
AD'-A250 131

92-13314

92 5 IS8 1St'~__

:(JNI I IO NS Of fit I i A:S
0124483 310395

.... DRIC U

COPYRIGI(c
1988
CONTROI IF I
HMSO LONDON

.... DRIC Y

Reports qfuoted are not nece ... ly available to roemnbee; of the public or to commercial
organisations

DEFENCE RESEARCH AGENCY

RSRE Memorandum 4585

Title: Languages for Requirements Specifications

Author: G P Randell

Date: March 1992

Abstract

This memorandum discusses 11 desirable features that make a
requirements specification language a "good" language. Current
languages are assessed to determine which of these features they
possea,, and where they are lacking. Conclusions are drawn as to the
current state of requirements specification languages, and topics for
further research are proposed.

Aevessio or O
NT IS GRA&I

DTIC TAB Q
Unnnotunced 0l

Ju.%t !tent to-
i

DistribuAon

Availability Codes

jAvail anid/or
Diet Speolel

Copyright - -
©

Controller HMSO, London

1992

1. Introduction... 1

1.1 The Requirements Specification 1

1.2 Requirements Specification Languages........................ 2

1.3 Other Factors ... 3

1.4 Structure of the Memorandum.................................. 4

2. Desirable Features... 5

3. How Good are Existing Languages?910

4. Conclusions and Further Work... 14

References.. 16

1.1 The Requirements Specification

In any model of procurement, whether it be the traditional "waterfall"
model or an incremental approach (the "build a little, field a little, test a
little" philosophy), the requirements specification plays an important
role: it defines what the supplier is to build and what the customer, on
behalf of the ultimate user of the system, is prepared to accept, and often
forms the basis of a legal contract. If the requirements specification is
inadequate, then the system delivered is unlikely to satisfy the users'
real needs.

The requirements specification acts as the interface between the
customer and supplier, and this role has inherent difficulties. For if the
customer and the supplier have different technical backgrounds, each
will have different interpretations of the specification. This inevitably
leads to communication problems between them, contradictory to the
major purpose of the specification: to communicate requirements.

The most important feature of a requirements specification is that it
must be understandable, to both customer and supplier. In addition, the
STARTS Guide [STARTS] suggests that it should also have the following
characteristics:

a) unambiguous - every requirement should have only one
interpretation;

b) complete - all requirements should be stated, there should be
no undeclared assumptions;

c) testable or demonstrable - each requirement should be stated in
such a way that the system can be checked to show that the
requirement has been met;

d) consistent - there should be no conflict between individual
requirements;

e) modifiable - it is a fact of life that customers change their
requirements, so the specification must be structured in such
a way that this can be achieved in a straightforward manner;

f) traceable - proper referencing is required to allow
requirements to be traced back to their originator and forwards
to the design;

g) modular - it should be possible to produce and understand
parts of the requirements specification independently.

Producing a requirements specification with all these desired
characteristics is a difficult task. The purpose of this memorandum is to

concentrate on one aspect of specification, namely the language used to

express the requirements.

1.2 Requirements Specification Languages

Currently, requirements specifications tend to be written in natural
languages like English on the grounds that English requires very little
training and is understandable to all parties. In fact English does
require training to use well. Poorly written English specifications may
be verbose, and their meanings obscure. English is also inherently
ambiguous: the same statement may be interpreted in more than one
way. An English specification is also very difficult to validate: the only
thing that can be done with such a specification is to read it. It is very
difficult to ensure consistency and completeness of the specification.

In an attempt to overcome the difficulties associated with th use of
English, formal languages have been proposed for requiremeiits
specification. These languages have a sound mathematical or logical
basis, usually in set theory or algebra. Examples of formal languages
are Z [Spiveya, Spiveyb], VDM [Jones] and OBJ [Gerrard]. Because they
are mathematically based, these languages are unambiguous and, in
principle, analysable. That is, propositions about the specification can be
formulated and proved. For example, a specification may be proved to be
internally consistent. However, little guidance currently exists on how to
analyse specifications or indeed what to analyse for. The major
disadvantage with current formal languages is that they are difficult to
learn, use and understand. They use mathematical notations which
may, at first sight, be daunting.

