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Abstract

A close relative of the frame problem is the qualification problem. This
problem concerns what preconditions an agent considers sufficient for an action
to achieve an effect. In general, the consideration of an ideal list of sufficient
preconditions will be impossible or impractical, and as such, an agent reason-
ing about action success will be obliged to do so from incomplete evidence.
Standard approaches to this problem have been to use non-monotonic or con-
sistency based logical methods that assume those sufficient preconditions which
are usually true are true by default. However, these approaches all suffer from
a classic problem of default logics called the lottery paradox, as a result of the
coarse way that defaults capture statistical properties of the domain.

In contrast, we present a novel method for solving the qualification problem
using standard techniques for statistical inference. We take it that the agent
acquires statistics about the proportion of success of its actions, conditioned
upon the existence of certain preconditions which hold just prior to the action.
From such statistics, the agent derives degrees of belief in the success of par-
ticular actions. Choosing among a set of applicable statistics is the familiar
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reference class problem, which is the subject of much work on statistical infer-
ence. We demonstrate that each qualification serves to define a more specific
reference class, and that although no completely specified reference class will
be obtainable, more general classes are nonetheless useful because they capture
statistical generalizations about the omitted qualifications. Since this approach
quantitatively captures the statistical properties of the domain, it does not suf-
fer from the lottery paradox as do default approaches. Lastly, we demonstrate
that this approach also solves the frame (persistence) problem.

1 Introduction

McCarthy [1977] introduced the well-known example of the qualification problem,
called the "potato in the tailpipe" scenario. Suppose you get in your car, and turn
the key. You might expect the car to start, despite not knowing whether the battery
is still charged, whether the ignition system is intact, whether there is a potato in
the tailpipe, or whether any of a potentially infinite set of qualifications are known to
hold. It should be clear that the problem of specifying sufficient preconditions for the
success of an action is not specific to car-startings, but arises in reasoning about any
action. The qualification problem asks formally how a reasoner can make a causal
prediction based on a reasonable body of evidence.

There are actually several problems here, all of which can broadly be thought of
as some aspect of the qualification problem. Firstly, as pointed out in [Elgot-Drapkin
et al., 1987], it may be impossible to write down all of the qualifications that are
sufficient to guarantee action success - the complexity of the domain might be beyond
human ability to completely formalize. Even were this not the case, some domains
require unmanageably large sets of qualifications for every action/effect pair. Even if
there were a tractable set of qualifications for an action/effect pair, there remains the
problem of guaranteeing that all of the qualifications are satisfied in a given situation.
For instance, when attempting to start a car, people don't have guarantees that the
car has gas, that the battery is charged, that the fuel pump is intact - all important
features of a working car. Thus, in any representation of the car-starting problem, it
is equally unlikely (and, in fact, suspect) that one will be able to guarantee the truth
of the qualifications.

Despite these problems, automated agents in complex worlds will still be obliged
to chose an appropriate course of action. Agents will thus be required to reason
under uncertainty. Previous work on the qualification problem [McCarthy, 19S0,
McCarthy, 1984, Lifschitz, 1987, Ginsberg and Smith, 19S7] has used some form of
non-monotonic logical inference to manage this uncertainty by assuming that those
sufficient preconditions which are usually true (a.k.a. qualifications) are true by
default. As we shall see in Section 2, these approaches all suffer from a classic problem



of default logics called the lottery paradox, as a result of the coarse way that defaults
capture statistical properties of the domain.

In this paper, we manage the uncertainty heralded by the qualification prob-
lem using the principles of statistical inference [Reichenbach, 1949, Kyburg, 1974,
Pollock, 1984]. We start by reviewing the strengths and weaknesses of the default
logic approach to the qualification problem in Section 2. In Section 3, we present an
informal view of our approach. Section 4 provides a brief review of the statistical and
probabilistic formalisms that we employ. In Section 5, we apply these formalisms to
the task of causal reasoning, and demonstrate how we solve the qualification problem,
and Section 6 demonstrates how we solve the frame problem as a special case. We
close by discussing work on some additional issues, and summarizing our results.

