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Executive Summary

Research was conducted to evaluate the feasibility of applying Wave-
lets and Wavelet Transform methods to transient signal feature ex-
traction problems. Wavelet transform techniques were developed to
extract low dimensional feature data that allowed a simple classifi-
cation scheme to easily separate the various signals of interest. Ad-
ditional development of these techniques will lead to robust feature
extraction methods for transient signals.

Detailed study results are presented in section 3.3 on page 53.
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Chapter 1

Introduction and Overview

This final report details the results of research conducted into the feasibil-
ity of applying Wavelets and Wavelet Transform methods to transient signal
feature extraction problems. This report contains both theoretical and ex-
perimental results of studies conducted with mechanical transient data. This
work was performed under contract number F49620-91-C-0089 for the Air
Force Office of Scientific Research (AFOSR.)

Aware, Inc. was tasked to perform the following activities:

1. Selection of Wavelet Basis Functions and Transform Topolo-
gies. Define and develop wavelet transforms which will provide time-
frequency feature localization methods for the types of mechanical tran-
rient signals provided for analysis;

2. Analysis and Characterization of Signal Features. Measure the
transient feature extraction characteristics of wavelet-based signal pro-
cessing algorithms;

3. Prototype Algorithm Development. Select candidate detection
and classification features and develop a prototype algorithm for that
automatic detection and classification of the transient signals of inter-
est.
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Compactly Supported Wavelets

The reason for conducting this study is the remarkable results being ob-
tained through the application of compacily supported! wavelets to transient
signal processing. Compactly supported wavelets are a class of mathematical
functions that were discovered in 1986. Some of the particular advantages of
wavelet signal processing methods are:

o Wavelet transforms are computationally efficient. The number of arith-
metic operations required to perform a wavelet transform is linearly
proportional to the number of input data points. The computational
complexity of the more traditional Fast Fourier Transform (FFT) is
proportional to the number of input data points times the logarithm
(base 2) of the number of input data points (O(N log, N)). For large
problems, the wavelet methods require only a fraction of the number
of operations required by the traditional methods. This advantage in-
creases as the problem size increases. In addition, wavelet transform
algorithms can be directly implemented in Very Large Scale Integration
(VLSI) logic devices, and they are fully parallelizable.

e Wavelet transform methods can analyze signals in both the time and
frequency domains. The relative resolution of the time and frequency
components can be flexibly adapted to the problem at hand. The
selection of the appropriate time-frequency resolution can be done up-
front at system design time or it can be accomplished with real-time
adaptive algorithms. The traditional Fourier transform suffers from
very poor (or nonexistent) time resolution. This particularly limits
its usefulness in the analysis of time-limited (i.e., transient) signals.
There have been attempts to modify the Fourier technique in various
ways to overcome this limitation, but all of the methods introduce
some additional complexities and compromises. Wavelet methods offer
a very natural means to perform time-frequency signal analysis.

e Wavelets provide the flexibility to choose a particular wavelet function
that is “customized” to the specific application. This is possible since

1Compactly supported means that the functions are identically zero outside a finite
interval.
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compactly supported wavelets are an infinite family of complete or-
thogonal basis functions. This flexibility to choose basis functions can
not be matched with the Fourier transform for it uses only a single set
of basis functions — the complex exponentials (i.e., the sine and cosine
functions.)

Report Overview

This report begins with an introduction to wavelet phase space. This is
the “playing field” on which we develop the concepts of wavelet signal pro-
cessing. The development is intuitive with the rirorous mathematical details
provided in the appendices. The basic concepts ot wavelet signal analysis are
developed and contrasted to traditional Fourier analysis methods. This is
followed by a discussion of the computational characteristics and complexity
of wavelet methods. Next the general transient signal processing problem is
introduced and the applicability of wavelet signal processing methods to var-
ious parts of the problem is discussed. This is followed by a discussion of the
results obtained with the specific set of signals which were studied. Excellent
signal separation was demonstrated with the use of low dimensional wavelet
extracted features in a simple classifier design.

To assist the reader in locating the particular sections of this report which
address the contractually required items, the following guide is provided:

1. The selection of wavelet basis functions and transform topologies is
discussed in section 3.2. Wavelet transforms are defined and developed
on an intuitive level in chapter 2. A rigorous mathematical development
of wavelets and wavelet transforms is presented in appendix B;

2. The analysis and characterization of signal features extracted via wave-
let methods as well as the design of prototype algorithms are presented
in section 3.3.



Chapter 2

Wavelet Signal Processing

This chapter introduces the concepts of signal, signal processing, mathemat-
ical transforms, phase space representation of signals, the wavelet transform
and wavelet signal processing methods. The mathematical details of wavelets
and wavelet transforms are rigorously discussed in appendix B. The devel-
opment here is intuitive with the emphasis on explaining “what” a wavelet
transform does rather than “how” it works or “why” it is matnematically
correct. The Fourier transform will be introduced because it is the signal
processing technique most frequently used today. The objective is to provide
an overview of the capabilities of wavelet transform methods and an under-
standing of their relative strengths and weaknesses compared with Fourier
methods.

2.1 Signals and Signal Processing

A signal is something that conveys information. In this discussion, signals
will usually consist of a series of measurements of some physical quantity such
as voltage or force. The information conveyed is often about the occurrence
of events or the state and behavior of a physical system.

The discussion will be limited to the class of signals that could be repre-
sented in a digital computer. These must be discrete signals, i.e., signals that
are represented by a sequence of numbers whose values are of finite precision
i.e., representable by a finite number of bits. The signals may be samples of
a continuous quantity (i.e., measurements of the value of a physical quantity
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with a sensor) or values from a completely discrete process (e.g., counting
the occurrences of some event.) Due to their discrete nature, these signals
contain finite energy. The energy of a discrete signal is calculated by sum-
ming the squares of its values. Let s;,k = (0,1,2...) represent the sequence
of values of a discrete signal. The energy of the signal E is

E= zk:sz. (2.1)

Signal Processing is a collection of methods used to change the represen-
tation of a signal into a form that allows the information to be interpreted
more easily. Signal processing is used to locate events or identify system
modes or other characteristic behaviors. Signal processing methods are used
to separate signals from noise or separate signals from each other.

Noise is extraneous energy that is combined with a signal. It interferes
with the ability to interpret the information being conveyed by the signal.
Noise has many sources, both natural and man-made. It can have charac-
teristics that are either random or deterministic or a combination of both.
Whether energy represents noise or signal sometimes depends on the inter-
ests of the investigator. For example, in speech signal processing, speaker-
dependent characteristics of the acoustic speech waveform are “noise” if it is
desired to extract the meaning of the utterance, but the semantic character-
istics are “noise” if the problem is to identify the speaker.

A simple example of a signal processing operation is calculating the av-
erage or mean of a sequence of values. A signal, consisting of a sequence of
‘noisy’ temperature measurements, can be “signal processed” by averaging a
large number of samples to separate the steady temperature estimate from
the randomly fluctuating noise.

Signal processing methods vary in the amount of computation required to
perform them. We measure the computational complexity of various meth-
ods by establishing a relationship between the number of input data points
to be processed and the number of arithmetic calculations required to per-
form the method. In the previous example of the averaging operation, the
complexity is of linear order because the number of operations required to
perform the averaging method is simply proportional to the number of data
points to be averaged. This is written as O(n) (the operation is said to have
a computational complexity of order n.) A method that required a number
of arithmetic operations proportional to the square of the number of input
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points would be of quadratic order and written as O(n?). This notation is
useful for comparing the relative amount of processing required by different
methods for large amounts of input data. It represents the “trend” or asymp-
totic limit for large problems. The comparison of computational complexity
for a particular small processing problem usually requires a more detailed
analysis than simply examining the “trend” for large problem sizes.

