AD-A24S 646 L T
TR 71992

C

MODELING FOR HUMAN PERFORMANCE ASSESSMENT

. _DTIC

FINAL REPORT

R. R. STANNY

NOVEMBER 20, 1991

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21702-5012

MIPR 90MMO523

Naval Aerospace Medical Reszarch Laboratory
Naval Air Station
Pensacola, Fiorida 32508-5700

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an
official Department of the Army position unless so designated
by other authorized documents

92-11997

82 5 01 87 AR




., -

REPORY OO UMERNTATIORN PA
TUTRGTNGY USTONLY e blocnd 12 RebOm DATE T T T R Con e
;i o i 20 November 1991 ; Timu 1 Nov 89 - 21 Nov 91
A TITLE AND SUDTITTE B o SR RS
% A MIPR 90MMOS523
: Modeling for Human Performance Assessment
‘ 6. AUTHOR(S) 3M263002D995 BG
| RR. Stanny ‘, DA346133
7RO G ARCANTZA TN NAML S R RODIE S AL Al i A A TG :
! e (RN :
.;
! Naval Acrospace Medical Research Laboratoty
i Bldg. 1953, Naval Air Station
! Pensacola, FL 32508-5700
5 :
g’3’“?%753'K1’5123§i?§?f7’.\7&)?{{r"(ih'u'i\li’?.” AGTNCY RAREGY AND ADDRESS) T T T T s b, Nioe ¢ "
I T S A A AT i
: t.
* U, S. Army Medical R&D Command ‘ i
; Fort Detrick : ;
{ Frederick, Maryland 21702~5012 ; i
P ’
;i, S e an e e s s ammesters mt % eae v e n e % st ¢ e wees e ase o s ima eameess see s ea tw o i mamres © e e e L el e s s oo o4 am s bavrert 141 5 s7ebre e -ermrasiomomril)
P SUPPLEMIEMTARY NOTES
i DISTRIBG TGN AR AR Y RTAT e 7T T Pon oedemon cang T i
I Approvad for public release; distribution unlimited ' }
: :
|
!
g i
Y AR TRACT TR i 7 fThis Tinal report describes research performed during Fiscal Years 1990 and 1991 at
* the Naval Aerospace Medical Research Laboratory. One research line involved developing a generic model of
human performance tests, such as those in the Unified Tri-service Cognitive Performance Assesament Battery.
Several performance-test models were developed using the plan of the generic task. A second research line focused
on a risk identification study of 31 Navy and Marine combat occupations, The purpose was to examine whethe.
knowledge of a stiessor’s effects on abilitics might be used to predict the combat jobs most likely to be affected by
. the stressor, The results identified certain perceptual-motor, and cognitive abilities tlat may vary substantially in
4 importance among the occupations. Examples included far vision, spatial orientation, flexibility of closure, rate
control and several others. Analyses of stressors for their effects on these abilities may suggest ways to optimize the
use of resources by distributing backup personnel, countermeasures, and other risk-mitigating factors among jobs in
part according to relative threat magnitudes. A third line of research focused on the develcpment of a MicroSAINT
model of an aircraft carrier landing. Although this line of rescarch was interrupted a year early, due to reductions in

research funds, a preliminary model was developed and is described in this report. A fourth line of research focused
on issues in laboratory-test design and analysis. Studies in this line included (1) an examination of factors
contributing to the potential sensitivities of tests to the cffects of environmental stressors and (2) an examination of
the use of iterated bootstrap resampling in the calculation of Monte Carlo estimates of the precision and significance
levels of psychological tests.

Modecling, Human Performance ; RA 5

Unclassified Unclassified Unclassified Unlimited




‘ PRUGCHIONS FOR CON 2 e o0 ey
: The Report Docuraeste s S (30 oo od s s o0 g L |
i that this infarmatian o0 vena s o v e Tho oo 7 e rep ar ; . ' i
i P . .
; Instructions Low dsfioeg o iee o e e one fndione s po T INE . .
optical scanine " oguirn ey
; Block 1 Aconey te vy o i L PR e Lo
; : Cove Loy gt Pt o R :
{ Ylock 2. !\':::,.ng! Troaee RETRR TR R R R S .
e ceding day, arerd s o SUTRS TR Lo ‘ : ‘ '
i Jan 88) l:\ 4 AR o B o I o
. an Vieh ote gt e L N .
? 3 ! Lo Lobe RN e
Block 3. fype ol o s e i
¢ . : DO N P R I PLE RYRI PET R PRSI
H Statewhe Ty e e tro oo ' ( e
: .
4 L . . . TR Ty s 1
; applicabio, entar i o e e e G T | e \ l
t ey - - PRSI S IR
A Junn 87 30 Jun W ! b
I a3t T PRI
wloek B, o sads e T e : PEASA hee et
) the partol e pori thae peos e b ot i NS S bl
e aringiub and catnnboee e e o i
report 1 propared s RN L , .
. L 1 PR YO N 1 2 SO b PRI AT F T AR ER
repoal the i, e Lo '
include subtitho fog ey ey SRS | , "
K . ! H ARRSRIN RS T
) cassibred docunmen o ! W e e !
: AR AL | B T A ‘ v
y HY prarenthese, { .
, ; ty 1 PRV R FE o]
i . : i . T
BloJk S, Fundig Flarde, oo o e ropn : Frveba ot oo it L e TL
[ J i . )
ACE AN NOIHeE L gy e e o i : o
' ‘oA ) | 1
oloment e bhoet () prone cicmnere?, Lo A ’ P
. ‘
numberts), and ot st e Lise e NS cove bl
fallowritg 1ol ,
; t
: ¢ Contrat AR I Blach 14 A" e e o e (M oamcn
i Cironn 1 Lot i P vieorofsd oot oo vy oLl oo
) Proegs v taly oot i dvpa b anl ttoen e o faiaed e theorepont
|
Hlomend wooonnion N i
¢ I B i
: WModk 60 ragitee, 0 i o I TCANEE SR . ' L e
d . ,(\:,!\nn|-,|!,h\ fovg ot Ton IR | Vi s \ o P RN T
i e roa i I - : i
i Pt Hhedd ' oL i
i R TR VTR |
bt ! '
H
! A
i
H IR
]
“ .
f TS P T
3 i
3 .
j .
o
i




LIST OF INDIVIDUALS RECEIVING PAY FROM MIPR NO. 90MM0523

Stanny, R.
Shamma, S,
Raynsford, K.
LaCour, S.
Travis, K.

Ac aw:\.w; . B"o'x'-. R
PNTTS QRGAd
AL T 7T 0
Ussinoin, g ol ']
Justifisation__

s e

i

bRy

| Dtatrtbeiien/

| Availabilisy Codos
T sve i) andjor”
Dist | &poelal

f

B |

e e e e ————




FOREWORD

. Opinions, interpretations, conclusions, and recommendations are
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1. INTRODUCTION

Thi- Final Report covers work performed at the Naval Aerospace Medical Research Laboratory during
Fiscal Years 1990 and 1691, The 1990 work included (a) developing models of human performance tests drawn
from the Unified Tri-services Cognitive Assessement Battery and (b) a risk-identification study of 31 naval and
marine combat occupations. The 1991 work included (a) a methodological study of test sensitivity, (h)
development of a MicroSAINT model of an aircraft carrier landing and (c) a Monte Carlo study of bootstrap
data-resampling. The FY 1990 modeling effort is described in detail in Stanny and Shamma (1990), a copy of
which is attached to this Report. The FY 1990 study of combat occupations is described in Section 2 of the text.
The FY 1991 sensitivity study is described in Section 3 of this report. The carrier-landing study is described in
Section 4 of the text. The Monte Carlo study of bootstrap resampling is described in Section .

2. RISK ANALYSIS OF 31 NAVAL AND MARINE COMBAT OCCUPATIONS

Resources at hand are never sufficient to ensure that all combat personnel will be protected from all
possible hazards. Thus, strategies must be developed to estimate the proportion of resources that should be
devoted to countermeasures and to allocate those resources as well as possible. A basic problem in the
development of such strategies is to identify those personnel most threatened by each different potential hazard.
The assumption that different stressors will affect different abilities suggests that a taxonomy based on skills and
abilities would be valuable in this regard (Cooper, Schemmer, Fleishman, Yarkin-Levin, Harding, & McNelis,
1987).

Given that the impact of a specific stressor can be expressed as a pattern of changes in a set of abilities,
it should be possible to derive the relative impact of a stressor on each of a given set of jobs. The analyses
presented here ave based on the assumption that the magnitude of a stressor’s threat to performance on task
i increases with the number and importance of the skills affected by the stressor. That s,

i = (e, €

where ¢ represents the (hreat to the ith task, {y is a monotonically increasing function that may differ imong
stressors, ey is a dummy variable cqual to 1 if stressor k affects skill j and 0 otherwise, and 8ij is the impcrtance
of the jth skill to task i. 1 do not mean to imply that Equation 1 should be regarded as a general model of
stressor effects. It is, however, an assumption that should be consistent with a range of such models.

In this report, I will discuss three exploratory analyses of a data base of Navy and Marine air combat
occupations (Cooper et al., 1987). Each was performed with an eye to determining which skills might be most
informative in predicting differential risks posed by environmental stressors. The first analysis deseribed here
comprised an examination of the variation in the skills’ importance ratings across jobs. The second analysis was
performed by identifying clusters of jobs related by similarities in their patterns of skill requirements and then
determining the variables that best distinguished between the job clusters. The intuition motivating this analysis
was that using clusters of similar jobs as units of analysis might yield more stable predictions than those derived
from analyses of individual jobs. In the third analysis, I identified clusters of sxills related by their patterns of

ssociation across jobs and then cxamined the degree to which these skill clusters distinguished between the
groups of jobs previously identified.

