| C
AD-A250 968 PL!;'TF‘ @

T

i
}
|

AT s JUNg 1992 D

C

The Data Structure Accelerator Architecture

Richard Zippel*

TR 91-1256
December 1991

Department of Computer Science
Cornell University

Ithaca, NY 14853-7501

*This research was supported in part by the Advanced Research Projects Agency of
the Department of Defense under Naval Research Contract NO0014-88-K-0591, the

National Science Foundation through grant DMC-86-17355 and the Office of Naval
Research through contract NO0014-89-J-1946.

DISETIHUTIOT ST TFMENT A

Apc wod for publlc releass; i
Xatrtbutteon UnBmited

92-14188

AR HRD
02 5 - 144

Statement A per telecon Dr. Robert Powell

Arlington, VA 22217-5000 SR Y
il tap

ONR/Code 1133 Ac?gn;}.‘"’i&;““‘*{—ﬂ
' 0

NWW 6/2/92 Wlslaviineod 0
JaLtLir Wwallon
The Data Structure Accelerator Architecture 3. _
__}}gstr’.'oat ienn/
Richard Zippel* _Aveilability Codes
Department of Computer Science) f"‘""il and/or”
Cornell University Dist i spectal
Ithaca, NY 14863 1oy
rz€cs.cornell.edu ‘ "
|

December 17, 1991

Abstract

We present a fine grained, massively parallel SIMD architecture called the data
structure accelerator and demonstrate its use in a number of problems in computational
geometry. This architecture is extremely dense and highly scalable. Systems of 10¢
processing elements can be feasibly embedded in work stations. We advocate that this
architecture be used in tandem with conventional single sequence machines and with
small scale, shared memory multiprocessors. We present a language for programming
such heterogeneous systems that smoothly encorporates the SIMD instructions of the
data structure accelerator with conventional single sequence code.!

1 Introduction

There has been a significant body of work on single instruction, multiple data (SIMD)
computer architectures in the past. This work ranges from the MPP machine developed
at Goodyear [4] in the 1970’s to the Connection Machine today [3]. These machines are
generally viewed (and sometimes even advertised) as large “supercomputers.” They are
intended to be used for large problems that are not practical on smaller machines. However,
these SIMD machines are not uniformly better than conventional processing elements or
the new generation of MIMD processors for all problems. Furthermore, it is rarely cost
effective to couple the large SIMD machines with other types of processing elements, so
that a combined, heterogeneous machine can be applied to a problem; each component
performing those computations at which it is best.

The existing SIMD machines have a relatively modest number of processing elements
(the Connection Machine can handle up about 10%®), which is compensated for with a
sophisticated interconnection network. As a consequence, the chunks of computation per-
formed on a SIMD machine tend to be quite large and there is relatively little interaction

*This research was supported in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research Contract N00014-88-K-0591, the National Science Foundation
through grant DMC-86-17355 and the Office of Naval Research through contract N00014-89-J-1946.

1This is an expanded version of a paper that was presented at the Jerusalem Conference on Information
Technology, October 1990

between the SIMD machine and its host(s) during the computation. This reinforces the
division between SIMD computations and more conventional approaches.

We feel this division is counterproductive. To illustrate this present a number of al-
gorithms in Section 4 that use a mixture of SIMD and SISD constructs to achieve high
performance. Interestingly, these algorithms are quite simple compared the optimal algo-
rithms for single sequence machines, and yet perform substantially better. The problems
these techniques solve arise as small parts of much larger problems that are quite difficult to
parallelize using SIMD techniques. It would be wildly impractical to devote a Connection
Machine their resolution in most cases.

In this paper we suggest that the real role for SIMD architectures is not as “stand-alone
supercomputers,” but as an integral component of a heterogeneous machine consisting of
both SIMD and SISD (or MIMD) components—each component responsible for the portions
of a computation at which they are most effective. Often this means managing large,
memory resident data structures, or performing simple operations on large blocks of data.
Thus a natural way to merge a SIMD architecture with a conventional approach is to
make the SIMD processing elements part of ..e memory system of more conventional single
processor or MIMD architectures.

Thus we argue for simple SIMD architectures that can be built relatively cheaply and
with very high density. We are interested developing systems with upwards of 10° processing
elements which can be used in personal work stations and upwards of 10® for “supercom-
puting applications.” The individual elements of such SIMD architectures must be quite
simple to have this density and their interconnect must also be simple to allow for scalability
and the size system we are interested. We have developed a class of SIMD architectures
that meets these criteria which we call Data Structure Accelerators (DSA).? In Section 2 we
present their organization in detail.

One of the problems with dealing with heterogeneous architectures is the difficulty of
expressing algorithms clearly and succinctly. In Section 3 we describe a few natural ex-
tensions that could be made to an algebraic language like C that simplify the description
of data parallel computations. This extended language is unique in that it allows one to
express cooperative algorithms that are executed on a heterogeneous computer consisting
of both a SIMD component and conventional single sequence component.

Having this type of computation cheaply available affects the type of algorithms that
are used. Many of the complicated algorithms developed for searching and managing data
structures are no longer necessary because simple DSA managed data structures can be
used where all of their elements are handled in parallel. Some examples of this are given in
Section 4, where discuss a few problems in computation geometry.

2 The Data Structure Accelerator Architecture

The Data Structure Accelerator (DSA) is a class of SIMD architectures that is extremely
dense, easily scalable and has been optimized to efficiently perform functions that are dif-
ficult for conventional processing systems. The DSA’s processing elements (PE’s) are suffi-

2Earlier versions of this work at MIT referred to this architecture as a Database Accelerator. Since this
effort is directed towards “in memory” databases our original choice of names was somewhat misleading. To
correct this we have chosen the name data structure accelerator, which is more suggestive.

Prw::us line F
unction
Trit select word Functa

match word

m-tit CAM word

n 1-bit registers

£g

Next line

Figure 1: MIT Database Accelerator Architecture

ciently compact that machines with upwards of 107 processing elements are feasible—well
into the massively parallel regime.

The processing elements are connected in a low dimension, rectangular grid. This type
of interconnect is much cheaper, and can be scaled up more easily than the boolean n-
cube network used by machines like the Connection Machine. Although this makes a few
problems impractical, we feel the improved scale and cost of the resulting system worthwhile.
For many applications a one dimensional interconnect is sufficient. For some problems in
vision and computational geometry two dimensional interconnects are useful. In principle,
higher dimensional interconnects could be used, but their impact on pin count would severely
compromise our effort to build massively parallel systems. For now we have only considered
one and two dimensional data structure accelerators.

To keep the processing elements small we have decided to restrict them to being a single
bit wide. This minimizes the number of types of operations that need to be incorporated
at each PE, but remains sufficiently general to be used for most applications. Because the
DSA is often used to manage large tables, we include content addressable memory in the
(virtual) DSA architecture. An example of such an element of a one dimensional linear array
is shown Figure 1. Each processing element is called a line. A line contains some amount of
content addressable memory (CAM) and random access memory (RAM). A particular data
structure accelerator is characterized by four parameters: the number of lines in the DSA
(¢), the dimensionality of the interconnection of their cells, the number of bits of CAM (m)
and the number of bits of RAM (n). The Select Word is shared by all the lines of the DSA.