2.2 An Introduction to Transforms, Basis
Functions and Phase Space Representa-
tions

A transformation (or transform) is a mathematical process which changes
the representation of a signal. Transforms are used in signal processing to
extract information and separate signals from noise. They are described
by properties that characterize their actions. The mathematical theory of
transformations includes both continuous and discrete transforms. We will
only employ discrete transforms since our signals are discrete. Several im-
portant transform properties will be defined to provide a vocabulary for the
discussion of transformation techniques.

Transformations are called invertible if they are reversible. The process
(or transformation) that reverses the action of a particular transformation is
called the inverse of the transformation.

Energy-preserving transformations conserve signal energy. The formula
for computing the energy contained in a signal was defined in the previous
section by equation (2.1). An energy-preserving transformation may change
the representation of a signal dramatically, but the energy of the input signal
and the energy of the transformed output will always be equal. Non-energy-
preserving transformations either lose energy or produce extra energy in the
transformation process.

A special type of transformation is called a linear transformation. For a
linear transformation, the results of transforming two signals and then adding
the (transformed) signals together is exactly the same as adding the two
signals together first and then transforming the sum (of the two signals).
The results of signal processing methods that use linear transformations are
easier to analyze than nonlinear methods because a common type of noise
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(typically found in electronic environments) is additive and in this case the
action on the signal can be separated from the action on the noise since the
two actions do not depend on each other.

Transformations may be block transforms or stream processing transforms.
Block transform methods process the input data in “blocks” (or groups of
a fixed size.) The output is also a “block”, not necessarily the same size as
the input block. The choice of block size affects the ability to resolve signal
features larger than a block or smaller than a fraction of the block size.
Block methods have difficulties resolving a signal feature that is split across
two adjacent input blocks. We note that block transform algorithms have
been designed to process a continuous stream of input data. These methods
implicitly divide the input data into segments and the effects of blocking are
always present in the output.

Stream processing transforms generate one or more output streams from
an input stream. Such a method can be visualized as a “pipe”, taking in
data at one end and producing output at the other end. These methods can
process blocks of data, which are just “streams” with a beginning and end.

To illustrate these properties we return to the averaging operation dis-
cussed in the previous section. The “averaging” transformation is a discrete
transformation because it takes a discrete sequence of numbers and converts
it into a discrete value (which might have to be rounded to a given preci-
sion.) Averaging is not invertible as many different sequences of input values
could produce the same average value and there is no way of reversing the
operation to obtain the correct input sequence. The transformation is not
energy-preserving because the sum of the squares of the inputs does not equal
the square of the average value. The transform is a linear transformation be-
cause the sum of the averages of two sequences does equal the average of the
sum (element by element! ) of the input sequences. This transformation can
be implemented as either a block or stream process. Data could be processed
in fixed blocks, producing one average value for each input block or it could
be used to generate a “moving average”, producing a series of outputs that
represent the average value of a “window” that is moved across the input
data.

The behavior of a system can often be understood in terms of modes or
characteristic ways that a system operates or performs. A system may have
a few or a very large number of distinct behaviors that can occur individually
or in combinations. Consider the sound that a piano creates. It can produce
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single notes, combinations of notes or no notes at all. The notes can be
played loudly or softly as well as rapidly or slowly. They could be separated
in time or overlapping each other.

In this example the characteristic “modes” are the set of complicated
vibration patterns produced by piano strings when they are struck. There is
one “characteristic mode” per key, for a total of 88 “modes.”’ One “analysis”
of piano sound seeks to determine that keys were pressed at what time and
how hard they were pressed. We are going to define a “piano transform” to
perform the “signal processing” part of this analysis procedure. The input
to our “piano transform” is (a stream of) piano sounds and the output is
88 streams of numbers that represent how loud a “mode” (or key) is as a
function of time. Zero values mean that a key is not pressed (said another
way, the amplitude of the “mode” is zero.) Non-zero values represent how
loud a “mode” is during some interval. The loudness of a note is the amplitude
of the mode. This information could be displayed as 88 graphs, each stacked
up above the other, tracing out how hard each key was pressed over time.

We are going to perform the “piano transform” on a computer with the
following algorithm:

1. Create a mathematical description of the vibrating piano string for each
“mode” (key) and store it for future reference;

2. Read in a section’ of the signal and compare each stored reference
(from the step above) to this section of the signal. Compute a match
(or correlation) score that is proportional to how well the signal matches
the reference.

3. Output the match score for each “mode”;
4. Read in another section of signal and repeat the previous two steps.

This principle of comparing a known reference to a signal is conceptually
how a transform method works. The mathematical representations of the
modes (the references) are called basis functions. The matching scores or
correlations are called the transform coefficients (or coordinates) of a signal
with respect to the basis functions. Basis functions are selected to model the
modes or behavior(s) of the system being analyzed.

1We want to stress the concept that more than a single point must be considered.
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A collection of basis functions is called a basis. If the basis has enough
functions to represent all of the possible signals of a system, it is called a
complete basis. Furthermore, if each the basis functions represents infor-
mation that is independent and uncorrelated, the basis functions are called
orthogonal®. Orthogonality is important and desirable because orthogonal
basis functions have no redundancy in their transform representation.

Returning to the piano example, the basis functions (representations of
the vibrating strings) form a complete and orthogonal basis for piano sounds.
These basis functions have a scale® relationship between them. There is a
constant ratio® between the frequencies of adjacent modes (keys.) Notes
that are separated by an octave have a ratio of 2 : 1 of their frequencies.
The strings in a piano vary in length depending on the frequency of the note
they produce. Low notes require long strings and high notes are produced by
short strings. In fact, the lengths of the strings have the same ratios between
them as the frequencies.

We have discussed the length of the strings because we are going to make
the length of the “piano” basis functions vary the same way as the string
lengths. This will affect the way we compute the “piano transform.”

Imagine that we plotted all the “piano” basis functions at the same scale.
The functions for the low notes are much longer than the functions for the
high notes. This is because low note “modes” vibrate slower and have their
sound waves spread across more signal values than high note “modes.” To
make this a little more concrete, let us say that a low note basis function has
length 100 and a high note basis function has length 25 (These notes differ
by two octaves since 100 = 22 x 25.) If 200 samples of piano sound are input
to the piano transform for processing, only two sub-sections of the signal can
be compared against the length 100 low note functions while 8 sub-sections
of signal can be compared to the high note function of length 25. The long
functions (which represent phenomena that vary slowly) have a coarse time
resolution that is matched to the slow rate of variation. The short func-
tions have correspondingly finer time resolution matched to the faster rate
of vibration. This relationship between time resolution and how rapidly in-
formation changes is central to understanding the wavelet transform. Signal

2This definition of orthogonality is perhaps oversimplified, but will suffice for this
example.
3Do not confuse this with a musical scale, though the ideas are closely related.

4In this example, the ratio is /2 : 1 i.e., 12 notes span an octave.
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features that vary over small scales (short distances or short time intervals)
can be located precisely in time while features that vary over large scales can
only be located with a correspondingly coarser time resolution.

