Technical Report . . @
CMU/SEI-91-TR-31

‘ ELECTF
APR2 1982;

Understanding Integration in a
Software Development

ESD-91-TR-31
é Carnegie-Mellon University

—— ‘Software Engineering Institute

AD-A248 1
}IH“’IW”W"H'”" //HI’H"

9 Environment
| // Alan W. Brown
s o Peter H. Feller
‘ ’\ Kurt C. Walinau
| e - \ January 1992

e ANl

* * 4 92-08342
P T
= o

Distribution UnlimMed

Technical Report
CMU/SEI-91-TR-31
ESD-91-TR-31
January 1992

Understanding Integration in a Software Development

l'|,|,|‘|‘|'l

Environment

‘p Dist
T ig\.\

Alan W. Brown
Peter H. Feiler
Kurt C. Wallnau

Software Development Environments Project

Acswanion For /
sRaail af i
PP Pal 1 :
Jawrore e ed]
Jiseifiostto

b

- t
Cigiilouws i/ !

Lretlabtlivy Coded ;
SRR P
Ava’)l amd/eor |
i Bpeeial
Approved for public release.
Distribution unlimited.

Software Engineering Institute

Camegie Mellon University
Pittsburgh, Pennsyivania 15213

This technical report was prepared for the

SEl Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman, Capt, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical information Center. DTIC provides access W and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pitisburgh, PA 15213,
Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark hoider.

Table of Contents

1 Introduction 1
2 Integration in a SDE 3
2.1 IPSE Integration 3
2.1.1 IPSE Mechanisms 3
2.1.2 IPSE End-user Services 4
2.1.3 IPSE Process Support 5
2.1.4 IPSE Summary 5

2.2 CASE Integration 6
2.2.1 CASE Mechanisms 7
2.2.2 CASE End-User Services 7
2.2.3 CASE Process Integration 9
2.2.4 CASE Summary 10

3 Integration of Configuration Management in an SDE 13
3.1 A Conceptual Architecture for Configuration Management Support 14
3.2 Integration of IPSE with CM 15
3.2.1 Mechanism Integration 16
3.2.2 End-User Services Integration 16
3.2.3 Process Integration 17

3.3 integration of CASE with CM 17
3.3.1 Mechanism Integration 17
3.3.2 End-User Services Integration 19
3.3.3 Process Integration 20
3.3.4 Scaling-up to a Multi-CM, Multi-CASE Integration 21
3.3.5 Summary of CASE/CM Integration with State-of-Practice Techniques 22

4 Summary and Conclusions 23
References 25

CMU/SEI-91-TR-31 i

CMU/SEI-91-TR-31

List of Figures

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

A Summary of CASE and IPSE Integration Issues 13
A Conceptual Model for CM Systems 15
Classification of Tool Data Architectures 17
Variation of CM Paradigms Across CASE and CM Tools 19
Comparison of Workspaces and Transactions in SMARTSystem

and NSE 19

CMU/SEL-91-TR-31

CMU/SEI-91-TR-31

Understanding Integration in a Software
Development Environment

Abstract: In the past ten years there has been a great deal of interest in the
concept of a Software Development Environment (SDE) as a complete,
unifying framework of services supporting most (or all) phases of software
development and maintenance. We identify three levels at which the issue of
integration in a SDE arises as a key concept — at the mechanism level
(interoperability of the hardware and basic software), at the end-user services
level (combining the methods and paradigms of the various tools), and at the
process level (adapting end-user services to the working practices of different
users, projects and organizations).

in this paper we examine SDEs from an integration perspective, describing the
previous work in this area and analyzing the integration issues that must be
addressed in an SDE. For illustrative purposes, a particular focus of the paper
is the configuration management aspects of an SDE.

1 Introduction

Developing large-scale software systems is a difficult and complex process involving the con-
trol and coordination of many different elements. In producing high-quality products, on time
and within predicted costs, software development organizations must typically address:

¢ technical issues (e.g., "how can | make this work?");
* managerial issues (e.g., “how should my teams be organized?”);
* political issues (e.g., “what tools should | buy, from which vendors?”).

in many ways, the problems of software development are a direct consequence of the need
to manage this combination of human and technical issues. As a result, effective software de-
velopment environments (SDEs) must provide support for addressing all three kinds of issues.
In particular, a key concept within any SDE is integration — bringing together the different SDE
components to provide as much support as possible for the various software development
tasks.

Furthermore, as an SDE is a complex artifact, typically requiring the bringing together of a
number of diverse software systems operating on a common piatform, we can view an SDE
as a systems integration problem. Considering an SDE in this way can lead to an analysis of
integration in an SDE at three different levels:

1. Atthe mechanism level — the interfaces and implementations of SDE servic-
es which support tool-SDE hosting and inter-tool cooperation. Mechanisms
are frequently partitioned into control, data and presentation mechanisms [16]
but can also include mechanisms to support execution (“enaction”) and tailor-
ing of software development process models and other SDE administration

CMU/SEI-91-TR-31 1

activities.

2. At the end-user services level — the coordination and cooperation of high-
level clusters of SDE functions which support some end-user activities (e.g.,
software design, configuration management, software testing).

3. At the process level — adapting and tailoring SDE end-user services to suit
the requirements of individuals, projects and organizations, typically by
imposing constraints on the way in which the end-user services can be used.

In the remainder of this paper, we explore the theme of integration within an SDE by expanding
on the above discussion, and analyzing integration in a SDE at these three levels. The paper
is organized as follows: Section 2 describes integration in a SDE concentrating on the two
main approaches to SDE architecture that can be identified; Section 3 develops these themes
further by focusing on the configuration management services provided in a SDE; Section 4
concludes the paper with a review of the main issues.

2 CMU/SEI-91-TR-31

2 Integration in a SDE

In practice, two distinct approaches towards SDE architecture can be distinguished, one
based on providing a common infrastructure in which tools can be embedded, the other con-
centrating on the tools themselves. We refer to the former as the Integrated Project Support
Environment (IPSE) approach, as this is the most common term in use The latter we refer to
as the Computer-Aided Software Engineering (CASE) approach, due to the fact that CASE
tools are the primary focus of this approach. Both of these approaches address integration in
a different way, and hence it is appropriate to examine them separately.