When discussing algorithms that use the DSA, the dimensionality of the DSA is under-
stood (it is usually one) and the number of lines is not important. Ilowever, the size of
the CAM and RAM structures usually is important. Thus, we say that a data structure
accelerator has parameters (m,n) when each line has m bits of CAM and n bits of RAM.
The amount of CAM and RAM associated with each line of a DSA can be optimized for

different applications and can range from systems that only have CAM to those that only
have RAM. This is discussed in more detail in Section 2.2. The Smart Memories Project at
MIT has built a 64 line (32,4) DSA chip [6, 8], a 256 line (32,4) DSA chip [1] and a board
that implements a 4096 line (32,4) DSA. With current technology, devices with thousands
of lines are practical and systems in the range of 10° to 108 PE’s are feasible.

Even though a particular set of parameters must be chosen when building a DSA system,
the user can simulate a DSA with a different set of parameters at surprisingly little cost.
This is demonstrated in Section 2.1. This feature is one of the most important differences
between the DSA architecture and previous CAM approaches.

The data structure accelerator makes use of three valued logic for two purposes: They
are used to indicate which elements of an array execute particular instructions and they are
used to increase the flexibility of the content addressable memory. One unit of this three
valued system is called a trit. Each trit can assume one of the values 0, 1 or X. The binary
operation we perform with trits is equivalence, which obeys the following “truth” table.

= O i
»l1Ol=|O
|| Ol
el be

The DSA architecture is capable of performing five basic instructions: select, write,
match, operate and readout. The select instruction specifies which processing elements
participate in the next sequence of instructions by writing a trit string into Select Word of
the DSA. Until the next select instruction, only lines whose address matches the contents
of SelectWord perform any DSA operation. Thus, to make all lines active, SelectWord is
filled with X’s. To make the even lines participate, a XXXX -.- X0 is used, and if 3, 11, 19
and 27 are to participate, the select word will contain 0 -.. 0XXO011.

The other four instructions are executed in parallel by each of the selected processing
elements in a SIMD fashion. The write instruction is used to write data into the CAM word
of the selected processing element(s). Since Select Word can contain X’s a write instruction
can cause the CAM of more than one PE to be modified.

The match instruction includes a data word that is matched against the contents of
the CAM words of each of the selected PE’s using the equivalence function given above.
The result of the match is then written into the MatchLatch where it can use used by the
operate instruction. No data is transmitted out of the DSA by a match instruction.

The operate instruction causes each selected PE to perform a boolean operation on the
contents of two registers and store the result in a third. This is a three operand instruction.
As shown in Figure 1, one operand can come from the MatchLatch or a register of the
adjacent PE’s. The result of the boolean operation is also latched by the priority encoder.

The contents of the priority encoder are read using the readout instruction. The
readout instruction returns the address of one of the lines whose priority encoder latch
is set. At the same time it clears that particular priority encoder latch. Consequently,
successive readout instructions return the addresses of the lines whose priority encoders
contain a one. A special code is returned if all priority encoder latches contain zeroes.

2.1 Virtual Data Structure Accelerators

One of the most important features of using RAM to implement data structures is how little
its performance degrades when the desired structure does not precisely match the underlying
hardware. This section discusses the cost of a mismatch with a one dimensional DSA. The
discussion for 2 and higher dimensions is similar, but substantially more complicated. RAM
arrays have two parameters, the number of words in the system (£) and the width of each
word (n). If the desired data structure requires more than n bits per entry then several
sequential words of memory can be used for each element. This slows down reading and
writing to the data structure, but requires no hardware modifications. Alternatively, we can
gang together several RAM systems (chips) to build a RAM system that has wider words
than the component systems. This has higher bandwidth. If we want a RAM array with
more words, we merely combine several RAMs using a selector to conirol access. Thus a
sufficiently large RAM can emulate a smaller RAM with different parameters and, a worst,
with linear performance degradation.

A common complaint about content addressable memories is that they don’t easily scale
in both dimensions—one has no recourse if the elements of the data structure are larger
than the width of the content addressable memory. The data structure accelerator does not
have this problem. A sufficiently large physical DSA can simulate a virtual DSA with any
set of parameters. Furthermore, this simulation only imposes a linear penalty in time and
lines used. This section demonstrates this simulation.

We will let V denote the virtual DSA we want to simulate using D, a real DSA with
parameters (m,n). The basic idea of the simulation is fairly simple. Multiple lines of D
are used to emulate a single line of V. There are three cases to consider: (1) simulating a
(m, kn) DSA using a (m, n) DSA, (2) simulating a (km,n) DSA using a (m,n) DSA and (3)
simulating a (m,n) DSA using a (0,n) DSA. It is possible to emulate CAM using RAM, but
not conversely because the CAM in the DSA cannot be written from the function generators
on each line.

We begin by simulating a (m, kn) DSA with a (m,n) DSA. The only instruction that is
affected by this simulation is the operate instruction. Rather than requiring 1 cycle, the
simulation will require k cycles, where all but one of the cycles will be used to move the
operands and/or the result into position. For the operate instruction, we only care about
the contents of the register arrays after a sequence of operations. In particular, we don’t
care which function generator actually computes the result.

There are two cases when emulating the operate instruction: (1) when the destination
register is on a line between the operands and (2) when it is outside the two operands. In
the first case the boolean operation takes place in the same line as the destination. Figure 2
illustrates this. Without loss of generality, we assume the two operands are at lines 0 and
k — 1, and that the result of the operation is to be placed in line s. We move the first
operand to line s, which takes k — s — 1 cycles and the second operand to line s, which
takes an additional s — 1 cycles. The boolean operation is then performed, and the result
is stored in the destination, line s. Thus at most k — 1 cycles are required to emulate the
(m, kn) operate instruction using an (m,n) DSA.

Simulating larger amounts of content addressable memory is also not difficult. Here
the basic idea is to perform wide matches m trits at a time, and then use the function

 — — Move second
[} operand
| ' 1
o e— 1 '
' '
klines — £ — ' A
Move first 1 ' Perform tion
L] slines operand : : and store in
' ' inath
)

'(—k-‘—)'«s-i—)i Time

Figure 2: Multi-Line Operate Instruction

generators to combine the results. The following code illustrates this by simulating a match
instruction on a (4m,n) DSA using a (m,n) DSA. Each 4m trit line of the virtual DSA
is implemented as four consecutive lines of the (m,n) DSA. We will assume the lowest
numbered one consists of an even and an odd word. We use register 0 of the even line of
the physical DSA as the virtual match latch.

