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I. Introduction

Increasingly, robotic vehicles are being designed for real applications in unstructured

environments. In such applications, they may be required to cooperate or share workspace

with humans or other robots, or interact with equipment that is potentially hazardous.

Some preliminary work has been directed at defining "correct behavior" metrics for

intelligent robotic vehicles [1]. However, existing design methodologies do not allow rhc

behavior of even moderately complex robotic vehicles operating in moderately com jex

environments to be "proven" correct. Furthermore, we know of no general testing

methodology that will ensure, with high confidence, that a complex robotic vehicle will

always behave in a manner satisfactory to its human superiors.

We are interested in developing intelligent mobile robots that we can be confident will

behave "rationally" with respect to some standards of correct behavior. The definition of



"rational" behavior is application-dependent. For example, in a military setting, a rational

robot might base its overall behavior on the following types of guidelines:

Subordination: Carry out a specific "direct order" from a superior exactly as requested,

to best of your ability.

Conflict Resolution: If direct orders from several superiors conflict, follow the orders

of the highest ranking superior.

Continuity and Repeatability: When given less specific "general directives" by

superiors, choose similar specific behaviors for "essentially similar" situations, and

identical behaviors for "essentially identical" situations.

Domain-Specific Standards: A robotic vehicle might follow guidelines dealing with

motion. For example:

Economy of Motion: Minimize changes in speed and direction, and make such changes

smoothly. (A person standing next to a robotic vehicle would like to be confident that

the vehicle will not suddenly jump sideways, for example.)

A central issue in building confidence in the rational behavior of a robotic vehicle is the

problem of abstraction as a means for dealing with complexity. While any decomposition

of a complex software system by means of an abstraction hierarchy is to some degree

arbitrary, some decomposition strategie.z may be more effective at building confidence than

others.



Many decomposition strategies have been proposed [2]. One major distinction between

these strategies relates to the way in which primitive behaviors are invoked. At one

extreme, the biologically motivated "behaviorist" school of thought tends to favor

subsumption architectures in which each behavior carries with it its own (implicit) world

model and is invoked directly by sensory data (or by "virtual sensors" [31). One difficulty

with this approach is that when two or more behaviors are active, competition for vehicle

resources may result. In the pure version of subsumption, competing behaviors are always

mediated so that the "most urgent" needs of the vehicle are met and less important

behaviors are subsumed [4]. In other less extreme behaviorist approaches, competition for

resources is resolved by some form of voting or command fusion [3].

While subsumption architectures show promise, confidence in the "rationality" of a

subsumption-based robot vehicle depends on understanding the implicit mapping of low-

level "data-driven" behaviors to the fulfillment of high-level goals. This is an area that

requires further research.

In the research described in this paper, we have chosen a top level control strategy based on

avoidance of behavioral conflicts (rather than their resolution) by making use of the

inherent ordering of rules imposed by the backward chaining (goal driven) control structure

of Prolog [5,6]. This approach to the sequencing of rule evaluation is at the opposite

extreme from the forward chaining (data driven) behavior of subsumption architectures in

the respect that invocation of behaviors is accomplished by a rigid operational doctrine

designed specifically to prevent competition for vehicle resources by concurrently executing

behaviors. It is thus optimized for assimilation and centralized control rather than for

immediacy and decentralized control [3].
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It is for this reason that we have chosen the term Rational Behavioral Model (RBM) to

characterized our approach. As will be seen in the examples to follow, the rationality of

RBM systems lies in the development of appropriate doctrines based on human reasoning

about effective robot resource allocation and behavior.

II. Rational Behavioral Model

The hierarchical RBM architecture for mobile robots contains three levels: the strategic

level, the tactical level, and the execution level.

The strategic level is the top level in the hierarchy. The strategic level maintains the

vehicle's operational doctrine. This doctrine describes, in high-level, human-

understandable terms, the allowable, "rational" behavior of the vehicle.