Methods

Task analysis data. The data base of occupational task analyses used in the present study was developed
by C oper et al. (1987). The data base contains task analyscs of 31 naval and marince combat jobs. The
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information on each job includes a rating of the importance of each of 44 skills and abilities to the Ipcrformance
of each job. These ratings were developed through interviews with experienced job incumbents.” The rating
scale ranged from one to seven (least to most important). The list of jobs is given in Table I; the list of skills
for which the jobs were rated is iu Table II,

(U) Table I. Navy and Marine Aviation Occupations in the Data Buse., (U)

Aviation Boatswain’s Mate Helicopter Crew Chief
Aviation Electrician’s Mate Hospital Corpsman
Aviation Structu.al Mechanic Landing Signal Office.
Aviation Ordnanceman Marine Bulk Fuel Operator
Aviation Organizational Maint, Officer Marine Helicopter Pilot
Aviation Fire Control Technician Marine Harrier Pilot
Aviation Electronics Technician Machinist Mate

Bombadier Navigator Marine Prop Pilot

Catapult & Arresting Gear Officer Navy Helicopter Pilot
Cryptologic Technician Radioman

Data Systems Technician Helicopter Search & Rescue Crew Member
Electrician’s Mate Sonar Technician
Electronics Technician Torpedoman’s Mate
Electronic Warfare Technician Tactical Pilot

Fire Controlman SEALS

Gunner’s Mate

Statistics. Principal Components Analyses (PCAs) were perfor-aed using BMDP 4M (Factor Analysis;
Dixon, Brown, Engelman, Hill, & Jennrich, 1988). Recall that PCA yields a component for each variable. The
firs* principal component (PC) extracted from the correlation matrix corresponds to the linear combination of
the original variables that accounts for the largest proportion of the variance in the data. Subsequeat
components are statistically independent and account for smaller and smaller proportions of the variance. The
scree test (the method of rootstaring; Cliff, 1987) was used to identify components that appeared to represent
real phenomena. These PCs were then rotated by the varimax procedure. Varimax rotation produces
components whose squared correlations with the original variables have the largest possible collective variance.
This tends to produce "simple" components, components strongly correlated with a few of the original variables
and weakly correlated with the others, Discriminant analyses (DAs) were performed with BMDP 7M (Dixon
et al,, 1988). Details specific to individual analyses are described iu the next section.

Results and Discussion

Table III contains the mean rated importance of each skill, calculated across jobs, in the Cooper ct al
(1987) data base. The entries in Table I are sorted in descending order of average rating,. One should be
cautious about interpreting these means as general measures of "importance” bec 3¢ they are strongly influenced
by the makeup of the specific sample of jobs selected for inciusion in the data base. The foregoing having been
said, the head of the list is dominated by a set of perceptual/cognitive variablzs. The raiddle of the list contains
a number of variables having to do with coordination, dexterity, and spatial orientation. Strength and stamina

The data base also contains information on substasks of jobs. Only the overall skills-and-abilitics ratings
were analyzed in this study.




(1) Table II. Skills and Abilities Rated for Each Job. (U)

1 Oral comprehension 23 Time sharing

2 Written comprehension 24 Rate control

3 Oral expression 25 Arm-hand steadiness
4 Written expression 26 Manual dexterity

5 Fluency of ideas 27 Finger dexterity

6 Originality 28 Speed of limb movement
7 Memory 29 Static strength

8 Problem sersitivity 30 Dynamic strength

9 Mathematical reasoning 31 Explosive strength
10 MNumber facility 32 Trunk strength

11 Logical reasoning 33 Muscular flexibility
12 Information ordering 34 Equilibrium

13 Speed of closure 35 Gross body coordination
14 Flexibility of closure 36 Stamina

15 Spatial orientation 37 Near vision

16 Visualization 38 Far vision

17 Perceptual speed 39 Color vision

18 Control precision 40 Night vision

19 Multi-limb coordination 41 Depth perception

20 Reaction time 42 Glare sensitivity

21 Choice reaction time 43 General hearing

22 Selective attention 44 Sound localization

variables tend to be found in the lower third of the list. Notable exceptions to the preceding generalizations are
math and writing, which are rated as comparatively unimportant. Reading, however, is rated as important.

Table IV contains a list of skills sorted in order of decreasing variability (across jobs) of their importance
ratings. This list is of particular interest because the accuracy of predicting which jobs are likely to be affected
by a stressor shonld increase with the systematic variance (across jobs) in the importance of the affected skills.
This point can be understood by reference to Equation 1. Examining Equation 1, one can see that, with other
factors (including measurement error) held constant, the spread in threat magnitude acrossjobs, var(t}), increases
with the job-to-job variance in var(s; i) the 1mportan(,e of a threatened skill. As the spread in threat magnitudes
increases, for any reason other than an increase in measurement error, the acenracy of predicting those jobs for
which the threat exceeds a critical value should also increase.

The most variable skills on the list of Table IV are a set of perceptual, psychomotor, and strength skills.
Of note, most of the cognitive skills fall near the bottom of this list. This suggests that, at least in the present
sample of jobs, it may prove easier to predic. differential threats to performance from effects of stressors on
perceptual and strength variables than from effects of stressors on cognitive variables.

I searched for clusters of related jobs by performing a PCA of a correlation matrix whose row and
column headings were the 31 combat jobs. Each element, r;, of this matrix was, thus, the correlation between
the 44 skill ratings of jobs i and j. High values of ry indicated jobs with similar skill requirements. This
procedure resembles Q-factor analysis, a technigue aOmCUI“LS used in studies of individual differences (Guilford,
1954). Examining Fig 1., one can see that by the time the seventh PC was extracted, the magaitudes of the
eigenvalues had dccreased to a value effectively equal to 1.0. This value is 1/31 of the wotal variance (the 31

3




(U) Table III. Mean Skill Ratings Across Jobs. (U)

Skill M Skill M
Selective attention 6.00 Flueicy of ideas 435
Problem sensitivity 5.94 Finger dexterity 403
Near vision 5.87 Color vision 397
Time sharing 5.74 Far vision 397
Written comprehension 5.35 Speed of closure 390
Night vision 526 Originality 390
Memory 523 Number facility 390
Reaction time 5.00 Muscular flexibility 3.84
Logical reasoning 494 Visualization 3.74
Oral expression 494 Glare sensitivity 371
Information ordering 490 Static strength 3.68
Flexibility of closure 484 Rate cortrol 345
General hearing 4.84 Sound localization 342
Control precision 474 Trunk strength 326
Depth perception 474 Gross body coordination 3.26
Oral comprchension 4,68 Arm-hand steadiness 326
Perceptual speed 4,61 Speed of limb movement 323
Multi-limb coordination 4,58 Written expression 319
Choice reaction time 4.58 Dynamic strength 3.00
Manual dexterity 4.55 Stamina 2.52
Spatial orientation 4.52 Mathematical reasoning 210
Equilibrium 445 Explosive strength 1.94

variables in the analysis ‘were standardized so that each had unit variance). Because factors with unit eigenvalues
account for no more variance than one of the original variables, nothing is to be gained by considering factors
beyond the sixth. Indeed, the plot of eigenvalue magnitude versus eigenvalue number seems (o contain a break-
point in the vicinity of factor 3-5, which suggests that, perhaps, only the first four factors are real (Cliff, 1987).

Table V shows the clusters of jobs that loaded on (correlated in excess of 0.5 with) each of the four PCs.
A group of technical jobs are associated with the first 10
PC. An examination of this cluster suggests that the
jobs in it are fairly high in their demands for logical o
analysis. The second cluster is dominated by pilot
occupations and some closely related jobs. The third
cluster is dominated by mechanical-technical jobs.
The SEALS formed their own fourth cluster. Two
jobs did not load to the criterion 0.5 on any of the :
PCs.