Compactly supported wavelets are a complete and orthogonal set of basis
functions for the set of all finite energy discrete signals. The wavelet trans-
form is invertible, energy-preserving and linear. The wavelet transform is a
stream processing method that analyzes both continuous streams of input
data and blocks of data. A (multiplier 2) wavelet basis consists of a scal-
tng function, a basic wavelet and a collection of smaller wavelets at reduced
scales. The smaller wavelets are created by “shrinking” the basic wavelet by
factors of 2 and shifting (or translating) them by scaled integer distances.
Thus the collections of smaller wavelets are 1/2 and 1/4 and 1/8 (and so
on) the size of the basic wavelet. Wavelet basis functions are all related by
multiples of the constant ratio (2 : 1). The basic wavelet is computed from
the scaling function. The selection of the scaling function determines all the
remaining basis functions. A remarkable fact is that there are an infinite
number of scaling functions, each of which defines a complete wavelet ba-
sis. This provides tremendous flexibility in selecting basis functions that are
appropriate for different systems.

The time resolution of each wavelet is proportional to its length or dura-
tion, smaller wavelets having finer time resolution. Conversely, as the length
of the wavelet increases, its resolution in scale (or frequency) gets smaller.
The trade-off between resolution in time and resolution in scale is discussed
in detail in the next two sections and will not be developed further in this
section.

In general, the computational complexity of wavelet methods is O(n).
The efficiency is the direct result of the simplicity of the wavelet transform
process. The process starts by separating the signal information at the small-
est scale from information at all the larger scales. The output of the first stage
is processed again by the same method and is repeated for each successive
scale. This recursive structure reduces the amount of data to be processed at
each successive level by a factor of two that reduces the computational cost
for each successive transform level. Information which varies rapidly over
just a few data points is separated from information that varies over many
points. The procedure is stopped at the largest scale of interest.

The outputs of thc wavelet transform are coefficients that represent the
similarity of the signal (as a function of time) to the wavelets at different
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scales. The output of a wavelet transform can be plotted on a grid that
has time on the x-axis (or t-axis) and scale on the y-axis. This grid is called
phase space and is used to graphically display the relationships between signal
information at different scales.

We have used the piano example to introduce the basic ideas required
to intuitively understand how transform methods work and what a wavelet
transform does. We will now discuss the Fourier transform and illustrate
how it is different from the wavelet transform.

The Fourier transform is invertible, energy-preserving and linear. The
Fourier basis functions are orthogonal and complete for the entire set of
finite energy discrete signals.

The Fourier transform separates signal information by frequency. The
Fourier transform is a block transform which requires an a priori choice
of block size. The discrete Fourier basis functions are uniformly sampled
constant frequency sine and cosine functions each of which persists as long
as the block size. The basis functions are uniformly spaced in frequency
from zero to one-half the block size. The frequencies are separated by a
constant interval rather than a constant ratio. Since all the basis functions
are as long as the input data block, they all have the same (lack of) time
resolution. The output of a Fourier transform contains information about
how the energy in the signal is distributed among the frequencies in the signal.
However information about how the energy is distributed in time, about when
it occurred, is not available in the Fourier transform representation. All that
can be inferred is that the frequency was present somewhere in the block
and for what fraction of the signal energy it accounted. The computational
complexity of the Fast Fourier Transform (for the commonly used Cooley-
Tukey algorithm) is O(n log, n).

In summary, the primary difference between the Fourier transform and
the wavelet transform is in how each separates signal information between
time and scale®.

The Fourier transform is a block transform that separates signal infor-
mation into uniformly spaced frequency components. The Fourier transform
has fine frequency resolution and a complete lack of time resolution. Larger

8Scale is related to wavelength which is defined as 1/frequency for periodic functions.
For periodic signals, there is a close correspondence between scale and wavelength and
therefore, frequency. The behavior of aperiodic signals can be analyzed in terms of large
and small scale variations that are not periodic and do not have a well defined wavelength.
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block sizes increase the range of frequencies that the Fourier method can
resolve, but further decreases the time information available from a signal.

Wavelet transforms separate signal information by scale and time. There
are an infinite number of wavelet basis from which an appropriate basis can be
selected. The transform information is defined by a constant scaling relation-
ship with the time resolution proportional to the scale. The computational
complexity of the wavelet transform is O(n) less than the Fourier transform
O(nlog,n).

The next two sections will refine a few of the mathematical concepts
related to wavelet basis functions and the mechanics of the wavelet transform
process. At the expense of a few details and mathematical precision, the
reader may skip to section 2.3.3 or even 2.4 without loss of continuity.

2.3 The Scaling Function, Wavelets, and the
Wavelet Transform

Wavelet methods separate the components of a signal by scale. Here scale
means a level of detail or resolution. Its significance can be expressed in terms
of a “correlation length”, or the length over which data at a given scale tends
to vary significantly. Scale and frequency are logically independent concepts.
In many circumstances there is a relationship between scale and frequency
that arises from the specific details of the signal processing problem. In these
cases, instead of referring to low frequency and high frequency, one refers to
large scale and small scale. The representation of a signal in terms of scale
- the wavelet representation - separates the signal into components that are
independent and uncorrelated (i.e., orthogonal), yet each has a well defined
scale-specific level of detail.

With a wavelet transform, both the time scale resolution, or “correla-
tion length”, and the frequency resolution vary logarithmically. Wavelet
techniques divide the spectrum of a signal into equal width bands on a log-
frequency scale; they provide an octave band decomposition of the signal.
This scale-oriented approach provides for finer frequency resolution in low
frequency, large scale bands, and lesser frequency resolution at high frequen-
cies and small scales. Correspondingly, the wavelet decomposition provides
for coarse temporal resolution at low frequencies (since changes happen slowly
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at low frequencies), and fine temporal resolution at high frequencies, where
rapid changes may occur.

By focusing on scale resolution rather than on frequency or time alone,
the wavelet technique considers the reciprocal relationship between time and
frequency (or any type of structure that is expressed across multiple data
points). To identify or locate the position of a particular shape, such as
an oscillation, in a set of data, one must look for relationships among the
data values; a structure or an oscillation exists only across a set of data,
and not in a single point value. A number has no frequency, no structure.
Conversely, properties that exist only across a set of data cannot be said
to have a particular location within that set. Wavelet signal representation
techniques take this trade-off into account by allowing small sets of data to
be combined and correlated to derive structural or shape information about
that subset, without requiring a complete transformation of the signal into a
particular type of structural information, the way a Fourier transform does.
One is allowed to exchange a small amount of temporal resolution for a small
amount of scale information, a pay-as-you-go system.

It is no accident that these properties are reflected in the characteristics of
many natural signals. Signals with time varying characteristics, like speech,
music, seismic signals and underwater acoustic signals are all best analyzed by
a system capable of resolving both frequency and time. Furthermore, many
signal-producing phenomena have octave band structure due to the presence
of harmonics within the signal. Transient events also respond well to multiple
scale analysis in that the identification of precisely located phenomena, such
as the sharp onset of a signal, requires the ability to resolve its location in
time at a very fine scale, while the characteristics of later, more persistent,
parts of the signal may require the ability to identify larger scale structures.