QuadMatch(ArraySelector, WordZero, WordOne, WordTwo, WordThree) {

select XX.. X11 A ArraySelector
match WordThree
Ri[0] — M.;

select IX.. X10 A ArraySelector
match WordTwo
Ri[0} — Ris1[0] A M.,

select XX.. X01 A ArraySelector
match VordOne
Ri[0] — Riy1[0} A ML

select XX.. X00 A ArraySelector
match WordZero

Ri[0] — Riy1[0) A ML

Each line in this code is precisely one DSA operation. We have written the operate
instructions using an infix syntax for clarity. R;[0] denotes the 0 bit of the register set of
the i¥* DSA line. We use M,; to refer to the MatchLatch. Notice that the Select Word is
changed every third instruction, so the references to M); and R; are different in each block.
In Section 3 we present a higher level, infix language that is much easier to use.

Using this technique we can use the DSA system to emulate virtual DSA arrays of
arbitrary CAM widths, albeit with some performance loss. When the size of the virtual
CAM word matches the physical CAM one virtual match instruction takes one physical
match cycle. When the virtual word is n times the size of the physical CAM word, one
virtual match instruction takes n physical match cycles plus n — 1 operate cycles to combine

R\ 0}1 RN R, o1
00|0{1 oojo|o 00 1
o1{ofo 0101 01 1
1Xjo]1 1X] o1 1X 1

Matching against 0 Matching against 1 Matching against X

Figure 3: Match Simulation Truth Tables

the results of the partial matches. This is about a factor of 2 worse than the best that could
be expected.

It is also possible to emulate the CAM completely using RAM. We can choose to emulate
either a full, three level CAM or simpler two level CAM if that is all the application needs.
In either case, the match emulation is performed one bit at a time. The following paragraphs
illustrate the case of a trit based CAM word that is matched against a trit based match
word. The resulting operations are simplified if one or both of the fields involved in binary.

We will choose one register to serve as the match latch and denote it by M,;. The firs.
2m registers will be used to hold the contents of the virtual CAM. The k* bit of the virtual
CAM will be stored in registers R;[2k] and R;[2k +1]. If R;[2k] contains a 1 the k** position
of the CAM is an X, otherwise it contains the contents of R;[2k + 1]. Matches are performed
by examining each trit of the match word and, depending upon its value, performing one
of the boolean operations in Figure 3. That is,

M,; A (Ri{2k) V R;[2k + 1]) if matching a O
M; — { M, A(Ri{2k] Vv Ri[2k + 1]) if matching a 1
M,; if matching a X

For each non-X in the match word two operate cycles are required. No operation need be
performed for X’s. Thus simulating a (m,n) DSA using a (0,7) DSA will slow down match
cycles by a factor of 2m - 1.

All of these simulation results are summarized in the following table. The columns of
the following table indicate the number of instructions required to perform an operation of
a virtual (km,¢n) DSA on a DSA with the indicated parameters.

Operation (km,fn) (m,n) (0,{n)

match 1 2k-1{2km-1
operate 1 4 L
write 1 7 km

2.2 Implementation Approaches

A data structure accelerator chip does not fall into any common class of integrated circuits.
Because we want very large DSA arrays and the structure of the DSA is very regular,

7

Match

Figure 4: CAM cells

memory design techniques are needed. However, the DSA includes a significant amount of
combinational logic (in the finite state machine) and arithmetic type circuits (in the priority
encoder).

The DSA architecture may incorporate content addressable memory, which has the
reputation of being difficult design an relatively space inefficient. Wade and Sodini have
developed a cell (Figure 4)that is reasonable dense, using only 5 transistors, and relatively
easy to design {7]. Using 2-um design rules, buried contacts, single level metal and low
resistance polycide lines gives a CAM cell with - area of 25 x 22 um?2. So the cost of this
type of CAM cell is in the same ball park as as ‘*ic RAM.

The first data structure accelerator implemenied was the MIT database accelerator de-
sign [6] which is a (32,4) DSA and used the Wade-Sodini cell. The ratio of eight between the
CAM and RAM size was chosen because we expected the number of matches to significantly
exceed the number of boolean operations. For many of the problems being considering, we
would prefer more RAM per line of the DSA and can afford the the match time slow down
inherent in a smaller content addressable memory. Thus we have been investigating a data
structure accelerator that uses no CAM at all, but has a large number of RAM cells per
line.3

Figure 5 shows this alternative implementation. It is much simpler because it does not
contain a CAM. This eliminates the need for the match and write instructions, simplifying
the control logic significantly. We have added extra sense amplifiers to latch one of the
inputs and outputs of the function generator. The address buffers that control the row
select logic need to be modified slightly to deal with trit addresses, but little else needs to
be changed. This extra logic would be rather difficult to fit into a normal RAM row pitch,
but the density should be quite a bit greater than that of the design shown in Figure 1.

The finite state machine of the DSA has been extended to be the entire processing
element. Matches are much slower now, requiring 32 cycles if K; contains a 32-bit quantity
and 64 if it contains a 32-trit quantity. However, this architecture is a bit more flexible
than the one shown in Figure 1 since the contents of the CAM cells can be modified by the

3This idea was originally suggested by Mark G. Johnson.

Previous line

Function
Control
Sense
Amp Prioriy
MOMOQ{ cells —> Sense "
—— Amp
Sl
v
Next line

Figure 5: DRAM Approach to the Data Structure Accelerator

finite state machine.

We are currently designing a chip with this basic architecture with 128 RAM cells per
line and we are trying to fit 10° lines on a single chip using a 1.25um technology. The RAM
cells are single transistor DRAM cells. We are building two variants of this design, one
with a linear interconnect and second with a two dimensional interconnect for :1se in image
processing applications.

3 An Algebraic Language for Specifying DSA Operations

We do not believe the DSA should be viewed as a universal computing engine but rather
as a component of a heterogeneous computing system, where the DSA is used as a slave
of some host processor or or perhaps shared for among several processors. The host is
responsible for sequencing the DSA instructions and performing those data operations at
which a SISD or MIMD machine would be preferable.

Algorithms that utilize the DSA are a mixture of DSA instructions and conventional
single sequence processor instructions. Rather than expressing these algorithms in a mix-
ture of low level DSA instructions and some high level language for the single sequence
portion of the instruction stream, we have developed a set of high level extensions to a
conventional block oriented programming language which allow the facilities of the DSA
to be used effectively. This approach intertwines DSA operations with more conventional
programming mechanisms including multiprocessing extensions. Rather than giving a com-
plete description of the language, which is still evolving, this section describes the major
features and provides enough information to make the examples in the later section clear.

The DSA description language have five basic components:

¢ Declarations that describe the allocation of DSA lines to different DSA arrays, and
the allocation of CAM and RAM of the lines of a DSA array to various tasks.

e Basic operations for comparing the CAM contents with fixed data and performing
boolean and arithmetic operations with the contents of the RAM.

o Loop abstractions that cause operations tc be performed on blocks of DSA lines.

o A mechanism for describing algorithms best expressed as state transition tables.

A library of higher level functions.

Each of these components is described in one of the following subsections. It is important
to notice that our language intersperses DSA operations and conventional SISD operations.
We believe this allows our description language to be more expressive, and properly leaves
to the compiler the problems of the separating the operations that are performed on the
DSA form those performed on the host processor.