Eigenvalue

I used linear discriminant analysis (DA) to 01 e
measure the distances between job clusters in terms 1A T 8 LI A5 1y 19 21 23 26 27 20 31
of various combinations of the skill ratings. This ligenvalue Number
appeared to be the direct approach to identifying ) o
variables that might discriminate between the Figure 1. I'Exgcnvalucs from the principal componcnts
clusters. Furthermore, it was unclear that simply analysis of jobs.
factoring the skills iniercorrelaticn matrix would




(U) Table IV. Variation in Skill Requirements Across Jobs. (U)

Skill sd Skill sd
Far vision 2.85 Reaction time 1.92
Rate control 272 Speed of limb movement 1.90
Stamina 2.66 General hearing 1.82
Glare sensitivity .49 Choice reaction time 1.74
Trunk strength 2.46 Finger dexterity 1.69
Depth perception 2.46 Flexivility of closure 1.01
Sound localization 242 Mathematical reasoning 1.59
Visualization 240 Perceptual speed 1.58
Static strength 2.35 Multi-limb coordination 1.56
Dynamic strength 2.29 Color vision 1.53
Explosive strength 2.29 Manual dexterity 1.52
Arm-hand steadiness 2.24 Written comprehension 1.33
Speed of closure 2.19 Number facility 1.23
Fluency of ideas 212 Memory 1.21
Gross body coordination 2.09 Oral comprehension 1.06
Originality 2.08 Information ordering 1.06
Spatial orientation 2.06 Time sharing 0.98
Equilibrium 2.06 Oral expression 0.95
Muscular flexibility 2.05 Near vision 0.83
Night vision 1.95 Sclective attention 0.80
Written expression 1.94 Problem sensitivity 0.80
Control precision 1.93 Logical reasoning 0.72

produce similar results, The predictor variables used in the DA were the job skill-requirement levels. The
grouping variable was job-cluster membership--the number of the PC with which each job was correlated.
Cluster four of the jobs PCA was not used in the DA because it contained only the SEALS. The two
uncategorized jobs also were not used. Thus, the resulting prediction equations were linear combinations of the
original skill-requirement values that maximized the overall Euclidean distance (in within-group o units) between
the means of the groups defined by the PCA.,

I added one vanable at a time to the prediction equation by forward stepping. A criterion F(2,25)-to-
enter of 9,12 was used to control the entry of variables. This is the Bonferroni-corrected critical value of F tnat
yields an experimentwise significance level of p <.05 when 44 such F ratios are available for comparison. (Note
that, because the job clusters were not detexmlmd according to a priori criteria, this significance level may not
reflect the actual significance of the DA.)? Five skills produced F ratios greater than 9.12. These were far

2An additional problem is posed by the fact that the number of skills (predictors) in the database exceeds
the number of jobs (cases). Hence, the significance of the full-rank discriminant funciicn cannot be calculated,
This makes it difficult to assess the significance of the discriminators because the most compelling way to
establish that one o more skills significantly distinguishes among the job clusters would be to establish the
significance of the full-rank prediction equation(s). (See Larzelere and Muliak, 1977, for a discussion of this
issue in the related context of multiple regression). A partial solution is to caleulate the significance of prediciion
equations containing subsets of prespecified size, 4, of the original m predictor variables. (Unfortunately, in
exploratory analyses one can rarely supply an a priori rationale for setting / to any particular value, with the
possible exception of 1.) For a subset of size / = 1 selected from m candidate predictors, a conservative,
Bonferroni-style significance level can be estimated by determining p in the usual way and multiplying by m. For
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(U) Table V. Clusters of Occupations obtained by Principal Components Analysis. (U)

Cluster 1 Cluster 2
Aviation Electrician’s IMate Bombadier Navigator
Aviation Electronics Technician Catapult and Arresting Gear
Auviation Fire Control Technician Officer
Aviation Organizational Maintenance Helicopter Crew Chief

Officer Helicopter Search and Rescue
Cryptologic Technician Crew Member
Data Systems Technician Landing Signal Officer
Electrician’s Mate Marine Harrier Pilot
Elzctronic Warfare Technician Marine Helicopter Pilot
Electronics Technician Marine Prop Pilot
Gunner's Mate Navy Helicopter Pilot
Hospital Corpsman Tactical Pilot
Radioman

Sonar Technician

Clugter 3 Cluster 4
Aviation Boatswain’s Mate SEALS
Aviation Ordnanceman

Aviation Structural Mechanic

Machinist Mate

Torpedoman’s Mate

vision, spatial orientation, arm-hand steadiness, rate control, and glare sensitivity. Far vision yielded the largest
value of F(2,25) = 36.00 and was, thus, entered into the prediction equation. Far vision would seera to
distinguish flight-related jobs from other occupations. Consistent with this observation, when far vision was
entered into the equation, the F ratios for entering spatial orientation, rate control, and glare sensitivity (other
clearly flight-related skills) dropped precipitously, from respectable values of 9.37, 10.06, and 10.68 to 0.08, 0.94,
and 0.17, respectively.> The drop suggests that the information they contained was redundant to the prediction
equation. '

With far vision in the prediction equation, a criterion F(2,24)-to-enter of 9.20 was used to control the
entry of further variables. This is the Bonferroni-corrected critical value of F that yields an experimentwise
significance level of p <.05 when 43 values of F(2,24) are calculated, The only variable that yielded an F-to-enter
exceeding the criterion was flexibility of closure, a high-level cognitive variable (F(2,24) = 14.07). This was
somewhat higher than the F ratio this variable yielded before far vision was entered in the equation. All other

a subset of size 2 selected from /m candidates by forward stepwise selection, the implied number of predictor
equations examined is m x (1 - 1) and the Bonferroni correction is p x m x (m - 1). For! = 3, the implied
number is m X (m - 1) X (m - 2), and so on. Note that, if m is large and the predictors are correlated, this
coirection procedure rapidly becomes conservative as / increases.

3The F ratio for entering a variable into the prediction cquation was the F from a onc-way analysis of
variance calculated using the variable’s residuals, which is cquivalent to the F prodi.ed by an analysis of

covariance in which variables alrcady in the prediction equation serve as covariates (Dixon et al., 1988).
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va:iables Lad much smaller F-ratios (below 6.0). After flexibility of closure had been entered into the prediction
cquation, the values of F(2,23)-to-enter for the remainivg variables were substantially Iess than the next criterion
value of 9.28 (3.15 and below).

To further investigate the variables distinguishing the three job groups, DAs were performed for each
of the three possible pairwise: contrasts between clusters, A criterion value of F(1,21) = 17.875 was adopted,
which corresponded to the Bonferroni-corrected critical value of F that vields an experimentwise significance level
of p .05 when 3 x 4% = 132 F tests with 1 and 121 degrees of frecdom are performed. The contrast between
the logic-demanding technical iobs and pilot-like jobs yielded four skills with F ratios exceeding the criterion.
These were far vision, glare sensitivity, and rate control. Spatial orientation was only slightly below criterion,
with an F = 16.42. All of these skills were rated as morce important to the pilot-like jobs. The contrast between
pilot-like jobs and mechanical-tuchnical jobs yielded no variables with F ratios exceeding the criterion. Flexibility
of closure had the bighest F ratio, 14.33. This variable was rated as more important for the pilot-like jobs than
for the mechanical-technical jobs. Interestingly, the mechanical-technical jobs were scored more like pilot jobs
than were logical jobs with respect io thosc skills that distinguished logical jobs from pilot jobs (except for depth
perception). The contrast between the two technical job clusters also yielded no F ratios cxceeding the criterion.
The largest F ratio in this case was associated with mathematical reasoning (F(1,21) = 12.42), which was rated
as more imports at for the logic-demanding jobs.

(U) Table V1. Clusters of Skills Obtained by Principal Components Analysis (Titles are Component Numbers
in Order of Extraction). (U)

PCl PC2 PC3

Rate control Trunk strength Flexibility of closure
Spatial oricntation Dynamic strength Sclective attention
Glare sensitivity Muscular flexibility Speed of closure
Far vision Stamina Perceptual speed
Decpth perception Gross body coordination Near vision

Night vision Sound localization

Choice reaction time

Visualization

PC4 PGS PC6

Oral expression Manual dexterity Originality

Oral comprehension Finger dexterity Problem sensitivity
Written expression Static strength Mathematical reasoning

Written comprehension

PCT PC8 PC9

Time sharing Color vision Arm-hand steadiness
Nrmber fucility Night vision Equilibrium

Written exprussion Reaction time

PC10 PCl1 PC12

Information crdering Meinory Logical reasoning

Multi-limb coordination

A sccond PCA was carried out to examine clusters among the skills. This PCA yiclded 12 PCs with
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cigenvalues greater than one. A skree test disclosed

no obvious breakpoint in the plot of eigenvalue versus 12
component number (see Fig, 2). The clusters defined ]
by the skiils’ correlations with the 12 PCs (» WJ

> 0.5) are listed in Table VI. The first skill cluster
contains several variables that were rated, on average,

more important for the pilot-like jobs than for either
of the technical jobs. The second skili cluster is
dominated by a group of physical strength variables.

Eigenvalue

These skills, on average, were rated somewhat more 1

important the mechanical-technical jobs than for the 2

logical-technical jobs, and more important for the .

logical-technical jobs than for the pilot-like jobs. 4 7710131619 22 25 20 31 84 37 40 43
None of these skills discriminated well among the job Figenvalue Number

clusters in the previous DAs. The third cluster

contains a group of cognitive and sensory variables, Figure 2. Eigenvalues from the principal components
among them fexibility of closure, a potentially analysis of skills,

discriminating variable identified in a previous DA.

The skills in this cluster were, on average, rated as somewhat more important for pilot-like jobs than for the
logical-technical jobs, and more important for the logical-technical jobs than for the mechanical-technical jobs.
The fourth cluster contains oral and written communication variables, none of which discriminated among the
jobs. The fifth cluster contains two dexterity variables and static stre: gth, which did not produce evidence of
potential discriminating power. The sixth cluster is a set of cognitive variables that somewhat resembles cluster
3. Beyond this point, the clusters become increasingly difficult to interpret, suggesting that they may be largely
noise.

Six parallel discriminant analyses were performed on skill clusters identified by the PCA just described.
The first was performed by forcing the apparently pilot-I'ke skills of cluster 1 of Table VI into the equation,
which yielded an approximate F(10,42) = 5.038. (This F ratio is an approximation to Wilks’ X that can be
compared to ordinary F tables.) Had the pilot-like skills been selected by a priori criteria, the test would be
significant at p < .0006, coucrolling, in Bonferroni fashion, for six, simultaneous F tests. A parallel discriminant
analysis performed by forcing the strength-related skills of cluster 2 into the prediction equation yielded an
approximate F(12,40) = 1.32. Even if the strength-related skills of cluster 2 had been selected by a priori
criteria, this test would be nonsignificant. A third discriminant analysis performed by forcing the skills in cluster
3 into the prediction equation yielded an approximate F(10,42) = 3.42. Were the third cluster of skills selected
by a priori criteria, this test would be significant at p = .0138, controlling for six tests. Discriminant analyses
employing skill clusters 4 through 6 yielded F ratios of 3.02 and lower, which would also be nonsignificant.