2 Default Rules and the Lottery Paradox

Previous work on the the qualification problem [McCarthy, 1980, McCarthy, 1977,
Ginsberg and Smith, 19871 has tried to capture performance issues, e.g. by writing
the axioms so that a mixture of forward and backward chaining can be used, but
it is not clear if abstract measures such as numbers of facts actually dominate the
computational properties at the unspecified algorithmic level. It is more appropriate
to view logical solutions to the qualification problem as representational rather than
computational, especially when semantic notions such as possible worlds or model
elimination are used to capture defaults. For this reason, we will not discuss the
particulars of these solutions, but instead present a more general view of the use of
default logic to solve the qualification problem.

We add a defeasible version of the implication operator to first-order logic, so that
we may write the sentence 4 ---* V) to mean "the sentence 4 defeasibly implies '". The
formal properties of such a task have been investigated in numerous places [Loui, 1987,
Nute, 1986, Reiter, 1980]; here we will rely on the following informal definition: if
' -,- 4' is a default rule, 4 is considered true by the reasoner, and 4 is consistent

with everything considered true, then 4 is also considered true. 'his operator is used
to solve the qualification problem by writing causal rules which capture reasonable
conclusions from appropriate evidence. e.g. for car starting:

-'running(t) A turn-key(t) - running(t + 1) (1)

-running(t) A turn-key(t) A dead-battery(t) --+ -running(t + 1) (2)

In words, if the car is not running and the key i turned, then it is reasonable to assume
the car will be running at the next moment; however, if the battery is dead, then it
is reasonable to assume that the car will not be running at the next moment. Since
the conclusions of these two rules conflict, there are situations where the prediction
about the car starting depends on the order that the rules are applied. Several authors

31



[Etherington, 1987, Touretzky, 1984] have advocated choosing the more specific rule,
e.g. if both antecedents above are known to be true, then the second rule will be used
since it involves properly more information about the time in question. Therefore.
if both -,running(0)'and turn-key(0) are known but dead-battery(0) is not, the
reasoner will conclude running(1) since the second rule is not applicable. However,
if dead-battery(O) becomes known, then both rules are applicable and the second is
chosen by specificity, concluding -running(1).

Note that default rule (1) implicitly captures that the car's battery is seldom dead.
Otherwise, if the battery often died, then (1) and (2) could not both be reasonable
default rules. Thus a default rule makes implicit default asz'.ertions about the sufficient
preconditions that do not appear in the antecedent. This is the essence of all the
default logic solutions to the qualification problem. An analogue of this feature will
also be crucial to our statistical solution to the qualification problem, discussed in
Section 3.

A classic problem of default logic approaches is the lottery paradox [Kyburg, 1970].
Imagine reasoning about a lottery where one of a large number of people will win a
prize. The chance that any particular person will win is certainly very small, making
it a reasonable default that the person will not win. Since this can be uniformly
applied to all people involved, the conjunction of all the defaults implies that no
person will win. This contradicts the definition of the lottery, which says that there
will be a winner. The reason for this contradiction is that defaults to not lose force
when composed, yet the statistical facts they reflect do.

The lottery paradox appears in the use of defaults for causal reasoning. The above
car-starting default rules allow the reasoner to assume, for a particular car-starting
instance, that the car will start and therefore the battery will not be dead. This
seems perfectly reasonable. However, when taken together, these particular assump-
tions imply that since the reasoner has no future counter-evidence, the car will always
start and the battery will never be dead. This would indicate that battery cables or
preventive replacement of batteries are superfluous, and other conclusions we know
to be wrong in practice. To correct this problem, it has been suggested that facts
in the evidence set must be indefeasibly true; this would prevent far-reaching pre-
dictions, but also prevent reasonable predictions even two moments ahead. Shoham
[19881 suggested attaching a number to each default rule (actually the projection of
a "potential history") that bounds the number of times the rule can be applied in a
chain. This solution is too ad hoc for examples such as the car battery, where there
is no most reasonable cutoff period (although things do tend to break as soon as the
warranty expires).

4



3 Our Approach: Informal View

A default rule works well when its antecedent implies that its consequent is almost
always or almost never true, because it assigns one of two truth values, true or
false. Default rules do not handle the middle ground, where the antecedent provides
information about the consequent, but not to the point of declaring it true or false.
For example, suppose the car is known to have difficulty starting in cold weather.
Certainly cold(0) is an important fact to consider when predicting running(l), but
to say that the car will start anyway or definitely not start is inappropriate.