3.1 Declarations

The N processing elements in a DSA are identified by their coordinates within the inter-
connection grid. These coordinates are used 1s a subscript. For one dimensional DSA’s this
is just an integer from 0 to N — 1. Higher dimensional arrays use vector subscripts.

For instance, the RAM of the i** line is written as R;, while the CAM of each line
is written as K;. In the case of a one dimensional DSA we denote the RAM by R; and
the CAM by K;. In the two dimensional case we use R;; and K;;. The individual bits
of the RAM can be referenced by RA0},..., R{n]. The R;, K; and M., registers are the
hardware registers of a DSA and usually are not used directly by the programmer. Instead
the programmer declares variables that are aliocated from the available hardware resources
using the declarations given below. This insulates the programmer from the complications
of using the “virtualization” techniques described in Section 2.1.

Collections of DSA lines are called DSA arrays. Incividual DSA arrays are allocated as
if they were arrays, but whose elements are declared using DSAstruct. The purpose of the
DSAstruct is to indicate to the compiler the RAM and CAM requirements of each line. For
instance,

DSAstruct interval {
CAN color([5];
RAM selected, min[16], max[16];
States S € {inside, outside, unknown};

}

defines the structure of a line of a DSA array. Only one CAM variable is allocated, color,
which is 5 bits long. Three RAM variables are allocated, two of 16 bits and one of 1 bit.
The States declaration indicates the allowable states of each line when programming the
DSA using state transition techniques. The state transition techniques and the States
declaration are described fully in Section 3.4. A DSA line with this structure will have at
least 5 bits of CAM and 35 bits of RAM (one bit for selected, 16 each for min and max and
2 for S). Sometimes it is useful to have one variable overlay another. This is accomplished
using the Alias declaration. Consider the following fragment:

RAN M([3], N[3]. L[4] = a1ias(M(1], N[2}, M[0], N{0]);

10

If the compiler assigns M and N to the first six registers R[0], ..., R(5] then L; would
be assigned as shown in the following diagram.
L M; | N |
LR(O] | Ril1] [R:[2] [Ri(3] | Ri[4] | R3]]
[ZRITLOIT TLZBIT TLOT]

DSA arrays are collections of one or more primitive blocks, where each primitive block
is a set of 2% DSA lines on a 2* boundary. Blocks of DSA lines are only allocated in sizes
that are a power of 2 because of the organization of the decoders. Odd sized DSA array’s
are allocated as sets of primitive blocks. Primitive blocks are identified by the selector word
that spans their elements. Thus 100XXX; represents the primitive block that extends from
lines 32 through 39, inclusive. To indicate that the index i lies within this primitive block,
we write 1 € 100XXX,.

A DSA array with 100,0 elements would consist of primitive blocks of size 64, 32 and 4.
It would be represented by the union of the identifiers for its constituent primitive blocks.
For instance, for the DSA array defined by the statement:

DSAstruct interval Table[100];

we would have
Table = 100XXXXXX; U 1010XXXXX; U 1110000XX,

The lines of Table each contain at least 5 bits of CAM and 35 bits of RAM. We use a
similar syntax to C to reference entries in DSA arrays. Subscripts are used to identify lines,
so the fifth line of Tabla, all 40 bits of it are referred to as Tables. Particular variables are
referred to concatenating the DSA array name with the variable name, separated by a slot,
e.g. Table.min or Table.min;.

Set intersection and complement can also be used to describe DSA arrays. For instance,
the even lines of Table might be denoted by

Table N XXXXXXXX0; = (100XXXXXX; U 1010XXXXX; U 1110000XX;) N XXXXXXXXO;
= 100XXXXX0, U 1010XXXX0; U 1110000X0,
and the lines whose indices are not multiples of 4 by
Table N XXXXXXX00;
= (100XXXXXX; U 1010XXXXX; U 1110000XX2) N (XXXXXXX1X, U XXXXXXX01,)
= 100XXXX0X; U 100XXXX01; U 1010XXX1X; U 1010XXX01;
U 11100001X; U 111000001,

Each of these three operations can be performed formally on the selector bit strings as
follows. We consider the union cf two selector bit strings R = ry---r, and § = 8;--- 5.
Assume R and S differ in just one bit position, so r; = s; for i # £. There are then three
possibilities:

R ifr,=X
RuS=¢ S ifsg=X
*y-+Pp_1XTe41 - -T% oOtherwise

11

The intersection of R and S can be performed on bit by bit basis. Assume r; and s,
differ. If neither is an X then the intersection of R and S is the empty set. Otherwise, the
intersection uses the bit which is not equal to X.

Complements are slightly tricky. The complement of R is a union of £ bit strings, where
£ is the number of 0’s and 1’s in R. To see this examine the simple case R = X000;. We
can trivially write R as a union of 7 bit strings, where each has one X in the same position.
These strings are listed in on the left hand side of the double bars in the table below. On
the right hand side, are given the three simplified bit strings whose union is R.

X100, X101; X110, X111, (| X1XX,
X010, X011, X01X;
X001, X001,

These rules allow us to reduce all combinations of unions, intersections and complements
of selector bit strings to unions of bit strings, i.e., conjunctive normal form.

3.2 Basic Operations

Boolean and arithmetic operations with arbitrary sized RAM variables can be implemented
in a bit serial fashion using the function generator. Thus we permit RAM variables to
be combined using any of the standard boolean and arithmetic operations, provided their
lengths are compatible. The following table gives the operators we currently use.

logical negation
logical “or”
logical “and”
logical “xor”
addition
subtraction
assignment

1|+ |D]|>]| <]

1

Consider the following code sequence:

DSAstruct Sample
RAM A[3], B[2], C[2];
}ss

S.A; — S.B; +8.C;;

The compiler might allocate the variables A, B and C in RAM as

A; B; Ci
Ri{0] [Ri[1] | Ri[2] | Ri(3] | Ri(4] | Ril5] | Ril6]

Then the statement A; — B; + C; would be expanded into code equivalent to

R;[0] — Ri[3) ® R:[5];

Ri[carry] — Ri[3] A Ri[5];

Ri{l] — Ri(4] ® Ri(8];

Ri[carry] — (Ri[4] A Ri[6]) V (Ri[4] A Ri[caxxy]) V (Ri(6] A Ri[carTy]);
Rif2] — Rilcarry);

12

3.3 Selection and Querying

Groups of instructions encapsulated in a loop-like block structure are used to indicate that
a set of operations should be performed by a number of processing element. The syntax of
these instruction is as follows:

ForEach i, (boolean expression in i) {
{forms involving i)

}

The body forms are performed for each i that satisfies the boolean predicate. The
simplest boolean predicate just indicates that i is an element of a particular set. For
instance, the following code segment performs the previous operations on the 32 even lines
in the range 0 to 63.