English and mathematics may be considered to be at opposite ends of a
spectrum. In between lie diagrams and semi-formal languages. Many
of the structured methods of system development, such as SSADM
[SSADM], use diagrammatic techniques. Data flow diagrams, for
example are informal in that they do not have an agreed semantics and
thus may be interpreted in more than one way. However they use a
notation which is relatively easy to learn and use. Diagrams do not have
to be informal; it is possible to define mathematically diagrams which
gives them a formal semantics and thus makes them formal objects.
However, most of the diagrams used in systems development today do
not have a mathematical base.

Thus it may be seen that there is a variety of languages available, each
with its own advantages and disadvantages. However, there are factors
other than understandability and the lack of ambiguity that affect the
choice of a language for requirements specification, and these are
discussed below.

2

1.3 Other Factors

A requirements specification contains not only functional requirements,
detailing what the system is to do, but also non-functional requirements,
which are constraints on the operation, development and maintenance
of the system. The former are relatively well-understood, but the latter
are often seen as the "poor relation" and considered only as an after-
thought. Non-functional requirements may be of three types (after
[STARTS]):

a) Performance, including processing speed, volume of data,
storage usage;

b) Dependability, including safety, reliability, availability and
security;

c) Quality, including ease of change, interoperability,
intelligibility and ease of use.

In addition the environment in which the system will be expected to
operate must be described, including physical characteristics like heat,
light and power, as well as any design constraints, such as time-scales
or the mandatory use of a particular programming language or other
standard.

Not only are different types of requirement present, but they may be at
varying levels of detail from the abstract to the specific. For example,
interface protocols defining how the system communicates with others
may need to be very detailed, whereas behavioural properties may leave
the designer much more freedom in their implementation. The
language used for a specification should ideally be suitable for
expressing all requirements usefully, and at all necessary levels of
detail.

The choice of language is further affected by the necessity for validating
a specification, that is, the process of demonstrating its completeness
ard consistency with respect to the initial ideas of what the system can
do. Informally, validation may be thought of as answering the question
1are we building the right system?". Validation is a social process by
which confidence is gained that the specification accurately reflects the
real needs. Techniques for validation are:

a) Reviews - in which the specification is read and appraised;

b) Walk-throughs - in which the author presents the specification
to a group of reviewers and invites comment;

c) Prototyping - in which a model of all or part of the system is
produced for trials and tests;

d) Executable specifications (a sort of prototyping) - in which the
specification itself is written in an executable language and
tested;

3

e) Static analysis - in which the specification, written in a
suitable language, is analysed symbolically, for example for
data usage or control flow;

f) Reasoning - a special form of static analysis in which
propositions about a formal (mathematical) specification are
formulated and proved.

It is apparent that the desire to validate affects the choice of language: if
techniques other then reviews and walk-throughs are to be used, then
the specification must be written in a language other than English. For
example, English is neither executable nor amenable to static analysis.
On the other hand, a mathematical specification is amenable to
reasoning, but is likely to be difficult to review because the language will
be difficult for non-experts to understand.

In a similar vein, the need to verify that the design and implementation
meet the specification, and the need ultimately to accept the final
system, has an impact on the choice of language. If the specification is
mathematical, there is the possibility of proving that a design meets the
specification, whereas only an informal argument can be used if the
specification is written in English. For further discussion on validation
and verification see [STARTS] and [C3ISSC].

From considering the "ideal" specification and the need for validation
and verification, it is possible to extract those features which are
desirable in any language used for requirements specification.

1.4 Structure of the Memorandum

The remainder of this memorandum is structured as follows. Section 2
proposes 11 features that are desired of a language for the specification
of requirements, while section 3 discusses four current languages with
respect to these features. The memorandum concludes with a summary
of the current situation and proposals for further research.

4

2, Desirable Features

This section discusses the following 11 features which, it is proposed,
are desirable in a language for requirements specification:

a. Understandable
b. Analysable
c. Animateable
d. Wide spectrum
e. Unambiguous
f. Able to express as many requirements as possible
g. Easy to learn and use
h. Modular
i. Allows abstraction
j. Machine processable
k. Concise

This list is in order of importance, the most important first. Each of the
features will be discussed in turn.

a. Understandable

Understandability is the key to a successful requirements specification.
The meaning of the requirements specification must be apparent to the
users whose requirements it embodies and to the designers whose
baseline for development it is. Misunderstanding a requirement will
lead to a flawed system, and potentially to time and cost overruns or, in
extreme caqe,; to cornplote failure of the project.

