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FOREWORD

Science and Technology Corporation (STC) is pleased to submit this interim report entitled

"Regional-scale Analysis and Forecasting (RAP) Report" as part of Contract No. F19628-89-C-0167.

The long-term objective is to develop and demonstrate a regional analysis procedure (RAP) using

optimum interpolation (01) in both real and simulation modes. The RAP will assimilate all available

meteorological data and fuse it efficiently into a high resolution analysis of mass, motion, and

moisture fields. This report describes the five major tasks to be accomplished, the present status of

those tasks, the optimum interpolation scheme, the development of the RAP databases, case studies

of experiments in numerical analysis, and plans for completing the major tasks. The valuable

technical assistance provided by Donald Norquist, Contract Monitor, is acknowledged and greatly

appreciated.

ix



1. INTRODUCTION

The foundation of the relocatable regional analysis procedure (RAP) has been solidly

established. RAP is a multivariate, multisource analysis scheme for relocatable, regional-scale

applications. Specifically, the scheme incorporates optimum interpolation for the numerical analysis

and stepwise regression for selection of observations.

The procedure uses meteorological fields from various sources on a regional scale analysis

grid, called uniform gridded data fields. Observations of varying availability in time and space are

used in an optimum sense to produce the best possible depiction of the variables within the regional

atmospheric volume.

In addition, observing system simulation experiments will be conducted to establish

confidence levels for the regional analyses. Finally, various short term (out to 12 hr) regional

forecast methods (such as persistence, numerical or some combination) will be examined for the

purpose of recommending an optimal forecast procedure.

A brief description of present RAP objectives is provided below. The remainder of the

report describes the five major tasks to be accomplished, the present status of those tasks, the

optimum interpolation scheme, the development of the RAP databases, case studies of experiments

in numerical analysis, and plans for completing the major tasks.

The long-term objective of the RAP is to develop and demonstrate a regional analysis

procedure using optimum interpolation (01) in both real and simulation modes. The RAP will

assimilate all available meteorological data and fuse them efficiently into a high resolution analysis

of mass, motion, and moisture fields. To accomplish the long-term objective, several short-term

objectives are presently being pursued:

1. Restructuring the observations database so that forecast errors can be calculated

efficiently



2. Performing numerical analysis experiments t4th the observation and forecdst

database to test the multivariate optimum interpolation scheme in all analysis

variables, ensuring that the resulting analyses are dynamically consistent

3. Completing the calculation of error statistics (differences between the Relocatable

Window Forecast Model [RWFM] forecasts and observations) and developing error

correlation functions

4. Continuing to integrate into the RAP the latest techniques obtained from the

literature on developing operational optimum interpolation schemes and specifying

the errors of present and future observing systems

5. Completing the extraction of the First GARP (Global Atmospheric Research

Program) Global Experiment (FGGE)-2b observations and T-106 nature run

forecasts from magnetic tapes from the European Center for Medium Range

Weather Forecasts (ECMWF), and unpacking the required gridded forecast fields

that can be interpolated to the observation points to simulate an observation network

for use in observing systems simulation experiments (OSSEs)

6. Generating RWFM forecasts from the nature run

7. Testing the RWFM verification model (RWFMVER)

2. RAP TASKS

The research and development effort, which requires a great deal of software modification

and development, is spcciFicd in the Scicnce and Technology Corporation (STC) Technical

Report 3072, RAP Initial Work Plan, September 1989. Each of the five dependent tasks and

a brief summary of the progress toward their completion are described. STC Task 4, which was

begun most recently, is described in considerable detail. Appendix A is a report on the software

modification and development required for RAP.
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2.1 STC Task 1

Task 1 is to develop an automated relocatable, regional multivariate objective analysis

procedure using optimum interpolation (01). There are two major subtasks: (1) design and develop

an 01 scheme, and (2) incorporate the RAP analysis algorithm into the relocatability and variable

resolution framework of the Relocatable Window Analysis Model (RWAM).

The 01 scheme, based on objective data selection and buddy checking by forward stepwise

regression (FSR), has now been carefully tested on all meteorological variables, specifically, surface

pressure, height of isobaric levels, temperature, humidity, and u-wind and v-wind components.

The RWAM is presently in a nonoperational status at the Air Force Global Weather Central

(AFGWC), which has not delivered the RWAM code (and probably will not in the near term);

therefore, work was focused on completing the testing of the 01 scheme.

2.2 STC TASK 2

Task 2 also has two subtasks. The primary subtask is to compute and model the first-guess

forecast errors, from which correlation functions can be developed to model these errors. The

secondary subtask is to determine and model observation errors, if these are needed by the 01

scheme.

The primary task has dominated much of the effort so far, requiring first the development

of extensive analysis, forecast, and observations databases, which are ready for use. The module

that calculates error correlations is based on Hollingsworth and Lonnberg (1986), Lonnberg and

Hollingsworth (1986), and Thiebaux et al. (1986). The design (Section 4.5) specifics that the

correlation pairs will be placed into bins, which are a function of the distance between the pairs, and

averaged.

As shown in Section 3.1, the theory of the 01 scheme leads to the conclusion that the

observation errors are of secondary importance. The small errors in the case studies of numerical

analyses, discussed in Section 5, indicated that the conclusion is true. Nevertheless, this assertion

remains to be proved.

3



2.3 STC TASK 3

Task 3 is to develop a relocatatle verification package, using standard measures of error such

as the RWFM verification model (RWFMVER), the Phillips Laboratory (PL) Global Spectral Model

(GSM) diagnostic package, and map comparisons. The package is for testing RAP formally in real

data experiments. This testing will include comparing RAP against RWAM, the AFGWC

High-Resolution Analysis Model (HIRAS), and real observations, and with forecasts made by the

AFGWC Relocatable Window Forecast Model and the PL GSM.

The forecast comparisons have been completed, and RWFMVER is presently being

converted to execute on the RAP automated data processing system. Under this task RAP will be

run on scenarios not included in the original database, and RAP will be checked against other

analyses and observations. Also, the verification package can be used to improve RAP's

methodology.

2.4 STC TASK 4

The observing systems simulation experiments (OSSEs) can proceed formally only after

demonstrated success of Tasks I and 2 in Task 3. The OSSEs consist of several subtasks, all of

which will require 2 years to complete. They are described in detail because they wkill be the main

focus of effort for the remainder of this project.

1. The first subtask, to build a database of simulated FGGE-2b observations from the

ECMWF T-106 nature run tapes, is partially completed. The ECMWF GRIB

software was used to extract selected forecast files from the tapes at the Phillips

Laboratory/Geophysics Directorate (PLSGP) Computer Center. In addition, the

FGGE-2b files have also been extracted. All required files (forecasts and upper air

observations at 6-hr intervals from 19 January 1979 through 1 February 1979) have

been transferred to the CRAY-2 at the Phillips Lab Supercomputer Center (PLSC),

where the needed fields will be unpacked and stored on a lxi degree grid at

mandatory levels. "Perfect" observation files at FGGE-2b data locations will be

simulated by interpolating the forecasts from the grid to the observation points to

replace data actually observed.

4



The following detailed description of the plans for the OSSEs is in three parts that

follow one after the other in natural sequence: the development of datasets of
"perfect observations," the development of an analysis and forecast database, and the

preparation of RAP analyses under different scenarios.

The next step is to simulate an observation network of existing and proposed

sensors/systems by interpolating the gridded T-106 forecast data to FGGE-2b

observation points to mimic "real" data tapes. By assigning errors (random and

systematic instrument errors) to these "observations" extracted from the nature run,

we can create files of simulated observations.

The Air Force Geophysics Laboratory (AFGL) Statistical Analysis Package (ASAP),

which takes a lxl gridded first guess field and interpolates it to observation points,

has been modified to accept T-106 gridded data. Perfect FGGE-2b files will be built

by treating each gridded nature run field as a first guess, modifying the MASTORX

subroutines to read the FGGE-2b observations from the files, and writing an output

file with the corresponding nature run values at each site.

Software is being developed to generate "perfect observations" by ingesting and time-

interpolating the T-106 "nature run" ontime forecasts (at 00, 06, 12, and 18 UTC) to

FGGE-2b observation points, including satellite data and AIREPS. A second set of

data, developed by introducing desired observational (random and correlated) errors,

will be used to act as the actual simulated FGGE-2b observations at 6-hr intervals.

2. The second major subtask is to generate an analysis and forecast database from the

simulated FGGE-2b observations. The database will make up the CONTROL

scenario, which is based on the existing observation system, for the RAP OSSEs. The

procedure is described below and depicted in Fig. I on pages 6 and 7.

First, 3-day global "spin-up" atmospheres are generated by running GSM forecasts

for 72 hr, initialized at 00 UTC on 16, 21, and 26 January 1979 with the nature run

from the ECMWF to ensure there are ample differences bctween the nature run and

analyses. Next, ASAP begins with each of the 72 hr GSM forecasts and produces the

5



Nature Day Input/Output Required for the OSSEs
1979

16 Jan SI Run the GSM for 72 hr to generate a "spin-up"
atmosphere (Si). Use the T-106 forecast at 00 h.

17

18
S1 is a first guess for the AFGL Statistical

19 End S1 Analysis Program (ASAP).

00 UTC GD lx Two 48-hr global data assimilations (GDAs) are
19 required at 6-hr intervals. ASAP with all

observations =GDA11; withholding conventional
observations = GDA12. Thus, the GDAs from the

00rUTC GSM and ASAP are scenario dependent. The
20 observations in all cases are simulated (by

interpolating the T-106 forecasts to FGGE-2b
observation points and adding observation errors)

00sUTC FGGE-2b observations.
21 End GDAlx

00 UTC S G11/G12 Run a 72-hr GSM spin-up forecast (S2) starting
21 R1 1.12 at 21/00 UTC (T-106 h=120). Run 36-hr GSMs

jR (Gix) and RWFMs (Rix), using the 48th hr of

00(UTC GDAs as initial conditions; output from RWFM is
22 R11 and R12 (x=l, all observations; x=2, some

observations withheld). Store the 12-, 18-, 24-, and
12 UTC the 36-hr forecasts, which will be the RAP first

End of guesses.
00 UTC 36-hr

23 forecast

00 UTC GD,2x Use S2 to initialize two 48-hr GDAs run at 6-hr
24 End intervals. This run of the GSM and ASAP with all

S2 obsverations = GDA21; ASAP without the
conventional observations = GDA22.

o UTC
25

Simulated FGGE-2b observations (T-106
forecasts interpolated to FGGE-2b observation

00 UTC points and distorted by adding observation errors)
26 End GDA2x are used.

Figure 1. A depiction of the process for generating the OSSE databascs.
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G1/G2 Run the third 72-hr GSM spin-up forecast (S3),
00 UTC R21 R22 starting at 26/00 UTC, that is, T-106 forecast h=240.

26 Start the 2nd run 36-hr GSMs (G2x) and RWFMs
(R2x), using the 48th hr of GDAs as initial
conditions; output from RWFM is R21 and R22,

00 UTC which will be 1st guesses for RAP.
27

Store the 12-, 18-, 24-, and 36-hr forecasts.
12 UTC

End of Recall that x=1 implies that all the FGGE-2b
00 UTC 36-hr simulated observations will be used; x=2 implies that

28 forecast conventional observation points will be withheld.

O0 UTC
29 End GD x Use S3 to initialize the third (and final) set of

S2 two 48-hr GDAs at 29/00 UTC and run at 6-hr
intervals. Define the GSM/ASAP with all
observations = GDA31; the ASAP without the
conventional observations = GDA32.

00 UTC
30 The observations are, nf course, (the T-106

forecasts interpolated to FGGE-2b observation
00 UTC points, where the observation errors are added) the

31 End GDA3x simulated FGGE-2b observations.

G31/G32 Start the third (and final) 36-hr GSM forecasts
00 UTC R21 R22 (G3x) and RWFMs (R3x), where x=1 for all
31 Jan observations and x=2 for withheld observations. Use

the 48th hr of GDA3x as initial conditions; output
00 UTC from RWFMs is R31 and R32, which will be first

1 Feb guesses for RAP.

12 UTC
End of
36-hr Store the 12-, 18-, 24-, and 36-hr forecasts for

forecast RAP first guesses.

Figure 1. (Concluded) A depiction of the process for generating the OSSE
databases.

GSM forecasts, one with conventional (that is, RAOB, PIBAL, and AIREPS)

observations and one without conventional observations in a hostile zone (that is,

using only satellite data in that specific volume).
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RWFM forecasts (which begin at 00 UCT on 21, 26, and 31 January 1979 of the

nature run) will be generated from the GDAs. The GDAs are input to the GSM, 2-

day global data assimilations (GDAs) using the globally simulated FGGE-2b

observations at 6-hr cycles. There will be two GDAs for each of the three 72-

hrwhich will be run for 36 hr to provide 6-hr forecast fields. These fields are the

initial and boundary conditions for 36-hr runs of the RWFM for the Eurasian and the

Central American regions.

RWFMVER will be used to compare RWFM forecasts (filtered to the nature grid)

with the nature run. The purpose is to determine the RWFM forecast errors as a

function of region and forecast length, and compare simulation errors with actual

forecast errors (from Task 2) to assess the realism of the OSSEs.

3. The final step is to prepare several RAP analyses from the simulated databases and

access the value of the experiments. With RWFM forecasts valid at 12, 18, 24,

and 36 hr, and 12-hr- and 24-hr-old RAP analyses as the first guess, RAP will

generate analyses using the requested scenarios of simulated observations (Schaaf,

1990), that is,

" CONTROL: existing observing system

* ALLOBS: existing and proposed observations systems

* TACOBS: ALLOBS except TOVS and conventional observations in

hostile side of battle area, but in "HIRAS" exclude only the

conventional observations

" OLDOBS: (1) 12-hr RWFM forecast valid at time t and offtime

observations at t-6 hr

(2) same as (1) but with 24-hr RWFM forecast

(3) 18-hr RWFM forecast at time t+6 and ontime

observations at time t

RWFMVER will be used to compare (grid-to-station and grid-to-grid) RAP analyses,

which are filtered to the nature grid ("truth" for the OSSEs), with the Nature Run.

Comparisons are rcquircd with RWFM, RWAIM (if availablc), and GSM for each

8



region at the above time periods and data denial scenarios. Also, analysis errors

(computed as a by-product of 01) will be compared with RAP-nature cifferences to

determine the real forecast error statistics generated for the error-lev-.! module in

Task 2, and they will be tabulated by region, season, first guess scenario, and data

denial scenario.

2.5 STC TASK 5

Survey the literature for candidate forecast techniques to extend the RAP analysis out to

12 hr. The obvious candidate, persistence, may not be a good 12-hr forecast for small regions

because of advection. STC will consider both dynamical and statistical techniques; for example, the

known difference field between the RAP and the RWFM 00-hr forecast could be used to modify the

RWFM 12-hr forecast. STC will document the advantages and disadvantages of techniques for use

in the field and recommend a candidate for further study.

3. THEORETICAL AND PRACTICAL CONSIDERATIONS OF OPTIMUM INTERPOLATION

Optimum interpolation, also known as statistical interpolation, was selected as the analysis

scheme for the RAP. The following subsections discuss the details of the scheme and the rationale

for our technical approach, in particular, the methodology for rigorously selecting observations and

the modeling of correlation structure functions.

3.1 SENSITIVITY OF INTERPOLATION WEIGHTS TO CORRELATION FUNCTIONS

Given a gridpoint (g) surrounded by a number of observation points, i, (i = 1, 2, .. ., n), the

process of optimum interpolation determines the relative weights (W) assigned to each observation

in the expression,

fgA_ f11 W, (f7-ff)

where f. is the estimated (or analyzed) value of the variable at the gridpoint g, fP is a preliminary

(first guess) value of the variable at g, and f'and f are respectively, observed and first guess

values of the variable at the observation points. In Eq. 1, N' < N, implies that it may be desirable

9



to use fewer than all of the available observations. Since, in general, first guess values are obtained

from a prior prediction of the field quantity, (f, fP is generally available only at giidpoints of the

prediction model, that is f . Therefore, the tli are obtained by a suitable interpolation process

from the fi.