2.1 IPSE Integration

The primary reason for the design and implementation of IPSEs was the need to provide better
support for the interoperation of collections of tools in the support of software development.
Until that point, tools could be developed to interoperate through the use of operating system
services (e.g. sharing files, and through the use of remote procedure calls) or by being imple-
mented to interact directly through a common database (e.g. sharing data and data definitions
in a common schema, and making use of database security, recovery, and locking mecha-
nisms). Both of these approaches had their uses, but required a great deal of effort on behalf
of the tool developers and too! users to ensure that meaningful dialogue was possible between
tools.

To a large extent, IPSEs have built upon the facilities provided by operating systems and da-
tabases in an attempt to harness the best of both of these approaches. The aim has been to
make tool writing, tool integration, and tool use as convenient as possible. Their emphasis has
been strongly directed towards the generality of IPSE support for different application do-
mains, the scalability of mechanisms provided to handle teams of developers producing large,
complex application software, and the breadth of coverage in supporting all phases of the soft-
ware development life cycle and all possible user roles within that life cycle. There have been
a number of important successes of this work, particularly in focusing attention on the impor-
tance of an overall environment philosophy, and a well-engineered framework, within which
individual tools can operate.

In the following sections we examine various approaches to integration in an IPSE, looking at
an IPSE from a mechanistic, end-user service and process perspective. In this analysis we
highlight some of the shortcomings of the approaches.

2.1.1 IPSE Mechanisms

From a mechanistic perspective, IPSEs have concentrated most of their attention on data in-
tegration as the primary means of coordinating tools. As a result, in this brief review we will
concentrate our attention exclusively on this area.

CMU/SEI-91-TR-31 3

Typically, a database provides a central repository for all data produced by the tools in the
IPSE. Access to the data is via a data schema which records the structure of the data and the
interdependencies between data items. Issues concerning the pervasiveness of the database
mechanisms (e.g., are tool processes themselves represented in the database?), granularity
of data items represented (e.g., is a database item a source file, a program module, or a single
line of code?), physical location of data (e.g., is data held locally, at a central site, or duplicated
where needed?), and others, are addressed individually by each IPSE.

Furthermore, the database mechanisms are often augmented with mechanisms particularly
appropriate to software development support. Version control, event or triggering mecha-
nisms, and data abstraction facilities are all typical in this regard [3, 15]. Such facilities can be
added to the IPSE by extending the database mechanisms (e.g. the database could be
changed to version ail data items), or implemented as a layer on top of the database (e.g., a
checkin/out facility could be provided to control data input/output).

While there are many benefits from using a database-centered approach to IPSE implemen-
tation, there are also drawbacks. For example, a shared data model must be defined for all
tools using the database if they are to share information, providing agreement on the data
structures and data access routines. Not only is the definition of this data model a nontrivial
task, but it also produces a large, complex artifact that must now be monitored, controlied and
updated as required [13]. The lack of modularity of this model makes the addition of new tools,
and the evolution of existing tools, difficult to achieve. Additionally, obtaining an appropriate
level of detail at which to define the data schema has led to both over-constrained, and ili-de-
fined models. The former prevents tools from being used in new, innovative ways, while the
latter permits inappropriate tool usage.

2.1.2 [IPSE End-user Services

The concentration on providing general framework facilities within an IPSE, suitable for many
classes of tools, has had two fundamental effects on IPSE work. First, a number of IPSEs have
been defined and implemented without there being an available collection of tools that can be
used within the IPSE to support the development of a large-scale software system. Second,
tool producers have complained that the facilities available in the IPSE do not provide a rich
enough set of concepts to ease significantly the task of tool production for an IPSE. Some IP-
SEs provide little more than can be found in most modern operating systems. In this case, it
is the lack of domain knowledge of the IPSE, deliberately excluded from the IPSE to make it
more general, that prevents the :PSE from embodying more of the facilities appropriate to par-
ticular tools.

As a result of the above two effects, and for additional pragmatic reasons (such as the lack of
an established IPSE marketplace, instability of many IPSE products, and so on), there has
been relatively little work on the end-user requirements for an IPSE and the best ways of sat-
isfying those requirements through integrated collections of end-user services. Where such
work has been carried out, it has been in the context of providing generic environment services
such as configuration management, document production, and project task control [7]. Many

4 CMU/SEI-91-TR-31

of the approaches implemented have been found to be too generic in the support provided,
requiring a great deal of additional work from too! writers or IPSE end-users to customize the
services to their needs, while others have been too specific, providing good support for a par-
ticular approach to that service, but not for variations on that approach.

2.1.3 IPSE Process Support

To be effective, IPSE end-user services must be adapted to suit different software develop-
ment processes. There are a number of sources of information that affect this adaptation, in-
cluding the different user roles to be supported, the characteristics of the product to be
produced, characteristics of the development organization and its working practices, and ex-
ternal constraints (e.g. contractual requirements) governing the development of a system. As
these aspects can vary enormously from one development organization to another, and from
one project to another, two possible approaches to IPSE support are possible:

1. Many IPSEs attempted to remain neutral with regard to their support for many
of these aspects, either by providing no direct process support [12], or by pro-
viding a very general process encoding mechanism [7]. Their expectation
was that this neutrality would broaden the range of organizations and projects
for which they could be used. This can be called an “open-IPSE” approach.

2. Some IPSEs decided to concentrate their support on one particular
development style, through a fixed set of tools and a predefined data schema
[14]. This can be called a “closed-IPSE" approach.

As can be expected, both of these approaches had their drawbacks. The closed-IPSE ap-
proach raised questions with respect to its flexibility, adaptability, and range of application,
while the open-IPSE approach often required complex process descriptions to be encoded be-
fore the IPSE could be used. However, it is not clear that we have sufficient knowledge of the
software development process to be able to describe specific deveiopment processes in the
necessary detail, to say nothing of defining a notation capable of describing many different
processes that can be used as the basis of an IPSE process-enactment mechanism.