2.3.1 The Scaling Function

The scaling function is at the core of any wavelet based representation of a
signal. We will discuss only compactly supported wavelets in this report. The
scaling function has three essential properties. The first is that it is compactly
supported. This means that the scaling function is exactly zero outside a
bounded region of the real line. The scaling function is only locally non-zero.
The second essential property is that the scaling function is orthogonal to
integer translates of itself. The importance of this will become clear a little
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later. The third property is that the scaling function is intimately related to
smaller scaled versions of itself. This relationship is expressed concisely by
the scaling equation:

N-1
p(z) = kE akp(2z — k) (2:2)

=0
where ¢(z) is the scaling function. The function ¢(2z) is a smaller, scaled
down (by a factor of two), version of ¢(z). The scaling equation states that
¢(z) is equal to a weighted sum of these smaller shifted versions of itself.
The numbers a;, of which only finitely many (N, which is an even number
here) are non-zero, are called the scaling coefficients. N is the size of the
wavelet system. The support of ¢, the region on which it is non-zero, is
the interval [0, N — 1]. The coefficiesits a; must satisfy certain conditions in
order for the scaling function to exist and satisfy the scaling equation. There
turn out to be an infinite number of sets of scaling coefficients for every even
N > 2. 1t is the choice of the ax, from among this set, which determines the
detailed shape of ¢(z). A great variation exists in the possible functions ¢

as illustrated by the examples shown in figures 2.1 and 2.2.

Scaling functions may be selected from the class of Daubechies functions,
which have several important characteristics. They are relatively smooth
and have certain approximation properties (i.e., vanishing moments). These
systems will be referred to as D2, D3, D4 ... Dg, where g is the genus of
the system.

The scaling function is the basic unit from which a level of detail is
constructed. This is done by considering the set of functions that can be
represented as a linear combination of shifted versions of the scaling function.
That is, we define a collection of functions at scale level j, which we write
V;, to be the set of functions that are linear combinations of the functions
©(2°z — k), where k is an integer. The factor 2 multiplying z has the effect
of shrinking the support of ¢ to (N —1)/27, and the shift by & moves these
small functions around by a fixed fraction of their support, independent of
scale. Thus a function’s components at scale level j are expressed by the

equation: '
fi(z) = 3 cjup(2'z — k) (2.3)
keZ

where f; is the part of f resolvable at the level j.
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Figure 2.1: Four Examples of Scaling Functions (clockwise from upper left)
“Haar”, “Daubechies-2”, “Daubechies-4”,“Daubechies-3”.
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Figure 2.2: Four Assorted Scaling Functions.
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This idea can also be expressed by stating that V; is the space spanned
by the set '
{p(2z-k)|keZ.} (2.4)

This set of functions forms an orthonormal basis for V;. Functions in V; are
uniquely expressible as linear combinations of the basis functions, and the
basis functions all have unit “energy”. Thus the set of functions {p(27z —k)}
form an orthogonal set of “templates” for the scale level V;.

The effect of performing a transform with such a set of basis functions
is to identify, within the signal, those parts or components that are similar
to the basis functions at the given scale level. Similarly, a Fourier transform
has oscillatory functions as a basis, and identifies the relative contribution of
each frequency to the overall signal.

With shifted versions of the scaling function as a basis, the Wavelet trans-
form will identify components that are similar to a particular shifted copy
of the scaling function; that is, a representation of a function (in the scaling
function basis) can identify features locally in time, since the scaling function
is compactly supported, and locally in scale, because the scaling function has
structure.

There is another, equally good, set of orthogonal “templates” for this
scale level V;. This set of “templates” gives a different type of information
than the one presented above. In our previous basis, all the resolution within
the scale level j was in the temporal domain: each coordinate corresponded
to a position in time. The new basis will trade some of this temporal res-
olution for some additional structural information; it will give us two sets
of coefficients, one set that represents large scale structure, while the other
set represents small (“fine”) scale structure. The process extracts or filters
out the components of the scale level j that cannot be regarded as part of
the coarser scale level, ; — 1. These are taken to represent the information
at scale j that is small scale compared to that part of V; which is actually
large scale information embedded in the small scale space. This operation
captures the large scale features of a function f; in the scale level j — 1, and
retains the small scale features in a difference space.
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2.3.2 Wavelets

This idea of dividing the scale level V; into a coarser version of itself, V;_,,
and a difference space, which we will call W;_;, can be compactly expressed
as an orthogonal splitting of the space V; into two perpendicular spaces V;_;
and Wj_li

Vi=Vin®W;_,. (2.5)
The reason this can be done efficiently comes from the scaling equation.

Since ¢(z) can be expressed as a linear combination of translated versions of
¢(2z), the coarser scale level V;_, is contained within the finer scale level V;:

Viacy; (2.6)
Repetition of this argument shows that
V:,'..l C VJ C Vj+1 C Vj+2 e (2.7)

The difference space, W;_;, contains all that remains when the coarser scale
information is removed. However, since W;_, is contained in Vj}, it is also
expressible as a linear combination of translates of ¢(27z).

The actual set of functions that are used to span the space W;_; are the
orthonormal basis formed by the functions

N-1
$(2z) = Y (-1 an-k-19(2Hz — k) (2.8)
k=0
or in the case of j = 0,
N-1
Y(z)= (-1)*an—i-10(22 — k). (2.9)
k=0

Notice that the signs now alternate in the sum, and the order of the coef-
ficients a; has been reversed (k — N — k — 1). These changes make (z)
orthogonal to ¢(z). The full basis for W; is formed by taking shifted versions
of 1, i.e., Basis(W;) = {2/%(2’z — k) | k an integer }. The support of ¥(z)
is easily seen to be the same as the support of ¢(z), and this is true for the
shrunken versions as well, that is, the support of ¥(2/z —k) is the same as the
support of p(2’z — k). The normalization term 27/> maintains unit energy
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Figure 2.3: Four Examples of Wavelets (clockwise from upper left) “Haar”,

“Daubechies-2”, “Daubechies-4”,“Daubechies-3”.
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Figure 2.4: Four Assorted Wavelets corresponding to the Scaling Functions
in Figure 2.2.
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in the functions. Figures 2.3 and 2.4 are the wavelets that correspond to the
scaling functions presented in figures 2.1 and 2.2.

Thus the transformation from the first representation of V;, where f; was
expressed as a linear combination of shifted versions of p(2’z), to the new
representation, where f; is expressed as a sum of translates of p(2'~'z) and
translates of ¥(27~z), gives us new information about the shapes and struc-
tures, perhaps frequencies, present in f;. This is at the expense of some
temporal resolution, because the new basis functions are twice as long. The
new basis incorporates the inter-relationships among larger subsets of the
data, providing correlative information. As a result of the spectral refine-
ment, there has been a loss of temporal resolution.

The scaling function, being the basis for all the spaces Vj, forms the
connection between these spaces via the scaling equation. The basic wavelet,
1, represents the differences between the scale levels.

2.3.3 The Wavelet Transform

The exchange of temporal resolution in V; for scale resolution in the division
of V; into V;_, and W;_; forms the basic unit of the Wavelet transform.
Since the definition is independent of scale, it can be repeatedly applied in
the same way. Furthermore, the operations involved in the transformation
require only the expansion coefficients of the function f(z) in the basis at the
current scale, and not the actual values of the function. The computation is
very simple and efficient because of the close link between the functions ¢
and .

The basic operation involved in a Wavelet transform is the conversion of
temporal resolution into structural or spectral information. This basic single
step, essentially a filter, exchanges half the temporal resolution of a signal
for twice the frequency resolution; the product of the two remains the same®.
More importantly, this operation can be repeated to gain any desired level
of detail in the structural or spectral realm, while only imposing a recip-
rocal loss of resolution in the temporal domain. This is in sharp contrast
to Fourier transform techniques, where one either gets all the available fre-
quency information, or none of it, with no intermediate stages of knowledge

available.