Keegan and Shapiro (1985) showed that the consistent, as well as the simplest, system of

equations to use in obtaining the weights Wi in Eq. 1, is their Eqs. 2-16. That is,

Wr(A, Aj) OAj - r(A, Ag) 0 A.
0 A, + r(AJ, e) . (2)

where j = 1, 2,. .. , N' also indicates an observation point, r(a, b) is the linear correlation coefficient

between the parameters a and b, a, is the standard deviation of a, A, = fP, - f* and e = f; - fg

indicates the deviation of the observed value of the variable at the gridpoint (f;) from the true

value (f). In other words, eo is the observation error at the gridpoint and is an unknown quantity

since the true value of the variable f is unknown everywhere (both at gridpoints and observation

points) and the observed value f; must be obtained by interpolation from f! Since e 0 in Eq. 2

enters as a correlation with Ai, it is likely that r(A,e) < < r(Aj,A). Therefore, neglect r(Aj,e ), and

the right-hand side of Eq. 2 contains only the first term r(Aj,Ada)ao. (The significance of this

assumption will be tested in the simulation mode by assigning a series of nonzero values to the

neglected correlation and re-evaluating the Wr) Note that A, = fP - f; implies that an estimate

of the observed value at the gridpoint must be obtained by a suitable interpolation process from

the f*i.

The basic problem in the solution of the simplified form of Eq. 2 is the specification of the

4, Ai, and A, statistics, namely, r(A, As), r(A,, A), and a,, aj, and a.. If accurate estimates of these

quantities were available, the application of 01 would be a simple matter. Unfortunately, the

relevant statistics are essentially unknown. While some limited studies have been made on r(f,, f ),

the required correlation fields of r(AjA) are model dependent, therefore, because of the rapid rate

of alterations in operational models there has been no possibility of developing long series of both

predicted and observed quantities from which the required statistics can be obtained.

In spite of this shortage of data, a substantial literature (e.g., Dcy and Morone, 1985: and

DiMego, 1988) exists on the advantages and disadvantages of various models of the required

10



correlation functions. Without a firmer foundation in the facts of observations, however, it is not

feasible now to attempt to choose the best from among the various correlation models. STC Task

2 includes preparing a small sample of observational data, which matches forecasts from an

operational model, and calculating suitable correlation models and standard deviation statistics.

Nevertheless, it was useful first to test the sensitivity of the Wi derived from Eq. 2 to variations in

the correlation functions.

Expanding Eq. 2, neglecting r(A,, c), and assuming the data have been normalized so that

04i = a. = a= 1, for one gridpoint g and n observation points the following linear equations

describe the system.

Wjrnj + W 2r 2 + + Wr,l = r,1

Wjr, 2 + W 2rz2 + + . + Wr 2 = r.

Wjria + W 2r2. + . + Wr.. = r. (3)

where, for example, r12 = r(A2 , &2) and r.1 = r(A1 , A).

It is apparent from Eq. 3 that the Wi are the coefficients of the multiple regression of A. on

all the A, A,. If the various correlations in Eq. 3 were known precisely, the total normalized

information content in the n observations with regard to their ability to estimate the analyzed value

of the variable at the gridpoint would be given by the square of the multiple correlation

coefficient. For example, if n = 2 and r,, = 0.9, r. = 0.8, and r12 = 0.7, then the multiple

correlation coefficient (r,,,2) is 0.9309, W, = 2/3, W2 = 1/3, and the normalized explained variance

is 0.8667. This particular set of correlations implies that observation point 1 is close to gridpoint g

and that observation point 2 is somewhat more distant from gridpoint g, but closer to gridpoint g

than point 1. On the other hand, with the same distribution of observation points with respect to

the gridpoint, but with substantially different correlations (r1 = 0.7, re = 0.6, r12 = 0.5), the weights

are not very different. In this case W, = 0.5333 instead of 0.6667, but W2 is still 1/3. Also, the

multiple correlation and explained variance are substantially different, namely 0.7572 and 0.5733,

respectively. While it is desirable to have multiple correlation coefficients that are near unity,
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implying small mean square error, in any one realization most it not the only significance is -c3ntai,'ed

in the weights. Precise modeling of the various correlation functions is probably less important then

ha-ing simple, but self-consistent modeling functions.

Tests of the sensitivity of the Wi, first in a domain with two observation points and

subsequently with increased numbers of observation points suggest that the above hypothesis is true.

Assigning correlations as in the preceding examples and covering a complete range of all reasonable

correlations offers a study that has the advantage of not being dependent on the availability of real

data (observations and model output). Such studies not only provide more definitive answers to

questions on the sensitivity of the W, to the values of the respective correlations, but they also clarify

the question of whether to limit the number of observations or to use all available observations. For

example, if there are two observations close to each other but somewhat distant from the gridpoint,

then rt = r. = 0.7 and r12 
= 0.9 are reasonable results. In this case, the multiple correlation

(r,. 2 = 0.7182) is not much larger than either bivariate correlation, and the weights are

W1 = W2 = 0.3684. Either observation by itself would contain almost the same information as both

together, but the use of both has the advantage of partially suppressing random errors of

observation.

Table 1 illustrates the type of information that can be obtained from the sensitivity analysis,

even though this partial example contains only two observation points. With r,,, and re as given (0.5

and 0.3, respectively), when r12 is small (such as when I and 2 are on opposite sides of g), say for

example, 0, 0.1, and 0.2, the weights are nearly 0.5 and 0.3, respectively. When r, 2 is comparable to

r., and r. (say 0.3 to 0.7), W2 is near zero and W, is near 0.5. When r12 is large(> .08), W2 is more

and more negative as r12 - 1.0, and W, is more and more positive; but the sum of the weights

W1 + W2 < 0.45. With rs, and r.2 as given in Table 1, it is not possible for r12 to be larger than 0.97;

otherwise r. 1, and r. 2 could not differ as much as they do. With r_,2 > 0.98, the multiple correlation

would be greater than 1, and the solution matrix from Eq. 3 would be degenerate (ill-conditioned).

3.2 FINAL SELECTION OF OBSERVATIONS IN OPTIMUM INTERPOLATION

On the basis of some preliminary studies including 26 randomly distributed artificial

observations within a regional area as well as follow-on studies involving densely distributed real data
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Table 1. Example of a sensitivity analysis, where r., is the coefficient of correlation between
gridpoint g and observation point 1, r,,.2 is the multiple correlation coefficient, and W, and
W2 are the relative weights assigned to observations at points 1 and 2, respectively.

r.1 r.2 rr2  W, W2

0.5 0.3 0 0.583 0.5000 0.3000
0.5 0.3 0.1 0.560 0.4747 0.2525
0.5 0.3 0.2 0.540 0.4583 0.2083

0.5 0.3 0.3 0.524 0.4505 0.1648
0.5 0.3 0.4 0.512 0.4524 0.1190
0.5 0.3 0.5 0.503 0.4667 0.0667
0.5 0.3 0.6 0.500 0.5000 0.0000
0.5 0.3 0.7 0.505 0.5686 -0.0980

0.5 0.3 0.8 0.527 0.7222 -0.2778
0.5 0.3 0.9 0.607 1.2105 -0.7895
0.5 0.3 0.95 0.751 2.2051 -1.7949
0.5 0.3 0.97 0.911 3.5364 -3.1303

in a European region, the decision was made to base the observation selection procedure on stepwise

linear regression. This section discusses the results of these studies and presents a conceptual

overview of the nature of stepwise regression. To set the stage some relevant background is

provided in the form of several slightly edited pages from Keegan and Shapiro (1985), a report

prepared under contract with the U.S. Air Force Geophysics Laboratory (AFGL), which is now

Phillips Laboratory.

The selection of the relevant observations is a complex problem. An analysis volume
must first be specified. This is a time-space volume containing the interpolation point
and all relevant observations. Since correlations between observations generally
decrease with increasing space (distance or time), the analysis volume will probably
have a radius approximating the distance corresponding to zero correlation between
the relevant parameters, although this need not be strictly true. This volume,
however, may incorporate many potential observations of different types, different
independent, and different relevancies. The selection system must be able to assign
weights to the relevant observations consistent with their independent information
content. In essence, the problem of selection of observations may be considered to
be a multiple linear regression problem. Equation 2 shows that the correlation
between each pair of independent variables as well as between the dependent
variable and each of the independent variables may influence the Wi. However,
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while some of the operational 01 systems resembie a multiple linear regression
approach, aill depa:t iuom sucii an approach to scnie eA,,:;,.

With regard to the seiection of observations, it woula be desirable io eliminate, as far
as possible, "he arbitrariness in the 01 procedure. If too many observations are
allowed to influence the value of the analyzed variable, not only do the computations
become laborious, but the analysis error may actually increase. The independent
information contributed by each observation generally decreases in proportion to the
number of observations, as a result of intercorrelation among the independent
variables. (This is the well-known problem of multicolinearity in linear regression,
leading to ill-conditioned matrices with small determinants.) On the other hand, if
because of arbitrary selection rules, too few observations are selected, the analysis
will be far from optimum.

A rational basis for selecting the observations that will be allowed to influence the
analyzed value is required. The first step in this selection process is rather simple
since it involves the establishment of a two-, three-, or four-dimensional influence
space, where any observation has a possibility of affecting the value of the analysand.
In a sense, defining an influence space is artificial, since if computational power were
great enough, this space might just as well encompass the entire regional atmosphere
for the current time as well as some considerable antecedent time period. However,
in this case, the second and more difficult part of the data selection problem
(discussed below) would be greatly aggravated.

The second part of the problem, the choice of potential observations which will affect
the analyzed value, requires substantial investigation. Several investigators have
found that the use of four or five parameters is generally sufficient to obtain the best
estimate (lowest root mean square errors [RMSEI) for the interpolated value. If a
smaller or larger number of observations is allowed to influence the analsand, the
error generally increases. Thus, it appears that the number of potential observations
should be large, but the number actually selected for the interpolation should be
small.

Of course it is possible to avoid the problem of how to select a few "best"
observations from many within the influence space, by using virtually all of them.
However, as we have already indicated, this too is unlikely to be the best procedure,
in terms of both the accuracy and stability of the results as well as in terms of the
computational effort involved. Stepwise regression has been used for manNy ycars as
a possible solution to the selection process in multivariate regression.

While stepwise regression does not guarantee the best selection of "predictors," a large body

of experience has demonstrated its effectiveness as a practical regression technique that can

approach the "best" solution when properly applied. Stepwise regression avoids the arbitrars

limitation and selection procedure of the National Meteorological Center (see Hoke ct al..19S9) and,

at the same time, has the advantage of a large pool of potential "predictors" but is required to invert

only relatively small matrices. Since the typical matrix inversion in a 01 scheme that uses stCp\isc
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regression would typically involve three to six variables, it would appear that stepwise regression

might be less costly, computationally, than operational 01 systems, as will be shown.

First, two typical examples are discussed where 26 randomly distributed artificial
"observations" are available. The correlations between the preliminary field departures required to

determine !he weights assigned to the observations [r(A,, A1), r(A, ,Ag)] were specified by a very

simple exponential function of the separation distances between observations (ij) and between the

analysis gridpoint and the observations (gj).

In Case 1, the correlation r(Aj, A) varied from a low of 0.11 to a high of 0.54. The

intercorrelations among the observation points r(Ai, A1) varied from 0.02 to 0.86. In this study, as

well as in the others, it was assumed that all variables were normalized with a variance of unity.

Table 2 shows the weights assigned to the preliminary (first guess) field departures from the

observations when all 26 observations are used in the analysis as well as the weights when only the

best five observations are used. "Best" here is to be interpreted in terms of linear, least square

stepwise regression.

It is apparent that there is little difference between the best five Wi whether all 26 or only

these 5 observations enter the regression. Furthermore, in terms of multiple correlation (r&I.2.k),

where k goes either to 5 (for the best five observations) or to 26 (for all observations), the results

are also virtually identical; with k=5, the multiple correlation (0.6633) is numerically slightly greater

than with k=26 (0.6611) " . In spite of the fact that the weight of the sixth observation of the 26

appears significant (0.0474), the remaining Wi (i>7), which are small and largely negative, appear

merely to be introducing noise. In this case at least, it would be preferable to stop the selection after

5 or 6 observations, rather than continuing to 26.

In Case 2, while the details differ, the results are similar to those of Case I. The correlations

r(j, Ad) varied from 0.09 to 0.50, while r(A ,Aj) varied from 0.01 to 0.95. Table 3 also shows the

similarity in the first five selected observations, as well as the small magnitude of the weights beyond

" This is possible here, only because of round-off. All of the bivariate correlations were rounded
to two decimals.
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Table 2. Weights (Wj) given to the observations in Case 1, when all 26 observations are used,
compared ith the weights when only the best five observations are used. The multiple
correlation r&,.z k is also shown.

i Weights (W)
Observation All Observations Best Five

Number Used Used

1 0.3278 0.3320

2 0.2244 0.2267

3 0.1656 0.1737

4 0.1488 0.1475

5 0.1150 0.1001

6 0.0474
7 0.0139

8 0.0055
9 0.0038

10 0.0036
11 0.0036

12 -0.0012
13 -0.0015

14 -0.0016

15 -0.0027

16 -0.0038
17 -0.0062

18 -0.0065

19 -0.0077

20 -0.0079

21 -0.0082

22 -0.0088

23 -0.0092

24 -0.0093
25 -0.0160

26 -0.0258

0.6611 0.6633
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the sixth observation. Again, in terms of multiple correlation, virtually all of the information is

contained in the best five observations. Specifically, r.2, j = 0.6545 with k=5 and 0.6551

with k=26.

These two cases imply that if there were a simple, rational procedure for selecting (in these cases)

the best five observations, it would not be necessary to invert a matrix of 26x26, but only a 5x5.

Clearly, the resulting analysis would be much more computationally efficient. Stepwise regression

offers such a rational procedure.

Another experiment illustrates the application of real, densely distributed surface data. In

these cases, actual analyses are made of the sea level pressure, using an 01 procedure based upon

multiple regression with all available observations, and then a comparison analysis, using only a small

sample of these observations. In both cases the analyses based on all observations are very close to

the observed value at the "gridpoint" (strictly speaking, a pseudo gridpoint).

3.3 FORWARD STEPWISE REGRESSION

To determine if a stepwise regression scheme might be useful, a reanalysis (that is, a

succeeding analysis that makes use of the weights calculated in the original analysis) was performed

using the 01 scheme but with carefully selected observations. In 01 the observations that receive very

small or even negative weights apparently contribute little information to an analysis. Therefore, any

observations that had been weighted with values less than 0.01 were dropped from the reanalysis.

The resulting reanalysis on average used only six observations (compared to 20 observations used

in the original analysis) with three of these often providing most of the information (that is, these

three observations had more than 95 percent of the total weight). The reanalysis used more than

nine observations at only 0.5 percent of the pseudo gridpoints. In those cases where more than six

observations were retained, the weights of the additional observations were on the order of 0.01. So,

given a physically reasonable structure function, 01 can produce an excellent analysis with only a few

carefully selected observations.