ForEach i, i1 € OXXXX_ng
Ri[0] — (R[0] A R{1]) Vv Ry[2]

This particular code segment will be expanded into a select instruction to set the Select-
Word to 0XXXXX0; and a few operate instructions for the body of the loop, viz.

select OXXXXX0,
Ri[tenp] — Ri(0] AR{T]
Ri[0] — Ri[temp] V R;[2]

Odd sized DSA arrays, like the 100 entry Table given in Section 3.1, are dealt with by
generating a DSA descriptor that is a union of selector bit strings. Then the body of the
loop is repeated for each bit string. For instance, the sequence

ForEach i, i € 100XXXXXX; U 1010XXXXX; U 1110000XX; {
(forms involving)

}
would be treated as:

ForEach i, i € 100XXXXXX; {
(forms involving ¢)

}

ForEach i, i € 1010XXXXX; {
(forms involving i)

}

ForEach i, i € 1110000XX; {
(forms involving i)

}

Notice that even though a ForEach loop evaluates its body at each line of the DSA array,
the time required for the loop is typically O(1), where the constant of proportionality is
the time required to perform the body once. In the worst case, where the size of the DSA
array is close to a power of 2, the loop will be performed O(log N) times for a DSA array
with N lines.

Consider the following chunk of code:

13

ForEach i, (i € 0XXXXX0;) A (K; = Test) {
Ri(1] = Ri1] A Ri[2);
printt (“Line %d matched", i);

}

The predicate for this loop is a bit more complex. The body is performed for each of
the even lines in the range 0 to 63 whose CAM’s contents match Test. This predicate
is expanded into three instructions: a select instruction that sets the Select Word and a
match instruction for K; = Test. In addition the result of this match is stored in a register
(Ri[1oop]) for later use. -

The first statement in the body is a simple operate cycle, except that it is only supposed
to take effect on those lines that R;[loop] = 1. This is accomplished by conditionalizing
writes in the loop on the value of Ri[loop]. Thus the first line of the body expands into:

Ri[1] = (Ri[200p] A Ri[1] A Ri[2]) V (Ri[1o0p] A Ril));

The final statement in the body actually expands into a loop. First an operate instruc-
tion issued to store the contents of the R;[loop] in the priority encoder register. Then a
readout instruction occurs for each of the designated lines, followed by the code for the
print? statement which uses the value returned by the successful readout instructions.

The set predicates available for use in a ForEach statement include multibit tests, mul-
tiple matches and arithmetic comparisons. The arithmetic comparisons are discussed in
Section 3.5.

3.4 State Transitions

A common approach to using the processing elements of the DSA is as a state machine. To
make this a bit easier for the programmer and to make the resulting programs a bit more
intelligible, we have decided to have the compiler allocate the binary patterns for states
and work out the state transition equations. This is accomplished with two new types of
statements.

A new set of states is introduced by the States form,

States S € {up, down, sideways};

This statement declares S to be a state identifier for each PE. The state of any particular
PE is indicated by adding a subscript. Thus the state of the 5 processor is Ss. If we
wanted to find all the processing elements which are in the up state, we would use the
following code segment:

ForBach i, S; = up
printt (“Line %d is up, i);

Occasionally, computations may involve more than one set of orthogonal states. In this
case, several state variables are declared, as in the following example.

States S € {up, down, sideways};
States T € {red, yellow, blue};

14

With these declarations, each PE could be in one of nine different states. We also say that
the S-state of a processing element is §; and that its T-state is T;.

States can be changed by using the NewState form. The NewState form identifies which
state variable is to be changed and has body consisting of a set clauses indicating how to
change the state. For instance, we might have

States S € {up, down, sideways};
ForEach i, i € "XX.. XX" {
FewState S {
up: S; ~— down;
down: it K;="X..X111"
then S; — up;
else S; — sideways;
otherwise: S; — sideways;

}
}

If the compiler chose to use registers R;[0] and R;[1] to hold the state of each processing
element, as follows:

State R;[0] R,[1]

up 0 0
down 0 1
sideways 1 X

There are three different binary inputs to the truth table for this state transition, the
two state variables R;{0] and R;[0] and the result of the match K; = "X.. X11X", which we
denote by M;. This gives the following Karnough map:

00 01 11 10
M;lo1]00] 1X| 1X

M;101]1X|1X] 1X

To minimize the the number of produce terms we use the following assignment of the X’s.

00 01 11 10
M;|01{00]10] 11

M;|01]10(10] 1t

Thus the original state transition code is equivalent to
ForBach i, i € "IX.. XX" {

Ri[0) — ((Ki # "X.. X11X") A Ri[0]) v Ri[0];
;?«[1] — Ri{l];

which, though somewhat shorter, is significantly less clear than the state transition code
given earlier.

15

Figure 6: State Diagram for Comparison

3.5 Arithmetic Comparisons

One of the fundamental applications of the data structure accelerator is searching tables
quickly. The content addressable memory accelerates searches involving boolean patterns
while the function generator accelerates searches involving arithmetic patterns. For exam-
ple, we can determine those lines of a DSA that contain a number of lying between given
bounds, or the line of the DSA that contains the largest quantity in time independent of
the number of lines being searched.

For simplicity we assume that each line of the DSA contains precisely one key and the
key is is m bits long. This key can lie either in the CAM portion of the DSA or in the
RAM portion. In this section we assume the key lies in the CAM, but trivial modifications
of the algorithms enable it work with the key in the RAM. We consider two fundamental
operations, comparison with a given quantity and finding the largest element of a set of
keys.

The following function identifies each line whose key is greater than LowerBound. This
is done by examining each of the bits of the key in sequence. Each DSA line can be one of
three states: greater, lesser and unknown. In state lesser the entry is known to be less than
the key; in the greater state it is known to be greater than the key, and in state unknown
we still don’t know. If an entry is in state unknown then its leading bits match the leading
bits of the key that have been presented so far.

All words are initially placed in the unknown state. We compare the contents of the
CAM with LowerBound one bit at a time, changing the state of the line as necessary. The
state transition diagram is shown in Figure 6. At the end of m cycles, any word still in
state unknown is equal to the key.

The following program uses two special arrays. BitMask[n] contains a 1 in the n** bit
position, from highest to lowest. Thus LowerBound A BitMask(n] selects the n* bit from
LowerBound. FieldMask is similar, but has the n highest bits set.

Compare(Array, LowerBound) {
States Array.S € {greater, lesser, unknown};
ForEach i, i € Array {
Array.S; — snknown;
for 0 < n < KatchWidth {
NewState S {
snknown: 1if Array.K; = (LowerBound A FieldNask{n])

16

then Array.S; « unknown;
else if (0 = LowerBound A BitMask{n]
then Array.S; « greater;
else Array.S; — lesser;
otherwise: Array.S; — Array.S;;

}

}
}

This and similar routines are used by the compiler to implement arithmetic predicates
in ForEach statements. For instance, one might want to use the DSA to represent a large
set of one dimension intervals. The following code segment would then be used to find those
intervals that contain the origin.