Conclusions

The most important skills and abilities in the Cooper et al. (1987) data basc of naval and marine combat
occupations, as judged by their mean importance ratings, were a set of perceptual and cognitive abilities (see
Table III). Coordination, dexterity, and orientation abilities tended to rated as of intermediate importance.
Strength and stamina variables tended to be rated as of lower importance. The skills and abilities that differed
the most in importance from job to job were a group of perceptual, psychomotor, and strength skills, including
far vision, rate control, stamina, glare sensitivity, and trunk strength.

Three primary cins's of combat occupations were tentatively identified in a principal components
analysts (Table IV). The frst cluster contained a sct of logic-demanding technical jobs. The second contained
pilot-like jobs. The third contained mechanical-technical jobs. The SEALS formed their own cluster. Two jobs
were not assigned to any cluster. An exploratory analysis of the skills distinguishing these clusiers suggests that
the best discriminator could be far vision. Spatial orientation, rate control, and glare sensitivity may provide
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lesser quantities of correlated predictive information. Somewhat surprisingly, the second best discriminator may
be a cognitive skill, flexibility of closure. Discriminating between the pilot-like jobs and the logical-technical jobs
was much easier than discriminating between the pilot-like jobs and the mechanical-technical jobs, or between
the two clusters of technical jobs. Cognitive skills, as a group, displayed relatively little variation in rated
importance from one job to the next.

Several clusters of skills and abilities were identificd by principal components analysis (Table V). The
first cluster was a group of apparently flight-related skills, including far vision, rate control, spatial orientation,
and glare sensitivity. The second cluster contained a set of strength, stamina, and coordination skills, along with
auditory localization. The third cluster of skills contained several perceptual and cognitive abilitics, including
flexibility of closure (a potentially discriminating ability) and selective attention (the ability with the highest
overall importance rating). Unsurprisingly, given the preceding analysis, the first and third ability clusters gave
some evidence of distinguishing between the job clusters; the remaining clusters did not.

One should bear in mind (hat abilities that discriminate between jobs need not be the most important
abilitics overall. Conversely, abilities that are important, overall, need not discriminate between jobs, Clearly,
the most useful predictions of differential threat will occur in cases where a stressor is fouand to affect abilities
that are uniformly important in some jobs and uniformly unimportant in others. An ability whose importance
is unevenly distributed in this way is unlikely to be regarded as among the most important overall, In the present
data, cognitive abilities were highly rated, as a group, yet the variability of their ratings across jobs was
comparatively low (compare Tables 11l and IV).* Thus, despite the uniformly high importance attributed to
cognitive abilities, the present data suggest that abilitics that were rated as of comewhat lower overall importance
in these jobs might yield the best predictions of differential threats to performance.

3. SENSITIVITY OF TESTS
Discussion

Collins and CIiff (1990), in discussing the psychometric properties of growth measures, argue that the
reliability coefficient, pyy, is an inadequate measure of the precision of a test designed to assess change, They
assert that the inajor traditions in psychometrics, classical test theory and item-response theory, have focused on
the measurement of stable individual differences and have largely ignored issues surrounding the measurement
of change. As a consequence, the major traditions have become "inadequate for and largely irrelevant to" the
development of measures of growth (p. 128). Although strongly worded, this charge contains some truth, The
association of pyy with the ordinary-language tcrms "reliability” and “precision” has caused confusion and has
occasionally led to inappropriate applications. The confusion stems from the idea that the reliability coefficient
is generally applicablc as a measure of the reliability and precision of a test. In fact, however, pyy refers to a
limited form of test reliability--specifically, the reliability with which a test detects stable differences among scores
from different individuals.

The reliability coefficient is frequently characterized as an index of precision: Kerlinger (1986) refers
to it as the "accuracy or precision of a measuring instrument" (p. 405). Lord and Novick (1968) call it the
"imprecision and precisior- of tests" (p. 61). Introductory texts almost universally describe pyy in similar terms.
Common sense suggests taat, if the reliability coefficient mcasures precision, a respectable value of pyy is
necessary for a test to be sensitive to change in a dependent variable. Thus, in discussing threats to statistical
conclusion validity, Cook and Campbell (1979) assert that:

“The degree to which this may have been due to a compression of ratings at the upper end of the importance
scale is an open question that warrants further attention,
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Measures of low r.liability (conceptualized either as "stability" or "test-retest”) cannot be
depended upon to register true changes. This is because unreliability inflates standard errors
of estimates and these standard errors play a crucial role in inferring differences between
statistics, such as the means of different treatment groups (p. 43).

Similarly, in describing a 1est battery designed to measure the effects of environmental stressors, the NATO
Acrospace Medical Panel Working Group 12 (1989) concludes that:

Any psychological test must exhibit the propertics of [construct] validity, reliability, and
sensitivity. In other words, it must measure what it purports to measure, do so consistently, and
be capable of detecting the effects of the environment or of individual differences in ability . . . .
High [test-retest] reliability is a necessary, but not sufficient, condition for high validity. In
other words, the target attribute cannot be measured adequately by a test that fails to provide
consistent scores. . .(p. 0).

The idea that reliability is not sufficient to ensure validity is correct, as is the idea that a degree of "consistency"
is necessary in a good test. However, the conclurion that a high reliability coefficient is necessary because
consistent measurcment is necessary is correct only when the purpose of testing is to measure individual
differences, This is because a high value of pyy mcans only that differences among individuals are large relative
to measurcment error: A high valuc of pyy does not mean, however, that a test will consistently measure the
effects of change in an experimentally manipulated independent variable,

This issue was addressed some years ago in a contentious ane sometimes confusing interchange that
began when Overall and Woodward (1975) offered the "paradoxical’ obs ‘rvation that, when measurement error
is held constant, the statistical power of a repeated measures analysis of change scores is maximized when the
reliability cocfficient of the scores is zero. To understand why this is so, recall that pyy is traditionally defined
as the proportion of the variance in a population of test scores attributable to variance in truc scorcs (¢.g.,
Gulliksen, 1950). That is: )

OT OI 1
/’_X__ - 2 = 2 s 2 [ ( )
ay (01" + og")

where aTZ represents the variance of the true scores, oxz is the variance of test scores, and 052 is the variance
of the measurcment crrors. This definition is based on the assumption that cach test score,’X;, is the sum of
a true score, T;, and mcasurement crror, E; (Gulliksen, 1950). The errors are usually assumed to be independent
of the T, and of each other, and to have a mean of zero. Hence,

.__p

2)

Perhaps the most widely used estimate of pyy is the test-retest correlation, Ixix2 The test-retest correlation
is estimated by obtaining test scores from the same group of individuals on two occasions and calculating the
Pearson product-moment correlation between first and second scores.

Overall and Woodward (1975) considered the case of the t test for repeated (corrclated) obscrvations.
When the null hypothesis is that the mean difference between scores obtained on lwo occasions is zero, the
equation for the correlated t can be written:

L= ()

where d is the mean of the differences and 87 is the sample estimate of the standard error of the differences.
Now, the variance of a set of differences is given by
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In Equation 4, pyy is the ~orrelation between pairs of scores in the two conditions and, hence, is equivalent to
the population value of the test-retest corrclation--that is, the reliability coefficient.

Assume, for the moment, that the variances of the measurement errors and true-scores are equal in the
two experimental conditions. If so, then the variation atlnbutable to individual dnffcrcnccs in true scores
disappears from the variance of the differcnces, Te do this, set °X in Equation 4 to 0.12 + °E , which it equals
by the definition cxpressed in Equation 2. This yiclds:

2 _ 2 2
Ox1-X2 = 2014g" - 2PXX OT+E

201, gz(l - /’xx)
Now, solve Equation 1 for aTz in terms of pyy and oEz. The result is

o’ = PXX 952 /(- Pxx)- (6)

Finally, replace °I in Equation 5 with the right-hand side of Equation 6. Simplifying produces the desired
result:

2
9x1- X2

2lpxx on’ / (1- px)) + o’} (L= pxix)

= 2lpxx op” + (1= pxx)op’] / (1- pxx)} (1 pxx)

= Yop’(pxx - 1 - pxx) / (1= pxx)] / (1+ pxy)

= 205 Q)

Recall that the standard error of the differences is the square root of their variance divided by n. Thus, given
the null hypothesis Bx1 . x2 = 0, the t for correlated obscrvations can be written

le- |

t= : )
Est{(28,%) / m)'/?)

Equation 8 indicates that the scasitivity of a t test for correlated observations (the magnitude of 1)
depends only on the dlffcrcnce between the condition means (d), sample size (n), and the magnitude of
measurement ciror (ap ). Neither the variance of the true scores nor the reliability coefficient of the test scores
plays a zole in the equation.