In each of the experiments the multiple correlation between the gridpoint and the retained

observations did not change significantly (more than 0.003), whether 20 observations were part of

the 01 scheme or only the selected observations were included. In those cases where the multiple
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Table 3. Weights (W) in Case 2, when all 26 observations are used, compared with the weights
when only the best five observations are used. The multiple correlation rl-.k is also
shown.

i Weights (Wi)
Observation All Observations Best Five

Number Used Used

1 0.2871 0.3140

2 0.2449 0.2412

3 0.2084 0.1993

4 0.1229 0.1087

5 0.1135 0.1286

6 0.0445

7 0.0202

8 0.0020

9 0.0008

10 0.0004

11 -0.0006

12 -0.0014

13 -0.0018

14 -0.0021

15 -0.0025

16 -0.0032

17 -0.0050

18 -0.0054

19 -0.0055

20 -0.0082
21 -0.0083

22 -0.0096

23 -0.0101

24 -0.0118

25 -0.0124

26 -0.0133

0.6551 0.6545

correlation was slightly lower, because fewer observations entered the 01 analysis, the resulting

reanalysis at a gridpoint was better more often than not.
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Specifically, in one experiment with 214 real observations, each of which served as a pseudo

gridpoint, for 41 points the multiple correlation decreased more than 0.001 but less than 0.003 when

the 01 scheme used only the selected (six on average) observations. In those 41 events, the analyzed

value was more accurate 26 times and less accurate 15 times. The root-mean-square (rms)

difference between the observed values at all 214 points and the analyzed value at those points was

1.0062, which is slightly greater than the rms difference of 0.9648 resulting from the reanalysis. But

the reanalysis reduced the bias of the average differences by a factor of 3.

It is apparent not only from the examples illustrated here but also from a large body of both

theory and experience that the information contained in a large number of inter-related "predictor"

variables can be closely approximated by a relatively small number of these variables or, what

amounts to essentially the same thing, a small number of transformed or factorized variables.

Stepwise regression is a simple procedure that produces results close to that of orthogonal

transformation, but with far less computational effort. Because of the favorable results and the ease

and simplicity of computation, stepwise regression is ideally suited for selecting the relevant and

significant observations from the larger body of available observations, and at the same time

evaluating the weights Wr (Keegan and Shapiro, [1985] show that the selection scheme rigorously

accounts for the intercorrelations among observations, and that it is a conceptual error to select

observational data solely on the basis of the correlations between the observation and the analysand.)

While a variety of forms of stepwise regression are in use, a simple forward searching

procedure seems appropriate for this application. Although existing computer programs may differ

in detail, a simple forward stepwise regression (FSR) proceeds essentially as outlined below.

Let N represent the number of potential observations available to specify an analyzed value

of the parameter at gridpoint g. A specified function has been assumed that determines (for

example, as a function of the distance of separation) the intercorrelations among the N variables as

well as between the gridpoint parameter and each of the N variables.

In the first step, the observation having the largest correlation with the gridpoint parameter

(G) is selected. In general this will be the closest observation and is designated observation A.
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In the second step (N-I), multiple correlation coefficients are obtained with G as the

dependent variable and with A and, in turn, with each of the remaining (N-1) observations as

independent variables. Each of these multiple correlations involves A and a different observation

as the independent variables. The pair of observations yielding the largest multiple correlation is

then selected. The second variable of this pair is designated as B.

In the third step (N-2), multiple correlations are obtained between G and three independent

variables A, B, and each of the remaining (N-2) observations in turn. The triplet of observations

yielding the largest multiple correlation is selected.

The FSR process continues in this manner until some threshold is reached. This threshold

is generally specified in terms of explained variance (the square of the multiple correlation

coefficient). Say that k observations have been selected by the process outlined above. The

selection process stops when the square of the multiple correlation with k independent variables does

not exceed that with (k-1) variables by a specified amount C , where C is typically 0.01 or less. That

is, (k-1) observations are used when r 2 (k) -r2 (k-i) <e

3.4 ERROR CORRELATION STRUCTURE FUNCTIONS

From the preceding subsections, it is clear that the analysis technique relies heavily on the

capability to develop physically realistic error correlation functions. These functions determine those

observations that will influence an analysis at a point and how strong that influence will be.

The horizontal correlation coefficients will be fitted to the following structure functions

(Mitchell et al., 1990) where sea level pressure P, temperature = T, dewpoint = Td, humidity

= Q, u-component and v-component of wind = U and V, respectively, and height of mandatory

level = UTC. For horizontal correlations of meteorological elements 7 T, Q (or Td), and P (or Z),

the raw correlations, r(Ai,A 3) will be fitted to the function

HCORi, = Rk(l+a)'( 11 + chd., + c2
1(d,,) 2/3]exp(-ckd,i) + oil + c2 d,,fN + cb(d,,) 2/3N 2 ]cxp(-cbd,,/N)}

where a = 0.2, dij is the distance between two observation points i and j, and N = 3. The constants

Rb and cb, both of which are different for each element, will be calculated from RWFM forecast
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error statistics, as discussed in Section 4.5, and fitted with the IMSL (PL VAX library) routine

RNLIN. For winds the data will be fitted (using the IMSL routine RNLIN) to

HCORj = R,(I+a/N 2)I( [I + cdjj]exp(-cd 1j)+ a/W[1 + cdi/N Iexp(-cd./N) }

where a = 0.2 and N = 3, and the constants R, and c, will also be calculated from RWFM forecast

error statistics, as discussed in Subsection 4.5.1.

For the vertical dimension and time, the U.S. Air Force Global Weather Central Tech Note

(1986) uses the following notations. The vertical correlation is represented by

VCOR = { [I + C, LN [P(1)/P(2)] ]2 }t1

where C, is a positive constant determined from data discussed in Subsection 4.5.2, P(1) is the

pressure at point #1, and P(2) is the pressure at point #2. If this simple function is sufficient to fit

the data, it will be used; otherwise, a more sophisticated approach will be followed. The time

correlation function will probably be of the form

TMCOR = e-ch

where C is a positive constant, determined from RWFM forecast error statistics discussed in

Subsection 4.5.3, and AT is the absolute time difference either between two observations or between

observations and analysis time. The total correlation TCOR is assumed to be the product of the

space and time correlations, that is,

TCOR = VCOR * HCORi, * TMCOR

The total correlation (TCOR) then replaces rij in the horizontal system of linear equations used to

calculate the weights Wr

These analytic functions will model the intercorrelations and cross-correlations of errors at

observation points and the correlation and cross-correlations between an observed variable and the
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first guess forecast at a gridpoint. The correlations will determine by a stepwise regression the

observations that will be interpolated to a gridpoint in the 01 scheme.

3.5 BUDDY CHECK

RAP project members quickly recognized the importance of developing an error checking

procedure as an integral part of the observational data selection. To create such a procedure, they

developed a gross error check scheme for eliminating obviously erroneous data and a buddy check

for a more refined analysis. The latter scheme compares each observation with the value obtained

by interpolating to the observation point without using the datum itself. Both schemes are univariate

and two dimensional operating on mandatory levels one at a time.

For every point i, the buddy check scheme first selects nearby observation points and

computes an analyzed value at that point by using the stepwise regression and optimum interpolation

as described in Section 3.2. Then the scheme calculates analysis error, defined by the expression

di = A - O, where di A, and O are the analysis error, analysis and the observed value, respectively,

at point i.

After the calculation of di, A, and OQ for all observations points, the scheme determines the

average analysis error, W'-, and the standard deviation, a,. Any observed value with an absolute

analysis error, defined as ei = I di-" I , exceeding 2.5 standard deviitions becomes a candidate for

rejection, and the scheme flags this value.

The scheme scrutinizes each flagged value A, by determining its effect on every analysis value,

Aj affected by A i (i.e., those points where the analysis uses O, as one of the observations to

interpolate). To recheck each A, the scheme first reanalyzes every A j by excluding the flagged

value O. Next the scheme calculates the 2 as the mean analysis error for the subfield that excludes

all flagged points and the weighted difference D,. defined by the expression

D IW; A-Oj-UI - IE A 0J~

where Wi = c / (2.5*at+ TI), ni is the number of points used to calculate A,, A,' is A, rccalculated
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by excluding O, and O is the observed value at point j. The factor Wi exceeds unity for all flagged

values and magnifies the effect of the absolute analysis errors.

If Di is positive, then removal of Oi reduces the average analysis error at all points j, and O

sufficiently degrades the analyses at those points to warrant rejection. Otherwise, if Di is negative,

excluding O, will make the analyses at the neighboring points worse and, therefore, the scheme

removes the flag and preserves the observed value.

4. DATABASE SPECIFICATION

Much of the effort expended on RAP has been on the development of extensive databases.

These include databases of analyses, forecasts, observations, forecast error correlations, and data

required for observing system simulation experiments. Each of these databases is described.

4.1 ANALYSIS DATABASE

All HIRAS data needed to initialize the GSM or to verify the RW FM or RAP was saved on

magnetic tapes. There are 62 files per month for July 1988 and January 1989. Each file has 15

mandatory levels and 10,585 (145x73) gridpoints per level. The 15 levels are at 1,000 mb, 850 mb,

700 mb, 500 mb, 400 mb, 300 mb, 250 mb, 200 mb, 150 mb, 100 mb, 70 mb, 50 mb, 30 mb, 20 mb,

and 10 mb. No surface data except sea level pressure is included because RAP can be verified

better there with actual observations or other techniques. The lower six levels contain U, V, T, Q
(both specific and relative humidity), and D-values (that is, the difference between the measured

height and standard height at the given level); levels 7 through 15 contain similar data except no

humidity is available. The HIRAS data needed for verification were interpolated onto the RWFM

grid in the windows in the Eurasian (EU) and Central American (CA) windows.

4.2 FORECAST DATABASE

The GSM was initialized from HIRAS on both 1 January 1989 at 00 UTC and 1 July 1988

at 00 UTC and at 2.5 day intervals thereafter during those months, yielding 12 independent 36 hr

forecast cycles for January and July. The spectral coefficients of the nonlinear mode initialization

23



(NMI) and the 6-hr forecasts of surface pressure. wind components, temperature, and humidity were

postprocessed to a 2.50 grid on mandatory levels, and saved. Then two 36 hr CSM and RWFM

forecasts were executed (the RWFM boundary conditions came from the GSM forecasts), one in the

Eurasian (EU) and the other in the Central American (CA) regions. Both the GSM and

RWFM forecasts were subjectively and objectively compared to each other and to HIRAS (see

Appendix B.) to ensure that only acceptable forecasts were in the database.

These RWFM forecasts will be interpolated to the RAP window on the uniform gridded data

field (UGDF) grid, which will be used as the RAP grid. To be consistent with AFGWC, STC

implemented the RWFM in the operational mode of 16 a-level 61x61 grid with a horizontal

resolution of 95 km. The UGDF grid system has a horizontal resolution of 50 nm at mandatory

levels up to 50 mb; the EU window is on a polar stereographic projection, and the CA window is

on a Mercator projection.

The RAP window has 40x40 UGDF grid boxes, but the RWFM has 60x60 grid boxes (each

of which is slightly larger than a UGDF box). Thus, the RAP window can fit inside the RWFM

window such that first guess forecasts are available several hundred miles beyond the RAP

boundaries. (These forecasts are needed to calculate errors of observations outside the RAP window

that affect gridpoints near a boundary.)

The following RWFM forecasts at 12, 18, 24, and 36 hr are stored as RAP first guess fields

for both regions and seasons: on the surface, sea level pressure and temperature; at all mandatory

levels of tempcrature, height, and u and v components of wind; and at the lower six mandatory levels

of relative and specific humidity.

4.3 OBSERVATION DATABASE

The development of the observation database required decoding, sorting. and merging of data

extracted from 34 magnetic tapes from the USAF Environmental Technical Applications Center.

All observations were ordered by station number with data in daily sequence for the entire month.

The database required synoptic observations.
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Observations closest to (-3 to +1 hr) 00 UTC, 06 UTC, 12 UTC, and 18 UTC have been

stored for use in the CA and EU windows. The observation window is approximately the size of

RWFM (60x60 grid boxes, each box 95x95 km). The observations were extracted by station for

sorting and merging into the windows by season and time.

The data are surface observations of sea level pressure (P), temperature (T), dewpoint (Td),

and station elevation; upper air (RAOB) observations of u and v components of wind (U and V,

respectively,), height of mandatory level (Z), T, and Td; aircraft observations of U, V, T,

latitude/longitude, assigned pressure level, and time; and unique satellite observations of T and Z

in the form of a RAOB.

4.4 OBSERVATION SYSTEM SIMULATION EXPERIMENT DATABASES

The OSSE databases form the beginning of a complex data processing project. The simplest

and possibly most meaningful description of the databases is shown in Fig. 1.

4.5 ERROR CORRELATIONS DATABASE

From Section 3.4 there are three separate error correlations required: horizontal, vertical,

and temporal. The correlations are calculated from the differences at observation points between

forecast and observed values. These differences (the Ais from Eq. 2) are calculated on each of the

mandatory levels after horizontal interpolation of forecast (first guess) values from gridpoints to

observation points, using the four-point restorer scheme (Shapiro, 1978). Observations that match

the times of RWFM forecasts are interpolated vertically if necessary to mandatory levels (1,000 to

50 mb) for January 1989 and July 1988 in the CA and EU windows. Observations of Z, T, Td, U,

and V not on mandatory levels are interpolated linearly in In P to the closer mandatory level.

Let A, = R, - fo, be the forecast error at an observation point i, where from Eq. 1, f Pi is the

preliminary (first guess forecast) value of a meteorological element at observation point i, and fP is

the observed value at observation point i. The As can be calculated for each of the forecasts in the

database of Section 4.2, given the observed elements in Section 4.3. They are defined only when

forecast and observed elements are both available at nearby times and locations.
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4.5.1 Horizontal Error Correlations

The Ai s are a function of forecast length, mandatory level, month, instrument, distance

between and relative orientation of observations, and window. Table 4 illustrates a general error

database, which for horizontal correlations requires the As at specific distance intervals and direction

vector intervals between observations pairs. The mean (Mi) and the standard deviation (ai) of each

error variable is calculated and stored by summing the AA over the 12 forecasts for each level,

month, window, and forecast length for all observation points (i), ignoring any point that has less

than eight observations.

Mi = (IiAi)/n and ai = { [1/(n-1)] * [IA 2 - Mi2*n] }1
/
2

where n is the number of forecasts with observations that match in time and 8 < n :< 12.

The error at each observation point in the set is correlated with the error at the other

observation points for all variables. Let rij be the (univariate) autocorrelation coefficient,

ro = (Aj* - Aj*Ay)/(O,-o) (4)

for observation point i and observation point j of the same meteorological error element, where the

overbar is an average over n. Note that

Similarly, for different meteorological elements, say A and B, a (bivariate) cross-correlation

can be written

-AAAA AA*AB (5)
(oA,*o,)

observed element (identified if measured by aircraft or satellite) in the database will be calculated

where Eq. 4 is the special case of a = b from the more general Eq. 5. (Both equations can be used

to calculate any type of correlation between two elements.) For both windows and months on all

levels at all forecast lengths, the univariate and bivariate horizontal correlation coefficients for each
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Table 4. The generalized error database at observation point i for some specified level, month,

meteorological element, and window

Initial Forecast + 12-hr + 18-hr +24-hr +36-hr

1 / 00 UTC A(1,1) A(1,4)

3 /12 UTC 4(2,1) A1(2,4)

6/00 UTC

8 /12 UTC

28/12 UTC A(12,1) A(12,4)

and stored for each unique pair of observations (ij). The correlations will be stored by instrument,

month, length of forecast, and mandatory level into bins, which organize paired observations by the

distance between them (Thiebaux et al., 1986) in 50-km intervals out to 2,500 km. In addition to

placing the correlation pairs into bins that are a function of only the distance between the pairs, the

correlations are also "binned" according to the direction of the line connecting the paired points.

The purpose of treating the line as a vector is to allow a determination of the isotropy of error

correlation. Thus, there will be a group of horizontal correlation coefficients arranged as shown in

Table 5.