SThis is a case of the Heisenberg Uncertainty Principle.
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The wavelet transform allows one to move gradually between the two ex-
tremes present in the Fourier transform, successively gaining shape or struc-
ture information. In a sense, the wavelet transform interpolates between the
frequency, or structure, domain and the temporal domain. This step by step
transformation can be understood in terms of trade-offs between relative time
resolution and relative frequency resolution, but its features are most simply
understood by viewing them in phase space.

Phase space is a two dimensional plane in which we place frequency (or
more generally, some distinguishing structural property) on the y-axis and
time on the z-axis. Any time or frequency based transform will be character-
ized by its division or partition of phase space into “resolution cells”. Each
resolution cell corresponds to a single basis function, and thus represents a
specific occurrence. The shape of the resolution cell reflects the characteris-
tics of the basis function, its width in time representing the support or extent
of the basis function, and the width in frequency representing its bandwidth.

If we consider the original signal, we know its values at each point in
time while we know nothing about its frequency characteristics. The reso-
lution cells are vertical strips, each representing the fine temporal resolution
and the complete lack of frequency information. When the signal is Fourier
transformed, exactly the opposite happens. Now the frequency content of the
signal is known perfectly, but all knowledge of location in time has been lost.
Now the resolution cells are horizontal strips of width equal to 1/2N, each
reflecting the inagnitude of a single frequency, while carrying no information
about when that frequency was present.

In general, the area of a resolution cell cannot be decreased, but its shape
may change. If we assume that these cells remain rectangular, then a cell
may be made narrow in one direction, but only if it is simultaneously widened
in the other direction. This is exactly what happens when one applies the
basic wavelet scale separation operation. One exchanges a factor of two
in the width of the resolution cells for a factor of one half in their height.
This operation is displayed in figure 2.5. The wavelet transform provides
a “zoom-lens” approach to signal representation. Any degree of structural
information can be acquired, but only at the expense of enlarging the “field
of view” temporally. Conversely, one may zoom in on a particular temporal
scale, but only at the expense of global structural information.

Since the transform is defined in terms of operations on the coefficients
of the representation, and not the actual values of the scaling or wavelet
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Small Scale or High-Pass

Figure 2.5: Conceptual Scale Separation Operation of Wavelet Transform.

functions, the output from a single stage of the transform is exactly what
the next stage requires for input. This easily pipelined, recursive structure
is what makes the wavelet transform rapidly computable. While many such
structures are made possible by the wavelet transform, one in particular,
the one-sided or Mallat transform, has proven to be exceptionally useful in
analyzing signals. Figure 2.6 is a conceptual diagram of a 3 level, one-sided
wavelet transform. The large scale (¢) output coefficients from the first stage
are the input for the second stage, etc. The number of data points at each
level is reduced by a factor of two by the conversion of temporal information
into spectral information. Figure 2.7 illustrates a four level, one-sided wavelet
transform. We have included plots of the Daubechies-5 basis functions for
this transformation. Figure 2.8 is a plot of the spectral characteristics of
the wavelet transform shown in figure 2.7. Notice the broad high frequency
response characteristics of the smallest scale wavelets which corresponds to
their fine temporal resolution. The large scale wavelets have just the opposite
characteristics, sharp spectral response and coarse temporal resolution.

The method outlined for the one-sided transform method can be general-
ized to include any “binary tree” structure desired. The basic transformation
unit is repeatedly applied, taking the outputs of one level as the inputs for
the next level.
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Figure 2.6: Conceptual 3 Level, One-sided Wavelet Transform.

2.4 Wavelet Signal Processing Methods

Wavelet signal processing methods use the properties of wavelet transforms
to extract signal information about events, features, modes and other char-
acteristic behaviors. There is no single wavelet transform of a signal, but a
family of them, all equivalent to the original signal in information content.

The choice of wavelet technique will depend on the specific signal pro-
cessing requirements. Transient detection and harmonic analysis often call
for octave band decomposition that extracts the harmonic signatures of the
signals, preserves fine temporal resolution and is computationally very effi-
cient. The choice of wavelet basis functions can have a significant effect on
the ability to separate signals of a particular type from noise or other inter-
ference. The technique is flexible in that additional spectral resolution can
be obtained if required.

A slight modification of this method can be applied to remove noise from
signals. Signal features that exist on a small number of scales can be isolated
by performing a wavelet transform and discarding coeflicients at all the scales
except the “target” scales and then inverting the transform to reconstruct
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Figure 2.7: Four Level, One-sided Wavelet Transform with Characteristic
Functions for the case of Daubechies-5.
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Figure 2.8: Spectral Characteristics for the Four Level, One-sided Wavelet
Transform in figure 2.7. Note the narrow low-frequency response of the long
scaling function and the broad frequency response of the shortest wavelet.
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the signal with the noise removed. The adaptive selection of coefficients is
possible based on fixed or floating thresholds.

The wavelet transform is lossless at each level and forms a hierarchy of
successively finer spectral refinements. The signal energy at any node in
a wavelet filter bank can be further resolved in frequency, but will never
migrate into an adjacent sub-band. This allows the signal energy in each
node to be evaluated in real time and guide the development of the filter
bank structure. Low energy nodes will only generate sub-nodes with even
less energy. The ability to “prune” the processing tree significantly reduces
the computational cost of the transform method.

The structure and computational complexity of several wavelet signal
processing methods are discussed in the next chapter.

2.5 The Computational Complexity of Wave-
let Transforms

This section is concerned with the computational efficiency of wavelet-based
analysis techniques. The computational complexity of several types of wave-
let transforms is developed and comparisons are made to the computational
complexity of the FFT. The main results are:

e Evaluation of wavelets and scaling functions has O(n) computational
complexity.

e Wavelet calculations are parallelizable and can be pipelined. Wavelet
transforms can be calculated in O(n) operations and in O(logn) time
if concurrent computation is employed.

o Wavelet algorithms depend parametrically on the scaling coefficients,
so algorithms can be embodied in programs that are structurally inde-
pendent of the system of scaling coefficients.

e Wavelet stream processing techniques can run in real time at full res-
olution. The calculation density, i.e., the number of operations per
datum, does not grow logarithmically, as it does with an FFT, or re-
quire artificial framing, segmenting or windowing to render real-time
operation feasible.
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o Certain classes of wavelet coefficient systems can be exactly computed
in a digital computer without roundoff error.

We will discuss both block and stream processing applications. Compar-
isons with the FFT are natural here, since the FFT is a commonly used, well
understood, and highly optimized algorithm. It is a convenient benchmark
for comparison. We ignore pre- and post-processing requirements assuming
that the output from the wavelet transform is the desired result.

For the case of block processing, the input block size is the factor that
determines the computational cost. The first case is a wavelet transform that
resolves only a portion R = 1/2” of the total bandwidth, and resolves it as
finely as possible using recursive wavelet techniques. The simplest example
of such a transform is the familiar Mallat Transform, which calculates the
decomposition of a signal on the basis of scale, i.e., it “homes in” on low
frequencies. This fundamental structure requires

OPS(Mallat) = a(K)N(1 — 1/27) # of operations (2.10)

where a(K) = (K + 1) multiplies and (K) additions per output point. The
number of input data is N, and J is the finest level calculated; that is, the
basic wavelet decomposition operation is applied J times. The wavelet trans-
form can be implemented as a finite impulse response (FIR) filter with the
number of “taps” equal to the number of nonzero wavelet coefficients. The
number of nonzero coefficients is K, which we have also called the length of
the wavelet coefficient matrix. Note that whatever the depth of the decom-
position, the operation count never exceeds a(K)N. This operation count
also applies to any wavelet transform that “zooms in” on a single location
in phase space, allowing other side-bands to remain unchanged. These are
not partial wavelet transforms. each is a complete representation in a wave-
let basis. Each is, however, a partial frequency decomposition, but that is a
powerful advantage because only the minimum amount of computation
is performed.

