PARAMETER

DIST(S,P,T,Q) travel time between candidate UNREP points;

DIST(S,P,T,Q)$(ORD(S) NE ORD(T))
(FP*(CP(T,Q,'Y')-CP(S,P,'Y')) +
SQRT(SQR(FP*(CP(T,Q,'Y')-CP(S,P,'Y'))) +
(SQR(SP)-SQR(FP))*(SQR(CP(T,Q,-X')-CP(S,P,'X')) +
SQR(CP(T,Q,'Y')-CP(S,P,'Y')))))/(SQR(SP)-SQR(FP));

DIST(S,P,BB,P) =0;

DIST(EE,Q,T,Q) =0;

DIST(S,P,T,Q)$(ORD(S) EQ ORD(T)) = 0;

BINARY VARIABLE
X(KIS,P,T,Q) EQUAL I IF ARC S P TO T Q IS SELECTED
V(SP)

X.FX(KS,P,T,Q)$(ORD(S) EQ ORD(T)) = 0;

VARIABLE
CVAL;

EQUATIONS
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QBJ
BEGIN
FINISH
BET WEEN(KS,P)
ONCE(S,P)
VISIT(S)
TLIMIT

> > >OBJECTIVEFUNCTION << <
OBJ..
CVAL = E= SUM((SS,P), VAL(SS)*V(SS,P));

* > > > subject to< < <

BEGIN..
SUM((FT,BB,BP,TT,Q), X(FT,BB,BP,TT,Q)) = E= 1;

FINISH..

SUM((KT,SS,P,EE,EP), X(KT,SS,P,EE,EP)) =E= 1;

BETWEEN(KSS,P)$(ORD(K) GT 1)..
SUM((BB,BP),X(K-1,BB,BP,SS,P))$(ORD(K) EQ 2) +
SUM((TT,Q),X(K-1,TT,Q,SS,P)) $(ORD(K) GT 2) =E=
SUM((ST,Q),X(KPSS,P,ST,Q)) $(ORD(K) LT CARD(K)) +
SUM((EE,EP),X(KSS,P,EE,EP)) $(ORD(K) EQ C.ARD(K))

ONCE(SS,P)..
SUM((FT,BB,BP),X(FT,BB,BP,SS,P)) + SUM((KK ,TT,Q),X(KKTT,Q,SS,P))

=-E= V(SS,P);

VISIT(SS)..
SUM(P,V(SS,P)) =L= 1;

TLIMIT..
SUM((SS,P),UTIME(SS)*V(SS,P)) +
SUM((FT,BB,BP,SS,P),DIST(BB,BP,SS,P)*X(FT,BB,BP,SS,P)) +
SUM((KK ,SS,P,ST,Q),DIST(SS,P,ST,Q)*X(KK,SS,P,ST,Q)) +
SUM((LT,SS,P,EE,EP),DIST(SS,P,EE,EP)*X(LT,SS,P,EE,EP)) = L= AVAIL;
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MODEL UNREP / ALL/I;
SOLVE UNREP USING MIP MAXIMIZING CVAL;
*--------------------Solution Report -----------------------
OPTION X:1:3:2;
DISPLAY CVAL.L,DISTAVAIL, X.L;
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E. GAS STATION TACTIC WITH XINIMUM TOTAL UNREP TIME
OBJECTIVE FUNCTION, TWO TRANSFER STATIONS AND
LIMITED NUMBER OF SHIIPS OFF-STATION

$TITLE * ** Battle Group Replenishment Problem *

$STITLE * ** GAS STATION TACTIC * **
*---G-M5 and dollar control options--------------

46 $OFFUPPER OFFSYMLIST OFFSYMXREF

OPTIONS LIMCOL = 0, LIMROW = 0,SOLPRINT = OFF, DECIMALS =2;

OPTIONS RESLIM =10800,ITERLIM =1000000, OPTCR=
0.1 0,WORK =200000;
*OPTIONS MIP = ZOOM;
OPTIONS INTEGERI = 6;

$INCLUDE 'BGF-2.DAT'

$INCLUDE 'SUB.SET'

SET

A supply ships /Al, A2/

ALIAS (SS,TT);

* ------------------ COMPUTED DATA --------------------------
PARAMETER

DIST(S,T) travel time between candidate UNREP points;