2.1.4 IPSE Summary

In summary, we note that while IPSEs were specifically designed with integration of tools as
their primary goal, there have been a number of limitations with the work carried out thus far.
This has been seen in:

* An emphasis on integration mechanisms, especially for data integration, at
the expense of other concerns and approaches.

* Weak population of supported end-user services with few tools specifically
designed to make use of the IPSE mechanisms.

e Difficulties in adapting IPSEs to suit different software development
processes, mainly due to the inflexibility of the data model and the weak set
of end-user services provided.

CMU/SEIL-91-TR-31 5

2.2 CASE Integration

The CASE tooi rarket emerged coincidentally to (and in paraliel with) large-scale IPSE re-
search and development efforts. We emphasize the term too/ market because market forces
have had a defining role in establishing the nature of systems integration of CASE tools. Mar-
ket factors, such as the need to be responsive to customers’ near-term demands and the ovei-
all knife’s-edge margin of surviva! for fledgling CASE tool vendors, resulted in CASE
technology characteristics which have substantial impact on CASE integration:

¢ Due to the relatively limited resources of typical CASE vendors, and the high
rate of change in the operating system and workstation marketplaces,
vendors must balance the depth and breadth of services provided against the
availability of their tools on various popular computer platforms.1 The
pressure to maximize product availability across a variety of hardware
platforms has produced two tendencies: use of least-common-denominator
platform services, and a high degree of tool independence. The least-
common-denominator tendency reduces dependencies on high-level
services (such as object management) that may not be available on a
sufficiently large base of installations. A consequence of this is that each tool
tends to re-implement critically important services, such as data and
configuration management, in ways that are nonstandard across tools, and
not accessible by other tools. The isolationist tendency reduces
dependencies on the presence of other CASE tools. A consequence of this
is that tools tend to become egocentric, i.e., view themselves as the center
of all activities during particular stages of the software life cycle.

¢ CASE tools focus on well-defined sub-domains of an overall software
development process, for example design and coding. In fact, vendors are
attempting to reach a “local maximum” in which they balance breadth and
depth of services offered. As a consequence, no single tool supports the full
breadth of software development activities. Similarly, different tools may
support different sets of activities, or may support the same sets of activities,
but in different ways. This divergence of CASE services makes it difficult to
determine which tools, and tool services, can (and should) be combined to
provide a consistent set of services with respect to some defined notion of
software development process.

It is reasonable to differentiate CASE tools from tuols in general by the degree to which the
tools support software engineering processes. Although this point should not be pushed too
far, it does reveal one aspect of CASE tools that has a significant impact on integration —
many CASE tools provide in-depth support for highly specialized software development meth-
ods (e.g., SASD). Such in-depth methodological support, when combined with a tendency to
address a broader range of software development activities, results in a substantial degree of
encoding of software process constraints within tools. This has impact on process-level adapt-
ability of individual tools, and collections of tools. We elaborate on each of these characteris-
tics in the following sections.

! In contrast, mos! IPSE developments have been carried out by large, multinational companies, or collaborations
of companies, or else they have been sponsored by government rese: ich and development programs.

6 CMU/SEI-91-TR-31

2.2.1 CASE Mechanisms

While IPSE mechanisms constitute a kind of standard, or “open system" definition of services
for use by integrated tools, no such corresponding notion of openness has developed in the
CASE-tool market. The desirability of direct inter-tool communication has only recently re-
ceived attention, and thus tooi vendors have only recently begun addressing issues of design-
ing open systems.

The use of quotes around the term “open system” is meant to communicate the murky seman-
tics of this term. While there is no clear definition of the term, it is clear that individual CASE
vendors have their own interpretation. In practice, CASE tool openness can refer to any or all
of the following (non-exhaustive) interpretations:

* End-user openness — tools provide some services for user-level
customization of the appearance or behavior of the tools. Menu
customization is an illustration of end-user openness.

¢ Schematic openness — tools that publish the location and format of their
data. Database schemas and data interchange formats illustrate schematic
openness.

¢ Platform openness — tools executing on a common platform, such as Unix,
or with common interaction services, such as are provided with the X-window
system.

* Programmatic openness — tools making aspects of their functionality

available for use by other tools, frequently through linking libraries. This

interpretation is less common.
While CASE vendors are increasingly interested in mechanistic aspects of integration, they
are hampered from achieving an idealized form of open systems-style mechanism definition.
Two factors appear to contribute to the difficulty of evolving to more open, standard CASE
mechanisms. The first is vendor isolationism; this has resulted in the development of vendor-
specific end-user services that frequently can not be integrated even if integration mecha-
nisms were provided. A second factor is that tools need to be designed to support integration.
The absence of this motivating force in early CASE tool design has resulted in tool implemen-
tations that would require substantial, expensive modifications to make use of emerging inte-
gration mechanisms found in IPSEs such as PCTE [2] and SoftBench [4].

So, while some progress is being made in the development of CASE integration mechanisms,
progress is slow, and is usually tightly coupled with CASE vendor business strategies (e.g.,
development of integration mechanisms to support integration with a selected set of tools pro-
vided by vendors in strategic alliances), and is usually coupled to idiosyncrasies of particular
tool implementations.

2.2.2 CASE End-User Services

The very richness in number and kind of end-user services provided by the CASE market is
itself an obstacle to effective integration. As vendors vied for market shares, they needed to
differentiate their tools from their competitor's. This differentiation took two forms:

CMU/SEI-91-TR-31 7

* providing a wider assortment of services (giving customers “more for their
money”).

e providing unique services, or common services in a unique way.

The former tendency resulted in tools which “spilled over” into other software process niches,
e.g., design tools that generate module interface specifications.2 The latter tendency made it
difficult to compare tools ostensibly intended to support the same end-user activities. Incom-
parability of tool services affects not just tool selection, but interacts with the “spillover” phe-
nomenon in that several tools in an environment could provide services supporting the same
end-user activities, but support them in different (and possibly unreconcilable) fashions. The
difficulty here is where various tools support overlapping end-user activities with different kinds
of services, and where these services cannot be delegated by the tools. Multi-user support,
configuration management, and data management are typical examples of non-delegable ser-
vices. As a result, different degrees of incoherence can be introduced by CASE integration,
ranging from relatively minor problems such as muitiple user-interface interaction paradigms
to more serious problems such as data duplication and resultant consistency-management
problems.

