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STAATIS CABANIS

The work briefly described here was developed in connection with problems

arising from and related to the statistical cominication theory and the analysis

of stochastic signals and systems.

Part I considers questions raised by the observation of continuous time

random signals at discrete sampling times, and the transmission or storage of

analog random signals in digital form.

Part II considers non-Gaussian models frequently encountered in practical

applications. The goal is to learn how Gaussian and linear signal processing

methodologies should be adapted to deal with non-Gaussian regimes.

Part III initiates a study of wavelets and multiresolution analysis for

random processes, and Part IV deals with random filtering and the harmonic

analysis of nonstationary processes.

Item 8 is continuing Joint work with E. Nasry of the University of

California, San Diego. Items 4.5.6,9 and 11 are in collaboration with visitors

to the Center for Stochastic Processes: Houdr6, Lawniczak, Leskow, Mandrekar,

Rosinski, Surgailis, Taraporevala, Weron. Items 1, 2 and 3 are continuing work

with current and former Ph.D. students Su and Benhenni.

I. DIGITAL PROCESSING OF ANALOG SIGNALS

Continuous time signals are typically sampled at discrete times and

inferences are made on the basis of these samples, which may be further quantized

(or rounded-off) for digital processing. Items 1 and 2 describe work completed

on sampling designs for the estimation of regression coefficients and for the

estimation of a random process, and Item 3 discusses work in progress on the

degradation of the performance of sampling designs due to quantization.

1. Samvling designs for rexression coefficient estimation with correlated errors.

[1]

The problem of estimating regression coefficients from observations at a
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finite number of properly designed sampling points is considered when the error

process has correlated values and no quadratic mean derivative. Sacks and

Ylvisaker (1966) found an asymptotically optimal design for the best linear

unbiased estinmator (BLUE), which generally may lack numerical stability and

requires the precise knowledge of the covariance function of the error process.

Here, the goal is to find an asymptotically optimal design for a simpler

estimator which is relatively nonparametric (with respect to the error covariance

function). This is achieved by properly adjusting the median sampling design and

the simpler estimator introduced by Schoenfelder (1978). Examples with Wiener

and Gauss-Markov error processes are considered both analytically and

numerically.

2. Sampliri desirns for estimation of a random process. [2]

A random process X(t). O~t~l, is sampled at a finite number of appropriately

designed points. On the basis of these observations, we estimate the values of

the process at the unsampled points and we measure the performance by an

integrated mean square error. We consider the cases where the process has a

known, or partially or entirely unknown mean. i.e., when it can be modeled as

X(tl = m(t) + N(t), where m(t) is the nonrandom large-scale mean structure and

N(t) is the small-scale random structure which models the temporal dependence and

has zero mean and known covariance function. Specially. we consider (1) the case

where m(t) is known, (2) the semiparametric (regression) model where m(t) =

0 1 fl(t) + ... + Pqf q(t), the Pi's are unknown coefficients and the fi's are known

regression functions, and (3) the nonparametric case where the macroscopic mean

structure m(t) is unknown. Here fi(t) and m(t) are of comparable smoothness with

the purely random part N(t), and N(t) has no quadratic mean derivative.

Asymptotically optimal sampling designs are found for Cases (1), (2) and (3) when

the best linear unbiased estimator (BLUE) of X(t) is used (a nearly BLUE in Case

(3)), as well as when the simple nonparametric linear interpolator of X(t) is

used. Also it is shown that the mean has no effect asymptotically on the overall
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performance, and several examples are considered both analytically and

numerically.

3. The effect of quantization on the nerformance of sampling designs. [3]

The most common form of quantization is rounding-off, which occurs in all

digital systems. A general quantizer approximates an observed value by the

nearest among a finite number of representative values. In estimating weighted

integrals of time series with no quadratic mean derivatives, by means of samples

at discrete times it is known that the rate of convergence of the mean square

error is reduced from n to n1 5 when the samples are quantized (Bucklew and

Cambanis (1988)). For smoother time series, with k = 1,2.... quadratic mean

-2k-2
derivatives, it is now shown that the rate of convergence is reduced from n

-2
to n when the samples are quantized, which is a very significent reduction.

The interplay between sampling and quantization is also studied, leading to

(asymptotically) optimal allocation between the number of samples and the number

of levels of quantization.

II. NONGAUSSIAN MODELS

In continuing the exploration of non-Gaussian models we have studied stable

and more general infinitely divisible models. A new rich class of stationary

stable processes generalizing moving averages is introduced and studied in Item

4; the study of infinitely divisible processes with stable marginal distributions

is initiated in Item 5, and the ergodic properties of stationary infinitely

divisible processes are studied in Item 6. Random processes with

Eyraud-Farlie-Gumbel-Morgenstern finite dimensional distributions are studied in

Item 7.

4. Generalized stable movin averazes. [4]

Stationary stable processes have not yet been fully described and studied.

The main two classes are the harmonizable ones (which are superpositions of

harmonics with independent stable amplitudes) and the moving averages (which are
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filtered white stable noise). These classes are disjoint and may not cover a

vast collection of stationary stable processes. A new and very rich class of

stationary stable processes is introduced and studied. This new class

generalizes in a substantial way the moving averages, by means of an appropriate

randomization of the filter in the filtered stable noise representation. First

the characterization of the law of a generalized moving average (GMA) is

established, in terms of the parameters in the generalized moving average

representation. It is shown that CMA are mixing, so they have strong ergodic

properties, and that they are not harmonizable. They lead to a wealth of new

examples of self-similar processes, beyond the linear fractional stable motions,

and also of processes which are reflection positive, which is a useful weakening

of the Markov property.

5. Infinitely divisible processes with stable marginals. [5]

An interesting class of infinitely divisible processes consists of those

whose marginal distributions are stable. Here their detailed study is initiated

by finding for their multivariate distributions, conditions for mutual

independence and finiteness of joint moments, and by determining the form of

their regression function and of the conditional mean-square regression error.

6. Erzodicity and mixing of symmetric infinitely divisible processes. [6]

The hierarchy of ergodic properties of infinitely divisible stationary

processes is studied in the language of the spectral representation of these

processes. A characterization of ergodicity is given, it is shown that

ergodicity and weak mixing are equivalent, and a new characterization of mixing

is derived. Several examples are also discussed.

7. On Evraud-Farlie-Gumbel-Morzenstern (EFCM) random processes. [7]

A particularly simple class of multivariate distributions with given

marginals are the EFGM distributions. Their consistent form makes them natural

candidates for multivariate distributions of random process. The initial
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interest of this study was to explore the properties of EFQI random processes.

Instead it was discovered that there are fundamental problems inhibiting the

definition of smooth continuous-parameter stationary EFGM processes. Their

dependence structure is shown to be severely limited, which prevents them from

enjoying some of the weakest regularity properties, such as continuity in

probability and measurability. Discrete-time stationary EFG(I processes should

exist but nontrivial examples have not been constructed yet, and the most common

types of dependence structure cannot be exhibited by them. The resulting

limitations on nonstationary EFGM processes have not been explored. The

conclusion of this investigation is a warning that these simple models of

dependence may be inappropriate for sampled time or spatial processes. More

complex and more realistic forms of bivariate dependence need to be used. The

maximal and minimal correlation coefficient of a bivariate EFGM distribution is

also considered and those with maximal correlation coefficient equal to one are

characterized.