This database leads to a complex horizontal error correlation model. The approach,

however, is to let the data speak for themselves; therefore, no univariate or multivariate

combinations of meteorological elements can be eliminated arbitrarily from consideration.

Consequently, horizontal error correlations are calculated for Z-Z, T-T, U-U, V-V, Q-Q, Z-T, Z-U,

Z-V, Z-Q, T-U, T-V, T-Q, U-V, U-Q, and V-Q. In addition, the multivariate correlations, say

r(AB), are calculated for both r(AB) and r(B,A). Also, there are four instruments to consider:

aircraft, rawinsondes, and two satellites. Finally, there are four quadrants to account for the direction

of the vector connecting two observation points, four forecasts lengths, two windows, and two

seasons.
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Table 5. The horizontal correlation database for windows, seasons, and levels for each observed

unique pair of observations

Distance (km)

0-50 51-100 101-150 • 2451-2500

Instrument
Europe
Central America

12-hr forecast
18-hr forecast

24-hr forecast

36-hr forecast
January
July
Quadrant

NE
NW

SW
SE

Thus, the horizontal error correlation model is a function of several thousand variables!

Undoubtedly, the model will be simplified because many of these variables will not be unique;

nevertheless, the data will be allowed to speak for themselves.

4.5.2 Vertical Error Correlations

Similarly, the univariate and bivariate vertical error correlation coefficients of all the

meteorological elements (Z-7, T-T, U-U, V-V, Q-Q, Z-T, Z-U, Z-V, Z-Q, T-U, T-V, T-Q, U-V, U-

Q, and V-Q) will be calculated and averaged over all radiosonde sites in the database. Satellite data

are limited to error correlations of Z-Z, T-T, and Z-T. Of course, in this case there are no bins for

the distance between observation pairs or the direction vector between them. These correlations are

being computed rigorously for all mandatory levels, as shown in Tablc 6.

28



Consider the vertical error correlation of element A on level k with element B on level I at

a rawinsondc observation point, rkl(AAk,ABI) Ifor example, r(AAs50.AB700), where A is on the 850-mb

level and B is on the 700-mb level]. The As are calculated as shown in Table 4, and the correlations

are calculated from Eq. 5. The vertical correlations are functions of several variable; the

instrument; the months of January and July;, the EU and CA windows; and the four forecasts: 12 hr,

18 hr, 24 hr, and 36 hr). The averages are stc.ed in Table 6.

4.5.3 Temporal Error Correlations

Finally, the univariate and bivariate temporal error correlation coefficients of all the

meteorological elements will be calculated and their averages stored for Z-Z, T-T, U-U, V-V, Q-Q,

Z-T, Z-U, Z-V, Z-Q, T-U, T-V, T-Q, U-V, U-Q, and V-Q. In addition, the multivariate correlations,

say r(AB), are calculated for both r(AB) and r(B,A). This is a comparatively simple (because there

are only four forecast times) calculation of correlating the A is at a given forecast time with the other

forecast times.

Consider, for example, meteorological elements A and B (recall that A = B for univariate

correlations), the temporal error correlation is given by the general expression r .(AA .,AB.) where

m is the mlk-hr forecast and n is the n'-hr forecast. Specifically, there are six unique temporal error

correlations: r-(AAjIh,ABIjh), rT(AA12h,AB 24b), rT(AAM,ABhb), rT(AA,8b,AB 24h),rT(AA&h,AB 36 h), and

rT(AA 24h,AB36h). These correlations require the A is from Table 4 and are calculated from Eq. 5.

The temporal error correlations are functions of the same variables as are the vertical correlations.

The variables are the rawinsondes, the months of January and July, the EU and CA windows, and

the mandatory levels. The average correlations are stored as shown in Table 7.

5. CASE STUDIES OF NUMERICAL ANALYSIS EXPERIMENTS

The 01 experiments with real data have yielded many interesting and relevant results. The

numerical experiments discussed in Section 3 that used simulated data were theoretically interesting

and useful; however, real data offered more robust experiments and practical results. Simulated

error correlation coefficients were still required, however, because the models being developed under

STC Task 2 were not ready for use.
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Table 6. The average over all rawinsonde sites of the vertical error correlations of all observed
meteorological elements at the given level with the levels above for each window (Eurasia
and Central America), month (January andJu. a-- I,. rccz-rt h'ir ("1 1 24, -..d 36).

Standard Levels (nobs)

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
850 700 500 400 300 250 200 150 100 70 50

850 850 850 850 850 850 850 850 850 850
700 500 400 300 250 200 150 100 70 50

700 700 700 700 700 700 700 700 700
500 400 300 250 200 150 100 70 50

500 500 500 500 500 500 500 500
400 300 250 200 150 100 70 50

400 400 400 400 400 400 400
300 250 200 150 100 70 50

300 300 300 300 300 300
250 200 150 100 70 50

250 250 250 250 250
200 150 100 70 50

200 200 200 200
150 100 70 50

150 150 150
100 70 50

100 100
70 50

70
50

Table 7. The average temporal forecast error correlation database for windows, montils,
instruments, mandatory levels, and observed elements.

Forecast flour

121 18'h  24t 36't

Europe
Central America
January
July
Mandatory Levels
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The error correlation model followed Thiebaux et al. (1986), who found that the second

order autoregressive function called SOAR worked well with meteorological data. Frankc (1990)

used their general expression

C(s) = (1+A)(1+as)e-" + A

where s denotes distance, and a and A are parameters determined by fitting the data.

Our experiments used a very simple version of SOAR to compute the correlation coefficient

required in Eq. 3 between observation points 1 and 2, r12 = e- d, where d is the distance in

kilometers between the two points, and a is a scaling parameter arbitrarily determined such that

r12 = 0.01 at the extent of the chosen radius of influence. Thus, in this simple version of SOAR

no real data are fitted to determine a. (For example, when d = 500 km, a = 0.0092, and when

d = 1000 km, a = 0.0046.) So from r12 = e- d, the simulated correlation coefficients were

calculated as a function of the distance between observations and the selected point, and the

intercorrelations were calculated as a function of the distance between the observations.

The results of Section 3.2 provided STC with insight into data selection techniques by showing

how well an 01 analysis at observation points matched verifying observations there. The results in

turn suggested several follow-on experiments. A description of the most noteworthy case studies,

their results, and conclusions follow.

5.1 ANALYSIS AT PSEUDO GRIDPOINTS

First, a database of the sea level pressure in two windows was prepared. The database

identified the latitude and longitude of all surface observation points in AFGWC regions in the EU

and CA windows at a time for which a 24-hr RWFM forecast was available.

Using the four-point restoring interpolation scheme of Shapiro (1978), the first guess field

(from the 24 hr RWFM forecast) at gridpoints was interpolated to each observation point. The four-

point restorer scheme, which interpolates from 16 surrounding gridpoints on a plane to an

observation point, interpolates data on a grid to an observation point. The advantage of this scheme

is that it, as a high order, linear interpolation scheme, corrects the phase distortion and amplitude

damping of ordinary linear (two-point) interpolation. Also, the restoring interpolation operator is

computationally simpler and more accurate than cubic splines for interpolation from a uniform grid.
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The forecast error, A, (defined here as observed pressure minus interpolated pressure), was

calculated for all observation points (i). Then the iterative analysis procedure for the window

selected one at a time all observation points, each of which served as a "pseudo" gridpoint for

purposes of this experiment. Each point and up to 20 of the closest observations within, say,

500 km (or some other given radius of influence) of this point made up a set of observations.

Each of these initial numerical analysis experiments in optimum interpolation, taking the lead

from Sections 3.1 and 3.2, had two parts, the second following from the first: (1) an original analysis

at an observation point that used up to 20 of the closest observations within an arbitrary radius of

influence, and (2) a follow-on analysis at each point that used a selected subset of the observations

from the original analysis at the point.

The original analysis at a selected point was calculated from the interpolated first guess at

that point, plus the sum of the product of the weights and the errors at up to 20 of the closest

observation points (see Eq. 1). The weights were calculated by inverting the correlation matrix from

Eq. 3. The procedure stopped after an analysis was performed at all observation points (which are

treated as pseudo gridpoints). This analysis is called 01-1. The analyzed values were compared with

the observed values at all points. The rms errors and average errors of forecasts and analyses

determined the goodness of the 01 analysis scheme.

The second part of this experiment is a follow-on analysis performed at each observation

(pseudo gridpoint). This second analysis used only observations from the original analysis at points

with weights Wi > 0.01 (see Tables 2 and 3) to influence the point to which observations were being

interpolated. In other words, for the second analysis, which is called 01-2, Eq. 1 was solved for a

restricted subset of the N observations. The effect was to use the set of observations that maximized

the information provided to the analysis from a limited number of observations.

This experiment was clearly not designed as a candidate for an operational numerical analysis

scheme. The purpose was to show that a greatly reduced subset of observations available to perform

an analysis at a point is sufficient to provide an analysis nearly equivalent to one produced by using

all available observations within some chosen radius of influence. Some of the most pertinent results

of thesc experiments follow. Given several good observations that are evenly distributed, the 01

scheme produced an excellent analysis (even with a poor first guess and a simple structure function).
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In Europe, where most surface observations are close together, the two or three observations

with the highest correlations (between the gridpoint and observations as well as intercorrclations

between the observations) are heavily weighted, so 01 in effect ignored observations with small

weights, as required by Eq. 1. The experiment first used the 20 closest observations within 500 km

of a selected point for the 01 analysis, and invariably three or less observations carried nearly all the

weight. Even on the boundary or at remote points, where as few as eight observations were within

500 kn, less that half of those observations had much effect on the analysis.

Other experiments also yielded results that confirmed intuitive expectations but needed

documentation nonetheless. For example, an obviously erroneous observation, which had a surface

pressure of 911 mb in a pressure field that averaged 1,010 mb, got into the database (due to

incomplete error checking at that time). Whenever that observation was close to a selected point

and therefore was given a high correlation, the analyzed value from 01 was bad, no matter how good

the first guess was. This example pointed out the critical requirement for using a gross error check,

and it suggested the need for using a buddy check.

Experiments in the CA window, a data-sparse region compared to Eurasia, illustrated how

01 performed with less data. The first guess forecast in July is excellent; consequently, the 01

analysis scheme is challenged to make a noticeable improvement from the preliminary field. The

average difference between the first guess field interpolated to the 211 observation points and the

observed values was only 0.59 mb. Experiments with three different radii of influence were

conducted: the standard radius of influence of 500 km, one shortened to 250 km, and one extending

to 750 km. The purpose was to check how additional observations would improve the analysis.

1. 250-/an radius of influence from gridpoint to the observation

Only four observations on average entered the analysis at a gridpoint for this case.

The average difference between the analysis and the observed values was 0.415 mb.

The second analysis, which typically used 60 percent of the observations in the

original analysis, had an average difference of 0.417 mb.
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2. Radius of influence extending out to 500 kn

At this radius of influence, however, a mean of 12 observations were included in the

01. The average difference between the original analysis and the observed values

was 0.242 rob. The second analysis, which selected only one-third of the observations

from the original analysis, had an average difference of 0.236 mb. The rms

differences were essentially the same too.

3. Radius of influence exending out to 750 kn

The 01 scheme used 15 observations on average. This approach improved the

analysis slightly (but not significantly) by reducing the bias; however, the rms

differences were virtually the same as Case 2. Given an error correlation model that

decreases exponentially with increasing distance, it was predictable that extending the

radius of influence beyond some optimum distance would result in little improvement

of an analysis. These expectations are now confirmed in practice.

5.2 SELECING OBSERVATIONS BY FORWARD STEPWISE REGRESSION

From the above case studies and Section 3, it can be concluded that a second analysis, even

though using a subset of observations, was nearly as "good" (approximately the same) as the original

analysis, obtained from interpolating the full set of N observations (Eq. 1). Too many observations,

most with weights so small they apparently introduced noise rather than information, did little to

improve an analysis. On the other hand, carefully selected observations allowed 01 to perform more

efficiently but as effectively. The selection technique of Section 5.1, however, obviously would be

too cumbersome in practice to be of value even though it worked in theory. Clearly, it makes no

sense to run a complete analysis, which requires the inversion of the large matrix in Eq. 2,

for the sole purpose of identifying a subset of the "best" observations to influence an

analysis point. Sections 3.2 and 3.3 determined a better method, forward stcpwisc

regression. Consider the following case studies.
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5.2.1 Sea Level Pressure Analyses

The first test of the FSR scheme was to select sea level pressure observations. Recall from

Section 3.2 that the efficiency of the FSR scheme is regulated by C. With C = 0.001, 0.005, and 0.01

in three different experiments performed in both data-sparse and data-rich regions, the smaller

values of c served to force more observations into affecting the analysis. When c < 0.01 the

additional observations had very small weights, and the analysis hardly improved. On average,

including the additional observations resulted in an error reduction of less than 0.04 mb; the

maximum reduction was less than 0.1 mb.

Table 8 shows a typical example of the effectiveness of the FSR technique. The frequency

distribution of the number of observations required for an analysis is highly skewed towards fewer

observations. The western Eurasian region contained 208 observations used as pseudo gridpoints,

about each of which an 01 analysis was performed using observations selected by the FSR. The

results from the FSR are compared to two prior analyses made at the same points: the original

analysis (01-1) made from the complete set of those 20 observations and the second analysis (01-2)

made from the subset of observations with weights Wi _> 0.01. Each of the 208 observation points

had at least 20 observations within 500 km.

The FSR technique is obviously computationally superior to the 01-2 technique because 01-2

first required an inversion of a 20x20 matrix followed by a second inversion of a matrix of a size

shown in Table 8, on average a 6x6 matrix. On the other hand, the FSR requires the inversion of

many small matrices, whose maximum size is shown in the table but typically is only a 3x3 matrix.

Similarly, selecting observations by the FSR for an 01 analysis is better than using the

20 observations in the 01-1 analysis. On average the FSR needed to select only three observations

for an excellent 01 analysis. Table 9 shows two representative measures of error in an analysis of

the surface pressure over western Eurasia, where the 01 original analysis made use of the 20 closest

observations (01-1), which were not rigorously selected. For this case the average first-guess error

(forecast minus observed pressure) is -7.49 mb, and the rms difference between the forecast and

observation is 8.23 mb.
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Table 8. Frequency distribution of the occurrence of the given number of observations used in an
01 analysis at observation points in a data-rich region. The 01-2 is the second analysis
at a point that resulted when only observations with Wi -> 0.01 were selected from a set
of the 20 closest observations, which influenced the original analysis 01-1 at the point.
The FSR is the analysis that resulted from optimum interpolation of observations selected
by the forward stepwise regression.

Number of observations

2 3 4 5 6 7 8 9 10 11+

01-2 3 12 16 36 47 38 32 20 8 2

FSR 81 79 47 6 1

Table 9. Comparison of analysis errors in millibars. The 01-1 is the case where the observations
are not rigorously selected, that is, up to 20 observation within 500 km are used. The 01-2
and FSR are described in Table 8.

01-1 01-2 FSR

Average of Observed
Minus Analyzed Pressure -0.34 -0.12 -0.34

RMS Difference Between the
Observation and the Analysis 1.00 0.96 1.00

Clearly, the 01 results in an excellent analysis, with an average error reduction of 94 percent

and an rms error reduction of 88 percent. But the FSR is remarkable because it needs so few

observations to make the O effective. The point is that these observations are objectively selected

by stcpwise regression. Note that the reduction of average error and rms error is only slightly

smaller for the 01-2 case. Also, the FSR selects on average three observations whose 01 yields an

analysis virtually the same as one produced from the full set of 20 observations.