From earlier discussions it should be evident that CASE vendors have focused on providing a
wide assortment of end-user services. We have emphasized the term end-user in order to
stress the close correspondence CASE services have with specific tasks undertaken by, for
example, software developers. This correspondence, too, has impact on CASE services inte-
gration. For example, the assertion that some design tool is integrated with some documenta-
tion tool itself is meaningless. However, asserting that these tools are integrated because
design documentation (perhaps as specified by a standard such as DoD-STD 2167A) can be
generated from design diagrams adds substance to the integration claim. This example illus-
trates that tools are not simply integrated with each other, but are integrated with respect to
specific process requirements. Further, entire tools are not integrated, but rather specific tool
services (in the example, data flow diagram editing with documentation tool data interchange
formats and document templates) are combined with some specific process result (the pro-
duction of standard documentation) to produce an integration of tool services.

While this n-ary relationship between tool services and process elements is conceptually tidy,
in practice it is not easy to untangle the process elements from the tool services (again, not
surprising since CASE services tend to support end-user activities). That is, CASE services
tend to embed process constraints. In cases where the relationship between an end-user ac-
tivity and process are well-established, such as CASE services to support specific software
design activities within a well defined method (e.g., SASD), some embedded process con-

2 Some readers may object and say that interface specification is a part — albeit the final part — of the design pro-
cess. Here we merely distinguish the development of a logical interface as a consequence of a design process
from its syntactic representation, which is the logical beginning of a programming process.

8 CMU/SEI-91-TR-31

straints can be benign. In less well-defined activities (from the vantage of established process-
es) such as programming, embedded processes can add further constraints on the way
various CASE services can be combined.

As this discussion of CASE end-user services indicates, no single integration solution is likely
to be applicable to some arbitrary consteliation of CASE tools since the tools provide services
which:

e overlap services of other tools, sometimes benignly but frequently in a
destructive fashion.

* embed process constraints.

e are vendor idiosyncratic, and, as such, are difficult to compare and combine
with logically related services provided by other vendors.
The conclusion that only “custom” integration solutions are applicable for CASE services inte-
gration seems unavoidable, but this conclusion is unsatisfactory nevertheless.

2.2.3 CASE Process Integration

The conclusion that, at present, no fixed engineering solution exists for CASE services inte-
gration applies equally to process integration. The previous section discussed the impact and
relationship of process requirements with the integration of specific CASE services. In this sec-
tion, we restrict the focus of CASE process integration to issues of adaptation to an evolving
process.

There are two aspects of adaptation that need discussion. The first is process adaptation of
individual tools, the second is adaptation of integrated services. We address each in turn.

There is a wide variety of process adaptation techniques that apply to individual CASE tools.
The most common techniques apply some form of tool parameterization. Parameterization
can occur at various times, with different implications on adaptability. Examples of parameter-
ization include:

* Installation-time parameterization. This form of parameterization clearly
supports only limited adaptability, and effects the entire population of tool
users.

¢ Shared run-time parameterization. For example, the use of tool resource
descriptions and search-paths for resource databases (typical in tools
making use of the X-Window system, but not exclusively restricted to such
tools) allows different groups of users to tailor individual tools for special
process requirements. This form of parameterization is clearly more
meaningful for process adaptation, since it reduces the cost of adaptation
while introducing the concept of scopes of process tailoring and groups of
users.

CMU/SEI-91-TR-31 9

* Private run-time parameterization. This form of parameterization is

exemplified by the use of tool “flags” which modify the behavior of the tool.

This is the most ephemeral form of parameterization, and because of this

does not provide useful adaptability support.
These parameterization techniques reflect mechanisms for process adaptation, and so might
justifiably be considered a part of mechanism integration. Parameterization mechanisms are
discussed in the process context precisely because tool vendors tend to use parameterization
mechanisms to model both platform constraints and process constraints. This reflects the par-
tial nature of process support within CASE tools. Some elements of process are supported di-
rectly by CASE services, while other elements lie in the realm of user expertise and usage
conventions. These boundaries are not always well thought out by vendors, so much of the
burden of adapting CASE tools to specific process requirements lies in the user’s hands.

This leads to a form of adoption that, in practice, constitutes tool-usage conventions, the most
significant form of tool process adaptation. For example, naming conventions of tool-generat-
ed data and informal communication conventions among tool users can provide (and in prac-
tice substantially provide) considerable tool adaptability.

There are, however, adverse consequences to both parameterized and user convention ad-
aptation. In the case of tool parameterization, process constraints are explicit, but are embed-
ded (or “encoded”) in tool-specific formats (e.g., resource files, installation scripts, and
command aliases). In the case of conventions, the opposite problem arises: the process con-
straints are all implicit and hence not enforceable, automatable or adaptable in a coherent
fashion.

Process adaptation techniques applied to integrated CASE services are more difficult to quan-
tify, partly because of the variation of CASE services, and partly because the integration of ser-
vices always implies support for specific process activities. Given this, changes to the
underlying software processes are liable to require revisiting integration solutions developed
for particular CASE services, and potentially redesigning these solutions to accommodate pro-
cess changes. Given the ad hoc nature of CASE services integration, this form of evolution is
likely to be time consuming, expensive and possibly incomplete.3

2.2.4 CASE Summary

In summary, we note that CASE tools are focused on providing support for specific end-user
activities, and that this focus, combined with market-induced vendor isolationism, results in
CASE technology which is:

e deficient with respect to provision and use of integration mechanisms.

3 Note that we have not addressed another aspect of process evolution: the introduction of newer versions of ex-
isting tools. This, too, constitutes process evolution since tools tend to support — and introduce — specific pro-
cesses.

10 CMU/SEI-91-TR-31

¢ rich in terms of end-user services, only these services are provided in non-
standard, idiosyncratic fashion.

* difficult to adapt to evolving processes precisely because of the diversity of
CASE services and their complex relationship to both external process
requirements as well as process elements introduced by the services
themselves.