A difficult specification will not be understood if the time and effort
required to gain that understanding is not available (as will usually be
the case). This applies to both the user on whose behalf the customer is
presenting the specification and to the designer who will build the
system it describes. Confidence that the specification is right will be
missing, as a specification that cannot be understood cannot be
validated.

The language used to express the requirement obviously has a
significant impact on the understandability of the specification. A
language which uses unfamiliar symbols or terminology may result in
a specification which is hard to understand. Diagrams and pictures
have a role to play here, as they are often relatively easy to understand.
Understandability is the most important feature of a requirements
specification language.

b. Analysable

The analysis of requirements is an important part of the requirements
definition activity, but one that is often ignored The purpose of analysis
is to examine the information elicited from the users to detect
inconsistencies and incompleteness. However, the rigour of the analyses
possible depends on the rigour of the language used to express the

5

I-

requirements. For example, in the case of a formal language,
mathematical proof may be used, but, in the case of English, analysis is
limited.

Analysis may be either static (such as proof), or dynamic (testing). In
order to carry out dynamic analysis, the specification must be capable of
being exercised. This is discussed further in the following section (on
the third feature: animateable). From now on, the term "analysis" is
used to refer to static analysis.

Analysis may be used as a means of validation, by showing that desired
properties exist and that unwanted properties are absent. This sort of
analysis is common for secure systems to show, for example, the
absence of covert channels. Again the language used has a significant
impact on the analyses that are possible.

The benefits to be gained from analysis are such that any language used

for requirements specifications must be capable of being analysed.

c. Animateable

A major part of the requirements definition process is validating the
requirements specification, as discussed in section 1.3 above. One
promising validation technique is animation, a form of rapid
prototyping. Animation provides an indication of dynamic behaviour
qnd illustrates the meaning of a specification. Tests can be run and
trade-offs and potential bottlenecks investigated. The major advantage of
rapid prototyping is that an actual "thing" can be given to users to
experinent with to see if it is likely to meet their needs. It should be
remembered that testing a specification, like testing a computer
program, will only show the presence of errors, not their absence.

Animation may be achieved directly, by writing the specification in a
language which is executable, or indirectly by translating (preferably
automatically) the sncification into an executable language. Whichever
route is chosen, a suitable language must be used.

It is unlikely that a rapid prototype generated in this way will be a
suitable implementation, often because of inefficiency. However, there is
the possibility of transforming a prototype to optimise it. The prototype
may also be used for the purpose of static analysis (see the discussion on
analysis above).

Because of the benefits to be gained from rapid prototyping, particularly
in the validation of a specification, it is highly desirable that a
requirements specification language should be animateable.

6

d. Wide spectrum

Different languages are usually used throughout the development of a
system, from the requirements specification through to the
implementation. As a consequence, those involved in the development
need to understand at least two languages, the language of the level they
are working from (for example, the requirements specification) and the
language of the level they are producing (for example, the architectural
design). Using different languages for different levels leads to problems
when trying to demonstrate that one level conforms to another.

A possible solution is to use a wide-spectrum language, that is, a single
language which may be used at several levels in the development
process. Not only does this alleviate the training burden and reduce the
need for translations, but it also has a knock-on effect on the tool support
required. Fewer language editors will be needed and there will no longer
be the need to integrate many different tools to support many different
languages. "Wide-spectrum" should not be confused with "able to
express all requirements". The former refers to different stages in the
development cycle whilst the latter refers to coverage at a single stage.

Thus a wide-spectrum language which is useful for requirements
specifications and other stages (but not necessarily all of the
development cycle ,,ould have significant benefits.

e. Unambiguous

Not only should the specification be understandable, as discussed above.
but it should be understood as it was written. That is, each statement
should mean only one thing to the reader, and that one thing should be
the meaning that the writer intended. The writer will then know that
the reader will understand correctly what has been written.

Ambiguity in a specification can lead to the wrong interpretation being
placed on a statement, and subsequently the design and implementation
may be not what was expected. An ambiguous specification should not
be used in a contract because if a statement can be interpreted in many
ways and the system satisfies one of them, there is no basis for
complaining that the system is wrong, although it may not match the
intended interpretation.

A form of ambiguity, called underspecification, should be allowed.
Underspecification may be thought of as "ambiguity that does not
matter", and means that several interpretations are possible, any one of
which is acceptable. This is a valuable tool of abstraction and is used to
give design freedom.