Similar results for surface pressure analyses occur over a data-sparse region, in this case a

region extending from northern South America to the southern United States. Table 10 shows that
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the number of observations affecting an analysis (that is, the number of observations within 500 km

of each of 201 observation points) for this region has several peaks spread across the spectrum.

Only 25 percent of the points have a complete set of 20 observations within 500 km. (Earlier

experiments showed that extending the radius of influence from 500 km to 750 km had little effect

on the analysis.) Note that only slightly more than two observations on average are selected by the

FSR for an 01 analysis compared to (a) an average of nearly 12 observations in the 01-1 group, and

(b) the slightly more than four observations (with Wi 2 0.01) selected from the 01-1 group for use

in the 01-2 analysis.

But, as shown in Table 11, the results are similar, even in a data-sparse region when the first

guess itself was a good analysis. For this case the average first guess error (forecast minus observed

pressure) is only 0.59 mb, and the rms difference between the forecast and observation

is only 2.42 mb.

Clearly, the FSR is an outstanding technique for use in practice because it is both so

computationally efficient and accurate. In this case, however, the first guess was very good; so 01

could reduce the average error only by 60 percent and the rms error by only 18 percent.

Nevertheless, the FSR scheme accomplished the reduction by using only a few observations, rather

than attempting to squeeze information, which does not exist in a least squares sense, from a host

of superfluous observations.

Table 10. Frequency distribution of the number of observations used in the optimum interpolation
analysis to interpolate a value to a point in a data-sparse region. The 01-1, 01-2, and
FSR have the same meaning as in Table 9.

Number of observations

0 1 2 3 4 5 6-10 11-15 16-20

01-1 4 4 a 8 14 5 51 47 73

01-2 4 8 22 38 51 41 26 0 0

FSR 4 24 128 45 10 0 0 0 0
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Table 11. Comparison of analysis errors (in millibars) at observations points used in an 01 analysis
in a data-r -t region. The 01-1, 01-2, and FSR are the same as in Tables 8 and 9.

01-1 01-2 FSR

Average of Observed
Minus Analyzed Pressure 0.24 0.24 0.28

RMS Difference Between the
Observation and the Analysis 2.10 2.10 2.15

5.2.2 500 mb Height Analyses

With 500-mb heights replacing surface pressure, similar experiments would be generally

expected to yield similar results. Since the upper air data is sparse compared to surface data,

however, the radius of influence of the correlation function was extended to 1,000 km to allow more

potential observations to influence the analysis.

This case is a study of 180 observations over Eurasia on 9 January 1989 at 1200 UTC. The

FSR scheme was as effective at 500 mb as it was at the surface. On average the FSR used only

17 percent of the available observations surrounding each pseudo gridpoint; nevertheless, it produced

an analysis similar to one obtained by using all the observations within 1,000 km. Specifically, the

rms error of the FSR analysis was 76 percent of the error in the first guess; the rms error of the 01-1

analysis (all observations within 1,000 km are used) was 74 percent of the error in the first guess.

Table 12 shows the wide range of the number of observations in the 01-1 group and the

effect of the FSR on how many of those observations are needed for an analysis. It is impressive that

on average about three observations around a gridpoint can make an analysis nearly as good as

about 17 observations.

As shown in Table 13, the results arc excellent, even though the average first gucss error

(forecast - observed) is only -12.4 m and the rms difference is 28.7 m. The FSR improves the

analysis considerably. The average error is reduced by almost two-thirds and the rms error is

reduccd by about one-quartcr.
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Table 12. Frequency distribution of the number of observations at 500 mb used in an 01 analysis
of heights to interpolate a value to a point. The 01-1 and FSR are tie same as in
Tables 8 and 9.

Number of observations

0 1 2 3 4 5 6-10 11-15 16-20

01-1 0 0 0 0 4 2 18 30 126

FSR 0 5 65 79 29 2 0 0 0

Table 13. Comparison of 500-mb height analysis errors in meters. The 01-1 and FSR are the same

as in Tables 8 and 9.

01-1 FSR

Average of Observed
Minus Analyzed Height -3.2 -4.3

RMS Difference Between the
Observation and the Analysis 21.2 21.9

A close study of the detailed output of the experiments revealed some interesting results. At

slightly more than 20 percent of the points the FSR yielded a better analysis than 01-1, even though

the FSR used much fewer observations. At almost 6 percent of points the first guess was better than

the analyses, but the errors were very small. The maximum difference between the errors resulting

from FSR and 01-1 was less than 10 m. Taking all the results together, the FSR reduced the

average rms error by 30 percent, and 01-1 reduced the average rms error by 32 percent. Both

schemes reduced the average error by 40 percent.

In sum, optimum interpolation performed an excellent analysis, as anticipated. Forward

stepwise regression made the general 01 scheme even more efficient.
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5.3 ANALYSES ON THE RAP GRID

Next, analyses were performed at actual gridpoints rather than the pseudo grid (that is,

observation) points, as in the preceding experiments. Each gridpoint and up to 20 of the closest

observations within 500 kin (or some other given radius) of this point made up a set of observations.

(Recall that this analysis is called 01-1.) From this set the simulated correlation coefficients were

calculated (from the model ri = ev d) as a function of the distance between observations and the

gridpoint, and the intercorrelations between each of the observation points were calculated as a

function of the distance between the observations.

Several numerical experiments provided both objective and subjective results that

demonstrated the success of the transformation of the 01 scheme. The baseline test is a comparison

of two analyses, one at observation points and the other at gridpoints, using the same first guess and

observation set. In all cases both analyses were similar. The second test compares an analysis

calculated from the 01 using a set of up to 20 of the closest observations (01-1) with an analysis

calculated from a subset of those observations chosen by the FSR process. This test confirmed the

technical approach of integrating stepwise regression into optimal interpolation. All meteorological

variables were analyzed.

The objective "measure of merit" is a comparison of the errors (the difference between the

value of an element at an observation point and the value obtained by interpolating the element at

surrounding gridpoints to the observation point). This "grid-to-station" verification is not a perfect

measure of merit; nevertheless, it is useful.

5.3.1 Sea Level Pressure Analyses

First, however, note from Table 14 that only a relatively few observation of sea level pressure

are needed to produce an accurate analysis in a data-rich region. Of course, the FSR technique is

computationally superior to the 01-1 technique, which required an inversion of a large (on average

an 18x18 in this case) matrix. On the other hand, the FSR required the inversion of many small

matrices, usually a 3x3 matrix, as shown in Table 8. On the 41x41 RAP grid (1.681 gridpoints), the

reduced number of calculations needed for the FSR scheme is obviously substantial.
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Table 14. Frequency distribution of the number of sea level pressure observations weed in an 01
analysis to interpolate a value to a point in a data-rich region on the RAP grid system.
The 01-1 and FSR are described in Tables 8 and 9.

Number of observations

1 2 3 4 5 6-10 11-15 16-20

01-1 0 0 0 0 0 31 329 1,321

FSR 240 660 622 148 11 0 0 0

The analyses were accurate, as measured by the reduction of average and root mean

differences; however, plots of the sea level pressure appeared to be "noisy." Note from Eq. 1 that

an 01 analysis results from adding the first guess field to the sum of the weighted departures

(I Wi*Di). These corrections are slightly noisy when viewed as analyzed plots of the departure fields

at gridpoints. Also, lagged autocorrelations and Fourier analyses of the fields suggest there is some

two-grid-interval variations (noise). These small-scale variations were removed, without harming the

overall analysis, by applying Shapiro's seven point linear smoothing filter (Shapiro, 1975). It

suppresses two-grid-interval waves without changing the phase of any wave component and with little

damping of the amplitudes of all other waves.

5.3.2 500-mb Height Analyses

Statistics of analyses of 500-mb height surfaces performed at pseudo gridpoints are similar

to those performed on a grid. On average the 01 with the FSR selecting the observations required

only three observations to make an analysis nearly identical to an 01 analysis that used an average

of 18 observations surrounding each gridpoint. Overlaid plots of the two 500-mb analyses revealed

only the slightest of differences between the two, and those differences were isolated. Table 15

shows two measures of merit in an analysis of the 500-mb height field over western Eurasia. For this

case with a good, unbiased first guess the average error (forecast minus observed) is only 10 m, and

the rms difference between the forecast and observation is approximately 24 m. The average rms

difference between the 01-I and FSR (not shown) is 2.8 m, or 12 percent of the first guess error.

For comparison Table 16 shows the results of analyses that use the same first guess and

observation set but are calculated at observation points instead of gridpoints. In this case the
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Table 15. The 500-mb differences (FIRST GUESS analysis) in meters, using the Of on a 50-nm

grid over data-rich Eurasia. The 01-1 and FSR are described in Tables 8 and 9.

01-1 FSR

Average Value 9.97 9.25

Root-Mean-Square 24.2 23.0

Table 16. The 500-mb analysis errors (m) using the 01 at the observation points over the Eurasian
region. FIRST GUESS is the RWFM (preliminary) forecast field interpolated to the
observation points.

FIRST GUESS 01-1 FSR

Average of Observed
Minus Analyzed -15.9 -1.18 -2.15

RMS Difference Between the
Observation and the Analysis 34.7 6.2 6.9

average first guess error was nearly -16 m as compared to analysis errors of only about 2 m. The

first guess rms errors (that is, the difference between the first guess and the observed 500-mb height)

was about 35 m compared to analyzed rms errors less than 7 m.

Clearly, the 01 results in an excellent analysis, with an average error reduction of 86 percent

for the FSR and 92 percent for the 01-1, and an rms error reduction of about 80 percent for both.

Again, the FSR needs so few observations to make the 01 effective because these observations are

objectively selected by stepwise regression. Note that the FSR reduction of average error and rms

error is only slightly larger than the 01-1 case, even though the FSR selects on average only three

observations from the full set of up to 20.

5.3.3 The 500-mb Temperature Analyses

Similar results for 500-mb temperature analyses occur over a data-sparse region, in this case

the region extending from northern South America to the southern United States. (As shown,

however, the distribution of observations is not like that of Table 13.) In fact, a composite summary

of several analyses of different variables in the two regions yields the same conclusions as the
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individual case illustrated in Tables 9, 10, and 11. The rms errors of the analysis are typically only

20 percent of the rms errors of the first guess. The FSR and 01-1 analyses are remarkably similar

as well as a great improvement over the first guess. The autocorrelation of both analyses is typically

0.99 for a data-rich region and 0.97 for a data-sparse region. Of course, the amount of improvement

depends upon the quality of the first guess forecast.

5.3.4 The 500-mb Humidity Analyses

The excellent performance of the stepwise regression scheme in the optimum interpolation

of pressure, both on the :urface and on isobaric levels, and temperature leads to the conclusion that

using a set of carefully selected observations is preferable to using all observations in some arbitrary

vicinity. The next test of the 01 scheme was to analyze the more difficult meteorological variables,

of humidity and wind.

In spite of poor first guess forecasts of moisture, the 01 scheme produced good analyses of

humidity (using the method of Redder and Fukuta (1989) to convert from dewpoint to standard

humidity variables), even though the scheme has a simple univariate correlation function. The rms

errors and average errors were similar to those of other variables.

The objective test continues to compare an analysis calculated from the 01 using a set of up

to 20 of the closest observations (01-1) with an analysis calculated from a subset of those

observations chosen by the FSR process. In addition, both these analyses can be made at either

gridpoints or observation points, which serve as pseudo gridpoints; hence it is straightforward to

compare analyses to actual observations too. This test confirmed the technical approach used to

integrate stepwise regression into optimal interpolation, and with a simple but physically realistic

correlation function. The objective measure of merit is a comparison of the errors (the value of an

element at an observation point minus the value obtained by interpolating the element at

surrounding gridpoints to the observation point).

Table 17 shows the average errors and rms errors of the 500 mb relative humidity analysis

and confirms the similarity between analyses using an average of 17 observations (01-1) and the

analysis derived from optimum interpolation of observations selected by FSR. These two analyses
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Table 17. The difference between the FIRST GUESS (a 36 hr RWFM forecast) and the relative
humidity analysis on a grid over Eurasia. The 01-1 is an analysib computed from a
complete set of observations, and the FSR is the analysis computed using forward
stepwise regression, which selects a subset of observations.

01-1 FSR

Average Value (%) 0.125 0.052

Root-Mean-Square (%) 15.9 15.67

over western Eurasia are clearly similar, but they need to be complemented by a measure of merit

that compares errors at observation points.

Analyzing the errors at the observation points themselves, rather than at the gridpoints as

in Table 17, gives a better measure of accurac, of the scheme. Table 18 shows that the scheme is

successful; the rms errors are reduced by 83 percent. In addition, the correlation between the

analyzed humidity field interpolated to the observation points and the humidity measured at the

observation points is 0.97 (the corresponding first guess correlation is 0.41).

Thus, even with a poor first guess, the 01 scheme produces an excellent humidity analysis.

Note that the FSR reduction of average error and rms error is only slightly smaller than the 01-1

case, even though the FSR selects on average only three observations from the full set

of up to 20 observations nearest the gridpoint.

Table 19 shows the various correlations among the analyzed humidity fields with each other

and with actual observations. The analyzed field is very highly correlated with the observed humidity.

Also, the analysis derived from stepwise regression, which uses on average three observations, is very

highly correlated with the analysis derived from an average of 17 of the closest observations.

5.3.5 The 500-mb Wind Analyses

Finally, the 01 scheme is also successful when analyzing wind fields. Table 20 shows the

average errors and rms errors of the v corrponent of wind and confirms the similarity betwcen

analyses using an average of 17 01-1 and the analysis derived from the FSR scheme.
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Table 18. The 500-mb humidity analysis errors using the 01 at the observation points over the
Eurasian region. The 01-1 and FSR are defined in Table 17, and FIRST GUESF is the
forecast error.

FIRST GUESS 01-1 FSR

Average of Observed
Minus Analyzed (%) 1.48 -0.02 0.17

RMS difference between
Observation and the Analyses 26.6 4.61 4.6

Table 19. The average correlations among relative humidity analyses derived first from optimum
interpolation of up to 20 of the closest observations (01-1), observations and second
from optimum interpolatiion of observations selected by (FSR). These analyses are also
correlated with the FIRST GUESS (36-hr forecast) and observed value (OBVAL).

0I-1 FSR OBVAL FIRST GUESS

01-1 1 0.988 0.971 0.543

FSR 0.988 1 0.969 0.543

OBVAL 0.971 0.969 1 0.414

FIRST GUESS 0.543 0.543 0.414 1

Table 20. The difference between the FIRST GUESS (36-hr RWFM forecast) and the v-wind

component analysis on a grid over Eurasia. The 01-1 and FSR are defined in Table 17.

01-I FSR

Average Value (m/s) 1 0.91

Root Mean Square (m/s) 3.77 3.65

The accuracy of the analysis was measured by comparing an analysis made at gridpoints and

interpolated to observation points to the observed value at that point. Table 21 shows that analyzed

wind errors, when compared to the first guess errors, were reduced by 83 percent, which is a typical

error reduction for the scheme.

Table 22 shows that the analyzed wind field is very highly correlated with the observed wind

field. Also, the analysis derived from stepwisc regression, which uses on average three observations,
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Table 21. The 500 mb v-wind component analysis errors (m/s) using the 01 at the observation
points over the Eurasian region. FIRST GUESS is defined in Table 18 and 01-1 and
FSR are defined in Table 17.

FIRST GUESS 01-1 FSR

Average of Observed
Minus Analyzed (m/s) -1.36 -0.1 -0.17

RMS Difference (m/s)
Between the Observation 6.02 0.93 0.99
and the Analysis

Table 22. The average correlations among analyses of the v-wind component derived first from
optimum interpolation of up to 20 of the closest observations (01-1) and second from
optimum interpolation of observations selected by FSR. These analyses are also
correlated with the FIRST GUESS (36-hr forecast) and OBVAL

01-1 FSR OBVAL FIRST GUESS

01-1 1 0.9899 0.9879 0.8935

FSR 0.9899 1 0.9876 0.8935

OBVAL 0.9879 0.9876 1 0.8720

FIRST GUESS 0.8935 0.8935 0.8720 1

is very highly correlated with the analysis derived from an average of 17 of the closest

observations.