CMU/SE!-91-TR-31

11

12

CMU/SEI-91-TR-31

3 Integration of Configuration Management in an
SDE

As illustrated in Figure 3.1, both IPSE and CASE approaches to integration have strengths and
weaknesses.

Mechanism Proprietary IPSE framework Iinterfaces
Least-common denominator Emphasis on data integration
Minimal semantics

Service Rich population Few well-developed end-user
Non-standard services, typically only support
Tool idiosyncratic horizontal activities (e.g., CM)

Process Fixed process due to the Elther a fixed process in a
particular set of tools closed IPSE, or process
combined support mechanisms with no

knowledge of a specific process
In an open IPSE

Figure 3-1 A Summary of CASE and IPSE Integration Issues

In order to expose these strengths and weaknesses in a more concrete fashion, we now focus
on the configuration management (CM) facilities as an important component of any SDE.# We
concentrate on this much narrower aspect of an SDE for a number of reasons:

* The size and complexity of SDEs forces us to focus on a single (or a small
number) of well defined sub-areas of SDE technology. Only a few well funded
research, academic, or government groups have the resources to address
the complete picture.

e CM is an important practical problem in its own right. Many organizations
require, and are interested in, CM solutions in isolation and within the context
of their wider development environment.

* For the purposes of this paper we do not define CM explicitly, but consider it only in the general sense of version
control, system build control, and so on. For a more detailed description of CM, se for example [bi bibliography] .

CMU/SEI-91-TR-31 13

¢ Understanding integration of CM within an SDE is a major step in
understanding the complete picture. Such an argument is based on the
pervasiveness of CM facilities throughout any SDE (version control, access
restrictions, build and configuration support, object identification, and so on).
In addition, these facilities are typically not provided by a single tool in a SDE,
but different aspects are provided in different tools, perhaps duplicated in
different tools, and typically without particular regard for consistency and
uniformity.

¢ The choice of CM as a testing ground for our ideas on SDE architectures
provides an ideal medium for exploring process integration in an SDE and its
relationship to the underlying end-user services and support mechanisms.
There are mechanistic issues to CM such as how data objects are recorded,
what history information is needed, and how audit trails through system
builds are encoded. The underlying mechanisms support higher-level end-
user services such as workspaces, system models, transactions, and
change sets. Finally, the procedures and policies for using these CM
mechanisms and services — who is allowed to change code when, what
development standards are used and when are they enforced, how is code
released to the field, and so on — are just as important to understanding CM.

3.1 A Conceptual Architecture for Configuration Management
Support

In order to discuss integration of CM services with tools in an SDE it is first necessary to pro-
vide a high-level description of CM services that have been provided by commercial CM tools >
A more complete exposition of these CM support services can be found in the work of Dart [6)
and Feiler [9].

Broadly speaking, CM tools have been introduced to support several classes of CM applica-
tions, where a CM application is one of:

¢ Developer CM — support of individual and (typically) small teams of software
developers in their development tasks. Sampie CM services for developer
CM include team coordination, build and related consistency-maintenance
services, and merge services.

¢ Project CM — support of project management (probably the most familiar).
Sample CM services for project CM include problem tracking, change
management and release management services.

* Corporate CM — support for corporate level concerns, such as managing
multiple product families and software development process improvement.
Sample CM services for corporate CMinclude metrics gathering, and product
and customer impact analysis services.

As can be seen, CM services do not support a monolithic audience, but instead span widely
divergent (and sometimes competing) CM requirements.

5 The distinction between CM system and too/ is not significant in the following discussion. 1

14 CMU/SEI-91-TR-31

In practice, commercial CM systems tend to focus on one (or, at most two) of the above CM
application areas, and provide uneven, idiosyncratic support within these application areas.
The work by Feiler and Dart is an attempt to provide a conceptual framework for the diversity
of commercial CM systems so that the services offered by these CM systems can be de-
scribed, or related, in a consistent, meaningful way.

Dart partitions specific collections of CM tool functions into higher-level concepts; these con-
cepts relate directly to what we have been calling end-user services in this report, i.e., collec-
tions of functions to support some end-user service. In her report, Dart describes 15 concepts
(called “services” hereafter for consistency), including workspace, object-pool, and repository
and system modeling.

Feiler identifies four CM paradigms, which he denotes as the checkout/checkin, change set,
composition and transaction paradigms. These paradigms can be viewed as higher-level ab-
stractions rather than CM services, in that while CM services are ideally neutral to end-user
processes, the CM paradigms are more directly supportive of distinct CM usage models. For
example:

e the transaction paradigm supports parallel development within a system.

 the composition paradigm supports the construction of product variants from
a composition of variant parts.

¢ the change set model supports the creation of versions through an aigebra-
like application of the sets of cifferences (or changes) to some base version.

e the checkin/checkout model is a primitive building block which supports the
construction of other paradigms.
Feiler indicates that these paradigms are not mutually exclusive, and can be combined to
achieve, or suppont, different end-user processes.

Putting these elements together, we get a three-level conceptual architecture for CM which,
not coincidentally, resembies the three levels of integration used throughout this report. This
CM architecture is depicted in Figure 3-2.

At the mechanisms level are specific CM tools (and systems). The services level reflects, at
one level of abstraction, services (“concepts”) specific to the CM domain, and, at a higher level
of abstraction, CM paradigms which constitute virtual machines for carrying out CM process-
es. At the process level are CM-specific processes which are supported by CM services, such
as change control processes.

3.2 Integration of IPSE with CM

Some aspects of CM are supported in most IPSEs. We examine some of these issues with
regard to integration of tools with these CM facilities within an IPSE.

CMU/SEI-91-TR-31 15

CM Processes process

)

CM Paradlgh end-user services
CM Services

mechanisms

CM Tools

I

Figure 3-2 A Conceptual Model for CM Systems

3.2.1 Mechanism Integration

As a fundamental service to tools, all IPSEs provide some level of mechanistic support for CM.
To a large degree, however, this support is rudimentary, typically designed in an ad hoc fash-
ion based on the IPSE designers’ judgement of what CM mechanisms IPSE tools are likely to
require. As there is little consensus amongst tools regarding CM, IPSE designers often resort-
ed to a least common denominator approach. Hence, as all tools require some form of version
management for the data produced/used, many IPSEs provided support for version control
within (or on top of) the data storage mechanisms and little else.