III. MULTIRESOLUTION DECOMPOSITION AND WAVELET TRANSFORMS OF RANDOM SIGNALS

The wavelet approximation of deterministic and random signals at given

resolution is considered in Item 8, along with the question of matching the

wavelet to the signal for improved quality of approximation. The properties of

the wavelet transform of random signals are considered in Item 9.

8. Wavelet aproximation of deterministic and random signals: Converzence

properties and rates. (8)
th

An n order asymptotic expansion is developed for the error in the wavelet

approximation at resolution 2-k of deterministic and random signals. The

deterministic signals are assumed to have n continuous derivatives, while the

random signals are only assumed to have a correlation function with continuous

n order derivatives off the diagonal - a very mild assumption. For

deterministic signals over the entire real line, for stationary random signals
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over finite intervals, and for nonstationary random signals with finite mean

energy over the entire real line. the moments of the scale function can be

matched with the signal smoothness to improve substantially the quality of the

approximation. In sharp contrast this is feasible only in special cases for

nonstationary random signals over finite intervals.

9. Wavelet transforms of random processes. [9]

A study of the properties of wavelet transforms of random processes has

been initiated. Their sampled values appear as coefficients in the wavelet

approximation of the process at a given resolution. A natural question is what

properties of the process are inherited to its wavelet transform, and,

conversely, what properties of the process can be read-off properties of its

wavelet transform. For random processes with finite second movement,

properties of the random process such as periodically correlated, wide sense

stationary, harmonizable, wide sense stationary increments and self-similarity,

are characterized by means of analogous properties of their wavelet transforms

at some scale. The case of random processes which do not have finite second

moments, such as stable and other infinitely divisible processes, will also be

considered.

IV. NON-STATIONARY PROCESSES

In pursuing the study of non-stationary processes, the random filters

which preserve the normality of non-stationary random inputs are characterized

and weak laws of large numbers are derived for periodically and for almost

periodically correlated processes which are not stationary or harmonizable.

10. Random filters which preserve the normality of non-stationary random

invuts. [10]

When a Gaussian signal goes through a (non-random) linear filter, its

output is also Gaussian. We are interested in characterising and identifying
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those random linear filters which are independently distributed of their random

input and preserve its normality. When the input is a stationary Gaussian

process, then the output is Gaussian only when the linear filter has non-random

gain. Here we consider non-stationary random inputs, for which the situation

is more delicate. When the input has stationary independent Gaussian

increments, then the output is Gaussian only for linear filters with partly

non-random gain and partly random sign. On the other hand when the Gaussian

input has nonstationary independent increments, or is a non-stationary noise,

or is harmonizable, then the output is Gaussian only for linear fil -rs with

random sign.

11. Laws of larze numbers for periodically and almost periodically correlated

processes. [11]

This paper gives results related to and including laws of large numbers

for possibly non-harmonizable periodically and almost periodically correlated

processes. In the case of periodically correlated processes, the conditions

required for the weak law results are given in terms of the spectral

distribution function associated with the average correlation function. The

idea of a stationarizing random shift is used to obtain strong law results for

such processes. In order to obtain similar results for almost periodically

o dprocesses, we have to impose the hypothesis I k2 < w (excluding anycorrelated poess ehv oips h yohss ~ ~ (xldn n

Xk = 0) on the countable set of frequencies {Xk} appearing in the Fourier

series of the correlation function R(t+T,t) - Ik a(Xk',) exp(ikt). The

conditions required for the weak law results are again given in terms of the

spectral distribution function associated with the average correlation

function. A version of the random shift result is also obtained for these

processes.
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G. KALLIANPUR

The research briefly described here falls in the following broad areas:

I. Infinite dimensional stochastic differential equations and stochastic

partial differential equations. The general aim is to develop the theory

necessary to treat stochastic models of infinite dimensional dynamical systems,

in such areas as reaction-diffusions, neurophysiology and fluid mechanics. The

work is a continuation of research done jointly with Professors T.S. Chiang and

P. Sundar, and has been carried out with D. Baldwin, J. Xiong, R.L. Karandikar

and his student, A. Bhatt of the Indian Statistical Institute. Baldwin and

Xiong are Ph.D. students working with me.

I. Skeletal theory of filtering. This takes a new look at finitely

additive nonlinear filtering theory and connects it with skeletons defined and

used by Zakai in the study of Wiener functionals.

II. Fevnan distributions. A definition of the Feynman "integral" as a

distribution in the sense of Schwarz is given and its value is calculated.

IV. Time series. A time domain analysis of continuous time, periodically

correlated (PC) processes is presented. This is joint work with H. Hurd.

V. Stationary random fields. Professor V. Mandrekar (on sabbatical leave

atthe Center) and I have started working on a monograph on the subject. In

addition to presenting a comprehensive account of both the time domain analysis

and the spectral theory of second order stationary random fields, some new

results and new proofs of our earlier results have been obtained. Work is

progressing on applications of the theory to ARMA models and texture analysis

problems.

I. INFINITE DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS (SDE) AND SIOCHASTIC

PARTIAL DIFFERENTIAL EQUATIONS. [1,2,3,4,5]

1. Nuclear space valued SDE's driven by Poisson random measures. [1,2]
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Most of the work on stochastic partial differential equations (SPDE) or

infinite dimensional stochastic differential equations (SDE) has been concerned

with diffusions, i.e. where the randomness arises from space-time Gaussian white

noise. However, there are important physical and physiological phenomena where

it is a process with jumps such as a stream of Poisson impulses that is the

cause of stochastic variability. An important class of examples is related to

the fluctuation of voltage potentials in spatially extended neurons where the

excitatory and inhibitory synaptic impulses are most naturally modeled as inputs

of discontinuous processes. Furthermore, when more than one space dimension is

involved, nuclear space valued (i.e. distribution valued) SDE's have to be

considered.

The existence and uniqueness of solution has been established in joint work

with J. Xiong. An outline of the proofs is given in [1], the details being

provided in the first part of [2]. The SDE in question is of the following form

= x + f; A(sXs)ds + f;.J G(s.Xsu)N(duds)

where A: R+xO' --+ 0', G: R Rx'xU --+ 0', (UIYw) is a a-finite measure space,

N(duds) is a Poisson random measure on R+xU with intensity measure 4(du)ds, and

N is the compensated random measure.

2. Diffusion approximations. [2]

When the number of Poisson processes involved is large, as in the case with

the fluctuation of neuron potentials, and the amplitude of each Poisson noise is

small, one can expect it to be approximated by a Wiener process. This leads to

a 0'-valued diffusion equation of the form

dXt = A(t.Xt)dt + B(t.Xt)dWt

where W is a cylindrical Brownian motion on a suitable Hilbert space (or,

14



equivalently, a 0'-valued Wiener process). A and B are functions defined on

[O,0a)x ' . A mapping into 0' and B a continuous linear operator on 0'. The

precise conditions under which the diffusion approximation is derived together

with the proof are given in [2].

3. Propagation of chaos. [3]

This topic, investigated earlier for diffusions by T.S. Chiang, P. Sundar

and myself in [3] is now studied for the Poisson random measure driven SDE's.