The language used to express the requirements has an obvious impact
here. If the language has a defined semantics (meaning) then it is less
likely to be misinterpreted. Indeed, if the language has a formal
semantics then each statement only has one meaning, although
interpreting the formal meaning in the real world offers the potential for

confusion. Languages with no defined semantics, such as English,
invite misinterpretation unless they are used with particular care.

A precisely defined language therefore offers benefits by avoiding
ambiguities of meaning.

f. Able to express as many requirements as possible

As discussed in section 1.3, a requirements specification must contain a
variety of requirements, both functional and non-functional. At present,
different languages are often used to express different sorts of
requirements. For example, for a secure system the security policy may
be expressed in English and the security policy model (a more precise
statement of the important parts of the policy) expressed in
mathematics. Using different languages in this way leads to problems
when trying to ensure that all the requirements are consistent: how can
an English and a mathematical statement be checked for consistency in
any meaningful way? The same problem will arise no matter what the
languages whenever more thar. one is used.

It is unlikely that any one language will be capable of expressing all
requirements, but it would be beneficial to use as few languages as
possible. Each should be capable of expressing requirements in a way
which is understandable and useful as a basis for devising acceptance
tests.

g. Easy to learn and use

A requirements specification is used by a variety of people, from the user
whose requirements it embodies through to the designer who designs
the system based on it. All the people involved have to understand it, and
thus have to learn and use the language in which it is written. In order
to learn a new language, training will be needed. But training can be
expensive in terms of money and time, and these may not be available.

In addition to increased training costs, a difficult language will have
more problems in gaining user acceptance, thus the specification
language should be easy to learn and to use.

h. M(odular

Specifications of large and complex systems (such as CIS) need to be able
to be broken up into manageable-sized pieces, so that no one piece is
bigger than a "headful". This enables the specification to be understood
more easily. Modularisation also allows several people to work on one
specification at a time, both when writing it and when designing a
system from it.

Thus a requirements specification language should allow
modularisation, for example, sentences, paragraphs and chapters (as
in English), or procedures and modules (as in some programming
languages).

8

i, Allows abstraction

Requirements specifications contain information at many levels of
detail. Abstraction allows the writer of the specification to concentrate at
a level of detail appropriate to eacb requirement, and thus aids
understandability and conciseness.

Thus the language used should be capable of abstraction, that is, of

ignoring unnecessary detail, where this is appropriate.

J. Machine processable

Requirements specifications are often written using word-processors
and other computer-based editors. The advantages in using these tools
over a type-writer are well known. Thus a specification language should
be capable of being written on a computer. And not merely written, but
also checked by computer. That is, the computer should be able to check
that the language has been used correctly according to the rules of that
language: that the syntax (the grammar) is correct. This will enable
many minor errors to be automatically detected. However, such checks
will not ensure that the specification is a sensible one, and should not be
interpreted as giving more confidence than is justified.

k. Concise

The size of a specification has a psychological impact on the reader. A
large, weighty volume is off-putting, and also requires more time and
effort to read. On the other hand, a concise statement is more readable
and thus is more likely to be read. A powerful language will be able to
express ideas concisely, but that very power means that the language
must be used carefully.

Conciseness, while important, should not be pursued at the expense of
clarity (and hence understandability). It is more important that the
specification is understood. It is often ill too easy to devote time and
effort to stating some requirement in as short a way as possible while
forgetting that it needs to be understood by others. All requirem-nts
should be made explicit, and should not have to be inferred.

Thus a requirements specification language should allow for a concise
statement of the requirements and not require large amounts of words to
express simple concepts.

9

3. How Good are Existing Lang'uages?

Eleven desirable features for a language for requirements specification
have been proposed in the previous section. Currently, many languages
exist for specification, but the question is: how good are these
languages? Problems have been encountered with all of them. The
purpose of this section is to discuss how many desirable features each of
the following languages possesses.

a. English
b. Z
c. Ada 1

d. Data Flow Diagrams (DFDs)

These cover a broad spectrum of current languages, from the informal
English, through diagrams (e.g. DFDs) and programming languages
(e.g. Ada), to the formal, mathematical language Z. There are many
other languages in use, but there is not roorn to discuss them all here.

a. English

One of the r1ost common ways of writing a requirements specification
(in this country) is to use English. The English language is very
informal: it has no explicitly prescribed rules but depends on current
usage. As a consequence, English is often ambiguous. An obvious
advantage with using English is that it is taught to everyone at school:
no additional training should be necessary.