No knowledge of the semantics of the data objects is available at this level. This has the ad-
vantage that all data can be versioned using the same mechanism, regardless of its type.
However, it also has the disadvantage that no understanding of the insert, delete and update
semantics of different kinds of data object can be included in the mechanisms.

3.2.2 End-User Services Integration

In IPSE frameworks such as PCTE [2] and Aspect [3], no further assistance is provided for CM
other than the basic mechanisms. It is now the task of the IPSE customizer to implement CM
end-user services from the basic mechanisms. This can be a complex, and difficult process.
in both PCTE and Aspect, developing CM end-user services would require substantial addi-
tions to be made to the data schema of the IPSE and the operators defined for accessing the
new schema structures.

16 CMU/SEI-91-TR-31

Once implemented, the CM services can be used by IPSE tools by accessing the data struc-
tures described in the data schema that use the basic data manipulation operators of the IPSE,
or by executing the new operators defined to manipulate that data.

3.2.3 Process Integration

Populated IPSEs such as ISTAR [7] and PACT [15] provide a set of CM end-user services. In
the case of ISTAR (and others), the services that have been implemented presuppose a par-
ticular usage pattern, and are not readily adaptable to new usage patterns.

For example, in ISTAR the notion of a contract is central, representing a work package that is
to be monitored and controlled. In theory, a contract is a very simple notion that can be em-
ployed in many ways to support different software development processes. In practice, how-
ever, implementation of CM end-user services restrict the use of contracts to a small number
of ways. For instance, it was expected that each contract would be operated on by a single
person. As a result, each contract has its own database, with no facilities for simultaneous ac-
cess to a database by more than one user. Similarly, there were no mechanisms provided for
easily transferring data from one contract to another during the course of executing a contract,
as it was never anticipated that this would be required [10].

3.3 Integration of CASE with CM

Given the ad hoc nature of CASE integration with currently available integration technology, it
is difficult to provide meaningful, concrete examples of specific CASE integration solutions
without having to delve into too much detail on the particulars of specific tools. Instead, our
strategy is to highlight paradigmatic mechanisms, services and process integration issues that
are likely to arise.

3.3.1 Mechanism Integration

Rather than attempt a classification of different kinds of service interface mechanisms, we ii-
lustrate mechanism integration issues related to CASE architectures — a larger-grained (but
equally important) view of CASE mechanisms to lower-level interfaces. These issues are rep-
resentative but by no means exhaustive.

Figure 3-3 illustrates a partitioning scheme for CASE architectures, and indicates CM integra-
tion issues that arise solely from these architecture-level distinctions. These issues are sum-
marized, as follows:

* Deriver and filter tools are essentially stateless, single-user systems,6 so that
the key issue of integrating such tools with CM lies in describing and
maintaining the consistency relations between source objects and derived
objects. These issues are well understood (e.g., the Unix Make program).

® The distinction betwaen deriver and filter tools is not critical for this discussion.

CMU/SEI-91-TR-31 17

Deriver/
Filter Tool

Data Dict-
ionary Tool

data dictionary

Database
Tool

sopee

detivec

Figure 3-3 Classification of Tool Data Architectures

* Data dictionary tools are more commonplace in the CASE tool arena, and

they differ from deriver tcols in that the derived data is placed under some
form of data management regime by the CASE tool. Frequently, this data
management regime is opaque to users (and tools), so that access to derived
datais possible only through access services (e.g., editing services). The key
issues of data dictionary tool integration with Ci lies in maintaining the
consistency of source objects extant in an external environment, and derived
data private to the data dictionary tool. Where the tool provides obvious
operations for maintaining this consistency (e.g., an Ada compiler provides a
compile service for updating the program library — which is a data dictionary)
this is not a problem. However, if consistency can only be reestablished by
actions taken by developers at the user interface of the CASE tool, then data
dictionary consistency can become difficult. A related issue concerns the cost
of reestablishing consistency of data dictionaries. If the data dictionary can
not itself be versioned, then the source associated with specific versions of
the dictionary will need to be completely reprocessed to re-derive the entire
dictionary. This is potentially a very costly operation.

Database tools are similar to data dictionary tools, except that both source
and derived data are under the tool's control. Since the source is under the
tool control, it has better opportunities for keeping derived data consistent
without the need for manual intervention. However, a drawback is that this
approach creates duplicate copies of the source — both within the tool, and
within the enclosing environment. Should changes to source information in
the environment occur, a different, more difficult kind of consistency
management problem will be encountered (i.e., merge).

18

CMU/SEI-91-TR-31

As can be seen, tool architectures can have significant impact on the mechanistic aspects of
CASE/CM integration. An additional complication arises if we also consider how specific
CASE architectures may interact with the architecture of a CM system. For example, client-
server tools may interact with CM systems that provide configuration context information on a
per-process basis, i.e., where client and server processes will have different “views” of the CM
repository. For example, both the Sun Network Software Environment [5] and HP/Apollo’s Do-
main Software Engineering Environment [11] have CM systems which make use of per-pro-
cess context information.

3.3.2 End-User Services Integration
Some of the variation of related services provided in CASE and CM tools is illustrated through
a representative sampling of CASE and CM tools depicted in Figure 3-4.

System CM Paradigm
Unix RCS checkout/checkin (co/ci)
SMDS Aide De Camp change set & co/ci
SoftTool CCC transaction & co/ci
Sun NSE transaction
Apollo DSEE composition & co/ci
ProCASE SMARTSystem transaction
IDE Software through Pictures co/ci
Rational Environment transaction & composition

Figure 3-4 Variation of CM Paradigms Across CASE and CM Tools

This sampling shows how different tools and CM systems provide different sets of services,
and that the services are often combined. Thus, for example, while the Sun Network Software
Environment (NSE) [5] supports primarily the transaction paradigm, the Rational environment
(8] combines elements of both the transaction and composition paradigm. However, the Ra-
tional transactions are more constrained than their counterparts in NSE.