DIST(S,T)$(ORD(S) NE ORD(T))
(FP*(CP(T,'Y)-CP(S,'Y)) +
SQRT(SQR(FP*(CP(T,Y)-CP(S,Y))) +
(SQR(SP)-SQR(FP))*(SQR(CP(T,'X')-CP(S,'X')) +
SQR(CP(T,Y')-CP(S,'Y)))))/(SQR(SP)-SQR(FP));

DIST(S,T)$(ORD(S) EQ ORD(T)) = 0;

*-------------------MODEL-------------------------------

BINARY VARIABLE
X(AII{S,T) equal 1 if arc x is selected to be sequence k by a

X.FX(AKS,T)$(ORD(S) EQ ORD(T)) = 0;
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POSITIVE VARIABLE
TMAX;,

VARIABLE
TLIE;

EQUATIONS
OBJ
MAXT(A)
BEGIN(A)
FINISH(A)
BET WEEN(AKS)
ONCE(S)

*> >>> OBJECTIVE FUNCTION < < <
OBJ..
TTIME = E= TMAY.;

* > > > subject to< < <

MAXT(A)..
TMAX = G= SUM((FT,BB,SS), X(AFT,BB,SS)*(DIST(SS,BB) +UTIME(SS)))

" SUM((LT,TT,EE), X(ALT,TT,EE)*DIST(EE,TT))
" SUM((KKSS,ST), X(AMKSS,ST)
* SUM((BB,EE), DIST(EE,SS) +UTIME(ST) +DIST(ST,BB)));

BEGIN(A)..
SUM((FT,BB,TT), X(AFT,BB,TT)) = E= 1;

FINISH(A)..
SUM((KT,SS,EE), X(AIKT,SS,EE)) = E=1

BETWEEN(A,KSS)$(ORD(K) GT 1)..
SUM(BB,X(A,K-1,BB,SS))$(ORD(K) EQ 2) +
SUM(TT,X(A,K-1,TT,SS))$(ORD(K) GT 2) =E=
SUM(ST,X(AKSS,ST)) $(ORD(K) LT CARD(K) +
SUM(EEX(A,KSS,EE)) $(ORD(K) EQ CARD(K));

ONCE(SS)..
SUM(A,SUM((FT,BB),X(A,FT,BB,SS)) +
SUM((KK,TT),X(A,KK,TT,SS))) =E= 1;

-- * ----- ----------------------------
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MODEL UNREP / ALL /;

SOLVE UNREP USING MIP MINIMIZING TFIME;

*---- -------- Solution Report

OPTION X1:2:1;

DISPLAY TTIME.L, DIST, XL;
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F. GAS STATION TACTIC WIH MAXIMUM COMBAT VALUE
OBJECTIVE FUNCTION, TWO TRANSFER STATIONS AND
LIMITED NUMBER OF SHIPS OFF-STATION

$TITLE * ** Battle Group Replenishment Problem *A

$STITLE * ** GAS STATION TACTIC ** *

------- GAMS and dollar control options ----------- -----
$OFFUPPER OFFSYMLIST OFFSYMXREF

OPTIONS LIMCOL = 0, LIMROW = 0,SOLPRINT = OFF, DECIMALS =2;

OPTIONS RESLIM =10800,ITERLIM = 1000000, OPTCR
0. 10,WORK =200000;
* OPTIONS MIP = ZOOM;
OPTIONS INTEGER1 = 6;

$INCLUDE 'BGF-1 .DAT'

$INCLUDE 'SUB.SET'

SET
A supply ships /Al, A2/

SCALAR
AVAIL available unrep, time /8.42/;

*------------------COMPUTED DATA ---------------------------
PARAMETER

DIST(S,T) travel time between candidate UNREP points;

DIST(S,T)$(ORD(S) NE ORD(T))
(FP*(CP(T,Y)CP(S,'Y')) +
SQRT(SQR(FP*(CP(T, 'Y')-CP(S,'Y))) +
(SQR(SP)-SQR(FP))*(SQR(CP(T,'X')-CP(S,'X')) +
SQR(CP(T,'Y)-CP(S,'Y')))))/(SQR(SP)-SQR(FP));

DIST(S,T)$(ORD(S) EQ ORD(T)) = 0;

*-------------------MODEL --------------------------------

BINARY VARIABLE
X(A,KS,T) equal 1 if arc x is selected to be sequence k by a
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V(AS) equal 1 if ship s is replenished at station a