DSAstruct Sample {
CAM L[16], R[16];
} s;

ForEach i, (S.L; < 0)A(S.R; > 0)
printf("Interval %d contains the origin.", i);

For example, we might want to use the DSA to represent a set of intervals from 0 to
216 _ 1. Each interval would be represented as one line of a (32,n) DSA, with half of K;
used to hold the lower limit of the interval and half for the upper limit. A modest sized
data structure accelerator could then contain a rather large set of these intervals. Using
this algorithm, we can determine the intervals in this set that intersect a given interval in
time linear in the size of the intersection. This technique trivially extends to two or more
dimensions.

3.6 Extremum Searches

In this section we consider two different types of extremum searches: finding the largest
element in a DSA and finding the closest match to a quantity using the Hamming distance.
These problems can be described as follows. Assume we are given a set of n keys K =
{K, = kqoks1 A kym}, where the K, are m bit binary numbers and n » m. The extremum
problem is to determine the j such that K is the largest element of K. In the Hamming
distance problem we are to find the element of X that differs from a given m bit pattern P
in the fewest number of positions.

The solutions to these problems all involve examining the K; one bit a time. Thus each
algorithm takes time linear in the length of the keys, but is independent of the number
of keys. The keys for these algorithms can either be in the CAM or RAM portion of the
DSA. An algorithm that expect the keys to be in the RAM can be syntactically transformed
into one expects it to be in the CAM, viz. a sequence of matches against 1XXX..., X1XX.. .,
XX1X... moves the bits of the CAM into M,; one at a time, where a RAM based algorithms
can used them. This adds an extra instruction for each bit of key width, and at worst slows
the algorithm by a factor of 2.

17

The second case, where the key is in the CAM but the algorithm expects it to be in the
RAM is only slightly more difficult. We can use the techniques of Section 2.1 to simulate
the CAM using RAM. In the worst case this will slow down the algorithms by a factor
of m. Often however, algorithms look at the keys one bit at a time, so only a few extra
instructions are introduced.

We begin with the algorithms that find the largest key in K. The basic technique is
to determine the largest element, one bit at a time, starting from the highest order bit
position. This is done by matching the DSA array against 1XXXX.... If any lines match
this pattern, then the largest key in K has its highest order bit equal to 1, other wise it is
0. There is a match, we continue with a match word of 11XXX.. ., otherwise 01XXX.... In
either case we determine the two highest bits of the largest element of X in 2 cycles, and
the largest key in m using match instructions. At most one additional match is required to
load the priority encoder with the address of the largest key. The following code fragment
implements this idea.

match — "XXXX.. XXX";
ForEach i, i € Array {
for m—12r>0 {
match[r] — 1;
unless (Array.K; = match)
matchfr] — 0;

} return(match)

Sometimes it is necessary to determine those entries that differ from a given pattern
key = kok1k; ..., by only a few bits. This is useful in image processing an data correction
applications. For concreteness assume the key and ex-h DSA entry contains 32 trits. Deter-
mining which entries differ from key by a single bit :an be done in 32 match cycles by match
against a copy of key with a single X in each of the 32 different bit positions. When done
in this fashion, two bit mismatch requires 1024 match cycles. This is not a very efficient
approach when there is a large mismatch.

For large mismatches a faster and simpler approach is to check each bit position individ-
ually by matching against koXXX..., Xk;XX. .. and so on. We then increment a counter each
time there is a mismatch. After 32 match cycles we will know the number of mismatches
for each entry in the DSA.

It is easy to develop routines that determine the lines that mismatch a key at a given
number of bit positions. For instance the following routine determines the lines of a DSA
array that mismatch vord in at most 3 bit positions.

HammingNatch (Array, word) {
RAN Counter{n];
ForBach i, i € Array {
Array.Counter — 0;
pattern ~— "XXXIXXXXX.. XX“;
for 0<j<m {
pattern{j] ~ word(j];
Array.Counter — Array.Counter + 1;
patternfj] ~ “x*

18

}
}
}

There are a vast number of operations that can be implemented using the finite state
machines int he data structure accelerator. For instance, the Compare routine can be easily
modified to determine for which lines K; is between specified upper and lower bounds.
It is not difficult to find the line containing the largest element or that differs from a
given quantity by the smallest Hamming distance. (This could be used for linear pattern
matching.)

3.7 A Space/Time Tradeoff

One unfortunate effect of the linear nearest neighbor interccnnection network of the data
structure accelerator is that the (graph theoretic) diameter of a data structure accelerator of
n lines is n. Thus computations that requires data in distant lines be combined can be quite
slow. The boolean n-cube type networks used by the Connection Machine (3] has a diameter
of logn and thus can perform somewhat better with these algorithms. Unfortunately,
boolean n-cube networks do not scale to large numbers of processing elements. In fact,
networks with diameter less than n!/3 cannot be embedded in 3-space in a uniformly scalable
fashion. Power distribution and heat dissipation considerations raise this bound to n!/? and
packaging considerations to n. Thus algorithms that require a high degree of communication
among O(n) processing elements will require more than O(n) “real estate” in realizable
systems.

In this section we show how to solve such a problem using O(n?) lines of a DSA. Notice
that while fewer processors could be used if a smaller diameter network were used, it is not
clear that less total hardware would be required.

Consider the following problem: Given a set of n integer {ao,...,8,-1}, find those pairs
that have the minimum difference. The brute force approach of comparing all pairs of
integers requires O(n?) operations. However, this can be reduced to O(nlogn) operations
by first sorting the integers an then comparing their neighbors. Using a DSA we can solve
this problem using O(n) space and O(n) time in the following fashion. First, store each
a; in a line of the DSA. Then, in parallel, compute the difference between the contents
of each line and ag. Repeat this for each a; retaining the smallest difference. This will
take O(n) operations. Finally, the smallest difference is determined using the techniques of
Section 3.6. This requires O(1) operations. Thus using O(n) lines of a DSA we can solve
this problem in time O(n).

An alternative approach is to store in each of n? lines of the DSA the pairs (a;,a;).
Then the n? differences can be computed in parallel using O(1) operations. This may be
useful approach if many such calculations with the same set of a; are to be performed. The
only problem is to get the data into the DSA efficiently.

Observe that the n? entries in the DSA can be written using only O(n) operations by
using the selector carefully. Assume that n = 2¥, We begin by writting a; in the n lines
beginning with line in. Then write a; in lines i, n + i, 2n + ¢ and so on. Each of these two
passes requires O(n) write operations so the entire n? array can be set up in O(n) time.

19

Selector: (1) § 1X X0 X1

ao ao a0 {ao| |40 a0
a0 ag a0 ao | a1
a) a, | 4o a1 | Go
ay a) a; | a1

Figure 7: Intermediate states while creating a cross product

The following code fragment implements this procedure for a 4 x 4 array. For simplicity,
we have (unrealistically) assumed that each of the a; is a single bit. Notice that each line is
a single DSA instruction. Figure 7 illustrates the operation of this technique when applied
to 2 x 2 case.