For the discontinuous stochastic model it is shown that the asymptotic behavior

of the sequence of empirical measures

nn
V n() = L 1 ( (6x = Dirac measure at x)

nj=l

is similar. In other words, vn converges weakly to the Dirac measure 6X where

'A0 is the unique solution of the corresponding McKean-Vlasov SDE. Hence the

asymptotic behavior of vn is the same for the diffusion and the discontinuous

cases but the McKean-Vlasov equations are, of course, different in the two

cases.

4. Existence and uniqueness of nuclear space valued McKean-Vlasov SDE's. [4]

Jointly with D. Baldwin, the infinite-dimensional nuclear space-valued

equations are considered (although similar techniques seem to work for the

Hilbert space valued case). The McKean-Vlasov diffusion SDE is studied as an

independent problem without linking it to the propagation of chaos of

interacting systems. Existence and uniqueness of solution are established.

5. Propazation of chaos results for Hilbert space-valued diffusions. [5]

The research on this problem was begun more than a year ago during a brief

visit to the Center by Professor Karandikar. However, the present work is a
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substantial revision with new results obtained during further collaboration with

Karandikar and Ajay Bhatt at the Indian Statistical Institute. Delhi. The

asymptotics of the sequence

N
rN 1

j=l J

is investigated. The processes xN' j (J=l .....N) satisfy an interacting system

of Hilbert space (H-) valued SDE's of the following kind:

dXt = -LXtdt + Aa(t,X t)dt + Bb(t.Xt)dWt

where W is a cylindrical Brownian motion in H, a and b are suitable coefficient

functions and L,AB satisfy the following conditions:

(i) Tt = e- is a contraction semigroup on H;

(ii) L- 1 , A.B are mutually commuting bounded, self adjoint operators on H.

and L-1 has a discrete spectrum;

(iii) AB and L- 1 have common eigenfunctions;

(iv) A2L- and B2L-6 (0 < e < 1) are nuclear.

The martingale problem for the McKean-Vlasov SDE in H is shown to have a unique

solution. A propagation of chaos in C([O,T],H) is obtained for I N .

II. A SKELETAL THEORY OF NONLINEAR FILTERING. [6]

It is shown that the nonlinear filtering theory based on finitely additive

white noise (developed earlier by R.L. Karandikar and myself) is a skeletal

theory in the technical sense in which M. Zakal has introduced the term

"skeleton" into the study of Wiener functionals [7].

Using the notation and terminology of [6] what is shown is the following.

Let S be a Polish space and let F be an S-valued random variable such that

F = R f for some accessible random variable f belonging to V0(E.La;S). R beinga a

the lifting map. Then f is a skeleton of F. Suppose (H,B,p) is an abstract
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Wiener space and F a real valued random variable on NbcB such that F = R f for

some f e t2(E.C5a). Then f is a -skeleton in the sense of Zakal for the

orthonormal basis (iV} agpearing in the definition of the independent N(O.1)

random variables Lo(Pi) on B. The skeleton and F are related by

k
f(w. I. Lo(vi)(x)vi) --- F(wo~x)

i=l

in L2 of the representation space.

Precisely this idea of a skeleton has also been used (with suitable

modifications) by G.W. Johnson and myself in obtaining necessary and sufficient

conditions for the existence of Stratonovich multiple Wiener integrals.

III. FEYNMAN DISTRIBUTrIONS. [8]

The considerable literature on Feynmnn integrals (in the work of

mathematicians at least) is devoted to finding a rigorous justification for

R. Feynmnn's brilliant but heuristic derivation of the integral that bears his

name. That such a justification is both necessary and difficult to obtain has

been clear since R.H. Cameron in the U.S. and Y. Daletskii in the Soviet Union

proved several years ago that the countably additive, complex-valued measure

envisaged by Feynmnn cannot exist. Much of the effort in recent years has

concentrated on establishing the Feynman integral via limiting procedures and

analytic continuation techniques.

The present research is related to and an outgrowth of joint work with

G.W. Johnson on homogeneous chaos expansions and with A.S. Ustunel on

distributions on abstract Wiener spaces. The main idea is to think of the

Feyman "integral" not as an integral but as a more general object such as a

distribution in the sense of a Schwartz distribution in classical analysis. The

space of test functionals is a subspace of Wiener functionals whose chaos

expansions have natural extensions in the sense defined by Johnson and
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Kallianpur in their work. A nuclear topology is introduced in this space 0.

The Feynman distribution is defined as a continuous linear functional on 0.

It is not.yet clear how general this definition is but it seems to contain

the Albeverio-Hoegh-Krohn theory of Feynmun-Fresnel integrals. A specific

method for the evaluation of the distribution at any particular element of 0 is

also given. The existence and properties of k-traces of Hilbert-space valued

kernels plays an important part in the work.

IV. PERIODICALLY CORRELATED PRoESSES. [9]

A complex-valued second process {X(t). t e R} is periodically correlated

(PC) with period T if

m(t) := E(X(t)) = m(t+T) and

R(s.t) := EX(s)X(t) = R(s+Tt+T)

for every st and these conditions hold for no other T'. O<T'<T. It is assumed

without loss of generality that m=O. The results obtained fall into three

categories:

1. Representation of PC processes: A quadratic mean continuous process X

is PC with period T if and only if there exists a continuous group of unitary

operators {U(T), T e EQ and a continuous, periodic function P(t) taking values

in L2 (0) such that
I

X(t) = U(t)P(t).

A stochastic Fourier integral representation for X(t) in terms of a process

Z(A.t) is derived where, for each t, Z(-.t) is orthogonally scattered and Z(At)

is continuous in quadratic mean and periodic in t with period T.

A second result is a Karhunen-Lo~ve type representation from which the
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following expansion for the covariance is derived:

R(st) = I I rjk([s/T]-[t/T])*J(s) VJFt
J=l k=l

where

(a) the 0(t) are continuous periodic functions which are eigenfunctions

of R(s.t) (O~s. t K T) in L2[OT];

(b) rjk(m) is a cross correlation matrix of a stationary (possibly

infinite dimensional) vector process with rjk(O) = and I X < . (XJ jkl

being the eigenvalues 
of R(s.t) in L 2[O,T];

(c) the convergence is uniform.

2. Time domain analysis: Wold-like decomposition of PC processes. A PC

process X with period T has the unique decomposition

X(t) = Y(t) + Z(t)

where the process Y, Z are mutually orthogonal, PC processes with the same

period,

(a) Y is regular (purely non deterministic) and Z is singular (purely

deterministic);

(b) Uy and UZ are, respectively, the restriction to the Hilbert spaces H(Y)

and H(Z) of UX , the generating unitary operator of X;

(c) Y(t) and Z(t) are subordinated to X(t).

3. The relationship between L2[O.T]-PC processes and L2 [O,T]-valued

stationary sequences. {Xn}. n a Z, is an L 2[O,T]-valued stationary sequence if

each Xn is an L 2[O.T]-measurable random variable and E<X, h1 > <X m.h2 > =

R(n-m;h1 ,h2 ), for every hl,h 2 e L2 [O,T]. E<Xnh> is taken to be 0. After

suitable and natural equivalence relations have been defined in 9, the class of
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L2[0,T]-PC processes and V. the class of all L2[OT]-valued stationary

sequences, a bijection is established between I and V9. This fact makes it

possible to relate the spectral theory of continuous time, L2[OT]-PC processes

to the spectral theory of L 2[OT]-valued stationary sequences and thus to solve

the prediction problem for PC processes.