X.FX(A,S,T)$(ORD(S) EQ ORD(T) 0;

VARIABLE
CVAL;

EQUATIONS
ONJ
BEGIN(A)
FINISH(A)
BET WEEN(A,K,S)
ONCE(S)
ONCEl (S)
TLIMIT(A)

*> >>> OBJECTIVE FUNCTION < < <
ON..
CVAL = E= SUM((ASS), VAL(SS)*V(ASS));

* > > > subject to< < <

BEGIN(A..
SUM((FT,BB,TT), X(AFT,BB,TT)) =E, 1

FINISH(A)..
SUM((KT,SS,EE), X(AIKT,SS,EE)) = E= 1;

BETWEEN(A,KSS)$(ORD(K) OT 1)..
SUM(BB,X(A,K-1,BB,SS))$(ORD(K) EQ 2) +
SUM(TT,X(AK-1,TT,SS))$(ORD(K) GT 2) =E
SUM(ST,X(A,KSS,ST)) $(ORD(K) LT CARD(K)) +
SUM(EE,X(A,KSS,EE)) $(ORD(K) EQ CARD(K))

ONCE(SS)..
SUM(ASUM((FT,BB),X(A,FT,BB,SS)) +
SUM((KK,TT),X(A,KKTT,SS))) = E= SUM(AV(ASS));

ONCEl SS)..
SUM(A,V(A,SS)) =L= 1;

TLIMIT(A)..
SUM(SS,UTIME(SS)*V(A,SS)) +
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SUM((FT,BB,SS),DIST(SS,BB)*X(A,FT,BB,SS))+
SUM((KKSS,ST),SUM((BB,EE), DIST(EE,SS) +

DIST(STBB))*X(A,KK,SS,ST)) +
SUM((LT,SS,EE),DIST(EE,SS)*X(AILT,SS,EE)) = L= AVAIL;

--------------------------------------------------------------------

MODEL UNREP / ALL/I;
SOLVE UNREP USING MIP MAXIMIZING CVAL;

--------------------- Solution Report ------------------

OPTION X:1:2:1;
DISPLAY CVAL.L,DISTAVAIL, X.L;
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G. GAS STATION TACTIC WITH MINIMUM TOTAL UNREP TIME
OBJECTIVE FUNCTION, TWO TRANSFER STATIONS AND
UNLIMITED NUMBER OF SHIPS OFF-STATION

$TITLE * * * Battle Group Replenishment Problem *

$STITLE * ** GAS STATION TACTIC ** *
*------GAMS and dollar control options------------- ----
$OFFUPPER OFFSYMLIST OFFSYMXREF

OPTIONS LIMCOL = 0, LIMROW = 0,SOLPRINT = OFF, DECIMALS =2;

OPTIONS RESLIM =10800,ITERLIM = 1000000, OPTCR
0. 10,WORK =200000;
*OPTIONS MIP = ZOOM;
OPTIONS INTEGERi = 6;

SET
A unrep station /A1,A2/;

$INCLUDE 'BGF-1 .DAT'

$INCLUDE 'SUB.SET'

ALIAS (KL);

* ------------------COMPUTED DATA ---------------------------
PARAMETER

DIST(S,T) travel time between candidate UNREP points;

DIST(S,T)$(ORD(S) NE ORD(T))
(FP*(CP(T,'Y)-CP(S,'Y')) +
SQRT(SQR(FP*(CP(T,Y')-CP(S,Y'))) +
(SRS)SRFP)(Q PT'X)C(,X)+
SQR(CP(T,'Y')-CP(S,'Y)))))/(SQR(SP)-SQR(FP));

DIST(S,T)$(ORD(S) EQ ORD(T)) = 0;

*-------------------MODEL ----------------------------- ---

BINARY VARIABLE
X(A,KS,T) equal 1 if arc x is selected to be sequence k by a

X.FX(AKS,T)$(ORD(S) EQ ORD(T)) = 0;
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POSITIVE VARIABLE
GAP(A,K)
TFINISII;

NEGATIVE VARIABLE
TSTART;

VARIABLE
TTIME;

EQUATIONS
OBJ
START(A,K)
FINISH(A,K)
BEGIN(A)
END(A)
BETWEEN(AKS)
ONCE(S)