But poorly written English can be difficult to follow. However, this
criticism applies to any language - all languages can be written badly. It
does not require any extra special effort to understand English. The
specification will look familiar with no particular symbols or graphics.
The lack of graphics can mean that an English specification may not be
as concise as one would like, but it will be modular, using sentences,
paragraphs, sections and chapters.

English cannot be animated or analysed in any meaningful way, and is
only machine-processable in that word-processors exist, which often
have facilities for checking spelling, but not for checking grammar.
Thus validating an English specification is difficult - the only thing that
can be done with it is to read it.

Any English specification should have a glossary attached, explaining
words which are used with a particular meaning. Jargon, which is only
understood by those "in the know", should be avoided as it may lead to
misinterpretation and misunderstanding. English does allow
unnecessary detail to be hidden (abstraction), and all requirements can
be expressed using it (although not always usefully). Designers and
implementors do not usually use English, as it is too imprecise for their
purposes, so English is not really a wide-spectrum language. English is,

1 Ada is a registered trademark of the US Government - Ada Joint Program Office

10

however, used throughout all the stages in the development process to
illustrate the more precise designs and implementation, all the way
down to comments in the actual code (in the case of software).

To summarize, English has great advantages in terms of its familiarity
to everyone - we think in English, and we explain what we mean in
English - but it has little else to offer.

' b. Z

Z is a formal language based on set theory and predicate calculus. It has
been developed at Oxford University, based on the work of Abrial. The
language has two parts: the mathematical toolkit (also called the Z
library) and the schema calculus. The former is used to construct the
mathematical text of the specification while the latter is used to
structure the descriptions written in the mathematical language. The Z
notation is particularly suitable for a model based approach to
specification. With this approach, an abstract mathematical model of
the system's state is constructed, and operations are defined on that
state. Schemas are used to define both the state and the operations.
While Z has not yet been standardised, a reference manual [Spiveya] and
semantics for Z [Spiveyb] have been published.

As Z has a formal semantics, it is unambiguous. However, it is difficult
to understand and requires a significant amount of training to write it
well. Reading Z is easier than writing it. Z can be extremely concise, but
often at the expense of clarity. Every Z specification should contain as
much English as mathematics. This "commentary" explains the
mathematics and describes how it should be interpreted in the real
world. Interpreting (understanding) Z is made easier by meaningful
names being used for objects in the specification, in much the same way
that a program is more understandable if meaningful names are used
(and comments used to explain what is going on).

Z encourages abstraction, and allows detail to be ignored where this is
wanted. Because it is formal, Z is also, in principle, analysable.
However, the analysis of Z specifications has attracted little interest to
date, except in the areas of syntax and type-checking. Consequently few
techniques, methods or tools for analysis (other than syntax and type-
checkers) are available. One area of work which has attracted some
interest is that of animating Z using the Prolog language [Dick],
although this technique is not yet widely available. Z is extremely good at
modelling systems which comprise states and operations on states, but
is not very good at expressing sequences of operations, histories, and
other aspects of time. Thus Z is useful for only some sorts of
requirements.

To summarize, Z is a formal language and is concise and
unambiguous. It encourages abstraction, and can be used for both
specifications and detailed designs. It is machine processable, and, in
principle, analysable and possibly animateable. There is limited
modularity (using the schema calculus). However, it is difficult to

11

understand, and hard to learn how to use. Z is not appropriate for all

requirements.

c. Ada

Although Ada is a high level programming language, it can also be
used for requirements specifications. The idea of using a programming
language may appear unnatural at first, but many of the constructs
found in programming languages, such as if-then-else, are very natural
ways of explaining a requirement (for example, if the incoming aircraft
is hostile then shoot at it, else let it land). Ada allows the specification of
procedures, functions and packages to be written ai-d compiled
separately from their bodies (the detail).

As for any other programming language, Ada does require training to
use. It can be readily understood, with the help of meaningful names
and comments, as for Z (discussed above). Ada has a defined semantics,
which, however, is not formal. But a particular compiler will give a
single meaning to an Ada program. Because Ada is a programming
language it can be compiled and executed, and also analysed using
program analysis tools such as MALPAS (the Malvern Program
Analysis Suite) [RTP] and SPADE [Carrl.