In applications where one wishes to resolve frequencies (or some other
structure) to some pre-specified resolution (say 1/27), and one is interested
in a small number of sub-bands, wavelets are very computationally efficient.
This case includes the Mallat Transform, and any other wavelet processing
scheme that generates only a small subset of the finest resolution cells.
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For the case of stream processing, the comparison with the FFT is no
longer appropriate. An FFT simply cannot provide the pipelined operation
of a wavelet transform. Even a windowed or Short Time Fourier Transform
can only resolve successive segments or frames of the data, and within each
frame, it must perform a full FFT with the corresponding lack of flexibility
in the resolution. On the other hand, for any fixed filter structure (fixed tree)
wavelet transform technique that is designed to generate a specific decompo-
sition in frequency which has a finest resolution level J, the entire transform
can be implemented as a pipeline, and always has O(n) complexity. The
coeflicient multiplying N in the number of operations required is determined
by how many subbands are expanded and the particular level of detail. The
complexity is bounded b .ve by O(NJ), and therefore for a stream process-
ing application, represents a constant processing delay for the calculation of
a full wavelet transtorm.




Chapter 3

Wavelet Transient Signal
Processing

This chapter begins with a description of the transient signals used for this
study. This is followed by a description of the signal processing algorithms
used for signal detection, feature extraction and classification. The final
section summarizes the results of the signal processing experiments that were
conducted during the course of this project.

3.1 Transient Signal Data

The transient signal data used in this consisted of twenty-four records of
digitally sampled signals. These records contained the transient of interest
as well as interference. The interference was a mixture of white Gaussian
noise, quantization noise, power supply/instrumentation noise and bursts of
nearly constant frequency sinusoids. The sampling frequency was well above
the Nyquist rate thus preserving fine signal structure.

Figure 3.1 is a typical signal record. It contains strong interference com-
ponents in the first half of the record. The transient signal of interest is
located slightly after (to the right of) the center. The final third of the
record contains only noise. Figures 3.2 through 3.25 are plots of the signals
considered in this study.

The signals are numbered 1 through 24. They are also identified by a
source file identifier.

35
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Figure 3.1: Typical signal and environment.

The signals were grouped into seven “truth” groups based on apriori
knowledge of the source of each signal. Figures 3.26 through 3.32 are stacked
plots of the transient signals (as segmented by the detection process) in each
group. All the signal groups seem reasonable except that signal number 10
in group 2 seems to be mis-assigned.
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Figure 3.2: Signal number 1, (mmmicsa).
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Figure 3.3: Signal number 2, (mmm2csa).
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Figure 3.4: Signal number 3, (mmmlmmmb).
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Figure 3.5: Signal number 4, (mmmlmmmd).
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Figure 3.7: Signal number 6, (mmmlmmmg).
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Figure 3.8: Signal number 7, (mmm2mmma).
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Figure 3.10: Signal number 9, (mmm3mmmb).
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Figure 3.11: Signal number 10, (mmm3mmmd).
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Figure 3.12: Signal number 11, (mmmlmmmc).
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Figure 3.13: Signal number 12, (mmmIlmmme).
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Figure 3.16: Signal number 15, (mmm3mmma).
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Figure 3.17: Signal number 16, (mmm3mmmc).
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Figure 3.18: Signal number 17, (mmmlmmmh).
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Figure 3.19: Signal number 18, (mmm2mmme).
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Figure 3.21: Signal number 20, (bslbsa).
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Figure 3.23: Signal number 22, (sawlsawa).
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Figure 3.24: Signal number 23, (t6aaa).
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Figure 3.26: Group 1, (Signals 1-2).

Figure 3.27: Group 2, (Signals 3-10).
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Figure 3.29: Group 4, (Signals 17-19).
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Figure 3.30: Group 5, (Signals 20-21).
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Figure 3.31: Group 6, (Signal 22).
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Figure 3.32: Group 7, (Signals 22-23).

3.2 Wavelet Basis Functions and Transform
Topologies

This study considered rank 2 Mallat type wavelet transforms as well as rank
3 and 4 uniform type wavelet transforms. The signals considered in this
project had relatively wide bandwidth which suggested an octave (Mallat)
type transform. The Mallat type transformations proved to be superior early
in the study and work on higher rank transforms was terminated after a few
weeks.

The source signals were relatively smooth functions embedded in near
Gaussian noise. We selected the Daubechies wavelets due to their opti-
mal smoothness/vanishing moment characteristics. Wavelets from genus 2
through genus 10 were tested on the project data. The shorter systems (gen-
era 2 and 3), seemed to be too susceptible to noise in the data. Genus 4
wavelets had good time resolution without sensitivity to noise. Genera 5 and
greater tended to smear details due to the length of the filters.

Daubechies genus 4 wavelets were selected for this study. This wavelet
system was used in a 6-level Mallat type transform topology.
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3.3 Signal Processing Algorithms

This section presents a description of the prototype algorithms and the results
of signal processing experiments conducted by Aware on the transient data
to investigate the capabilities of wavelet based feature extraction methods.
Of particular interest was the demonstration of the feasibility of performing
feature extraction with a wavelet based approach and the robustness of the
method with respect to natural signal variations and noise.

3.3.1 Detection Algorithm

All the transients in this study have strong cross-band time-frequency fea-
tures that were exploited to detect the signals. In addition, most of the
signals deviate from zero for a relatively long period of time. This character-
istic was used early in the study to facilitate detection, but was abandoned
later in the study when the full set of signals were considered. There were
two signal detection algorithms used in the course of this study:

1. Zero-crossing method with local energy detector;

2. Cross-band wavelet method with peak-to-rms detector.

The detected transient was segmented into a 128 sample sub-record by
including the ten samples prior to the leading edge of the detected transient
and enough samples after that point to total 128 points.

3.3.2 Feature Extraction and Classification Algorithm

The feature extraction algorithm consisted of a continuous over-sampled
wavelet transform based on the Daubechies length 8 (genus 4) wavelet. Six
levels of transform were applied, resulting in an octave band analysis of the
input data consisting of seven distinct bands (one low pass and six high
pass octaves). This analysis bank is depicted in Figure 3.33, where, for the
purpose of comparison two signals each from the first two groups were fed
through the filtering structure.
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Shift Invariance and oversampling

The goal of the classifier portion of the contract was to design an algorithm
which was capable of distinguishing among the seven groups of example . ig-
nals provided for the study. Examination of the signals and the results of
the previous experiment suggested several important simplifying assumptions
and discriminating features of this particular class of signals:

1. The transients as extracted by the detection algorithm are highly non-
stationary.

2. Reliably grouping known classes requires an insensitivity to the time
alignment of the transient within the selected time window.

3. Differences between classes tend to be small in terms of spectral or
auto-correlative measures.

In order to both accomodate and exploit these characteristics the clas-
sification algorithm was designed to incorporate a distance measure which
would be: shift invariant (and therefore unprejudiced to the inital alignment
of the transients), finely grained in the time dimension (over-sampled), and
based on coherent differences between instances of the transients.