> >>> OBJECTIVE FUNCTION < <<
OBJ..
TTIME =E= TFINISH - TSTART;

* > > > subject to< < <

START(A,K)$(ORD(K) LT CARD(K))..
TSTART =L= (-SUM((FT,BB,TT),

X(AIFT,BB,TT)*DIST(TT,BB)) +GAP(A,K))$(ORD(K) EQ 1)
+ (SUM((FT,BB,TT),

X(A,FT,BB,TT)*UTIME(TT)) + GAP(A,'1')
+ SUMI(L$(ORD(L) GT 1 AND ORD(L LT ORD(K)),

SUM((SS,TT),
X(A,L,SS,TT)*UTIME(TT))

+ GAP(AL))
- SUM((SS,TT,BB),

X(AKSS,TT)*DIST(TT,BB)) +GAP(A,K))$(ORD(K) GT 1);

FINISH(A,K)$(ORD(K) LT CARD(K))..
TFINISH =G= (SUM((FT,BB,TT),

X(A,FT,BB,TT)*(DIST(BB,TT) +UTIME(TT)))
+ GAP(AK))$(ORD(K) EQ 1)

+ (SUM((FT,BB,TT),
X(A,FT,BB,TT)*UTIME(TT)) + GAP(A,'1')
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" SUM(L$(ORD(L) GT 1 AND ORD(L) LT ORD(K)),
SUM((SS,TT),

X(A,L,SS,TT)*UTIME(TT))
+ GAP(AL))

" SUM((SS,TT,EE),
X(AK ,SS,TT)*(DIST(EE,TT) +UTIME(TT))) +GAP(AK))

$(ORD(K) GT 1);
* > > > subject to< < <

BEGIN(A)..
SUM((FT,BB,TT), X(AFT,BB,TT)) =E= 1;

END(A)..
SUM((KT,SS,EE), X(AKT,SS,EE)) = E= 1;

BETWEEN(A,KSS)$(ORD(K) GT 1)..
SUM(BB,X(A,K-1,BB,SS))$(ORD(K) EQ 2) +
SUM(TT,X(A,K-1,TT,SS))$(ORD(K) GT 2) =E
SUM(ST,X(A,KSS,ST)) $(ORD(K) LT CARD(K)) +
SUM(EE,X(A,KSS,EE)) $(ORD(K) EQ CARD(K))

ONCE(SS)..
SUM(A,SUM((FT,BB),X(A,FT,BB,SS)) + SUM((KKTT),X(AKKTT,SS))) =E=

1;

* -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MODEL UNREP / ALL /;
SOLVE UNREP USING MIP MINIMIZING TTIME;

*------- -----Solution Report -----------------------

PARAMETER REPORT(A,*,K);
REPORT(A,'LEAVE',K)$(ORD(K) LT CARD(K))

= -SUM((FT,BB,TT),
X.L(A,FT,BB,TT)*DIST(TT,BB)) +GAP.L(A,K))$(ORD(K) EQ 1)

+ (SUM((FT,BB,TT),
X.L(A,FT,BB,TT)*UTIME(TT)) + GAP.L(A,'1')

+ SUM(L$(ORD(L) GT 1 AND ORD(L LT ORD(K)),
SUM((SS,TT),

X.L(A,L,SS,TT)*UTIME(TT))
+ GAP.L(AL))

-SUM((SS,TT,BB),
X.L(AKSS,TT)*DIST(TT,BB)) +GAP.L(A,K))$(ORD(K) GT 1);
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REPORT(Aq'ARR1VE',K)$(ORD(K) LT CARD(K AND ORD(K) GT 1)
=REPORT(A,'LEAVE',K) +
SUM((S,T,BB),(DIST(T,BB) +GAP.L(AK))*X.L(AKS,T));

REPORT(A,'ARRWVE',K)$(ORD(K) EQ 1)
= REPORT(A,'LEAVE',K) +
SUM((S,T,BB),(DIST(T,BB))*X.L(A,KS,T));

REPORT(A,'DEPART',K)$(ORD(K) LT CARD(K))
=REPORT(A,'ARR1VE',K) +
SUM((S,T),UTIME(T)*X.L(A,KS,T));

REPORT(A,'RETURN',K)$(ORD(K) LT CARD(K))
=(SUM((FT,BB,TT),

X.L(A,FT,BB,TT)*(DIST(BB,TT) +UTIME(TT)))
+ GAP.L(AK))$(ORD(K) EQ 1)