According to this analysis, subject-to-subject variation in difference scores is due only to measurement
error. Were this always true, the reliabilitics of difference scores would always be zero. This is because
reliability, by the definition expressed in Equation 1, is the ratio of "true” variance to the sum of true and error
variances, and because the "true” variance of difference scores is 0.0 under the model of Equation 7. Indeed.
the reliabilitics of empirical difference scores are frequently very low, a fact that has sometimes caused applied
researchers to express concern about the wisdom of employing them in behavioral analyses.

tleiss (1976) has argucd, however, that to assume equal true and error variances in analyses such as the
one just outlined is unrealistic. The reason is that this assumption ignores subject-to-subjeet variation in
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responding to the independent variable. Fleiss noted, correctly, that scores in a one-way, repeated measures
analysis of variance (ANOVA) frequently contain a third source of variation apart from treatment effects and
measurement error. This variation arises from individual differences in responding to change in the independent
variable and is the source of the subject-by-treaiment interaction in a repeated measures ANOVA., The presence
of this variation in empirical data is why the rcliability cocfficients of difference scores are not always zero: If
a subject- by-treatment interaction exists, the variance of thc dnffcrences will not be 2oy 2, as Equation 7 asserts,
Instead, the variance of the differences will equal 2( Zogﬂ + og %), where onTz is the variance attributable to
the subject-by-treatment interaction (Fieiss, 1976; Overall & Woodward, 1976; also sec Winer, 1971, pp. 280-281).
Hence the equation for t when a subject-by-treatment interaction is present might be rewritten:

d
t=— : ©)
Est[ 2Q0g,q" + og?) / m)'/]

Fleiss (1976) outlined a repeated measures ANOVA model with a subject-by-treatment interaction and
submitted that, in this model, when individual differences in responding arc held constant, power is maximized
not when the relmbxhtzl coefficient of the scores is 0.0, but when reliability is 1.0. Note that the quantity
20'qx'12 / (ZOSXT + og ) is the proportion of the variance of the difference scores that can be attributed to the
subject-by-treatment interaction, By analogy with the definition expressed in Equation 1, this propottion can be
understood to be the reliability of the difference scores, Pdg (Fleiss, 1976; Overall & Woodward, 1976).

Thus, according to Fleiss’s (1976) analysis, when os,a is held constant and °B is allowed to vary, the
seasitivity of a t or F test calculated on the difference scores will necessarily vary directly with the reliability of
the differences. This conclusion was consistent with that of Cleary and Linn (1969) and Sutcliffe (1958), who
also varied crror variance with true-score variance beld constant, and concluded that the power of a significance
test increases with the reliability of the dependent variable. Overall and Woodward (1976) replied to Fleiss’s
crilicism by noting that the presence or absence of a term for onTz in the denominator of the t ratio is
irrelevant to the point they had originally made, which was that reliability is inversely proportional to the
sensitivity of a t test when measurement error is held constant. Adding a constant value (corresponding to the
true variance of the difference scores) to the denominator of the t ratio does nothing to change this basic
algebraic relation,

A somewhat different result holds for betwcen-subjects experimental designs.  Suppose that an
investigator is interested in determining whether an intervention affects true scores. For example, the investigator
may be interested in determining whether a drug affects performance on some test. Assume that one group of
subjects has been administered a placebo and the other has been administered the drug. The relation between
reliability, error variance, and sensitivity for this contrast between group means is readily shown for the case of
the t test. When the null hypothesis is 4 - i, = 0, the cquation for an independent-samples ¢ test can be written

X, - X,
L=—" (10)
OX1-X2

where 8y, _x;, is the sample estimate of the standard crror of the differcnce between X, and X,. To keep the
algebra simple, assume that the two groups are of cqual size and that the true-scorce and crror variances of the
two groups arc equal. Given these assumptions, the standard crror of the difference can be rewritten as follows:
-~ 2 2 1/2
%1%z = lox” + ox?) / nl
_ 2 2 2 2 1/2
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= [2(o® + og?) / n]'/? (11)

Note that, in Equation 11, the "measurement error" obtained by decomposing the within-cell variance
into o;” and o’ is not the same as the "experimental error” (MS, . ) obtained by pooling within-cell variances
in a conventional, one-way, between-subjects ANOVA (for an example, see Winer, 1971, p. 168). The ANOVA
MSepro0 like the variance in the denominator of the t test for independent samples, is derived from °x2 This
quantity, under the traditional assumption of Equation 2, is the sum of oTz and °L2'

Replacing oT2 in Equation 11 with the right side of Equation 6 allows us to rewrite the independent-
samples t as follows:

X, - X,

Est.{[2(pxx O_Ez /(- pxx) + 022 / n]%)

X 'gz

Est.{[205" / 0(1 - px01"%)

Est{[n(1 - pxy) / 20g212(X; - X)), (12)
where Est.{} refers to the sample estimate of the quantity inside the braces.

Equation 12 indicates that the value of t in the test for independent samples varies directly with the
square 100t of 1 - pyyx. Heuce, for a constant cEz, the sensitivity of the t test for independent samples is a
monotonically decreasing function of test reliabilify, The reduction in sensitivity that accompanies an increase
in PXX» other variables held constant, can be understood if one realizes that an increase in PXX is tantamount
to an increase m o2 relative to of (1ecall Equation 1), Thus, an increase in cTZ that is not offset by a
reduction in o 2 willincrease the total variance of the observations. An increase in °X2 will, in turn, reduce the
value of t, thereby reducing the sensitivity of the contrast.

Nicewinder and Price (1978) bave po:nted out that the conclusion one reaches regarding the effects of
a difference in reliability on statistical power will depend on which variables are held constant when reliability
is varied. If measurement error is held constant, an increase in reliability can only occur if the variance of the
true scores increases, due to the relation expressed in Equation 1, Aa increase in 012 will tend to reduce the
power of a between-subjects t or F test. This is because, as was discussed previously, both o 12 and oLz enter
the error terms of these tests.

If the variance of the true scores is eliminated by calculdling difference scores, an increase in °’l‘ cannot
affect the power of a repeated measures test calculated usmg the differences. If, however, subjects vaty in their
responses to the independent variabie, the interaction variance, °§xr , will be added to the variance of the
diffcrences. Under this condition, an increase in the reliability of the difference scores, p 44, will reduce power,
In contrast, if the variance of the true scores is held constant, an increase in reliabilily can only occur if
measurement error decreases (Equation 1), Because aEZ is always a component of the error terms of F and
tests, any reduction in measurement crror will necessarily increase statist’cal power. Hence, if oTZ is held
constant, any increase in pyx will increase statistical power. -

In a consideration of the results of Overall and Woodward (1975, 1976) and Nicewinder and Price
(1978), Sutcliffe (1980) argucd that these authors had traded on a confusion of the reliability coefficicnt with the
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"reliability of measurements" and "reliability proper” (p. 509), a point vigoiously denied by Nicewinder and Price
(1983). In his paper, Sutcliffe concedes that "power and reliability jointly depend on true and error variance”
(p. 510). He concurs with Fleiss (1976), who, like Sutcliff (1958) and Cleary and Linn (1969), concluded that
power increases with reliability when individual differences are held constant and measurement error is varied.
In discussing the result obtained when measurement error is held constant and individual differences are varied,
however, Sutcliffe draws the spectacular conclusion that the inverse relation between power and reliability noted
by Overall and Woodward (1975, 1976) is "spurious" (p. 513) and merely the result of change in "the numerical
value of the [reliability] coefficient" (p. 513, emphasis added). A careful reading of Sutcliffe’s (1980) paper
suggests that, in fact, the author understands and concurs with Overall and Woodward’s (1975, 1976) conclusion.
He does not, however, make this point clear. Indeed, the text of Sutcliffe (1980) is easily misinterpreted as
supporting the conclusion that px and power are, in general, directly related.

Conclusions

Equations 8 and 12 show that the sensitivity with which a test measures change in true scores is not, in
general, an ivcreasing function of pyy. Furthermore, the relation between sensitivity and pyy differs in repeated
measures ana between-subjects experimental designs. In a one-way, repeated measures design with measurement
error held constant, the reliability coefficient of the test scores will be unrelated to test sensitivity, provided no
subject-by-treatment interaction exists, If a subject-by-treatment interaction is present, however, differences
between-subjects’ scores in some or all of the experimental conditions will have nonzet o reliabilities. The "true”
variance in the difference scores that accounts for this reliability will enter the denominators of t ratios calculated
to test the significance of differences between the condition means, Although variance attributable to individual
differences that remain constant across experimental conditions will not enter main-effects F ratios in
conventional, repeated measures ANOVAs (see, for example, Winer, 1971), variance attributable to a
subject-by-treatment interaction will enter both the numerator and deaominator of such an F ratio and, thus,
reduce statistical power (Winer, 1971).

In a between-subjects design, with measurement error held constant, an increase in pyy will be
accompanied by a reduction in sensitivity (Equation 12). This is because an increase in pyy in the absence of
a reduction in measurement error implies an increase in variance attributable to individual differences (by the
definition expressed in Equation 1), This increase in true-score variance adds to the within-cell variance that
enters the denominators of ¢ tests (Equation 11), thereby reducing the tests’ sensitivities, The increase in within-
cell variance will also depress the F ratio for the corresponding main cffect in a between-subjects ANOVA
becausc the same within-cell variance components enter both the numerator and denominator of the F ratio (sce
Winer, 1971),

Even in the case of between-subjects designs, however, knowledge of the reliabilities of two tests is not,
by itself, helpful in predicting which test is more likely to be sensitive to the effects of an independent variable.
In part, this is because the magnitudes of reliability coefficients depend only on the relative magnitudes of true-
sccre and measurcment-crror variances, whercas the magnitudes of between-subjects t and F tests depend on
the (summed) absolute magnitudes of true and error variances (Nicewinder and Price, 1978). Nicewinder and
Price (1978) have taken this observation to mean that no specifiable relation exists between reliability and
sensitivity, Although this conclusion sounds discouraging, knowing both a test’s reliability and the variancc of
its scores allows one to directly estimate the test’s true and measurement-crror variances: By the definition of
Equation 1, cTZ = pxx(oxz) and oEZ = C’XZ - oTZ. Thus, given cstimates of a test’s true and error variances,
which can be Obtained Trom test-retest data, one can use cxpressions such as Equations 7 and 11 to cstimate the
error terms the test would yield in various experimentai designs.