Expanding on ideas originated by Mallat [4] on the use of octave band
filtering in singularity classification, we chose a reduced representation of the
input signal consisting of local extrema within each subband. Thus each
subband output in the filter tree is replaced by an impulsive signal which is
only nonzero at the locations where the subband had an extreme value and
is equal to the original subband at those locations. In this representation
it is easy to see the similarities between the reduced representation for each
pair of signals and the differences between them. The initial representation
for the signal is therefore a list of extrema for each subband along with the
time location for each peak:

Transient Feature Vector =
{F; = (B(F);,X(F);,V(F)) |1 £1 < number of peaks}
where
B(F); = Band number for peak #:.
Temporal location for peak #i.
V(F); = The value of peak #:.

>
3
I
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Figure 3.34 illustrates this reduced representation for a subset of example
signals.

In order to further reduce to dimensionality of the signal representation,
these peaks were pruned to only the six largest of the set. Thus the final
representation of the signal prior to the computation of a pairwise distance
function is a list of six peak values, their band numbers and their locations
in time.

The first step in computing a pairwise distance function for these lists
of peaks is to perform an alignment of the lists. By this we mean a revised
list of peaks for each transient such that the number of peaks within each
band is the same in both lists (each is both the same) and time ordering is
preserved within each band. Such an alignment provides an initial indication
of the similarity of two transients (whether the distibution of peaks among
the bands are similar or not) and arranges the data conveniently for later
analysis stages. Once the alignment is accomplished, peaks in one list are
each naturally associated with the peak in the corresponding location in the
other list.

The first method used to perform this alignment was based on excision.
Peaks in each band were removed until the number of peaks within each band
was the same for both lists. In each band, an interval of adjacent (sequential)
peaks was chosen from the list with the greater number of peaks, and these
were associated pairwise with the peaks in the list with fewer peaks. The
remaining peaks in the list were removed from the calculation. The interval
was chosen by minimizing the Euclidean distance between a peaks forming
a given interval and the peaks in the other list. The temporal location of
peaks was not used except to provide ordering of the peaks within a band.
The distance assigned to the pair of lists is then the sum over the Euclidean
distances in each band. Thus

d1(Fy, F;) = ( 3 (Vii — Vo 5)8)Y? (3.1)
(i.j)ematched peaks

This scheme is in some sense a worst case distance function. It uses a
minimal amount of information (a maximum of 6 values, the peak values
themselves, are used to identify a signal), and provides for no penalty for
the peaks which do not match in the chosen alignment; these were simply
removed from the calulation.
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The results of this algorithm in separating the various transients into
their respective groups are shown in Figure 3.3.2. It is easily seen that even
this simple approach succeeds in placing related transients at small distances
from one another (within a group, all pairs should be enclosed by a single
contour), and is also effective at separating the various groups from one
another. However, the decision levels that arise from this algorithm are not
very well separated, i.e., the distances between groups are of the same order
of magnitude as those within groups.

The second method attempted to improve on this situation by incorporat-
ing all of the data from the pruned peak lists. This method uses the temporal
location information to improve the match and computes a distance function
which weights the contribution of a given peak to peak distance by the dis-
tance between the temporal locations of the peaks. For this purpose, the
mean of the temporal data is removed, thereby making these distances into
relative delays between the various peaks.

The other improvement over method 1 is to insert peaks in a list with
fewer peaks in a given band, rather than removing them from the list with the
greater number. This has the effect of adding a penalty to the distance func-
tion whenever a peak of significant magnitude in one list cannot be matched
with a corresponding peak in the other list.

The alignment technique for this method is essentially the same as for the
first method, except that peaks of zero magnitude are inserted when there is
a mismatch, as opposed to the excision exercised by method 1. The distance
function is then

d2(F, F2) = ( ) (1X2,i = Xa,4(Va = V2,) )% (3.2)
(i,j)ematched peaks

The results of the second algorithm in separating the various transients
into their respective groups are shown in Figure 3.3.2. This approach is very
successful in placing related transients at small distances from one another
(within a group, all pairs should be enclosed by a single contour), and is
also effective at separating the various groups from one another. The perfor-
mance in this situation is perfect if one considers that signal 10 seems to be
misgrouped.
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Figure 3.33: Over sampled wavelet transform of the first four example tran-

sients
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Figure 3.34: Local extrema for the first four example transients
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Figure 3.36: Local extrema for transient 2
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Figure 3.37: Local extrema for transient 3
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Figure 3.38: Local extrema for transient 4
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Figure 3.39: Local extrema for transient 5
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Figure 3.40: Local extrema for transient 6
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Figure 3.42: Local extrema for transient 8
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Figure 3.43: Local extrema for transient 9
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Figure 3.46: Local extrema for transient 12
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Figure 3.47: Local extrema for transient 13
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Figure 3.48: Local extrema for transient 14
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Figure 3.49: Local extrema for transient 15
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Figure 3.50: Local extrema for transient 16




Aware, Inc. 66

;' |
3 V o J
A .
I |'
TT |
d. 1
|1
i | ]
| J
0 200 0 600 %0 1000 1200
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Figure 3.52: Local extrema for transient 18
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Chapter 4

Conclusion and
Recommendations

This project demonstrated the feasibility and utility of employing wavelet
transform based methods in the transient signal detection and feature extrac-
tion problem. Wavelet based transient signal analysis methods were shown
to Lave the following desirable properties:

e Robust transient detection in the presence of strong sinusoidal noise
components;

e Compact signal representation that allows a simple (low dimensional)
classifier design to achieve near perfect signal separation; and

e Low computational complexity.

The logical ‘next steps’ required to develop this technology are:

1. Continue development on a larger class of transient signals. A ques-
tion of particular importance is how the dimensionality of the classifier
grows as a function of the size of the problem under consideration.

2. Development of adaptive versions of these signal processing algorithms
would enable the fielding of signal analysis systems that could react to
the observed environment.

3. Development of a high speed implementation of this technology would
allow rapid progress in the research arena as well as enabling the tech-
nology to be demonstrated on a meaningful problem ‘in the field.’
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4. Development of hybrid classification systems that mate wavelet feature
extraction with neural networks or other state-of-the-art classifier de-
signs. There are many open questions regarding the requirements for
the feature extraction and classifier portions of these high-performance
hybrids.




Appendix A
List of Symbols

D := Ring of dyadic rational numbers

= {z:z2=m/2", mneZ,n>0}
R := Field of real numbers.
Z := Ring of rational integers.
g := Rank for wavelet system. p € Z and u > 2.
[a] := Wavelet Coeflicient Matrix (“WCM™).

0 0 ... g0
= ( ‘10__l ay - aN:ll )
ag” a? ... ayN_;

where N is an integer multiple of u (N = gu where g is called the genus).
If 4 = 2 then we write:

[a) := Wavelet Coefficient Matrix (“WCM”).
= G a; - aNn-y
' b b ... by
N := Number of columns in a WCM. N is an integer multiple of p i.e. gu.

If u=2then N is eve .
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Appendix B

Wavelet Transform Theory

B.1 Wavelets and Wavelet Transforms

Most signals in science and engineering are modeled as mathematical func-
tions for purposes of analysis. In order to separate or examine certain impor-
tant features or characteristics of the signal, the function is often expanded
in terms of basis functions that span the space or a subspace that the sig-
nals of interest reside in. The most common example of this is the Fourier
transform where a signal that originates in the time domain is reformulated
in the frequency domain by expanding the function in terms of trigonometric
or complex exponential basis functions. This basis is most appropriate when
the signals have periodic components or are produced by systems that are
modeled by constant coefficient differential or difference equations.
Consider a periodic, possibly complex-valued, signal g(t) that is square
integrable over the range {0 < ¢ < 1} and with period one so that

9(t) = 9(t +1). (B.1)

This function can be expanded in a Fourier series of the form

g(t) = f: b,, ei21mt (B?)

n=-—00

with the coefficients given by
1 :
by = / g(t) e~ gy (B.3)
0
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which is an inner product of g(f) with the basis functions. Similarly, one
defines the wavelet transform with respect to a basis of wavelet functions.