Therefore, the first step of our solution is to generalize the default approach to
derive a degree of belief in the consequent (effect) given the knowledge that the an-
tecedent (precondition list) is true. This degree can be based on actual domain
observations about the relative frequency of the effect given the preconditions, e.g.
the car starts 70% of the time in cold weather. This allows for much more expressive
relationships between preconditions and effects. It also captures the "non-monotonic
flavor" of the qualification problem. For example, the car may start 95% of the time
that the key is turned, only 70% of the time the key is turned and the weather is
cold, but back up to 90% of the time the key is turned, the weather is cold, and the
anti-freeze is extra strength.

There may be multiple relative frequencies applicable to the same prediction. In
the percentages above, if the reasoner ignores the fact that the weather is cold, it may
derive a 95% degree of belief instead of the 70% degree of belief. This is the reference
class problem [Kyburg, 1983b] that has concerned philosophers and statisticians for
several decades. A reference class is simply a body of knowledge a reasoner uses to
make a prediction about a degree of belief, analogous to the antecedent of a default
rule. We will say more about this later, but the most commonly accepted principle
for preferring one reference class to another is to choose the most specific of the two.
This is the analogue of the rule preference from default logic described in Section 1;
in fact, specificity was discussed for degrees of belief before default logics were even
invented.

This approach does not suffer from the lottery paradox as does the default logic
approach, since degrees of belief do not need to be "subsidized" in order to be as
strong as true or false. For example, given the belief that the car starts 95% of the
time, the reasoner derives that there is a 95% • 95% - 90% chance that the car will
start twice', a 85% chance for three times, etc. This captures the intuition that the
more times an action is attempted, the more likely it will fail during one of those
attempts. This commonsense fact is totally lost in the default logic approach.

As with default logic, the essence of how our approach solves the qualification
problem comes from what a rule says about those preconditions that do not actually

'Assuming that the car starting trials are independent. If they are not. information about how
they are dependent can be used to combine the individual chances.



appear in the rule. For example, if it is believed that the car starts 95% of the time,
and it is believed that a dead battery prevents the car from starting (all of the time),
then it must also be believed that the battery is dead less than 100% - 95% = 5%
of the time. In fact, all the situations that would prevent the car from starting are
believed to total exactly 5%. Thus our causal rules capture statistical generalizations
about the combined effect of an action's qualifications.

4 Statistical Inference

Having informally described the features of our approach, we now turn to a more
detailed exposition. We have adopted Kyburg's representation, and provide a brief
description here. More thorough descriptions can be found in [Kyburg, 1983a, Ky-
burg, 1974]. Kyburg makes an important distinction (which is often ignored in Al
work [Dean and Kanazawa, 19881) between a statistic, which captures the relative
frequency between sets of objects, and a probability that some object is a member
of a set with respect to some knowledge about that object. These two concepts are
often confused because they both assign a value to similar syntactic objects from the
interval [0, 1] within a field of numbers. However, it is important to bear in mind the
difference; a statistic assigns a relative frequency to a pair of sets, and a probability
assigns a degree of belief to a pair of ground formulas (no free variables).

A statistic is written using the "%" predicate, e.g. "%(fliers I birds) = .95"
means that 95% of the objects in the set of birds also belong to the set of fliers (we
use the conditional bar (1) instead of comma (,) for this predicate to keep the order of
arguments clear). Actually, Kyburg uses a more general form of statistical assertion
of the form:

%(z I Y) E [p,q]

which is taken to mean "the proportion of y's that are z's is in the interval from p to
q", where p < q. Statistical assertions of this form can be used in the obvious way to
say that the proportion of birds that fly is between .9 and .95. Two special cases of
this form are important: when p = q the assertion is equivalent to asserting a point
value, and when p = 0 and q = I the assertion is a tautology and therefore conveys
no information.

A set of these statistical assertions, plus other sentences in first-order logic (with
axiomatic set theory, identity, and arithmetic operations) comprise an agent's rational
corpus. The elements of this corpus must be "practically certain," that is. believed
with sufficient strength so as to be treated as truths2. This corpus can be used to

derive a probability for a ground sentence that is equivalent to asking if an object is
a member of a set, e.g. we might need a degree of belief for the sentence Tweety E

2 There are additional syntactic constraints on rational corpi, which will not be discussed further
here, but can be found in [Kyburg, 1983a].
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fliers. Formally, if 0 is a sentence and KB is a rational corpus, Prob(O KB) =
[p, q] iff there exist terms x, y, z such that:

1. "0 = x E z" is a sentence in KB,

2. "X E y" is a sentence in KB,

3. "%(z I y) E [p, qJ" is a sentence in KB, and

4. x is a random element of y w.r.t z relative to KB.