A condition in which sensitivity varics as a dircet function of reliability oceurs when a test is changed
in a way that affects only its measurement crror. For example, the measurement cerror of a test can sometimes
be reduced by increasing the length of a test, If other factors are held constant, a reduction in nicasurement
crror will simultancously increase reliability and sensitivity (sec Equations 1, 8, & 12). Nicewinder and Price
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(1983) suggest that this relation may be the source of the erroncous belicf that increased reliability is invariably
associated with increased sensitivity. (They also provide a numerical example in which a increase in test length
yields an increase in reliability accompanied by a reduction in sensitivity.) The existence of this special case,
however, in no way implies that reliability and sensitivity to change in an independent variable will be positively
associated in comparisons of arbitrarily sclected tests. The sensitivity of a test to the effects of an independent
variable i¢ ultimately determined by the amount by which the test’s scores change, relative to error, in response
to change in an independent variable. The reliability coefficient, however, gives no indication of how much scores
change in response to variation in an independent variable. Therefore, a difference in PXX) by itself, gives no
indication of the relative sensitivities of two tests.

Alternatives exist to the reliability coefficient as a measure of precision and sensitivity, Pe:haps the
simplest measure of precision is the standard deviation of the scores, ox. A limitation of oy, from the
petspective of traditional test theory, is that it confounds variation due to individual differences with variation
due to measurement cerror (see Equation 2), A better candidate might be the variance of the measurement
errors, °B (Dudck, 1979). As mentioned previously, opz can be estimatcd from the same test-retest data used
to estimate pyy. When the absolute magnitudes of differences between the means of experimental conditions
can be expressed in units that are comparable across tests, confidence intervals for the mean (or mean
difference) can be useful measures of the precision and the potential sensitivity of a test. For example, the upper
and lower limits of a 100(1 - a)% confidence interval for the difference calculated from test-retest data can be
used to estimate the smallest changes in true scores that would be significant at a level of a in a within-subjects
experiment with no subjects-by-treatment interaction,

A fundamental limitation that oBZ shares with pyy is that neither guantity reflects the degree to which
a test’s scores are likely to change in response (o an intervention: A test that yields precise measurcments of
scores that do not change in response to an intervention will be less sensitive than a test that yields only rough
measurements of scores that change substantially in response to the intervention. This means that, if you want
to know which of several tests will most sensitive to the effects of an intervention, there is no substitute for pilot
data--direct measurements of the cffects of the intervention made with each test under consideration,

Signal detection theo: y provides several measures that can be used to compare the sensitivities of tests
to the effects of change in an independent variable, The most familiar of these is the distance measure, &', which
is usually calculated as an estimatc of (4 - 1) / oy (Green & Swets, 1966; Peterson & Birdsall, 1953), Cohen’s
(1977) measure of effect size,d = (i, - py) / o, in which o represents the standard deviation of the population
corresponding to either u, or g, is equivalent to d’ when the populations’ standard deviations arc equal. The
obvious repeated measurcs analog of these sensitivity measures is d = (4y = py) / oxg.xq» in which the
denominator is the standard deviation of a population of differences between paired Observations. A
straightforward generalization of d to ANOVA is the ratio of trcatment means to the common standard
deviation, f = o, / o (Cohen, 1977). The { statistic is related ¢, an index ()f cffect size used in standard
treatments of experimental power (e.g., Winer, 1971), by the relation f = ¢> /n n!/ (Cohen 1977). It is related
to w?, a widely used measure of ANOVA effect size, by the relation [ = [w J(1-w )] (Kbppcl 1991). The
disadvantage of these measures, relative to the reliability coefficient, is that their calculation requires knowledge
of an independent variable’s effccts on treatment means (to form estimates of i, - py or @ W This may not be
a needlcssly onerous requircment for a statistic that would be described as a mcasunc of cxperimental
"sensitivity."

Some of the persistence of the misunderstanding of the reliability coefficient may be attributable to
differences in the perspectives of experimental and individual-differences researchers, Researchers into individual
differences are accustomed to considering the effects of changes in measurement error on test results under the
assumption that truc-score variance remains constant, Onc must do this, for example, when estimating the
effects of a change in test length. However, individual-differences rescarchers assuredly do not customarily think
of differences among people as noise to be controlled and minimized. In contrast, experimental rescarchers
frequently attempt to reduce the "noise” in their data by controlling the subject-to-subject variation in their
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samples. (Reczll from the preceding discussion that the "noise" variance in experimental data is frequently the
sum of true-score and measurement-error variances.) This interdisciplinary difference in perspective may account
for Fleiss's (1976) apparent failure to recognize Overall and Woodward’s (1975) basic point (which was that the
increasc in true-score variance that accompanies an increase in reliability, when measurement error is held
constant, reduces the sensitivities of experiments). A similar difference in perspective may account for Sutcliffe’s
(1980) assertion that the conclusions of Overall and Woodward (1975) and Nicewinder and Price (1978) might
be taken to imply that "there may be an advantage in having noisy data" (p. 509). From the perspective of
individual-differences research, a test that yiclds individual differences that are small, relative to measurement
error, is a noisy test. This is true no matter how small measurement error is in absolute terms. From the
perspective of experimental research, however, individual differences are likely to be regarded as noise whenever
they inflate the error term of a significance test,

When individual differences are of interest, magnitudes of reliability coefficients are often measured and
compared to justify the use of a particular test (Weiss and Davison, 1981). Indeed, Weiss and Davison (1981)
refer to the measurement and comparison of reliability cocfficients as a "preoccupation in psychometiics"
(p. 633). They note that no other science has developed the concept of the reliability coefficient: all other
disciplines express precision in terms of the probable error in measuring some true value. This meaning of
"precision” is more nearly captured by the standard error of measurement, op, than by the reliability coefficient.
When change caused by variation in an independent variable is of pfimary research intercst (and the
measurewnent of individual differences is of lesser interest), comparing reliability coefficients 1o justify the use
of a particular test is inappropriate and potentially misleading, This is because pyy measures only the magnitude
of the variation attributable to individual differences relative to the total variation in a data set. Many
experimental studics are less concerned with differences among individuals than with changes within individuals.
Examples include research into the effects of control and display configurations, training regimes, and
envircnmental stressors, That a test reliably detects differences between individuals does not mean that it will
necessarily perform "reliably” if it is turned to the measurement of within-person change, nor does a low value
of pyy imply that a test will be insensitive to change caused by an experimentally manipulated independent
variable.

4. CARRIER LANDING MODEL

The line of rescarch described in this scetion was interrupted by fiscal events that caused the project to
be cancelled without notice. For that reason, the model is incomplete. The status of the model is described here
at the Army’s request. Our objective was to develop a model of cognitive workload in a carrier landing scenario.
The immediate aims of this subproject were (a) to obtain a precise deseription of the time-course of human
performance in what may be the most difficult aviation-related task and (b) to produce a quantitative description
of moment-by-moment fluctuations in the workload imposed by this task. An ultimate purposc of this work was
to identify variabies in the carrier-landing scenario that may prove especially valuable in the development of valid
and cfficient designs for laboratory and flight-simulator research into medical issues in aviation perfo.mance.

Model Description

The information used to develop the aircraft carrier landing model was gathered via interviews with
three pilot trainces at Pensacola Naval Air Station; therefore, a few tacks of the model are specific o training
landings in T-2 aircraft. The model’s overall network, called ACL2, is composed of 39 tasks and seven
subnetworks, BEach subnetwork comprises a set of tasks. The total number of tasks is 88. In Figure 1, a
diagram of the overall network, tasks are represented by circles and subnetworks arce represented by rectangles,
Subnetworks of ACL2 in Figure 1 arc numbered 22, 24, 28, 29, 30, 32, and 38.

16




FLY AROUND CARRIER
CHECX. FUEL

DUMP TIPS

ELTERIOR LIGETS OFF
SLOSE STOW DUMP BANDLE
RETURN T0 PATTERNS
WAIT FOR CALL

FLY NVER CARRIER

6

// SHIP'S COURSE

priisryintay ]
Iddd 008 = TV

smvnosz-mas@

BREAK LEFI
SCAN HORIZOM

CHECK ALT) VSI

»,8z “saFTAT 09 = 4OV @

SPEED BRAKES OUT
REDUCE POVER TO 65%
LEVEL TURN FOR 180°

@ ALT = 600 FEET

QEIOOOHHHE
7192 @ DOMJ3Y  gI9e (3PN

319313313

3'3

DOWNWIND

ALT, VSI, WING-TIP
CHECKLIST

ABEAN

Gk bR |

)

AOA ON SPEED

:

B
o)
:
-
5
i%;
g
Figure 1.