V. STATIONARY RANDOM FIELDS. [10]

Professor Mandrekar and I have started working on a monograph on second

order, discrete time stationary random fields. Our aim is to combine our

earlier work on time domain analysis with the spectral theory recently developed

by various authors (e.g. Helson and Lowdenslager, Chiang Tse-Pei, Kallianpur,

Miamee and Niemi, Korezlioglu and Loubaton). In the course of this work. we

were able to improve several of the earlier results as well as discover new

ones. This work is in progress and other problems (ARKA models) and

applications (e.g. texture analysis) remain to be investigated.
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N.I. LEADBrr

The research undertaken in this reporting period will be described in the

following categories:

1. Random measures associated with high levels of a stationary stochastic

process

2. Limit theorems for nonstationary random measures

3. Central limit theory for random additive functions of intervals

4. Estimation of tail properties of stationary stochastic sequences

5. Basic structure of random measures and point processes.

1. Random measures associated with high levels of a stationary stochastic

process.

Major investigations were conducted on two types of random measure

associated with high values of a (suitably mixing) stationary process

t a R).

(a) Exceedance random measure for multiple levels.

If uT is a level for each T > 0 (T being an "observation time") the

(UT)
corresponding exceedunce random measure ET is defined for Borel sets B by

(Ur) (B) = T {E(t) f 1r dt

(TUT)f~)> T

That is fT (B) is the amount of time in the set B for which the process f(t)

exceeds uT. The basic properties of ET were developed in E1] where it was

shown that any distributional limits for a normalized version 'TLT of T must

necessarily be of a general compound Poisson type.

In the current period this work was generalized to apply to vector
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exceedance random measures T = (T. '*T2...Tk) where CT.i is the
(1) (1) (k)--T~k

exceedance random measure corresponding to a level (.) UT= (uI) (k).

This work required the development of new techniques for vector cases which

were not needed for the scalar case.

An important class of processes considered are those we have called

"deterministic at high levels". This notion generalizes the property of the

stationary Gaussian process that excursions over a high level (i.e. "peaks")

are approximately parabolic in shape, the parabola being determined by one

random parameter (e.g. the height of the peak above the level). In particular

this means that the peak height above a high level determines that above any

higher level, which is essentially the defining property of the class

considered.

The structure of such processes is discussed and the above general

multilevel theory applied to the class. This work is nearing completion and

will be reported in [2].

(b) The excursion random measure.

For a stationary (mixing) sequence of random variables (fn) the point Nn

in the plane with points at (J/n. un ( )), and a suitable family of levels

Un(T) , T > 0. has important bearing on extremal properties of {fn), and has

been well studied (cf. [3]). For a stationary process {f(t)} in continuous

time and levels UT(T) a corresponding random measure CT may be defined on

(Borel sets of) the plane by

CT(E) -1 dt
{(t/T, UT (ET))eE)

CT is intimately related to the exceedance random measures of (1) above by
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(uT(a)) (uT(b))
CT(B x [a.b)) = T B) - CT (B)

The properties of the excursion random measure CT have been investigated and

reported in [4]. In particular, the possible distributional limits for CT have

been characterized as a subclass of infinitely divisible random measures, and

the Laplace Transforms of the limits determined. A number of examples.

including stable and Gaussian processes are discussed, illustrating the

results.

2. Limit theorems for nonstationary random measures.

In this effort the convergence-properties of non-stationary random

measures on the real line were investigated along the same lines as the

stationary case of [1]. Similar limit theorems hold, but less can be said

about the specific form of the limit due to the nonstationarity. However

sufficient conditions (in terms of convergence of "cluster size distributions")

may be given, along with theorems characterizing the possible limit laws.

The results obtained have been generalized to apply to uector random

measures, and specialized to the case of exceedance random measures by

nonstationary processes (satisfying appropriate mixing conditions). The

results of the work, which is Joint with S. Nandagopalan, will be reported in

[5).

3. Central limit theory for additive random interval functions.

A systematic treatment of central limit theory for additive functions of

intervals was undertaken in the previous reporting period and described in [6].

We have further extended this work in collaboration with H. Rootzen in the

present period. In particular central limit theorems for sums of a stochastic
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sequence have been obtained, complementing the results previously included on

array sums. This expanded work is reported in [6].

4. Estimation of tail Properties of stationary seguences.

Further work has also been done on estimation of parameters of exponential

and regularly varying tails of marginal distributions for a stationary

sequence. The initial research was reported previously in [7] and submitted

for publication to the Annals of Statistics. At the editor's suggestion

further work was undertaken - to provide some additional theory, and

applications to standard time series models.

This has been completed and the resulting paper is being reviewed by

Annals of Statistics. Part of this work concerns estimation of the so-called

extremal index of a stationary sequence and this is being continued in current

research effort.

5. Basic structure of random measures and point processes.

Significant progress was made in this reporting period on continuing

research into the development of basic foundational theory for point processes

and random measures. Existing rigorous theory (cf. [8]) is typically based on

a highly topological framework. However a principal use of the topology is to

generate measure theoretic apparatus, which surely constitutes the natural

"heart" of the subject.

This effort, then, is to develop the basic theory in such a way that as

far as possible only necessary and minimal assumptions are used. For example

the important Poisson processes and their relatives may be defined on a

virtually arbitrary measurable space, whereas properties such as regularity,

and representation in terms of atoms, require simple separation axioms.

The study has beneficial didactic consequences but its main objectives are
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(i) to remove unnecessary assumptions that could burden applications and (ii)

to provide the best framework for further theoretical development. In some

areas - e.g. distributional convergence - at least implicit topological

concepts are necessary to some extent and current effort is addressing these

issues.
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RIa HD C. BRADLEY

Professor Bradley of the department of Nathematics at Indiana University

visited the Center for five months and conducted research on random fields,

including their dependence structure and central limit theory, [1.2,3] and on

Markovian representations of time series [4].

1. On the spectral density and asvmptotic normality of weakly dependent random

fields. [1]

For weakly stationary random fields, conditions on coefficients of "linear

dependence" are given which are, respectively, sufficient for the existence of

a continuous spectral density, and necessary and sufficient for the existence

of a continuous positive spectral density. For strictly stationary random

fields, central limit theorems are proved under the corresponding "unrestricted

p-mixing" condition and just finite or "barely infinite" second moments. No

mixing rate is assumed.

2. Equivalent mixing conditions for random fields. [2]

For strictly stationary random fields indexed by IRd or Zd , certain.

versions of the "strong mixing" condition are equivalent to corresponding

versions of the "p-mixing" condition.

3. Some examples of mixing random fields. [3]

Several classes of strictly stationary random fields are constructed, with

various combinations of "strong mixing" properties. The purpose is to

"separate" various mixing assumptions that are used in the literature on limit

theory for random fields.
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4. A limitation of Markov representation for stationary processes. [4]

Strictly stationary random sequences are constructed which satisfy

#-mixing (and even a slightly stronger mixing condition) with an arbitrarily

fast mixing rate (but not m-dependence), but which cannot be represented as an

instantaneous function of a strictly stationary real Harris recurrent Narkov

chain. The examples here are a modification of similar ones constructed

earlier by Berbee and the author which had an exponential mixing rate.
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XAVIER FUNInE

During his four month stay at the Center. Professor Fernique of the

University of Strasbourg continued his pioneering work on sample path

properties of stationary Gaussian processes taking values in general

topological spaces [1,2]. His main results are summarized below.