Ada can be used for specification, and also for implementation, thus it
can be wide-spectrum. It is also modular, using constructs such as
procedures, functions and packages. It is reasonably concise, and is
machine-processable - a compiler checks syntax and for various other
errors. Ada also has constructs for parallelism, unlike many other high
level programming languages, but is not applicable for specifying other
non-functional requirements. Using Ada in a top-down fashion allows
detail to be added later, thus abstraction is supported.

To summarize, Ada is a programming language which requires some
training to use, but is reasonably understandable and concise. It is
animateable and analysable, supports abstraction and is modular. It
can be considered to be wide-spectrum, and is also machine-processable.
However, it is not appropriate for expressing all requirements.

d. Data Flow Diagrams (DFDs)

Data Flow Diagrams (DFDs) are used by many structured methods for
systems analysis and design. They are used to show the movement of
data to, from and around the system. They identify and summarize all
processing within a system.

DFDs are an informal technique, they have an agreed syntax, but no
defined semantics. Thus they can be ambiguous. Some methods,
however, give tighter definitions of DFDs than others. They are concise,
and are easy to learn, use and understand. They are useful for
specifying functionality, but are not useful for other requirements. They
can also be used at different stages in the development process, so can be
considered wide-spectrum.

12

DFDs are machine-processable (syntax may be checked), and can be
animated. They do not contain enough information to carry out detailed
analysis, but some simple checks can be made. Decomposing a DFD
through several levels, each adding more detail, supports abstraction.
Modularity is also supported, to some extent, by the same mechanism.

To summarize, DFDs are simple and useful for a limited number of
requirements. They can be ambiguous, are machine-processable and
animateable. Little analysis can be carried out. They support modularity
and abstraction, are concise, and can be used in several stages of
development.

Overall Scores

From these discussions, it is apparent that no one la,,guige available
today has all the desired features. The following table summarizes those
features which each language possesses. Each language is given a score
from 0 - 5 for each feature, indicating how well the language supports
that feature (0 means not at all, 5 means excellent).

a b c d e f g h i j k
English 5 0 0 1 0 4 5 5 4 1 3
Z 1 3 3 3 5 1 1 2 5 5 4
Ada 3 5 5 3 3 1 3 4 3 5 3
DFDs 4 4 1 2 1 1 4 3 4jf 4 4

Key to table:
Desirable features:

a. Understandable
b. Animateable
c. Analysable
d. Wide spectrum
e. Unambiguous
f. Able to express as many requirements as possible
g. Easy to learn and use
h. Modular
i. Allows abstraction
j. Machine processable
k. Concise

NB. This table is a summary - the scores should not be read on their
own, nor is it useful to add up the scores for each language.

13

4. Conclusions and Further Work

There are many features which we would like to have in a language for
requirements specification. However, no currently available language
has all of these features to the degree we would wish.

It is apparent from the discussions in section 3, that English cannot
entirely be replaced in the requirements definition stage, or any other
stage of the development cycle. However, it is also apparent that English
on its own is not sufficient. The lack of animation and analyses are
serious drawbacks. It is the author's contention that a more precise
language, with these facilities, should be used, with English (and
possibly graphical) commentary to improve understandability. But it
must be remembered that the English part is merely commentary, and
is not the definitive part of the specification.

Another problem with English is its ambiguity. However, it may be
possible to lessen the problems arising from this by using a form of
structured or constrained English. This restricts the writers' freedom.
It is then possible to carry out some checks on the specification, to
ensure that the syntax of the structured English has been followed
correctly. This leads to the first recommendation for further research:

To investigate current forms of structured English, and develop a
form suitable for use in requirements.

It is also possible, with requirements expressed concisely in a
structured way, that database technology may be used to manage
requirements and maintain traceability through the development of the
system (see [Randell] for such a proposal).

Formal languages are quite different. Their biggest problem is
understandability, although sensible use of commentary does help.
Another way of helping to overcome this is to generate diagrams from
the formal text, in order to help explain it in a user-friendly way. This is
the second area where further research is needed:

To develop the techniques and tools for the production of diagrams
from formal specifications.

Further work is also needed on the analysis and animation of
specifications. These are both important topics which, potentially, will
lead to much better requirements specifications. Languages which have
these features, such as programming languages, and hardware
description languages, for example ELLA, should be investigated to
determine their suitability for requirements and improved as necessary.
Further research is needed in these areas:

To develop techniques and tools for analysis, for a range of
languages.

14

To carry out further work to determine the usefulness and
feasibility of animating specifications.