For example, suppose an agent's KB contains only the logical consequences of the
following facts:

%(fliers Ibirds) E [.90, .95]

Tweety E birds

then Prob(Tweety E fliers I KB) = [.90, .951 since condition 1 is trivially satisfied,
binding z to fliers, condition 2 binds y to birds, condition 3 defines the interval
result, and condition 4 is true because as far as the agent knows, x could be any
element of y. The set y is what we have been calling the "reference class". As
remarked earlier, the choice of reference class can change the resulting degree of
belief.

It is interesting to note that condition 4 above subtly imposes the principle of
specificity, i.e. a statistic with a more specific reference class is preferred when as-
signing probabilities. To see how, consider adding the following sentences to the
KB:

%(fliers I penguins) E [0, .0051

Tweety E penguins

penguins C birds

Now our previous derivation of [.90, .95] no longer holds since condition 4 is violated.
Tweety is no longer an epistemically random element of birds, since it is now a belief
that Tweety is in penguins. Condition 4 is satisfied for the reference class penguins,
so the resultng degree of belief is [0, .005].

Kyburg also presents a stronger version of specificity, where the relative vagueness
of the intervals is considered in addition to the relative specificity of the reference
classes. For example, if instead I told you that Tweety was a "'speckled nuthatch" you
might not have a statistic about flying that has a reference interval more informative
than [0, 1], and it would be better to just use the statistic conditioned on birdhood.
A full discussion of principles of mediation is unnecessary for our present purposes,
the following principle will be used: statistics for a reference set Y will always be
preferred to a reference set W whenever Y C W, and the reference interval of Y is
no weaker than (is contained within) the reference interval of Z.



5 Statistical Inference for Causal Reasoning

Having now outlined the basics of statistics and probabilities, we turn to their appli-
cation to causal reasoning.

5.1 Statistical causal rules

In our discussion about causal default rules, we employed a simple model of time,
which we now make more explicit: the time line is divided up into a set of moments,
which are totally ordered by a successor function (the successor of moment t is t',
a.k.a. t + 1). Since moments are isomorphic with the integers, we will use integer
constants as moment constants.

A fluent [McCarthy and Hayes, 1981, Lifschitz, 1987] in our approach is simply a
set of moments. For example, turn-key is the set of all moments at which the car's
key is turned. We represent that a fluent is true of a particular moment through
set membership, e.g. t E turn-key. This notation is similar to the common reified
approach using literals of the form holds(turn-key, t) [Lifschitz, 1987], but more
convenient for statistical assertions. An agent's domain knowledge is a set of these
set membership assertions.

A statistical causal theory is a set of statistical assertions about fluents. In par-
ticular, we are interested in statistical assertions about how fluents that contain a
moment t influence whether other fluents contain t'. e.g.

%({t: t' E running} I turn-key) E [p,q]. (3)

That is, the proportion of time points in which the car is running preceded by a time
point in which the key was turned is in the interval [p, q]. As shorthand, we use the
notation X* for the set {t : t" E X}. In the discussion to follow, we will use the
standard set operators X (complement), X C Y (subset) and X nl Y (intersection).

The union of the domain knowledge with the statistical causal theory yields a
rational corpus from which we may derive interval degrees of belief that moments
belong to fluents. For example, suppose the KB contains only the logical consequences
of the following sentences:

%(running* I turn-key n running) E [.95. .971 (4)

0 E turn-key

According to principles described in Section 4, this KB derives a degree of belief of
[.95, .97] for "0 E running", which by the definition of our shorthand is equivalent
to 1 E running". This mechanism allows the agent to make predictions between
certainty and falsehood, a capability that standard non-statistical approaches do not
have. The agent can use this added power to make quantitative judgments about the
relative merits of different courses of action, e.g. to compare the expected utilities of
starting one car versus another.
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5.2 Potatoes in tailpipes

This approach handles exceptions to action success by the way that new reference
classes are chosen when additional sentences are added to the KB. For example, we
add the following additional sentences to the KB (where "potato-in-tailpipe" is the
intended interpretation of p-in-t):

%(running* I turn-key n runningfn p-in-t) E [0, .1] (5)

0 E p-in-t (6)

This new KB derives the degree of belief of [0,.1] for 1 E running rather than the
previous interval [.95, .97]. Remember, however, that if the interval in (5) were less
focused than that of (4) (e.g. [.1, .98]), then the previous interval would actually be
preferred.