7] CHECX V&l (last cime)
38| GROOVE SCAN

d0 @GENIT TV
RdA GO

NI STVl QE3ds

P
g

(20) TOUCE DOWN

(43} CATCE WIRE

g NO WIRE
45) WIRE CAUGHT

46) STOP

Overall Network Model

17




The first seven tasks are maneuvers completed by the T-2 pilots during training, The subsequent tasks
are generally rclevant to all aircraft carrier landings. The landing procedure begins when the pilot flies over the
carrier. When the pilet has done thi,, he or she turns and paralicls the ship’s course, moving in the opposite
direction, maintaining a speed of 250 knots and an altitude of 800 feet. Task 12 (Watch Leader) pertains to the
training patterns of the T-2 pilots. Upon completing (hese tasks, the pilot breaks to the left and scans the
horizon. He or she then attains an Angle of Bank (AOB) of 60 degrees at 2 Gs and checks his or her altitude
and vertical slope index. If all is correct, the pilot extends the speed brakes (Task 17). Once the brakes are
extended, the pilot reduces the power to 65%, and begins leveling the aircraft to 180 degrees from the landing
point. Next, the pilot descends to 600 feet and obtains his or her position at 180 degrees from the landing point
(The 180-degree measurement is relative to the direction of the carrier.)

When the pilot is flying at 180 degrees from the landing point, he or she begins "Downwind" procedures
(subnetwork 22). This sct of procedures comprises the first subnetwork of the model and consists of seven
tasks. The layout of this subnetwork can be seen in Figure 2. Simultaneously, the pilot begins tasks 22,2 turough
22.5. He or she achieves 15 vaits Angle of Attack (AOA--by varying speed, the critical value of which depends
on aircraft weight, which varies with the amount of fuel remaining). He or she reduces air speed to 165 knots,
prepares to get into the proper position abeam, lowers the flaps, and lowers the hook and the landing gear. This
ends the first subnetwork.

The pilct then completes task 23 by checking altitude, the vertical slope index, and wing tip distance to
confirm that all readings are correct. When these tasks are completed, the pilot performs a landing checklist,
This checklist is the second subnetwork in the model, It comprises eight tasks (See Figure 3). Each checklist
item constitutes a task. The pilot checks the amount of fuel in the aircraft, that the gear is down, that the flaps
are down, that the hook is down, the harness is locked, and that the boards are working, He or she pumps the
brakes and confirms that he or she is maintaining 15 units AOA. This process runs off very quickly. Upon
completing this subnetwork, the pilot should be abeam. 1If so, the pilot checks to make sure the 15 units AQA
setting is correct and simultaneously trims t! = plane.

If all reauings are correct, the pilot enters the third subnetwork, Subnetwork 28 consists of the pilot’s
first radio call to the ship. The pilot must report the following: his or her side number, "gear, flaps" (meaning
that these items have been checked and are down), his or her 15 units AOA at specific knots, his or her name,
and his or her qualification number. Each call is a task, creating a total of seven tasks for this subnetwork (See
Figure 4).

Following following the radio call, the pilot enters the next subnetwork (See Figure 5). This subnetwork
is called 'Instrument Flying’ because the pilot performs the tasks almost entirely on instruments, The first three
tasks (29.2, 29.3, and 29.4) of this network are performed simultaneously. The pilot checks that he or she is
maintaining a proper AOA, that his or her altitude is at 600 fcet, and that he or she is descending at 22 to 25
degrees AOB. At this point, the pilot begins a left-hand turn, placing him/herself at about 90 degrees from the
landing point. The pilot descends to 450 feet, maintains his or her descent at 22 to 25 degrees AOB, and looks
at the ship in order to correet any over- or under-shoot. In all, 10 tasks comprise this subnetwork.

The pilot then exits this subnetwork and enters another one called *Outside View’ (See Figure 6).
During the set of six tasks that make up subnetwork 30, the pilot flics the airciaft using the outside view as a
guide during about 70-80% of the flight time. When the pilot switches from instrument flying to the outside
view, he or she should be at approximately 45 degrees from the landing point. The pilot checks and adjusts his
or her AOB and references the "ball" on the carrier, which informs the pilot il he is coming in too high or oo
low. If the pilot docs not sce the ball, he or she must exit to task number 8, which eatails flying over the carricr.
If the pilot sces the ball, he or she deercases altitude to 275 to 300 feet.

Al this point the pilot Jeaves the Cutside View subnetwork and begins what the "Start" subnetwork,
which compriscs thosc tasks that take place on the final approach to the carrier. The pilot begins with a second
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CALL “GEAR"
CALL "FLAPS"
CALL "OR SPEED_ XNOTSM 28.5
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Figura 4. Subnetwork 28: Radio Call +#1

21

[9PON

yAOM3ay e

T # [[ed olpey g2




IOOHSHAAO/FAANA IITANH00 (T6° 6T

dTHS IV 3001

H0Y S5T-1T

IA3A 057 = ITTV
STALIAA 06

N4OL GNVR X471 NIJEd
20V ,ST-TT ONIGNADSAd
1331 009 = IV

YOV NIVINIVH

SEFLDAQ 08T

(6°6Z
(8°62

(L°62

(9762
(s 62
(v-6T
(€762
(T 6t
(1°62

Instrument Flying

22

Subnetwork 29

Figure 5.

SUIART] JUIWNIJSU] £7 YUOM}3N  Z[9® :[9poj




[

45 DEGRELS

[9POK

cloe

ADJUST AOB

REFERENCE BALL

PIsIng @E HVOMIoN

MaLA 8

NO BALL (go to 8) SEE BALL

ALT = 275-300 FEET

Figure 6., Subnetwork 30: Outside View Flying

23




1%

radio call to the ship. This call is also represented by a subnetwork. The pilot gives his or her side number,
squadron name, aa indication that the ball has been seen, his or her fuel state, and his or her qualification
number. All of these tasks must be completed in order to exit this subnetwork. (See Figure 7).

The pilot then engages in four simultancous tasks. The pilot must check he or she is maintaining 15
units AOA (task 33), that he or she is descending at 500 feet per minute (task 34), that the ball is lined up (task
35), and that power is set to zero (task 36). Setting the power to zero does not mean the engines are turned
off, but that the pilot is at appropriate throttle for the approach. Immediately following this, the pilot checks
the vertical slope index for the last time.

The final subnetwork (# 38) of the model consists of several critical simultancous procedurcs called the
Groove Scan. The pilot repeatedly checks the ball, the AOA, and the line up, until the plane has landed. During
this interval, the LSO informs the pilot by radio as to the accuracy of the approach and corrections that should
be made. If the the pilot fails to respond to an LSO instruction, the LSO waves the pilot off. In that event, the
pilot must exit to the Downwind procedures (subnetwork 22) and attempt another landing from there. (For a
diagram of these procedures, see Figure 8.) If the pilot responds appropriately, he or she exits the subnetwork
and performs the final tasks, which take place on the carricr,

'Tasks 40 through 42 consist of touching down on the carrier and immediately and simultancously
applying full thrust and pulling in the speed brakes. If the hook catches a wire, the pilot can shut down the
aircraft, If the hook does not catch a wire, the pilot must perform a touch-and-go and return 1o the Downwind
procedures (subnetwork 22) to try again.

5. BOOTSTRAP CONFIDENCE INTERVALS

Efron’s bootstrap is a nonparametric technique for estimating variation in a statistic (Efron, 1978, 1982
1988; Efron and Tibshirani, 1991). The procedure involves repeatedly drawing subsamples from an original data
set, The statistic of interest is calculated in each subsample and the frequency distribution of its values is taken
as an approximation to the statistic’s actual sampling distribution.

The bootstrap is noted for wide applicability and a remarkable ability to extract information from
samples (Efron, 1982). Several investigators have noted, however, that standard bootstrap confidence intervals
(ClIs) for the correlation coefficient yield overly liberal Type 1 error rates in small samples when a is set to .05
ot less (e.g., Efron, 1982; Rasmussen, 1987, 1988; Strube, 1988). This bias may derive from a tendency of the
bootstrap to produce too few subsamples with extreme values of the statistic under examination (Young &
Daniels, 1990). Efron (1988) has observed that, although the bootstrap performs well with « set to .10,
nonparametric bootstrap Cls perform better when "not pushed too far toward extreme coverage probabilities”
(p. 295). In psychology and many other ficlds, however, it is conventional to set Type I error rates to .05 or less.
Thus, Rasmussen (1987), Strube (1988), and others have advised caution in applying the bootstrap in small
samples.

Bootstrap sampling is performed by randomly drawing observations from an empirical data set.
Drawings arc made with replacement and performed in such a way that each of the original observations has
an cqual probability of being drawn, The number of obscrvations drawn for each subsample, n, is vsually sct
equal to the number of observations in the original sample, The number of bootstrap subsamples drawn, N,

varies with the problem, Nonparametric bootstrap Cls are typically based on 500-2000 subsamples; Efron (1988)
suggests using a minimum of 1,000 subsamples,

A nonparametric, "percentile-method” bootstrap CI for an arbitrary statistic, 0, is generated by drawing
N bootstiap subsamples, calculating the statistic’s sample estimate, 8, in cach subsample, finding the 100a/2 and
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100(1 - «/2) percentiles of the frequency distribution of §-values thus produced, and taking the interval between
these percentiles as the range of a 100(1 - a)% CI. In this way, the percentile method “automatically” determines
approximate confidence limits associated with a given probability of Type I error. The data are not assumed to
follow any specific probability distribution. The method does, however, depend on the assumption that
distributions of bootstrap subsamples tend to reflect the forms of actual sampling distributions. The results of
Rasmussen (1987, 1988) and Strube (1988) suggest that this assumption may be invalid when n is small and the
desired a is .05 or less.