" (SUM((FT,BB,TT),
X.L(A,FT,BB,TT)*UTIME(TT)) + GAP.L(A,'1')

" SUM(L$(ORD(L) GT 1 AND ORD(L) LT ORD(K)),
SUM((SS,TT),

X.L(A,L,SS,TT)*UTIME(TT))
+ GAP.L(A,L))

" SUM((SS,TT,EE),
X.L(AIKSS,TT)*(DIST(EE,TT) +UTIME(TT))) +GAP.L(A,K))
$(ORD(K) GT 1);

OPTION X:1:2:1;
OPTION REPORT:3:1:1;
DISPLAY TTIME.L, DIST, X.L;
DISPLAY TSTART.L, TFINISH.L;
DISPLAY REPORT, GAP.L;
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H. GAS STATION TACTIC WITH MAXIUM COMBAT VALUE
OBJECTIVE FUNCTION, TWO TRANSFER STATIONS AND
UNLIMIED NUMBER OF SHIPS OFF-STATION

$TITLE * ** Battle Group Replenishment Problem *

$STITLE * * * GAS STATION TACTIC * * *
* ---------- GAMS and dollar control options ------------------
$OFFUPPER OFFSYMLIST OFFSYMXREF

OPTIONS LIMOOL = 0, LIMROW = 0,SOLPRINT = OFF, DECIMALS =2;

OPTIONS RESLIM =10800,ITERLIM =1000000, OPTCR
0. 10,WORK =200000;
*OPTIONS MIP = zoom;
OPTIONS INTEGERi = 6;

SET
A supply ships /Al, A2/;

$INCLUDE 'BGF-1 .DAT'

$INCLUDE 'SUB.SET'

ALIAS (KL);

SCALAR
AVAIL available unrep time /5.5/;

*------------------COMPUTED DATA ---------------------------

PARAMETER
DIST(S,T) travel time between candidate UNREP points;

DIST(S,T)$(ORD(S) NE ORD(T))
(FP*(CP(T,'Y')-CP(S,'Y')) +
SQRT(SQR(FP*(CP(T,'Y')-CP(S,Y'))) +
(SRS)SRFP)(Q PT-A)C(,A)+
SQR(CP(T,'Y')-CP(S,'Y')))))/(SQR(SP)-SQR(FP));

DIST(S,T)$(ORD(S) EQ ORD(T)) = 0;

*-------------------MODEL --------------------------------

BINARY VARIABLE
X(AIKS,T) equal 1 if arc x is selected to be sequence k by a
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V(A,S) equal 1 if ship s is to be replenished at station a

X.FX(AKS,T)$(ORD(S) EQ ORD(T)) =0;

POSITIVE VARIABLE
GAP(A,K)
TFINISH;

NEGATIVE VARIABLE
TSTART;

VARIABLE
CVAL;

EQUATIONS
OBJ
BEGIN(A)
END(A)
BETWEEN(A1 KS)
ONCE(S)
ONCE 1(5)
TLIMIT
START(A,K)
FINISH(AIK)

*> >>> OBJECTIVE FUNCTION < < <

ONJ..
CVAL = E= SUM((ASS), VAL(SS)*V(ASS));

* > > > subject to< < <

BEGIN(A)..
SUM((FT,BB,TT), X(AIFT,BB,TT)) = E= 1;

END(A)..
SUM((KT,SS,EE), X(AKT,SS,EE)) = E= 1;

BETWEEN(A,I{SS)$(ORD(I() GT 1)..
SUM(BB,X(AK-1,BB,SS))$(ORD(K) EQ 2) +
SUM(TTX(A,K-1,TT,SS))$(ORD(K) GT 2) =E
SUM(ST,X(AKSS,ST)) $(ORD(K) LT CARD(K)) +
SUM(EE,X(A,KSS,EE)) $(ORD(K) EQ CARD(K))

78



ONCE(SS)..
SUM(A,SUM((FT,BB),X(AIFT,BB,SS)) +
SUM((KKIPTT),X(AIKK,TT,SS))) =FE,= SUM(AV(ASS));

ONCE1(SS)..
SUM(AV(ASS)) =L= 1;

TLIMIT..
AVAIL = G= TFINISH - TSTART;