5.3 Exceptions to exceptions

Ginsberg and Smith [1987], noted that a problem with McCarthy's default solution
to the qualification problem is that exceptions to action success, such as potatoes in
tailpipes, may themselves have exceptions, such as a special exhaust system with two
tailpipes. In other words, determining the sufficient conditions for concluding that a
qualification defeats an action also gives rise to the qualification problem. This is not
a problem in our approach: exceptions to exceptions simply give rise to more specific
reference classes. Suppose that we know that our car has a special twin exhaust
system. Given the following statistic:

%(runningeIturn-keyn runningn p-in-t n twin-exh) E [.8, .9] (7)

our degree of belief that the car runs will be based upon this new reference class.
Our approach simply treats exceptions (and exceptions to exceptions, ad infinitum)
precisely in the same fashion as it treats all qualifications: as evidence for choosing
the appropriate reference class.

5.4 Causal generalizations

As we mentioned in Section 3, a crucial feature of our use of statistic, for causal
reasoning is how statistics generalize over what does not appear in the description of
the reference class. For causal reasoning, this means that fluents that do not appear
in a reference class are generalized over when that reference class is used in a statistic.
For example, (3) embeds within it the relative impact of potatoes in tailpipes, as well
as every other qualification that might defeat the car running. That is, 3 gives data
about worlds in which potatoes are in the tailpipe, but it weights this data precisely

9
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in proportion to the percent of worlds in which potatoes are in tailpipes, given that
the key is turned. This fact is given by the following identity (which we take to be
derivable in our rational corpus from axioms about proportion):

%(running*Iturn-key) = %(running'iturn-keyf p-in-t)%(turn-keylp-in-t)
+

%(running* jturn-key nl p-in-t)%( turn-keyjlp-in-t)

As a consequence, we get information about the possible effect of potatoes in tailpipes
from the coarser statistic, even without considering potatoes in tailpipes. If potatoes
in tailpipes occurred more frequently, this fact would be reflected in tne coarse statis-
tic, since the car would start less frequently when the key was turned. In fact, the
general statistic embeds within it information about every exception, i.e. qualifica-
tion, whether we know about such conditions and the probiems that they might cause.
This is how we solve the qualification problem.

6 Survivor Functions and The Frame Problem

Dean and Kanazawa [1988] developed a statistical solution to the frame (persistence)
problem by using a concept from queuing theory called a survivor fu~action. Using
our notation and terminology, these survivor functions were expressed as statistics
for each fluent set p:

f(I) = %({t: t + 'A E p} ' P)

Intuitively, these functions derive the probability that a fluent will remain true after
a given length of time. Dean and Kanazawa observed that given the simpler statistic
c(P* I p) = A, under certain conditions (detailed in [Weber, 1989]), the survivor

function is a geometric distribution fp(A) = A' (or in the continuous case, an expo-
nential distribution fp(A) = e"). For example, suppose there is a 90% chance that
your car will not be towed from an illegal parking space during a given hour. Given
certain assumptions about the independence of the trials, this means that there is a
S1% chance that the car will not be towed after two hours, a 73%. chance after three
hours. etc. Therefore, the survivor function can be used to derive a degree of belief
that a fluent persists over time, solving the frame problem.