The execution level is the bottom level in the hierarchy. The execution level is responsible

for interaction with the vehicle's sensors and actuators. This may include execution of

servo control loops and limited sensor data integration, for example.

The tactical level is the intermediate level in the hierarchy. The tactical level has several

duties. It assimilates data from execution-level components into a high-level "vehicle state"

description suitable for use by the strategic level. It takes general "directives" (behavior

commands) from the strategic level and elaborates them into specific commands for the

execution level.

We have been guided in our choice of computer languages for each abstraction level by

current trends in software engineering [7,8]. From our experiments, we have concluded
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that a logic programming paradigm is effective for the strategic level, an object-oriented

paradigm is well suited to the tactical level, and that the execution level seems best served

by an imperative programming style [9]. This is not surprising. The strategic level is

concerned with "rules" of good behavior, and logic programming allows these rules to be

stated clearly and concisely, in human- readable form. The tactical level is concerned

primarily with maintaining and operating upon the "vehicle's state", including coordinating

the actions of the various components that make up the vehicle. Therefore, the object-

oriented paradigm's ability to represent interacting objects is very useful. Finally, the

execution level is concerned mainly with following the commands (imperatives) of the

higher levels.

Our design of the three-level RBM architecture has been influenced by other models. In

particular, Saridis [10] proposes a three-level organization of software for "intelligent"

control systems consisting of a top organizational level based on symbolic information

processing, a bottom execution level concerned with control of individual actuators by

means of numerical computation, and an intermediate coordination level to deal with the

symbolic/numeric interface and translation problem. He then points out that finite state

machines provide a useful formalism for representing and implementing the coordination

level. Sirmiar abstraction levels have been proposed by others [11,12,13].

Because of obvious parallels between the operational characteristics of mobile robots and

the "behavior" of animals, this term has acquired a special significance with regard to robot

control systems [4,14]. In this paper, following [14], we will recognize both primitive

behaviors and complex behaviors. Briefly, in our logic programming realization of the

strategic level, a primitive behavior is an action invoked by a single message passed to the

tactical level, while a complex behavior is a logical composition of primitive behaviors. To

state this relationship in another way, the strategic level can be represented as an and/or tree
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[12,151 (possibly with logical quantifiers at each node) in which leaf nodes are primitive

behaviors and all other nodes represent complex behaviors. We find Horn clauses as

implemented in Prolog to be an especially effective language for the representation and

traversal of and/or trees [6,16] and have adopted it as our preferred means of expressing

top level control strategies.

We have applied the above concepts to the problem of high-level motion control for a six-

legged walking machine, the Adaptive Suspension Vehicle (ASV) [3,5,17]. More recently,

we have attempted to escalate our application of the RBM architecture to the control of an

unmanned vehicle, the NPS Model II Autonomous Underwater Vehicle (AUV) [ 18,19,20].

In this case, not only the overall regulation of behaviors, but also the entire mission control

function is implemented via logic programming. Details of both the ASV and AUV

application of the RBM architecture are provided in the remainder of this paper.

m. Robotic Vehicle Models

The ASV is a large, six-legged vehicle designed for outdoor operation in rough terrain. It

is shown in Figure 1. The vehicle weighs approximately 7000 lbs and is 14 feet long. The

ASV requires a human operator to guide its overall body movement, but limb motion

coordination is accomplished by an on-board Intel 80386-based multiprocessor [5,17].

The software system is hierarchically organized with a clear distinction being made among

an individual leg control level, a leg motion coordination level, and a body motion planning

level [5,17]. Because the ASV has an omni-directional motion capability, it exhibits the

general maneuverability characteristics of a helicopter. This behavior is achieved by

providing the operator with a joystick with three major motion axes for control of vehicle

forward velocity, lateral velocity, and turning velocity, respectively. The vehicle control
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computer accepts these commands and synthesizes a sequence of leg movements to

produce the desired body behavior. Therefore, eighteen degrees of freedom constituted by

the six legs, each of which has three independent hydraulically operated actuators, is

automatically coordinated by three velocity commands from a human operator. In this task

the ASV is assisted by information from an optical terrain scanner which provides a map of

terrain elevation in the immediate vicinity of the vehicle [17], and by force and position

feedback from each leg. The ASV has successfully demonstrated its operational capability

in various environments by climbing up steeply sloped areas, towing heavy loads on soft

soils, traversing densely vegetated areas with minimal environmental damage, and crossing

man-made obstacle areas, such as railroads, while maintaining a smooth and constant body

attitude.