START(A,K)$(ORD(K) LT CARD(K))..
TSTART =L= (-SUM((FT,BB,TT),

X(A,FT,BB,TT)*DIST(TT,BB)) +GAP(A,K))$(ORD(K) EQ 1)
+ (SUM((FT,BB,TT),

X(A,FT,BB,TT)*UTIME(TT)) + GAP(A,'1)
+ SUM(L$(ORD(L) GT 1 AND ORD(L) LT ORD(K)),

SUM((SS,TT),
X(A,L,SS,TT)*UTIME(TT))

+ GAP(AL))
-SUM((SS,TT,BB),

X(AKSS,TT)*DIST(TT,BB)) +GAP(AK))$(ORD(K) GT 1);

FINISH(A,K)$(ORD(K) LT CARD(K))..
TFINISH =G= (SUM((FT,BB,TT),

X(A,FT,BB,TT)*(DTST(BB,TT) +UTIME(TT)))
+ GAP(AK))$(ORD(K) EQ 1)

" (SUM((FT,BB,TT),
X(AFT,BB,TT)*UTIME(TT)) + GAP(A,'1)

+ SUM(L$(ORD(L) GT 1 AND ORD(L LT ORD(K)),
SUM((SS,TT),

X(AIL,SS,TT)*UTIlME(TT))
+ GAP(AL))

" SUM((SS,TTEE)
X(A,KSS,TT)*(DIST(EE,,TT) +UTIM(TT))) +GAP(A,K))

$(ORD(K) GT 1);

*------------------------------------------------

MODEL UNREP / ALL I
*UNREP.OPTFILE = 1;
*UNREPCHAT = 0.1;
SOLVE UNREP USING MIP MAXIMIZING CVAL;

*-------------- - ---- Solution Report--------
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PARAMETER REPORT(A,*,K);
REPORT(A,'LEAVE',K)$(ORD(K) LT CARD()

=-SUM((FT,BB,TT),

X.L(A,FT,BB,TT)*DIST(TT,BB)) +GAP.L(A,K))$(ORD(K) EQ 1)
+ (SUM((FT,BB,TT),

X.L(A,FT,BB,TT)*UTIME(TT)) + GAP.L(AI'')
+ SUM(L$(ORD(L) GT 1 AND ORD(L LT ORD(K)),

SUM((SSTT),
X.L(A,L,SS,TT)*UTIME(TT))

+ GAP.L(AL))
- SUM((SS,TT,BB),

X.L(AIKSS,TT)*DIST(TT,BB)) +GAP.L(A,K))$(ORD(K) GT 1);

REPORT(A,'ARR1IVE',K)$(ORD(K) LT CARD(K AND ORD(K) GT 1)
=REPORT(A,'LEAVE',K) +
SUM((S,T,BB),(DIST(T,BB) +GAP.L(A,K))*X.L(A,KS,T));

REPORT(A,'ARRIVE',K)$(ORD(K) EQ 1)
= REPORT(A,'LEAVE',K) +
SUM((S,T,BB),DIST(T,BB)*X.L(A,KS,T));

REPORT(A,'DEPART',K)$(ORD(K) LT CARD(K))
=REPORT(A,'ARR1VE',K) +
SUM((S,T),UTIME(T)*X.L(A,KS,T));

REP ORT(AI 'RETURN',K)$(ORD(K) LT CARDK)
=(SUM((FT,BB,TT),

X.L(AFT,BB,TT)*(DIST(BB,TT) +UTIME(TT)))
+ GAP.L(AK))$(ORD(K) EQ 1)

" (SUM((FT,BB,TT),
X.L(A,FT,BB,TT)*UTIME(TT)) + GAP.L(A,'1')

" SUM(L$(ORD(L) GT 1 AND ORD(L LT ORD(K),
SUM((SSTT),

X.L(AIL,SS,TT)*UTIME(TT))
+ GAP.L(A.L))

+ SUM((SS,TT,EE),
X.L(A,KSS,TT)*(DIST(EE,TT) +UTIME(TT))) +GAP.L(A,K))
$(ORD(K) GT 1);

OPTION X.1:2:1;
OPTION REPORT:3:1:1;
DISPLAY CVAL.L, DIST, AVAIL, X.L;
DISPLAY TSTART.L, TFINISH.L, REPORT, GAP.L;
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