To investigate a variety of languages, including hardware
description languages, to determine their suitability for
requirements specifications, and recommend improvements to
these languages where appropriate.

Throughout the work on analysis and animation, attention must be paid
to the way the specifier interacts with the specification. That is, the
results of animation and analysis must be easily understood, possibly
with the help of diagrams.

Requirements specifications contain a range of concepts, context-related
explanations and complex logical relationships, as well as facts and
definitions. No single language is likely to have all the attributes
necessary to express this variety adequately and effectively. Rather,
different languages will be used for specific purposes. This leads to
problems with checking consistency, and with analyses and animation.
Translating the different parts of requirements specification into a
single underlying rigorous language will enable that specification to be
analysed and consistency to be checked. This language will not be
readily understandable, therefore cannot be an effective specification
language in its own right. Instead, translations from the specification
languages into this underlying language need to be developed. This
allows a consistent underlying view of a system to be maintained and
views of the system to be projected from it.

The final recommendation is therefore that:

Translations between languages, including between diagrams
and formal languages, be developed.

The vision is that different languages will be used in a requirements
specification, and these compiled into one underlying representation
suitable for analysis and animation. This representation will not be
manipulated directly, rather mechanisms will be needed to frame
queries in a user-friendly way, and to give the results of those queries in
the same manner. Different views on the system, expressed in different
languages as appropriate, may also be automatically generated from it
for validation purposes. The same underlying representation may also
be suitable as a basis for design, with design information being added
and different views of the system appropriate to the designer rather than
the specifier, such as the data view or the process view, again being
automatically generated. This will lead to a better link between the
requirements specification and the subsequent design, and reduce the
number of errors in system development.

.1..5..

References

[C3ISSC] T A D White and C J Young (Editors), Systems Engineering
Methods and Tools Working Group Report on C3 1
Requirements Definition Issues, C3 ISSC, 1990

[Carr6] B Carr6, "Program Analysis and Verification", in High-
Integrity Software, Chris Sennett (Ed), Pitman, 1989

[Dick] A J J Dick, P J Krause, J Cozens, Computer Aided
Transformation of Z into Prolog, Proceedings of the Fourth
Annual Z Users Meeting, Oxford University Computing
Laboratory, 1989

[Gerrard] C Gerrard, Gerrard Software Ltd

[Jones] C B Jones, Software Analysis: a Rigorous Approach,
Prentice-Hall International, 1980

[Randell] G P Randell, A Proposal for a Requirements Database for
the MoD, Working Paper, DRA Electronics Division,
September 1991

[RTP] MALPAS User Guide, Rex, Thompson and Partners

[Spiveya] J M Spivey, The Z Notation - A Reference Manual, Prentice-
Hall International, 1989

[Spiveyb] J M Spivey, Understanding Z - A Specification Language
and its Formal Semantics, Cambridge University Press,
1988

[SSADMI G Longworth and D Nicholls, SSADM Manual, NCC
Publications, 1986

[STARTS] STARTS Purchasers' Handbook "Procuring Software-based
Systems", Second Edition, NCC Publications, 1989

16

REPORT DOCUMENTATION PAGE DRIC Reference Number (if known)

O verall security classification of sheet U.NS.S..F.E. ...
(As far as possible this sheet should contain only unclassified information. If it is necessary to enter classified information, the field concerned
must be marked to indicate the classification, eg (R). (C) or (S).

Originators Reference/Report No. Month Year

MEMO 4585 MARCH 1992

Originators Name and Location
DRA, ST ANDREWS ROAD
MALVERN. WORCS WR14 3PS

Monitonng Agency Name and Location

Title

LANGUAGES FOR REQUIREMENTS SPECIFICATIONS

Report Security Classification Title Classification (U, R, C or S)

UNCLASSIFIED U
Foreign Language Title (in the case of translations)

Conference Details

Agency Reference Contract Number and Period

Project Number Other References

Authors Pagination and Ref

RANDELL. G P 16

Abstract

This memorandum discusses 11 desirable features that make a requirements specification language
a good" language. Current languages are assessed to determine which of these features they
possess, and where they are lacking, Conclusions are drawn as to the current state of requirements
specification languages, and topics for further research are proposed.

Abstract Classification (U, R. C or S)

U

Descriptors

Distribution Statement (Enter any limitations on the distribution of the document)

UNLIMITED seo,