Our approach subsumes the use of survivor functions, because the statistics they
embody are a special case of the statistical causal rules we have described. In fact,
our approach allows for much more flexible survivor functions that are sensitive to
contextual information. For example. suppose the illegally parked car above is parked
next to a fire hydrant. which defines the more specific reference class in the statistic:

%(not-towed* I not-towedn by-hydrant) G [.8.5..S5]

This statistic can be used to define a survivor function that incorporates this contex-

tual information.
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In addition to survivor functions, Dean and Kanazawa do allow an additional form
of statistical assertion called a projection rule, which they use to derive a degree of
belief that a fluent changes, e.g. in our notation:

%(running' I running n turn-key n has-gas...) x (8)

In words, this statistic captures the proportion of times that the car will be running
given that previously it was not running, its key was turned, it had gasoline, plus
the truth of all other relevent preconditions. Projection rules are much the same as
another special case of our statistical causal rules. The principal deficiency of their
approach, however, is that they do not handle, or even recognize, the problem of
conflicting reference classes. The reference class problem appears even within their
restricted statistical assertions, when representing survivor functions and projection
rules for both a fluent and its negation. Information about whether a fluent will
change competes with information about whether the fluent's negation will persist.
For example, consider the survivor function for the negation of running:

%('running" Irun-ning) = z

from which it follows that:

%(running* I running) = 1 - z

which can be applied whenever (8) can be applied, leading to a choice between x and
1 - z as the probability of a sentence such as "1 E running". Therefore, since they
do not provide a mechanism like specificity for resolving competing reference classes,
they do not solve the frame problem in a consistent way. For the same reason,
they also do not address the qualification problem at all. Our approach solves both
problems by using the simple and powerful mechanisms of well-established techniques
for statistical inference.

7 Objections to Statistical Inference

There are several objections that will likely be voiced concerning this general ap-
proach. One concerns the fact that agents cannot have all possible statistics, and
as such, may not have the statistics required for "common-sense" inferences. This
concern is partly addressed in Section 5.4, where we note that large reference classes
provide useful information. In addition, by observing the statistical independence
of different properties (that what I ate for breakfast does not affect whether my car
starts), agents will not be obliged to keep statistics at a finer grain.

Since statistics are interval valued, one can argue that there always exists at least
the trivial statistic for any set: the proportion of P's in our universe is in the interval

II



[0,1]. As Loui remarks [Loui, 1987], Kyburg's system suggests "how to choose between
evidence that is strong but ill-founded, and evidence that is well-founded but weak,"
where well-foundedness refers to the specificity of the reference class, and strength to
the size of the interval.

Dennett [19871 raises the objection that one must "represent (so that it can be
used) all that hard-won empirical information - a problem that arises independently
of the truth value, probability, warranted assertability, or subjective certainty of any
of it." That is, even if the agent had all of the appropriate statistics, using such
statistics would be a rather nasty computational problem. But clearly, any solution to
this problem will amount to a trade off, as Fodor points out [19871, between economy
and warrant. One will trade the computational advantage of incomplete reasoning
systems that jump (often over great distances) to conclusions without considering all
available knowledge, against the likelihood that such conclusions will be false. We
argue that by having access to the statistical basis for belief, agents will better be able
to compare the value of knowledge with the cost of obtaining and referencing it. That
is, each datum will be required to "pull its own weight" [Hartman and Tenenberg,
19871.

Lo.i [Loui, 1987], has made a serious attempt at computing reference classes,
based upon Kyburg's system. He notes that "Finding candidate reference classes ...
[is] intensively set-theoretic," and as such, incurs a high computational cost. However,
using a constrained language and specialized inference procedures, implementions
"proceeded at practically useable speeds." He concludes "The probability intervals
produced are intuitively appealing. ... The next step is to see how well these ideas
fare in applications." We view action reasoning as one such application.

An additional approach that one of the authors is taking [Weber, 1989], concerns
the incremental computation of reference classes. Preconditions are added to the
reference class in order of decreasing statistical impact on the degree of belief for
the effect. Since the impact computations are not data dependent, this incremental
refinement of belief can be performed quickly on parallel hardware, allowing the
reasoner to trade off the accuracy of a prediction with the time it takes to derive
it. This approach provides a novel answer to Dennett's objection discussed above.

8 Conclusion

The qualification problem concerns determining sufficient conditions to guarantee
the success of an agent's actions. Because of an agent's resource limitations and
the complexity of most interesting domains, reasoning about action success will have
to be made under considerable uncertainty. We propose to solve this problem by
associating a statistically founded probability with each proposition, thereby casting
the qualification problem as an instance of the reference class problem. Since statistics
capture knowledge obtained over large sets of events, an agent's ability to draw strong
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conclusions about what will be true in the future is not based solely upon what is
known at the current instant. This approach therefore provides a uniform basis not
only for solving the qualification problem, but also the frame problem, and other
problems of causal prediction.
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