The NPS Model II AUV is a small underwater vehicle designed to support student and

faculty research on autonomous robot control issues [18,19,20]. It is shown in Figure 2.

The vehicle weighs approximately 380 lbs and is 84 inches long. As can be seen, the

vehicle has a rectangular cross-section and is furnished with four forward control surfaces

and four aft control surfaces as well as four tunnel thrusters. These thrusters, combined

with the two aft screws, provide the vehicle with active control of five degrees of freedom

in a low speed hovering mode, with only the roll degree of freedom being passively

controlled. When the vehicle is operated in its higher-speed transit mode, thrusters are not

used and all six degrees of freedom are actively controlled using the aft main screws for

propulsion and hydrodynamic forces on the control surfaces to achieve commanded

rotational rates in roll, pitch, and yaw. All of the eight control surfaces, two aft screws,

and four thrusters are controlled by electric motors. The AUV does not require a human

operator to guide its movement. Instead this function is performed by a on-board vehicle

control computer. Currently, a Gespac 68030 based computer is the vehicle's sole

computing resource, but it is anticipated that this system will soon be upgraded to a multi-
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processor configuration. The AUV is equipped with depth and speed sensors, a complete

suite of inertial sensors (3 rate gyros, 3 accelerometers, vertical gyro, directional gyro, and

flux-gate compass), and a sonar system for obstacle avoidance and bottom sounding. The

latter system consists of four fixed-base pencil-beam sonar rangers mounted in a flooded

fiberglass nose cone. One sonar beam looks forward, another downward, and the other

two are aimed perpendicular to the right and left of the forward looking beam. This vehicle

is currently operated in a swimming pool environment at the Naval Postgraduate School

and provides valuable experimental data and operational experience on an ongoing basis.

IV. ASV Control Implementation

Control software for the experimental evaluation of the ASV was developed in the 1980's

and was written mainly in Pascal [17]. Because ASV testing was completed in 1989, it has

not been possible to experimentally determine the effectiveness of the RBM architezture

using this machine. Therefore, we have experimented with the RBM on a simulation of the

ASV [5,21]. This simulation was developed based on data from the actual ASV. With

respect to the needs of our experiments, the behaviors of the simulation mirror those of the

ASV quite well.

The overall block diagram of the ASV simulator is shown in Figure 3. Each box shown in

Figure 3 is an object that is an instance of a Flavor (early version of a common lisp class

[22]) with the exception of the Free Gait Coordinator which is written in Symbolics Prolog

[23]. Thus, the strategic level of control software is contained entirely within this block.

Like the physical ASV which has nine major parts, namely, a body, a vision sensor, a cab,

and six legs, the simulation object, "ASV" has correspondingly nine component objects,

"Body", "Vision Sensor", "Joystick", and "Legl" tmrough "Leg6". These nine objects are
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linked to "ASV" through a part relation implemented by an appropriate function call at ASV

instantiation. Each part has its sub-parts, and again is linked to them with a part relation.

Differing from the nine major parts which have visible corresponding parts in the real ASV,

the subparts of the simulation are not physically tangible, but are introduced because of

their functionalities for the simulator.