Let E be a Lusin and quasi-complete topological vector space, and E' its

d
topological dual. Let X be a stationary Gaussian random function on R and

taking values in E. It is shown that if for all y E E'. the real random

variable (X.y> has a modification with locally bounded paths, then X has the

same property.

Denote by co the space of infinite sequences {an} such that a --+ 0. It
0 n n

is then shown that X has a modification with continuous paths if E does not

contain c0 (in the sense made precise in [1]). In the opposite direction, if E

contains c0 , a Gaussian stationary E-valued random function can be constructed

with bounded paths which has no modification with continuous paths.

In a further study of Fr~chet spaces not containing co, Fernique has

obtained the following result [2]. Let (X n) be a symmetric sequence of

E-valued random variables. Suppose the random Fourier series .- Xnexp(i(Xn , t),

t Rd , has partial sums which are a.s. locally uniformly bounded in E. Then

it converges a.s. uniformly on every compact in Rd to an E-valued random

function with continuous paths.
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TAILUI HIDI

Professor T. Hsing of the Statistics Department of Texas A&M University

visited for the 1990-91 academic year. During this period he conducted

research in point processes and random measures associated with high values of

a stochastic process, parameter estimation for extreme order statistics in a

weakly dependent sequence, and on a theory for "sliced inverse regression".

This work was described in the following technical reports:

1. Point process convergence and asmptotic behavior of sums of weakly

deipendent random variables with heavy tails. [1]

Let (fE} be a strictly stationary sequence of random variables such that
P{IgI > x} is regularly varying at infinity with index -a < 0. Let an be such

that n P{JEIj > an} --+ 1 as n--*c and let the point process Nn (on R - {0})

have atoms at fj/an. The possible limits in distribution for Nn are

characterized under a weak mixing condition and a necessary and sufficient

condition is given for convergence. This yields the limiting distribution for

S n and illuminates the influence of the extreme order statistics on S
n S n

2. On some estimates based on sample behavior near high level excursions. [2]

Let (f ) be a stationary sequence of weakly -Aependent random variables

with marginal distribution F, and let M(k) be the k-th largest value of E1 , 1

J n. The estimation of the parameters of the asymptotic distribution of N(k)
m

is considered using a procedure motivated by a limit theorem pertaining to the

point process having points at (J/n, n(l-F(f ))), J=1,2..... A number of

statistical issues concerning the procedure are addressed, including the means

for selecting the tuning parameters. Estimation of the filter of the stable

moving average process, for which similar principles apply, is also considered.
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3. On the excursion random measure of stationary processes. [3]

The excursion random measure of a stationary process is a random measure

on ( x (O,.), which records the extent of excursions of high levels by the

process. (See report for M.R. Leadbetter where a precise definition is given).

The excursion random measure is asymptotically infinitely divisible and

satisfies certain conditions of stability and independent increments, under

very general conditions. A number of examples, including stable and Gaussian

processes, are considered, illustrating the results.

4. An asymptotic theory for sliced inverse regression. [4)

Sliced inverse regression is a nonparametric method for achieving

dimension reduction in regression problems. It is widely applicable, extremely

easy to implement on a computer, and requires no nonparametric smoothing

devices such as kernel regression. If Y is the response and X C I? the

predictor, in order to implement sliced inverse regression, one requires an

estimate of A = E{cov(XIY)} = cov(X) - cov{E(XIY)}. The inverse regression of

X on Y is clearly seen in A. One such estimate is Li's (1991) 2-slice

estimate, defined as follows: the data are sorted on Y. then grouped into sets

of size 2, the covariance of X is estimated within each group, and these

estimates are averaged. In this paper, we consider the asymptotic properties

1/2
of the 2-slice method, obtaining simple conditions for n -convergence and

asymptotic normality. A key step in the proof of asymptotic normality is a

central limit theorem for sums of conditionally independent random variables.

We also study the asymptotic distribution of Greenwood's statistics in

non-uniform cases.
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OLAV KMLLBM

Professor Kallenberg of the department of Mathematics at Auburn University

visited the Center for two months, and conducted research on exchangeable

stochastic processes

Symmetries on random arrays and set-indexed processes. [1]

A process X on the set N of all finite subsets J of N is said to be

spreadable, if (Xpj) = (X) for all subsequences p = (pl,P 2 .... ) of N. where

pJ = {Pj ; J C J). Spreadable processes are characterized in this paper by a

representation formula, similar to those obtained by Aldous and Hoover for

exchangeable arrays of random variables. Our representation is equivalent to

the statement that a process on N is spreadable, if and only if it can be

extended to an exchangeable process indexed by all finite sequences of distinct

elements from N. The latter result may be regarded as a multivariate extension

of a theorem by Ryll-Nardzewski, stating that, for infinite sequences of random

variables, the notions of exchangeability and spreadability are equivalent.
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7Ik=Y LIKDVALL

Dr. Torgny Lindvall. of the Mathematics Department of Chalmers University

Sweden, visited the Center for a two month period (Nov.-Dec. 1990). Dr.

Lindvall is a foremost expert on the method of "coupling" in probability

theory. During his visit he worked in inequalities for stochastic processes.

Poisson approximation and problems in coupling. The results obtained will be

reported in [1].
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V. NANIEKAR

Professor V. Mandrekar of the Department of Statistics and Probability at

Michigan State University visited the Center for 7 months. He worked on the

spectral analysis of stochastic sequences with finite moments of order p 2 1.

including stable sequences. He also worked with S. Cambanis, J. Rosinski and

D. Surgailis on the study of a new rich class of stationary stable processes,

and with G. Kallianpur on stationary random fields.

1. On the spectral representation of a sequence in Banach space. [1]

The paper gives the spectral representation of absolutely continuous

random sequences with finite moments of order p 2 1 (or more generally with

values in a Banach space). It is shown that this class includes both the

stable harmonizable and the moving average sequences, for which explicit

representations are computed. This work also provides a spectral

representation for non-stationary processes in the general set-up. The special

case when p = 2 (or when the Banach space is a Hilbert space) is presently

under investigation.

2. Spectral theory of periodically and quasi-periodically stationary stable

sequences. [2]

This paper develops a spectral theory for (periodically) T-stationary

sequences and quasi-periodically stationary stable sequences. We use the

notion of the unitary operator of a periodically correlated (PC) sequence to

extend the spectral theory and representations introduced by Gladyshev for PC

sequences to the stable sequences. The extended results are obtained by using

the spectral representation for an isometric operator on a space possessing the

unconditionality property for martingale differences. The quasi- periodically

stationary stable sequences are then seen to be a natural extension of the
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T-stationary sequences. Finally, we show that the purely non-deterministic PC

sequences may be given as moving averages of white sequences with respect to a

periodic family of coefficients.

3. Generalized stable moviru averages. [3]

Stationary stable processes have not yet been fully described and studied.