ForEach i, i € "00XX"”
R.'[llft] —ag;
ForEach i, i € "01XX"
Ri[left] —ay;
ForBach i, i € “10XX"
R"[l.ft] —as;
ForEach i, i € "11XX"
Ri[lett] — a3;
ForEach i, i € “XX00"
R.'[!‘isht] — Gao;
ForEach &, i € "XX01"
Ri[right] — a;;
ForEach i, 1 € "XX10"
Ri[right] — a3;
ForBach i, i € "XX11"
&[right] - a3;

4 Problems in Computational Geometry

In this section we demonstrate how the data structure can be used to solve several problems
in computational geometry. Since the problems in computational geometry typically arise
as a component of other applications (such as VLSI or mechanical CAD), we think the
use of the data structure accelerator is particular appropriate. It is relatively inefficient
to design specialized hardware to solve the computational geometry problems that arise
in CAD, because they are just one component of a larger computational problem. And
yet there is a huge amount of potential parallelism to be exploited. The data structure
accelerator provides that parallelism in a fashion that is not specialized to the problems
of computational geometry. At the same time, these techniques require using the data
structure accelerator in tandem with regular processing elements. This is precisely the type
of cooperative heterogeneous computation discussed in the introduction.

20

P1

P4

P2

@ (b)

Figure 8: Polygon Inclusion

4.1 Convex Polygon Inclusion

The convex polygon inclusion problem is relatively straightforward. A convex polygon
is described by the sequence of its vertices, as shown in Figure 8(a). We are to determine if
a given point is contained within the polygon. The basic relationship we use is illustrated
in Figure 8(b). If we denote the z and y coordinates of the point P; by z; and y;, the signed
area of the triangle P, P, P3 is

zy n 1
z2 Y2 1| =z1¥2 + Z2y3 + Z3th — Z1Y3 — T2 — Z3Ya-
z3 y3 1

The sign of the area is positive if the points Py, P; and P; are arranged counterclockwise in
the plane [5). Thus in Figure 8(b),the triangle P, P, P; has positive area, while the triangle
P, P, Py has negative area.

To determine if a point P is contained within a polygon we check that the triangles
formed by P and each edge of the polygon have positive area. This is easily done by
assigning each edge of the polygon to a line of the DSA:

DSAarray LineSegment {
RAM Lx[4], Ly(4], Rx[Q, Ry[d, ;
Area[24];
}:

We have allocated four ¢-bit quantities to hold the coordinates of the endpoints, and
one 2¢{-bit quantity for the area of the triangle in the computation.

PolygonInclusion(Bdges, Px, Py)
DSAarray LineSegment Edges(]; {
ForBach i, i € Edges {
Edges.Area; —Edges.Lx; x Edges.Ry; + Edges.Rx; x Py + Px x Edges.Ly,
— Edges.Lx; x Py, — Edges.Rx; x Edges.Ly; — Px; x Edges.Ry,;
it 3j.(RBdges.Area; < 0)
then return(“Cutside”);

21

else return("Inside");
}
}

The time required by this algorithm is independent of the number of edges of the poly-
gon(s), but due to the multiplications in the area computation, quadratic in the number
of bits required to represent the coordinates of the vertices O(£2). We could say that the
time is O(£log!) by using an FFT algorithm, but this would only be of theoretical interest
and ignores the performance cost of getting a larger algorithm to the DSA. In addition, we
must count the preprocessing time required to load the n vertices into the DSA, which is
O(¢n), since each point has size O(¢). The time to check m points grows to O(m¢?)), while
the preprocessing time remains fixed (using classical multiplication).

If the number of points is large, or the same points are used repeatedly with different sets
of polygons, we can store the points the DSA and perform the computation for different
polygons. An example of this typeof problem is given in Section 4.3. In this case the
preprocessing time becomes O(¢m) while the computing time becomes O(n¢?)).

Classical algorithms [5] require O(¢r) time for preprocessing and answer the inclusion
question for m points in time O(¢£3mlogn). For comparison, these results are summarized
below.

Preprocessing Query

vertices in DSA in met
points in DSA {m nf*
classical in Cmlogn

The DSA approach uses a straightforward algorithm and achieves somewhat better per-
formance than the classical techniques. The following section discusses a variant of this
problem where the test points lie in a regular grid.

4.2 Polygon Filling

A common primitive for a number of geometric algorithms is polygon filling. In the two
dimensional case, we are given a rectangular section of the plane discretized into an m x n
grid. Within this grid are marked the boundaries of a number of connected regions. The
polygon filling problem is to identify the regions in which each point of the grid is contained.

A simple example of this problem arises in computer graphics where the regions might
represent homogeneous regions of an image, e.g. surfaces of objects. When the image is
presented on the screen, each pixel within each region needs to be painted with the same
color.

Figure 9 shows a two dimensional region embedded in a grid. Each dot represents
a single processing element of a two dimensional DSA. The diagonal lines form the true
boundary of the region, while the black dots indicate the boundary on the grid. Notice that
each black dot lies on or within the boundary of the region. Given such a boundary we can
propagate a seed node outward until it reaches a boundary. This is illustrated in Figure 9
where the seed node is at (6,5). At g it is the only node marked. Between ¢; and t;;, each
marked node propagates a mark to each of its four neighbors if they are (1) not already
marked and (2) not a element of the boundary. The time at which each node is marked is

22

.o--e--...oooooo
ooooooooooooecqp
oooooooooc’oodb

O = N W & 00 O N O® O

0 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 9: Sample Image

given in the figure. In this case every node in the region that is orthogonally connected to
(6,5) is marked in 7 units of time.
The data structure used to model the grid is defined as follows.

DSAstruct FillGrid {
States S € {interior, exterior, boundary, unknown};
} Gridln, nl;

Each node in the grid can be in one of four states: interior, ezterior, boundary and unknown.
Initially each node is placed in the unknown state. The boundary is then defined by place
each node on or just inside the boundary to the boundary state. The orientation of the
boundary is defined by setting one node inside the region to the interior state. This node
serves as a seed that spreads throughout the region.

The following block of code then propagates the seed throughout the interior.

Propogate (Grid) {
for L<n {
ForBach (i,j), (i,7) € Grid {
NewState Grid.S {
wnknown: if (Grid.S;41; = interior)V (Grid.S; ;41 = interior)
V (Grid.S;_; ; = interior) V (Grid.S; ;-1 = interior)

then Grid.S;; — interior;
else Grid.S;; — unknown;

othervise: Grid.S;; — Grid.S;;;

}
}

23

oP3
® [J
ps? © o o °
L °
° P2
P6 © d
° °
®py
(b)

Figure 10: Convex Hull

}

}

This routine assumes the orthogonal distance between any two connected nodes is no
more than n. This is the case for convex polygons, but serpentine (concave) polygons can
be created whose interiors have minimal orthogonal paths of length O(n?).