Besides the part relation, this figure also shows the hierarchical control architecture linking

the simulation objects. As noted above, the top box labeled "Free Gait Coordinator"

represents the strategic level of control. This box utilizes primitive behaviors provided by

the "ASV" object, and gives commands to invoke these behaviors. As the name suggests,

the major concern of this strategic (predicate calculus) level is to coordinate leg stepping

and lifting events based on free (non-periodic) gaits. Of course, the top box also controls

the body movement. However, body movement control is minimal in this box because the

body movement is logically significantly simpler than controlling the six legs if free gaits

are chosen for operation over rough terrain. Thus, the major consideration of this program

is limb motion coordination, and the tri-level control architecture is rigorously adopted for

this purpose. Specifically, the "Legl Control Machine", "Legl Executor" and "Leg1

Contact Sensor" correspond to the execution level, and the rest of the leg parts correspond

to the tactical level. In the ASV implementation, the execution level has six copies of

functional blocks for :he six legs, and each one includes three objects. The six objects

performing an identical functionality are created from one single class (or prototype). For

example, "Leg I Control Machine" through "Leg6 Control Machine" are instantiated from a

class called "Leg Control Machine". This approach is utilized whenever multiple copies of

functionally identical objects are necessary.

The "Leg I Executor" and the "Leg I Contact Sensor" in the execution level of "Leg 1" take

care of physical movement and external world interactions of the "Legl " object. They are
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under the supervision of the "Leg 1 Control Machine" and provide necessary hardware

status information in return. The "Legl Control Machine" has internal leg cycle logic, and

related timing and external event sequence constraints. The leg motion cycle relative to the

body during forward body motion over level terrain and its seven constituent leg phases are

shown in Figure 4. Note that the leg movement in the "Lift" and "Descent" phases is

parallel to the direction of gravity in order to eliminate the possibility of striking obstacles

with the side of the leg. Evidently, the movement of a leg at a given moment always

depends on the current phase and the status of a physical leg, such as its positien relative to

the body. In this implementation, the current leg phase information is memorized in the

"Legl Control Machine" as a state, and the timing and external event sequence constraints

are used as state transition conditions. Therefore, a seven-state finite machine is chosen to

implement the "Leg1 Control Machine" Its state diagram is drawn in Figure 5. In this state

machine, fixed time intervals, which represent the timing constraints, internally govern

state transitions of the four synchronous states, while external events terminate the three

asynchronous states. External events which arrive out of time expected sequence are

automatically ignored due to the adopted finite state machine approach. Thus, the operation

of "Legl" is robust.

The "Leg 1 Plan Machine" is the key component of the tactical level of the ASV

implementation. The "Leg 1 Foothold Finder" and "Leg 1 TKM Calculator" perform

foothold search and temporal kinematic margin calculation for "Leg 1" as well as the "ASV"

object [5]. The objects related to the vehicle body are also members of the tactical level,

and support leg coordination through the "ASV" object. The "Leg I Plan Machine" reports

the availability and the current status of "Legl" to the "ASV" through the "Legl" object so

that the "Free Gait Motion Coordinator", which is the top level in the tri-level control

architecture, can utilize "Legl" and plan its leg movement. Basically, at the top level, the

availability of a leg for placing or lifting is sufficient information. Based on this
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information, the top level will issue a command to "Leg 1", which is known as its primitive

behavior to the top level. The state diagram of the "Leg1 Plan Machine" is shown in Figure

6. This finite state machine has six states and all of them are asvnchronous states. Thus,

all the state transitions are controlled by external events. Specifically, the leg plan

machines allow the top level planner to model the six legs with only two states, on the air

and on ground, and to utilize three simple primitive behaviors; i.e., "Place", "Lift", and

"Exchange". The "Exchange" command is introduced to improve performance on rough

terrain, and basically causes the same action as a "Lift" command followed immediately by

a "Place" command. The leg plan machines in the tactical level also isolate the top level

planner from details of the physical legs, such as timing and physical constraints. When a

leg placement action is requested by the planner, the leg plan machine replies positively as

soon as the requested action is proved to be possible, even before the associated physical

leg completes it. By doing this, the top level planner can plan ahead without waiting for

completion of the requested actions. This also allows the planner to freely test possible leg

placements and their consequences internally without concern for details or complicated

prediction of the movement of physical legs. That is, for the planner, the six legs are

massless two-state devices which can initiate a requested action immediately.