The main two classes are the harmonizable ones (which are superpositions of

harmonics with independent stable amplitudes) and the moving averages (which

are filtered white stable noise). These classes are disjoint and may not cover

a vast collection of stationary stable processes. A new and very rich class of

stationary stable processes is introduced and studied. This new class

generalizes in a substantial way the moving averages, by means of an

appropriate randomization of the filter in the filtered stable noise

representation. First the characterization of the law of a generalized moving

average (GMA) is established, in terms of the parameters in the generalized

moving average representation. It is shown that GCA are mixing. sc. they have

strong ergodic properties, and that they are not harmonizable. They lead to a

wealth of new examples of self-similar processes, beyond the linear fractional

stable motions, and also of processes which are reflection positive, which is a

useful weakening of the Markov property.

4. Stationary random fields. [4]

Professors Mandrekar and Kallianpur have started working on a monograph on

second order, discrete time stationary random fields. The aim is to combine

our earlier work on time domain analysis with the spectral theory recently

developed by various authors (e.g. Helson and Lowdenslager, Chiang Tse-Pei,

Kallianpur, Miamee and Niemi, Korezlioglu and Loubaton). In the course of the

work, they were able to improve several of the earlier results as well as
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discover new ones. This work is in progress and other problems (ARMA models)

and applications (e.g. texture analysis) remain to be investigated.
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JAN BOSIXK

Professor Rosinski of the Department of Mathematics at the University of

Tennessee in Knoxville visited the Center for 4 months. He conducted research

primarily on classes of non-Gaussian processes, studying a new and rich class

of stationary stable processes jointly with S. Cambanis, V. Mandrekar and D.

Surgailis, and also the distribution of certain important functionals of

infinitely divisible processes.

1. Generalized stable moving averages. [1)

Stationary stable processes have not yet been fully described and studied.

The main two classes are the harmonizable ones (which are superpositions of

harmonics with independent stable amplitudes) and the moving averages (which

are filtered white stable noise). These classes are disjoint and may not cover

a vast collection of stationary stable processes. A new and very rich class of

stationary stable processes is introduced and studied. This new class

generalizes in a substantial way the moving averages, by means of an

appropriate randomization of the filter in the filtered stable noise

representation. First the characterization of the law of a generalized moving

average (OMA) is established, in terms of the parameters in the generalized

moving average representation. It is shown that GMA are mixing, so they have

strong ergodic properties, and that they are not harmonizable. They lead to a

wealth of new examples of self-similar processes, beyond the linear fractional

stable motions, and also of processes which are reflection positive, which is a

useful weakening of the Markov property.

2. Distributions of subadditive functionals of sample paths of infinitely

divisible processes. [2]

Subaduitive functionals on the space of sample paths include suprea,
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integrals of paths, oscillation on sets, and many others. In this paper we

find an optimal condition which ensures that the distribution of a subadditive

functional of sample paths of an infinitely divisible process belongs to the

subexponential class of distributions. Further, we give the exact tail

behaviour of the distributions of such functionals, thus improving many recent

results obtained for particular subadditive functionals and for particular

infinitely divisible processes, including stable processes.

3. Remarks on strong exponential integrability of vector valued random series

and triangular arrays. [3]

A sharp result on the strong exponential integrability of the norm of sums

of independent uniformly bounded Banach space-valued random vectors is

established based on L6vy's decoupling method.
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PAIUKANAEIAN SNDAR

Dr. Sundar of the Mathematics Department at Louisiana State University

continued his research on stochastic partial differential equations during his

one month visit to the Center in the summer. He has been interested in

generalizations of Girsanov's theorem for laws induced by solutions of SPDE's.

He does not have a general result yet and has been working on special

examples that might suggest the lines of attack on the problem. One result he

has obtained is the following: If u(t.x,w) is the unique solutionn of the SPDE

-~ =Au + * 0O<x < W.
t tx'

with 0 initial condition and Neunmann boundary conditions, then the (Gaussian)

measure induced by u is singular with respect to the law of the Brownian sheet.

A technical report containing examples and general results will be

prepared after further work on these problems.
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DOKATAS SJURAILIS

Dr. Surgailis of the Department of Mathematical Statistics of the

Lithuanian Academy of Sciences in Vilnius visited the Center for 2 months. He

introduced a rich new class of stationary stable processes generalizing the

moving averages of stable noise and initiated an indepth study of this class

jointly with S. Cambanis, J. Rosinski and V. Mandrekar.

1. Generalized stable moving averages. [1]

Stationary stable processes have not yet been fully des.T.<'ed and studied.

The main two classes are the harmonizable ones (which are superpositions of

harmonics with independent stable amplitudes) and the moving averages (which

are filtered white stable noise). These classes are disjoint and may not cover

a vast collection of stationary stable processes. A new and very rich class of

stationary stable processes is introduced and studied. This new class

generalizes in a substantial way the moving averages, by means of an

appropriate randomization of the filter in the filtered stable noise

representation. First the characterization of the law of a generalized moving

average (GMA) is established, in terms of the parameters in the generalized

moving average representation. It is shown that GMA are mixing, so they have

strong ergodic properties, and that they are not harmonizable. They lead to a

wealth of new examples of self-similar processes, beyond the linear fractional

stable motions, and also of processes which are reflection positive, which is a

useful weakening of the Markov property.

Reference

[1] S. Cambanis, V. Nandrekar, J. Rosinski and D. Surgailis, Generalized stable
moving averages, in preparation.
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PH.D STUIDEMr

PH.D. DGEES AWARM)

Y.C. SU, SAMPLING DESIGNS FOR ESTIMATION OF REGRESSION COEFFICIENTS AND OF A

* RANDOM PROCESS. [1]

Mr. Su completed his Ph.D. research under the direction of S. Cambanis.

His thesis research addressed two problems of sampling designs for stochastic

processes discussed in items 1 and 2 under S. Cambanis and abstracted below.

The problem of estimating regression coefficients with correlated errors

and of estimating a time series, both from observations of the continuous-time

series at a finite number of appropriately designed sampling points, are

considered when the time series has correlated values but no quadratic mean

derivative. For the estimation of regression coefficients we find an

asymptotically optimal sampling design for an estimator which is simpler than

the best linear unbiased estimator and relatively nonparametric, i.e. less

dependent on the covariance function. For the estimation of a random process we

consider the cases where the mean of the process is known, partially known, or

entirely unknown. Asymptotically optimal sampling designs are found when the

best linear unbiased estimator is used, as well as when the simple nonparametric

linear interpolator is used. It is shown that the mean has no effect

asymptotically on the overall performance. and examples are considered both

ananlytically and numerically.

Reference

[1] Y.C. Su, Sampling designs for estimation of regression coefficients and of a
random process, UNC Center for Stochastic Processes Technical Report No.
356, Dec. 91.
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DISSgffATIONS IN PREPARATIC

D. BALDWIN. NUCLEAR SPACE VALUED McKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS

Mr. Baldwin is completing his Ph.D. research under the direction of

G. Kallianpur. He is studying infinite dimensional nuclear space-valued

equations. (although similar techniques seem to work for the Hilbert space

valued case). The McKean-Vlasov diffusion SDE is studied as an independent

problem without linking it to the propagation of chaos of interacting systems.

Existence and uniqueness of solution are established.