The results of experiments w-!h the u-component of wind are virtually identical. Therefore,

they offer no further insight.

6. STATUS AND PLANS

STC Task 1, development of a RAP, is nearly completed. The 01 scheme, using univariate

correlations and stepwise regression, has successfully analyzed all meteorological variables. All that

remains is to test the scheme with multivariate correlations to determine if a better analysis is
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possible. Also, the scheme will be tested to ensure that neglecting observation errors is a valid

assumption in practice.

STC Task 2, calculation and modeling of the first-guess forecast errors and the OSSEs, are

now the main focus of attention. All required databases have been prepared to support the error

correlation module, described in Section 4.5. The RAP will test the validity of the error models on

independent data sets.

STC Task 3, the RAP objective verification program, has been informally underway for

several months but on a low priority basis. It will, however, be ready for operational use before

Task 2 requires it. Appendix B is a detailed report on a comparison of the GSM and RWFM with

the verifying analyses from HIRAS. The comparison was completed early to ensure that the forecast

database, which consists of 12 nearly independent summer and winter forecasts, contained only
"good" data because our sample is too small to allow the calculations of error correlations to be

overwhelmed by a bad forecast.

STC Task 4, the OSSEs, began in December 1990. The observation database is complete,

and the analysis and forecast databases are being developed. The subtasks detailed in Section 2.4

will be accomplished by summer 1992.

STC Task 5, extends the analysis prepared as a result of the RAP into a 12-hr forecast. This

portion of the project will be started in spring 1992.

7. SUMMARY AND CONCLUSIONS

The RAP represents a unique technical approach to a regional analysis. No other group

integrates the FSR into optimum interpolation to select observations rigorously for input into an

optimum interpolation scheme. In addition, the scheme as developed in Eq. 2 can ignore the

observation error, which is an unknown quantity, at gridpoints. This is not the typical approach to

optimum (or, strictly speaking, statistical) interpolation. The optimum interpolation analysis scheme,

even when using a relatively simple, univariate correlation model, performs accurate analyses of any

meteorological variable.
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APPENDIX A

SOFIWARE REPORT

This software report provides a brief description of problems encountered with government

furnished data and operational software, a detailed listing of the required software modifications, and

a short summary of the software developed for the regional analysis procedure (RAP).

1. PROBLEMS

A DATA EXTRACTION FROM "FOREIGN" MAGNETIC TAPES

The datasets of analyses and observations from the U.S. Air Force Environmental Technology

Applications Center (USAFETAC) were not user-friendly, especially the observations (surface, upper

air, and satellite-measured temperatures). While the High-Resolution Analysis Model (HIRAS)

analyses are fixed-length records in ASCII, the observations are variable length, unformatted records.

The VAX FORTRAN language and utility programs at the Phillips Laboratory Geophysics (PIJGL)

Computer Center are not well suited to read tapes generated on non-VAX hardware (that is, foreign

tapes) in any event; variable length, unformatted binary records present even more problems.

Nevertheless, Science and Technology Corporation (STC) developed methods to decode and process

DATSAV2 surface data and DATSAV upper air data, both of which are in binary format.

A VAX consultant from the PL/GL Computer Center provided a FORTRAN subroutine,

QIOREAD, which contained VAX system subroutines for extracting data from foreign tapes.

These system routines, however, produced meteorological nonsense when used to extract upper air

data from binary tapes. After examining the binary data from tape data dumps and converting the

contents of each byte from binary to decimal format, it was apparent that reversing the order of the

bytes yielded meteorological information. The IBM hardware, which USAFETAC uses, processes

each byte within half or whole words in reverse order during data transfers to and from tapes.

Additional programs were modified into STC subroutines FLIPHWORD and FLIPWWORD, to

properly process each half and whole word integer produced by IBM hardware.
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B. DEBUGGING THE RELOCATABLE WINDOW ANALYSIS MODEL (RWFM)

FORECAST ERROR

A very large RWFM forecast error was caused by an error in the U.S. Air Force Global

Weather Cental (AFGWC) software. The initial analysis and forecasts at 70 and 50 mb were much

too warm; the height field was more than 5,000 m above standard! The other variables at those

levels and all variables at the 100-mb level and below, however, verified well.

The cause of the forecast error was located in Subprogram RWPOST, the post-processing

program of the RWFM consisting of several thousand lines of code (reference the AFGWC RWFM

package/Subprogram RWPOST). Exhaustive checking of each module and debugging of those that

could have caused the error isolated the problem in a section of code in Subroutine CALCO, which

(for no apparent reason) recalculates the temperature at the top sigma level. Not only was the

recalculation unnecessary, it was incorrect.

STC called AFGWC to advise them of the error and to eliminate it by removing the three

(illogical) lines of code that recalculated the variables TSUM, PENV, and TS. (The code was

located immediately above the statement, 90 CONTINUE.

C. GRID CONVERSION

The conversion from the RWFM grid to the uniform gridded data field (UGDF) grid was

a deceptively "simple" task. It was expected to be simple because AFGWC had developed the

software and prepared the documentation more than a year before sending it to STC; the simplicity

of the task was deceptive, however, because some of the software and documentation had errors.

The errors are documented thoroughly for AFGWC's information.

The requirement was to interpolate fields from the RWFM grid on a Lambert conformal (or

Mercator) projection to the UGDF on a polar stereographic (or Mercator) projection. STC had

followed AFGWC's lead by running the RWFM on the Lambert conformal projection for a

midlatitude window. This was a sensible choice that nevertheless caused difficulties when converting

to the UGDF grid.
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When the latest version of software and documentation arrived from AFGWC, STC learned

for the first time that the UGDF grid was defined only for polar stereographic and Mcrcator

projections. Unfortunately, no code for interpolating a grid system on a Lambert conformal

projection to a UGDF grid was provided. This problem became more complicated because the

software was neither thoroughly tested (there were some obvious errors, such as a grid length that

changed across the Greenwich Meridian, that testing would have revealed) nor well documented

(AFGWC could not answer questions about input required by their software because the

programmers were unavailable). After finding additional obscure errors in both the software and

the documentation, STC determined that developing original software was the best solution to the

problem. The errors, however, are documented below.

1. Reference the AFGWC/TN - 79/003 (REV), MAP PROJECTIONS AND GRID

SYSTEMS FOR METEOROLOGICAL APPLICATIONS.

a. Equation 2.11 (on page 17 in the Tech Note) describes the y-axis in an image

plane coordinate system for a Mercator projection. This equation, however, is a

specific version of the more general formula incorporated into the RWFM

preprocessing software, and is valid only if the center point (reference) latitude

(PHIO) is 00.

The Tech Note, however, does not refer to the generalized equation used in the

RWFM software nor does it address the limitations of Eq. 2.11. Furthermore, the

software documentation does not discuss the transformation equation, which can

only be examined upon detailed inspection of the source code. This incomplete

documentation led to erroneous software based on the assumption that Eq. 2.11

was used in the AFGWC code.

In the derivation leading to the general form of Eq. 2.11, reference was made to

code in Subroutine MERC, which sets up a Mercator grid. MERC calculates the

latitude and longitude for each gridpoint. A rearrangement of terms in the section

of code that calculates the latitude (contained within the DO 130 loop) yields the

following expression:

PHI = [ 2.0*ATAN(EXP(Y/ECOS)) -2.0"PI/4] + PHIO
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where PHI is the latitude of the gridpoint, ECOS is the length of cosine side of

earth radius, and Y is the y-coordinate on the grid.

This expression for PHI follows from the code

DEGLAT(I,J) = PH2 + CENLTD

after substituting for PHI1 and PH12, and defining PHI0 = CENLTD. From

several algebraic manipulations, an expression for the y-coordinate can be solved:

Y = ECOS * In [ TAN 1/2(PHI-PHIO + PI/2) ].

Now ECOS = ( A * COS[true latitude] ), where A is the Earth's radius, in

Subroutine MERC. Substituting the value of ECOS into the above expression for

Y allows a direct comparison with Equation 2.11 of the Tech Note,

Y = (A*COS(PHI1)) * In[ TAN 1/2(PHI + PI/2)l,

where PHI1 is the true latitude.

Clearly, the expressions for the y-coordinate in Subroutine MERC and Eq. 2.11

in the Tech Note are equivalent if and only if PHI = (PHI-PHIO), that is, when

PHI0 = 0, which means that the center point latitude for the Mercator projection

must be the Equator. Nothing in the documentation, however, required this

limitation.

b. Equation 3.43 (on page 68 of the AFGWC Tech Note) calculates the latitude

(PHI) of any gridpoint, given its I and J coordinates. This equation applies only to

a whole mesh grid, however, because (AA), the longitudinal grid spacing in degrees

is not multiplied by the grid scale factor (G) as it is in Eq. 3.44. Therefore, Eq.

3.43 yields latitudes much too large due to the larger number resulting from the

calculation of (JE-J). To correct Eq. 3.43, AA must be multiplied by the mesh

scale factor G (for example, G = +0.25 for a quarter-mesh grid in the Northern
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Hemisphere) prior to taking the exponential. The correct term is, then,

exp [ PI* G * AA1/180 * (JE-J) 1.

2. Reference AFGWC RWFM package/Subprogram RWGRID. STC found a mistake

in the mesh generation code that resulted in increased forecast errors. For the

Mercator projection the true latitude was set to 300 from the center point latitude in

a parameter statement in Subroutine SETGRD. But this is inconsistent with

Subroutine PARAM in the DO 80 loop, which is calculating map factors for a Mercator

projection. The calculation of the variable QMAP involves a "hard-wired" constant

value of 0.92388. This happens to be the cosine of 22.50, a value apparently not

changed when the software was modified to set the true latitude to 300 from the center

point latitude. The oversight produced an erroneous map scaling factor, which in turn

affected the RWFM forecasts generating the STC database (to be used for calculating

error correlations). This error in the code will be treated as a forecast error for RAP

purposes.

2. SOFTWARE DEVELOPMENT

The RAP has mostly been a large software development project, consisting of five major

modules. The purpose of these modules is to read the data from the magnetic tapes from

USAFETAC, to build the forecast and observation databases, to perform numerical analysis

experiments, to calculate forecast error correlations, and to build a database of simulated First

GARP [Global Atmospheric Research Program] Global Experiment (FGGE)-2b observations for

the OSSEs.

A. EXTRACTING DATA FROM FOREIGN MAGNETIC TAPES AND BUILDING THE RAP

FORECAST AND OBSERVATION DATABASES

In addition to the modifications of the VAX-providcd software discussed in Section IA,

programs were developed to read HIRAS, DATSAV surface observations, and DATSAV2 upper

air observations (RAOB, aircraft, and satellite).
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Sorting and merging all the data required development of a database management system

that was reliable, flexible, and user-friendly. All data are stored on the PJGP Computcr Center's

Centralized File Storage System (CFSS) for efficient retrieval and also on magnetic tape for backup.

In contrast to storage on USAFETAC's tapes, the data are sorted synoptically to facilitate the

calculation of forecast errors.

The primary programs are: BACKUP CFSS.COM, which copies files from CFSS to

magnetic tape; HIRASREAD.FOR, which read HIRAS from the magnetic tapes from

USAFETAC/OL-A MSC EDIT.FOR, which selects all observing stations within a window defined

by the program SETGRID.FOR; MSC SF.FOR and MSC UP.FOR, which create the global master

station catalog for rawinsonde and surface stations, respectively-, SATWRITE.FOR, which combines

satellite data from several tapes onto one tape; READETAC.COM, which is a command procedure

for running the tape-reading jobs in batch mode; READVTAPE.COM, which copies files from

magnetic tape to CFSS; AIRREAD.FOR, which reads aircraft data from USAFETAC tapes;

SURFDREAD.FOR, which reads surface data from USAFETAC tapes; and UPPERREAD.FOR,

which reads upper air data from USAFETAC tapes.

B. OPTIMUM INTERPOLATION

The optimum interpolation scheme, based on objective data selection by forward stepwise

regression (FSR), has been carefully tested on all meteorological variables. This includes gross error

and buddy checks, which identify observations that might be eliminated from an analysis.

The primary programs are BUDCHKFOR, which is described in great detail in Section 3.5

of the report: EXP3.FOR, which tests the algorithm that selects observations by forward stepwise

regrcssion; EXP4.FOR (EXP5.FOR), which calculates the analyzed value at an observation (grid)

point by optimum interpolation; INTRP.FOR, which maps from the RWFM's Lambert Conformal

or Mercator grid to the UGDF polar stereographic or Mercator grid, respectively; SETGRID.FOR,

which creates a grid and calculates the gridpoint latitude and longitude from user-defined

parameters: central point,resolution, projection, and number of columns and rows; and

RAPLIB.FOR, which contains a library of subroutines called by EXP3.FOR, EXP4.FOR,

EXP5.FOR, and others.
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C. ERROR CORRELATION CALCULATIONS

Only the general software for calculating error correlations was completed as of the writing

of this report. The primary programs are CORBIN.FOR, which "bins" all pairs of stations

according to direction and distance; CORCALC.FOR, which calculates the horizontal error

correlation coefficients of paired meteorological elements; CORCALC1.FOR, which calculates the

correlation coefficients of paired meteorological elements; CORCHDATA.FOR, which checks the

observations obtained by CORCHDATA.FOR for gross errors; COR_FGDATA, which reads a

forecast file and calculates a first guess at an observation point by using a grid points-to-station

interpolation; COR_SORT.FOR., which sorts the data for use in the program CORCALC.FOR;

CORUPDATAFOR, which extracts the observed values from a global synoptic data file of upper

air observation; MSCUP.COM, which creates the master rawinsonde station catalog;

MSCSF.COM, which creates the master surface station catalog; and MSCEDIT.COM, which

provides the required station pairs.

D. Observing System Simulation Experiments

Less software has been required so far compared to the above modules because PLIGP

obtained packages for data extraction and unpacking of the T-106 forecasts and FGGE-2b

observations. In addition, the PI/GP made the Air Force Geophysical Laboratory (AFGL) Statistical

Analysis Package (ASA)P software available. So far the work has mostly consisted of making

modifications to the provided software and developing scripts for the UNICOS on the CRAY-2 at

Phillips Laboratory Supercomputer Center.

3. STC'S MODIFICATIONS TO TIIE RWFM

A- PREPARING DATABASE INPUT

STC developed a post-processor for the PIGP Global Spectral Model (GSM) database files.

The program performed two tasks. It changed the PL/GP GSM database files, dimensioned into

arrays of 144*73, and made them 145*73 arrays by setting the 145th column equal to column 1. In

addition, it wrote GSM database parameters in reverse order; that is, the 12th pressure level was
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written first, and the first pressure level was written last to match the format the RWFM reads in

the GSM database.

B. MODIFICATIONS TO THE RWGRID SUBPROGRAM

1. All occurrences of #IMAX were changed to 61.

2. All occurrences of #JMAX were changed to 61.

3. All occurrences of #KLEV were changed to 16.

4. Added Call Dropfile(0).

5. Added open statement for unit 5 card image data "GRIDIN".

6. Changed all #IGMAX to 145.

7. Changed all #JGMAX to 73.

8. Fixed open statement for opening "FIXED" file from 'UNFORMATTED' to

'FORMATTED'.

9. Compiled with cft77.

10. Linked with ldr.

11. Executed code.

This code created 2 files: CNGM and GRID.

A prerequisite to running RWGRID is a fixed field file containing a global grid of terrain

heights and a global grid of surface drag coefficients. This global grid has a resolution of 2.50 x 2.5 0.