The "Leg1 Plan Machine" in the tactical level also provides an interface to the "Leg1

Control Machine" in the execution level. The given commands from the planner may not

be immediately applicable depending on the current status of the corresponding physical

leg. Specifically, the "Place" command from the top level planner can be immediately

given to the lower level, but the actual touch-down event will not occur until the leg

contacts the ground. On the other hand, a "Lift" command cannot be executed immediately

either. This is due to the tact that the physical leg has to be in a legal state in order to

execute the leg lifting action. Additionally, a leg lifting action is not allowed to violate the

physical constraints of the ASV; i.e., stability must be maintained. Only when both of
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these conditions are met does the "Legl Plan Machine" ask the "Legl Control Machine" to

lift a leg by sending a "Recover_command". Consequently, the leg plan machines in the

tactical level interface the top and bottom levels by making smooth transition from pure

logical decisions to executable commands.

The internals of the "Free Gait Motion Coordinator" are shown in Figure 7. This code is

written in Symbolics Prolog [23]. Differing from the lower levels, this level virtually does

not need any further abstraction to explain its logic. This code itself is very readable by a

person with an elementary knowledge of the Prolog syntax 1 , and it is also executable by a

computer without any modification. Basically, this code shows only a logical description

of the whole system without showing implementation details in the lower levels. This code

is started by typing "robot" from a computer terminal. This causes the program to execute

the "initialize" clause and then to go into a loop which iteratively performs "getscommand",

"plan", and "execute". Because the ASV is driven by a human operator, the program gets

commands from him by reading a joystick. After reading the joystick commands, it plans

through execution of the "plan" clause. In the "plan" clause, there appears both "leg-plan"

and "body-plan" clauses, which coordinate leg and body movement, respectively. When

the program control reaches the "leg-plan" subgoal in the "plan" clause, the six "leg-plan"

clauses are tested one by one from top to bottom until one of the clauses succeeds. Thus,

the textual order presents logical priorities or preferences among them. This characteristic

strictly comes from Prolog's conflict resolution strategy which utilizes depth first search.

As can be seen in the code, the overall leg coordination strategy of this realization of free

gait logic is based on minimizing number of legs on the ground. This is done to allow use

of legs in the air to overcome unfavorable conditions frequently encountered from operation

1 In reading this code, it is important to know that primitive behavior invocation and Lisp function calls are
accomplished merely by executing a Prolog assignment statement; i.e., an is predicate call.
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of the ASV on rough terrain. A more detailed explanation of this strategy and its

effectiveness can be found in [5]. However, overall, it can be said that simulation results

show that the strategy presented in Figure 7 gives better results than any other strategy

investigated in crossing simulated rubble strewn terrain.

V. AUV Implementation

Though the control and physical architectural details of the AUV are totally different from

the ASV, when the top level of AUV control software is compared with that of ASV, there

exist many similarities between them. Practically, small differences come from the

autonomous operation of the AUV. Specifically, referring to Figure 8, one top level

predicate called "executeauvmission" starts the AUV operation, and this clause causes

the system to be initialized and then to execute its main operation by repeating the

"missioncontrol" subgoal. During initialization, first the system's integrity is checked,

and then a mission scenario is downloaded from a mission planning expert system [18].

Currently, the mission scenario provided by the mission planner consists of a list of

waypoints. Lastly, the first way point is selected as a first subgoal for the AUV to achieve

along the way to its destination. The "missioncontrol" clause performs exactly the same

function as the "loop" clause in the ASV. However, when the "get-command" subgoal is

executed, a difference appears. Instead of getting joystick commands from a human

operator, the commands are generated based on the current vehicle position and the current

waypoint that the AUV is attempting to transit. Specifically, when the "get-waypoint"

subgoal in the "getcommand" clause is executed, two "get-waypoint" clauses are tested,

one by one. If the current waypoint is reached, then a new waypoint is selected from the

mission scenario by the first "get-waypoint" clause. Otherwise, no action (or default

action) is initiated and control is passed to the "generatecommand" subgoal. When this

13



clause is executed, vehicle heading and speed commands are generated without any

intervention from a human operator. Consequently, the above clauses clearly show that the

AUV is guided by waypoint control. The "plan" clauses also reflect unmanned operation.