4.3 Convex Hull

The convez hull of a set of points S = {Py,..., P,} is the subset of S whose elements
are the vertices of a convex polygon that includes all the points in S. This is illustrated in
Figure 10(a). The black dots are the points in S, and the points that are on the vertices of
the shaded polygon form the convex hull. The approach we will use to find the convex hull
using the data structure accelerator is illustrated in Figure 10(b~d). We first enter each
point into a DSA array, with one point per line. We then find a box that will bound the
hull by finding the four points with the largest and smallest z and y coordinates. These
four points form the beginning of the hull. As can be seen in Figure 10(c), some points

24

rmain outside the hull.

We start with one vertex of our initial hull and walk along the edges connected to it,
refining the edges as necessary to form the convex hull. For instance, assume we start with
Py in Figure 10(c) and proceed counter clockwise. All of the points in S are on the same
side of the line P;P,. Thus the edge P;P; is in the convex hull. Moving on to the edge
P, P, we find three points on one side of the line (outside the current convex hull) and the
rest on the other. One of these three points needs to be added to the set of vertices. The
one to add is the one whose distance from the line P; P, is maximal, P3. Adding this to our
set we get the hull shown in Figure 10(d). We then continue with the edge P; P;.

To determine if a point P is inside the edge P, P; we compute the signed area Ap of the
triangle AP, P;P. If we are proceeding around the hull in a counterclockwise fashion, the
area must be positive to be inside this segment of the hull. (In Figure 10(c) Ps is “inside”
the segment P; Py, but it is outside the hull.)

Among those points with negative area, we must find the one that is furthest from the
segment P, P;. The distance of a point P from the line P, P; can be determined by dividing
the area of the triangle AP, P;P by twice the length of the line segment P;P;. Given two
points, P and @, P will be further than Q from P, P; if

Ap S Ag '
2/(zi- 22+ (5 -4 2y/(2i— 72 + (5 — 4

So the point furthest from P;P; is the one whose triangle has the largest (unsigned) area.
The sample points are stored in the DSA using a structure similar to LineSegment used
in Section 4.1:

DSAarray HullPoint {
RAM X(k], YCk], Areal2k);

}

The DSA code for a simplified version of ConvexHull is show in Figure 11. This function
takes an argument P, a DSA array whose lines are HullPoints. The first two ForOne
blocks are used to determine the rightmost and leftmost points in P, respectively. The next
statement adds the two lines P; P; and P; P to the set of candidate lines.

We then remove a line P, P; from the candidate set and compute the maximum of the
areas of the triangles by combining every point in P with the base P;P;. If the maximum
is not positive, then every point is either inside the edge, or lies on the edge. Thus the
edge P;P; should be added to the convex hull. Otherwise we find a peint with maximal
(signed) distance from P, P;, say P;, and add the lines P, P, and P P; to Candidates. The
algorithm terminates when Candidates is empty.

The sum of the number of elements in Hul1Edges and Candidates never exceeds the
number of edges in the final convex hull, which we assume to have h edges. Thus the number
of operations required by ConvexHull is O(h). It will take O(n) operations to insert the
the points in S into the DSA, so the entire process will require O(h + n) operations. The
space required by the algorithm is obviously O(n).

The algorithm in Figure 11 makes a couple of simplifications that we might not in a real
program. First, we've ignored the degenerate situation where all of the points of S fall on

25

ConvexEull (P)
DSAarray HullPoint P[]; {
Point Pi, Pj;
Integer Maxirea;
Set HullEdges, Candidates;
ForBach i, i €P {
ForCne j, P.X; = max(P.X;)
Pi ~— (P.X,-,P.Y,) ;
ForOne j, P.X; = min(P.X;)
Pj ~— (P.Xj.P.Yj) H
Candidates — Candidates U (Pi,Pj) U (Pj,Pi);
tor((Pi,Pj) € Candidates) {
P.Area; — (Pi.X-Pj.Y—Pj.X-Pi.Y)+ (Pi.Y=Pj.Y)P.X; + (Pj.X —Pi.X)P.Y;;
NaxArea «— max(P.Arey;);
it (MaxArea <0)
then HullEdges — HullEdges U (Pi,Pj);
olse
ForOne k, P.Area; = MaxArea
Candidates — Candidates U (Pi, (P.X;,P.Yi)) U ((P.Xs,P.Ys),PJ);

Figure 11: Convex Hull Algorithm

26

a vertical line. In this case the two points, Pi and Pj, computed by the first two ForOne
blocks could be itiv_en_tical. Second, there could be more than one point which is maximally
distant from the F;P;. In the final ForOne block we only pick one of these points to refine
P;P;. By using all of them we could reduce the number of refinement steps required, at the
cost of using the sequential machine to sort the refinement points.

Finally, it should be noted that somewhat more complex variants of this algorithm can
be applied to compute convex hulls of sets of points in higher dimensions. Almost exactly
the same idea is used although care must be exercised in choosing the initial candidate planes
to avoid degenerate cases. Again the time required by this algorithm will be O(h + n) and
O(n) space will be needed.

5 Conclusions

In this paper we have discussed a massive SIMD architecture that is designed to be used
as an integral component of a heterogeneous highly parallel machine. We have described
a few basic algorithms for using the data structure accelerator and provided a language
for describing other algorithms. One of the benefits we observe from the free use of SIMD
technology is that many algorithms in computational geometry can be dramatically simpli-
fied, so that the straightforward algorithms appear to be as good as the sophisticated ones
used on sequential machines. However, maximum advantage of the SIMD organization is
obtained when then SIMD structures are combined with more conventional single sequence,
or MIMD architectures. In this case the SIMD architecture proposed can be naturally
embedded in the memory systems.

This paper benefited from the comments of Laurie Hendren, James Stewart and Steve
Vavasis. Paul Chew corrected a number oversights and generally improved content and
presentation of this paper.

References

(1] Sharon Marie Britton. 8k-trit Database Accelerator with error detection. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA, February 1990.

(2] W. Daniel Hillis and Guy Lewis Steele Jr. Data parallel algorithms. Communications
of the ACM, 29(12):1170-1183, December 1986.

[3) W. Danny Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[4] Jerry L. Potter. The Massively Parallel Processor. MIT Press Series in Scientific Com-
putation. MIT Press, Cambridge, MA, 1985.

[5) Franco P. Preparata and Michael Ian Shamos. Computational Geometry. Texts and
monographs in computer science. Springer-Verlag, New York, 1985.

(6] Jon P. Wade, Peter Osler, Richard E. Zippel, and Charles Sodini. The MIT Database
Accelerator: 2k-trit circuit design. In 1987 Symposium on VLSI Circuits, Karuizawa,
Japan, January 1987.

27

[7] Jon P. Wade and Charles G. Sodini. Dynamic cross-coupled bitline content addressable

memory cell for high density arrays. IEEE Journal of Solid State Circuits, SC-22(2):119-
121, February 1987.

(8] Jon P. Wade and Charles G. Sodini. A ternary content addressable search engine. [EEE
Journal of Solid State Circuits, SC-24(4):1003-1013, August 1989.

[9] C. Weems, S. Levitan, and Caxton Foster. Titanic: A VLSI based content addressable
parallel array processor. In Proceedings of 1982 International Conference on Custom
Circuits, pages 236-239. IEEE, 1982.

28