After using the fixed field file provided by AFGWC and receiving abnormal results, STC switched

to a fixed field file from the RIAM at PL This fixed field file required new software to read the

RLAM file and reformat it as required by RWGRID.

C. MODIFICATIONS TO THE RWSFCT SUBPROGRAM

1. All occurrences of #IMAX to 61.

2. All occurrences of #JMAX to 61.

3. Added Call Dropfile(0).

4. Opened "SSMT' file (unformatted).

5. Opened "TSEA" file (unformatted).

6. Opened "GRID" file (unformatted).
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7. Opened "AVGSFCT' file (unformatted).

8. Wrote a small program to convert card images of sea surface temperatures and

12-hr-old 1,000-mb temperatures into an unformatted SSMT file.

9. The 6 April 1988, 00 UTC Julian hour (177648) was added as the first card in the sea

surface temperature file prior to running the program to create SSMT.

10. Fixed bug in an interpolation routine, as requested by, AFGWC.

11. Compiled with cft77.

12. Linked with ldr.

13. Executed code.

This program created two files: TSEA and VGSFCT.

D. MODIFICATIONS MADE TO THE RWANAL SUBPROGRAM

Because the first version of RWANAL had numerous errors in the code, STC implemented

the latest version called RWHROO. The following changes were made to RWHR00:

1. All occurrences of #IMAX to 61.

2. All occurrences of #JMAX to 61.

3 All occurrences of #MAXPL to 12.

4 All occurrences of #KLEV to 16.

5. All occurrences of #IGMAX to 145.

6. All occurrences of #JGMAX to 73.

7. Added Call Dropfile(O).

8. Opened unit 5 "ANALIN" file for card image formatted input.

9. Opened unit 10 "CNGM" file for unformatted input.

10 Opened unit 11 "NEWCNGM" file for unformatted output.

11 Opened unit 12 "DBGSOOF' file for unformatted input.

12. Opened unit 20 "GRID" file for unformatted input.

13. Opened unit 30 "SSMT' file for unformatted input.

14. Opened unit 40 "TSEA" file for unformatted input.

15. Opened unit 50 "FHROO" file for unformatted output.

16 Opened unit 60 "RESTART' file for unformatted output.

17. Opened unit 71 "PREWAM" file for unformatted input.
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18. Most of the modifications were in Subroutine GETGSM.

This subroutine reads in the GSM database file created by our GSM postprocessor program.

The changes made to Subroutine GETGSM were:

a. Added five new arrays (udummy, vdummy, tdummy, zdummy and rdummy). Each

one of these array's dimensions were changes to (145*73).

b. The DATFLD call was commented in exchange for READ(12) udummy. There

was no need to descale our GSM data for any of the fields, so the DO loop was

commented out too. Instead of descaling, the DO loop was set by letting gsmdat(i)

= udummy(i).

c. We repeated the procedure above (18b) for the v-wind component, but READ(12)

vdummy was used to read the data.

d. Did same procedure above for temperatures, but READ(12) tdummy was used to

read the data.

e. Did the same procedure above for the heights, READ(12) zdummy was used to

read the data.

f. Changed all occurrences of #IMOIS to 6.

g. Repeated the (18b) procedure above for relative humidity, using READ(12)

rdummy to read the data.

h. Modified first read of "SSMT' file to read the entire record (RJLHR,ARRAY), not

just (RJLHR). ARRAY was basically a dummy array dimensioned to 145*73.

i. The GSM database Julian hour SRCJUL was set equal to the Julian hour found in

the SSMT file because no julian hour was found in the PL/GP database.

j. Compiled with cft77.

k. Linked with ldr.

I. Executed code.

E. MODIFICATIONS MADE TO SUBPROGRAM RWBNDY

The following changes were made to the 4 January 1990 version of AFGWC's RWBNDY

code, so it could be executed on the Cray-2 at the AFWL
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1. Created a CHARACTER*5 variable to store the name of the GSM verification ile that

will be opened.

2. Added Call Droptile(O) as the first executable statement.

3. Opened unit 5 "BNDYIN" for card image input.

4. Opened unit 40 "FHROO" for unformatted input.

5. Opened unit 30 "GRID" for unformatted input.

6. Opened unit 20 "NEWCNGM" for unfbrmaLcd input.

7. Opened unit 50 "BTEND" for unformatted output.

8. The following code was added after the assignment to FILOUT:

IF(FCIME .EQ. 6) THEN

OFILE = 'GSMHR06'

ELSE

WRITE(OFILE,90) FCTIME

90 FORMAT('GSMHR',12)

ENDIF

WRITE(6,91) OFILE

91 FORMAT('OPENING',A8,' FOR OUTPUT )

OPEN(FILOUT,FILE=OFILE,STATJS ='UNKNOWN',

1 FORM ='IJNFORMATT-ED')

9. Changed all occurrences of #BPTS to 5.

10. Changed all occurrences of #IMAX to 61.

11. Changed all occurrences of #JMAX to 61.

12. Changed all occurrences of #KLEV to 16.

13. Changed all occurrences of #MAXDIM to 61.

14. Changed all occurrences of #MAXPL to 12.

15. The following modifications were made to Subroutine GETGSM to read the GSM

database.

a. Added INTEGER FILGSM and PARAMETER (FILGSM = 19).

b. Added CH~ARACTER*7 LITRAL

c. Addcd REAL UDUMMY(1 45*73), VDUMM-Y(1 45*73), TDUMMY( 145*73),

ZDUMMY(t45*73), RDUMMY(145-73)
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d. Changed the data initialization of PERLIT to have 00 as its first value not 06

e. Added the following code in order to open the proper GSM database file:

LITRAL = 'DBGS' // PERLIT(FCINDX) 11 'F

OPEN(FILGSM,FILE=LUTRA!,STATUS -'UNKNOWN',

FORM ='UNFORMATTED-)

WRITE(6,21) LITRAL

21 FORMAT(//,' OPENING ',A8,' FOR INPUT)

f. Commented out the DATFLD call and added a READ(12) udummy, where

udummy was declared as a real array dimensioned to 145*73. It was unnecessary

to descale the u-winds, so that code was commented out and the DO loop was set

by letting GSMDAT(I) = UDUMMY(I).

g. Used a similar procedure with the v-Winds, but the real array vdummy was declared

to be 145*73 and the READ(12) vdummy statement obtained the data.

h. Used same procedure with the temperatures, but the real array tdummy was

declared to 145*73 and the READ(12) tdummy obtained the data.

i. Did the same for heights,with the real array zdummy declared to 145"73 and used

READ(12) zdummy.

j. Did the same procedure for relative humidity but with a READ(12) rdummy

statement, and the real array rdummy was dimensioned 145*73.

16. Compiled with cft77.

17. Linked with ldr.

18. Executed code.

F. MODIFICATIONS MADE TO SUBPROGRAM RWQNGM

The following changcs were made to the 4 January 1990 version of RWQNGM so it could

be executed at the Phillips Laboratory Supercomputer Center.

1. Added Call Dropfilc(0) to main routine as the first executable statement in the

program.

2. Changed all occurrences of #IMAX to 61.

3. Changed all occurrences of #JMAX to 61.

4. Changed all occurrences of #MAXD to 61.

A-12



5. Changed all occurrences of #KLEV to 16.

6. Changed all occurrences of #NBND to 5.

7. Added open statements in Subroutine AINDSK:

a. Opened unit 5 "QNGMIN", a formatted file for card image input.

b. Opened unit 24 "PSEUDO", an unformatted file for input.

c. Opened unit 26 "GRID", an unformatted file for input.

d. Opened unit 29 "QNCNGM", an unformatted file for output from RWGRID.

8. Opened unit 28 "RESTART, an unformatted file for input.

9. Opened unit 20 "BTEND", an unformatted file for input.

10. Opened unit FILFCT "FHROO", an unformatted file for input, after the

FILFCT = 30 + (IPRNT -IRPT) statement; so that FILFCT would be defined prior

to opening.

11. Created in Subroutine ARUN a character*5 variable called OFILE;, then after the

declaration of FILFCT, added the following code to create unique filenames for each

forecast hour:

IF(ITIME .LT. 10) THEN

WRITE (OFlLE,62) ITIME

62 FORMAT ('FHRO',I1)

ELSE

WRITE (OFILE,63) OFILE

63 FORMAT ('FHR',12)

ENDIF

WRITE (6,64) OFILE,ITIME

64 FORMAT ('**** OPENING FORECAST FILE',A8,'

I FOR ',12,' Hr FORECAST')

OPEN (FILFCT,FILE=OFILE,STATUS ='NEW, FORM='UNFORMATTED')

12. Compiled with cft77.

13. Linked with Idr.

14. Executed code.
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APPENDIX B

COMPARISON OF ThE RWFM AND GSM WITh1 IlIRAS

As part of the regional analysis procedure (RAP) quality control program, Science and

Technology Corporation completed careful objective and subjective analyses of the 36-hr forecasts

by the Air Force Global Weather Central (AFGWC) Global Spectral Model (GSM) and the

Relocatable Window Forecast Model (RWFM). In two windows, one including Eurasia and the

other Central America and southern North America, 12 surface and 500-mb forecasts at 60-hr

intervals in July 1988 and January 1989 were chosen for analysis. Part I is a discussion the subjective

analysis, which is based mostly on root-mean-square (rms) errors, and Part II is a discussion of the

objective analyses.

In general the GSM is a slightly better model but not significantly better. At some locations

on some occasions the RWFM made better forecasts; however, in the final analysis STC could not

make a case for using the RWFM.

PART I. A COMPARISON OF RWFM AND GSM ERRORS

The GSM 36-hr Eurasian January mass field forecasts provide consistently smaller rms errors

than the RWFM. The GSM temperature forecasts have rms errors between 0.5 and 1.50 K smaller

at all levels for all cases. The GSM height forecast rms errors range from 10 to 50 m smaller than

the RWFM between the 1,000- and 500-mb levels and 50 to 100 m smaller between the 100- and

50-mb levels for all cases. The GSM sea level pressure rms errors are I to 3 mb smaller for all cases

except 00 UTC 1-6-89 (0.3 mb larger), 00 UTC 1-11-89 (0.3 mb larger), and 00 UTC 1-26-89 (1.0

mb larger). The GSM relative humidity rms errors are generally 5 to 10 percent smaller at most

levels for all cases. The RWFM and GSM wind forecast rms errors are of similar quality, especially

the v component of the wind vector. (From here on, u component refers to the component of the

west-to-east wind vector, and similarly the v component refers to the south-to-north component of

the wind vector.) The GSM u-component rms errors are 0.5 to 1.5 m/s smaller at most levels in

most cases, but the RWFM had v-compoinent rms errors at least equal to those of the GSM in 9 of

the 12 cases.
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The GSM 36 hr Eurasian July forecasts provide height rms errors which are 5 to 10 m

smaller at most levels in all cases. The differences between the RWFM and GSM temperature rms

errors are very small except at the 70- and 50-mb levels where the RWFM rms errors are 0.5 to

1.0 K smaller in every case. The GSM sea level pressure rms errors are about 1 mb smaller than

the RWFM in every case except 12 UTC 1-3-89 (0.1 mb smaller). The GSM relative humidity rms

errors are 1 to 5 percent smaller at most levels in most of the cases. The RWFM u component

and v component rms errors are 0.5 - 1.5 m/s smaller than the GSM at almost all levels for all the

cases.

The RWFM and GSM 36 hr Central American January rms errors of the mass field forecast

are similar. The RWFM and GSM height and temperature rms errors are similar up to the 100-mb

level, above which the RWFM errors are about 10 n and 0.5 K smaller for almost all the cases. The

GSM sea level pressure rms errors are 0.2 - 0.5 mb smaller than the RWFM for all cases except 12

UTC 1-3-89 (1.3 mb smaller) and 00 UTC 1-26-89 (0.8 mb smaller). The RWFM and GSM relative

humidity rms errors are within 1 to 3 percent of each other at all levels for almost all the cases. The

RWFM and GSM momentum field rms errors are similar except between 500 and 200 mb, where

the GSM u component and v component rms errors are 0.5 - 2.0 m/s smaller than the RWFMv for

almost all the cases.

The RWFM 36 hr Central American July height, temperature, and relative humidity forecasts

provide rms errors that are equal to or smaller than the GSM at most levels in every case. The

RWFM temperature rms errors are 0.5 to 1.5 K smaller than the GSM between 100 and 50 mb in

every case. The RWFM height rms errors are 5 to 10 m smaller than the GSM between 300 and

50 mb in most cases. The GSM sea level pressure rms errors are 0.1 to 0.3 mb lower than the

RWFM in all cases except 00 UTC 7-1-88 (equal), 00 UTC 7-6-88 (0.1 mb larger). 00 UTC 7-11-88

(0.4 mb larger), and 00 UTC 7-26-88 (equal). The RWFM and GSM relative humidity rms errors

-arc within 1 to 3 percent at all levels for every case. The RWFM u component and v component

rms errors are 0.5 to 1.0 m/s smaller than those of the GSM in most cases, especially between 1,000

and 200 mb.
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PART I. AN OBJECTIVE COMPARISON OF THE 36-HR FORECASTS BY

TH1E RWFM AND GSM TO TIlE VERIFYING ANALYSES BY THlE

IHGI RESOLUTION ANALYSIS SYSTEM (IIIRAS) MODEL

00 UTC 1-1: The RWFM and GSM failed to dig a strong short wave trough and to intensify

the associated 959 mb surface low north of Norway by 9 and 11 mb, respectively. The RWFM

underdeveloped the western Eurasia surface high by 12 mb, while the GSM underdeveloped it by

5 mb.

12 UTC 1-3: The RWFM failed to develop the cutoff low in the northeastern portion of the

long wave trough over the Soviet Union. Both the RWFM and GSM failed to develop the closed

1,000-mb surface low southward towards the Caspian Sea; the RWFM forecast a 987-mb low 600

miles to the northwest where HIRAS had analyzed a 1,012-mb high, and the GSM forecast a 994-mb

low about 200 miles northwest of where HIRAS had analyzed the low. The RWFM underdeveloped

the 1,038-mb surface high over Greece by 10 mb.

00 UTC 1-6: The GSM intensity and position forecasts of the 988 mb Iceland and 982 mb

northern Soviet Union surface lows were much better than the RWFM, which underforecast these

lows by 4 and 6 mb, respectively. The RWFM and GSM underforecast the 500 mb cutoff low over

the Barents Sea by 140 and 80 m, respectively. The RWFM underintensifies the associated 982 mb

surface low by 6 mb while the GSM intensity matched the HIRAS.

12 UTC 1-8: The RWFM overintensifies the 980 mb Scandinavian surface low by 7 mb while

ihe GSM matched the HIRAS intensity. Both the RWFM and GSM underdeveloped the 1,040-mb

surface high over the eastern Soviet Union by 8 and 10 mb, respectively. The RWFM and GSM

overintensified The 1,028-mb trough east of the Caspian Sea by 10 and 9 mb, respectively.

00 UTC 1-11: The GSM overintcnsified the northern Soviet Union 988-mb surface low by

7 mb. Both the RWFM and GSM overintensified the 968 mb Iceland surface low by 7 mb and

underdeveloped the 1,034-mb Yugoslavian surface high by 4 and 5 mb, respectively. The RWFM

underforecast the depth of the 500 mb Barents Sea trough by 60 m while the GSM matched the

HIRAS intensity.
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12 UTC 1-13: Both models failed to dig the strong 500 mb short wave trough into Turkey,

where heights were forecast 140 m too high. Both the RWFM and GSM underforecast the

associated 1,018 mb surface low over the eastern Mediterranean Sea by 3 and 6 nob, respectively.