Several corrections for the percentile method’s bias have been proposed, The bias-corrected percentile
method (Efron, 1982) yields Cls with improved coverage propertics. However, the bias-corrected percentile
method reintroduces parametric assumptions. Furthermore, Monte Carlo studies have shown that the corrections
it produces can be insufficient when n is small and « is sct to .05 or less (Strube, 1988). The accelerated
bias-corrected percentile method (Efron, 1987) can be quite accurate in some situations. This method has been
criticized, however, for depending on an analytic correction factor that can be difficult or impossible to calculate
(Loh & Wu, 1987).

Iterated bootstrapping is a computationally intensive approach to correcting the bootstrap’s bias (Beran,
1987; Hall, 1986; Hall & Martin, 1988; Martin, 1990). Like the ordinary percentile method, the iterated
percen’ile method sets confidence limits automatically, without parametric assumptions, An iterated bootstrap
95% Cl for the mean can be calculated by drawing N first-order bootstrap subsamples from an empirical sample
and M sccond-order subsamples from each first-order subsample. A percentile-method CI is derived from each
of the N sets of second-order subsamples, The lower and upper cutoff percentages of the second-order Cls are
adjusted until 95% of the intervals cover the sample mean, The adjusted cutoff percentages are then substituted
for 100a/2 and 100(1 - a/2) in an ordinary percentile-method CI for p calculated from the means of the first-
order bootstrap subsamples,

The Monte Carlo studies described here were performed to examine the Type 1 error rates of
iterated-bootstrap 95% Cls for the mean in small samples drawn from non-normal populations. A CI for the
mean expresses the precision with which a measurement has been obtained; it also can be used to test hypotheses
about the location of u. For example, a 100(1 - a)% CI for 4 that does not cover 0 can be used to reject the
null hypothesis that the data were sampled from a population with g4 = 0 at a significance level of . Hence,
the results of this study are directly relevant to one-sample hypothesis tests, such as tests of differences between
correlated observations and 1-df orthogonal-polynomial contrasts.

Method

The simulations described here were written in Fortran-77 and rup on an Intel 860 reduced instruction
set procescor installed in a desktop PC. Three types of Cls were examined: normal-theory (Student’s t),
percentile-method bootstrap, and iterated percentile-method bootstrap. Random samples of data were drawn
from two distributions, onc normal and one nen-normal. Normally distributed samples were generated by
drawing random values from a Gaussian distribution with 4 = 0 and o = 1. Non-normal samples were
generated by drawing random values from an exponential distribution with 4 = o = 1. Gaussian random
variables were generated by the direct method; exponential random variables were generated by the inverse
method (Zelen & Severo, 1970).

Normal-theory and percentile-method Cls were compared in normally and exponentially distributed
samples with sizes of 5, 10, 20, 40, 80, and 160.  Itcrated-bootstrap Cls were studied in normally and
exponentially distributed samples with sizes of 5, 10, 15, and 20. Onc thousand confidence intervals were created
in each cxperimental condition defined by a combination of CI type, probability distribution, and sample size.
The observed Type I error rate in each experimental condition was calculated ac the proportion of Cls that failed
to cover [,
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A normal-theory CI was calculated as x £ t; _, /2)@7), where Ly _ o/2 is the critical value of
Student’s t corresponding to 1 - a/2 = 975, with n - 1 degrees of frecdom, and s+ was the sample estimate of
the standard error of the mean, A percentile-method CI was calculated by drawing N = 1,000 bootstrap
subsamples from an empirical sample, calculating the mean of each subsample, and taking the 2.5th and 97.5th
percentiles of the subsample means as the 100a/2% and 100(1 - a/2)% limits of the 95% CI, respectively,

An iterated-bootstrap CI was calculated by drawing N = 1,000 first-order bootstrap subsamples from
an empirical sample, drawing M = 1,000 second-order bootstrap samples from each first-order sample, and
finding the means of the second-order samples. The N cumulative frequency distributions of second-order
subsample means were searched for the percentile that exceeded the sample mean in 2.5% of the distributions.
A similar search was performed for the percentile that exceeded the sample mean in 97.5% of the distributions.
An ordinary percentile-method CI was then constructed from the means of the first-order subsamples, with
100a/2% and 100(1 - «/2)% replaced by the percentages found in tie search through the sccond-order means,

Results and Discussion

Figure 1 illustrates the perforitance of the
normal-theory and percentile-method ClIs in nu rmally 0.25
distributed samples. The Type I error rates of the o
normal-theory intervals are near the nominal « level -
of .05 at all sample sizes. In contrast, the Type I ‘g
crror rates of the percentile-method intervals are go‘”’ X

~ N
B .05 |

substantially higher than .05 in small samples, Pepcentyle Mothod

averaging about 153 when n =5, and do not 0.10 d

approach .05 until n reaches about 40. In samples of 0.06 gl

about 40 or more observations, the percentile-method < ~ '_T ‘

bootstrap works quite well. Indeed, the average CI 0.00 ormfl Thepry

limits, not shown, are near those given by normal- 0 20 40 60 80 100 120 140 160 180

distribution theory. In small samples, however, the Semple Size

percentile method yields limits that tend to be

narrewer than those given by theory, a result that . .

accounts for the disproportionate numbers of Type I Figure 1. Empirical Type I error rate as a function of

CITOLS. sample size for percentile-method bootstrap and normal-

theory confidence intervals. The nominal protection

Figure 2 illustrates the performance of the lc.vcl' was 95%. Samples were drawn from a Gaussian

normal and percentile-method bootstrap intervals in ~ distribution.

samples drawn from an exponential distribution,

Both types of interval produce Type I errors at rates much larger than 05 in samples smaller than 20,

Interestingly, the parametric intervals are less biased than the nonparametric intervals. Neither interval, however,

performs especially well in the sample sizes examined here.

Figure 3 illustrates the performance of the iterated-bootstrap intervals in samples drawn from normal
and exponential distributions. In samples of 5 observations, the iterated-bootstrap’s Type I error rate is still high,
averaging about .096 in normal samples and about .139 in exponential samples. In samples of size 10, however,
Type 1 errors approach a = .05 in normal samples (averaging .062) and are only slightly higher in exponential
samples (averaging about .066 in the exponential data). In samples of 15 or more observations, the iterated
bootstrap’s observed Type I crror rate is ncar a = .05 in both normal and exponential samples. (The normal
approximation to the binomial suggests that the standard crror of the cstimate of a = .05 in samples of 1,000
should be about [(a)(1 - )/1000]'/2 = .007.)
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Conclusions

0.25
None of the methods yielded Type I error 0 1
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Except in the smallest samples (n = 5), the Sample Size

iterated-bootstrap intervals yielded Type I error rates

in Gaussian data that were nearly indistinguishable e )
from the Type I error rates of the normal-theory Figure 2: Empirical 'I.ype I crror rate as a function of
intervals. This is a remarkable performance for a sample size for pcrcgnule-mclhod bootstrlap.and norm.al-
nonparametric technique, given that the theory confidence intervals, The nominal protection
normal-theory Cls are optimal in Gaussian data, The ~level was 95%. ~ Samples were drawn: from an expo-
failure of the iterated bootstrap in the n = 5 nential distribution.

condition is disappointing but unsurprising, given the

uncertainties involved in reconstructing the sampling

distribution of the mean from so few observations, 0.26
Y

An iterated bootstrap requires substantially :’; 0.20 .
more computer time than the ordinary bootstrap, 5 016 ponentih
which is itself computationally demanding, When N ' \
and M are set to 1,000, for example, an iterated 2000
bootstrap requires drawing NM = 1,000,000 o /4
subsamples, calculating 1,001,001 values of the §:0.05 / - i . B
statistic of interest, and sorting 1,001 arrays of 1,000 & Norml
means. Some additional time is spent searching the 000 6 = 26 30

arrays of scecond-order means for the adjusted
percentile cutoffs. Calculations of this size take time,
but are not beyond the capabilitics of personal
computers, A problem with 15 observations and
values of N = M = 1,000 should take about 5 min on
an Intel 80386/20-bascd computer with a math
coprocessor, which may be less time than would be
necsssaty (o calculate the equivalent normal-theory
CI with pencil and paper. Larger problems would be
proportionally more time consuming.  These,
however, could be handled by the percentile method, or by normal-theory techniques.

Sample Size

Figure 3, Empirical Type I crror rale as a function of
sample size for iterated percentile-method bootstrap
confidence intervals, The nominal protection level was
95%. Samples were drawn from normal and exponential
distributions,

Two practical recommendations for data analysis are suggested by the results. First, ordinary pereendile-
method bootstrap Cls for ¢ may be of questionable value when Type I crror rates are to be controlled at values
as low as .05. This is because, when a < .05, percentile-method Cls may perform less well than parametric Cls
in small samples and no better than parametric Cls in large samples. Sccond, when a data set may have been
drawn from a skewed distribution, such as the cxponential, iterated-bootstrap Cls may be preferable to
parametric Cls if n is about 10 or more. Under these conditions, iterated Cls may vield better levels of Type
I error control than parametric CIs when the data are skewed, and approximately the same Type 1 error control
when the data are normal.
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