CMU/SEI-91-TR-31 19

NSE SMARTSystem

« | arbitrary nesting 1-level transaction

2

§ optimistic concurrency pessimistic concurrency

m - - - -

§ checkpceinting no checkpointing

o | multiple users single user

Q

‘é”. local history no local history

< . .
S | manages multiple configurations manages single configuration
: with single executable

Figure 3-5 Comparison of Workspaces and Transactions in SMARTSystem and NSE

This kind of variation of semantics associated with specific services can be very pronounced.
As another example, consider SMARTSystem’ and N<F *ransaction® and workspace servic-
es. Figure 3-5 illustrates how in these two syster s trainsaction and workspace services sup-
port nearly diametrically opposing serantics.

3.3.3 Process Integration

Services provided by individual tools and CM systems will often impose their own process con-
straints that may be difficult to work around. For example, pure transactions imply a concept
of transaction scopes that may make it difficult to propagate changes across different versions
of a system (where versions may be modeled as non-terminated transactions). Such difficul-
ties in adaptability are not indicative of weaknesses in particular services, such as transac-
tions, but rather point to the need to provide a wider variety of services which may be used
more appropriately under different process contexts. The available variety of services avail-
able in the CASE market is perhaps its greatest asset.

On the other hand, as indicated earlier in this paper, the integration of specific services in
CASE tools implies support for specific process elements. We can illustrate this point more
clearly through use of a concrete example with CASE/CM integration. Consider the integration
of SMARTSystem and NSE (from Figures 3-4 and 3-5). There are a number of possible ways

7 A “C" programming tool marketed by ProCASE.

8 Transaction services should not be confused with the transaction paradigm of CM, which may imply the use of
additional services and usage conventions.

20 CMU/SEI-91-TR-31

of integrating services from these system — each of which implies support for specific process
activities, imposes some constraints on these activities, and provides some manner for tailor-
ing the integration solution (through usage conventions, for example) to support different pro-
cesses.

For example, one possible integration of services would be to integrate SMARTSystem work-
spaces with NSE transactions in such a way that workspaces would be associated in a 1:1
fashion with specific transactions. The advantages of this form of integration would be to aug-
ment SMARTSystem’s “flat” notion of transactions with NSE's richer, scoped (nested) trans-
actions. Conversely, NSE's optimistic concurrency control and build services would be
enhanced?® by the use of SMARTSystem’s fine-grained object locking and more sophisticated
software build optimizations.

The process implications of this integration is that a fresh SMARTSystem database needs to
be created for each NSE transaction in which software changes will occur. At the level of pro-
cess conventicas, we might insist that where NSE transactions have associated SMARTSys-
tem workspaces, no changes to source can occur except within SMARTSystem transactions;
this convention would greatly simplify (though not eliminate) difficulties in maintaining consis-
tency between overlapping services such as the maintenance of system build relationships
(which are being managed by both NSE and SMARTSystem).

3.3.4 Scaling-up to a Multi-CM, Muliti-CASE Integration

These CASE/CM illustrations were focused primarily on achieving satistactory pair-wise inte-
gration of tools. It is clear that in practice CASE/CM interactions are going to involve many
tools interacting with a CM system. There are inter-tool coordination issues that arise in order
to achieve effective cooperation among several tools through some shared set of CM services.
For example, several tools might need to agree upon locking conventions where data is dupli-
cated across several private tool repositories.

The effective integration of a tool's services with those of a CM system may require the active
participation of several tools. For example, consistency maintenance may require the execu-
tion of services residing in many different tools to support the automatic propagation of chang-
es through a shared repository into local tool repositories (in the case of CASE tools with data
dictionary and database architectures).

The above example describes how in practice the relationships between CASE and CM will
be many-to-one (i.e., many tools and one CM system). However, there is no reason to con-
strain this relationship in this way. in fact, if we consider that some primitive CM services will
reside in many CASE tools, and that in many cases these services will be non-delegable, then
in practice, we would not be far from admitting a more general many-to-many interaction of

8 It is possible that some readers would object to the idea that fine-grained locking is an enhancement over opti-
mistic concurrency schemes.

CMU/SEI-91-TR-31 21

CASE tools and CM tools. For example, a tool may be integrated over time with several distinct
CM tools, each providing complementary services (for example, developer services such as
team coordination versus problem tracking services). It is also reasonable to consider several
such tool/CM integrations existing simultaneously—indeed, this seems to follow from the ob-
servation that any CASE integration scenario will include tools which share CM responsibili-
ties.

3.3.5 Summary of CASE/CM Integration with State-of-Practice
Techniques

The rich variety of end-user services available in the CASE market provide considerable flex-
ibility in crafting an integrated environment to support a wide range of processes. However,
the idea that integration solutions require crafting is unsettling, since it implies the creation of
integration solutions which may suffer from problematic maintenance under evolution of pro-
cess requirements, new tools and new versions of old tools. Difficulties in evolving CASE in-
tegration solutions is partly due to the instability of CASE integration mechanisms, but is more
substantially due to the use of either implicit process constraints (i.e., conventions) or embed-
ded process constraints (i.e., software written to integrate particular CASE services).

22 CMU/SEI-91-TR-31

4 Summary and Conclusions

Examining current approaches towards the design of software development environments
from a systems integration perspective has provided a number of insights into the present
state of this work. In particular, it has allowed us to focus on three distinct aspects of integra-
tion:

* Integration of mechanisms and infrastructure services as the basis of a SDE.
* Integration of the concepts and services available to the SDE end-user.
* integration of a SDE with the development process of an organization.

By distinguishing these three aspects, a number of limitations with both IPSE and CASE en-
vironments have been highlighted, based on our characterization of their approaches toward
integration. In this paper we have examined these integration issues in a general context, and
with respect to configuration management support in particular.

Furthermore, identification of the three aspects of integration leads us to consider ways of pro-
viding a more flexible approach to integration in a SDE, capable of directly supporting them.
As a result, a current focus of our work is the development of a “federated” environment archi-
tecture in which SDE services are the main component, rather than concentrating on tools,
frameworks, and so on. The key characteristic of the architecture is a separation of implemen-
tation mechanisms from services, with process and policy issues addressed as constraints on
the application of those services in a particular application domain. By taking this approach to
SDE architecture, we hope to be able to build on existing SDE technology as a basis, while
allowing evolutionary growth and further experimentation with unification of SDE end-user ser-
vices, and explicit representation of SDE process adaptation.