J. XIONG, STOCHASrIC DIFFERENTIAL EQUATIONS IN DUALS OF NUCLEAR SPACES

Mr. Xiong is in the final stages of completing his Ph.D. research under the

direction of G. Kallianpur. His work is described in 1.1 and 2 under

G. Kallianpur and is abstracted below.

The following stochastic differential equation is considered on 0'

dXt = A(t.Xt)dt + f G(t.Xt_.u)N(dudt)
U

where A: R+ x 0' --+ ' and G: R+ x & x U -+ 0' are measurable, * is a countably

Hilbert nuclear space with strong dual 0', U is a Blackwell space and N is a

Poisson random measure on U x R+. The existence and uniqueness of solutions are

established by using a Galerkin-type approximation and a modification of the

Yamada-Watanabe argument about the uniqueness of strong solutions. A limit

theorem is also proven for approximating a nuclear space valued diffusion

process by a sequence of processes which are solutions of the SDE's considered

above. These results are applied to certain neurophysiological problems.

Further results on propagation of chaos and solutions of the corresponding

McKean-Vlasov SDE have also been obtained.
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TEQINICAL REPORTS
CENTER FOR STOCHASTIC PROCESSES

308. H.L. Hurd and J. Leskow, Strongly consistent and asymptotically normal estimation of
covariance for almost per';-dically correlated processes, Sept. 90.

309. 0. Kallenberg, From optional skipping to random time change - on some recent advances
in exchangeability theory, Sept. 90. Proc. of the Second World Congress of the
Bernoulli Society, to appear.

310. S. Cambanis and W. Wu, Multiple regression on stable vectors, Sept. 90. J.
Multivartate Anal., to appear.

311. W. Wu, Heavy tailed models: bootstrapping the sample mean and stable dependence
structure, Sept. 90. (Dissertation).

312. T.S. Chiang. G. Kallianpur and P. Sundar, Propagation of chaos for systems of
interacting neurons, Sept. 90. Proc. Trento Conf. on Stochastic Partial Differential
Equations, Springer-Verlag, 1991, to appear.

313. T. Koski and S. Cambanis, On the statistics of the error in predictive coding for
stationary Ornstein-Uhlenbeck-processes, Sept. 90. IEEE Trans. Information Theor..
to appear.

314. J.M.P. Albin, On the general law of iterated logarithm with application to Gaussian

processes in IMn and Hilbert space and to stable processes, Sept. 90. Stochastic Proc.
Appl., to appear.

315. S. Nandagopalan, Multivariate extremes and estimation of the extremal index,
Sept. 90. (Dissertation).

316. G.W. Johnson and G. Kallianpur, Multiple Wiener integrals on abstract Wiener spaces
and liftings of p-linear forms, Oct. 90. Proceedings of the Conference on White
Noise Analysis, T. Hida et al., eds., World Scientific, 1990. 208-219.

317. V.V. Sazonov and V.V. Ulyanov, An improved estimate of the accuracy of Gaussian
approximation in Hilbert space, Oct. 90.

318. Y.C. Su and S. Cambanis. Sampling designs for regression coefficient estimation with
correlated errors, Feb. 91.

319. G. Kallianpur and A.S. Ustunel, Distributions, Feynumn integrals and measures on
abstract Wiener spaces, Oct. 90.

320. G. Kallianpur and V. Perez-Abreu, The Skorohod integral and the derivative operator
of functionals of a cylindrical Brownian motion, Oct. 90. AppI. Math. Optimization,
to appear.

321. G.W. Johnson and G. Kallianpur, The analytic Feynumn integral of the natural
extension of pth homogeneous chaos, Oct. 90. Ctrcolo Rendtcontt dt Palermo,
Proceedings of the Conference on Measure Theory, Oberwolfach, 1990, (1991), to
appear.

322. D. Daley and T. Rolski, Finiteness of waiting-time moments in general stationary
single-server queues, Nov. 90. Ann. Appl. Probab. 1992, to appear.
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323. T. Hsing. Point process convergence and asymptotic behavior of sums of weakly
dependent random variables with heavy tails, Nov. 90.

324. S. Cambanis, On Eyraud-Farlie-Gumbel-Morgenstern random processes, Nov. 90. Advances
in Probability Distributions with Given Nargtnals, G. Dall'Aglio et al., eds., Kluwer
Academic, 1991, 207-222.

325. C. Kallianpur, A skeletal theory of filtering. Dec. 90. Liber Amicorum for Moshe
Zahat, Academic Press, 1991, 213-243.

326. V.V. Sazonov and V.V. Ulyanov, Speed of convergence in the central limit theorem in
Hilbert space under weakened moment conditions, Jan. 91.

327. T. Hsing and R.J. Carroll, An asymptotic theory for sliced inverse regression. Jan.
91.

328. A. Makagon and V. Mandrekar, On the spectral representation of a sequence in Banach
space. Feb. 91.

329. C. Kallianpur, Traces, natural extensions and Feynman distributions, Feb. 91.
Proceedings of the Conference on Gaussian Random Fields, Nagoya, Japan, August 1990,
(1991). to appear.

330. H.L. Hurd and J. Leskow, Estimation of the Fourier coefficient functions and their
spectral densities for #-mixing almost periodically correlated processes, Mar. 91.

331. X. Fernique, Analyse de fonctions aleatoires gaussiennes stationnaires A valeurs
vectorielles, Mar. 91.

332. R.C. Bradley, On the spectral density and asymptotic normality of weakly dependent
random fields, Mar. 91.

333. X. Fernique, Sur les espaces de Fr6chet ne contenant pas c0 . Mar. 91.

334. S. Cambanis. C. Houdr6, H.L. Hurd and J. Lesk'w. Laws of large numbers for

periodically and almost periodically correlated processes, Mar. 91.

335. R.C. Bradley, An addendum to "A limitation of Markov representation for stationary
processes", Mar. 91.

336. R.C. Bradley, Equivalent mixing conditions for random fields, Mar. 91.

337. T. Hsing, On some estimates based on sample behavior near high level excursions, Apr.
91.

338. J. Rosinski and G. Samorodnitsky, Distributions of subadditive functionals of sample
paths of infinitely divisible processes, Apr. 91.

339. J. Rosinski, Remarks on strong exponential integrability of vector valued random
series and triangular arrays. May 91.

340. C. Houdr6, A note on the dilation of second order processes. May 91.

341. R.L. Karandikar, A Trotter type formula for semimrtingales, May 91.

342. R.C. Bradley, Some examples of mixing random fields, June 91.

343. T. Koski. A nonlinear autoregression in the theory of signal compression. June 91.
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344. G. Kallianpur and J. Xiong, A nuclear-space-valued stochastic differential equation
driven by Poisson random measures, Sept. 91. Proc. InternattonaL Conference on
SPDE's, Springer, to appear.

345. 0. Kallenberg. Symmetries on random arrays and set-indexed processes, Sept. 91.

346. S. Cambanis, A.T. Lawniczak, K. Podgorski and A. Weron, Ergodicity and mixing of
symmetric infinitely divisible processes, Sept. 91.

347. Y.C. Su and S. Cambanis, Sampling designs for estimation of a random process, Sept.
91.

348. G. Hardy, G. Kallianpur, S. Ramasubramanian and J. Xiong, Diffusion approximations
and propagation of chaos results for nuclear space valued SDE's driven by Poisson
random measures, Sept. 91.

349. H. Hurd and V. Mandrekar, Spectral theory of periodically and quasi-periodically
stationary SaS-sequences, Sept. 91.