The wavelet basis is generated by a p x N matrix [a] , where 4 and N
are positive integers and N is a multiple of g. The multiplier g is called the
genus of the system and N = gu. The matrix

ad, ..., a¥_;
[e:==] : & (B.4)
ad™' ... aih

is a wavelet coefficient matriz (“WCM?”) if it satisfies the scaling conditions

N-1
Y @aiy . = i 6oy (B.5)

=0

Za}; = pbo; (B.6)
k

where §; ; equals 1 if ¢ = j and 0 otherwise. The overbar denotes complex
conjugation and [ is an integer. The sums over k are finite sums since only
finitely many of the numbers a} are different from zero.

The positive integer p is called the multiplier of the wavelet system and
N is called its length;

This matrix of numbers provides coef’icients for the vector of recursions

N-1
#lal(z) = Y aie’la)(2z — k) (B.7)

k=0

which implicitly define the wavelet scaling function ¢°[a] and explicitly define
the basic wavelet functions ¢'[a)(z), 1 < i < u. Observe that only ¢°[q]
appears on the right hand side. The functions ¢*[a)(z) are defined for all real
numbers z € R.

The fundamental fact about systems of compactly supported wavelets is
that the collection of functions

Basis[a] := {yjlch‘[a](pjx -k):
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0<i<p, jkeZ}

form a basis for L? spaces, in particular for L?(R).

We now focus on the case of y = 2 and will use the following simplified
notation for the scaling function ¢(t) = ¢°[a](t) and the wavelet function
¥(t) = ¢'[a](t) where t € R. It can be shown that if the coefficients of this
equation satisfy the wavelet conditions, stated above, the solution o(t) will
be orthogonal to integer translates of itself and can be normalized such that

<w(t)hplt-k)>2 [o(t)plt - k) dt = b, (B.8)
This means the set of basis functions

wi(t) = o(t = 1) (B.9)

spans a subspace V, in L? and the coefficients of an expansion within this
subspace can be calculated as simple inner products. The feature of scaling
functions that makes them attractive for signal processing is their ability to
model signal properties that are related to the independent variable t. One
can increase the size of the subspace spanned by the scaling functions by
using @;x(t) := 29/2p(2’t — k) which spans a subspace V;. One can show
that VoCc WV, C Vo, C---.

The features of a signal can often be better described by defining a slightly
different set of orthogonal basis functions that span the differences between
the spaces spanned by the various scales of the scaling function. These new
functions are the wavelets. The basic wavelet is defined in terms of the scaling
function by

Y(t) =D (- an_k-1 p(2t — k) . (B.10)

k

It is the prototype of a class of orthonormal basis functions of the form
ix(t) = 2% (2t — k) (B.11)

where 27 is the scaling of t. 277k is the translation in ¢, and 2/? maintains
the unity norm of the wavelet. We shall say that j is the base-2 logarithm
of the scale. If W is the subspace of L? = L*(R) spanned by the integer
translates of the wavelet 27/24(27t), additional disjoint subspaces are spanned
by integer translates of the wavelets for each different scale index j, that is,
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by the functions t;x(t). The relationship of the various subspaces can be
seen from the following expressions:

VQCV1CV2C"'CL2=L2(R), (B.12)
Vo ®Wo =V, (B.13)
ViaeW,_, =V, (B.14)
LP=VidWed W D--- (B.15)

and indeed, if we allow j to run over all integers, then
LP=.. W L0W_dWedW,...W,.... (B.16)

This states that the set of basis functions formed from (t) and v; k() span
all of L? and, therefore, any function in L? can be written

00

=3 ae®)+3 3 dikvialt) (R.17)

I=-00 Jj=0k=<oc0

with the coefficients expressed by

o= / a(t) u(t) dt (B.18)

and

dix = [ 9t) bia(t) dt. (B.19)

The basis functions ¢;(t) and t;x(t) are numerical valued functions of nu-
merical variables; they have no physical dimension. In the expansion formula
(B.17) the argument 2’t — k of 4 is a pure number so, writing

. , k

the quantity 2’ has the dimension ¢!, i.e. frequency, and k/2’ has the
dimension time.

These wavelet coefficients completely and uniquely describe the original
signal and can be used to represent it in a way similar to Fourier coefficients.
Because of the orthonormality of the basis functions, there is a version of
Parseval’s theorem that relates the energy of the signal g(t) to the energy in
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each of the wavelet expansion components and their wavelet coefficients by

the formula -
Nl =Y lal?+ 30 D Idixl®. (B.20)

1 i20k=—o0

This is one reason why the orthonormality is so important. Daubechies [2]
showed that the translates of the scaling function and the translated dilations
of the wavelets are orthonormal, and all of the these functions have compact
support (i.e. are non-zero only over a finite region) if there are only a finite
number of non-zero coeflicients ax in the recursive scaling equation (B.7).
This provides the time localization that is particularly desirable for analyzing
both the time and the frequency behavior of transient signals.

Note that there is an infinite set of scaling functions and wavelets that
can be obtained by choosing different coefficients a; in (B.7).

B.2 Energy and Parseval’s Theorem

Orthonormal basis systems allow direct calculation and interpretation of the
energy in a signal partitioned in both the time and the expansion domains.
Parseval’s theorem for the Fourier series (B.2) states

1 oo
[ laorde= 3 P (B.21)

Y n==—0o0
The “power” in a signal is proportional to the square of the signal (e.g.
voltage, current, force, or velocity) and, therefore, the energy is given by
the integral of the square of the signal magnitude. Parseval’s theorein states
how the total energy is partitioned in the frequency domain in terms of the
partition provided by the the orthonormal basis functions. For the general
wavelet expansion of (B.17), Parseval’s theorem is

/ol pOF dt= 3 laP+ 3 3 Il (B.22)

|=-~00 j=0k=-0c0
with the energy in the expansion domain partitioned in time by ! and k and
in scale by j. For the case of periodic functions, the relationship reduces to

oo 2

[ 190 di =l + 3 ldsn)P (B.23)

3=0k=1
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One can show that |¢)(f)] — 0 as f — 0 and also as f — oo. Therefore,
there will be a band of frequencies where most of the energy in 9(f) is
concentrated. Likewise, for many signals, the energy will be concentrated
in a region of the (j, k) plane. Because of this concentration, the energy of
the signal g(t) at frequency n and at scale j and time k is approximately

measured by
sfn
i(3)

If most of the energy in 1/3( f) occurs around frequency fo, then fo = n/2’
relates the dominant Fourier frequency fo to the dominant wavelet scale j.
Scale and frequency are independent primitive concepts, but the selection
of a wavelet basis establishes a connection between them, and the results of
this chapter allow one to move between the two descriptions, using the one
most appropriate for a particular problem. The simple partitioning of the
energy content of a signal among frequencies has Leen generalized to include
the parameters of time and scale. In addition, we have at our disposal the
choice of wavelet systems, which is controlled by the choice of a; in (B.7),
and determines the detailed nature of the relationship between frequency and
scale.

_ 2
9~ |d; 12 (B.24)
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