The first "plan" clause deals with unexpected situations, while the second "plan" clause

involves executing a "normalplan" subgoal. When the AUV encounters an uncharted

obstacle, the down loaded mission scenario is modified by executing the "localreplan"

subgoal so that the AUV can avoid an unexpected obstacle. In contrast, in the ASV,

because a human operator constantly interacts with environment, there is no replanning at

this level. Finally, it should be noted that those subgoals which are not refined further,

such as "local-replan", "normal-plan", etc, reflect the incompleteness of the strategic level

for the AUV at the time of this writing. Currently, this level as well as the two lower levels

are under development.

VI. Summary and Discussion

As we have discussed, our goal is to develop mobile robots that can be counted upon to

behave "rationally" from the perspective of the humans with which it must interact.

In the tri-level RBM control architecture, a global objective is clearly defined, and controls

are centralized through a hierarchy among the levels. The strategic top level utilizes

primitive behaviors provided by the tactical level and commands this level by sending a

sequence of commands chosen based on its overall control strategy. The global control

strategy, an abstracted operational doctrine, is given by a human who has developed it

through his experience or observation of the target robot vehicle or a similar vehicle.

Therefore, as long as this control strategy is correctly specified, the overall behavior of a

robot vehicle is dependable and repetitive, as we usually expect from a man-made machine.
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However, the control strategy cannot be obtained readily when a totally new robot vehicle

with a different operational principle and functionality is designed, since the necessary

human experience will be lacking. Nevertheless, if the strategic level of control logic for a

similar robot vehicle is available, then the development effort for a new vehicle's top level

will be significantly reduced. Thus, the experience obtained with the ASV significantly

reduced development time for an initial version of the top level of control of the AUV.

The lower two levels of the tri-level control architecture are very closely tied to a physical

architecture and an operational concept for a specific robot vehicle. For example, the ASV

has six legs, and its two levels contain six six-state finite state machines and six seven-state

finite state machines, respectively, with related supporting functionalities. The lower two

levels of the AUV are under development, and a significantly different implementation is

expected.

The basic concept of the tri-level control architecture is to some degree motivated by the

physiology and anatomy of a human or an animal. Among the three levels, the top level

mimics the function of our cerebrum in performing logic processing, and the functioning of

the middle level resembles that of our cerebellum which interfaces and relays signals

between our cerebrum and our limbs. Lastly, the lowest level interacts with motor and

sensory devices somewhat like the human spinal reflex system. Despite these similarities,

however, there are no self-leaming and self-restructuring capabilities in the RBM

architecture. Though those may be mandatory in a system that grows continuously like a

biological system, this is not necessarily the case for a robot vehicle which could remain

stable for a reasonable time before a major upgrade to its software. When there is a major

change, all the levels should be updated accordingly. However, the proposed object

implementation in this paper should significantly reduce the need for this kind of global

upgrade. For example, when the original free gate simulator for the ASV was upgraded in
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order to negotiate a long and narrow ditch in addition to randomly distributed terrain

obstacles, the upgrade was completed with a minimal effort by introducing new behavioral

functionalities, while inheriting the original behaviors in the original program code without

any modification whatsoever [21].

The RBM Architecture depends upon multiple programming paradigms for its effective

implementation; i.e., logic, object-oriented, functional, and imperative. However, while a

multiple programming paradigm approach is logically clear and elegant, there can be a

penalty with regard to computational efficiency. For example, Prolog does not match the

hardware of typical microcomputers as well as conventional languages such as C, Ada, or

C++. There is also overhead in interfacing multiple programming languages. Moreover,

most hardware platforms and programming environments do not support all the above

mentioned programming paradigms well. An alternative is to adopt multiple computing

platforms and make each platform run its own programming paradigm.