While there is clearly more work required to realize this vision of a “federated” SDE architec-
ture, we believe that by adopting a systems integration perspective, we have gained a deeper
understanding of current integration efforts, with the ultimate goal of providing an approach to
integration that will ensure better supporting, more adaptable SDEs in the future.

Acknowledgments

We are grateful for comments on earlier drafts of this paper from colieagues at the SE!, notably
Susan Dart and Ed Morris.

CMU/SEI-91-TR-31 23

24

CMU/SEI-91-TR-31

References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

8]

(9]

[10]

(1]

[12]

Bersoff, E.H.; & Henderson, V.D.; & Siegel, S.G. Software Configuration Man-
agement. Prentice-Hall, 1980.

Boudier, G.; & Gallo, T.; & Minot, R.; & Thomas, I. An Overview of PCTE and
PCTE+. Proceedings of ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Engineering Environments, Boston, MA,
1988.

Brown, AW. [ed.]. Integrated Project Support Environments: The Aspect
Project. The APIC Series. Academic Press Ltd., London, England, 1991.

Cagan, M.R. “The HP SoftBench Environment: An Architecture for a New Gen-
eration of Software Tools.” Hewlett-Packard Journal (June 1990), 36-47.

Courington, W. The Network Software Environment. Sun Microsystems, Inc.,
Mountain View, CA., 1989.

Dart, S. “Concepts in Configuration Management Systems.” Proceedings of
the 3rd International Workshop on Software Configuration Management, June
1991, 1-18.

Dowson, M. “ISTAR — An Integrated Project Support Environment.” Proceed-
ings of 2nd ACM SIGSOFT/SIGPLAN Software Engineering Sympos ium on
Practical Software Engineering Environments, December, 1986.

Feiler, P.; & Dart, S.; & Downey, G. Evaluation of the Rational Environment.
Tech. Rept. CMU/SEI-88-TR-15, ADA198934, Software Engineering Institute,
Carnegie Mellon University, July, 1988.

Feiler, P.H. Configuration Management Models in Commercial Environments.
Tech. Rept. CMU/SEI-91-TR-7, Software Engineering Institute, Carnegie Mel-
lon University, March, 1991.

Grariam M., & Miller, D. ISTAR Evaluation. Tech. Rept. CMU/SEI-88-TR-3,
ADA201345, Software Engineering Institute, Carnegie Mellon University, 1989.

Leblang, D.; & Chase, R. "Computer-Aided Software Engineering in a Distrib-
uted Workstation Environment.” Proceedings of the SIGSOFT/SIGPLAN Soft-
ware Engineering Syn.posium on Practical Software Development Environ-
ments, Pittsburgh, PA., April, 1984, 104-112,

Paseman, W. “Tools on a New Level". Unix Review 7, 6 (June 1989), 69-77.

CMU/SEI-91-TR-31 25

(13]

[14]

[15]

(16]

Penedo, M.H.; & Stuckle E.D. “PMBD — A Project Master Database for Soft-
ware Enginee ring Environments.” Proceedings of 8th International IEEE Con-
ference on Sof tware Engineering, London, England, August, 1985.

Strelich, T. “The Software Life Cycle Support Environment (SLCSE): A Com-
puter Based Framework for Developing Software Systems.” Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, Boston, MA., November, 1988.

Thomas, I. “Tool Integration in the PACT Environment." Proceedings of 11th
International IEEE Conference on So fiware Engineering, May, 1989.

Wasserman, A. Tool Integration in Software Engineering Environments. In
F.Long. Ed., Software Engineering Environments, Springer-Verlag1990, 138-
150.

26

CMU/SEI-91-TR-31

—?

UNLIMITED, UNCLASSIFIED
SECURITY QLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S

CMU/SEI-91-TR-31

5. MONITORING ORGANIZATION REPORT NUMBER(S)
ESD-91-TR-31

6a. NAME OF PERFORMING ORGANIZATION
Software Engineering Institute

6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION
SEI Joint Program Office

$c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (City, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESD/AVS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F1962890C0003

8c. ADDRESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

gambeugiehMellon University EIREOGRAMNO PROJECT TASK WORK UNTT
ittsburgh PA 15213 MENT No. -

¢ 63756E N/A N/A N/A

11. TITLE (Include Secusity Classification)

Understanding Integration in a Software Development Environment

12. PERSONAL AUTHOR(S)

Alan W. Brown, Peter H. Feiler, and Kurt C. Wallnau

13a. TYPE OF REPORT 13b. TIME COVLCRED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
Final FROM To January 1992 30

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.

environment

18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
CASE integration, process integration, software development

19. ABSTRACT (Continue on reverse if necessary and identify by biock number)

In the past ten years there has been a great deal of interest in the concept of a Software Development
Environment (SDE) as a complete, unifying framework of services supporting most (or all) phases of
software development and maintenance. We identify three levels at which the issue of integration in
a SDE arises as a key concept — at the mechanism level (interoperability of the hardware and basic
software), at the end-user services level (combining the methods and paradigms of the various tools),
and at the process level (adapting end-user services to the working practices of different users, +

projects and organizations).

(please tum over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNaAssmmummml SAMF.ASRPIU D'ncusms.

21. ABSTRACT SECURITY CLASSIFICATION
Unclassitied, Unlimited Distribution I

22a. NAME OF RESPONSIBLE INDIVIDUAL
John S. Herman, Capt, USAF

DD FORM 1473, 83 APR

22». TELEPHONE NUMBER (Include Ares Code) 22¢. OFFICE SYMBOL
(412) 268-7631 ESD/AVS (SEI)

EDITION of 1 JAN 73 1S OBSOLETE UNLIMITED, UNCLASSIFIED

SBCURITY QLASSIFICATION OF THIS

STRACT —continued from page one, block 19

in this paper we examine SDEs from an integration perspective, describing the previous work in
this area and analyzing the integration issues that must be addressed in an SDE. For illustrative
purposes, a particular focus of the paper is the configuration management aspects of an SDE.