Both models failed to cut off the 500-mb low over the northern Soviet Union, although the GSM

deepened the trough more than the RWFM. The RWFM and GSM underdeveloped the 1,026 mb

surface high over the northern Soviet Union by 7 and 5 nib, respectively. The RWFM

underdeveloped the 1,040 mb western Europe surface high by 4 nib. The RWFM underforecast the

955 mb Iceland surface low by 7 mb while the GSM overintensified it by only I nib.

00 UTC 1-16: The RWFM underdeveloped the 500-mb high and its associated 1,034 mb

surface high over the Mediterranean Sea by 80 n and 6 mb, respectively. Both the RWFM and

GSM failed to intensify the 500 mb short wave trough over Finland and incorrectly phased it with

Caspian Sea trough. The RWFM underforecast the Finland 976 mb surface low by only 1 nib, but

the low is elongated towards the southeast and not as circular as the HIRAS low, due to incorrect

phasing of the system with the Caspian Sea low. The GSM underforecast this system by 7 mb and

suffered the same phasing problem as the RWFM.

12 UTC 1-18: The RWFM deepened the 500-mb low too much over the southern Soviet

Union by 60 m and overintensified the associated 1,005 mb surface low by 13 nib. The GSM

correctly maintained the positive tilt and intensity of the southern Soviet Union 500-mb trough but

overintensified the surface low by 7 mb. Both the RWFM and GSM overintensified the 972 mb

surface low over the Arctic Ocean by 14 and 16 mb, respectively, but the forecast position of the

GSM is closer to HIRAS than that of the RWFM. The RWFM undcrdevclops the 1,037 mb surface

high over southern Europe by 9 mb. Both the RWFM and GSM underdeveloped the 1,040 mb

surface high over Siberia by 11 and 16 rob, respectively.

00 UTC 1-21: The RWFM overintcnsificd the 500-mb low and its associated 1.016 mb

surface low over Iraq by 50 m and 7 mb, respectively. The RWTM underdeveloped the trough over

the Soviet Union by 60 m.

12 UTC 1-23: The RWFM and GSM undcrforccast the Greenland 500-mb trough by

150 m. The GSM failed to develop the 500 mb short wave ridge and the associated 1,036 mb surface

high over Siberia. The RWFM and GSM incorrectly dcveloped individual 500 mb cutoff lo s instead
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of splitting the 500-mb trough west of the Siberian high into an open short wave trough and a cutoff

low. The RWFM and GSM placed the associated 992 mb surface low about 500 miles northwest

of the HIRAS analyzed position with intensities of 989 and 993 mb, respectively. The RWFM and

GSM placed the 1,038 mb European surface high about 500 miles west of the HIRAS position with

intensities of 1,037 and 1,035 mb, respectively. The RWFM underforecast the 975 mb Arctic Ocean

surface low by 10 mb and placed it about 300 miles south of the position analyzed by HIRAS. The

GSM underforecast this low by only 3 mb and placed it very close to the HIRAS position.

00 UTC 1-26: The RWFM underforecast the Soviet Union trough by 60 m. The GSM

overintensified the 1,008 mb surface low over northern Siberia by 15 mb and the 977 mb surface low

over the Barents Sea by 6 nib, while the intensities of these lows forecast by the RWFM are within

2 mb of HIRAS. The RWFM and GSM underdeveloped the Eurasian surface high by 3 and 5 nib,

respectively,and both the RWFM and GSM underdeveloped the 952 mb Iceland low by 12 nib.

12 UTC 1-28: The RWFM and GSM overintensified the 955 mb Arctic low by 13 and

16 nib, respectively. The RWFM failed to build the 1,045-mb surface high across Europe.

CENTRAL AMERICAN WINDOW IN JANUARY 1989

00 UTC 1-1: The RWFM and GSM failed to develop the 1007 mb closed surface low off

the mid-Atlantic coast, as both models forecast open troughs. Both the RWFM and GSM

i-nderforecast the 1,006-mb surface low over South America by 5 and 6 mb, respectively, with the

RWFM position 400 miles too far south and the GSM position 200 miles too far east.

12 UTC 1-3: The RWFM placed the 500-mb trough south of Nova Scotia 300 miles to the

west of the HIRAS-analyzcd position. This placement could explain the 15 mb undcrintcnsification

of the associated 964 mb surface low;, however, the RWFM position of the surface low is very close

to the HIRAS position. The GSM forecast intensity of the surface low matched the intensity

analyzed by HIRAS, but the low's position is about 200 miles west of the HIRAS position. The

RWFM and GSM underforccast the 500-mb low over Central America by 30 and 40 m, rcspcctivcly.

The RWFM and GSM underdeveloped the 500-mb high over Mexico by 50 and 20 m, respcctivcly.

The RWFM and GSM underforecast the 1,005 mb surface low over South America by 7 nib.
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00 UTC 1-6: Both the RWFM and GSM failed to develop the weak 500 mb short wave

trough and the closed 1,017 mb surface low off the mid-Atlantic coast, developing weak surface

troughs instead. The GSM showed more evidence of the weak 500-mb trough than the RWFM.

12 UTC 1-8: The GSM closed off the 500-mb high over the Bahamas but underdeveloped

it by 20 m, while the RWFM placed it too far east without closing it off. The RWFM deepened the

500-mb trough too far into Mexico with a subsequent southward displacement of the surface high.

00 UTC 1-11: The RWFM and GSM failed to develop the weak surface trough east of the

Bahamas. The RWFM correctly developed the weak mid-Atlantic coastal trough while the GSM

failed to develop it.

12 UTC 1-13: The RWFM underdeveloped the 1,036 mb Atlantic surface high by 3 mb but

correctly developed the mid-Atlantic coastal trough, which the GSM did not develop. The RWFM

underforecast the midwestern 500 mb short wave trough. Both the RWFM and GSM underforecast

the Central American surface low by only 3 mb, but they underdeveloped the South American

surface low by 5 and 7 mb, respectively.

00 UTC 1-16: The RWFM underforecast the 1,004 mb Great Lakes surface low by 4 mb.

12 UTC 1-18: Both the RWFM and GSM underforecast the HIRAS-analyzed 500 mb short

wave trough and its associated 996 mb surface low off the U.S. east coast: the GSM forecast a

closed 1,003-mb low and the RWFM an open 1,004-mb low. The RWFM and GSM failed to

develop the 500 mb cutoff lows south of Central America, forecasting heights 60 m high instead.

The RWFM and GSM underforecast the Central American 1,005 and 1,004 mb surface lows by

6 mb and South American surface lows by 4 mb.

00 UTC 1-21: The RWFM underforccast the gulf coast 500 mb trough and associated

surface trough, resulting in an underforecast onshore flow along the southeast coast. The GSM

forecast this system much better.

12 UTC 1-23: The RWFM and GSM undcrforecast the 500 mb short wave trough and the

associatcd 1,006 mb surface low off the U.S. cast coast by 5 and 8 mb, respectively.
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00 UTC 1-26: The RWFM and GSM failed to develop the weak 500 mb short wave trough

over the upper midwestern U.S.

12 UTC 1-28: The RWFM and GSM underforecast the closed surface lows in Central

America and South America by 5 to 7 mb.

EURASIAN WINDOW IN JULY 1988

00 UTC 7-1: Both the RWFM and GSM overintensified the 500-mb trough over Turkey by

40 m. The RWFM and GSM overintensified the 1,004 mb surface low over the northern Soviet

Union by 4 and 6 mb, respectively.

12 UTC 7-3: The GSM underforecast the Great Britain 500 mb cutoff low by 60 m and the

associated 996 mb surface low by 5 mb, but the RWFM forecast of this system matched the HIRAS

analysis. Both forecast models underforecast the Arctic Ocean 500 mb cutoff low by 60 m and the

990 mb Iranian surface low by 14 nib.

00 UTC 7-6: The RWFM and GSM underforecast the 500-mb high over Sicily by 70 and 30

m, respectively.

12 UTC 7-8: HIRAS is missing.

00 UTC 7-11: The RWFM and GSM underdeveloped the 500-mb high over the Soviet

Union by 70 and 40 m, respectively. The RWFM and GSM overintensified the 1,008-mb surface

trough over the Caspian Sea by 7 and 4 mb, respectively. The RWFM and GSM overintensified the

1,008 mb Arctic trough north of the Soviet Union by 8 and 3 nib, respectively.

12 UTC 7-13: The RWFM and GSM underforecast the 500-nib trough over the Caspian Sea

by 40 m. Both models underforecast the 993 mb surface low over Iran by 10 mb. The RWFM and

GSM overintensified the 1,008 mb Arctic Ocean low by 6 and 5 mb, respectively, and the 1,012 mb

Greenland surface low by 3 and 5 mb, respectively.
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00 UTC 7-16: The RWFM and GSM underforecast the 1,004 mb surface low over the

northern Soviet Union by 6 and 4 mb, respectively, and forecast a 1,012 mb surface high over

Afghanistan, where HIRAS has a 996 mb surface trough.

12 UTC 7-18: The RWFM and GSM underforecast the intensity of the dual 500 mb cutoff

low over northern Siberia and the Arctic Ocean by 90 and 40 m, respectively. The RWFM

underforecast the associated 995 mb surface low by 6 mb, while the GSM overintensified it by only

1 mb. The RWFM and GSM underforecast the 996 mb Iceland surface low by 4 mb and the

1,006 mb Scandinavian surface low by 8 mb. Both models overdeveloped the European surface high

by 4 mb and the southern Soviet Union surface high by 10 mb.

00 UTC 7-21: The RWFM underforecast the 500 mb cutoff low over northern Siberia by

120 m and the associated 994 mb surface low by 13 mb. The GSM underforecast this 500-mb low

by only 20 m and the surface low by only 1 mb, but the GSM placed the surface low about 500 miles

northwest of the HIRAS position. The GSM overintensified the surface low over the North Sea by

6 mb, while the RWFM underforecast it by 4 mb. Both the RWFM and GSM underdeveloped the

500-mb high over Iran by 100 m and underforecast the 996 mb surface low over Afghanistan by

8 mb.

12 UTC 7-23: The RWFM and GSM underforecast the 500 mb cutoff low over northern

Siberia by 160 and 80 m, respectively, with the RWFM failing to cut it off. The RWFM and GSM

underforecast the associated surface low by 8 and 4 mb, respectively. The RWFM and GSM

underforecast the 984 mb Icelandic surface low by 7 and 4 mb, respectively.

00 UTC 7-26: The RWFM and GSM underforecast the 500-mb high over Afghanistan

by 100 m. The RWFM and GSM underforecast the 500-mb low over the Soviet Union by 30 and

50 m, respectively. The RWFM and GSM underforecast the 996-mb low over Afghanistan by 8 mb.

12 UTC 7-28: The RWFM and GSM underforecast the 500 mb cutoff low over northern

Siberia by 120 and 20 m, respectively. The RWFM and GSM underforecast the 500 mb cutoff low

over the Soviet Union by 60 and 40 m, respectively. The RWFM and GSM underforecast the Arctic

Ocean 1,026 mb surface high by 4 and 5 mb, respectively.
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CENTRAL AMERICAN WINDOW IN JULY 1988

00 UTC 7-1: The RWFM and GSM forecast the New England 500 mb short wave trough

about 200 miles west of the position analyzed by HIRAS. The RWFM and GSM underforecast this

trough by 60 and 30 m, respectively. Both models underforecast the broad South American surface

low by 4 to 6 mb.

12 UTC 7-3: Both the RWFM and GSM underforecast the 500 mb cutoff low over South

America by 80 m. The RWFM underforecast the Central American surface low by 4 mb. The

RWFM and GSM underforecast the South American closed surface low by 5 and 7 mb, respectively.

Both models underforecast the surface trough over the Bahamas by 3 mb.

00 UTC 7-6: Both the RWFM and GSM failed to develop the weak 500-mb trough off the

U.S. east coast, although the GSM hinted at more development than the RWFM. Both models

underdeveloped the 500 mb Bermuda high by 40 km and the associated 1,032 mb surface high by

8 mb.

12 UTC 7-8: HIRAS is missing.

00 UTC 7-11: Both the RWFM and GSM underforecast the South American 500 mb cutoff

low by 110 m and the associated 1,012 mb surface low by 4 mb. The RWFM underforccast the

closed 1,011 mb surface low over southern Mexico by 4 mb, while the GSM overintensified this low

by 4 mb.

12 UTC 7-13: Both the RWFM and GSM underforecast the broad area of low 500-mb

heights south of 100 north by 40 to 80 m. Both models underforecast the Montana surface low by

9 mb and the Central American surface low by 4 mb.

00 UTC 7-16: Both the RWFM and GSM underforecast the 1,028 mb surface Bermuda high

by 4 mb. Both models underforccast the relatively low 500-mb heights south of 100 north latitude

by about 50 m.
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12 UTC 7-18: Both the RWFM and GSM failed to forecast the closed 500-mb low over the

southern Gulf of Mexico, missing the intensity by 100 m. The RWFM and GSM underforecast the

1,032 mb surface Bermuda high by 7 and 6 mb, respectively. Both models underforecast

the 1,011 mb Central American closed surface low by 4 mb and the 1,010 mb Brazilian closed

surface low by 6 mb.

00 UTC 7-21: Both the RWFM and GSM underforecast the midwestern U.S. 500-mb trough

by 30 m and the Central American surface low by 5 mb. Both models underforecast the surface

Bermuda high by 6 iob.

12 UTC 7-23: Both the RWFM and GSM underforecast the eastern U.S. 500-mb trough by

30 m. The RWFM failed to develop the 1,015 mb surface trough over New England, while the GSM

underforecast it by 4 mb. Both models underforecast the 1,008 mb Mexican closed surface low by

8 mb and the 1,011 mb Panama closed surface low by 4 mb.

00 UTC 7-26: Both the RWFM and GSM underforecast the relatively low 500-mb heights

south of 100 north by 40 m. The RWFM and GSM underforecast the 1,011 mb southern Mexico

closed surface low by 5 mb and the 1,009 mb Central American closed surface low by 5 and 3 mb,

respectively.

12 UTC 7-28: Both the RWFM and GSM underforecast the depth of the trough over the

Canadian Maritimes trough by 30 m.

Overall, the GSM provides noticeably smaller rms forecast errors than the RWFM for active

weather cases (i.e., the Eurasian and Central American winter cases), while the RWFM provides

smaller rms forecast errors for relatively inactive weather cases (i.e., the Eurasian and Central

American summer cases).
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APPENDIX C

LIST OF ACRONYMS

AIREPS aircraft reports

AFGL Air Force Geophysics Laboratory (now called PIGP)

AFGWC Air Force Global Weather Central

ASAP AFGL Statistical Analysis Package

ASCII American Standard Code for Information Interchange

CA Central America

DATSAV2 Datasave 2

ECMWF European Center for Medium-Range Weather Forecasts

EU Eurasia

FSR forward stepwise regression

FGGE First GARP Global Program

GARP Global Atmospheric Research Program

GDA global data assimilation

GSM Global Spectral Model

HIRAS High Resolution Analysis System

NMI nonlinear mode initialization

01 optimum interpolation

01-I 01 analysis prepared using the 20 closest observations

01-2 O analysis prepared using a subset of the observations (chosen by FSR) used in 01-I

OSSE Observing System Simulation Experiment

PL Phillips Laboratory
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PIJGP Phillips Laboratory Geophysics Directorate

PLSC Phillips Laboratory Supercomputer Center

RAOB rawinsonde observation

RAP Regional Analysis Procedure

RLAM Relocatable Limited Area Model

rms root mean square

RWAM Relocatable Window Analysis Model

RWFM Relocatable Window Forecast Model

RWFMVER Relocatable Window Forecast Model Verification

SOAR second order autoregressive

STC Science and Technology Corporation

UGDF uniform gridded data field

UTC Universal Time Constant
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