350. T. Hsing and M.R. Leadbetter, On the excursion random measure of stationary
processes, Oct. 91.

351. T. Byczkowski, J.P. Nolan and B. Rajput. Approximation of multidimensional stable
densities, Oct. 91.

352. S. Cambanis and E. Masry, Wavelet approximation of deterministic and random signals:
convergence properties and rates, Nov. 91.

353. R. Perfekt, Extremal behaviour of stationary Markov chains with applications,
Nov. 91.

354. S. Cambanis. Random filters which preserve the normality of non-stationary random
inputs, Nov. 91. To appear in Nonstattonary Random Processes and their AppLications,
A.G. Miamee and J.C. Hardin eds., World Scientific, 1992.

355. J. Olsson and Holger Rootzen, An image model for quantal response analysis in
perimetry, Nov. 91.

356. Y.-C. Su, Sampling designs for estimation of regression coefficients and of a random
process, Dec. 91.

IN PREPARATION

D. Baldwin and G. Kallianpur, Existence and uniqueness of solution of nuclear space
valued McKean-Vlasov equation.

K. Benhenni and S. Cambanis, The effect of quantization on the performance of
sampling designs.

S. Cambanis and C. Houdr6, Wavelet transforms of random processes.

S. Cambanis, V. Mandrekar, J. Rosinski and D. Surgailis, Generalized stable moving
averages.

S. Cambanis and A. Taraporevala, Infinitely divisible processes with stable marginal
distributions.
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H. Hurd and G. Kall'anpur. Periodically correlated and periodically unitary processes

and their relationsnip to L 2[OT]-valued stationary sequences.

G. Kallianpur. R.L. Karandikar and A. Bhatt, Propagation of chaos for interacting

Hilbert space valued diffusions.

C. Kallianpur and V. Mandrekar, Stationary Random Fields.

M.R. Leadbetter and T. Hsing. On multiple-level excursions by stationary processes
with deterministic peaks, in preparation.

S. Nandagopalan, M.R. Leadbetter and J. Hisler, Limit theorems for multi-dimensional
random measures, in preparation.

P. Sundar. Generalizations of Girsanov's theorem for laws induced by solutions of
SPDE's.
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STO913I IC PROCES SE

Sept. 7 Inference for almost periodically correlated processes, J. Leskow,
University of California, Santa Barbara

Sept. 12 Some random time change representations of stable integrals, 0.
Kallenberg. Auburn University and University of North Carolina

Sept. 21 Stratonovitch calculus for non adapted two parameter processes.
Michelle Thieullen, Universite Paris VI and University of North
Carolina

Oct. 3 On the central limit theorem in Hilbert space, V.V. Sazonov, Steklov
Mathematical Institute, Moscow. USSR

Oct. 19 Canonical correlations between past and future of stochastic
processes, A.M. Yaglom, Institute of Atmospheric Physics, Moscow. USSR

Oct. 25 On a nonlinear autoregressive process in the theory of signal
compression, T. Koski. Lulea University of Technology and University
of North Carolina

Nov. 8 Explosion times for Doleans-Dade stochastic differential equations,
M. Thieullen, Universite Paris VI and University of North Carolina

Nov. 19 Monotonicity properties of birth and death processes. T. Lindvall.
University of Goteborg and University of North Carolina

Dec. 13 Stratonovich multiple Wiener integrals and anticipative integration.
G. Kallianpur. University of North Carolina

Jan. 23 Markov r' ndom graphs and polygonal fields on the plane. D. Surgailis,
Institute of Mathematics and Cybernetics. Vilnius, USSR

Jan. 30 Long memory shot noises and limit theorems with application to
Burgers' equation, D. Surgailis, Institute of Mathematics and
Cybernetics, Vilnius. USSR

Feb. 6 The synethesis of random field representations and multiobjective
optimization. G. Christakos, University of North Carolina

Feb. 13 Zero-one laws for multilinear forms in Gaussian and other infinitely
divisible random variables. J. Rosinski. University of Tennessee.
Knox 'ie

Feb. 20 Travelling waves in branching diffusions. S.P. Lalley, Purdue
University

Feb. 27 Strong consistent model class selection for a stationary ergodic
process based on log-likelihood, J.C. Kieffer, University of Minnesota

Mar. 6 Compactness of the fluctuations associated with some generalized
nonlinear Boltzmann equations. G. Giroux. University of Sherbrooke
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Mar. 20 Regularity of Gaussian stationary vector valued random functions,
X. Fernique, University of Strasbourg and University of North Carolina

Apr. 1 On the spectral density and asymptotic normality of weakly dependent
random fields, R.C. Bradley, Indiana University and University of
North Carolina

Apr. 9 Semigroup methods in the theory of infinitely divisible distributions
on groups and vector spaces, T. Byczkowski. Wroclaw Technical
University and University of Tennessee, Knoxville

Apr. 11 An overview of some one-dimensional stochastic neuronal models,
Petr Lansky, Czechoslovak Academy of Sciences and North Carolina State
University

Apr. 12 Contagious processes in finite populations, D. Daley, Australian
National University

Apr. 17 Regularity of Gaussian stationary vector valued random functions I, X.
Fernique, Universit6 de Strasbourg and University of North Carolina

Apr. 25 Regularity of Gaussian stationary vector valued random functions II,
X. Fernique, Universit6 de Strasbourg and University of North Carolina

May 13 Recent results on SPDE's of Ginsburg-Landau type. T. Funaki. Nagoya
University

May 20 System identification of the dynamical charaA:teristics of catchment
response to rainfall: Limitations and applications to assessing the
effects of environmental changes, A.J. Jakeman, Australian National
University

May 21 Limit theorems for sums of independent random variables and
applications, Boris V. Gnedenko, Moscow State University

May 23 Limit theorems for order statistics and applications, Boris V.
Gnedenko, Moscow State University

Aug. 26 Almost sure expansions for sums of independent random variables, V.M.
Zolotarev, Steklov Mathematical Institute, Moscow

Aug. 28 Local time and Palm distributions for exchangeable interval
partitions, 0. Kallenberg, Auburn University and University of North
Carolina
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PROFESSIKAL PERSOtN1L

Faculty Investizators

* S. Cambanis
G. Kallianpur
M.R. Leadbetter

Visitors

R.C. Bradley Indiana University Feb. - June 91
X. Fernique University of Strasbourg mid Feb. - mid May 91
T. Hsing Texas A&M University Sept. 90 - May 91
0. Kallenberg Auburn University July - Aug 91
T. Lindvall Chalmers University Nov. - Dec. 90

V. Mandrekar Michigan State University Jan. - July 91
J. Rosinski University of Tennessee Jan - Apr. 91
P. Sundar Louisiana State University June 91
D. Surgailis Lithuanian Academy of Science Sept. - Oct. 91

Graduate Students

D. Baldwin
Y.C. Su
J. Xiong

AIR FORCE OFFICE OF SCIENTIFIC RESEARCI SUPPORT

Faculty Investigators: S. Cambanis, G. Kallianpur and M.R. Leadbetter
for two summer months

Visitors: R.C. Bradley, X. Fernique, T. Hsing, T. Lindvall, V. Mandrekar
and J. Rosinski

Graduate Students: Y.C. Su and J. Xiong

ARMY REARCH OFFICE SUPPORT

Faculty Investigators: S. Cambanis, G. Kallianpur and M.R. Leadbetter
for one summer month

Visitors: 0. Kallenberg, P. Sundar and D. Surgailis
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