Our application of the RBM to the AUV is proceeding. Under our current plan, the AUV

will run the strategic level in Prolog on an Intel 80386 based computer and the tactical and

execution levels in C++ and C on a Motorola 68030 based computer. A large part of the

lower level software already has been completed and is currently being evaluated by

frequent in-water testing of the AUV [24,25].
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Figure 1: Adaptive Suspension Vehicle
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Figure 2: NPS Model II Autonomous Underwater Vehicle
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%%% -*- Mode: PROLOG; Package: robot-rules -*-

robot :- initialize, repeat, loop, fail.

initialize :- X is inits.

loop :- getcommand, plan, execute, !.

getcommand :- X is readjoystick.

plan :- update_robotstate, checktkm_limit,
legplan, bodyplan, generatedecision,

updatejrobotstate :- X is update_robotstatus.

checktkm limit :- Aleg is attkm_limit, Aleg \== nil,
asserta(limitjleg(A_leg,lift)).

check tkmlimit.

legplan :-lift a leg.
leg_plan :- exchangelegs.
legplan :- stable.
legplan :- place a leg.
legplan :-wait for legs.

stable :- Condition is stablep, Condition == t.

lift a leg :- stable, Aleg is smallesttkm-leg, Ajeg \== nil,
Condition is stablewithout(Aleg), Condition == t,
asserta(decision(Ajleg,_,lift)).

exchange_legs :- stable, LegA is smallesttkm leg, LegA \== nil,
LegB is maxsm_leg(LegA), LegB \== nil,
Condition is has_more tkm(LegB,LegA),

Condition == t,
asse rta(decision (LegA, Leg B, exchange)).

place_aleg :- A_leg is max smlegO, Aleg \== nil,
asserta(decisio n(Aleg, ,place)).

waitfor legs :- try_newfoothold.
wait forlegs :- recovery, asserta(reduce speed).
wait for legs :- asserta(reducespeed), restore limit_leg.

Figure 7-1 : Free Gait Coordinator
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try-..new-foothold :-A-leg is leg__with-new-foothold, A-leg \=nil,
asserta(decision (Ajeg,_., place)).

recovery :-A -leg is do_recovery, AjIeg \== nil,
asse rta(decisio n(AIeg,., place)), restore-limit leg.

restore_ limit -leg :-retract(limit-leg(A..jeg,lift)).
restore-limitjleg.

bodypl an :-speed..plan, trajecto ry...plan.

speecd.plan retract(reduce..speed), slow-down.
speed plan speed up.

speedup :-X is speed~upjrobot.

slow-down :-X is slow-down-robot.

trajectory..plan stable -m, restore -trajectory.
trajectory..plan modifyjrajectory.

stable-m Condition is stablep m, Condition == t.

restore-trajectory :-X is restore-command.

modify trajectory :-X is modify__p.ommand.

generate-decision :-retract (deci sion (Aleg,B_1eg, Adecisio n)),
X is send-decision(AIeg,BIeg,Adecision), fail.

generate-decision :-retract(limit leg(AlegA-decision)),
X is send-decision(Ajeg,,A.decision), fail.

gene rate-decisio n.

execute :-execute-motion, draw-robot, 1.

execute-motion :-X is execute..planned-motion.

draw-robot :-X is graphical-display.

Figure 7-2 :Continued.
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execute auvmission :-initialize, repeat, mission-control, missioncompleted.

initialize :- systemok, download_mission, selectfirst waypoint.

missioncontrol :- get-command, plan, executeplan, L

get-command :- get-waypoint, generatecommand.

plan nearunchartedobstacle, local_replan.
plan normal_plan.

mission-completed :- X is at_goal_point, X \== nil.

get-waypoint :- X is reach-waypoint, Y is getnext_waypoint.
getwaypoint.

Figure 8: AUV Mission Coordinator
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